SCHAUM'S OUTLINE OF

Theory and Problems of Fundamentals of Computing with C++

John R. Hubbard, Ph.D.

Professor of Mathematics and Computer Science
University of Richmond

SCHAUM'S OUTLINE SERIES
McGRAW-HILL

Neswe York Ran Fronclico Washingten, D.C. Asckland Rogotd Corasas Lisbon
Ltondon Mwdrid Mexive Oty Milan Montreal New Dbl
San Juan Singapors Svduey Tokys Toronte

JOHN R. HUBBARD is Professor of Mathematics and Computer Science at the University of
Richmond. He received his Ph.D. from The University of Michigan (1973) and has been a member of
the Richmond faculty since 1983. His primary interests are in numerical algorithms and database
systems. Dr. Hubbard is the author of several other books, including Schaum's Outline of Programming
with C++.

Schaum's Outline of Theory and Problems of

PROGRAMMING WITH C++

Copyright © 1998 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

234567891011121314151617181920PRSPRS901098
ISBN 0-07-030868-3

Sponsoring Editor: Barbara Gilson
Production Supervisor: Sherri Souffrance
Editing Supervisor: Maureen Walker

Library of Congress Cataloging-in-Publication Data

Hubbard, J. R. (John R.), date
Schaum's outline of theory and problems of fundamentals of
computing with C++/ John R. Hubbard.
p. cm. -- (Schaum's outline series)
Includes bibliographical references and index.
ISBN 0-07-030868-3 (pbk.)
1. C++ (Computer program language) 2. Computer science.
1. Title II. Series
QA76.73.C153H82 1998
005.13'3--dc21 98-16860
CIP

MceGraw-Hill

A Dwvigen of The MeGrase FRH Comgreties

Prefacel

Like all Schaum's Outline Series books, this is intended to be used primarily for self study, preferably in
conjunction with a regular course in the fundamentals of computer science using the new ANSI/ISO
Standard C++. The book covers topics from the following fundamental units of the 1991 A.C. M.
Computing Curricula:

AL1: Basic Data Structures
AL2: Abstract Data Types
AL3: Recursive Algorithms
AL4: Complexity Analysis
ALS: Complexity Classes
ALG: Searching and Sorting

The book includes over 500 examples and solved problems. The author firmly believes that computing
is learned best by practice, following a well-constructed collection of examples with complete
explanations. This book is designed to provide that support.

Source code for the examples and solved problems in this book may be downloaded from the author's
World Wide Web home page: hitp.//www.richmond.edu/~hubbard/

This site will also contain any corrections and addenda for the book.

I wish to thank all my friends, colleagues, students, and the McGraw-Hill staff who have helped me
with the critical review of this manuscript. Special thanks to Anita Hubbard, Jim Simons, and Maureen
Walker. Their debugging skills are gratefully appreciated.

JOHN R. HUBBARD
RICHMOND, VIRGINIA

Dedicated to my 1997 computer science students:

Miriam Albin, Allison Bannon, Carolyn Bennett, Ben Brown,
Jon-Eric Burgess, Andre Chambers, Kenric Chu, Danielle Clement,
Jim Copenhafer, Mark DeSantis, John M. Ewing, John R. Ewing,
Jeff Frick, Shannon Greening, Russ Haskin, Kevin Hawkins,

Hunt Heffner, John Hettler, William Hooker, Sara Hoopengardner,
Tim Hospodar, Michelle Hucher, Rob Hunt, Rob James,

Tony Kirilusha, Brian Magliaro, Joel Mascardo, Marc Meulener,
Cavan Miller, Nick Gardiakos, Brock Parker, Jeremy Perella,
Betsy Plunket, Kathleen Ribeiro, Christian Schwarzkopf, Chris Severino,
Randy Shehady, Jim Simons, Mike Smith, Heather Smucker,

Ted Solley, Sarah Spence, Seef Syed, David Vermette,

John Vitale, John Wells, Brian Williams, and Josh Young

Contents[]

Chapter 1
Introduction to Computing

1.1 A Brief History of Computing
1.2 Computer Hardware

1.3 Binary Numerals

1.4 Computer Storage

1.5 Operating Systems

1.6 File Systems

1.7 Software Development

Chapter 2
C++ Fundamentals

2.1 The"Hello World" Program
2.2 Variables and Declarations

2.3 Keywords and Identifiers

2.4 Input and Output

2.5 Expressions and Operators

2.6 Initializations and Constants

2.7 Standard C++ Data Types

2.8 Enumeration Types

2.9 The Standard Library

G

)
[\9]

2.10 Errors 33

Chapter 3 43
Control Structures

3.1 Blocks and Scope 43
3.2 Namespaces 44
33Theifand if .. else Statements 45
3.4 The Conditional Expression Operator 47
3.5 Operators 47
3.6 The while Statement 49
3.7 The do. .. While Statement 50
3.8 The for Statement 51
3.9 The break and continue Statements 52
3.10 Loop Invariants 53
3.11 Nested Loops 54
Chapter 4 67
Functions
4.1 Function Declarations and Definitions 67
4.2 void Functions 69
4.3 Tracing a Function 70
4.4 Test Drivers 70
4.5 Using The assert () Function to Check Preconditions 71
4.6 Predicates 72

4.7 Default Arguments 73

4.8 Pass by Const Value, by Reference, and Const Reference
4.9 Returning by Reference

4.10 Overloading a Function Name

Chapter 5
Arrays

5.1 Defining and Traversing Arrays
5.2 Initializing an Array

5.3 Duplicating an Array

5.4 Constant Arrays

5.5 Array Index Out of Range

5.6 The sizeof Operator

5.7 Passing an Array to a Function
5.8 Applications of Arrays

5.9 Two-Dimensional Arrays

5.10 Machine Storage of Arrays

Chapter 6
Strings and Files

6.1 C-Strings

6.2 The <cstring> Library
6.3 Formatted Input

6.4 Unformatted Input

6.5 The string Type

6.6 Files

88

88

89

92

93

96

98

109

109

110

114

16

6.7 String Streams
6.8 Random Access Files

Chapter 7
Abstract Data Types

7.1 Procedural Abstraction

7.2 Function Templates

7.3 Data Abstraction

7.4 C ++ Friend Functions

7.5 Overloading Operators

7.6 Class in Variants

7.7 Constructors and Destructors

7.8 The Four Automatic Member Functions
7.9 Abstract Data Types

Chapter 8
Pointers

8.1 Pointers

8.2 The Dereference Operator
8.3 Pointer Operations

8.4 The Reference Operator
8.5 Null Pointers

8.6 Dynamic Arrays

8.7 The this Pointer

1i8

119

137

137

140

141

143

147

149

151

153

178

178

179

182

184

185

{88

Chapter 9 195
Lists

9.1 Linked Structures 195
9.2 C++ Structsl 196
9.3 Linked Inplementation of the Stack ADT 198
9.4 Iterators 200
9.5 AList ADT 202
9.6 AList Class 204
Chapter 10 226

Standard Container Classes

10.1 Containers 226
10.2 Tem Plates 226
10.3 Standard C++ Container Classes and Their Operations 228
10.4 The C++ Standard Stack Class Template 231
10.5 The C++ Standard Queue Class Template 232
10.6 The C++ Standard Vector Class Template 234
10.7 The C++ Standard List Class Template 236
10.8 Generic Algorithms 239
Chapter 11 254
Recursion
11.1 Introduction 254
11.2 The Basis for a Recursive Definition 254

11.3 Implementations of the factorial() Function 255

11.4 Activation Frames

11.5 The Fibonacci Sequence
11.6 The Euclidean Algorithm
11.7 The Recursive Binary Search
11.8 The Towers of Hanoi

11.9 Mutual Recursion

11.10 Backus-Naur Form

Chapter 12
Trees

12.1 General Trees

12.2 Binary Trees

12.3 Tree Traversals

12.4 Expression Trees

12.5 ADTs for Binary Trees and Their Iterators
12.6 Contiguous Implementation

12.7 Linked Implementation

12.8 Forests

Chapter 13
Sorting

13.1 Preliminaries
13.2 The Bubble Sort

13.3 The Selection Sort

258

261

262

303

303

303

306

13.4 The Insertion Sort 307

13.5 The Merge Sort 308
13.6 The Quick Sort 316
13.7 Heaps 311
13.8 The Heap Sort 312
Chapter 14 319
Searching
14.1 The Sequential Search Algorithm 319
14.2 The Standard C++ find () Function Templates 320
14.3 The Binary Search Algorithm 320
14.4 Binary Search Trees 322
14.5 AVL Trees 323
14.6 Hash Tables 324
14.7 Searching A Hash Table 329
14.8 Collision-Resolution Algorithms 332
Appendix A 346
Algorithms
Appendix B 341
References

Index 350

Chapter 1

Introduction to Computing

1.1 A BRIEF HISTORY OF COMPUTING

Computing is a human process. It involves recognizing and clarifying a problem, devising a
method for solving the problem, executing the solution, and then correcting and revising the solution.
A computer is a mechanical device that facilitates the last two stages of this process. These days
computers are electronic devices that can perform tasks mitfions to bilfions times faster than humans.
But they are still just mechanical devices designed and built by humans.

Usually the most difficuit part of computing is the second stage of the process: devising a method
for soiving the problem. The resufting method is called an algorithm, which is a step-by-step
procedure that can be carried out automaticaily by a computer. Here is a simpie example of an
algorithm, discovered by the ancient Babylonians over 4000 years ago:

Algorithm 1.1 The Babylonian Algorithm for Computing the Square Root of 2
This is the algorithm that the ancient Babyionians used to compute the square root of two (V2):
1. Sety=1.0.
2. Replace y with the average of y and 2/y.
3. Repeat Step 2 until its effect upon y is insignificant.
4. Return y.

EXAMPLE 1.1 The Babylonian Algorithm

The Babylonians and the Egyptians apparently used this algorithm to lay square foundations for their
buildings. It remains to this day the best way to compute the square root of 2. Here are the resulting calculations
using a 12-digit calculator:

y 21y v+ 22
1.0 2.0 1.5

1.5
1.4166666667
1.41421568628
1.41421356238
1.41421356237

1.33333333333
1.41176470588
1.41421143847
1.41421356237
1.41421356237

1.41666666667
1.41421568628
1.41421356238
141421356237
1.41421356237

Square the answer to see that it is correct: (1.41421356237)% = 1.99999999999 = 2.0000000000.

The history of computing is even older than the Babyionian Algorithm. Indeed it is fair to say
that computing began with simple counting. The first computing devices were the fingers on a hand.
We stifl use the word “digit” (meaning “finger”) to describe the symbols “4”, “9”, etc. that we use for
numbers. The simpie task of counting is a common task performed by modern computers perform.

Another prehistoric computing device that is stiif in use today is the abacus. This Oriental device
allows rapid addition and subtraction by sliding beads along paraliel wires heid in a frame. Experi-
enced users of the abacus can often outperform western shoppers using a modern calcuiator.

2 INTRODUCTION TO COMPUTING [CHAP. 1

The first mechanical calculator was designed and built by the German mathematician Wilhelm
Schickard (1592—1635) in 1623. It was capable of addition, subtraction, multiplication, and division.
But in 1624 his only working copy was destroyed in a fire. Schickard and his entire family perished
in the plagues brought on by the Thirty Years War. His design was not discovered until 1957 when his
complete description with sketches were found in a letter to Kepler.

Because Schickard’s achievement went unnoticed by historians, the French mathematician Blaise
Pascal (1623—-1662) is usually credited with inventing the first calculator. Capable of only addition
and subtraction, this device was inferior to Schickard’s calcufator. But Pascal was actually successful
in marketing his device, and several of them exist to this day.

The great German mathematician Gottfried Wilhelm Leibniz (1646-1716) expanded upon
Pascal’s idea, building a calculator in 1673 known as the Leibniz wheel. It completely automated all
the four basic arithmetic operations: addition, subtraction, multiplication, and division. Leibniz had
one copy of his machine built for Peter the Great to send to the Emperor of China.

The first modern computer was designed by the English mathematician Charles Babbage (1791-
1871). He actually designed two computing devices: his Difference Engine in 1823 and his Analytical
Engine in 1833. The Difference Engine was designed to tabulate tables of functions using the method
of finite differences. There was a genuine need in England for such a machine: British navigational
tables of the time, upon which British shipping depended, were rife with human errors. Babbage
recognized that completely accurate tables could be constructed automatically “by steam.” But before
the construction of his Difference Engine could be completed, Babbage abandoned it in favor of a
much better machine: his Analytical Engine. This would be the first truly general purpose program-
mable computer with its own processor, memory, secondary storage, input device, and output device.
The programs would be stored on a belt of punched paste cards, the same way that Joseph Marie
Jacquard’s loom stored programs for patterns to be weaved into fabrics.

The idea of using punched cards was taken up by the American engineer Herman Hollerith
(1860-1929). In 1889 he contracted with the U.S. Census Bureau to process the 1890 census data
automatically. He invented an electronic tabulating machine which was a great success. In 1896
Hollerith established the Tabulating Machine Company, which later evolved into the International
Business Machine company (IBM).

The next major achievement in the history of computing occurred in 1939 at Harvard University
when Howard H. Aiken persuaded IBM to support a project to build a modernized version of
Babbage’s Analytical Engine. Building upon the already-successful punch-card business machines
marketed by IBM, Aiken wanted to build a computer that would do for science what IBM’s machines
were doing for business. When completed in 1944, the Mark I electromechanical computer was able
to perform automatically scientific computations with far greater speed and accuracy than had been
possible previously. It stored its programs on punched tape, similar to Jacquard’s belts of punched
paste cards.

Near end of the Second World War, John W. Mauchly and J. Presper Eckert, Jr. designed and built
the Electronic Numerical Integrator and Computer (ENIAC). This huge machine was the first
electronic digital computer. It was built to tabulate firing tables for the U.S. Army. Afier the war,
Mauchly and Eckert formed a private company which built and marketed the Universal Automatic
Computer (UNIVAC), the first commercial computer designed for both business and scientific
applications. The first one was bought by the U.S. Census Bureau in 1951.

Charles Babbage had borrowed Jacquard’s idea of storing programs on external punch cards. But
it was the great Hungarian-American mathematician John von Neumann who thought of storing
programs in the computer’s memory itself, the same way that data is stored. He suggested this idea in
1945 and incorporated it into the design of the IAS (Institute for Advanced Study) computer which
became the basis for the design of all modern computers.

CHAP. 1] INTRODUCTION TO COMPUTING 3

Computers in the 1940s used vacuum tubes to store data. These were unreliable, took up a lot of
space, and consumed a lot of electricity. In the 1950s, vacuum tubes were replaced by magnetic core
memory. This consisted of tiny magnetic rings threaded on wire mesh racks. The transition made
computer memory faster, cheaper, and more compact.

In 1948 at Bell Labs, William Shockley and associates invented the transistor, a tiny electrical
device that transfers electrical signals across a resistor. These were found to be effective devices for
storing and processing data electronically, and by 1959 were replacing magnetic core memory.

Around 1965, fabrication plants in Santa Clara, California were successful in replacing individ-
ual transistors with integrated circuits impressed on a silicon chip. This region, now called Silicon
Valley, has became a world center of microcomputer technology. Progress in the VLSI (very large
scale integration) of integrated circuits on silicon microchips has been continuous and dramatic.

In 1974, the Intel Corporation released its 8080 microprocessor. This inexpensive CPU (central
processing unit) made the microcomputer possible. Progress in microcomputer technology can be
measured by the successors to the i8080: the /8086 in 1977, the i80286 in 1984, the i80386 in 1986,
the 180486 in 1989, the Pentium (also called the /80586) in 1993, and the Pentium II in 1996.

In the 1960s the U.S. Defense Department developed a nationwide computer network called
ARPANet (Advanced Research Projects Agency Network) to facilitate communication among its
researchers. This network later expanded and combined with other networks, and evolved into
today’s Internet. In 1990 Tim Berners-Lee, working at the CERN laboratory in Switzerland
developed software that made it easy to link to distant computers on the Internet and to send email
(electronic mail). His work marks the beginning of the World Wide Web.

The unprecedented growth in the computer industry in the past 50 years is difficult to overstate.
A new generation of technology appears about every three years which makes computing much
faster, easier, and cheaper. In less than 50 years, the computer industry has become the third largest
sector of the world economy (after energy and illegal drugs). It has been observed that if the automo-
bile industry had developed as fast, we would now be able to purchase a car for under a dollar that
could take us to the moon and back in a few minutes.

1.2 COMPUTER HARDWARE

A computer is usually defined as a machine a—
that has five essential parts: a central processor,
memory, secondary storage, an input device, Disk
and an output device.

The CPU controls nearly all the activities
the computer performs. In modern computers
the CPU resides on a single computer chip, Input
called a microprocessor. The Intel Pentium II Device
processor is a popular example. Microproces-
sors are usually rated according to how fast
their internal clock runs. A computer’s clock
speed is usually measured in megahertz,
abbreviated MHz. A 300-MHz processor has a
clock that “ticks” 300,000,000 times per
second. This means that in the best of circum-
stances, the processor can execute 300,000,000 machine instructions per second, which suggests that
each instruction takes only about 3.3 nanoseconds to execute. (A nanosecond is one billionth of a

Output

———®{ CPU |——® Devi
evice

Main
Memory

4 INTRODUCTION TO COMPUTING [CHAP. 1

second: 10 seconds.) In practice, that speed is rarely attained because the processor often has to wait
for other components to catch up to it. Even to read one byte from its memory may take more than
1,000 nanoseconds, and to read a byte from the hard disk may take 100 times longer. In general, a
300-MHz processor will run faster than a 150-MHz processor, but not twice as fast.

Some computers have more than one microprocessor. Such multiprocessor computers are abie to
do some things much faster than single processor computers. But the advantage of running several
processors simuitaneously is mostly dependent upon the software that the processors run. Some
algorithms are amenable to parallel processing, and in those cases the greater expense of many
processors is justified. For example, the U.S. Weather Bureau uses several large multiprocessor
computers to run its weather simulation programs, which are becoming increasingly effective at
predicting severe weather. Some muitiprocessor computers have as many as 65,536 processors, all
capable of running simuitaneously.

The main memory of a computer is the storage place for the data that is directly accessed by the
CPU. It typically consists of a set of single in-line memory modules (SIMMs) mounted on the
computer’s motherboard close to the CPU. These SIMMs are available in various sizes, from 1 MB to
128 MB. (“MB” stands for “megabyte.” 1 MB = 2% bytes = 1,048,576 bytes.)

Conceptually, it is best to imagine main memory as consisting of a very long list of individual
bytes, each byte having its own address. For example, a 32 MB PC would have 33,554,432 (= 2%%)
individual bytes, numbered from 0 to 33,554,431. (Computer scientists typically begin counting
locations with 0 instead of 1.)

The picture at right shows the first block of 256 bytes in 00000000 [01110011
memory. The numbers on the left are the addresses. For ex?mpie, 00000001 [01001001
the third byte has address 00000010 (= 2,y) and contains the 00000010 (00111100
data byte 0021111200. A 32-MB RAM would be 8,388,608 00000011 |01111111
times as long as this, with the last binary address being 00000100 [00000000
00000001111111112112111111111111 (<= 33,554,43]10). 00000101 (00000000

00000110 00000000
EXAMPLE 1.2 Memory size 00000111 [00001011

In a PC with 64 MB of RAM, how many actual bytes would 00001000 01001011
memory hold and what would be the last address? : :

The actual memory would hold 67,108,864 bytes because 64 MB = 11111011 100000000
641 MB = 64-1024 KB = 64:1024-1024 B = 26.210.010 = 726 _ 11111100 (01100110
67,108,864 bytes of memory. The addresses would run from 0 to 11111101 11111011
00000011111111111111121111111111 (= 67,108,863 ;). 11111110 100001011

11111111 (01101010

1.3 BINARY NUMERALS

Primitive cuitures learned to count using decimal (base 10} numerals, a natural consequence of
the biological fact that we have 10 digits on our hands. We use the 10 Hindu-Arabic symbols 0, 1, 2,
3,4,5,6,7,8,9 to form our decimal numerais. These “digits” are used to represent powers of 10 in
a decimal numeral. For example, the 8 in the numeral 380745 represents not eight, but eight ten-
thousands (8:10%). Similarly, the 3 represents three hundred-thousands (3-10°), and the 5 represents
five ones (5-10°). If we number the digits of a decimal numeral from right to left starting with 0, then
each digit represents that many powers of 10 where the power is the digit number. The 8 in
38102945 represents 8-10° because it is digit number 6.

Most peopie use decimal numerals quite welf without ever thinking about the actual digit
numbers as powers of 10. But that understanding is important for students of computer science
because computers don’t use base 10. They use binary numerals (base 2) instead. Binary numerals

CHAP. 1] INTRODUCTION TO COMPUTING S

use only the first two Hindu-Arabic symbols: 0 and 1. These are called bits, for “binary digit”. A
binary numeral is any string of bits, suchas 10001101. The meaning of the bits in a binary numeral
is completely analogous to the meaning of the digits in a decimal numeral. Just as the left-most digit
3 in the decimal numeral 38102945 represents 3-107 = 30,000,000, the left-most bit 1 in the
binary numeral 10001101 represents 1-27 = 128.
Algorithm 1.2 Conversion from Binary to Decimal
To convert the stored bit string b;---b,b b, to a positive integer:
1. Set x = 0.
2. For each b, =, add 2/ to x. (Note that j is the number of bits to the right of)).

3. Return x.

EXAMPLE 1.3 Translating a Binary Numeral into its Decimal Equivalent
To find the decimal equivalent of the binary numeral y = 10001101:
10000000, = 27 = 128,
1000,=2>= 8
100,= 22= 4,
1,= 2= 1y
The answer is 128 + 8 +4 + 1 = 141. The subscripts 2 and 10 are used to designate “binary” and “decimal”. So

this correspondence can be written 10001101, = 141,.

Translating decimal numerals into binary is not as straightforward as the reverse process. One
way to do it is to reverse the algorithm described in Example 1.3: instead of adding powers of 2 to get
the decimal numeral, subtract powers of 2 from the given decimal numeral.

The next algorithm has the same effect as Algorithm 1.2, but it uses Horner s Method for greater
efficiency. This method factors the sum to replace exponentiation with multiplication. For example, it
would perform the operation 128 + 8 + 4 + 1 = 141 as

(O +1)2+0)y2+0)2+0)2+1)2+1)2+0)2+1=141

Note that the (underlined) bits from original bit string10001101 appear in order in this expression.
Although it looks more complicated, this algorithm is easier to implement and is more efficient,

Algorithm 1.3 Conversion from Binary to Decimal by Horner’s Method
This uses Horner’s Method to convert the stored bit string b;-b,b,b, to a positive integer:
1. Set x = 0.
. Setj =k + 1 (the actual number of bits in the string by -b,b,by).
. Subtract 1 fromj.
. Multiply x by 2.
. Add b, to x.
. If j > 0, repeat steps 3—6.

~N A b AW N

. Return x.

6 INTRODUCTION TO COMPUTING (CHAP. 1

EXAMPLE 1.4 Binary to Decimal by Horner’s Method
Convert the bit string 10110000, to decimal:

J b; x=2x+b,
8 0
7 1 220+ 1= 1
6 0 2:1+ 0= 2
5 1 22+1= §
4 1 25+1= 11
3 0 2:11+0= 22
2 0 222+0= 44
1 0 244 +0= 88
0 0 2:88+0=176

Thus 101 100002 = b7b6b5b4b3b2blbo = 17610 .
The next algorithm reverses Algorithm 1.2, converting a decimal numeral back into binary.

Algorithm 1.4 Conversion from Decimal to Binary
To convert the integer x into its equivalent binary numeral:
1. Assert x > 0.
. Setk=0.
. If x is odd, set b, = 1; otherwise set b, = 0.
. Subtract b, from x.
. Divide x by 2.
.Add 1 to k.
. If x > 0, repeat steps 3-6.
. Return by -byb by .

O NN bW N

EXAMPLE 1.5 Decimal Integer to Binary
To convert the integer 176 into its equivalent binary numeral:

k X b/‘

0| 176

1 88 0
2 44 0
3 22 0
4 11 0
5 5 1
6 2 1
7 1 0
8 0 1

Thus 176, = bybgbsbsbybybibg = 10110000, .
1.4 COMPUTER STORAGE

Every byte of memory always contains some string of 8 zeros and ones. If those 8 bits are set by
some program, then we say that the byte has been initialized. Otherwise the byte remains uninitial-
ized, which usually means that the zeros and ones in the byte are unpredictable.

CHAP. 1] INTRODUCTION TO COMPUTING 7

A byte of memory that has been initialized by a program contains data that can be interpreted
meaningfully by other programs. The way that it is interpreted is determined by the data type that has
been assigned to the byte. It could be text, numeric, sound, graphics, or some other binary type. It
could be the machine language for some program, part of a compressed file, or an encrypted message.

EXAMPLE 1.6 Interpreting Four Bytes

Suppose that the four bytes with address 10000011-10000111 are :
as shown at right. 10000011 {01000010
These 32 bits can be interpreted to have different meanings 10000100 (01111001
depending upon the data type assigned to them. 10000101 |01100101
Suppose that a C++ program has assigned the character data type 10000110 100000000

char to these four bytes. Then since each char occupies one byte,
these four bytes represent the three letters 'B', 'y', 'e', and the
null character NUL. These characters are obtained from the ASCII code. Each byte is interpreted as an integer
and then translated into the character that has that code value, For example, the byte 01000010 isread as a
binary numeral whose decimal equivalent is 66. The ASCII code for the letter B is 66.

If the program instructs the
computer to print these four characters,

it prints Bye. When the null character 10000011 [01000010] 01000010, = 66,9 = 'B"
is “printed,” it does not appear. When 10000100 [01111001| 01111001, = 121)9 = 'y
usedth1sway1tspurpo§elstomarkthe 10000101 [01100101] 01100101, = 101, = ‘e
end of the character string. 10000110 |[00000000] 00000000, = 0y = NUL
Suppose that the C++ program has :
assigned the integer data type short
to these four bytes. This type uses two
bytes (16 bits) for each integer, so these four bytes will be interpreted as two integers.
As decimal numerals, these
two integers are 17,017 and :
25,856. Note that 16-bit (signed) 10000011 {01000010
integers will be in the range — 10000100 [01111001| 0100001001111001, = 17017,
32,768 to0 32,767. 10000101 [01100101
Now suppose that these 10000110 {00000000} 0110010100000000, = 25856

same four bytes are interpreted
with the Standard C++ data type
wchar_t. This type uses two
bytes (16 bits) for each character, so these four bytes will be interpreted as two Unicode characters. The first of
these two 16-bit characters (Unicode 17,017) is a Chinese glyph.

Another possible interpretation of the same four bytes is as a single 32-bit integer of type int. These four
bytes represent the single (decimal) integer 1,115,251,968. Note that, in general, 32-bit (signed) integers range
from —2,147,483,648 to 2,147,483,647.

10000011 (01000010
10000100 |01111001
10000101 01100101
10000110 [00000000| 01000010011110010120010100000000, = 1,115,251,968,,

If these four bytes are assigned the C++ floating-point type float, they evaluate to the decimal number

62.34863. The algorithm used for this conversion is complicated. It divides the 32 bits into three parts: the left-
most bit is called the sign bit, the next 8 bits form the exponent, and the right-most 23 bits form the fraction. For

8 INTRODUCTION TO COMPUTING [CHAP. |

the 32-bit string 01000010011110010110010100000000, the sign bit is 0, the exponent is
10000100, and the fractionis 11110010110010100000000. These three components determine that the
number is positive, it has an exponent value of 10000100, — 127 = 132 — 127 = 5, and a fraction value of
1.111100101100101,. That forms the number +1.111100101100101, x 2° = 111110.0101100101, = 25 + 2% + 23
+2242V+22+ 2%+ 25+ 278+ 2710 = 62.34863. Note that 127 is subtracted from the stored 8-bit exponent
and 1 is added to the 23-bit fraction. This algorithm is known as the excess-1/27 floating-point representation.

This example shows that the same four bytes can represent the text “Bye”, the four integers {66,
121, 101, 0}, the two integers 17,017 and 25,856, two Unicode characters, the singie integer
1,115,251,968, or the single real number 62.34863, depending upon whether the data type is char,
unsigned char, short, wchar t, int,or float. There are several other data types available
in C++ that would yield other different values for these same 32 bits.

The correspondences between memory bits and the characters that they represent are cailed
character codes. Standard C++ uses the 8-bit ASCIl code and the 16-bit Unicode. ASCII
(pronounced “as-key”) is an acronym for the American Standard Code for Information Interchange.
Unicode is a newer international code that inciudes ali the standard European and Asian characters
and many special symbols, such as mathematics and music symbols.

1.5 OPERATING SYSTEMS

There is a special program that is aiways running when the computer is turned on; it is called its
operating system, because it “operates” the computer, controlling aff its hardware and software
functions. When you turn on your computer, as soon as it finishes running its diagnostic tests, it
copies its operating system from its hard disk into its memory and starts it running. This is called
booting the system because the computer is getting itself running, like pulling itself up by its
bootstraps.

Different computers use different operating systems. The most popular are Windows 95, MacOS,
MS-DOS, Windows NT, OS/2, and various dialects of UNIX such as LINUX, Solaris, FreeBSD,
AIX, XENIX, HP-UX, IRIX, and NEXTSTEP. Most PCs use Windows 95, most Macintoshes use
MacOS, and most workstations use some dialect of UNIX. Since ail programs that run on your
computer must be controiled by its operating system, any new software that you install has to be
compatible with that system. So most popular software like the Netscape web browser have different
versions for the most popular operating systems.

The computer’s OS (operating system) controls ali the computer’s hardware. This is done
through the CPU. When you run a program like Netscape, the OS starts the program and remains
ready to respond to every request that the program and its client programs make. For example, if you
want to read your email you click on a button that requests access to your new mail. That request goes
to the OS which looks up where your mail is stored and then returns information (e.g., how many
messages there are) to your mail program which then displays it for you.

The most common activity performed by the CPU is simple arithmetic. This is handled by the
arithmetic and logic unit (the ALU) which is an internal part of the most modern CPUs. To iilustrate
how this is done, consider the probiem of adding the integers 37 (= 00100101,) and 84 (=
01010100,). First the CPU fetches these two numbers from memory and loads them into registers
which are storage places within the CPU. Then it carries out the addition, placing the sum into
another register. Then it stores that answer back into memory. These operations themselves are
translated into binary numerals, called opcodes, and stored with the data in memory. The opcodes are
appended to the memory addresses of the data, called operands, upon which they operate. For
example, if the opcode for the LOAD operation is 16 (= 00010000,) and its operand (i .e., the memory

CHAP. 1]

INTRODUCTION TO COMPUTING

address of the number to be loaded) is 97 (= 01100001,), then the first machine fanguage instruction

would be 0001000000000100, which means “load the number stored at byte number 4 into the

accumulator (the register in the CPU where arithmetic is performed).
Suppose that the machine ianguage uses the following opcodes:

LOAD 00010000
STORE 00010001
ADD 00100011
MULTIPLY 00100100

Then our compiete machine language program woulid be
LOAD the number stored at byte #97
ADD to it the number stored at byte #98
STORE the result at byte #99

When executed, this program would have the effect shown here:

000£00000100001

0010001101100010

000£000i01100011

Of course the 48-
bit program will be

stored somewhere else 10000011
in memory. The QOS 10000100
reads each 16-bit 10000101
instruction one-at-a- 10000110

time. Each time, the
OS “fetches” (ie,

00100101

01010100
2

>

10000011
10000100
10000101
10000110

00100101

01010100

01111001

?

copies) the instruction into one of its registers, and then executes it. That two-step process is called

the fetch-execute cycle. A 120-MHz CPU can do that 120,000,000 times per second. So it would take

that CPU about 25 nanoseconds (3 x 1/120,000,000 seconds) to perform the addition 37 + 84 = 121.
The 3-line machine language program above would be written in assembly language as

LOAD A
ADD B
STORE C

where A and B are symbolic names for the addresses where 37 and 84 are stored, and C is a
symbolic name for the address where the sum is to be stored.

1.6 FILE SYSTEMS

Nearly everything stored in a
computer is organized into
individual units, called files.
These units are organized into a
hierarchical structure called a file
system. Each operating system
has its own file system, but most
work the same way these days.
There are several kinds of files,
but most files are classified as
either plain files or directory files.
A plain file may be a text file like
a letter to your mother, a data file,
a source code file for a program,
or an executable file. A directory

jsimons —

—letters——[

—projects—

Jen

stats

.04,
.04,
.09.
.09.
.08.

17
26
11
16
24

10 INTRODUCTION TO COMPUTING [CHAP. |

file is a file that is used to navigate around the file system. The diagram above shows a very simple
file system. The file names at the right all represent plain files, while the other file names represent
directory files. The left-most directory file is called the roor directory. In this example, the root
directory is named jsimons, which is the user name of the person who “owns” this account. This
directory has two subdirectories: letters and projects. Each of them has subdirectories, and
each of them contains plain files. Analogous to a family tree, a directory immediately to the left of a
file is called its parent directory. So in the example above, letters is the parent directory of Mom.

Whenever you are running your computer, one of your directories will be your current directory
(also called the working directory). On most systems, when you log in your own root directory will
be your current directory. The operating system that runs your computer will have commands for
listing all the files in your current directory; in DOS the command is DIR; in UNIX itis 1s. It will
also have commands for “navigating” about your directory tree. For example, in UNIX you can
“move down” into a subdirectory named projects by executing the command cd projects,
and you can “move up” to your parent directory with the command cd .. . Here the double dot
(. .) always refers to the parent directory.

Every file in your directory tree has a path which locates it relative to the root of the tree. In the
example above, the path to the file named 1997.09.15 is ~/letters/Jennifer/, and the path
to the directory stats is ~/projects/. The tilde symbol “~” represents your home directory. The
absolute file name of a file is the file’s name preceded by its path. So the absolute file name for the
file named 1997.09.15 is ~/letters/Jennifer/1997.09.15.

1.7 SOFTWARE DEVELOPMENT

A programming language is an artificial language invented to allow humans to instruct comput-
ers on how to execute algorithms. The process of writing those instructions is called software
development, or more simply programming.

The first programmer is often purported to be Countess Augusta Ada Byron Lovelace (1815-
1852) because in an annotation to a lecture by Charles Babbage she suggested the possibility that his
Analytical Engine would have the capacity to do repetition automatically. But computer programs
were not created until the 1940s, and no simple means of programming was devised until 1954 when
the first high-level programming language was created by John Backus and a team at IBM. Named
FORTRAN for “formula translator,” it was designed for solving problems in scientific and engineer-
ing. Since then hundreds of programming languages have been invented.

The second major programming language that is still widely used today was named COBOL for
“common business oriented language.” It was created in 1959 at the U.S. Department of Defense by a
team led by Grace Hopper, the first female admiral in the U.S. Navy. In the 1965, John Kemeny and
Thomas Kurtz at Dartmouth Coliege invented BASIC (for beginners’ all-purpose symbolic instruc-
tion code). In 1971 the Swiss computer scientist Niklaus Wirth created another successful teaching
language, named Pascal after Blaise Pascal (1623-1662). In 1972 Dennis Ritchie developed the C
language at Bell Labs. Ten years later, the Danish computer scientist Bjarne Stroustrup expanded C
into C++ for object-oriented programming. In 1995, a team at Sun Microsystems created the Java
language for Internet programming.

Usually the most difficult part of program development is the invention of the algorithm: i.e., the
language-independent outline of the problem solution. Once that has been completed and tested by
hand, one is ready to sit down in front of the computer to write the program. This next stage involves
several steps using several different software systems. The first step is to use an editor to create a file
that contains your source code text. In the diagram below the source code file is named prog.cec.

CHAP. 1] INTRODUCTION TO COMPUTING 11

The next step is to translate your C++ program into machine language. This is done by a
compiler, which is an independent program. If the compiler is unable to complete its compilation of
your program, it will list the compile-time errors that it found. In this case, you will have to go back
to the editor to correct these mistakes and then re-compile your revised source code. This edit-
compile-edit loop may have to be repeated several times before the compiler is able to compile your
program. If you separate the compile step from the linking step, then when it is successful, the
compiler will produce an object module containing the machine language translation of your source
code. In the diagram below, this is the file named prog.o.

jiostream

progl.cpp
include <iostream>
. sing namespace std;
Editor int main()
{ cout << "Hello!\n";
}

_IOSTREAM

lass ios

{ enum io_state { good
enum open_mode { in,

progl.dbg progl.o istream.o
10I0I0I000I0]] UOTC0TOI0O0UI0IT O0I0TI0TIO0T
101010101101019 1100101011010104 0101110100110
101010100010100) R 101010100010100 1010101010100
1001011101010} Cknnpﬂer 010010111010101 0101000100101
010111111101000 010111111101000 1101010101011
101010000000101 10101000000010 111101000101
01010101010100 1010103010100 100000001010
progl
ITI0OTIOIODIO0T
1011001010111
Debugger 0100110101010
1010100010100
0100101110101
0101011111110
) 0001000010
logical errors
compile-time errors
-
link-time errors
@
run-time errors
oS

The compiler includes a separate program that can link your object module(s) to the other
machine language code needed to produce an executable program. For example, in C++, the instruc-
tions on how the input stream cin and the output stream cout work are located in the system
library file iostream.h, so that information has to be linked to any program that uses cin or
cout. If you forget to #include some necessary header file, the linker will issue an error message,
and you will have to go back to the editor to fix the problem. If there are no such problems, then the
linker will create a new file (named prog in the diagram below) and load it into memory.

The next step is to run your program. But the operating system may encounter instructions in
your program that it cannot carry out with its current data. For example, if your have the expression
y/x in your program and the current value of x is 0, then the OS will not be able to do the division
and will stop the execution of your program at that step. Such run-time errors are often called
“crashes.” When your program crashes, you will have to go back to the editor to fix it.

12 INTRODUCTION TO COMPUTING [CHAP. 1

Finally, once your program is running, the last step is to test it with various input sets. If it does
not run correctly, you will have to return again to the editor to fix your logical errors. These are the
most troublesome errors because none of the development systems (the compile, the linker/loader,
the OS) is able to find them for you. It’s up to you do a logical re-analysis of your algorithm to find
the problem. With large programs, this task can be very difficult. Fortunately, most compilers come
equipped with a debugger that can help you with this task. A debugger allows you to trace through
your program step-by-step so you can see its logic. It also allows you to check the values of your
variables at each step so you can see the details of the execution.

Compile-time errors are reduced by learning the requirements of the programming language.
This comes mostly through experience, although a good IDE (Integrated Development Environment)
with color-coded syntax can help here. Link-time errors are due mostly to repeated or absent defini-
tions when a multi-file program is linked. These can be reduced by testing the independent modules
before they are linked together. Run-time errors are usually caused by careless use of operators.
Programming experience and knowledge of operator limitations can help reduce these errors. Logical
errors are caused my many mistakes, such as poor planning and careless hacking. Efficient use of a
debugger is the best way to solve those problems.

Correcting run-time errors and logical errors may require some major revisions to your program,
which might generate more compile-time errors. In general, the program development process can
lead to retracing many of the inner correction cycles, as shown in the picture.

Obviously, the programmer wants to minimize the number of times these cycles have to be
repeated. Many modern compilers are part of a larger Integrated Development Environment (IDE)
that helps the programmer reduce the number of cycles repeated. A good IDE integrates the compiler
with the editor and the debugger so that they work together. For example, when the compiler locates
a syntax error it will automatically re-launch the editor with the program in it and the cursor placed at
the point where the error occurs. Some IDEs also include class inspectors, library inspectors, and
other visual aids that help the programmer see the structure of his/her programs more clearly.

Review Questions

1.1 Match the names on the left with achievements on the right:

Aiken, Howard H. built the first mechanical calculator
Babbage, Charles marketed the first calculator
Backus, John built the first successful automatic calculator
Eckert, J. Presper created the first stored program
Hollerith, Herman designed the first programmable computer
Jacquard, Joseph Marie built the first commercially successful data processor
Leibniz, Gottfried Wilhelm built the first successful electromechanical computer
Mauchly, John W. jointly built the first electronic digital computer
Pascal, Blaise jointly built the first electronic digital computer
Schickard, Wilhelm designed the prototype of the modern computer
Stroustrup, Bjarne created FORTRAN, the first programming language
von Neumann, John created the C++ programming language

1.2 Match the acronyms on the left with the descriptions on the right:
ASCII the modern computer design created by John von Neumann in 1945
CD a small computer usually owned by a single person independently

COBOL secondary storage that cannot be changed

CHAP. 1]

1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

1.14

1.15

1.16

1.17
1.18
1.19

CpU
ENIAC
FORTRAN
GB

IAS

IDE

KB

MB
MHz

0S

PC

RAM
ROM
SIMM
TB
UNIVAC

INTRODUCTION TO COMPUTING 13

memory or disk space for 2'° bytes; about 1,000 bytes

the main memory in a computer

a small optical disk used for secondary storage

the first company to sell computers, founded by Eckert and Mauchly in 1949
a removable memory module; typical sizes: 1 MB, 4 MB, 16 MB, 64 MB
the original programming language designed for business applications

units of speed for a computer clock: 1,000,000 cycles/second

a software systems that integrates an editor, a compiler, and a debugger

the “brain” of a computer

memory or disk space for 2%° bytes; about 1,000,000 bytes

memory or disk space for 2*° bytes; about 1,000,000,000 bytes

memory or disk space for 2% bytes; about 1,000,000,000,000 bytes

the program that controls all operations of a computer

the first high-level programming language, used mostly by scientists

the huge computer built by Eckert and Mauchly in 1945

the code used by most computer systems to translate characters into integers

Describe the basic components of a computer.
What various kinds of memory units are found in modern computers?

How is memory organized in a computer?
What happens when you “boot” a computer?

What is an operating system?

What is a file system?

What is a file path name?

What is a computer program?

How is a computer program executed?

What kinds of errors typically occur in the programming process?

What is the fundamental distinction between integers and real numbers in a computer?

Problems

In a PC with 16 MB of RAM, how many actual bytes would memory hold and what would be
the last address?
In a PC with 1 GB of RAM, how many actual bytes would memory hold and what would be
the last address?

Charles Babbage (see page 2) won the first government research grant in history when in
1823 he persuaded the British government to finance the construction of his Difference
Engine. In his proposal to the government he used y = x* + x + 41 as an example of a mathe-
matical function that the computer would tabulate by means of the Method of Finite Differ-
ences. Construct a difference table for this function and explain how it facilitates its
evaluation.

Use the method of Finite Differences to tabulate the function x> — 3x + 5.

Use the method of Finite Differences to tabulate the function x* - 3x + 5.

Explain why the Babylonian Algorithm (Algorithm 1.1) works.

14

1.20

1.21

1.22
1.23

1.24

1.28
1.26

1.27
1.28

1.29

1.30
1.31
1.32

1.33

1.34

INTRODUCTION TO COMPUTING [CHAP. 1

The Babylonain Algorithm (Algorithm 1.1) can be modified easily to compute the square
root of any positive number: just change the 2 in Step 2 to the number whose square root you
want. For example, to compute the square root of six (¥6), do this for Step 2:
2. Replace x with the average of x and 6/x.
a. Use a modified Babylonian Algorithm to compute V6.
b. Use a modified Babylonian Algorithm to compute V666.
¢. Use a modified Babylonian Algorithm to compute V0.0066.
Be sure to check your answers by squaring them.
Determine empirically how many iterations are needed for the Babylonian Algorithm to
compute V25 to:
a. 3 decimal place accuracy;
b. 6 decimal place accuracy;
c¢. 9 decimal place accuracy;
d. 12 decimal place accuracy.
Determine what 4 one-byte integers are stored in these 4 bytes:

00100010

Determine what 2 two-byte integers are stored in the 4 bytes shown in
Problem 1.22. 01100001
00010001

Determine what four-byte integer is stored in the 4 bytes of memory 00000000
shown in Problem 1.22. :

Convert 11011100, to decimal. (Use Algorithm 1.2 on page S.)

Convert each of the following binary numerals to decimal:
a 11011110

b. 10101010

c. 11111111

d. 10000000000000000000000000000000 (31 zeros)
Convert 555, to binary.

Convert each of the following decimal numerals to binary:

a. 888
b. 4444
c. 1025
d 255

A hexadecimal numeral uses base 16. This requires the use of 16 symbols (“digits”). We use
the 10 ordinary digits plus the first 6 letters of the alphabet. For example, the hexadecimal
numeral 9ca2f represents 9-16* + 12:163 + 10-16% + 2-16' + 15-16° = 641,583,,. Devise
an algorithm similar to that in Algorithm 1.4 to convert decimal to hexadecimal, and then
apply it to find the hexadecimal representation for 100,000,.

Convert each of the decimal numbers in Problem 1.28 to hexadecimal (see Problem 1.29):
Convert the hexadecimal 2d7b into decimal.

Create an algorithm that uses Horner’s Method to convert hexadecimal to decimal, reversing
Algorithm 1.4 on page 6. The algorithm should be similar to Algorithm 1.2 on page 5. Use it
to convert each of the following hexadecimal numerals (see Problem 1.29) to decimal:

a. £4d9

b. 543ab
c. 100000
d ffffff

Create an algorithm to convert binary to hexadecimal, and then apply it to find the hexadeci-
mal representation for each of the numerals in Problem 1.26.

Horner’s Method (page $) is more efficient than the usual method for evaluating a polyno-
mial. For example, the polynomial p(x) = 2x> — 7x* + 6x> + 9x? + 8x — 5 can be written as

CHAP. 1]} INTRODUCTION TO COMPUTING 15

1.35
1.36
1.37

1.1

1.2

1.3

P =(((x—=Tx+6)x+Nx + 8)x -5
Then a value such as p(4.1) can be computed as
p(4.1) =((((2:4.1 = 7)4.1 + 6)4.1 +9)-4.1 + 8)4.1 -5

=(((1.241+6)4.1+9)4.1+8)4.1-5

=((10.92-4.1 +9)4.1 + 8)4.1 -5

=(53.772-4.1 +8)4.1 -5

=228.4652:4.1 -5

=931.70732
The advantage of Horner’s Method is that it eliminates exponentiation.
Use Homer’s Method to evaluate p(3.4) for this polynomial.

Use Horner’s Method to evaluate p(3.4) for p(x) = 3x° — 5x* + 2> + x> — 8x — 6.
Use Horner’s Method to evaluate p(3.4) for p(x) = 3x% — 2x> + 4x3 - 5x.

Consider the general nth degree polyomial p(x) = apx” + ax™' + = + q, x> + a, x + a,,.
Compare the number of multiplications that it takes to evaluate this directly (using
exponentiation) with the number of multiplications required by Horner’s Method.

Solutions

Howard H. Aiken built the first successful electromechanical computer;

Charles Babbage designed the first programmable computer;

John Backus created FORTRAN, the first programming language;

J. Presper Eckert jointly built the first electronic digital computer with J. W. Mauchly;
Herman Hollerith built the first commercially successful data processor;

Joseph Marie Jacquard created the first stored program;

Gottfried Wilhelm Leibniz built the first successful automatic calculator;

John W. Mauchly jointly built the first electronic digital computer with J. P. Eckert;
Blaise Pascal marketed the first calculator;

Wilhelm Schickard built the first mechanical calculator;

Bjame Stroustrup created the C++ programming language;

John von Neumann designed the prototype of the modern computer.

ASCII: the code used by most computer systems to translate characters into integers;
CD: a small magnetic disk used for secondary storage;

COBOL.: the original programming language designed for business applications;
CPU: the “brain” of a computer;

ENIAC: the huge computer built by Eckert and Mauchly in 1945;

FORTRAN: the first high-level programming language, used mostly by scientists;
GB: memory or disk space for 23? bytes; about 1,000,000,000 bytes:

IAS: the modem computer design created by John von Neumann in 1945;

IDE: a software systems that inte§rates an editor, a compiler, and a debugger;

KB: memory or disk space for 2!° bytes; about 1,000 bytes;

MB: memory or disk space for 22 bytes; about 1,000,000 bytes;

MHz: units of speed for a computer clock: 1,000,000 cycles/second;

OS: the program that controls all operations of a computer;

PC: a small computer usually owned by a single person independently;

RAM: the main memory in a computer;

ROM: secondary storage that cannot be changed;

SIMM: a removable memory module; typical sizes: 1 MB, 4 MB, 16 MB, 64 MB;
TB: memory or disk space for 240 bytes; about 1,000,000,000,000 bytes;

UNIVAC: the first company to sell computers, founded by Eckert and Mauchly in 1949;

The five basic components are its processor (CPU), its main memory (RAM), its secondary memory
(disks), its input devices (keyboard, mouse, etc.), and its output devices (monitor, printer, efc.).

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

INTRODUCTION TO COMPUTING [CHAP. |

The main memory unit of a computer is called its RAM (random access memory), typically ranging
from 8 MB to 128 MB in modem PCs (personal computers). Other internal memory units include
EPROM (erasable programmable memory) chips, cache memory (typically 128 KB to 512 KB), and
video memory (VRAM) used by the computer’s windowing system. The secondary memory unit in a
computer is usually its hard disk, typicaily 1 GB to 9 GB. This is supplemented by removable floppy
disks (1,44 MB), removable optical disks (100 MB to 1 GB), CD ROM (compact disk, read-only
memory) drives, tape drives, and other external hard disks.

All computer data is stored in bits (binary digits). Bits are grouped into bytes. Each byte has a unique
address. Quantities of memory are measured in kilobytes (KB), megabytes (MB), gigabytes (GB), and
terabytes (TB). One kilobyte is 1024 bytes, one megabyte is 1024 kilobytes, one gigabyte is 1024
megabytes, and one terabyte is 1024 gigabytes.

When you turn on the computer or restart it, a small program stored in the computer’s EPROM loads
the computer’s operating system from disk into memory and then starts it. This runs brief diagnostics
on the computer’s components, reports any problems, and then starts its windowing system. When fin-
ished, the windowing system usually offers a user login prompt. The process is called “booting”
because it is a “boot-strap” process starting itseif.

The computer’s operating system (e.g., Windows 95, UNIX) is its main program that controls the
computer. It runs continuously while the computer is on.

Data stored on secondary storage devices (disks, tape, etc.) is organized into files. Each file has a
name, an owner, a size, a location, etc. This information is maintained by the file system. It organizes
the files into a tree hierarchy where every file (except the “root”) has a parent file, called its directory.

A file’s path name is a symbolic description of the file’s ancestry, listing the file’s parent, its parent,
etc., up to the root of the hierarchy. In UNIX, a file path name looks like this:

/Users/jsmith/csl0l/projects/Hello.cc

Each directory is denoted by the directory’s name ending with the slash character ' /'.

A computer program is a file containing instructions for the computer to carry out an algorithm. When
the program is run, the computer carries out (executes) its instructions.

Most computer programs are written in high level programming languages such as C++ or Java. The
file containing this source code is then compiled into the equivalent machine language program stored
in a separate file. In UNIX, the program is then run by using the name of its executable file as a com-
mand.

The three main kinds of errors are compile-time errors, run-time errors, and logical errors. Compile-
time errors are detected and reported by the compiler when the programmer attempts to compile the
program. Run-time errors can be detected and reported by the operating system when the programmer
attempts to run the program. Logical errors must be detected by the programmer by means of testing
the program on various input sets.

Integers are exact; real numbers are only approximate.

16 MB = 16 x (1024 KB) = 16,384 KB = 16,384 x (1024 B) = 16,777,216 B. This is 16 x 1024 x 1024
=24 x 210 x 210 = 224 50 the last memory address wouldbe 1111111111111121121111111.

| GB=2'"MB =210x (21 KB) =220 KB = 2% x (2'9B) = 23 B = 1,073,741,824 B, so the last mem-
oryaddresswouldbe 11111121112112111111111111111111 (30 1s).

CHAP. 1]

1.16

1.17

1.18

1.19

1.20

The difference tabie at the right shows the values for
y=x% + x + 41, Ay and A%y computed for x from 0 to

20. Each number in the column labeled y is equal to x
+ x + 41 where x is the number on its left. For example,

83 = 6% + 6 + 41. Each number in the column labeled
Ay is equal to the number on its left minus the number
above it. For example, 12 = 83 - 71. Similarly, each

number in the column labeled A%y is equal to the num-
ber on its left minus the number above it. For example,
2 =12 - 10. After the first few rows have been com-

pleted it is easy to see that every number in the A%y col-
umn will be 2. (This is due to the fact that the highest

exponent in the function x2 + x + 41 is 2.) So each num-
ber in the Ay column is equal to the number above it +
2. For example, 14 = 12 + 2. Similarly, each number in
the y column is equal to the number above it plus the
number on its right. For example, 97 = 83 + 14. So all
the y values from row 7 down can be calculated using
only simple addition. This is the Method of Finite Dif-
ferences that Babbage planned to have his Difference
Engine use to tabulate functions. He used the example

of x% + x+ 41 because this function has the peculiar
property that its first 21 values are all prime numbers.

Tabulating the function *-3x+5 using only subtrac-
tion and addition;

2

X ¥ Ay Ay

0 5

1 3 -2

2 3 0 2
3 5 2 2
4 9 4 2
5 15 6 2
6 23 8 2

Tabulating the function X-3x+5 using only
subtraction and addition:

If x is close to V2, then 2/x will also be close
because: x* V2 > x2 =2 > x~2ix > 2x = x
~ \2. Also, V2 will be between x and 2/x
because as long as x > 0, x <V2 =22 <= 2 x
<2 < V2 < 2/x. Thus the average of x and 2/x
will be closer to V2 than either x or 2/x, so each
repetition brings x closer to V2.

a. The square root of 6 is computed from
.0

.5

.607142857

.454256360

.449494372

.449489743

BN NN W

Check: (2.449489743)? = 6.000000001 = 6.00000000 = 6.

INTRODUCTION TO COMPUTING

17

X y Ay | Ay
0 41
| 43 2
2 47 4 2
3 53 6 2
4 61 8 2
5 71 101 2
6 83 12 2
7 97 14 2
8 13 16| 2
9| 131 18 2
10| 151 20 | 2
1 173 22 2
12| 197 24’ 2
13 223‘ 26\ 2
14] 2510 28 2
15| 281 30| 2
16| 313 32 2
17 347’ 34| 2
181 383 36, 2
o] a2l 3l 2
200 461 40| 2
y Ay | Ay | Ay
0 5
| 3 -2
2 7 4 6
3 23 16 12 6
4 57 34 18 6
5 115 58 24 6
6| 203 38 30 6
70 327 124 36 6
8 493 166 42 6
9 707 214 | 48 | 6

1.21

1.22

1.23

1.24

1.25
1.26

INTRODUCTION TO COMPUTING (CHAP. |

b. The square root of 666 is computed from
1.0
333.5
167.7485007
85.85936499
46.80811789
30.51820954
26.17062301
25.80950228
25.80697592
25.80697580
Check: (25.80697580)” = 665.9999999 = 666.000000 = 666
¢. The square root of 0.0066 is computed from
1.0
.5033
.258206726
.141883820
.094200376
.082131895
.081245223
0.081240384
Check: (0.081240384) = 0.006599999 = 0.006600000 = 0.0066.
a. It takes 5 iterations to obtain 3 decimal place accuracy for V25.
b. It takes 6 iterations to obtain 6 decimal place accuracy for V25.
c. It takes 6 iterations to obtain 9 decimal place accuracy for V25.
d. It takes 7 iterations to obtain 12 decimal place accuracy for V25,
00100010, =2%+21=32+2=134,
01100001, =25 +2° +2%=64 + 32 +1 = 97.
00010001,=24+2%=16+1=17.
00000000, = 0.
0110000100100010, = 2'* + 213 + 28 4+ 25 4+ 21 = 16,384 + 8192 + 256 + 32 + 2 = 24,866. Note that this
result can also be computed from the answers to Problem 1.16: 97-2% + 34 = 97256 + 17 = 24,866.
0000000000010001, =2*+2°=16 + 1 = 17.
00000000000100010110000100100010, = 220+ 216 214 4. 213+ 28 4 25 4 21 = | 048,576 + 65,536 +
16,384 + 8192 + 256 + 32 + 2 = 1,138,978. Note that this result can also be computed from the
answers to Problem 1.23: 24,866:2'% + 17 = 24,866-655,36 + 17 = 1,138,978,
11011100,=27+26+24+23+22=128+64 + 16 + 8 + 4 =220,,

Using Algorithm 1.2 on page 5:
a. Converting 11011110 to decimal:

O OO0 O OO

J b, x=2x+b,

8 0
7 1 20 +1= 1
6 1 271 +1= 3
5 0 23 +0= 6
4 1 26 +1= 13
3 1 213 +1= 27
2 1 227 +1= 55
1 1 2:55 +1=111
0! 0 2:111 +0=222

CHAP. 1] INTRODUCTION TO COMPUTING

b. Converting 10101010 to decimal:

J b x=2+b,
8 0
7 1 20 +1= 1
6 0 21 +0= 2
5 1 22 +1= 5
4 0 25 +0= 10
3 1 210+1= 21
2 0 221+0= 42
1 1 2:42+1= 85
0 0 2:85+0=170
c. Converting 11111111 to decimal:
J | b x=2x+b,
8 0
7 1] 20 +1= 1
6 1] 221 +1= 3
5 1} 23 +1= 7
4 1} 26 +1= 15
3 1] 2113 +1= 31
2 11 227 +1= 63
1 1| 255 +1=127
0 1| 2111 +1=255

Note here that each partial sum is 1 less than the next power of two (e.g., 63 =26 - 1).

d. 10000000000000000000000000000000 = 23! = 2,147,483,648.

1.27 Converting 555 to binary:

555
277
138
69
34
17

—_0 OO = O O = -

SO OB WN-—D
O == N A

—

S0 555, = bybgbsbsbybyb, by = 1000101011,

1.28 Using Algorithm 1.4 on page 6:

20 INTRODUCTION TO COMPUTING [CHAP. 1

a. Converting 888 to binary:

k X bk
888
0| 444 0
1 222 0
27 111 0
3 55 1
4 27 1
5 13 1
6 6 1
7 3 0
8 1 1
9 0 1
So 888, = 1101111000,.
b. Converting 4444 to binary:
k x b,
4444

0| 2222 0
1] 1111 0
21 555 1
3 277 1
4| 138 1
5 69 0
6 34 1
7 17 0
8 8 1
9 4 0

10 2 0

11 1 0

12 0 1

So 4444,, = 1000101011100,
c. Converting 1025 to binary is easy because 1025 = 1024 + 1 = 2!% + 29 = 10000000001, .

d. Converting 255 to binary is easy because 255 =256 — 1 =2% — [= 11111111, . Imagine a binary
odometer on a car: the next mile after 011111111 would be 100000000.

1.29 The algorithm is the same except that the repeated division is by 16 instead of 2:
Algorithm 1.5 Decimal Integer to Hexadecimal
To convert the integer x into its equivalent hexadecimal numeral:
1. Assert x > 0.
2. Setk=0.
3. Divide x by 16, setting x equal to the (integer) quotient.
4

. Set A, equal to the remainder from the previous division. Use one of the 16
hexadecimal digits 0,1,2,3,4,5,6,7,8,9,a,b,c, d, e, f, representing the
numbers 0, 1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14, 15, for A,

5. Add 1 to k.
6. If x > 0, repeat steps 3—6.
7. Return Ay -hyh kg (i.e., the hexadecimal numeral whose jth hex symbol is /)

CHAP. 1] INTRODUCTION TO COMPUTING

Applying Algorithm 1.4 to 100,000 yields 100000, = h4h34,0 45 = 18620, :

k x Ay,
0 | 100000
1 6250 0
2 390 a
3 24 6
4 1 8
8 0 1

1.30 Use Algorithm 1.4 on page 6:

a. Converting 888 to hexadecimal:

k x IR
888

0 55 8

| 3 7

2 0 3

So 888]0 = 378I6~

b. Converting 4444 to hexadecimal:

k x h,
4444
0 277 c
1 17 5
2 1 1
3 0 1

So 4444|0 = 1150]6'

¢. Converting 1025 to hexadecimal:

k X hk
1025
0 64 1
1 4 0
2 0 4
So 1025, =401 .
d. Converting 255 to hexadecimal:
k X hk
255
0 15 f
1 0 f

Thus 255|0 = ﬂ‘w. Note that ﬂm +1= 100]6 =]62]0 = 256‘0.

1.31 Conversion of 0x2d7b into decimal:

2d7b;s =216+ 13162 + 7-16! + 11-16° = 8192 + 3328 + 112 + 11 = 11,643 .

1.32 This algorithm is similar to Algorithm 1.2 on page 5:

22 INTRODUCTION TO COMPUTING [CHAP. |

Algorithm 1.6 Converting Hexadecimal to Decimal by Horner’s Method
To convert the hexadecimal integer A,--hoh, 41, into its equivalent decimal numeral:
1. Setx = 0.

2. Setj =k + 1 (the actual number of bits in the hexadecimal string).

3. Subtract 1 from j.

4. Multiply x by 16.

5. Add A, to x.

6. If j > 0, repeat steps 3-6.

7. Return x.

4. Converting £4d9 to decimal:
j | A x=2x+h,

4 0
3 f 160+ f= 15
2 4 16:15+4= 244
| d({ 16244 + 13 = 13917
0 91163917 +9 =62,681

So f4d9,= 62,681,.
b. Converting 543ab to decimal:

J |k X=2x+h
5 0
4l s 160+5= 5
3| 4 165+4= 84
2| 3| 1684+3= 1347
1| a| 161347+a= 21,562
0| b|1621,562 + b= 345,003

So 543ab;¢ = 345,003 4.
¢. Converting 100000 to decimal: 1000000, = 16%,4 = 1,048,576,
d. Converting ff£fff to decimal: note that ffffff,, + 1 = 1000000, = 16%, = 16,777,216,,,
so fHffY, ¢ = 16,777,216, ~ | = 16,777,215,,.
1.33 This algorithm is based upon the following one-to-one correspondence between 4-bits strings (called
nibbles) and the hexadecimal digits:

Binary Hex |Binary Hex
0000 0] 1000 8
0001 1] 1001 9
0010 2] 1010 a
0011 3] 1011 b
0100 4| 1100 c
0101 51 1101 d
0110 61 1110 e
0111 71 111 f

Algorithm 1.7 Converting Binary to Hexadecimal

To convert the binary integer b,-b,b, by into its equivalent hexadecimal numeral:
1. Use the table above to convert the nibble b;3b,b,b, to the hexadecimal digit A,.
2. Use the table above to convert the nibble b;bgbsb, to the hexadecimal digit A,.
3. Repeat using the table to convert the nibble b,,3b,.,b,,b, to the hexadecimal

digit h, forj=2,3, ..

CHAP. 1} INTRODUCTION TO COMPUTING 23

a. Converting 11011110 to hexadecimal:
ho b3b2b bo 11102— e a.ndhl b7b6b5b4= 11012: d, so 110111102= de.
b Convertl 10101010 to hexadecimal:
b;bzg = 1010,= a and 4, = bybghsby = 1010, = a,so 10101010, = aa.
G Convertm 11111111 to hexadecimal:
hy=byb,b by = 1111,= £ and b = b;bghsby= 1111,= f,s0 11111111,= ff.
d Convert 10000OOOOOOOOOOOOOOOOOOOOOOOOOOO to hexadecimal:
b3b2§ 00002 0;
sumlarly,h,—h “h3—‘h4—h5 hs— OOOO = O andh7 b30b29b28— 10002— 8
so 1OOOOOOOO000000000000000000000002 7h5h5h4h3}|2h Hy =80000000 4.

134 p(3.4)=(((23.4-7)34+6)3.4+9)3.4 +8)3.4-5=(((-02)3.4+6)34+9)3.4+8)34-5

=((5.32-3.4+9)3.4+8)3.4-5=(27.0883.4 +8)3.4-5=100.0992-3.4 - 5 =335.33728.

135 p(x)=3x-5x*+2x3 + x? —8x—6 = ((3x - 5)x + 2)x + 1)x — 8)x - 6, s0

p(34) = ((3-34-5)-34+2)-34+1)-34-8)-34-6
= (((52+34+2)-34+1)-34-8)-34-6
= ((19.68 -3.4+1)-3.4-8).34-6
(67.912-3.4-8)-34-6
2229008 -3.4- 6
751.86272

Il

136 p(x)=3x%-2x° +4x} - 5x= (((((((3x)x)x 2)x)x+ 4)x)x — S)x (((3x° - 2)x% + 4)x? - 5)x, so

1.37

p(3.4) = (((3-34°-2) 347 +4)-34°-5).34
= ((115912-3.4°+4)-3.4°-5)-34

(1343943 -3.4°-5)-3.4
15,530.978 - 3.4
52, 805.325

I

If the general nth degree polyomial p(x) = agx” + a)x™! + - + a, ,x> + a,_x + a, is evaluated directly,

it requires n(n + 1)/2 multiplications, where the exponentiation x* is counted as &£ — 1 multiplications.
However, by Horner’s Method, the evaluation p(x) = ((--(apx + a))x + = + g, 5)x + a,)x + a,
requires only n multiplications.

Chapter 2

C++ Fundamentals

2.1 THE "Hello World" PROGRAM

Every C++ program must include the following code:
int main()
{
}
This is called the main{() function. The program statements that are to be executed are placed
between the braces. That section is called the body of the main () function. This simplest version
has no statements, so it would do nothing. But it would compile and run.

Warning: Some pre-Standard C++ compilers require the statement
return §;
within the body of the main() function.

EXAMPLE 2.1 The "Hello World" Program

Here is a simple program that prints a message:
#include <iostream>

using namespace std;

int main ()

{ cout << "Hello, World!\n";

}

The first line directs the precompiler to copy all the source code from the file iostream into this
program, replacing the #include statement. This file is part of the 1SO Standard C++ Library, so the
precompiler knows where to find it. It defines various objects and functions, including the stream object
std: :cout that is used on the fourth line. This precompiler directive is required in every program that has
input or output; /.e., in every useful program. The second line is needed to access commonly used names like
cout that are defined inthe std namespace.

The fourth line tells the system to print the message “Hello, World!”. The complete string of charac-
ters ends with the non-printing character "\n', which simply directs the printer (or monitor) to move the
cursor down to the beginning of the next line after printing the exclamation point (!). This non-printing charac-
ter, which is formed from the two characters “\" and “n”, is called the newline character. The two-character
symbol “<<™ is called the insertion operator. 1t is used to indicate that the string should be “inserted” into the
output stream cout. This output stream acts as a conduit to the computer’s output device: either the printer or
the monitor. So inserting a string into that stream causes it to be printed (or displayed).

EXAMPLE 2.2 The Pre-Standard Version of the "Hello World" Program
If you are using an older C++ compiler that does not conform to the 1998 1SO Standard, then the program
in Example 2.1 should be written like this:
#include <iostream.h>
int mainy;
{ cout << "Hello, World!\n";

}
The two differences are (1) write <iostream.h> instead of <iostream>, and (2) omit the second line:

using namespace std;.

24

CHAP. 2] C++ FUNDAMENTALS 25

Henceforth, we will omit the two required lines

#include <iostream>

using namespace std;
from the programs in this book. If you are using a Standard C++ compiler, you should insert them at
the beginning of your programs. If you are using a pre-Standard compiler, insert the single line

#include <iostream.h>
instead. Note that the #include line is a precompiler directive and therefore contains no
semicolon, but the using line is a Standard C++ statement so it ends with a semicolon.

2.2 VARIABLES AND DECLARATIONS

Here is a simple program that uses a variable named n:

EXAMPLE 2.3 Using a Variable
int main{)
{ int n;
n = 44;
cout << "The value of n is " << n << '\n';

}
The variable n is declared in the second line. The keyword int meansthat n represents an integer. On the

third line, n is assigned the value 44. Then when it is used on the fourth line, its value is printed, like this:
The value of n is 44

Note in the output statement the difference between the character n in the string literal, the variable n, and

the character '\n'.In astring literal, n is printed as the letter n; as a variable, the value 44 is printed for n;

and when '\n' is printed, it simply advances the cursor to the beginning of the next line.

All names in a C++ program must be declared. A variable like n in Example 2.3 is declared by

specifying its name after its type, like this:
int n;

The type of a variable specifies how the variable can be used and how its value
is stored in memory. Here is a picture of the object n: n
The box represents the variable itself, its name n is on its left, and its type XS
int is below it.

After the value 44 is assigned to n, we can visualize it like this:

The value of the variable is stored inside it, like putting a hat in a hat box. n 44
The statement 1ot
n = 44;
is called an assignment statement, and the equal sign = is called the assignment operator. Note that

the action of an assignment is right-to-left: the value being assigned is on the right side of the
assignment operator, and the name of the object to which it is assigned is on the left side. When used

this way, a name is called an /value.
2.3 KEYWORDS AND IDENTIFIERS

A computer source code program consists of a sequence of tokens (predefined symbols, literals,
keywords, and user-defined names) and whitespace (blanks, tabs, and newlines). The source code in
Example 2.3 contains 14 tokens: the seven tokens (,), {, :, =, <<, and } are predefined
symbols; the three tokens 44, "The value of n is ",and “\n* are literals; the token int is
a keyword, and the three tokens main, n, and cout are user-defined names.

26 C++ FUNDAMENTALS [CHAP. 2

A name (also called an identifier) is a string of characters that identifies something. In C++ the
only characters that can be used in a name are the 26 capital letters, the 26 lowercase letters, the
underscore character (_), and the 10 digits. The first character in a name cannot be a digit.

EXAMPLE 2.4 Declarations

int sum; // ok

int Sum; // ok

int sum; // ILLEGAL: "sum" is already declared

int _sum; // ok

int r2dz; // ok

int C3PO; // ok

int 3PO; // ILLEGAL: names must begin with a letter
int maxSize; // ok

int max size; // ok

int max size; // ILLEGAL: names may not includes blanks
int class; // ILLEGAL: reserved word

int 0000llll; // ok, but not good

Every programming language has a special set of reserved words that have special meaning and
cannot be used as names. These reserved words together with the language’s predefined names are
called keywords. ISO Standard C++ defines 63 keywords:

asm do if return typedef
auto double inline short typeid
bool dynamic cast int signed typenane
break else long sizeof union
case enum mutable static unsigned
catch explicit namespace static cast using
char export new struct virtual
class extern operator switch void
const false private template volatile
const_cast float protected this wchar t
continue for public throw while
default friend register true
delete goto reinterpret cast try

The compiler knows these words and interprets each according to the definition of the language. For
example, class and if arereserved words, bool and int are names of predefined types, and
delete and new are names of predefined operators.

2.4 INPUT AND OUTPUT

The simplest way to produce output in a C++ program is through the standard output stream
object named cout. A stream object can be visualized as a conduit between the program and the
outside. For example, the results of the program in Example 2.3 can be viewed las shown in the
picture below. The output flows from the program through cout to the output device (e.g., the
monitor).

Similarly, C++ defines an input stream named cin through which data flows from an input
device (e.g., the keyboard). Like cout, the input stream object cin is also defined in the
<iostrean> file.

CHAP. 2] C++ FUNDAMENTALS 27

EXAMPLE 2.5 Using the cin Object
int main{)
{ int n;
cin >> n;
cout << "The value of n is " << n << "\n";

}
When this program runs, the system will wait until the user types in an integer and presses <Enter>. If she

inputs 44, then the output will be the same as in Example 2.3, as indicated in the picture above.

The symbol >> is called the extraction operator, or simply the input operator. It is used to
extract input from the cin input stream, similarly to how the insertion operator << is used to insert
output into the cout output stream.

2.5 EXPRESSIONS AND OPERATORS

The insertion operator >> and the extraction operator << are two of a set of over 60 operators
defined in C++. These operators are categorized according to the types of objeccts upon which they
operate.

The arithmetic operators are +, -, *, /, and %. All but the last of these are the familiar
arithmetic operations that operate on integer and real numbers. The ¥ operator, called the modulus
operator, operates only on integers. The expression m$n evaluates to the remainder from the division
of m by nIf q == m/n and r == min,then gq*n + r == m.

EXAMPLE 2.6 Using the Modulus Operator
int main()

{ int m = 33;
int n = 7;
int g = m/n; // the quotient ¢f m by n
int r = m%n; // the remainder of m by n
cout << m << "/" << n <<« " = VY << g << endl;
Cout << m << "3" K n K " = " < r << endl;

cout << ¢ << "' K< n <K<« "+ YK r e« " =" << g'n + r << endl;

28 C++ FUNDAMENTALS [CHAP. 2

The output from this program is
33/7 = 4
3387 = 5

4*7 + 5 = 33

A literal is a symbol for a specific value of a variable. For example, 33 is an integer literal, and
"Hello, World!\n" is a string literal. An expression is a combination of literals, variables, and
operators. For example, 2*m - n%3 is an integer expression. Expressions are evaluated according
to the precedence rules of their operators. For example, if the values of m and n are 8 and 4, then
the previous expression is evaluated in order: (1) 2*m == 2*8 == 16;(2) n%3 == 4%3 == 1;
2*m - n%3 == 16 - 1 == 15. The multiplication is done before the modulus because those two
operators have the same precedence level and the multiplication is on the left. The subtraction is done
last because that operator has lower precedence than the other two. Operator precedence can be over-
ridden with parentheses. For example, if m and n are 7 and 5, the expression 2* (m - n) %3 eval-
uates to 1, but the expression 2* (m - n%3) evaluatesto 10.

The expressions that an operator operates on are called its operands. For example, 2*m and n%3
are the operands for the - operator in the expression 2*m - n%3. A binary operator is an operator
that takes two operands. All the operators described above are binary operators. Besides binary
operators, C++ also has several unary operators (operating on a single operand) and one ternary
operator (operating on three operands). For example, the minus symbol - is used for both the binary
operation of subtraction and the unary operation of negation.

The most widely used operator is the assignment operator = introduced in Section 2.2. In C++,
the assignment operator can be combined with many other operators to produce combination assign-
ment operators. For most binary operators op whose operands have the same type, the combination
operator op= can be used as

variable op= expression
to perform the combined operations
variable = variable op expression;

EXAMPLE 2.7 Using Combination Assignment Operators
int main()
{ int n = 33;

n += 5; // same as n = n + 5; makes n == 33 + 5 == 38
n %= 8§; // same as n = n%8; makes n == 38%8 == 6
n *= n; // same as n = n*n; makes n == 6*6 == 36

}

The double symbol ++ defines two unary operators in C++, called the prefix increment operator
and the postfix increment operator, or, more simply, the pre increment and post increment operators.
When applied to an integer variable, each of these increases its value by 1. If the variable being incre-
mented is part of a larger expression, then the pre-increment operator will increment the variable
before using its value in the expression, whereas the post-increment operator will use the value before
incrementing the variable.

EXAMPLE 2.8 Using the Pre-Increment and the Post-Increment Operators

int main{()
{ int n = 44;
cout << n++ << endl; // prints 44 and then increments n to 45

cout << ++n << endl; // increments n to 46 and then prints 46

CHAP. 2] C++ FUNDAMENTALS 29

Two decrement operators are similar. The pre-decrement operator --n reduces the value of n
by 1 first and then uses that reduced value, whereas the post-decrement operator n-- uses the cur-
rent value of n and then decreases it by 1.

When Bjarne Stroustrup chose the name C++ for his enhancement of the C language in 1983, he
obviously had in mind the effect of the post-increment operator.

2.6 INITIALIZATIONS AND CONSTANTS

Ordinary variables defined in functions like main(} are not automatically given initial values.

EXAMPLE 2.9 Local Variables are Not Initialized by Default

int main()
{ int n;
cout << n << endl; // unpredictable output!

}
The output from this program when run on a UNIX workstation was

302025904
This is an example of what is technically known as garbage. It is the result of the system trying to interpret a
string of 32 random bits as an integer.

Fortunately, it is easy to initialize variables. This 1s done with an initializer, which is an expres-
sion of the form = constant appended to the declaration of the variable. Note that, in an initial-
izer, the = symbol is not the assignment operator; an initialization is not the same as an assignment.

EXAMPLE 2.10 Initializing a Variable

int mainf()
{ int n = 44; // n is initialized with the value 44

cout << n << endl; // predictable output
}
The output from this program is, of course

44
A constant is an object whose value cannot be changed. An object is designated to be constant

when it declared by preceding its type with the keyword const. All constants must be initialized.

EXAMPLE 2.11 Declaring a constant

int mainf()
{ const int n = 44; // n is a constant integer with value 44
cout << n << endl; // predictable output

}
Using constants wherever appropriate is considered good “defensive programming” because it
gives the compiler more opportunities to find your mistakes for you. It also makes your programs
easier to maintain.

2.7 STANDARD C++ DATA TYPES
Data types in Standard C++ are classified as shown in the diagram below. This includes the new

Boolean type bool whose values are either false or true, and the new character type
wchar_t, which usually represents the international 16-bit Unicode character set.

30 C++ FUNDAMENTALS [CHAP. 2

Data Types
Built-In Types User-Defined Types
Fundamental Types Void Type Derived Types Enumeration Types Structured Types
void
Integral Types Floating-Point Types Arrays Pointers References Classes Structures Unjons
float
double
long double
Boolean Type Character Types Integer Types
bool l-char short int
_unsiqned char unsiqned short int
I-signed char signed short int
L-wchar_t int

unsigned int
signed int
long int
unsigned int
signed int

The 17 fundamental types and the void type have keyword names such as signed long
int. The multi-word names for the integer types can be abbreviated by omitting the word int. For
example, unsigned short means unsigned short int. The only difference between the
short, int, and long types is the number of bytes (and therefore the range of values) used to
store the objects. Typically (although not necessarily), short uses 2 bytes and long uses 4 bytes.
Similarly, float usually uses 4 bytes and double uses 8. The unsigned types are used for bit
strings.

Normally the bool values false and true are printed as 0 or 1. However, that can be
overridden with the boolalpha flag thatis defined in the <iomanip> file,

EXAMPLE 2.12 Printing bool Values
Here is a complete Standard C++ program:

$#include <iomanip> // use <iomanip.h> in pre-Standard C++
#include <iostream> // use <iostream.h> in pre-Standard C++
using namespace std; // omit in pre-Standard C++
int main ()
{ cout << false << " " << true << " "
<< boclalpha << false << " " << true << endl;

}

Its output is

0 1 false true

The character types store integers (determined by their character codes) but print characters. In
addition, the char type reads characters and can be assigned character literals delimited by apostro-
phes.

CHAP. 2] C++ FUNDAMENTALS 31

EXAMPLE 2.13 Using char Type

int main{)
{ char ch = 'p'; // ch is stored in one byte as the integer 65
cout << ch << " " << int(ch) << endl;
The output is
A 65

Here, the int type was used to cast the value of ch from char to int.

The void type is used only with functions and pointers. (See Chapters 4 and 8.)
Derived types are constructed from other types using the special symbols {1, *,and &.

EXAMPLE 2.14 Derived Types

float x = 666.66;

float y([8] = {0}; // y is an array of 8 floats, all initialized to 0
float* p = &x; // p is a pointer to the float x

floate r = x; // y is a reference to the float x

Here, x has the fundamental type float,and y, p,and r have types derived from float type.

An array is a sequence of elements, all of the same type, that can be accessed with the same name
using an integer subscript. Arrays are described in Chapter 6. A pointer is a memory address that can
be used to access an object stored at that address. A reference is a synonym for an existing object.
Pointers and references are described in Chapter 9. The fundamental types, the void type, and the
derived types are called built-in types because they can be used without any special definitions.

2.8 ENUMERATION TYPES

An enumeration type is one that is defined by the user simply by listing its set of possible values.

EXAMPLE 2.15 An Enumeration Type
enum Direction {NORTH, EAST, SOUTH, WEST};
This defines the type Direction and the four constants NORTH, EAST, SOUTH, and WEST as its
possible values. Then objects can be defined and assigned in the normal way:
Direction current = EAST;
current = SOUTH;

Like character values, enumeration values are stored as integers. Normally the defined constant
values are assigned the integers in order beginning with 0. Thus in Example 2.15, the assignment of
the value SOUTH to current actually stores the integer 2 in that variable.

EXAMPLE 2.16 Specifying Enumeration Constant Values

enum Roman {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};

enum Rank {DEUCE=2, TREY, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,

JACK, QUEEN, KING, ACE};
enum Color {WHITE, BLUE=0xff, GREEN=0xff00, RED=0xff0000};
enum {SIZE=100}; // an anonymous enumeration type
The definition of type Rank initializes the constants DEUCE to 2, TREY to3,.., KING to 13, and

ACE to 14. The definition of the type Color uses the standard (hexadecimal) integer values for the basic
colors. The anonymous enumeration type illustrates an alternative way to define integer constants. This is
equivalent to

const int SIZE = 100;

32 C++ FUNDAMENTALS [CHAP.2

2,9 THE STANDARD LIBRARY

The C++ language includes a set of files which is called the Standard C++ Library. These files
define various extensions to the language. They included by means of the #include precompiler
directive. For example, in Example 2.12 we included the <iomanip> file in order to use the
boolalpha flag, and we included the <iostream> file in order to use the cout stream object
and the endl inserter.

EXAMPLE 2.17 Using the <iomanip> File
This complete C++ program illustrates the <iomanip> file (<iomanip.h> in pre-Standard C++):

#include <iomanip> // use <iomanip.h> in pre-~-Standard C++
#include <iostream> // use <iostream.h> in pre-Standard C++
using namespace std; // omit in pre-Standard C++

int main()

{ int n = 75;
cout << '\t' << oct << n << '\t' << hex << n

<< '\t' << dec << n << endl;

cout << '"\t' << setw(l6) << n << endl;
cout << '"\t' << setfill('.') << setw(l6) << n << endl;
cout << '\t' << setfill('*') << setw(l6) << n << endl;
cout.setf(ios::left, ios::adjustfield); // left justify output
cout << '"\t' << setfill('<') << setw(l6) << n << endl;
cout << setfill('.') << setw(40) << "Chapter 13";
cout.setf(ios::right, ios::adjustfield);
cout << setw(30) << "415" << endl;
const double PI = 3.14159265358979323846;
cout << PI << endl;
cout << setprecision(1l0) << PI << endl;
cout << setprecision(l12) << PI << endl;
cout << setprecision{l4) << PI << endl;
cout << setprecision{l16) << PI << endl;
cout << setprecision{(l18) << PI << endl;

}

Here is the output:

113 4b 75
75
.............. 75
**************75
75 LLLLLLLLLL
L0 2 Y= < ol =3 4 0 415
3.14159
3.141592654
3.14159265359
3.1415926535898
3.141592653589793

3.14159265358979312

The first cout statement prints n in octal, hexadecimal, and decimal on the same line. The next four lines
of output print n (in decimal) in a 16-column field using various fill characters. The first three of these use the
default right-justification within the field; the last uses left-justification. The next three lines of code print a 70-
character line using the dot *. ' as a fill character as you would in a table of contents. The last six lines of out-
put show how to obtain a number of significant digits of precision when printing a fleating-point number. Note
that the number is rounded to the specified number of digits. Also note that 16 is the maximum number of accu-
rate digits obtainable fora double on this computer.

CHAP. 2] C++ FUNDAMENTALS 33

EXAMPLE 2.18 Using the <cmath> File
Here is a complete C++ program that illustrates some of the useful functions defined in the <cmath> file
{(<math.h> in pre-Standard C++):

#include <cmath> // use <math.h> in pre-Standard C++
#include <iostream> // use <iostream.h> in pre-Standard C++
using namespace std; // omit in pre-Standard C++

int main{()
{ double x = 2.718281828459045;

cout << "ceil (X) = " << ceill(x) << endl;
cout << "floor (x) = " << floor(x) << endl;
cout << "sqgrt{x) = " << sqgrt{x) << endl;
cout << "pow(x, 0.5) = " << pow({x, 0.95) << endl;
cout << "log(x) = " << log(x) << endl;

cout << "loglO(x) = " << loglO(x) << endl;
cout << "exp (X) = " << exp(x) << endl;

cout << "sin{(x) = " << sin{x) << endl;

}
Here is its output:

ceil (x) = 3
floor (x) = 2
sqrt (x) = 1.64872
pow(x, 0.5) = 1.64872
log (x) =1
logl0 (x) = 0.434294
exp(x) = 15.1543
sin(x) = 0.410781

The ceil(x) (for“ceiling”)and floor (x) functionsretumn the integers that bracket x. The sqrt (x)
function returns the square root of x. The pow(x, y) function returns the value of x raised to the power
y; Le, x*. The log(x) function returns the natural logarithm (base ¢) of x. The logl0{x) function
returns the common logarithm (base 10) of x. The exp (x) function retumns the exponential (base e) of x;
ie,e*, And sin(x) is the trigonometric sine function.

2.10 ERRORS

The art of defensive programming is based upon a faith in Murphy s Law: “If something can go
wrong, it will.” A good programmer tries to anticipate what could go wrong in order to prevent it.
This skill requires an understanding of the kinds of errors that can occur.

The simplest kind of computer programming errors are synfax errors. (See the diagram on
page 11.) These are usually easy to discover and fix because the compiler usually tells you exactly
where they are.

EXAMPLE 2.19 Syntax Errors
Here’s an incorrect version of the program in Example 2.1:
int main{()
{ cout << "Hello, World!\n;
}

When compiled, the compiler printed the following diagnostic error messages:
ex0219.cc:8: unterminated string or character constant
ex0219.cc:8: possible real start of unterminated constant

The first line refers to line 8 of the source code file named ex0219. cc. That is the line

{ cout << "Hello, World!\n;

34 C++ FUNDAMENTALS {CHAP.2

The phrase “unterminated string” simply means that it is missing its right quotation mark. The second error
message means that the beginning of this “unterminated string” is also on line 8.

The compiler will also locate other kinds of errors; e.g., names that have not been declared.

EXAMPLE 2.20 Other Compile-Time Errors
Here’s another incorrect version of the program in Example 2.1:
int main ()
{ count << "Hello, World!\n";

}
When compiled, the compiler printed the following diagnostic error messages:

ex0220.cc: In function “int main()':
ex0220.cc:8: 'count' undeclared (first use this function)
ex0220.cc:8: (Each undeclared identifier is reported only once
ex0220.cc:8: for each function it appears in.)
All this is simply reporting that the name count is undeclared. The programmer obviously meant to write

cout instead of count.

After the compiler compiles your source code, it links it with other source code needed from the
Standard Library. If you neglect to include the necessary files, the linkage will fail.

EXAMPLE 2.21 Link-Time Errors
Here is the correct version of the program in Example 2.1 but without the necessary #include
<iostream> precompiler directive:

int main{)
{ cout << "Hello, World!\n";

}

After compiling, the compiler printed the following diagnostic error messages:

eex0221l.cc: In function “int main()':
ex0221.cc:7: 'cout' undeclared (first use this function)
ex0221.cc:7: (Each undeclared identifier is reported only once
ex0221.cc:7: for each function it appears in.)
Although this looks like the same kind of error as in Example 2.20, it is not a compile-time error. There is noth-

ing wrong with this source code. It is simply incomplete. Just add the missing two lines shown in Example 2.1
(or for pre-Standard C++ compilers, the equivalent one line shown in Example 2.2).

Programs can fail even after they have been compiled and linked successfully. There are many
situations where the operating system may be unable to execute the program’s instructions. These are

called run-time errors.

EXAMPLE 2.22 A Run-Time Error
Here is a complete C++ program that compiles, links, and runs:
$include <iostream>
#include <math>
using namespace std;
int main{()
{ int n = 2000;
cout << n << endl;

n *= n;
cout << n << endl;
n *= n;

cout << n << endl;

CHAP. 2] C++ FUNDAMENTALS 35

But the output is
2000
4000000

1246822400
The second number is correct: 2000*2000 = 4,000,000. But the third number should then be

4,000,000*4,000,000 = 16,000,000,000,000. That number is too large for an int type. This error is called
integer overflow.

A program will give incorrect answers if its numeric values exceed the bounds of their types.
This is called overflow. That can happen with integer types and with floating-point types. Other kinds
of numeric run-time errors include floating-point underflow (values are too small), roundoff errors,
attempted division by zero, and function arguments that are out of range.

EXAMPLE 2.23 Round-Off Error
This program implements the quadratic formula for solving the quadratic equation ax? + bx + ¢ = 0:

#include <iostrean>
#include <cmath>

int main()
{ float a = le0; // == 1.0
float b = -1lel0; // == -10,000,000,000.0
float ¢ = le0; // == 1.0
flocat d = b*b - 4.0*a*c;
float x1 = (-b + sqrt(d))/(2.0*a);

float %2 = (-b - sqgrt(d))/(2.0*a);
cout << x1 << '"\t' << x2 << endl;

}
for the case where a=1,6=-10""" andc= 1. The output is

le+10 -50.1022
These two solutions are incorrect: ax)? + bx| + ¢ = (1)(10'%? + (-101°)(10'% + (1) = 1 # 0, and ax,? + bx, + c =
(1)(-50.1022)% + (~10'%)(-50.1022) + (1) = 501,022,002,511.230445 # 0. The first solution is close, considering
the size of the numbers. But the second solution is way off. This is the result of roundoff error.

Run-time errors are more difficuit to repair than compile-time errors because the operating sys-
tem may not be able to pinpoint the problem. It can tell you why your program failed, but it may not
be able to tell you where the failure occurred in your program.

Usually the worst kind of errors programmers have to handle are logical errors because there may
be no easy way to detect their existence. A logical error is an error in the algorithm itself. The com-
puter compiles and executes the program without signalling any problems. The problem is that the
programmer gave the wrong instructions to the computer.

EXAMPLE 2.24 A Logical Error
Here is an implementation of the quadratic formula to solve the equation 3x? - 3x - 6 = 0:
#include <iostream>
#include <cmath>

int main()
{ float a = 3.0;
float b = -3.0;
float ¢ = -6.0;
float d = b*b - 4.0*a*c;
float x1 = (-b + sqrt(d))/2.0%a;
float x2 = (-b - sqrt(d))/2.0*a;

cout << xl1 << "\t' << x2 << endl;

36 C++ FUNDAMENTALS [{CHAP. 2

The output is
18 -9
But these solutions are wrong: ax,? + bx, + ¢ = 3(18)? - 3(18) — 6 = 912 2 0; ax,? + bx, + ¢ = 3(-9)* - 3(-9) - 6
=264 # 0. And there is no hint from the computer about where the problem is.
The logical errors here are at the ends of the lines that assign values to x1 and x2. The quadratic formula
requires the expression 2a to be in the denominator. But num/2.0*a means (num/2.0) *a in C++.

Most C++ compilers come with a debugger, which is a separate program that allows you to step
through your program one instruction at a time, checking the values of the variables at each step. This
is often the best way to debug your programs.

Review Questions

2.1 What is the purpose of the two lines:
#include <iostream>
using namespace std;
2.2 If your C++ compiler does not conform to the new C++ Standard, how should your precom-
piler directives differ from those illustrated in this book?

2.3 Which of the following declarations are illegal:
int the_cat's _pyjamas;
int the_second_largest_numer in_the list of minimum values;
int union; -
int 44;
int last?;
int NextNumber;
int round-up;
24 Whyisn’t main akeyword in C++7?
2.5 Whatis a literal?
2.6 What is an operator?

2.7 What is wrong with the following code fragment?
cout >> "Enter x :";

cin << x;
2.8 How do the following two statements differ?
char ch = 'A';

char ch = 65;
2.9 What code could you execute to find the character whose ASCII code is 1007

2.10 What is wrong with the following code fragment?

enum Season { SPRING, SUMMER, FALL, WINTER };
enum Semester { FALL, SPRING, SUMMER };

Programming Problems

2.11 Write a complete C++ program that prints your name and address.

2.12 Write a complete C++ program that inputs two integers and then prints the sum, difference,
product, quotient, and remainder of the two integers.

CHAP. 2]

C++ FUNDAMENTALS

37

2.13 Each of the following programs has an error. Locate the error, classify it as either a syntax
error, a (non-syntax) compile-time error, a link-time error, a run-time error, or a logical error,

and then correct it.:

a.

#include <iostream>
using namespace std
int main{)
{ int n = 22;
cout << n << endl;
}
int main ()
{ fleocat x = 100.0;
}
#include <iostream>
using namespace std;
int main{)
{ int n += 22;
cout << n << endl;
}
#$#include <iostream>
using namespace std;
int main()
{ int n = 0;
n /= n;
cout << n << endl;
}
#include <iostream>
using namespace std;
int main{()
{ float x = 1e20;
X *= x;
cout << x << endl;
}
#include <iostream>
using namespace std;
int main()
{ float x = sqrt(1.01);
cout << x << endl;
}
#include <iostream>
#include <math>
using namespace std;
int main{()
{ float % = sqgrt(-1.01);
cout << x << endl;
}
$#include <iostream>
$include <math>
using namespace std;
int main{()
{ float x = 100.0;
cout << pow(x, -x) << endl;

}

38

2.14

2.15

2.16
2.17
2.18
2.19

2.20

2.21

2.22

2.23

2.24

2.1

2.2

C++ FUNDAMENTALS {CHAP.2

The number h of different 7-card hands that can be dealt from an ordinary deck of 52 play-

ing cards is (52:51-50-49-48-47-46)/(7-6:5-4-3-2-1).

a. Run a program that performs this calculation directly, using only 4-byte integers.

b. Rewrite the formula so that your program, still using only 4-byte integers, gives the cor-
rect value (133,784,560) for the integer h.

Rewrite and then rerun the program in Example 2.23 on page 35 to minimize the effects of
round-off error. Use the following algebraic identity to reformulate the assignment to x2:

—b—./b2—4ac - 2¢
2a — b+ b2 —4ac

Then explain why the output from this version is so much more accurate.

Write and run a program that causes floating-point overflow.

Write and run a program that causes floating-point underflow.

Write a program that converts a given number of inches to centimeters. (1 inch =2.54 cm.)

Write a program that returns the Celsius value for a given temperature measured in Fahren-
heit. For example, the input 68 would output 20. Use the conversion formula S(F ~ 32) = 9C.

Write a program that returns the Fahrenheit value for a given temperature measured in Cel-
sius. For example, the input 20 would output 68. This is the inverse of the function in Prob-

lem 2.19.

Write a program that inputs a number of hours and outputs the equivalent number of weeks,
days, and hours. For example, an input of 4000 would output 23 weeks, § days, and 16 hours.

Write a program that inputs a number of cents (from 0 to 99) and outputs the minimal number
of pennies, nickels, dimes, and quarters with the same value. For example, 94 cents is the
same as 3 quarters, | dime, 1 nickel, and 4 pennies.

Write a program that inputs a 6-digit positive integer (i.e., in the range 100,000-999,999) and
then constructs and outputs the integer whose digits are the reverse of the input. For example,
if 289405 is input, then the integer 504982 is constructed and printed.

Write a program that rounds a real number to a given number of digits.

Solutions

The directive #include <iostream> tells the precompiler to insert the contents of the Standard
C++ library file iostream which contains the definitions necessary for doing stream input and out-
put. The directive using namespace std; tells the compiler that it should look in the
namespace std (defined in iostream) for the definitions of cin and cout (and any other
unresolved references).
If you are using a nonstandard C++ compiler, you should use

#include <iostrean.h>

instead of
$include <iostream>

using namespace std;

You will also have to write your own bool, string,and vector classes unless your compiler
provides its own version of these standard classes.

CHAP. 2] C++ FUNDAMENTALS 39

23

24
25
2.6
2.7

28
29

2.10

2.11

2.12

2.13

The following declarations are illegal for the reasons indicated in the comments:
int the_cat’s_pyjamas; // identifiers cannot contain apostrophes

int union; // union is a keyword in C++
int 44; // identifiers cannot begin with a digit
int last?; // identifiers cannot contain question marks
int round-up; // identifiers cannot contain hyphens

The word main is nota keyword because it is a name. It is the name of a function that is defined in
the program.

A literal is a specific anonymous constant value. For example, 88 is an integer literal, 3.14159 is
a floating-point literal, 'G' isa character literal, "Hello, World!n" is a string literal.

An operator is a function that has a special symbol for a name. For example, + is the addition opera-
tor.

In this code, the input and output operators are reversed. The output stream object cout uses the
output operator <<, and the input stream object cin uses the input operator >>. If you imagine the
input and output objects as being external conduits that lie to the left of the program, then it is easier to
remember that output flows out to the left and input flows in from the left. (See the figure on page 27.)

Both statements have the same effect: declare ch tobea char and initialize it with the value 65.
Since this is the ASCII code for 'A’, that character constant can also be used to initialize ch to 65.
One way to print the character whose ASCII code is 100 would be to create the correct char object
and then print it:
char ch=100;
cout << ch << endl;
A simpler (but equivalent) way would be to cast the integer 100 as a character and then print that:
cout << char(100) << endl;
The identifiers listed for the values of an enumeration type are constants and therefore must be unique
within the same program scope. For example, the identifier FALL cannot be used in two different
enumeration types.
$#include <iostream>
using namespace std;
int main{()
{ cout << "\tSara Somers\n";
cout << "\t2401 Wadebridge Road\n";
cout << "\tMidlothian, VA 23113-3841\n";:
}
#include <iostream>
using namespace std;
int main{()
{ int m, n;
cout << "Enter two integers: ";
cin >> m >> n;

cout << "\t' << m <K< " + " <« n k< " =" << m+ n << endl;
cout << "\t' << m <K<« " - " <K< n <K< " =" << m - n << endl;
cout << "\t' << m << " * " << n << " =" << m* n << endl;
cout << "\t' <<« m <K< "/ " << n<< " ="YY<< m/ n << endl;
cout << "\t' << m << " § " << n << " =" << m % n << endl;

}
a. Syntax error: the required semicolon at the end of the using namespace line is missing.
b. Logical error; this program has no output, so it is useless.
¢. Compile-time error: the assignment operator += cannot be used in an initialization.
d. Run-time error: since n is initialized to be 0, the assignment n /= n would divide n by 0;
e. Run-time error: since x is initialized to be 10?0, the assignment x *= x will overflow.
J- Link-time error: the sqrt () function is defined in <math>, so that file must be #included.
g Run-time error: the call sqrt (-1.01) will fail because -1.01 is negative.
k. Run-time error: since x is initialized to be 100, the call pow (x, -x) will underflow.

40

2.14

2.15

g. int main(
{ cout
}
b. int main{
{ int h
int ¢
int n
h‘k:
h /=
cout

* =

h /=
cout

}

)
<<

)

(o
n;
<<
ci
n;
<<
C;
n;
<<
cs
n;
<<
c;
n;
<<
C;
n;
<<
c;
n;
<<

C++ FUNDAMENTALS

{52*51*50%49*48*47*46)/(7*6*5*4*3%2*]) << endl;

1;

52;

1;

c-- <<
c-- <<
c-- <<
c-~- <<
c-~ <<
c-~ <<
c——- <<

"\t <<
"\t <<
"\t <<
\t' <<
"\t <<
"\t <<
"\t <<

$#include <iostream>
#$#include <cmath>

int mai
{ float
float
float
float
float
float

ni)
a
b
c
d
x1
x2

i

cout << x1

}

1e0;

~1lel0;

1e0;

b*b - 4*a*c;
(-b + sqgrt(d))/(2*a);
(2*c)/(-b + sqrt(d));

"\t' << x2 << endl;

<<

n++

n++

n++

n++

n++

n++

n++

The output from this version of the program is
le-10
The first solution is 10! which is the same as in Example 2.23 on page 35. But the second solution

le+10

(1072 = 0.0000000001) is now very close to satisfying the equation: ax? + bx + ¢ =

<<

<<

<<

<<

<<

<<

<<

l\t'

'\tl

|\tl

l\tl

l\tl

l\tv

V\t'

<<

<<

<<

<<

<<

<<

<<

endl;

endl;

endl;

endl;

endl;

endl;

endl;

[CHAP. 2

-10% + 1 =

(107192 - 10'°(1071%) + 1 = 1072 -] + 1 = 1072 = '0. This dramatic improvement is a result avoiding
the near cancellation that occurred in the expression —b — Vd. Since 4ac is very much less than b2, d =
b? — 4ac ~ b?, making Vd = b = 10'. The worst kind of round-off error occurs when one very large
number is subtracted from another nearly equal number.

CHAP. 2] C++ FUNDAMENTALS

2,16 This program crashes due to floating-point overflow:
int main()
{ float x = 1.0;
cout << x << endl;

x *= 1el0;
cout << x << endl:
x *= lelO;
cout << x << endl;
x *= lelO;
cout << x << endl;
x *= 1lel0;

cout << x << endl;
}
2.17 This program crashes due to floating-point underflow:
int main{()
{ float x = 1.0;
cout << x << endl;

x /= 1el0;
cout << x << endl;
x /= lel0;
cout << x << endl;
x /= 1el0;
cout << x << endl;
x /= 1el0;
cout << x << endl;
x /= 1el0;

cout << x << endl;

2.18 int main()
{ float inches, cm;

cout << "Input inches: ";
cin >> inches;

cm = 2.,54*inches;
cout << inches << " inches = " << cm << " centimeters\n";
}
2.19 int main()

{ float far, cel;
cout << "Input temperature in degrees Farenheit: ";
cin >> far;
cel = 5.0*(far - 32.0)/9.0;
cout << far << " degrees Farenheit =
<< cel << " degrees Celsius\n";

2.20 int main{()
{ float cel, far;
cout << "Input temperature in degrees Celsius: ";
cin >> cel;
far = 1.8*cel + 32.0;
cout << cel << " degrees Celsius =
<< far << " degrees Farenheit\n";

42

221

2.22

2.23

2.24

int

int

C++ FUNDAMENTALS

main ()
int hours,
cout <<
cin >> hours:;
cout << hours <<
days = hours/24;
hours %= 24;
weeks = days/7;
days %= 7;
cout << weeks << "
<< hours <<

days, weeks;

" hours = ";

weeks,
" hours.\n":;

main ()

int pennies,

cout <<

cin >> pennies;

cout << pennies <<

guarters = pennies/25;

pennies %= 25;

dimes = pennies/10;

pennies %= 10;

nickels = pennies/5;

pennies %= 5;

cout << quarters <<
<< nickels << "

nickels, dimes,

nickels,

nies.\n";

}
int

{

int

main ()

int n, d0, di, d2, d3, d4, d5;

cout << "Enter a 6-digit positive

cin >> n;

d0 = n%10;

10;

n%l0;

10;

= n%10;

10;

n%10;

10;

n%l0;

10;

n%1l0;

n = ({(((d0*10 + d1)*10 + d2)*1
cout << n << endl;

main ()
double x =
cout << setprecision(16)
int n;

cout << "Enter number of digit
cin >> n;

x *= pow(1l0,n);

int round = int(x + 0.5);

¥ = double (round) /pow(10,n);
cout << x << endl;

3.1415926535897932;
<< X%

" << days << "

" cents = ";

quarters,

[CHAP. 2

"Enter number of hours: ";

days, and "

quarters;

"Enter number of cents: H

’

" << dimes << " dimes,
and " << pennies << " pen-

integer: ";

0 + d3)*10 + dd)*10 + db5;

<< endl;

"

S ;

Chapter 3

Control Structures

3.1 BLOCKS AND SCOPE

A block is a sequence of statements enclosed in braces. It can be used wherever a single
statement can be used. When used in place of a single statement it is also called a compound
statement.

EXAMPLE 3.1 A Statement Block
Enclosing the statements within braces forms a statement block:
{ int n;
cin >> n;
cout << 2*n << endl;

}

The scope of an object is that part of the program where the object may be used. If it is declared
within a block, its scope extends from the point whete it is declared to the end of the innermost block
that contains it. In this case we say it is /ocal to the block that defines its scope. If an object’s declara-
tion is outside all blocks, then its scope extends from its point of declaration to the end of the file in
which it is declared. In this case the object is called a global object.

No two objects may have the same name within the same block. However, two objects may have
the same name within separate blocks. If one block is nested inside another, any object declared in the
inner block masks any object with the same name that is declared in the outer block. So the scope of
the object declared outside of a block may have holes in it.

EXAMPLE 3.2 Nested Blocks
Here is a complete C++ program that contains three blocks, one which serves as the body ofthe main ()
function, and the other two nested inside the first.

int main{)
{ int x = 22;
{ int x = 44;

cout << x << endl; // prints 44
}
cout << x << endl; // prints 22
(int x = 66;

cout << X << endl; // prints 66
}
cout << x << endl; // prints 22

}
Note that this program contains three different objects, all named x. Their scopes are determined by the blocks

within which they are defined. The first x has scope that extends throughout the main () block except
where it is overridden by more local objects with the same name. The second x is local to the inner block
where it is declared, and within that scope it masks the scope of the first x. So any reference to x within that
limited scope will be interpreted as referring to the second x. Similarly, the scope of the third x within its
inner block also masks the scope of the first x.

43

44 CONTROL STRUCTURES [CHAP. 3

Recall that, for brevity, we have omitted from the examples the two lines
$include <iostream>
using namespace std;
for Standard C++ programs, or the equivalent single line
#include <iostream.h>
for pre-Standard C++ programs. These are required for any program that uses cin or cout.

3.2 NAMESPACES

A namespace is a named block that is used to express a logical grouping of statements within a
program. ISO Standard C++ allows namespaces. The block name is simply an identifier declared
with the nanespace keyword at the head of the block:
namespace block-name block

It is then used outside the block to allow external reference to the names declared inside the block:
block-name: : name

The double colon : : is called the scope resolution operator.

EXAMPLE 3.3 Using Namespaces to Access Names from Outside Their Scopes
int main{()
{ namespace Blockl
{ int x = 44;
cout << x << endl; // prints 44
}
namespace Block2
{ int x = 66;
cout << x << endl; // prints 66
}
cout << Blockl::x << endl; // prints 44
cout << Block2::X << endl; // prints 66

}
Note the required namespace keyword preceding each block name.

[n addition to allowing out-of-scope access to names defined within namespaces, the scope reso-
lution operator :: can also be used without a block name to refer to global variables.

EXAMPLE 3.4 Using the Scope Resolution Operator to Access Global Names

int x = 33; // X 1is a global variable
int main{()
{ int x = 66;

cout << x << endl; // prints 66

cout << ::x << endl; // prints 33

return 0;

}

If there is no conflict in names, scope resolution prefixes can be avoided by means of using
declarations and directives. Indeed, that is the purpose of the statément

using namespace std;
that we have been assuming in all of our examples. This simply alerts the compiler to that fact that the

names cin and cout (and others) are defined in the std namespace that is declared in the
<iostream> file. Without that statement, every reference to cin would have to be std::cin,
and every reference to cout would have to be std::cout.

CHAP. 3] CONTROL STRUCTURES

EXAMPLE 3.S Resolving Scope with 8 using Directive
namespace X
{ int x = 22;
}
namespace Y
{ int y = 33;
namespace Z
{ int 2z = 44;
}
}

int main ()

{ int x = 55;
cout << X:iix << "
using namespace Y;

K< YiiZirz << " " << x << endl;

cout << y << "" << Z::z << endl;
}
The output 1s
22 44 55
33 44

Note that it would be risky to include the directive

using namespace X;
within main () because then any reference to x would be ambiguous.

3.3 THE if AND if...else STATEMENTS

The if statement is used for conditional execution. Its syntax is
if (condition) statement;
The statement will be executed only if the condition is true.
The parentheses around the condition are required.

EXAMPLE 3.6 Usingan if Statement
int n;
cin >> n;
if (n > 2) cout << "ok. Thanks. ";
cout << "Goodbye.\n";
If the user inputs an integer that is greater than 2, then the output will be

ok. Thanks. Good-bye.
Otherwise, the output will be only
Good-bye.

// after this, Y::

45

can be omitted

Note that only the statement that immediately follows the condition is part of the if statement. The
statement that follows it is independent of the condition and executes regardless of whether n > 2.

Also note that the condition n > 2 must be enclosed within parentheses:
if n == 4 cout << "ok. Thanks. "; //
EXAMPLE 3.7 Using a Blockinan if Statement
if (n > 20)
{ cout << "That is too big!
cin >> n;

}

cout << "Thank you\n";
This executes both statements between the braces if n is greater than 20.

Enter a smaller n: ";

ERROR: missing parentheses

46 CONTROL STRUCTURES [CHAP. 3

The if...else statement is the same asthe if statement with an appended else clause:
if (condition) statementl;
else statement2;
If the condition is true,only statementl isexecuted; otherwise only statement2 is.
The semicolon that precedes the else is required.

EXAMPLE 3.8 Usingan if...else Statement
if (n%2 == 0) cout << "n is even\n";
else cout "n is odd\n";
The value of the expression n%2 is the remainder from dividing n by 2; that will be 0 if n is even, or
lif n isodd. Sothis if...else statementwillprint n is even only if nis even, and it will print n
is odd only if nis odd.

Like blocks, if statementsand if...else statements can be used anywhere that single state-
ments can be used. This allows nested conditionals:

EXAMPLE 3.9 Nested Conditionals

if (n > 5)
if (n > 8) cout << "n > 8" << endl;
else cout << "5 < n <= 8" << endl;

else
if (n > 2) cout << "2 < n <= 5" << endl;
else cout << n <= 2" << endl;

This will execute exactly one of the four output statements, depending upon which conditions are true.

It is usually better to avoid nested conditionals like the one in Example 3.9 because the logic can
be confusing. An alternative is to use compound conditions:

EXAMPLE 3.10 Using Compound Conditions
if (n > 8) cout << "8 < n" << endl;
if (n > 5 && n <= 8) cout << "5 < n <= 8" << endl;
if (n > 2 && n <= 5) cout << "2 < n <= 5" << endl;
if {(n <= 2) cout << "n <= 2" << endl;
This makes the logic much easier to follow, and consequently less prone to error.

A third alternative is a series of nested if...else statements in a specialized form, called
else if forms:

EXAMPLE 3.11 Using Sequential else if Forms
if (n > 8) cout << "B < n" << endl;
else 1if (n > 5) cout << "5 < n <= 8" << endl;
else if (n > 2} cout << "2 < n <= 5" << endl;

else cout << "n <= 2" << endl;
This looks very similar to the code in Example 3.10, and the logic is just as easy to follow. But it is actually
simpler.

Note that, to be consistent with general nested conditionals, it could have been indented like this:
if (n > 8) cout << "8 < n" << endl;
else
if (n > 5) cout << "5 < n <= 8" << endl;
else
if (n > 2} cout << "2 < n <= 5" << endl;
else cout << "n <= 2" << endl;
But the first format is more succinct, just as clear, and more widely used.

CHAP. 3] CONTROL STRUCTURES 47

3.4 THE CONDITIONAL EXPRESSION OPERATOR

Among its many operators, C++ provides one ternary operator, called the conditional expression
operator. It is simply an abbreviated alternative to a special case of the if...else statement. The
syntax for the conditional expression operator is

condition ? expressionl : expression?
The resulting value of this expression is either expressioni or expression2 according to

whether the condition 1S true or false.

EXAMPLE 3.12 Using the Conditional Expression Operator in an Assignment
The statement

abs = (x >= 0 ? X : =-X);
has the same effect as the statement

if (x »>= 0) abs = x;

else abs = -x;

Itassigns x toabsif x >= O;otherwise it assigns -x to abs.

The conditional expression operator is useful whenever one of two alternative values is needed.

EXAMPLE 3.13 Using the Conditional Expression Operator in an Output Statement
cout << "You " << (x >= 60 ? "passed" : "failed") << " the test.\n";
If x 260, this prints You passed the test. Otherwiseit prints You failed the test.

3.5 OPERATORS

An operator is a built-in function that is called by means of a special symbol that replaces the
usual function notation. The arithmetic operators are familiar examples:
X =2 - y;
3% xX*z;
z = x/y;
Like most operators, these are binary operators, combining two operands. ISO Standard C++ defines
68 different built-in operators, and the Standard Library defines many more. These are categorized
according to how they are used.
The five binary arithmetic operators are: +, -, *, /,and %, pronounced “plus,” “minus,”
“times,” “divided by,” and “modulo.” There are also six unary arithmetic operators, that are used like

this:

ER N3

y = +X; // same as y = X;

y = -X; // same as y = -1*X;

m = ++n; // same as m =n =n + 1;

m=--n; // same as m =n=n - 1;

m = n++; // same as m = n; n n+ 1;

m=n--; // same as m =n; n=n -~ 1;

Note that the unary plus operator is really useless since it does not change the value of its operand.

The six assignment operators =, +=, -=, *=, /=, and %= were described on page 28.

The six relational operators are ==, '=, <, <=, >, and >=. These are used in conditions
(boolean expressions) such as

if (x >= y) y = x:
Conditional statements also use the logical operators (also called boolean operators) ss&, |1,

and !, pronounced “and”, “or”, and “not.”

48 CONTROL STRUCTURES [CHAP. 3

EXAMPLE 3.14 Using Logical Operators

if (x > 2 && x < 6) cout << "X is between 2 and 6" << endl;

if
if

(x == (N

X > 6)

cout << "x 1s 2 or greater than 6" << endl;

(I (x > 6))

cout << "x 1s not greater than 6" << endl;

The three logical operators are defined by the following truth tables:

p && g

p q p g pll g P 'p
true true true true true true true false
true false false true false true false true
false true false false true true
false false false false false false

Each of these tables is read from left to right. For example, the second table shows that if p is true
and q is false,then p || g is true.

Each of the two binary logical operators (¢& and {|) will evaluate the first operand and then use
that value to determine whether to evaluate the second operand. If p is false,then p s& g will
return false without even evaluating g. Similarly, if p is true,then p |1 g willreturn true
without even evaluating q. This is called short-circuiting. It is quite useful in certain circumstances.

EXAMPLE 3.15 Depending upon Short Circuiting
if {d >= 0 && sgrt(d) < y) cout << (~b + sqgrt(d))/(2*a);
The call sqrt (d) willcrashif d < 0. Butbecause of short circuiting, the condition sgrt (d) < y
will not even be evaluated unless the condition d >= 0 istrue.

In a complex expression involving several operators, such as
m = 2*n - min/3 + OS*sgrbi{X::ix*Y::y);
the order in which the operators are evaluated is affected by their order of precedence. Among those
operators already considered, that order is:

Operator Category Operators
scope
function, post increment, post decrement (), ++, —-
pre increment, pre decrement, not, unary minus b
multiply, divide, modulo /%
add, subtract +, -
input, output >> <<
less than, greater than <, <=, >, >=
equal, not equal ==, =
assignment =, 4=, -=, *=, /=, %=
conditional expression ?

Grouping by parentheses overrides these rules. For example in the expression a* (b + c), the
sum is evaluated before the product. Except for the assignment operator, all of these operators are /ef?
associative; this means that an expression like x/y*z is evaluated from left to right: (x/y) *z.

The assignment operators are exceptions to this rule. When they are chained, as in
y = x *= 23
the evaluation is done from rightto left: z += (y = (x *= 2)); Soifthe valuesof z, y,and x
are initially 10, 7, and 3, then this statement will change the value of x to 6, then change the value of
y to 6, then change the value of z to 16.

zZ +=

CHAP. 3] CONTROL STRUCTURES 49

3.6 THE while STATEMENT

The while statement repeats the execution of a statement while its control condition is true. Its

syntax is
while (condition) statement;

The system will repeatedly evaluate the condition and execute the statement until the
condition is false. Of course the statement may be a block, or any other kind of statement,
including another while statement. Note that if the statement is a block, the condition is
evaluated only at the beginning of each iteration, before the statements in the block are executed. So
on each iteration, all the statements within the block are executed regardless of whether the
condition becomes false during their execution.

EXAMPLE 3.16 Usinga while Statement to Add the First 100 Squares
This code adds 1*1 +2*2 +3*3 + - + 100* 100 and then prints the sum:
int n = 1;
int sum = 0;
while (n <= 100)
{ sum += n*n;
+4n;

}
cout << sum << endl; // prints 338350

The loop iterates 100 times, once for each value of n from | to 100. After accumulating 100*100 into
sum, it increments n to 101. Then the control condition (n <= 100) is false, which stops the loop.
After that, the statement that follows the loop executes, printing the sum 338,350

The following is equivalent to the above code:

int n = 0;
int sum = 0;
while (++n <= 100)
sum += n*n;
cout << sum << endl; // prints 338350
By initializing n at 0 instead of 1, we can use the pre-increment operator ++n inside the control condition
instead of in the loop’s block.

Note that the control condition of a while loop is evaluated only once for each iteration, at the
beginning of the iteration before any of the statements in the loop’s block are executed.

EXAMPLE 3.17 Controlling a Loop Interactively with the End-of-File Signal
float x;
float sum = 0.0;
while (cin >> x)
sum += X;
cout << "The sum is " << sum << endl;
This loop will continue to iterate as long as values are input for x. The loop stops when the system detects
the end-of-file signal. On a UNIX or Windows system, that signal is transmitted by pressing <Ctrl-D>.
Here is a sample run:
5.5 8.8 1.1 4.4
<Ctrl-D>
The sum is 19.8
(Note that <Ctrl-D> is entered by holding down the Ctrl key and pressing the D key.)
This works because an input expression such as cin >> x returns the bool value true ifand only
if the input is successful. When the end-of-file signal is received, the input fails and the expression evaluates to

false, which stops the loop.

50 CONTROL STRUCTURES [CHAP. 3

Note that since any type of input failure will stop the loop, the same result could be obtained from the input

5.5 8.8 1.1 4.4 STOP!
Here, the S would stop the loop because only numbers are legal input for the numeric variable x.

EXAMPLE 3.18 Controlling a Loop Interactively with a Sentinel

char ¢ = ' ';
while (c != '\n')
{ cin.get(c);
if (c >= 'a' && ¢ <= 'z') ¢ = char(c - 'a' + 'A');

cout.put(c);

}
This will read individual characters from the keyboard until <Return> key is pressed. Within the loop, the
character that are lowercase letters are capitalized, and every character is echoed to the output stream cout.
After the loop terminates, the contents of the cout buffer are sent to the screen.
Here is a sample run:
We hold these Truths to be self-evident
WE HQOLD THESE TRUTHS TO BE SELF-EVIDENT
The first line (in boldface) was the input.
A special input value like '\n' that is used to terminate an input loop is called a sentinel.

3.7 THE do...while STATEMENT

In some cases, it is preferable to execute a loop’s statement once before its control condition is
evaluated. That can be done witha do...while loop. Its syntax is

do statement while (condition);
It works the same way asa while loop except that the condition is evaluated after the statement (or

statement block) is executed instead of before.

EXAMPLE 3.19 A do Loop for User-Friendly Input

bool cont;

char ans;
do
{ cout << “Continue? (y/n): ";
cin >> ans;
if (ans == 'y’ || ans == 'Y') cont = true;
else if (ans == 'n' || ans == 'N') cont = false;
else cout << "Please answer either y or n.\n";
} while (ans !'= 'y' && ans != 'Y' && ans != 'n' && ans != 'N');

This loop will repeatedly ask for an answer until one of the four letters y, ¥, n,or N is input.

EXAMPLE 3.20 An Interesting Number Sequence
Here is a complete C++ program that produces number sequences whose lengths are rather unpredictable:
#include <iomanip> // defines setw{) and int
#include <iostream>
using namespace std;

main ()
{ int n;
cout << "Enter a positive integer: ";

cin >> n;
int count = 0;

CHAP. 3] CONTROL STRUCTURES 51

do
{ if (n%2 == 0) n /= 2;
else n = 3*n + 1;

cout << setw(6) << n; // use a field of 6 columns per number
++count;
if (count%1l0 == 0) cout << endl; // prints 10 numbers per line
} while (n > 1);
cout << "\nThat sequence has " << count << " terms.\n";

}

Here are some sample runs. (The dollar sign is the UNIX prompt.)

5 ex0317

Enter a positive integer: 3
10 5 16 8 4 2 1

That sequence has 7 terms.

$ ex0317

Enter a positive integer: 13
40 20 10 5 16 8 4 2 1

That sequence has 9 terms.

$ ex0317

Enter a positive integer: 23
70 35 106 53 160 80 40 20 10 5
16 8 4 2 1

That segquence has 15 terms.

$ ex0317

Enter a positive integer: 31
94 47 142 71 214 107 322 161 484 242
121 364 182 91 274 137 412 206 103 310

155 466 233 700 350 175 526 263 790 395
1186 593 1780 890 445 1336 668 334 167 502
251 754 377 1132 566 283 850 425 1276 638
319 958 479 1438 719 2158 1079 3238 1619 4858
2429 7288 3644 1822 911 2734 1367 4102 2051 6154
3077 9232 4616 2308 1154 577 1732 866 433 1300

650 325 976 488 244 122 61 184 92 46
23 70 35 106 53 160 80 40 20 10
5 16 8 4 2 1

That sequence has 106 terms.
3.8 THE for STATEMENT

The for statement is the third kind of loop provided by C++. Its syntax is
for (initializer; condition; expression) statement;
The initializer executes first (and only then). Then the loop repeatedly evaluates the
condition and, if it is true, executes the statement andthenthe expression.

EXAMPLE 3.21 Using a for Loop to Add the First 100 Squares
This code does the same as that in Example 3.16
int sum = 0;
for (int n=1; n <= 100; n++)
sum += n*n;
cout << sum << endl; // prints 338350

52 CONTROL STRUCTURES [CHAP. 3

The for loop is more succinct than the while loopand the do...while loop; its three-part
control mechanism includes the initialization, the continuation condition, and the update expression
that have to be done separately in the other two loop forms.

Note that a variable may be declared within the initializer ofa for loop. If so, ISO
Standard C++ restricts the scope of the variable to the statement ofthe loop. The variable cannot
be used outside of the loop:

for (int x=0; x<20; Xx++)
cout << x*x + x + 41 << endl;
cout << X << endl; // ILLEGAL: x is out of scope!
Note that in many pre-Standard C++ compilers, this restriction is not observed.

3.9 THE break AND continue STATEMENTS

All three standard loop forms, the while loop, the do...while loop, and the for loop,
evaluate their continuation condition only at the beginning or end of each iteration. If the body of the
loop is a block of statements, the loop will execute them all before evaluating its control condition
again. This inflexibility can be overridden with the continue and the break statements.

The continue statement terminates the current iteration without executing the rest of the
statements in the loop block; control goes back immediately to the control condition to determine
whether to terminate the loop itself or continue with the next iteration.

EXAMPLE 3.22 Using the continue Statement

int n =7;
for (int k=50; k<75; k++)
{ if (k%n == 0) continue;

cout << k << " ";
}
cout << endl;
Here is the output from this code:
50 51 52 53 54 55 57 58 59 60 61 62 64 65 66 67 68 69 71 72 73 74
Note that the multiples of 7 (56, 73, and 7) are missing from the output, That is because when k%7 == 0, the
continue statement skips over the remaining output statement in the body of the loop.

The break statement has the same effect as the continue statement inside a loop’s block except
that it not only skips the remainder of the current iteration but it also immediately terminates the loop
itself, going immediately to the next statement that follows the loop.

EXAMPLE 3.23 Using the break Statement
int n =7;
for (int k=50; k<75; k++)
{ if (k%n == 0) break:
cout << k << " ";

}
cout << endl;

Here is the output from this code:

50 51 52 53 54 55
This is the same as Example 3.22 except that the break statement immediately terminates the loop the first

time that the condition (k%7 == 0) istrue.

In some cases, it is easier to control loops entirely with break statements. In these cases, the
built-in control condition is set to true, or simply omitted in for loops.

CHAP. 3] CONTROL STRUCTURES 53

EXAMPLE 3.24 Controlling an Infinite while Loop
int n =4;
while (true)
{ cout << 1.0/n << "\t';
if (n == 9) break:
++n;
}

cout << '\n' << n << endl;

The output is:
0.25 0.2 0.166667 0.142857 0.125 0.111111

9
On the sixth iteration, when n is 9, the loop prints 0.111111 and then terminates before incrementing n
again. The control condition is true, so without the break statement the loop would iterate forever.

EXAMPLE 3.25 Controlling a “forever” Loop
int product=1, factor, count=0;
cout << "Enter factors. Terminate with 0: ";
for (:;)
{ cin >»> factor;
if (factor == Q) break;
product *= factor;
++count;

}

cout << "The product of the " << count << " factors is
<< product << endl;
Here is a sample run;

Enter factors. Terminate with 0: 3 567 9 0

The product of the 4 factors is 945
The for(;;) constructsets up an infinite loop, just like the while (true) form. In this example, the
input value 0 is used as a sentinel. But since the inputs are used as multipliers, the 0 value should not be used
after it is input. The break statement prevents the sentinel from being factored in or counted.

Bjarne Stroustrup suggests that the form for (; ;) be pronounced “forever.”

3.10 LOOP INVARIANTS

Loops are an essential part of any software system. They are also a major source of logical errors.
Loop invariants are an effective strategy against these errors.

A loop invariant is an assertion about the variables in a loop that is intended to be true at the
beginning of each iteration of the loop and after the loop has terminated.

EXAMPLE 3.26 Using a Loop Invariant
Here is some code that computes the power y = x™
double y = 1.0;
for (int 1i=0; i<n; 1i++)
// INVARIANT: y == X*x*...*x (i times)
y *= %;
The loop invariant is expressed as a comment at the beginning of the loop. It asserts that y = xxx (i times). If
that assertion is true at the end of the loop, then the code is correct: it does compute y = x". So to verify that the
code really is correct, we need only check it against the loop invariant.
When the first iteration begins, y = | and i = 0, so the invariant y = x-x--x (i times) is true. Next, if we
assume that the invariant was true at the beginning of some (unspecified) iteration /, then we can deduce that it
is also true at the beginning of the next iteration from the fact that during that iteration y was multiplied by x

54 CONTROL STRUCTURES [CHAP. 3

one more time. It follows then, by the Principle of Mathematical Induction, that the loop invariant is indeed
true at the beginning of every iteration. This proves conclusively that the code is correct.

EXAMPLE 3.27 Multiplying in O(lg #) Time
The power function in Example 3.26 is implemented with the standard algorithm: to raise x to the power n,

simply multiply x by itself n times. The following is a more efficient (but less obvious) method for computing
the power function:

double vy = 1.0, z = x;

int 1 = n;
while (i > 0)
// INVARIANT: y*pow(z,1) == pow(x,n)
if (i%2 == 0) // 1 is even
{ z *= z; // square z
i /= 2; // halve i
}
else // 1 is odd
{y*=z
___j_,-

}
Here is a trace of the execution of this code in computing y = 31°:

z y i z* yz
3 1 10 59,049 59,049
9 1 5 59,049 59,049
9 9 4 6,561 59,049
81 9 2 6,561 59,049
6,561 9 1 6,561 59,049
6,561 59,049 0 1 59,049

When the loop ends, y = 59,0492187 = 310,

The loop invariant is y-z' = x". This is discovered from the trace: yz' is always 59,049. We can use
this to prove that the code is correct. If the invariant is true after the loop terminates, then y = y-1 = y-2°
=yz' = x", since i = 0 at that time. When the loop begins, the invariant is true because y = 1,z =x, and
i = n. To show that the invariant is true at the beginning of every iteration of the loop, we use
mathematical induction again. Suppose that y-z' = x" at the beginning of some iteration. If i is even,
then z will be squared and / will be halved on that iteration, so the equation yz' = x” will still balance
when that iteration has finished (because the value of yz' remains invariant). Similarly, if i is odd,
then y will be multiplied once by x and i will be decremented once, so again -z’ is invariant and the
equation balances at the end of the iteration.

The symbol O(lgn) (“order lgn”) is used to describe this implementation of the power function
because it has the property that its running time is proportional to the logarithm of the power n. Here,
Ig is the binary logarithm (base 2), which is the logarithm usually used in computer science. It is
proportional to other logarithms.

3.11 NESTED LOOPS

A for statement (or a while statementora do..while statement) can be used anywhere
that a simple statement can be used, including inside another loop. Such combinations are called

nested loops.

CHAP. 3] CONTROL STRUCTURES 55

EXAMPLE 3.28 Printing a Multiplication Table
This program uses two nested for loops to print a multiplication table:
#include <iomanip>
#include <iostream>
using namespace std;
int main{()
{ setiosflags(ios::right);
int n;
cout << "How many columns? (1-16): ";
cin >> n;
for (int x=1; x <= n; x++)
{ for (int y=1; y <= n; y++)
cout << setw(5) << x*y;
cout << endl;
}
}
Here is a sample run:
How many columns? (1-16): 12

2 3 4 5 6 7 8 9 10 11 12
4 6 8 10 12 14 16 18 20 22 24
6 9 12 15 18 21 24 27 30 33 36

8 12 16 20 24 28 32 36 40 44 48
10 15 20 25 30 35 40 45 50 55 60
12 18 24 30 36 42 48 54 60 66 72
14 21 28 35 42 49 56 63 70 77 84
16 24 32 40 48 56 64 72 80 88 96
18 27 36 45 54 63 72 81 90 9% 108

10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144
Note the essential block inside the outer loop. It contains two independent statements: the inner loop and
the last cout statement. Each iteration of the outer loop prints one line.

WO I N bW N

When a break or continue statement is used in a nested loop, it interrupts only its closest
containing loop; the outer loop(s) are unaffected.

EXAMPLE 3.29 Using a break Statementin a Nested Loop
for (int i=1; i<5; 1i++)
for (int j=1; j<5; j++)
for (int k=1; k<5; k++)
if (1 + 3 + k > 5) break;
else cout << '\t' << 1 << "\t' << j << '"\t' << k << endl;

The output is

1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 3 1
2 1 1
2 1 2
2 2 1
3 1 1

Each time the sum i + j + k exceeds 5, the inner loop (controlled by k) terminates and the
middle loop (controlled by j) begins a new iteration.

56

3.1
3.2
3.3
3.4

3.5

3.6

3.7

CONTROL STRUCTURES

Review Questions

What is a compound statement?
What is scope of a variable?

What is a namespace?

What does a using directive do?

Problems

[CHAP. 3

List by line number the scope of each variable declared in the following program. Then give

its output:
int x = 22;
i in()

cout << x << " " << y << endl;
namespace locall
{ int x = 44;
int z = 55;
cout << x << "M K<y << " oL
}
int x = 66;
namespace local?2
{ int y = 77;
int z = 88;
cout << x << "M o<y << "M " <K< z << endl;

}

cout << x << " " << y << endl;

<< endl;

N

}

v
’/
7
/7
v
/7
/o
//
/7
//
/7
/7
/!
//
/7
s
/

i
= O W O~y W N

R
oW

e
~l oW

In the following program, replace the comments with statements that perform the task:

int n = 33;
int main{()
(int n = 55;
namespace blockl
{ int n = 77;
}
namespace block2
{ int n = 99;
}
// print the n whose value 1s 33
// print the n whose value is 55
// print the n whose value 1i1s 77
// print the n whose value is 99
}
Find the error in each of the following code fragments:

a. if n < 0 cout << "n is negative\n";

b. if (n < 0) cout << "n is negative\n"
else cout << "n 1s non-negativein";
C. if (n < 0) cout << '"n is negative\n'";

cout << "Is that ok?\n";
else cout << "n is non-negative\n";

CHAP. 3] CONTROL STRUCTURES 57

3.8

3.9

3.10

3.1

3.12

3.13

d if (n < 0) cout << "n < 0";
if (n == 0) cout << "n == 0";
else cout << '"n > 0";
How many numbers will be printed in each of the following if the value of n is 22:

a. if (n < 20) cout << n << " ";
cout << 2*n << endl;
b. if (n > 20) cout << n << " ";

cout << 2*n << endl;
C. if (n < 20) cout << n << " ";
else cout << 2*n << " ";
cout << 3*n << endl;
d if (n > 20)
{ cout << n << " "y,
cout << 2*n << " ";

}

else
{ cout << 3*n << " ";
cout << 4*n << " ";

}

cout << -n << endl;
Find the error in each of the following loops:
a. while (n < 20);
cout << n++ << endl;
b. for (int i=1, i <= 8, i++)
cout << 1.0/1i << endl;
C. int n =10;
do
cout << 1.0/n;
++n;
while (n < 20);
d for (int 1=10; i<20; i--)
cout << 1*i << endl;

Programming Problems

A year is a leap year if it is divisible by 4 but not by 100 unless it is also divisible by 400. So
the years 1996 and 2000 are leap years, but the years 1999 and 1900 are not. Write a program
that inputs a year and prints whether it is a leap year.

Implement the quadratic formula to solve the quadratic equation ax? + bx + ¢ = 0:
_ —bt Jb?-4ac
2a

Be sure to handle the special cases: where a = 0, where the two roots are equal, and where the
discriminant 4% — 4ac is negative.
Write a program that inputs a day number of the year and prints the month and day of the
month. Assume that the year is not a leap year.
Use the conditional expression operator to translate the following code into a single assign-
ment statement:

if (x >= 0) sqrtx = sqrt(x);

else sgrtx = sqgrt(-x);

58

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

CONTROL STRUCTURES [CHAP. 3

Use if...else statements to remove the conditional expression operators from

sgn = (x> 07?2 (x>0721:0) : -1);
The (integral) binary logarithm of a positive number is the number of times it can be divided
in two until the result is less than 2. That is, Ig x is the largest power of 2 that is < x. For
example, Ig 4 =2, g 7.9 = 2, and lg 8 = 3. Write a program that inputs a number and then
usesa while loop to find and print its binary logarithm.

Rewrite the following while loopasa for loop:
int 1 = 4;
while (1 < 20)
{ cout << 1.0/1 << endl;
++1;
}
Rewrite the following for loopasa while loop:
for (int j = 22; j > 8; j--)
sum += log(j*j):
The program in Problem 2.24 on page 38 is prone to integer overflow. For example, if n = 9,
the initialization
int round = int(x + 0.5);
fails because x + 0.5 =3,141,592,634.089793, so that int(x + 0.5) =3,141,592,634.
The largest value for 32-bit integers is 2,147,483,647. Re-write this program so that it works
for values 0 <n < 15.

The sum of the first n positive integers (1 + 2 + 3 + - + 1) is given by the formula:

i ;= a(n+1)
=1 2
Write a complete program that checks this formula by inputting # and then computing and
comparing the values of both sides of this equation.
The sum of the first n squares (1 + 4 +9 + - + n?) is given by the formula
2 o n(nt DQ@n+ 1)
2 6

1=1

Write a complete program that checks this formula by inputting # and then computing and
comparing the values of both sides of this equation.
The sum of the first n cubes (1 + 8 + 27 +... + n®) is given by the formula
i 3= n2!n+ 1)2
4

=1

Write a complete program that checks this formula by inputting » and then computing and
comparing the values of both sides of this equation.

The factorial function is defined by the formula n! = 1:2:3-...-n; that is, “n factorial” is the
product of the first » positive integers. For example, 5! = 120 because 120 = 1:2:3:4-5. Write
a complete program that inputs n and then computes and prints the value of n!.

The permutation function is defined by the formula p(n,k) = n(n-1)-(n-k+1); that is, p(n,k) is
the product of the k largest integers that are < n. For example, p(11,4) = 11-10-9-8 = 7920.
Write a complete program that inputs n and k and then computes and prints the value of

p(11,4).

CHAP. 3] CONTROL STRUCTURES 59

3.24

3.25

3.26

3.27

3.28

3.29

The combination function is defined by the formula c(n,k) = (n/1)((n-1)/2)--((n-k+1)/k); that
is, c(n,k) is the product of the k ratios j/i, where j ranges from n down to n-k+1 and i ranges
from 1 up to k. For example, c¢(11,4) = (11/1)(10/2)(9/3)(8/4) = 11-5-3-2 = 330. Write a com-
plete program that inputs » and & and then computes and prints the value of ¢(11,4). (Note
that c(n,k) is always a positive integer.)

Write a complete program that inputs a positive integer 7 and then prints a triangle of aster-
isks # lines high and 2n — 1 columns wide. For example, if the input is 5 then the output
should be

*
* 4k k
ek odok ok
*kkkk kK

hkdk ok kkkok
Write a complete program that inputs a positive integer n and then prints a rectangle of aster-
isks n lines high and 2n columns wide. For example, if the input is 5 then the output should
be

ok k ok ok Kk kok ok ok

* *
* *
J *

ok k ok ok k ok koK

Write a complete program that implements the following algorithm that computes the great-
est common divisor of two given positive integers. For example, if 441 and 252 are input,
then the program should print that 63 is their greatest common divisor:

Algorithm 3.1 The Euclidean Algorithm
To find the greatest common divisor gcd of two positive integers m and n:
1. Subtract m from n repeatedly until n < m.
2. Interchange the values of m and n.
3. Repeat steps 1-2 until m = 0.
4. Then n is the greatest common divisor of the two original numbers.
This is Proposition 2 in Book VII of Euclid’s Elements, written around 300 B.C.
The Fibonacci numbers are those in the sequence 0, 1, 1, 2, 3, 5, 8, ... in which each succes-
sive number is obtained by adding its two predecessors. Write a complete program that inputs
a positive integer »n and then prints the n + 1 Fibonacci numbers f,, f,, /3, ..., f,- For example, if
6 is input, then it would print 0, 1, 1, 2, 3, 5, 8.

The golden mean is defined to be the constant ¢ = (1 + V5)/2 =
1.61803.... It is the solution to the ancient Greek mathematical
question about where to divide a segment so that the ratio of the

larger piece to the smaller piece is the same as the ratio of the

original segment to the larger piece. The constant plays an

important role in geometry, computer science, and art history.

For example, each intersection of each line in the mystic penta-

gram is at the golden mean. Some important Renaissance artists

used the ratio of the golden mean to achieve aesthetic balance in

their paintings. The ratios of adjacent Fibonacci numbers converge to the golden mean, For
example, fio/ fo=55/34 = 1.61765, and 1,4/ f,; = 377/233 = 1.61803.Modify your solution to
Problem 3.28 so that it also prints the ratios f;/ fi; for k=2, 3, ..., n, and then print the dec-
imal value of ¢ for comparison.

60 CONTROL STRUCTURES [CHAP. 3

3.30 The least squares method discovered by Carl Friedrich Gauss (1777-1855) for interpolating
data produces the following formulas for the regression line that best fits a given set of data

pOintS {(-xla yl)9 (XZ’ yZ)’ (X3, y3)a ey (X", yn)}:

SR

i=1

4
i

Then the equation for the best fit regression line is y = mx + b. Write a complete program that
inputs the number n of data point and then the » pairs of numbers x, y,. It should then imple-
ment these formulas to obtain and print the regression line equation. Finally, it should ask the
user to input other x values for which it will then use the equation to compute the correspond-
ing predicted (interpolated) y values.

3.31 A loan is amortized by printing its schedule of periodic payments along with the remaining
balance after each payment. Write a complete program that prints an amortization schedule
for a given loan amount a at a given interest rate » and a given monthly payment p. Your pro-
gram should input g, n, and p, and then print a series of lines, one for each monthly payment,
showing the payment number and the remaining balance after that payment.

Solutions

3.1 A compound statement, also called a block, is a sequence of statements delimited by braces.

3.2 The scope of a variable is that part of the program where it may be used.

3.3 A namespace is a named block.

3.4 A using directive simply obviates the need for the scope resolution prefix in references to names
outside of their scopes.

3.5 Thescope ofthe x thatis defined on line 1 is lines 1-5.
The scope of the y that is defined on line 3 is lines 3-11 and 16-17.

Y
The scope of the x that is defined on line 6 is lines 6-9.
The scope of the z that is defined on line 7 is lines 7-9.
The scope of the x that is defined on line 10 is lines 10-17.
The scope of the y that is defined on line 12 is lines 12-15.
4

The scope of the z that is defined on line 13 is lines 13—15.

CHAP. 3] CONTROL STRUCTURES 61

The output is
22 33
44 33 55
66 77 88
66 33
3.6 cout << ::n << endl; // prints the
cout << n << endl; // prints the
cout << blockl::n << endl; // prints the
cout << block2::n << endl; // prints the
Syntax error: missing parentheses around the condition.
. Syntax error: missing semicolon before the else.
Compile-time error: an independent statement cannot precede an else.
Logical error: the else is independent of the first condition, so the code will printboth n > 0
and n < O ifnisnegative. Another else isneeded, before the second if:
if (n < 0) cout << "n < 0";
alse if (n == 0) cout << "n == 0";
else cout << "n > 0";
. One: 44
. Two: 22 44
Two: 44 66
Three: 22 44 -22
Logical error: the semicolon after the left parenthesis means that the loop statement is empty. That
results in an infinite loop because the control variable n does not change.
Syntax error: the three parts of the for loop control must be separated by semicolons, not com-
mas.
Compile-time error: only one statement or block is allowed between the do and the while.
Logical error: this is an infinite loop because i is decreasing and the control condition is 1<20.

3.10 int main{()
{ int n;
cout << "Enter year: ";
cin >> n;
if (n % 400 == 0) cout << n << " is a leap year.\n";
else if (n % 100 == 0) cout << n << " is a not leap year.\n";
else if (n % 4 == 0) cout << n << " is a leap year.\n";
else cout << n << " 1is a not leap year.\n";

whose value is 33
whose value is 55
whose value is 77
whose value is 99

jolie Ria]

3.7

RO SB

3.8

B RO &S

3.9

4

RO

}
.1 int main ()
{ double a, b, c;
cout << "Enter the coefficients a, b, and c: ";
cin >> a >> b >> c¢;
if (a == 0)
if (b == 0)
if (¢ == 0) cout << "Every real number is a solution";
else cout << "There are no solutions";
else cout << "The unique solution is " << -c/b;
else
{ double d = b*b - 4*a*c;
if (d < 0) cout << "There are no real solutions";
else if (d == 0) cout << "The unique solution is "<<-b/(2*a);
else
{ double sgrtd = sqrt(d);
double x1 = (-b + sqrtd)/(2*a);
double x2 = (-b - sqgrtd)/(2*a);
cout << "The two solutions are " << x1 << " and " << x2;
}
}

cout << endl;

62 CONTROL STRUCTURES [CHAP. 3

3.12 int main ()
{ int day;
cout << "Enter the day of the year (1-365): ";
cin >> day;
if (day < 32) cout << "January ";
else
{ day -= 31;
if (day < 29) cout << "February ";
else
{ day -= 28;
if (day < 32) cout << "March ";
else
{ day -= 31;
if (day < 31) cout << "April ";
else
{ day -= 30;
if (day < 32) cout << "May ",
else
{ day -= 31;
if (day < 31) cout << "June ";

else
{ day -= 30:
if {(day < 32) cout << "July ";
else
{ day -= 31;
if (day < 32) cout << "August ";
else

{ day -= 31;
if (day < 31) cout << "September ";
else
{ day -= 30;

if {day < 32) cout << "October ";

r

else

{ day -= 31;
if (day < 31) cout << "November ";
else

{ day ~= 30;
cout << "December ";

cout << day << endl;

}

3.13 sgqrt = (x >= 0 ? sqrt(x) : sqrt(-x));
3.14 if (x > 0) sgn = 1;
else if (x == 0) sgn = 0;

else sgn = ~1;

CHAP. 3]

3.15

3.16
3.17

3.18

3.19

3.20

CONTROL STRUCTURES 63

int main()
{ float x;

int n=2;

int 1gx=0;

cin >> X;

while (n <= x)

{n>*=2;

++1gx;

}

cout << "lg(" << x << ") = " << 1lgx << endl;
for{int 1 = 4; i < 20; i++)

cout << 1.0/i << endl;

int j = 22;

while (j > 8)

{ sum += log({j*j);
__.j;

}

#include <iomanip>
#include <iostream>
#include <cmath>
using namespace std;
int main{)
{ double x = 3.141592653589793;
cout << setprecision(l6) << x << endl;
int n;
cout << "Enter number of digits: ";
cin >> n;
if {n < 9)
{ x *= pow(10,n);
int round = int{x + 0.5);
¥ = double (round) /pow(10,n);
}

else // e.g., n == 13

{ x *= pow(10,8); // ® == 314,159,265.3589793
int m = int (X); // m == 314,159,265
double y = (x - m)*pow{1l0,n-8); // y == 35897.93
int round = int(y + 0.5); // round = 35898

y = double (m) *pow (10,n-8) + round;// y ==31,415,926,535,898.0
x = y/pow(l0,n); // x == 3.1415926535898

cout << x << endl;
}
int main{)
{ int n, sum=0;
cout << "“Enter n: ";
cin >> n;
for (int i=1l; i <= n; i++)
sum += 1i;
cout << "1 + 2 + 3 + ... 4+ n
cout << "n*{n+l1l)/2
}
int main ()
{ int n, sum=0;
cout << "Enter n: ";
cin >> n;
for (int i=1l; i <= n; i++)
sum += i*i;
cout << "1 + 4 + 9 4+ .., + n*n = " << sum << endl;
cout << "n*{(n+l)*(2*n+l)/6 = " <<n*(n+l)*{(2*n+1)/6 <<endl;

" << sum << endl;
" << n*{n+l)/2 << endl;

3.21

3.22

3.23

3.24

3.25

3.26

CONTROL STRUCTURES [CHAP. 3

int main{()
{ int n, sum=0;
cout << "Enter n: ";
cin >> n;
for (int i=1; 1 <= n; i++)
sum += i*i*ji;

cout << "1 + 8 + 27 + - + n*n*n = " << sum << endl;

cout << "n*n* (n+l)*(n+l)/4 = " <<n*n* (n+l)*(n+l)/4<<endl;
}
int main{()
{ int n, fact=1;

cout << "Enter n: ";

cin >> n;
for (int i=2; i <= n; i++)
fact *= i;
cout << n << "! = 1*2%, ., .*" << n << "

it

" << fact << endl;
int main{()
{ int n, k, perm=1l;
cout << "Enter n and k: ";
cin >> n >> k;
for (int i=1; i <= k; 1i++, n--)
perm *= n;
cout << "p(" << n+k << "," << k << ")
}
int main()
{ int n, k, comb=1l;
cout << "Enter n and k: ";
cin »> n >> k;
for (int i=1; i <= k; i++, n--)
comb = comb*n/i;

I

" << perm << endl;

cout << "c(" << n+k << "," << k << ") = " << comb << endl;
}
int main{()
{ int n;
cout << "How many lines? (1-40): "“;
cin >> n;
for (int 1=0; i<n; i++) // 1 = number of lines printed
{ for (int j=1; 3 <= n + 1i; Jj++) // 3 = current column number
cout << (§ <n-172" " **"); // print n - 1 - 1 blanks

cout << endl;

}

int main()
{ int n;
cout << "How many lines? (1-40): ";
clin >> n;
for (int i=0; i<n; i++) // 1 = number of lines printed
{ for (int j=1; j <= 2*n; j++) // 3 = current column number
cout << (i > 0 && i < n-1 && jJ > 1 && Jj < 2*n ? ' ' : '"*');

cout << endl;

}

"y

CHAP. 3]

3.27

3.28

3.29

3.30

CONTROL STRUCTURES 65

int main ()

{ int m, n, tmp, gcd;

cout << "Enter two positive integers: ";

cin >> m >> n;

cout << "The greatest common divisor of " << m << "

and " << n;

< f2 << endl;

do
{ while (m <= n)
n -= m;
tmp = m;
m = n;
n = tmp;
} while (m > 0);
cout << " is " << n << endl; }
int main()
{ int £0=0, fl1=1, f2, n;
cout << "How many Fibonacci numbers do you want? ";
cin >> n;
cout << "\tfl = 1\n";
for (int i=2; 1 <= n; i++)
{ f2 = £f1 + f£0;
COUt << "\tf" << i << ”"” _ " <
fOo = £1;
f1 = f2;

}

}

int main{()

{ setiosflags(ios::right);
cout.setf (ios::fixed, ios::floa
cout << setprecision(1l4);
int £0=0, fl1=1, f2, n;

cout << "How many Fibonacci numbers do you want? ";

cin >> n;

cout << setw(8) << "fl =" << sge
for (int 1i=2; i <= n; i++)
{ £f2 = f1 + £0;
cout << setw(5) << "f" << i <
<< (1 < 10 ? setw(1ll)
<< setw(9) << "f" << 1 <
<<
<< (1<107? setw(l8): setw
fO = £1;
f1 = £2;
}
double phi = (1 + sqrt(5))/2;

cout << " The Golden Mean =
}
int main()
{ double x, vy,
int n;

sumx=0.0, sumy=0.0

cout << "How many data points do you have: ";

cin >> n;
cout << "Enter " << n << "
setiosflags(ios::right);
for (int i=1; i <= n; i++)
{ cout << setw(8) << 1 << ": ";

cin >> x >> y;

sumx += X;

sumy += y;

SuUmxXx += X*X;

sumxy += X*y;

(1 + sqrt(5))/2 =

pairs

tfield);

tw(l2) << "1\n";
< 11] =’l
setw(10)) << f2
< "/f" << i_l
(i jp— 1 O ? 1] " . ") << " o "
(16)) << double(f2)/fl << endl;

" << phi << endl;

, sumxx=0.0, sumxy=0.0;

x and y:\n";

66 CONTROL STRUCTURES {CHAP.3
double meanx = sumx/n;
double meany = sumy/n;
double m = (n*sumxy - sumx*sumy)/(n*sumxx - sumx*sumx);
double b = meany - m*meanx;
cout << "The equation of the Gaussian regression line is: y ="
<< m << "x + " << b << endl;
char ans;
cout << "Do you want to interpolate? (y/n): ";
cin >> ans;
if (ans == 'y' || ans == 'Y'}
{ cout << "Enter X values, one per line.\n"
<< "Terminate input with <Ctrl-D>:\n";
while (cin >> x)
cout << "\ty = " << m*x +b << endl:;
}
}
3.31 int main{()

{

float a; // original amount of loan

float r: // interest rate; e.g., r = 0.06 for 6%
float p; // monthly payment

int m=0; // month number

float X; // remaining balance after m months

cout << "Enter amount of loan (e.g., 10000.00): ";
cin >> a;

cout << "Enter annual interest rate (e.g., 0.06): ";
cin >> r;

r /= 12; // convert r to a monthly rate

cout << "Enter monthly payment (e.g., 350.00): *;

cin >> p;

X = a;

while (x > 0.0)

{ cout << m << ", \t" << x << endl;
X += r*x; // add interest to remaining balance
X —-= p; // subtract monthly payment
+4+m;

Chapter 4

Functions

A function is a subprogram that is executed by being called from within another function. Every
C++ program must include a function named main (). That is where program execution begins.
A function is called by using its name as variables, as in
double y = sqgrt(x);
or as an independent statement, as in
print{a, n);
Functions allows program modularization which is essential for good software development.

4.1 FUNCTION DECLARATIONS AND DEFINITIONS

Like a variable, a function must be declared before it is called. A function declaration has three
parts: its return type, its name, and its parameter list. A function declaration should also include a
comment that describes what the function does.

EXAMPLE 4.1 A Function Declaration
double power{double x, int n};
// PRECONDITION: x > O
// Returns the value of x raised to the power n
Here, double isthe retumn type, power isthe name ofthe function, and {double x, int n) is

its parameter list. This function has two parameters: x and n.

A function parameter list is a list of variable declarations enclosed in parentheses. The variables
are called parameters (or formal parameters). The parameter list may be empty, but the enclosing
parentheses are still required.

A function declaration is also called a prototype. It contains the minimal information that the
compiler needs to compile code that uses the function. Consequently, the names of the parameters
may be omitted, like this:

double power {double, int);
However, it is usually better to include the parameter names.

A function definition contains all the information needed to execute code that calls it: its header
and its main block of executable statements.

EXAMPLE 4.2 A Function Definition
double power {double x, int n)
{ double y = 1.0;

for (int i=0; i<n; i++) // if n>0, return x*x*...*x (n times)
y *= x;

for {int i=0; i>n; i--) // if n<0, return 1/(x*x*...*x) (n times)
y /= x%;

return y;

}
Note that only one of the two loops will execute (or neither if n = 0).

67

68 FUNCTIONS

[CHAP.4

If the function definition is given before it is called, then it does not need a separate declaration.

EXAMPLE 4.3 Declaring a Function with Its Definition
Here is a complete C++ program:
#include <iostream>
using namespace std;

double power (double x, int n)
{ double y = 1.0;
for (int i=0; i<n; i++) // if n > 0, return x*x*...*x (n times)
y *= X
for (int i=0; i>n; i--) //if n < 0, return 1/(x*x*...*x) (-n times)
y /= %;

return y;

}

int main ()
{ cout << power (7.4, 3)
cout << power (7.4, -3)

<< endl;
<< endl;
}
The output is
405.224
0.00246777

The alternative is to give only the function’s declaration prior to the code from which it is called.
In this case, the function definition is given elsewhere, either later in the file or in another file linked

to the file that contains the code from which it is called.

EXAMPLE 4.4 Separating the Function Declaration from Its Definition

Here is another complete C++ program, equivalent to that in Example 4.3:
#include <iostream>
using namespace std;

double power (double x,
// PRECONDITION: x > 0
// Returns the value of x raised to the power n

int n});

int main ()
{ cout << power(7.4, 3)
cout << power (7.4, -3)

}

<< endl;
<< endl;

double power (double x,
{ double y = 1.0;
for (int i=0; i<n;
Yy *= x;
for (int i=0;
y /= X;
return y;

}

int n)

i++) // if n > O,

i»>n; i--) // if n < O,

return x*x*...*Xx

return 1/{x*x*...*x)

(n times)

(-n times)

The parameter names may be omitted from a function declaration (but not from its definition).

For example, double power (double, int);

is a valid declaration. The only purpose of the

declaration is to provide the compiler with the information it needs to compile calls to the function.

CHAP. 4] FUNCTIONS 69

The return statement in a function specifies the value to be returned to point where the
function was called. In Example 4.4, the statement return y; terminates the execution of the
function and returns the value of y (61043.7) to the cout statement in main() where the
function was called.

Note that the main () function itself has a return statement. Its return type is int, so we usually
simply return 0. The value returned can be used by the operating system after the program has
terminated.

A function may have several return statements. Although it is usually best to place one at the
end of the function definition, a return statement can be placed anywhere.

EXAMPLE 4.5 A Function with More than One return Statement
int factorial (int n)

// Returns n! = n*(n-1)*(n-1)*,..*2*1
{ assert(n >= 0);
if (n < 2) return 1; // 0! =1 and 1! =1
int £ = 1;
while (n > 1)
f *= n--;

return f;
}

The condition (n < 2) inthe if statement will be true only if the value of n is 0 or |, and in both
of those two special cases the factorial function should retum 1. The function would be correct without the if
statemnent, because in those two special cases the while loop will be skipped and the retum value of £ is 1.
But the separate return statement within the if statement makes the function more efficient, because in
the two special (and not uncommon) cases it avoids the declaration of the local variable f and the evaluation

of the condition (n > 1).
4.2 void FUNCTIONS

A void function is a function whose return type is void. This means that it returns no value. It
may have one or more return statements, but they must have the simpler form: return;

EXAMPLE 4.6 A void Function
This void function hasno return statements:
void print literal digit(int n)
// Prints the digit n in literal form.
// EXAMPLE: print literal digit(7) would print "seven".
// PRECONDITION: n >= 0 && n <= 9
{ assert(n >= 0 && n <= 9});
if (n == 0) cout << "zero";

else i1f (n == 1) cout << "one";
else if (n == 2) cout << "two";
else if (n == 3) cout << "three";
else if (n == 4) cout << "four";
else if (n == 5) cout << "five";
else if (n == 6) cout << "six";
else if (n == 7) cout << "seven";
else if (n == 8) cout << "eight";

",
4

else cout << "nine

70 FUNCTIONS [CHAP4

A void function is called by using its name as an executable statement. The function that is
defined in Example 4.6 could be called like this:
int main{()
{ print_literal_digit(7);
}
Since the function name is used like an independent C++ statement, it is usually helpful to use a verb
phrase for the name of a void function.

4.3 TRACING A FUNCTION

It is wise to trace a function to ensure that it works properly. This means to track through the
execution of calls to the function, executing its statements by hand (or with the aid of a calculator) to
check the correctness of its logic. Each value of each variable should be shown.

EXAMPLE 4.7 Tracing a Function
Here is a trace of the call power (4.0, 5):

X n i Y

4.0 5 1.0
0 4.0
1 16.0
2 64.0
3 256.0
4 1024.0
5

The function returns 1024.0, which is the correct value for 4.0°.
Here is a trace of the call power (4.0, -3):

X n i Y

4.0 3 1.0
0 0.25
1 0.0625
2 0.015625
3

The function returns 0.015625, which is the correct value for 4.0-3 = 1/64.
Here is a trace of the call power (4.0, 0):

X n i Y
4.0 3 1.0
0

The function returns 1.0, which is the correct value for any positive number raised to the power 0.

4.4 TEST DRIVERS

A test driver is a complete program whose sole purpose is to test a function. It should be short,
simple, obvious, and easy to use.

CHAP. 4] FUNCTIONS 71

EXAMPLE 4.8 A Test Driver for the power () FUNCTION

main ()
{ double x:
int n = 1;
while (n !'= 0)
{ cin >> x >> n;
cout << "power (" << x << "," << n << ")= " << power (x, n) << endl;
}
return 0;

}

Note how Spartan this program is. It has no documentation (comments) or user prompts. Those features are
important in ordinary (long-lived) programs. But test drivers are only temporary programs. They are used only
by the function’s creator and only long enough to test the function.

A thorough testing with this driver might look like this:

4.0 5

power {4,5)= 1024

4.0 -3

power (4,-3)= 0.015625
10 100

power (10,100)= 1le+100
100 10

power (100,10)= le+20
100 -10

power (100, -10)= le-20
10 -100

power (10,-100)= 1e-100
1 100

power (1,100)= 1

1 -100

power {1,-100)= 1

100 1

power (100, 1)= 100

100 -1

power {(100,-1)= 0.01
12345 1

power (12345,1)= 12345
12345 0

power (12345,0)= 1

The best strategy is to choose input values whose output is predictable. For example, the call
power (13579.08642, 28) is justas good as power (100, 10) for checking the function’s
logic; but it is a bad choice because its output is not predictable (even with a good calculator!).

It is also important to try to test all the different cases and “boundary conditions” of a function.
For example, the three obviouscases n > 0, n == 0,and n < O for the power() function
should be tested. Also, the special case x == 1 should be tested.

Testing a function is a difficult art. You can never prove that a (non-trivial) function is correct just
by testing it. But extensive testing is usually the best way to discover logical errors before the
function is used in software development.

4.5 USING THE assgert() FUNCTION TO CHECK PRECONDITIONS

Most function do not work properly on all possible values of their parameters. Restrictions on
these parameter values are called preconditions. These preconditions should be listed clearly in

72 FUNCTIONS [CHAP 4

comments that accompany the function’s declaration. But those comments won’t help prevent
improper values from being passed to the function.

One simple but effective method for handling illegal parameter values is to use the standard
assert () function to check preconditions. This function is defined in the <assert> header file.
The function is used by passing the precondition to it as a bocl expression. When the function is
called, it evaluates the expression. If it evaluates to false, then the function aborts the program and
prints a message reporting that the assertion failed.

EXAMPLE 4.9 Using assert () to Check Preconditions
#include <assert>

double power (double x, int n)
{ assert(x > 0):
double y = 1.0;

for (int 1=0; i<n; i++) // if n > 0, return x*x*...*x (n times)
y *= x;

for (int i=0; i>n; i--) // if n < 0, return 1/(x*x*...*x) (-n times)
y /= x;

return y;

}
Here is what happens on a UNIX system when the precondition is violated:

-4.0 5

ex0407.cc:10: failed assertion 'x > O

IOT trap
The value -4.0 was input for x. The first line of output reports that the assertion failed at line 10 in the program
whose source code is in the file ex0407. cc. The second line simply classifies the abortion as an “IOT trap”.

Technically, assert is a parametrized macro. Unlike a real function that gets compiled, a
macro works more like an include directive. The compiler actually replaces the expression that
uses its name with other code defined in the <assert> file, and then that code gets compiled. This
replacement process is called expanding the macro.

4.6 PREDICATES

A predicate is a boolean function; i.e., a function whose return type is bool. It is used to test
some condition about its arguments.

EXAMPLE 4.10 The Predicate is_prime() Function
This function tests the condition that its argument is a prime number:

bool is prime(int n)
// Returns true 1iff n has no divisors except 1 and itself
(assert(n > 0);

if (n == 1) return false;

if (n == 2) return true; // 2 is the first prime

if (n % 2 == 0) return false; // 2 is the only even prime

for (int d=3; d<n; d += 2) // look for an odd divisor
if (n % d == Q) return false;

return true; // no odd divisors were found

CHAP. 4] FUNCTIONS 73

Here is a test driver forthe is prime() function:
int main{()
{ int n = 2;
=

while (n 1)

{ cin >> n;
if (is prime(n)) cout << n << " is prime\n";
else cout << n << " is not prime\n";

}

return 0;

}
The symbol “iff” stands for “if and only if.” We use it to describe boolean functions. For example,

here it means that the function returns true if n has no nontrivial divisors and it returns false if
n does have some nontrivial divisor.

Comments are often essential for the understanding of a block of code. But the programmer
should strive to make his or her code self~-documenting. This means to choose programming struc-
tures that clarify the underlying logic and to choose names that describe what the things being named
represent. In the case of function names, it is usually best to use only noun phrases for non-void func-
tions, use only verb phrases for void functions, and use only predicate phrases for boolean functions:

double power (double x, int n); // "power" is a noun
void print literal digit(int n); // "print" is a verb
bool is prime{int n); // "is prime" is a predicate

4.7 DEFAULT ARGUMENTS

The expressions listed between the parentheses in a function call are called arguments (or actual
parameters). For example, 4 and 5 are the arguments in the call power (4, 5).

It is possible to define default values for some or all of the arguments simply by specifying those
values as initializations in the function’s parameter list. In computer science, the word defau!t means
a value that is used by the system when a specific value is not given. So a default argument is a value
that is assigned to a parameter in place of a missing argument in a function call.

EXAMPLE 4.11 Specifying Default Arguments
double power (double x=1.0, int n=2)
{ assert(x > 0);
double y = 1.0;

for (int i=0; i<n; i++) // if n > 0, return x*x*...*x (n times)
y * = X;

for (int i=0; i>n; i--) // if n < 0, return 1/(x*x*...*x) (-n times)
y /= xi

return y;
}
Here, the parameter x is given the default argument 1.0, and the parameter n is given the default

argument 2. Then the function could be called like this:

cout << power (7.4, 3) << endl;

cout << power(7.4) << endl;

cout << power () << endl;
The output from these three calls would be

405.224
54.76
1

These are the correct values for 7.4%, 7.42, and 1.0%

74 FUNCTIONS [CHAP 4

Note that all, some, or none of the default arguments may be used in a function call. If fewer
arguments than parameters are passed, then the system matches the given arguments with the param-
eters one-to-one, scanning left-to-right. When it runs out of arguments, it uses the default values for
the remaining parameters.

A function may define default arguments for all, some, or none of its parameters. The only rule is
that, to be consistent with the process described above, the parameters with default values must
follow those without default values in the parameter list.

4.8 PASSING BY consat VALUE, BY REFERENCE, AND const REFERENCE

There are four different ways that an argument can be passed to a parameter in a function call: by
value, by const value, by reference, and by const reference. These distinct methods are
determined by the function’s parameter list, by preceding the parameters type with the const
keyword and/or by preceding the parameter’s name with the reference symbol &:

void fl(int x); // x is a value parameter

void f2(const int x); // x 1s a const value parameter
void f3(inté& x); // x is a reference parameter

void f4(const int& x); // x is a const reference parameter

Passing an argument by value is the simplest and most common method. In this case, the parame-
ter is a separate local variable that exists only during the execution of the function. The call £1 (u);
to the first function declared will copy the value of the argument u into the parameter x. Then, any
changes made to x during the execution of the function will have no effect upon the variable u.
Note that since this method only uses the value of the argument, it could be a constant or even a
general expression. For example, £1(44) and f1(2*u - 3*v) would be valid calls.

Passing an argument by const value is the same as passing it by value except that the const
keyword makes the parameter a constant, prohibiting the function from changing its value. This is the
kind of restriction that good programmers often force upon themselves to prevent coding errors. If
you don’t want your function to change its parameter value, then make it a constant. That tells the
compiler to “keep you honest.” It will alert you if you accidentally code a change.

EXAMPLE 4.12 Passing by const Value

void f2(const int x) // X is a const value parameter
{ cout << "The value of the const parameter x is " << x << endl;
}
int main{)
{ f2(44}); // passing a constant
int u = 55;
f2 {u); // passing a variable
int v = 33;
f2(2*u - 3*v); // passing an expression

return O;
}
The output is
The value of the const parameter x is 44
The value of the const parameter x is 55
The value of the const parameter x is 11

Passing an argument by reference allows the function to change the value of the argument. That is
because the function’s parameter is only a synonym (another name) for the existing argument.

CHAP. 4] FUNCTIONS 75

EXAMPLE 4.13 Passing by Reference
void f3(int& x) // x is a reference parameter
{ x *= 3;
}
The function triples the value of x. But x is just a synonym or “alias” for the argument passed to it, so the
effect of the function is to triple the value of its argument.
int main(}
{ int u = 33;
£3(u);
cout << u << endl;
return 0;

}
The output from this program is

99

Here is a diagram to help explain the relationship between the argument u and the parameter x:

The parameter x does not have its own
storage area; it is just another name for the
variable u. So when the statement x *=
3 executes, it triples the value of u.

S 2 8

™ :

e e
po——

Note that an argument that is
passed by reference must be an actual
variable. It is not possible to pass a constant or an expression by reference. That should seem reason-
able because constants and expressions are read-only; values cannot be assigned to them. So only the
second of the three calls made to £2() in Example 4.12 would be possible to £3 ().

Passing an argument by constant reference is the same as passing it by reference except that the
function is prohibited from changing its value. This may seem like a contradiction since the purpose
of passing an argument by reference is often to change its value. However, there are other situations
when the purpose is simply to avoid duplicating the argument (which is what happens when it is
passed by valuc). That is the situation when the argument is a large object.

EXAMPLE 4.14 Passing by consat Reference
void f4(censt int& x} // x is a const reference paraneter
{ cout << x << endl;
}
The reference here is not essential for the function to work properly.

When one system accesses a
storage area of another system, there
are three general modes of access:
read-only, writc-only, and read-
write. The accessor is called the cli-
ent and the provider is called the
server. For example, if we think of
the computer’s processor as a client
and its input-output devices as serv-
ers, then the keyboard is a read-only
device, the hard disk is a read-write
device, and the printer is a write-
only device. We can also think of the m* }w o Srite-only

sRIVEr <:£Lmt

R e e

N e
main() function as a server and a

76 FUNCTIONS [CHAP.4

function that it calls as its client. In that context, we can see that a function’s value parameters are
read-only, its function return value is write-only, and its reference parameters are read-write. In other
programming languages (namely, Ada), these are called in parameters, out parameters, and in-out
parameters.

4.9 RETURNING BY REFERENCE

Non-void functions usually return by value. Like passing by value, this means that a copy of an
existing variable or expression is returned. But like arguments, returns can also be made by reference.
The advantage is the same: it avoids duplicating an object.

EXAMPLE 4.15 Returning a Reference

This function triples x and then retumns it by reference:
ints f(int& x)

{ cout << "x = " << x << endl;
X *= 3;
cout << "x = " << x << endl;

return x;
}
Note that the local variable x is a synonym for whatever argument is passed to the function.
Here is a test driver:
int main{()
{ int m = 11;
cout << "m
int n = f(m
cout << "m
cout << "n
f(n) = 44;
cout << "n = " << n << endl;
}
The output is
m = 11
=11
= 33
= 33
33
= 33
= 99
= 44
The first call £ (m) has the effect of tripling the value of m from 11 to 33. That value is then assigned to
n. The second call f (n) is the interesting one because that expression is placed on the left side of an assign-
ment: it looks like the value 44 is being assigned to the function call. Actually, 44 is being assigned to the
reference that the function returns. That is a reference to the local variable x, which itself is a reference to the
argument n. So the end result of the assignment £ (n) = 44 isto change the value of n to 44. Note that,
prior to this final assignment, x (and therefore n) was changed from 33 to 99. But that value is then replaced
by 44 in the final assignment f (n) = 44.

"< m << endl;
7

" << m << endl;
" << n << endl;

SX X poH X %
1

Note that if a function returns an object by reference, it must be an object that existed before the
function was called because it has to exist after the function has returned.

In C++, an object is a contiguous region of memory. The simplest objects are variables and
constants. An /value is an expression that refers to an object. The simplest Ivalues are names of

CHAP. 4] FUNCTIONS 77

variables and constants. The expression f (n) in Example 4.15 is an lvalue. It refers to the object
named n. The term “lvalue” originally meant “anything that can be on the left side of an assign-
ment.” But that definition no longer applies because an Ivalue can refer to a constant. An lvalue that
can be on the left side of an assignment is now called a modifiable Ivalue.

4.10 OVERLOADING A FUNCTION NAME

C++ allows different functions to have the same name. This is called overloading. The only
requirement is that they have different parameter lists; i.e., either a different number of parameters or
different types in at least one parameter slot.

EXAMPLE 4.16 Overloading the swap () Function
Here are two different functions, both named swap():
void swap(int& x, int& y)

(int temp = Xx;
X = Vi
y temp;
}
void swap(float& x, floaté& y)

It

{ float temp = x;
X = Y
Y temp;
}
Here is a test driver:

int main{()
{ int m=22, n=44;
cout << "m = " << m << ", n = << n << endl;

swap{(m, n);
cout << "m " << m<< ", n=" << n << endl;

float s=2.2, t=4.4;

cout << "s = " << 5 << ", t = " << t << endl;
swap (s, t):
cout << "s = " << 5 << ", t =" << t << endl;

}
Here is the output:
m= 22, n= 44
44, n = 22
2.2, t = 4.4
4.4, t = 2.2
The purpose of each function is simply to interchange the values of the two arguments passed (by

reference). But the types of the arguments must match the types of the parameters, so being able both to swap
integers and to swap floats requires two separate functions. Overloading simply allows us to use the same name

swap {) for both of them.

m
S
S

Note that the fact that these two functions perform the same operations is irrelevant to the issue of
overloading, as are the facts that they are void functions and that they use reference parameters.

78 FUNCTIONS {CHAP.4

EXAMPLE 4.17 Overloading Different Functions

Here are three very different functions that overload the name f ():
void f (char c)
{ c= (¢ > 'a' && ¢c <= 'z' 2?2 c - 'a' + 'A' : ¢c);
cout.put (c);
}
int f{int n)
{ return (n%2 == 0 ? n/2 : 3*n + 1):

}
float f(float x, float y, float z)
{y=(y>x?2vy : x);

return (z > y ? z : y);

1
This overloading doesn’t make much sense. It simply illustrates how different overloaded functions can be.

Review Questions

4.1 Does a function have to be declared before it is called?

4.2 What is the difference between a function declaration and a function definition?
4.3 What is a function prototype?

4.4 How many return statements can a function have?

4.5 Does a function have to return a value?

4.6 What is the difference between a value parameter and a reference parameter?

4.7 What is the difference between a const parameter and a non-const parameter?
4.8 What is the difference between returning by value and returning by reference?

4.9 What is wrong with the following version of the swap () function:
void swap(int x, int y)
{ int temp = x;
X =y
y = temp;
}
4.10 What is wrong with the following version of the swap () function:
void swap(int& x, int& vy)
[x = y;
y = X;

}

Problems

4.11 Trace the call power (2, S) to the function defined in Example 4.2 on page 67.
4.12 Trace the call factorial(5) to the function defined in Example 4.5 on page 69.
4.13 Trace the call is_prime(121) to the function defined in Example 4.10 on page 72.

4.14 Trace the call swap(m, n) to the first function defined in Example 4.16 on page 77,
assuming that the original values of m and n are 44 and 88, respectively.

CHAP. 4] FUNCTIONS 79

Programming Problems

4.15 Implement the following function and test it with a test driver:
float mean{float x, float y, float z);
// Returns the mean average of x, y, and z.
// EXAMPLE: mean{4, 7, 4) returns 5.0;

4.16 Implement the following function and test it with a test driver:

float min{float x, float y, float z);
// Returns the smallest of x, y, and z.
// EXAMPLE: min(4, 7, 4) returns 4.0;

4.17 Implement the following function and test it with a test driver:
float median(float x, float y, float z);
// Returns the middle number among x, y, and z.
// EXAMPLE: median(4, 7, 4) returns 4.0;
4.18 Implement the Babylonian Algorithm (Algorithm 1.1 on page 1) as modified in Problem 1.20
on page 14:
double sqrt(double x);
// Returns. the square root of x.
// PRECONDITION: x >= 0.
// EXBMPLE: sqrt(49.0) returns 7.0;
4.19 Implement Algorithm 1.2 on page 5 to convert binary numerals to decimal:
int decimal (int b);
// Returns the decimal numeral whose value equals that
// represented in the binary form b.
// PRECONDITION: each digit of b is a bit: 0 or 1
// EXBMPLE: decimal (10001011) returns 139
420 Implement Algorithm 1.4 on page 6 to convert decimal numerals to binary:
int binary(int n):;
// Returns the binary numeral that represents n.
// PRECONDITION: n >= 0
// POSTCONDITION: each digit of the integer returned is a bit
// EXAMPLE: binary(139) returns 10001011

4.21 Implement the following function which uses Horner’s method (see Problem 1.34 on page
14) to evaluate the polynomial 2x° — 7x* + 6x> + 9x? + 8x — 5:
double p{double x);
// Returns 2x"5 - 7x™4 + 6x™3 + 9x"2 + 8x - 5,
// EXAMPLE: p{(4.1) returns 931.70732
4.22 Using only subtraction, implement the following function which returns the remainder from
integer division:
int mod(int n, int d);
// Returns n%d.
// PRECONDITION: n >>=d > 0
// POSTCONDITION: (n/d)*d + r == n, where r is returned
// EXAMPLE: mod (44, 7) returns 2

423 Implement the quadratic formula. (See Problem 3.11 on page 57):
int solutions(flocat& x1, float& x2, float a, float b, float c);
// Modifies x1 and x2 so that they are the solutions to the
// equation a*x*x + b*x + c == 0, and then returns either 0, 1,
// 2, or 3, according to whether the number of distinct
// solutions is 0, 1, 2, or infinite.
// POSTCONDITION: if 1 is returned, then x1 is the unique sol’n;
// if 2 is returned, then x1 and x2 are the distinct sol’ns
// EXAMPLE: solutions(xl, x2, 1, 6, 9) returns 1 with x1 == -3.0

80 FUNCTIONS [CHAP.4

4.24 Implement the solution to Problem 2.18 on page 38 as the function:

float centimeters(float Xx);

// Returns the number of centimeters in x inches.
/7 PRECONDITION: x > O

// POSTCONDITION: the returned value y == 2.54*x
// EXBMPLE: centimeters(200) returns 508.0

4.25 Implement the solution to Problem 2.19 on page 38 as the function:

float celsius(float x);

// Returns the temperature in Celsius degrees for a given
// temperature in Farenheit degrees.

// PRECONDITION: x >= -273.0

// POSTCONDITION: the returned value y == 5*(x - 32)/9

// EXAMPLE: celsius(68) returns 20.0

4.26 Implement the solution to Problem 2.21 on page 38 as the function:

void convert(int& weeks, inté& days, int& hours, int x);

// Modifies weeks, days, and hours so that they represent the

// same time duration as x hours.

// PRECONDITION: x >= 0

// POSTCONDITION: (7*weeks + days)*24 + hours == x

// EXBMPLE: convert(w, d, h, 4000) makes w = 23, d =5, h = 16
4.27 Implement the solution to Problem 2.23 on page 38 as the function:

void reverse (int& n);
// Reverses the digits of n.
// PRECONDITION: 100,000 <= n <= 999, 999
// EXAMPLE: if n == 289405, reverse(n) makes n == 504982
4.28 Implement Example 3.20 on page 50 as the function:
void print{int n);
// Prints the sequence of numbers n, nl, n2, ..., 1, where the
// successor of each n > 1 is either n/2 or 3*n + 1 depending on
// whether n is even or odd.
// PRECONDITION: n > O
// EXAMPLE: print(3) prints 3, 10, 5, 16, 8, 4, 2, 1
4.29 Implement Example 3.27 on page 54 as the function:

double power(double x, int n);

// Returns x"n; i.e., X raised to the nth power.
// PRECONDITION: x > O

// EXAMPLE: power (2.01, 3) return 8.120601

4.30 Implement the solution to Problem 3.12 on page 57 as the function:
void print date(int n);
// Prints the month and day of the month for the year day n,
// assuming that the year is not a leap year.
// PRECONDITION: 1 <= n <= 365
// EXAMPLE: print date(65) prints: March 6
4.31 Implement the integer binary logarithm function. (See Problem 3.15 on page 58.):
int lg(int n);
// Returns the number of times n can be divided by 2.
// PRECONDITION: n > O
// POSTCONDITION: 2”p <= n < 2" (p+l), where p is returned
// EXBMPLE: 1g(100) returns 6
4.32 Implement the Euclidean Algorithm (Algorithm 3.1 on page 59) as the function:
int gcd(int m, int n);
// Returns the greatest common divisor of m and n.
// PRECONDITIONS: m > 0, n > 0
// POSTCONDITIONS: g is a factor of both m and n, and no x > g
/7 is a factor of both m and n
// EXBMPLE: gcd (252, 441) returns 63

CHAP. 4] FUNCTIONS 81

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

441

4.42

Implement the solution to Problem 3.19 on page 58 as the function:
int sum{int n);
// Returns the sum of the first n positive integers.
// PRECONDITION: n > O
// EXAMPLE: sum(10) returns 55
Implement the solution to Problem 3.20 on page 58 as the function:
int sum(int n);
// Returns the sum of the first n squares.
// PRECONDITION: n > O
// EXAMPLE: sum(10) returns 385
Implement the solution to Problem 3.20 on page 58 as the function:
int sum(int n);
// Returns the sum of the first n cubes.
// PRECONDITION: n > 0
// EXAMPLE: sum(10) returns 3025
Implement the solution to Problem 3.20 on page 58 as the function:
int fact (int n);
// Returns n factorial: n! = 1*2*3*,. . *n.
// PRECONDITION: 0 <= n <= 12 (to avold integer overflow)
// EXAMPLE: fact(5) returns 120
Implement the solution to Problem 3.20 on page 58 as the function:
int perm(int n, int k);
// Returns the number of permutations of size kx from a set of
// n elements.
// PRECONDITION: 0 <= k <= n <= 12
// EXAMPLE: perm(ll, 4) returns 7920
Implement the solution to Problem 3.24 on page 59 as the function:
int comb(int n, int k);
// Returns the number of combinations (subsets) of size k from
// a set of n elements.
// PRECONDITION: 0 <= k <= n <= 33
// EXAMPLE: perm(ll, 4) returns 330
Implement the Fibonacci function. (See Problem 3.28 on page 59.):
int fib(int n);
// Returns the nth Fibonacci number.
// PRECONDITION: 0 <= n <= 46
// EXBMPLE: fib(10) returns 55
Implement the solution to Problem 3.31 on page 60 as the function:
void amortize(float a, float r, float p);
// Prints the amortization schedule for a loan of an amount a,
// with an interest rate r, and a monthly payment of p.
// PRECONDITIONS: 0 < r < 1.0, 0.0 < p <= a

Implement the function:
bool is prime divisor(int d, int n):
// Returns true iff d is a prime divisor of n.
// PRECONDITION: 2 <= d <= n
// EXAMPLE: is_prime_divisor (7, 350) returns true because 7 is a
// prime number and a divisor of 350
Hint: use the is prime() function from Example 4.10 on page 72.

Implement the function:
void print dollars(float x);
// Prints x in literal form as a dollar amount.
// PRECONDITION: x >= 0.00 && x < 1000.00
// EXAMPLE: print dollars(123.45) would print
// one hundred twenty-three dollars and 45 cents
Hint: use the print literal digit() function from Example 4.6 on page 69.

82

4.1
4.2

4.3
4.4

4.5

4.6

4.7

4.8

4.9
4.10

4.11

4.12

4.13

FUNCTIONS [CHAP.4

Solutions

Yes, a function must be declared before it is called. However, its complete definition also serves as its
declaration, so if it is defined before it is called, then it does not need a separate declaration.

A function declaration consists of only its header: its return type, its name, and its parameter list. A
function definition contains all the information about the function: its header and its body block of
executable statement.

A function prototype is its declaration. It may omit the names of its parameters.

Anon-void function must have at least one return statement and may have more. The required
main{() function (whose retun type is int) is an exception: Standard C++ does not require it to
have a return statement. A void function does not have to have a return statement,
although it may have several.

Each return statementinanon-void function must return a value of the same type as the func-
tion’s declared return type. Each return statementina void function must not return a value.
A value parameter is a copy of the argument passed to it. A reference parameter is simply another
name for the argument passed to it. So an argument passed to a reference parameter must be a named
object, whereas an argument passed to a value parameter may be a literal or an expression.

A const parameter is constant: the function cannot change its value. It can change the value of a
non-const parameter.

When a function returns by value (the most common method), it sends a copy of the expression
returned to the point in the previous function where it was called. When a function returns by refer-
ence, the function call expression itself becomes a synonym for the object to which it refers. That
object must exist after the function returns, so it cannot be local to the returning function.

The parameters x and y are passed by value, so the function will have no effect upon the arguments
passed to it.

It takes three steps to interchange two values. This two-step version assigns the value of y to x
without first saving the value of x first, so that the original x-value is lost.

Trace of the call power (2, 5):

1 Y
1.0
0 2.0
I 4.0
2 ‘ 8.0
3 16.0
4 32.0
5
Trace of the call factorial(5):
£ n
I 5
5 4
20 3
60 2
120 I
Trace of the call is prime(121):
d n%d
3 1
5 14
7 2
960 4
11 0

CHAP. 4] FUNCTIONS 83
4.14 Traceofthecall swap{m, n) o
Wiy il I T I ok e

gt

4.15 float mean{tloat x, :loat y, float z)
{ return (% + y + 2)/3;
}
4.16 float min(float x, float y, floca: z)
{ if (x < y) y = x;
if (y < 2) z = y;
rewurn z;
}
4.17 float median(float x, float y, flcat z)
{ If (X <= y 46 Yy <= 2 ;| z <= y && y <= X} return y;
if (% <= 2 86 2 <=y || ¥y <= 2z && z <= x! return z;
return X;
}
4.18 doub.e sqgret (double x!
{ assert(x >= C);
doubie y = 1.0, 2z, r;
do
{ z = x/y;
y = (y + 2}/2;
r o= (y - 2z)/y; // sigred relative errcr
r=(r <0?-r r!; // unsigned relative error
} while (r > 5e-13); // for 12-digit precision
return y;
}
4.19 int decimal {(int Db)
{ int b0 - b%$10; assert(b0 =— 0 || BC == 1); b /= 10;
int bl = bt10; assert{bl =~ 0 |} bl == 1); b /= 10;
int b2 = b%¥i0; assert(b2 == 0 |] b2 == 1); b /= 10;
int b3 = btl0; assert(v3 ==0 [| 3 == 1);: b /= 10;
int b4 = bR10; asserti{b4 == 0 || 4 -- 1); b /- 10;
int bS5 = b%i0; assert{vp5 == 0 || &5 == 1)}; b /= 10;
int b6 = b%l10; assert(b6 == 0 || b6 == 1); b /= 10;
int b? = b%10; assert(b? == 0 || &7 == 1); b /= 10;
int bB = b%10; assert(bB == 0 || b8 -- 1); b /- 10;
int b9 = b%.0; asserti(b9 == 0 || £9 == 1); b /= 10;
return ({({{({({(b9*2 + DB)*2 + £7)~2 + b6)*2 + b5)*2 + bd)*2
+ h3)*2 + b2)*2 + bl)*2 + b0;
}
4.20 int binary!/int ni
{ // same as Problem 4.21 except use 10 for 2 and 2 for 10
}
4.21 doublie p(double x)
{ return ({((2*x - 7)*x + 6)=x + 9)*x + 8)*x -5;

}

84

4.22

4.23

4.24

4.25

4.26

427

428

FUNCTIONS

int mod(int n, int d)
{ assert(n > d && d > 0);
while (n > d)
n -= d;
return n;

}

int solutions(floats& x1, float& x2,
{ 1f (a == 0)
{ if (b == 0)
if (¢ == 0) return 3;
else return 0;
x1l =-c/b;

return 1;

}

double d = b*h - 4*a*c;
if (d < 0) return 0;
if (d == 0)
{ x1 = -b/(2*%a);
return 1;

}

double sqrtd =

xl =
X2 =

sqrt (d);
(-b + sqrtd)/(2*a);
(-b - sqrtd)/(2*a);

return 2;
}
float centimeters(float Xx)
{ assert(x > 0):
return 2.54*x;
)
float celsius(float x)
{ assert(x >= =273.0);
return 5.0*(x - 32.0)/9.0;
}
void convert(int& weeks,
{ assert(x >= 0);

int& days,

hours = x%24;
x /= 24;

days = x%7;
weeks = x/7;

}

void reverse(int& n)

float a,

int& hours,

{ assert(n >= 100000 && n <= 999999);

int temp = n;
n = temp%10;
temp /= 10;
n = 10*n + temp%10;
temp /= 10;
n = 10*n + temp%$10;
temp /= 10;
n = 10*n + temp%10;
temp /= 10;
n = 10*n + temp%10;
temp /= 10;
n = 10*n + temp;

}

void print(int n)

{ assert(n > 0);

float b,

int x)

[CHAP.4

float c)

CHAP. 4]

4.29

4.30

431

432

4.33

4.34

4.35

FUNCTIONS

while (n > 1)
{ cout << n << ™, ";
if (n%2 == 0) n /= 2;
else n = 3*n + 1;
}
cout << 1 << endl;
}
double power (doukle x, int n)
{ assert(x > 0);
double y = 1.0;
if (n < 0)

{ x = 1.0/x;
n = -n;
}
while (n > 0)
if (n%2 == 0) // i is even
{ x *= x; // square z
n /= 2; // halve n
}
else // 1 is odd
[y *= %
--n;

return y;
}
void print_date(int day)

{ // same as the solution to Problem 3.12 on page 57

}

int lg(int n)

{ assert(n > 0);
int count = 0;
while (n > 1)
{n /= 2;

++count;
}
return count;

}

int ged(int m, int n)

{ assert(m > 0 && n > 0);
do
{ while (m <= n)

n -= m;
int tmp = m;
m = n;
n = tmp;
} while (m > 0);
return n;

}

int sum(int n)

{ assert(n > 0);

int s = 0;
for (int i=1; i <= n; i++)
s += 1;

return s;
}
int sum(int n)
{ // same as the solution to Problem 4.33

}

int sum(int n)

{ // same as the solution to Problem 4.33 except use s += i*i*i;

}

except

use s

+= 1i*i;

85

86

4.36

437

4.38

4.39

4.40

441

4.42

int fact(int
{ assert(n >
int y = 1;
for (int i=2;

y *= 1i;
return y;

}

FUNCTIONS

n)
= 0 && n <=

int perm(int n)
{ assert(0 <= k && k <=
int y = 1;
for (int i=1;

y *=
return y;

}

n;

int comb(int
{ assert (0 <

int y

1;

i <= n;

i <= k;

n)
= k && k <=

for (int i=1;
y*n/i;
return y;

y=
}

int fib(int n)
{ assert(n >= 0 && n <=
return 0;

if (n ==

int £0=0,
for (int i=2;

(f2
fo
f1

}

[T |

return f1;

}

)

1 <= k;

fi=1,
i <= n;

f1 + £fO0;
f1;
£2;

f2;

void amortize(float a,
{ assert(r > 0.0 && r < 1.0 && p > 0.0 && p <= a);
setiosflags(ios::right);
cout.setf(ios::fixed,
cout << setprecision(2);

int m=0;
12;

r /=
while

// month number
// convert r to

(a > 0.0)

{ cout
a +=

a -
++m
}
}

.
’

<< setw(8)
r*a;
P

<< m <<
// add interest to remaining balance
// subtract monthly payment

12);

i++)

n && n <= 12);

i++, n--)

n && n <= 33);

i++

46) ;

i++)

ics

float r, float p)

::floatfield);

a monthly rate

"." << setw(12)

bool is prime divisor(int d, int n)

{ assert(d >= 2 && d <= n);
return is prime (d)

}

&& bool (n%d == 0);

void print literal tens(int n)

{ assert(n >= 2 && n <= 9);
cout

if (n == 2)
else if (n =
else 1if (n =
else if (n =
else if (n =
else if (n =
else if (n =
else

cout << "ninety";

PO~ nn

Y-

)

~

<< "twenty";

cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<

"thirty";
"forty";
"fifty";
"sixty";
"seventy";
"eighty";

<< a << endl;

[CHAP.4

CHAP. 4] FUNCTIONS

void print literal teens(int n)
{ assert(n >= 0 && n <= 9);
if (n == 0) cout << "ten";

else if (n == 1) cout << "eleven";
else if (n == 2} cout << "twelve";
else if (n == 3) cout << "thirteen";
else if (n == 4) cout << "fourteen";
else if (n == 5) cout << "fifteen";
else if (n == 6) cout << "sixteen";
else if (n == 7) cout << "seventeen";

else if (n == 8) cout << "eighteen";
else cout << "nineteen";
}
void print dollars(float x)
{ assert(x >= 0.00 && x < 1000.00);
int hundreds = int(x)/100;
int tens = int(x)%100/10;
int ones = int(x)%10;
int cents = int (100*%x)%100;
if (hundreds >= 1)
{ print literal digit (hundreds);
cout << " hundred ";
}
if (tens >= 2)
{ print_literal_tens(tens);
if (ones >= 1)
{ cout << u__n’.
print literal digit (ones);
}
}
else if (tens == 1) print_literal teens(ones);
else if (ones >= 1) print literal digit(ones);
if (x < 1.0) cout << "no"; '
cout << " dollars and " << cents << " cents";

Chapter 5

Arrays

5.1 DEFINING AND TRAVERSING ARRAYS

An array is a sequence of elements of the same type which are stored contiguously in memory
and which can be accessed by means of an integer subscript. An array is declared by specifying its
element type followed by its name followed by the number of elements enclosed in brackets []. The
elements are numbered consecutively, starting with 0. The elements of the array are accessed by
specifying the array name followed by the element number enclosed in brackets.

EXAMPLE 5.1 An Array of ints

int a(5]); // defines a to be an array of 5 elements of type int
a[2) = 88; // assigns 88 to element number 2
This array can be visualized as shown at right. Since array .) , , \
indexes always begin at 0, the array size will always be one more than al T s8]]

the index number of the last element. For example, the last element in
a 5-element array is element number 4.

Arrays are usually processed with for loops, where the loop control variable is used as a vari-
able index to traverse the array.

EXAMPLE 5.2 Using a for Loop to Traverse an Array
const int SIZE = 8;
fleat x[SIZE]:
for (int 1=0; 1<SIZE; i++)
x[1] = sqrt(10.0*1];
for (int i=SIZE-l; i>=0; i--)
cout << 1 << ": " << x[i] << endl;
This array can be visualized like this:

Y 1 2 3 4) 6 2
x[0.00000[3.16228]4.47214[5.47723[6.32456][7.07107[7.745978.36660]

Note how naturally the loop control variable matches the array index. If increasing, the control variable is
initialized at 0 (1=0) and the exit control should be 1i<SIZE. If decreasing, the control variable starts at
SI1ZE-1 and is controlled by the condition i>=0.

The size of an array must be constant. [t may be an actual constant, as in Example 5.1, or it may
be a symbolic constant like SIZE in Example 5.2. But it cannot be a variable:
int size;
cin >> size;
float x[size]; // ILLEGAL: size must be constant
The reason for this restriction is that the compiler must be told how much space to allocate for the

array when it compiles the code.

88

CHAP. 5] ARRAYS 89

5.2 INITIALIZING AN ARRAY

An array can be initialized simply by listing its initial values.

EXAMPLE 5.3 Initializing an Array
int num(4) = {22, 88, 66, 44};
The initialized array can be visualized like this:

Q 1 2 3
num{ 22 [88 [66 [44]

The number of constants in the initializer list must be less
than or equal to the size of the array. If it has fewer, then the
remaining elements will be initialized to 0 automatically.

EXAMPLE 5.4 Using the Default Value 0
int listl([6] {22, 88, 66, 44};
int list2([6] {0};

nn

0 1 2 3
listl {22]88] 66] 44]

. . 0 0
Unlike the fundamental (atomic) types I]
{char, int, float, double, efc.), 0 L 2 . s
arrays are composites, consisting of several list2{ o JoJoJoJoJ]o]

values. Consequently, many of the opera-
tions used on fundamental types do not
work as expected with arrays:

int 1ist3{6]) = listl; // ILLEGAL initialization!
list2 = listl; // DOES NOT WORK as expected
if (listl == list2) ... // DOES NOT WORK as expected
cin >> listl; // ILLEGAL extraction!

listl += 2; // ILLEGAL aritnmetic!

These operations must be performed on the individual elements of the arrays instead.
The statement
cout << listl;
is legal, but it does not print the contents of the array. It actually prints the memory address (in
hexadecimal format) of the first element of the array.

5.3 DUPLICATING AN ARRAY

Arrays cannot be assigned:
list2 = listl; // ILLEGAL!
list2 = {22, 88, 66, 44}; // ILLEGAL!
The reason that these statements are illegal is that an array name itself is actually a constant, and it is
illegal for a constant to be on the left side of an assignment statement.

The best way to copy one array into another is with a traversing for loop:

EXAMPLE 5.5 Copying an Array
This uses the array x defined in Example 5.2:
float y([SIZE];
for (int i=0; i<S8IZE; i++)
yli]l = x[i]:
The for loop makes y aduplicate of x.

%0 ARRAYS [CHAP. 5

5.4 CONSTANT ARRAYS

Like fundamental types, arrays may be declared to be constant. And like any other constant type,
a constant array must be initialized.

EXAMPLE 5.6 Computing the Month for a Given Day of the Year
This code uses a constant array that keeps track of the number of days in each month (in non-leap years). It
also uses a constant integer and twelve constants defined indirectly in the enumeration type:
const DAYS IN MONTH[13] =
{o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
enum Month
{JAN=1, FEB, MAR, APR, MAY, JUN, JUL, ADUG, SEP, OCT, NOV, DEC}:
const int DAYS_IN_YEAR = 365;

Month meonth(int day of year)
{ assert(day_of_year >= 1 && day_of_year <= DAYS IN YEAR});
int days = 0;
for (Month m=JAN; m<=DEC; m = Month (m+1))
{ if (days >= day of year) return Month(m-1);
days += DAYS IN MONTH[m];
}

return DEC;
}
int main{()
{ for (int d=1; d<=DAYS IN YEAR; d += 14) // check each fortnight
cout << "month(" << d << ") = " << month{d) << endl;

}
The function works by accumulating days one month at a time until the number exceeds the given number of

days. Then the last DAYS IN MONTH[m] added should be the month after the current month, so it returns
the preceding month.
Here is the output from this program:

month(l) =1
month (15) = 1
month (29) =1
month(43) = 2
month(323) = 11
month(337) = 12
month (351) = 12
month (365) = 12

There were 18 more lines (replaced here by the colon). This shows, for example, that the 43rd day of the year is
in February and that the 323rd day of the year is in November.

5.5 ARRAY INDEX OUT OF RANGE

One of the problems with arrays in C++ is that the compiler will not check the values of an array
index variable to ensure that it remains within range.

EXAMPLE 5.7 Array Index Out of Range
double list{6] = {101.01, 202.02, 303.03, 404.04, 505.05, 606.06};
for (int i=0; i<1000; i++)
cout << list([i] << endl;

CHAP. 5] ARRAYS 91

This code will compile without error, even though list[6], 1list[7], ..., 1list[999] arenot
defined! Of course, when it runs, it is likely to crash. But the compiler will be of no help in revealing this error.

Here is what happened when this code was run on a UNIX system:

101.01

202.02

303.03

404.04

505.05

606.06

7.82007e-320

2.15515e-314

1.03302e-47
Segmentation fault
The system printed 110 lines of numbers, the first 8 and the last of which are shown here. Obviously 104 of

these numbers are “garbage;” i.e., the result of the system trying to interpret random bit strings as floating-point
numbers. The output Segmentation fault isa message from the system that it reached the end of the
process’s memory segment. That is the block of computer memory reserved for that particular program.

In C++, it is the responsibility of the programmer to ensure that the index of an array stays within
its bounds. Other programming languages (e.g., Pascal and Java) force the compiler to do that check-
ing for the programmer. That slows the compilation process. Bjarne Stroustrup, the inventor of C++,
intentionally left that responsibility to the programmer to facilitate rapid software development.

Note that standard C++ does provide an equivalent vector class, described in Chapter 7, which
gives the programmer the option of having the compiler do index bounds checking.

5.6 THE sizeof OPERATOR

C++ provides a special operator, named sizeof, that can be used to find the number of bytes that
an object occupies. It is used like a function. For example,
cout << sizeof(int) << endl;
will print the number of bytes that any object of type int occupies in memory.

EXAMPLE 5.8 Getting the Sizes of the Fundamental Types

Here is a complete C++ program:
#include <iostream>
using namespace std;
int main ()

{ cout << "sizeof (char) " << sizeof(char) << endl;
cout << "sizeof (short) << sizeof (short) << endl;
cout << "sizeof (int) " << sizeof(int) << endl;
cout << "sizeof(long) " << sizeof({long) << endl;
cout << "sizeof (float) << sizeof(float) << endl;
cout << "sizeof {(double) << sizeof (double) << endl;

}

Here is its output when run on a UNIX workstation:

sizeof (char)
sizeof (short)
sizeof (int)
sizeof (long}
sizeof (float) =
sizeof (double) =

This shows, for example, that o

nnn

o

oy

== o o Y-S ST N, S

this system an int uses 4 bytes.

92 ARRAYS [CHAP. 5

The sizeof operator can also be used to find the total number of bytes that an array uses. Of
course, that number is simply the product of the number of elements in the array with size of its ele-
ment type:

sizeof (array) = (number of elements) x sizeof (element type)

EXAMPLE 5.9 Getting the Sizes of Arrays

int main ()
{ char chars[10] = {0};
short shorts{10] = {0};

float floats{[10] = {0.0};

double doubles[10] = {0.0};

cout << "sizeof (chars) = " << sizeof(chars) << endl;
cout << "sizeof(shorts) = " << sizeof(shorts) << endl;
cout << "sizeof(floats) << sizeof({floats) << endl;
cout << "sizeof (doubles) << sizeof (doubles) << endl;

}
Here is its output when run on the same UNIX workstation:

sizeof (chars) = 10
sizeof (shorts) = 20
sizeof (floats) = 40
sizeof (doubles) = §0

This shows, for example, that an atray of 10 elements of type double occupies 80 bytes.
5.7 PASSING AN ARRAY TO A FUNCTION

An array is passed to a function in the same way any other variable is passed, except that the
array name must be followed by a pair of empty brackets to indicate that it is the name of an array.

EXAMPLE 5.10 A Function to Add the Elements of an Array

int sum{int af{], int n)
// Returns the sum of the first n elements in the array:
// a[0) + a[l) + a{2] + ... + a[n-1});
// PRECONDITIONS: n >= (0, n <= number of elements in the array
{ int s=0;

for (int i=0; i<n; 1++)

s += a[i);
return s;

}

When an array is passed to a function, it is actually only the array name that is passed. This name
is actually a constant which contains the memory address of the first element (a {0]) of the array.
Since array names are constants, they are always passed by value. That does not prevent the function
from changing the elements in the array. They remain accessible and changeable by the function.

Note that there is no way to determine from within the function what the size of the array is. The
sizeof operator won’t help because the function parameter a is not an array; it is actually only the
address of the first element of the array (which is all the information about the array that the function
needs in order to carry out its task). So the expression sizeof (a) will evaluate to whatever number
of bytes the system uses to store a memory address, probably 4.

CHAP. 5] ARRAYS 93

5.8 APPLICATIONS OF ARRAYS

A counter is an integer variable that is used to count objects.

EXAMPLE 5.11 Counting Primes
Here is a complete C++ program that uses the is_prime () from Example 4.10 on page 72:
#include <assert>
#include <iostream>
using namespace std;
bool is_prime(int n);
// Returns true iff n has no divisors except 1 and itself
int main{()
{ int primes = 0;
for (int n=1; n<1000; n++)
if (is_prime(n)) ++primes;
cout << "There are " << primes << " primes between 1 and 1000.\n";
)
The output is
There are 168 primes between 1 and 1000.
Here, the variable primes is a counter. It is initialized to be 0 and then it is incremented every time the

is_prime () function returns true. That happened 168 times.

An array of counters is called a frequency tally. It is used to count elements in different categories
so that their frequencies can be compared.

EXAMPLE 5.12 A Frequency Tally
Here is a list of test scores:
88 71 90 75 77 88 85 73 94 80
89 66 41 98 90 82 84 70 63 87
B0 60 79 75 94 56 78 70 81 77
94 80 75 62 77 95 80 56 88 92
The following program reads all the scores and counts how many are in each of the following grade ranges: 90
100 for an A, 8089 for a B, 70-79 for a C, 6069 for a D, and 0-59 for an F. It keeps all five of these counts
together in the freq[) array. Then it prints both the absolute and the relative frequencies of each grade.
enum {A, B, C, D, F};
int main¢()
{ int freq[5] = (0}, grade;
cin >> grade;
while (!cin.eocf())
{ assert (grade >= 0 && grade <= 100);
if (grade >= 90) ++freq[A];
else if (grade >= 80) ++freq[B];:
else if (grade >= 70) ++freq(C);
else if (grade >= 60) ++freq(D];
else ++freqlF];
cin >> grade;
}
float total = freq[A] + freq[B] + freql(C] + freq(D] + freq(F]:
cout << "total = " << total << endl;
cout << "A: " << freq{A] << " " << 100.0*freq({A]/total << "%\n";
cout << "B: " << freq[B] << " = " << 100.0*freq[B]/total << "$\n";
cout << "C: " << freq(C] << " " << 100.0*freq(C]/total << "$\n";
cout << "D: " << freq[D] << " " << 100.0*freq(D)]/total << "&\n";
cout << "F: " << freq(F] << " " << 100.0*freq[F)/total << "%\n";

94 ARRAYS [CHAP. 5

The while loop continues as long as there is more input to be read through the cin input stream object. If
the input is being input interactively on a UNIX system, then pressing <Ctrl-D> will send an end-of-file signal
into the stream object which will then terminate the loop.

Notice the use of the anonymous enumeration type: enum {A, B, C, D, F}. Thissimply defines the
five constants A, B, C, D,and E and gives them the default values 0, 1, 2, 3, and 4.

The next application is an implementation of an algorithm that is attributed to the ancient Greek
astronomer Eratosthenes of Cyrene (c. 276194 B.C.). He was the first person to have calculated an
accurate estimate of the circumference of the Earth.

Algorithm 5.1 The Sieve of Eratosthenes
To obtain a list of all the prime numbers (2, 3, 5, 7, ---) that are less than a given bound max:

1. Initialize an array prime[max] of bools to be all true except the first two.

2. Set prime(2*3] false forall § > 1 for which 2*3 < max.

3. Set prime[3*5] false forall 3 > 1 for which 3*j < max.

4. Repeat setting prime(p*j] = false forall j > 1 for which p*j < max for
each prime number p (=5, 7, 11, etc.). The next prime will be the next i for
which prime({i] is true.

5. When Step 4 is finished, the values of i for which prime[i] is true are the
primes.

EXAMPLE 5.13 The Sieve of Eratosthenes
int main ()
{ const int MAX = 1000;
bool prime[MBAX];

prime (0] = prime{l] = false;
for (int i=2; i<MAX; i++)
prime[i] = true;
for (int 3j=2; 2*3j < MBX; j++) // even numbers > 2 are not prime
prime[2*j) = false;
int p = 3;
while (p <= MAX/2)
{ for (int 3=2; p*j < MAX; j++) // multiples of p are not prime
prime[p*j] = false;
do ++p
while ('prime(p]):; // set p = next prime

}
for (i=2; i<MAX; i++)
{ 1f (prime[i]) cout << i << ™ "; // print the primes
if (1%¥80 == 0) cout << endl; // avoid line wrap-around

}
cout << endl;

}

Note the effect of the do loop: it repeatedly increments p until prime[p] istrue;ie,until p isa
prime number again. Since p is already a prime when the loop begins, it must increment p before it
evaluates prime [p]; so it must use the preincrement operator ++p. The loop could also be written as

do
while (!prime[++p]);
or even more simply as
while (!prime([++p]) ;
Both of those versions use the empty statement inside the loop.

CHAP. 5]

Here is the output from the program:
2 357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79
83 89 97 101 103 107 109 113 127 131 137 139 149 151 157

163
241
331
401
487
563
641
727
809
881
967

167
251
337
409
491
569
643
733
811
883
971

173
257
347
419
499
571
647
739
821
887
977

179
263
349
421
503
577
653
743
823
907
983

181
269
353
431
509
587
659
751
827
911
991

191
271
359
433
521
593
661
757
829
919
997

Algorithm 5.2 The Bubble Sort

To sort a list of numbers into nondecreasing order:

193
277
367
439
523
599
673
761
839
929

ARRAYS

197
281
373
443
541
601
677
769
853
937

199
283
379
449
547
607
683
773
857
941

211
293
383
457
557
613
691
187
859
947

223 227
307 311
389 397
461 463

617 619
701 709
797
863 877
953

95

229 233 239
313 317

467 479

631
719

1. Traverse the list, swapping adjacent pairs whenever they are out of order. The
result will be that the largest element in the list is moved to the last position.
2. Repeat Step 1 except only on the sublist that omits the last element. The result
will be that the largest element in the sublist is moved to the second-from-last
position.
3. Repeat Step12 n—3 more times, each time on the sublist that omits the last element
of the previous sublist and those after it. The result each time will be that the larg-
est element in the sublist is moved to the end of that sublist.

EXAMPLE 5.14 The Bubble Sort for Arrays of int Type

void sort(int a(],

{ for

}

for

if

(int i=1;
(int j=1;

(alj-11 > alil)
// INVARIANT:

i<

int
n;

n)
i++)

j <= n-i;

aln-i],

J++

.1

)

Swap(a[j—l] ’

a(jl);

a[n-1] are in their correct positions

Note that the array name is passed by value even though the function changes its elements, -

i 3 alo] | af1] | al2] [al3] | al4] | als] | al6] | a[7]
44 88 77 22 55 99 66 33
1 2 77 88
3 22 88
4 55 88
6 66 99
7 33 99
2 2 22 77
3 55 77
5 66 88
6 33 88
3 1 22 44
4 66 77
5 33 77
4 4 33 66
5 3 33 55
6 2 33 44

96 ARRAYS [CHAP. 5

Here is the swap () function that this algorithm uses:
void swap{int& x, int& y)
{ float t = x;
X y:
Y t;

}
Note that the parameters x and y are passed by reference since the function must change them.

A trace of the call sort (a, 8) onthearray a[8] = ({44,88,77,22,55,99, 66,33} isshown
above. Note the correctness of the loop invariant: After the third iteration of the main loop (i == 3), the
order of the elements is {22, 44,55,66,33,77,88,99} soelements a[5]), a[é],and a[7] (77,
88,and 99) are in their correct positions.

EXAMPLE 5.15 Reversing an Array
This function reverses the order of the first n elements in the array:
void reverse(float al}, int n)
{ for (int i=0; i < n/2; i++)
swap(a[i], a[n-i-1]);
}
Here is the swap () function that this algorithm uses:
void swap(float& x, floatsg y)
{ float t = x;
X =y
Y t;

([t

)
Note that the only difference between this and the swap () function used in Example 5.14 is the type of its
parameters: this swaps floats, the other swaps ints. This inefficiency of having two functions that do the
same is remedied by means of a function template, described in Chapter 10.

5.9 TWO-DIMENSIONAL ARRAYS

A two-dimensional array is an array that has two independent subscripts. The syntax for its
declaration is
<type> <name> [<num-~rows>] [<num-columns>]};
Individual elements are accessed the same way as with one-dimensional arrays.

EXAMPLE 5.16 A Two-Dimensional Array

int m{3][6]; // m has 18 elements, arranged in 3 rows and 6 columns
m[0][4]) = 88; // assigns 88 to the element in row 0 and column 4
m{2)[1] = 44; // assigns 44 to the element in row 2 and column 1

The object m could be visualized as shown at right. Note that its rows are numbered 02 and its columns
are numbered 0-5.

A two-dimensional array can be imagined as an array m — L 2 3 4 5
of (one-dimensional) arrays. That point of view helps to ° 88
understand the way that a two-dimensional array is initial-
ized. Its initialization list has to be a list of lists.

0 1 < 3 4

EXAMPLE 5.17 Initializing a Two-Dimensional Array Mo =7155]111] 33| 88

The code below initializes 9 of the 18 elements to non-zero 199 | o 0 0 0
values, as shown at right. Note that the initialization can be 66 |4al221 0] O
regarded as a list of rows.

int m[3)([6) = { {77, 55, 11, 33, 88}, {99}, (66, 44, 22} };

~
QIO O

CHAP. 5] ARRAYS

EXAMPLE 5.18 Processing Test Scores
Here is a complete C++ program that processes student test scores:

#include <iostream>
using namespace std;

const STUDENTS = 4;
const TESTS = 5;

typedef int Table[STUDENTS] [TESTS];

void get (Table);

void print (const Table);

void print test averages(const Table);
void print class_averages(const Table);

int main ()
{ Table scores;
get (scores);
print (scores);
print_test averages{scores);
print class_averages(scores);
}
void get (Table x)
{ for (int s = 0; s < STUDENTS; s++)
for (int t = 0; t < TESTS; t++)
cin >> x([s])[t]);
}
void print (const Table scores)
{ cout << "Test scores:\n";
for {(int s = 0; s < STUDENTS; s++)
{ for (int t = 0; t < TESTS; t++)
cout << scores{s][t] << "\t";
cout << endl;
}
}
void print_test averages(const Table scores)
{ cout << "Test averages:\n";
for (int s = 0; s < STUDENTS; s++)
{ float sum = 0.0;
for (int t = 0; t < TESTS; t++)
sum += scores[s][t];
cout << "\tStudent " << 5 << ": " << sum/TESTS << endl;
}
}
void print class averages(const Table scores)
{ cout << "Class averages:\n";
for (int t = 0; t < TESTS; t++)
{ float sum = 0.0;
for (int s = 0; s < STUDENTS; s++)
sum += scores([s][t];
cout << "\tTest " << t << ": " << sum/STUDENTS << endl;

98 ARRAYS [CHAP.

With this input
89 70 92 95 83
75 88 B0 52 68
83 90 90 80 93
81 75 77 B4 B85

the output is

Test scores:
89 70 92 95 83
75 88 80 52 68
83 90 90 80 93
81 75 77 84 85
Test averages:

Student 0: 85.8

Student 1: 72.6

Student 2: 87.2

Student 3: 80.4
Class averages:

Test 0: 82

Test 1: B80.75

Test 2: 84.75

Test 3: 77.75

Test 4: 82.25

5.10 MACHINE STORAGE OF ARRAYS

Machine storage is linear. Main memory can be regarded as a very long (one-dimensional) array
of bytes. These bytes are accessed by their addresses, which are expressed in hexadecimal notation.

EXAMPLE 5.19 The Storage of an Array
Consider the array a defined as
short a(8] = {22, 33, 44, 55, 66, 77, 88, 99};
Here are two different ways to visualize the array:

Q 3 2 2 4 2 & 1 Ox3fffcb3
al22]33]44[55]66|77][88]99] ox3TEche
Ox3ftfchS

0x3fercb6l 55
Ox3tffcb?

Ox3fttcb
Ox3fffchb9 33
Ox3fffcba 44__
0x3ff tcbbl_

x Sxeticha55
et ren6 6
ootetcci 71
Dattrcea86
St fces99
Ox3ftfccé

The drawing on the right shows a small segment of memory: 20 bytes, with addresses from 0x3fffcb3 to
Oxfffccé. The array contains 8 elements, each a 2-byte short integer, so the array occupies a total of 16
bytes. The picture shows it occupying bytes Ox3fffcb6-0x3fffcc5. The object a itself actually con-
tains only a single memory address: the address O0x3fffcbé where the array begins.

When an element of an array is accessed, the system computes the address of that element by
adding an offset to the base address that is stored in the array name object. The offser of an element

CHARP. 5} ARRAYS 99

a(p) issimply the difference between the address of the element and the address of the first element
a(0]. It is the number of bytes that the system adds to the starting byte to compute the address of the
element a(p]. For a one-dimensional array, the formula is

offset = (p) x (size of element)

EXAMPLE 5.20 Computing an Array Offset
Suppose the following statement executes for the array defined in Example 5.19:
a(5] = 11;

The offset for this element access is computed as
offset = (element subscript) x (size of element) = (5) x (2 bytes) = 10 bytes

Then the address of the element is computed by adding the offset to the base address stored in a:
address of a[5] = a +offset= 0x3fffcb6+ 10 = 0x3fffccl

This is the intemal computation made by the system to locate a[5] in memory.

For a two-dimensional array, the offset has to include the number of bytes occupied by the pre-
ceding rows. For an array with n columns, the offset for the element a(p] (q] is

offset=(n*p + q) x (size of element)
This depends on the number of columns, but not on the number of rows in the array.

EXAMPLE 5.21 The Offset for a Two-Dimensional Array

Here is an array of 70 doubles, each element occupying 8 bytes:
double x[7)[10) = {0}; // % has 7 rows and 10 columns
x[6][3] = 999.99; // there are 5 full rows above x[6][3]

The offset for memory location of the element x (6] [3] is computed by the system this way:
offset = (10*6 + 3) x (8 bytes) = (63) x (8 bytes) = 504 bytes
So the actual location of element x[6] (3] in memory is 504 bytes past the address stored in x.

Review Questions

5.1 Why are arrays usually processed with for loops?
5.2 Why doesn’tthe sizeof operator give the correct size of an array passed to a function?

Problems

5.3 Suppose that x is the array declared as
double x(8] = {0};
a. Compute the offset for the reference x[5].
b. If x contains the address 0x3fffcbé, what is the memory address of x[5]?
5.4 Suppose that a is the array declared as
int a[8][5] = {0};
a. Compute the offset for the reference a[7] [3].
b. If a contains the address 0x3ff£000, what is the memory address of a[7][3]1?

100

5.5

5.6

5.7

58

59

5.10

511

ARRAYS {CHAP. §

Programming Problems

Implement the following copy () function:
void copy(fleoat y[], float x{}, int n);
// Copies the first n elements of the array x into the array yi:
// PRECONDITION: x and y both have at least n elements.
// POSTCONDITION: x([i] == y[i] for 0 <= i < n,
Implement the following are equal () function:
bool are_equal(float x(], float y[], int n):
// Returns true iff x([i] == y({i] for 0 <= i < n.
// PRECONDITION: x and y both have at least n elements.
Modify the program in Example 5.11 on page 93 so that you can input an integer max and
then it will find the number of primes that are less than max. Then use it to find how many
primes are less than 2000 and how many primes are less than 5000.

Implement the following mean () function:

float mean{float x[], int n);

// Returns mean average of the first n elements of the array x.

// PRECONDITION: x has at least n elements

// EXBMPLE: if x[] = (2.2, 8.8, 4.4, 6.6}, mean(x,4) returns 5.5
Implement the following max () function:

float max(float x[], int n);

// Returns the largest among the first n elements of array x.

// PRECONDITION: x has at least n elements

// EXAMPLE: if x[} = (2.2, 8.8, 4.4, 6.6}, max{x, 4) returns 8.8
Implement the following float () function:

void insert({float x[], int n, flocat t);

// Inserts t into the sorted array, maintaining its order.

// PRECONDITION: x{0] <= x[1] <= ... <= x[n-1]

// PROSTCONDITION: x[0] <= x{1] <= . <= x[{n-1] <= x([n]

// EXAMPLE: if x{] = {2.2, 4.4, 6.6, 8.8} then insert(x, 4, 5.5)
/7 changes x to (2.2, 4.4, 5.5, 6.6, 8.8}

The perfect shuffle of an array interleaves its first half with its second half, like this:

9 1 2 3 4 S 6 7
x[22]33]44]55]66]77]88]99]

\ \

x[22733 228155 6677 88199

Implement the following perfect shuffle() function:
void shuffle(Array a);
// Performs a perfect shuffle of the first SIZE elements of a.
// PRECONDITION: a has at least SIZE elements
// POSTCONDITION: a[i] -> af{2*i] and al[SIZE/2+i] =-> a[2*i+l]
7/ for 0 <= i < SIZE/2

CHAP. 5] ARRAYS 101

5.12

5.13

5.14

5.15

5.16

// EXBMPLE: if a[] = (22, 33, 44, 55, 66, 77, 88, 99} then

/7 shuffle(a, 8) changes a to {22, 55, 33, 66, 44, 77, 55, 88)
Use the definitions:

const int SIZE = 8;

typedef int Array[SIZE];
Write a program that determines empirically the minimum number of perfect shuffles
required to restore an array to its original order. Use your copy() function from Problem
5.5,your shuffle() functionfrom Problem 5.11, and your are_egual() from Problem
5.6.

Implement the following rotate () function:
void rotate(Array a, int k);
// Shifts the left-most SIZE-k elements k places to the right
// and wraps the right-most k elements arcund to the left.
// PRECONDITION: 0 <= k < SIZE
// POSTCONDITION: a[i] -> a{i+k] for 0 <= i < SIZE-k,
// and a[i) -> a[i-SIZE+k] for SIZE-k <= i < SIZE
// EXAMPLE: if a[] = (22, 33, 44, 55, 66, 77, 88, 99} then
// shift(a, 3) changes a to {77, 55, 88, 22, 55, 33, 66, 44}
Write a program that reads characters and then prints the first most frequent character read.
For example, if the input is
Master Pangloss taught the metaphysico-theologo-
cosmolonigology. He could prove to admiration that there is no
effect without a cause; and, that in this best of all possible
worlds, the Baron's castle was the most magnificent of all
castles, and My Lady the best of all possible baronesses.
Then the output should be
The first most fregquent letter was t
It occurred 26 times.

Implement the following std_dev() function:
fleat std dev(float x[], int n);
// Returns the standard deviation of the first n elements of x.
// PRECONDITION: x has at least n elements

The formula for the standard deviation of a sequence {x;, x,, X5, **, X,_; } of # numbers is

’n-l
Z(a,-u)z
1=0
n-—

1

where p is the mean average of the n numbers. For example, if n = 3, then the standard devi-
ation of {x;, x;, x5 } is

JG°_”)2+(x‘ —)2+ (x,—)2
2

Use your mean () function from Problem 5.8 for p, and use the <math> header file for the
sqrt () function.

Modify the Bubble Sort so that it is “smart” enough to stop when the array is sorted. Use a
flag (i.e.,a boolean variable) named sorted thatisset true at the start of each iteration
of the outer loop and then gets reset false inside the inner loop whenever the swap ()
condition is true. Then use that flag to control the outer loop.

102

5.17

5.18

5.19

5.20

5.21

ARRAYS [CHAP. 5

Implement the following gquintile() function:

float quintile(float x[], int n, int q);

// Returns the gth guintile of the first n elements of x.

// PRECONDITION: x has at least n elements

// POSTCONDITION: (20*qg)% of the a[i] are <= the value returned
First sort the array. (Use your “smart” Bubble Sort from Problem 5.16.) Then compute the
stop value, which the boundary for 20q percent of the numbers. Then use a loop which
traverses the sorted array and returns when the values exceed your stop value.

The trace of a square matrix (i.e., a two-dimensional array with the same number of rows as
columns) is the sum of its diagonal elements. For example, the trace of the matrix

4.4 6.6 7.7 3.3 2.2
7.7 5.5 8.8 5.5 6.6
8.8 2.2 1.1 2.2 1.1
3.3 3.3 6.6 4.4 7.7
6.6 4.4 9.9 5.5 3.3

is44+55+1.1+44+3.3=18.7 Implement the following trace() function:

float trace(Matrix p):

// Returns the sum of the diagonal elements:

// pl0]{0] + p(1]1([1] + '*+ + p[SIZE-1][SIZE-1].
The transpose of a matrix (a two-dimensional array) is obtained by interchanging the ele-
ments that are are symmetrically opposite the diagonal. For example, the transpose of the

matrix

4.4 6.6 7.7 3.3 2.2
7.7 5.5 8.8 5.5 6.6
§.8 2.2 1.1 2.2 1.1
3.3 3.3 6.6 4.4 7.7
is
4.4 7.7 8.8 3.3
6.6 5.5 2.2 3.3
7.7 8.8 1.1 6.6
3.3 5.5 2.2 4.4
2.2 6.6 1.1 7.7

Implement the following transpose() function:

void transpose (Matrix m);

// Transposes the matrix by swapping the elements that are

// symmetrically opposite the diagonal: m[i] [J] <-> m[j][1].
In the theory of games and economic behavior, founded by John von Neumann, certain two-
person games can be represented by a single two-dimensional array, called the payoff matrix.
Players can obtain optimal strategies when the payoff matrix has a saddle point. A saddle
point is an entry in the matrix that is both the minimax and the maximin. The minimax of a
matrix is minimum of the column maxima, and the maximin is the maximum of the row min-
ima. The optimal strategies are possible when these two values are equal. Write a program
that prints the minimax and the maximin of a given matrix.
Pascal’s Triangle looks like this:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

CHAP. 5] ARRAYS 103

5.1

52

53

5.4

55

5.6

5.7

Each interior number is the sum of the one above it and the one above and to its left. For
example, 20 = 10 + 10. Write a complete C++ program that computes Pascal’s triangle down
to row number 14, stores it in a 15x15 matrix, and then prints the non-zero part of it.

Solutions

A for loop easily traverses an array using its control variable for the array subscript. For example:

for {int 1i=0; i<n; i++)

cout << a[i])] << "“\t";
This prints the first n element of the array a: a[0], af{l],.., a[n-1].
When an array is passed to a function, the only information about the array that the function receives is
the array’s element type and the memory address of its first element. So the function does not know
how many elements the array has, and thus is unable to determine its size.
The array’s element type is double, which occupies 8 bytes.
a. The offset for the reference x[5] is 5'8 = 40.
b. If x contains the address 0x3fffcb6, then the memory address of x{5] is
Ox3fffcb6 + 40 = 0x3fffcb6 + 0x28 = 0Ox3fffcde
The array’s element type is int, which we assume occupies 4 bytes.
d. The offset for the reference al[7)([3] is (75 + 3)‘4 = 384 = 152
b. Ifthe array a contains the address 0x3f££000, then the memory address of a{7) [3] is
Ox3f£f000 + 152 = Ox3f£ff000 + 0Ox98 = Ox3fff098
void copy(float b}, float al), int n)
{ for (int i=0; i<n; i++)
b[i) = a[i]-;

}

bool are equal{float a[), float b[], int n)

{ for (int i=0; i<n; i++)

if (ali] '= b[i)) return false;
return true;

}

bool is prime(int n}

// Returns true iff n has no divisors except 1 and itself

{ assert{(n > 0);

if (n == 1) return false;

if {n == 2) return true; // 2 is the first prime

if {(n & 2 == 0) return false; // 2 is the only even prime

for (int d=3; d<n; d += 2) // look for an odd divisor

if {(n $ d == 0) return false;

return true; // no odd divisors were found
}
int main()

{ int max;
cout << "Enter upper bound: ";
cin >> max;
int primes = 0;
for (int n=1; n<max; n++)

if (is_prime{n)) ++ primes;
cout << "There are " << primes << " primes between 1 and "
<< max << endl;
}
There are 303 primes less than 2000, and there are 669 primes less than 5000.

104

58

59

5.10

5.11

5.12

ARRAYS [CHAP. 5

float mean(flecat a{], int n)
{ float sum = 0.0;
for (int i=0; i<n; i++)
sum += ali];
return sum/n;
}
float max{float a{], int n)
{ int m = 0;
for (int i=1; i<n; i++)
if (afi] > a(m]) m = i;
return amj;

}

void insert(float x{[], int n, float t)
{ for (int i=n; i>0 && x[i-1] > t; i--)
x{i] = x[i-1); // shift larger elements up
X[i]) = t;

}
void shuffle(Array a)
{ int temp{SIZE];
const half = SIZE/Z2;
for (int i=0; i<half; i++)
{ temp{2*i] = ali];
temp[2*i+1] = alhalf+i);
}
for (i=0; i<SIZE; i++)
afi] = templi):
}
const int SIZE = 6;
typedef int Array[SIZE];

void copy(Array y, Array X);

// Copies the first SIZE elements the array x into array vy;
// PRECONDITION: x and y both have at least SIZE elements.
// POSTCONDITION: x[i] == y[i] for 0 <= i1 < SIZE.

void shuffle(Array a):;

// Implements the perfect shuffle of first SIZE elements of a.
// EXAMPLE: if a{] = {22, 33, 44, 55, 66, 77, 88, 99}, then

// shuffle(a, 8) changes a to {22, 55, 33, 66, 44, 77, 55, 88}.
// PRECONDITION: a has at least SIZE elements.

// POSTCONDITION: a{i] -> a[2*i] and a[SIZE/2+i] -> a[2*i+1]

// for 0 <= 1 < SIZE/2.

bool are equal (Array a, Array b);
// Returns true iff x[i] == y[i) for 0 <= i < SIZE.
// PRECONDITION: x and y both have at least SIZE elements.

void print (Array a);
// Prints the first SIZE elements of the array a.
// PRECONDITION: a has at least SIZE element.

CHAP. 5}

513

ARRAYS

int main{)
{ Array a = {22, 33, 44, 55, 66, 77};
Array b;
cout << "a =\t";
print(a);
copy (b, aj:
cout << "b =\t";

print (b):

int count = 0;

do

{ shuffle(b);
++count;
cout << count << ":\t'";
print(b);

} while (l!are equal{a, b));

cout << "It took " << count <<" shuffles to restore the

<< SIZE << "-element array to its original state.\n";

)

void copy(Array b, Array a)

{ for (int i=0; 1<SIZE; i++)
bli] = ali};

}

vold shuffle(Array a)
{ int temp[SIZE}:
const half = SIZE/2;
for (int i=0; i<half; i++)

{ temp[2*i] = afi]:
temp[2*i+1l] = afhalf+i};

}

for

(1=0; 1i<SIZE; 1i++)
al[il = temp(i};

}

bool are equal (Array a, Array b)
{ for (int 1=0; i<SIZE; i++}
if (af{i] != b{i}) return false;
return true;

}

void print (Array a)
{ for (int 1i=0; i<SIZE; i++)
cout << a[i] << "\t";
cout << endl;
}

void rotate(Array a, int k)
{ Array temp;
copy (temp, aj);
for (int i=0; i< SIZE-k; i++)
ali+k] = temp{i];
for (i=SIZE-k; i<SIZE; 1i++)
al[i-SIZE+k] = templi};

105

106 ARRAYS [CHAP. 5

5.14 int main()
{ const int SIZE
int freq(SIZE]
char c;
cin >> c;
while (!!cin)
{ if {(c >= 'a' && c <= 'z2")
++freqic];
cin >> c;

}

]

128;
{O};

I

char m = 'a';
for (c='b'; c <= "'z2'; c++)
if (fregc] > freg{m]) m = c;

cout << "The most frequent character was " << m << endl;
cout << "It occurred " << freqg[m] << " times.\n";
}
5.15 float std_dev(float x[], int n)
{ assert(n > 1);
float m = mean(x, n);

float s = 0.0;
for (int i=0; i<n; i++)
s += (x[i] - m)*(x[i] - m);

return sqrt(s/(n-1));
}
5.16 void sort(float x[], int n)
{ bool sorted;
for (int i=1; i < n; i++)
{ sorted = true;
for (int j=1; j <= n-i; Jj++)
if (x[3-1] > x[§])
{ swap(x{j-1], x{jl):
sorted = false;

}

}

5.17 float quintile({float x([], int n, int q)

{ sort(x, n); // after sorting, x[n-1] == max num
float stop = x([{n-11*a/S; // 4/5 is proportion to be <= max
for (int i=1; i<n; i++)

if (x[i] > stop) return x[i-1];
return x[n-1}:
}
5.18 float trace(Matrix p)
{ float sum = p([(0]([0];
for (int i=1; i<S8IZE; i++)
sum += p[i][i];
return sum;
}
5.19 void transpose (Matrix m)

{ for (int i=1; i<SIZE; i++)

for (int j=0; j<i; j++)
swap (m{i] (3], m{j)[i]):

CHAP. 5] ARRAYS 107

5.20 const int SIZE = 5;
typedef double Matrix[SIZE] [SIZE];
typedef double Vector[SIZE];

void print (Matrix x);
// Prints the matrix x.

float minimax (Matrix x);
// Returns min{ max{x(i](j]: 0 <= 1 < SIZE}: 0 <= j < SIZE}.

float maximin(Matrix x);
// Returns max{ min{x([i][j]: 0 <= j < SIZE}: 0 <= i < SIZE}.

int main()
{ Matrix x = { {44, 66, 77, 33, 22},
{77, 55, 88, 55, 66},
{88, 22, 11, 22, 11},
{33, 33, 66, 44, 77},
{66, 44, 99, 55, 44} };
print (x);
cout << "The minimax is " << minimax(x) << endl;
cout << "The maximin is " << maximin(x) << endl;

}

void print (Matrix x)
{ for (int 1i=0; i<SIZE; i++)
{ for (int j=0; J<SIZE; j++)
cout << x[1i][j] << "™\t";
cout << endl;

}

double col max(Matrix x, int j)
{ double max = x[0]([j];
for (int i=1; i<SIZE; i++)
if (x[1]1(3] > max) max = x[1i][]];
return max:;

1

double row min (Matrix x, int 1)
{ double min = x[1i] [0];
for (int j=1; J<SIZE; j++)
if (x(1]{3] < min) min = x({i]{3];
return min;

1

float minimax (Matrix x)
{ Vector max;
for (int 3=0; jJ<SIZE; j++)
max([j] = col max(x, j):
double min = max{0]:
for (j=1; j<SIZE; j++)
if (max[j] < min) min = max{j];
return min;
}

float maximin(Matrix x)

108

5.21

ARRAYS [CHAP. 5

{ Vector min;
for (int i=0; i<SIZE; i++)
min{i] = row min(x, i);
double max = min[0];
for (i=1; i<SIZE; i++)
if (min[i] > max) max = min[i];
return max;
}

const int SIZE = 16;
typedef int Matrix[SIZE] [SIZE];

void load_pascal (Matrix p);
// Loads the matrix so that p[i]{j] = pli-11[3-1] + p{i-~-1]1[j]

veid print (Matrix);
// Prints the lower triangle of the matrix x.

int main{()

{ Matrix p = {0};
load pascal (p):
print(p);

}

void load_pascal (Matrix p)
{ for {int i=0; i<SIZE; i++)
plil [0] = p[i]l[i] = 1;
for (i=2; i<SIZE; i++)
for (int j=1; j<i; j++)
plil (3] = pli-1]1{j-1] + p(i~11(]]:
}

void print (Matrix x)
{ setiosflags(ios::right); // right justify each number printed
for (int i=0; i<SIZE; i++)
{ for (int j=0; J <= i; j++)
cout << setw(5) << x[i][3]]:
cout << endl;

Chapter 6

Strings and Files

Data processed by computers (and humans) may be classified generally into three categories:
numeric data, text data, and binary data. Numeric data consists of integer and floating-point values.
Text data consists of character strings and arrays of characters. Binary data is used to store graphic
images, sound files, compressed and encrypted files, efc. In C++, numeric data is processed using
numeric types such as int and float, and text data is processed using C-strings and the Standard
C++ string class.

6.1 C-STRINGS

A C-string is an array of chars. We call them “C-strings” because that is the standard type used
for processing text in the C programming language (which is a subset of C++).

EXAMPLE 6.1 Using C-Strings
char s[20] = "ABCDEFG"; // s is a C-string

cout << s << endl; // C-strings can be output like simple types
s{d4] = '*'; // C-strings are arrays

cout << s << endl:;

cin >> s; // C-strings can ke input like simple types

cout << s << endl;

As a C-string, s can be input and output like a fundamental type (int, char, float, efc.) using the
extraction and insertion operators >> and <<. And as an amray, s can be manipulated using the subscript
operator {].

Here is a sample run of this code (with the input shown in boldface):

ABCDEFG
ABCD*FG
Hi, Mom!
Hi,
Note that the extraction operator >> ignores whitespace (blanks, tabs, newlines, ezc.) that precedes the input
string, and it stops extracting characters as soon as it encounters a whitespace character. That’s why only the
three characters “Hi , ” were read into s. The rest of the input “ Mom! " is still in the input buffer.

The declaration of s allocates 20 consecutive bytes in memory to the object named s. The initialization
of s sets the first seven of those characters to the capital letters specified and then it sets the eighth character to
0 (called the null character). This can be viewed as

109

110 STRINGS AND FILES [CHAP. 6

When the assignment s{4] = '*'; executes, the system uses s to locate the starting byte (containing
'A') and then adds 4 to its memory address to find the byte represented by s[4] (which contains 'E*).
Then it replaces the 'E' withthe '*'.

Although it is important to remember that a C-string is really just a segment of memory, s
it is usually easier to think of a C-string as a primitive object, as shown at right. Note that the hare

actual type for C-strings is char* which means “pointer to a char”; i.e., a memory
address.

C-strings are like fundamental objects (ints, floats, efc.). We think of them as objects which
can be initialized and output as atomic units like intsand floats. But unlike fundamental objects,
C-strings have the following non-fundamental properties:

1. A C-string is an array of chars that are accessible using the subscript opera-
tor: s[i].

2. A C-string object has type char*.

3. The input operator >> can be used only if the string contains no whitespace.

4. C-strings cannot be assigned.

EXAMPLE 6.2 Passing a C-String to a Function
This function returns the number of capital letters that are in the C-string passed to it:
int caps{char* s)
{ int c¢=0;
while (*s++)
if (*s >= 'A' && *s <= 'Z') ++cC;
return c;

}
Note that the C-string type char* must be used in the parameter list.

The loop is controlied by the compact expression (*s++). The value of the expression *s is the actual
character that s points to in memory. Initially, that value is the first character of the string. The effect of the
postincrement operator is to advance the pointer to the next byte in memory. So on the second iteration, the
value of *s is the second character in the string. Remember that the char type is actually an integer type
which can act asa bool with zero meaning false and non-zero meaning true. Sowhena char is
used as a boolean condition, the value is true except when that char is the null character. Since every C-
string ends with the null character, the loop will continue iterating until it comes to the end of the string. This
construct while (*s++) isthe standard method for traversing a C-string.

Inside the loop, the current character *s is compared to see if it lies in the range of capital letters. If it
does, the counter c is incremented.

Here is a test driver:

int main{()
{ char s{] = "404 Oak Street, SW, Tulsa, OK, USA";
cout << "caps(" << s << ") = " << caps(s) << endl;
}
The output is
caps (404 Oak Street, SW, Tulsa, OK, USA) = 10

6.2 THE <cstring> LIBRARY

C++ inherits from C a collection of special functions that work on C-strings. To use them,
#include <cstring>
in your program. (If you are using a pre-Standard C++ compiler, #include <string.h> instead.)

CHAP. 6] STRINGS AND FILES 111

Here are the declarations of five of the more useful C-string functions:

strcat () char* strcat(char* sl, const char* s2);
Appends s2 to sl.Returns si.

strchr () char* strchr(const char* s, int c);
Returns a pointer to the first occurrence of ¢ in s.Returns NULL if c isnotin s.

strcmp () int strcmp(const char* sl, const char* s2);

Compares s1 with substring s2. Returns a negative integer, zero, or a positive integer,
according to whether s1 is lexicographically less than, equal to, or greater than s2.

strecpy () char* strcpy(char* sl, const char* s2);
Replaces s1 with s2. Returns sl.
strlen() size t strlen(const char* s);

Returns the length of s, which is the number of characters beginning with s{0] that pre-
cede the first occurrence of the NUL character,

EXAMPLE 6.3 Lexicographic Comparisons
Character strings are ordered alphabetically, as in a dictionary. This is called the lexicographic ordering.
The strcmp() function is used to compare C-strings.

char* sl = "pear";

char* s2 = "peach";

int cmp = strcmp(sl, s2);

cout << "cmp = " << cmp << endl;

if (cmp < 0) cout << sl << " <« " << s2 << endl;

else if (cmp == 0) cout << sl << " == " << 82 << endl;

else cout << sl << " > " << 52 << endl;
The word “pear” comes after the word “peach” in the dictionary because at the left-most letter where they differ
(the fourth letter), “pear” has an “r” and “peach” has a “c”. Therefore, the call strcmp(sl, s2) returmnsa
positive integer:

cmp = 15

pear > peach

Note in these examples that a C-string can be defined using the char* type directly. The fol-

lowing three declarations are equivalent:

char* const s = "pear";

char s{] = "pear";

char s({5] = "pear”;
Each declares s to be a constant pointer to a char, allocates 5 consecutive bytes in memory to s,
copies the five characters 'p', 'e', 'a', 'r',and '\0' (the null character) to them, and then
stores the address of the first byte into s. The declaration

char* s = "pear";
is also the same, except that this s is not constant; it can be incremented, as in the expression *s++,

EXAMPLE 6.4 Copying C-Strings with the strcpy () Function
C-strings cannot be assigned. Instead, the strcpy () function is used to copy one string to another.

int main ()

{ char s1[] = "Beethoven";
char s2[} = "Bartok"”:
cout << "sl = [" << sl << "] , strlen(sl) = " << strlen(sl) << endl;
cout << "s2 = [" << s2 << "] , strlen(s2) = " << strlen(s2) << endl;
strcpy(sl, s2);
cout << "sl = [" << sl << "] , strlen(sl) = " << strlen(sl) << endl;

cout << "s2 = [" << s2 << "] , strlen(s2) = " << strlen(s2) << endl;

112 STRINGS AND FILES [CHAP. 6

The output is
gl - [Beethoven] , strlern(si) = 9
g7 = (Bartok]} , strlen(s2} = 6
sl = [Bartok] , strlen(sl) = 6
s2 = (Bartok] , strlen(s2) = 6

Note that the call strcpy(s1, s2) copies the second string s2 into the first string s1; like an assign-
ment, the action is from right to left.

This example also illustrates the strlen{) function which return the length of the string, not counting
its null character.

6.3 FORMATTED INPUT

Recall the idea of a stream in C++ as a conduit through which data passes (page 27). Input passes
through an istream object and output passes through an ostream object. The istream class
defines the behavior of objects like cin. The most common behavior is the use of the extraction
operator >> (also called the input operator). It has two operands: the istream object from which it is
extracting characters, and the object to which it copies the corresponding value formed from those
characters. This process of forming a typed value from raw input characters is called formatting.

EXAMPLE 6.5 The Extraction Operator >> Performs Formatted Input
Suppose the code
inT n;
cin >> n;
¢xecutes on the input
46
This input contains 7 DrOgTan
characters: * ', ' ', ~im
L T - L @ woho4 FYiYfY Y Fro s e ey
and '\n’' (4 blanks, a N TR # i\w
4, a 6, and the newline
character). It could be
viewed as coming
through the input stream. The stream object cin scans characters one at a time. If the first character it sees is
a whitespace character (a blank, a tab, a newline, e/c.) it extracts it and ignores it. It continues to extract and
ignore the characters in the stream until it encounters a non-whitespace character. In this example, that would
bethe '4°'. Since the second operand of the expression cin »> n hastype int,the cin object is look-
ing for digits to form an integer. So after “eating” any preceding whitespace, it expects to find one of the {2
characters '~"', '=', 'C*, '1', '2' °*3', *4°*, 5", 6", '7', *8',0r '9'. Ifitencounters any
of the other 244 characters, it will fail. In this case, it sees the ' 4. So it extracts it and then continues, expect-
ing more digits. As long as it encounters only digits, it continues to extract them. As soon as it sees a non-digit,
1t stops. leaving that non-digit in the stream. In this case, that means that cin will extract exactly 6 characters:
the 4 blanks, the '4', and the '6'. It discards the 4 blanks and then combines the 'd' andthe '6*' to
form the integer value 46. Then it copies that value into the object n.
After that extraction
has finished, the newline
character is still in the cin , ‘
@nput strcam. If the next —'—‘@ 15(_‘;\;_5}"‘“—” Lo 546
input statement Is 3 £
another formatted input, ‘
then like all whitespace
characters that newline character will be ignored.

progrand

CHAP. 6] STRINGS AND FILES 113

The extraction operator >> formats the data that it receives through its input stream. This means
that it extracts characters from the stream and uses them to form a value of the same type as its sec-
ond operand. In the process it ignores all whitespace characters that precede the characters it uses. A
direct consequence of this rule is that it is impossible to use the extraction operator to read whitespace
characters. For that you must use an unformatted input function.

The operator expression

cin >> x
has a value that can be interpreted in a condition as boolean; i.e., either true or false depending
upon whether the input is successful. That allows such an expression to be used to control a loop.

EXAMPLE 6.6 Using the Extraction Operation to Control a Loop

int main()
{ int n;
while (cin >> n)
cout << "n = " << n << endl;

}
Here is a sample run (with the input shown in boldface):

46

n = 46

22 44 66 88
n = 22

n = 44

n = 66

n = 88

33, 55, 77, 99

n = 33

The loop continues iterating as long as the integer data is separated by only whitespace. The first non-
whitespace character, the comma ', ' causes the input to fail, thereby stopping the loop.

6.4 UNFORMATTED INPUT

The <iostream> files defines several functions inputting characters and C-strings that do not
skip over whitespace. The most common are the cin.get () function for reading individual
characters and the cin.getline () function for reading C-strings.

EXAMPLE 6.7 Inputting Characters with the cin.get () Function
while (cin.get(c))

{ if (c >= 'a' && c <= '2') ¢ += 'A' - 'a'; // capitalize c
cout.put (c);
if (¢ == '\n') break;

}

This loop is controlled by the input expression (cin.get (c)). When the input stream object cin
detects the end-of-file (signaled interactively by <Ctrl-D> or <Ctrl-Z>), the expression evaluates to false
and stops the loop. This loop also terminates with a break statement after reading and processing the
newline character '\n'.The if statement simply capitalizes all lowercase letters, and the cout .put (c)
statement prints the character.

Here is a sample run:

Cogito, ergo sum!
COGITO, ERGO SUM!

114 STRINGS AND FILES

EXAMPLE 6.8 Inputting C-Strings with the cin.getline () Function
This program shows how to read text data line-by-line into an array of C-strings:

const int LEN=32; /!

const int SIZE=10; /7

typedef char Name[LEN]; //

int main()

{ Name king[SIZE]: //
int n=0;

ma
ar

defines Name to be a C-string type

Ximum word length
ray size

[CHAP. 6

defines king to be an array of 10 names

while(cin.getline(king[n++], LEN) && n<SIZE)

7

--n;
for (int 1i=0; i<n; i++)
cout << '"\t' << i+l << ",

}

// now n ==

1

" << king[i] << endl;

the number of names read

The object king is an array of 10 object of type Name which is defined to be a synonym for C-strings that

hold up to 32 chars (31 non-null character). The function call cin.getline (king(n++],

LEN)

reads characters from cin until either it has extracted LEN-1 characters or it encounters the newline charac-
ter, whichever comes first. It copies these characters into the C-string king [n]. If it encounters the newline
character, it extracts it and ignores it (i.e., it does not copy it into the C-string). Then it increments n. Note that
the body of the while loop is empty. The loop stops when either cin detects the end-of-file or when n
== SIZE. Since n starts at 0 and is incremented after the last name is read, its value is always | greater than
the number of names read. So it gets decremented once at the end so that its value equals the number of names
read. Then it is easy to print them or process them in other ways using a simple for loop.
When input was read from a text file that looks like this:

Kenneth I1I

{971-995)

Constantine III
Kenneth III

(995-997)
(997-1005)

Malcolm II

(1005-1034)

the output was

Duncan I (1034-1040)
Macbeth (1040-1057)
Lulach {1057-1058)
Malcolm III

(1058-1093)

Kenneth II (971-995)
Constantine III (995-997)
Kenneth III (997-1005)
Malcolm II (1005-1034)
Duncan I (1034-1040)
Macbeth (1040-1057)
Lulach (1057-1058)
Malcolm III (1058-1093)

DO N

6.5 THE string TYPE

Standard C++ defines a string type inthe <string> file. Objects of type string can be
declared and initialized in several ways:

string sl; // sl contains 0 characters
string s2 = "New York"; // s2 contains 8 characters
string s3(60, '*'); // s3 contains 60 asterisks
string s4 = s3; // s4 contains 60 asterisks

string

s5(s2, 4, 2}; // s5 is the 2-character string "Yo"

CHAP. 6] STRINGS AND FILES 115

If the string is not initialized, like s1 here, then it represents the empty string containing 0
characters. A string can be initialized the same way a C-string is, like s2 here. Ora string
can be initialized to hold a given number of the same character, like s3 here which holds 60 stars.
Unlike a C-string, C++ string objects can be initialized with a copy of another existing string
object, like s4 here, or with a substring of an existing string, like s5. Note that the standard
substring designator has three parts: the parent string (s2, here), the starting character (s2[4), here),
and the length of the substring (2, here).

Formatted input works the same way for C++ strings as it does for C-strings: preceding
whitespace is skipped, and input is halted at the end of the first whitespace-terminated word. C++
strings have a getline() function that works almost the same way as the cin.getline()
function for C-strings:

string s = "ABCDEFG";

getline(cin, s); // reads the entire line of characters into s
They also use the subscript operator the same way that C-strings do:

char ¢ = s[2]); // assigns 'C' to c

s{4] = "*"; // changes s to "ABCD*FG"

Note that the array index always counts how many characters precede the indexed character. C++
strings can be converted to C-strings like this:

const char* c¢cs = s.c_str(); // converts s into the C-string cs
The c_str() function has return type const char*.

The C++ string class also defines a length(} function that can be used like this to

determine how many characters are stored ina string:

cout << s.length() << endl; // prints 7 for the string s == "ABCD*FG"
C++ strings can be compared using the relational operators like fundamentals types:

if (s2 < s5) cout << "s2 lexicographically precedes s5\n";

while (s4 == s3) //...

You can also concatenate and append strings using the + and += operators:
string s6 = s + "HIJK"; // changes s6 to "ABCD*FGHIJK"
s2 += s5; // changes s2 to "New Yorkyo"

The substring() function is used like this:
s4 = s6.substr(5,3); // changes s4 to "FGH";

The erase() and replace() function work like this:
s6.erase(4, 2); // changes s6 to "ABCDGHIJK"
s6.replace (5, 2, "xyz"); // changes s6 to "ABCDGxyzJK"

The find() function returns the index of the first occurrence of a given substring:
string s7 = "Mississippi River basin”;

cout << s7.find("si") << endl; // prints 3
cout << s7.find("so") << endl; // prints 23, the length of the string

Ifthe find() function fails, it returns the length of the string it was searching.

EXAMPLE 6.9 Using the Standard C++ string Type
This code adds a nonsense syllable after each “t” that precedes a vowel. For example, it changes the
sentence
The first step is to study the status of the C++ Standard.
into the sentence:
The first stegep is tego stegudy the stegatus of the C++ Stegandard.

116 STRINGS AND FILES [CHAP. 6

It uses an auxiliary boolean function named is_vowel ():
string word;
int k;
while (cin >> word)
{ k = word.find("t"} + 1;
if (k < word.length() && is_vowel (word[k]})
word.replace(k, 0, "eg"};
cout << word << ' ';
}
The while loop is controtled by the input, terminating when the end-of-file is detected. It reads one word at
a time. If the letter t is found and if it is followed by a vowel, then eg is inserted between that t and the
vowel.

6.6 FILES

File processing in C++ is very similar to ordinary interactive input and output because the same
kind of stream objects are used. Input from a file is managed by an ifstream object the same way
that input from the keyboard is managed by the istream object cin. Similarly, output to a file is
managed by an ofstream object the same way that output to the monitor or printer is managed by
the ostream object cout. The only difference is that ifstream and ofstream objects have to
be declared explicitly and initialized with the external name of the file which they manage. You also
have to #include the <fstream> file (or <fstream.h> in pre-Standard C++) that defines
these classes.

EXAMPLE 6.10 Capitalizing All the Words in a Text File
Here is a complete program that reads words from the external file named input. txt, capitalizes them,
and then writes them to the external file named output. txt:
tinclude <fstream>
#include <iostream>
using namespace std;
int main ()
{ ifstream infile("input.txt");
ofstream outfile("output.txt");
string word;

char c;
while (infile >> word)
{ if (word{0] >= 'a' && word[0] <= 'z') word([0] += 'A' - 'a';

outfile << word;

infile.get(c);

outfile.put(c);
}

}
The picture below illustrates the process. Compare this with the picture on page 27.

Notice that the program has four objects: an ifstream objectnamed infile,an ofstream object
named outfile,a string object named word,anda char object named c.

The advantage of using external files instead of command line redirection is that there is no limit
to the number of different files that you can use in the same program.

CHAP. 6] STRINGS AND FILES

LAY YRY] y o, axls10
‘Ywox nrillig, ond the slithy tover infile

Big gyra and gidnle in Yha wilier . o
ALY aimay wsre Ths BOYoyrnvss.
A3 The ponE rothx pobgrobe Astiream

sugene bwl e g H
Moany WedLiig. Asm! Tha Flithy Pevas outf:\\le SEsT
nid Gyre ane Tumbla In The Uaber

KD Wimby NeEe The BOrogrowes. M M“““““““

And The Nome Hethy Oulgrsda. catraam

EXAMPLE 6.11 Merging Two Sorted Data Files

117

This program merges two files into a third file. The numbers stored in the files north.dat and
south.dat are sorted in increasing order. The program reads these two input files simultaneously and copies

all their data to the file combined.dat so that they are all together in increasing order:

north.dat ‘ . ex36ll

22 23 AD 44 48 52 55 70| £ind

75 77 80 88 4% N n1[58]
At

gouth.dat

20 3G 33 47 5D 6C 56 72 £in2 _ n2 |85

conbined.dat

20 22 2% 30 33 40 44 47

fout nere? | fales

4¢ S0 52 35 6C 66 ¢ ?2‘4g,wMWM4§:::::::::‘“demmmmm
75 77 -RG €5 gg 8% SERETNSR

bool more(ifstream& fin, inté n)
{ if (fin >> n) return true;
else return false;
}
bool copy(ofstreams& fout, ifstream& fin, inté n)
{ fout << " " << n;
return more(fin, n);
}
int main()
{ ifstream £finl("north.dat");
ifstream f£in2("socuth.dat"):
ofstream fout ("combined.dat");
int nl, n2;
bool morel = more(finl, nl):;
bool more2 = more(fin2, n2);
while {(morel && more2)
if (nl < n2) morel = copy(fout, finl, nl};
else more2 = copy(fout, fin2, n2);
while (morel)
morel = copy(fout, fini, nl);

118 STRINGS AND FILES [CHAP. 6

while (more2)
more2 = copy(fout, fin2, n2);
fout << endl;

}
The more () function is used to read the data from the input files. Each call attempts to read one integer from

the fin file 1o the reference parameter n. It returns true if it is successful, otherwise false. The
copy () function writes the value of n tothe fout file and then calls thc more () function to read the
next integer from the £in fileinto n.Italsoretuns true if and only if it is successful.

The first two calls to the more () function read 22 and 20 into nl1 and n2, respectively. Both calls
return true which allows the main while loop to begin. On that first iteration, the condition (nl <
n2) is false,sothe copy () function copies 20 from n2 into the combined.dat fileand then calls the
more () function again which reads 30 into n2. On the second iteration, the condition (nl < n2) istrue
(because 22 < 30), so the copy() function copies 22 from nl intothe combined.dat file and then
calls the more () function again which reads 25 into n1. The next iteration writes 25 to the output file and
then reads 40 into n1. The next itcration writcs 30 to the output file and then reads 33 into n2. This process
continues until 85 is written to the output file from n2 andthe nextcallto more () fails, assigning false
to more2. That stops the main while loop. Then the second while loop iterates three times, copying the
last three integers from north.dat to combined.dat beforeitscts morel to false. The last loop
does not iterate at all.

Note that file objects (£inl, fin2, fout) are passed to function the same way any other objects are
passed. However, they must always be passed by reference.

6.7 STRING STREAMS

A string stream is a stream object that allows a string to be used as an internal text file. This
is also called in-memory 1/0. String streams are quite useful for buffering input and output. Their
types istringstream and ostringstream are defined inthe <sstream> file.

EXAMPLE 6.12 Using an Output String Stream

Here is a complete Standard C++ program:

#include <iostream>

#include <sstream>

#include <string>

using namespace std;

int main{()

{ ostringatream oss;
int n = 44;
float x = 3.14;
o088 << "Hello!\t" << n << '\t' << x;
string s = oss.str(); // copies the stream’s string to s
oss << '\t' << &n;

}

The objects in this program can be visualized like this:

Helloi\k440\83.314
\b1af380d4

s{Bello!\tdd\x3.14 |

BEELRY

CHAP. 6] STRINGS AND FILES 119

The stream object’s anonymous string is drawn outside the program to emphasize its natural analogy with
an external file. (See the drawings on pages 27 and 116.) But actually, both the stream object and its anonymous
string are objects in the program.

The object oss is an output string stream. It serves as a conduit to an anonymous string which can
be read with the built-in oss.str () function that is bound tothe oss object. The insertion operator <<
is used to insert the string literal "Hello!\t", the integer n, the character '\t ', and the float x. Then the
contents of o0ss’s anonymous string are copied to the local string s. Then the character '\t' and the
address of the object n are inserted into oss.

EXAMPLE 6.13 Using an Input String Stream

Suppose that we append the following lines of code to the program in Example 6.12:

const string buffer = oss.str();

istringstream iss(buffer): // binds the stream iss to the string

string word;

int m;

float vy

iss >> word >> m >> y;
The first line copies the current contents of oss’s string into buf fer, Then the input string stream iss is
defined and bound to buffer. This mcans that all extractions from iss will come from the contents of
buffer, just as though it were an extemnal text file. Then after declaring another string, int, and
float, their values are read from iss.

The objects in this expanded program can be visualized like this:

Note that the contents of buffer can be accessed two ways: as elements of a string, or by formatted input
through the iss object.

char ¢ = buffer(16}; // assigns 'f' to c

iss >> word:; // copies "1af380d4" into word

6.8 RANDOM ACCESS FILES

Files can be accessed directly like an array. This is called direct access or random access. The
access location is set by using the file’s seekg() function for reading and its seekp() function
for writing.

120 STRINGS AND FILES [CHAP. 6

EXAMPLE 6.14 Random Access of a Text File

This complete program creates a dummy text file and then allows the user to select a random location to
rewrite a part of it.
#include <cstdlib> // defines the exit() function
#include <fstream>
#include <iostream>
#include <string>
void load(fstream& f)

{ for (int i=1; i <= 5; i++) // write 5 64-char lines
{ for (int j=1; j <= 60; j++)
f << j%10; // write 60 digits
f << " " << i1 << "\n'; // write 4 chars

}
}

void dump{fstream& £f)

{ £.seekg(0) // start at the beginning of the file
char c;
while (f.get(c)) // echo each character in f to cout
cout.put(c);
f.clear (), // resets the file’s eofbit
}
int main()
{ £fstream file("Demo.dat", ios::in | ios::out);
if (V'file)
{ cerr << "File Demo.dat could not be opened.\n";
exit (l);
}
load(file});

dump (file);

int pos, len;

cin >> pos >> len;

file.seekp(pos);

string s(len, '*');

file.write(s.c_str(), s.length()):

dump (file);

}

The first line creates an external text file named Demo.dat. It is bound to an fstream object named
file. Since we want to read and write to Demo.dat using the same stream object, we declare it to have
type fstream (instead of ifstream or ofstream)and initialize it withthe ios::in | ios::out
flag (meaning that it is open for both input and output).

File processing in general is very prone to error. There are many kinds of run-time errors that can happen to
programs that use files. For example, the system may be unable to create the new file because your directory is
full or its file permissions prevent it. So it is recommended that whenever a file is opened (by declaring its file
stream object), it should be checked for possible error before proceeding with its processing. This is usually
done withan if statement like the one on lines 2—4 of the main () function here. The condition (!'file)
means that the file is not ready for processing. If so, we simply print an error message and quit the program.
The exit() function is defined in the <cstdlib> file. Passing the integer 1 is simply a signal to the operat-
ing system that the program is terminating with an error.

If the file is ready for processing, we call the load () function to fill it with 5 lines of digits and then the
dump ()} function to display the complete file on the screen. Then the program interactively reads a position
number pos and a length number len. In the run shown below, we entered 200 for the position and 17 for
the length.

The next three statement change the 17 characters in positions 201-217 to asterisks. The call
file.seekp(pos) function moves its write pointer (the “p” in “seekp” stands for “put) to position pos;

CHAP. 6] STRINGS AND FILES 121

i.e., it advances that many characters past the beginning of the file. Then s is defined to be a string of 17
asterisks. The call file.write(cs, len) replaces the file’s len characters that are located by its write
pointer with the same number of characters in the C-string cs. So the call

file.write(s.c_str(), s.length(});
changes the next 17 digits to asterisks. Notice the use of the string’s ¢_str () and length() functions.

Here is a sample run:
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
200 17
123456789012345678901234567830123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
12345678 * ¥ ** *Hrxdkaxdkax+x>57890123456789012345678501234567890
123456789012345678901234567890123456789012345678901234567890

The arrangement of the (background) digits makes it easy to check that the correct 17 characters were “aster-
isked out.” The call to the seekp () function specified that writing begins after the 200th character. Since
each line contains 64 characters (counting the newline character), the first 3 lines contain 3-64 = 192 characters,
which means that the 200th character must be the 8th character of line 4. So the 9th — 25th digits on line 4 are

replaced with asterisks.

G W

Ul W N

The seekp(pos) and write(cs, len) functions are used to write the C-string cs of
length len to a random access file at position pos. In the same way, the seekg(pos) and
read(cs, len) functions are used to read the len characters starting at position len from a
random access files into the C-string cs.

EXAMPLE 6.15 Processing Student Grades
Consider the two data files shown below. The Students.dat file contains students records, one per

line, in four fields: the student’s id number, name, total credits earned, and grade point average. The
Grades.dat file contains grade records, one per line, in three fields: a student’s id number, final grade in a
course, and credit hours for that course. The following program processes these grades, updating the student
records by adding the new credits and recomputing the grade point averages of those students whose ids appear
inthe Grades.dat file. Note that the records in both files are sorted by student id. Also in both files, each
field is separated by a single tab character '\t', and each record is terminated by the newline character
"\n'.

#include <fstream.h>

$#include <iomanip.h>

#include <iostream.h>

#include <sstream.h>

using namespace std;

int credit (string grade rec);

void get (string& studenE_rec, fstream& students, string id);

vold update (string& student rec, char grade, int credit);

void put(string student_recT fstream& students);

const int STUDENT REC_SIZE=30;

int main()

{ £stream students("Students.dat", ios::in | ios::out);

ifstream grades("Grades.dat");

if (!students || !grades)
{ cerr << "One of the files could not be opened.\n";

exit(1l):

}

122 STRINGS AND FILES [CHAP. 6

Students.dat Grades.dat
017142031 Vance, Vera 85 3.06 027910908 B 4
027910908 Nixon, Nora 47 2.61 104148606 A 3
104148606 Allen, Adam 29 2.84 118229053 B 3
118229083 Tyson, Tara 37 2.80 370221320 F 3
129830779 Evans, Earl 92 3.21 407890754 B 4
370221320 Ogden, Owen 80 3.23 487072864 C 3
391235525 Chang, Carl 87 3.10 490130095 C 4
407890754 Gomez, Gary 50 2.35 569844817 A 3
413114410 Rosen, Raul 73 2.18 645378014 A 4
487072864 Davis, Dora 43 2.39 678206512 B 3
490130095 Ukrop, Urey 20 3.75 709404115 A 3
569844817 Singh, Sara 19 3.63 724978457 C 3
645378014 Paine, Perl 51 3.00 926311364 A 4
678206512 Jones, Judy 37 2.77 956733958 D 3
709404115 Hanes, Hope 94 3.44
724978457 Brown, Bill 63 2.17
861480354 Frost, Fred 17 1.63
863050853 Russo, Rose 95 1.99
907723489 Levin, Lisa 65 2.53
926311364 Irvin, Ivan 76 2.97
956733958 Moore, Mark 25 3.01
966739174 Knopp, Karl 41 1.88
string grade_rec; // a line from the Grades.dat file
string student rec:; // a line from the Students.dat file
string _id; // the student id from the grade_rec
char _grade; // the student grade from the grade_rec
int _credit; // the student credit from the grade_rec

while (getline(grades, grade_rec))

{ _id = grade_rec.substr(0,9);
_grade = grade_rec[10]};
_credit = credit (grade_rec);
get (student_rec, students, _idy:
update (student_rec, _grade, _credit);
put (student_rec, students) ;

}

}

The Students.dat file is opened for both input and output because its records are to be updated. Each
iteration of the main loop reads one grade_ rec record from the grades file. It extracts the student _id
and _grade directly from the string, and uses the credit () function to get the numeric _credit
value from the string. Then it calls the get () function to get the student_rec record from the students
file that matches the _id. That record is then updated by the update () function and written back to the
students fileby the put () function.

Here is the credit () function:

int credit(string grade_rec)
{ string s = grade_rec.substr(12,1);
istringstream ss(s);
int n;
S8 >> n;
return n;

CHAP. 6] STRINGS AND FILES 123

The credit integer is a single digit occupying the 13th character of the grade_rec. That is extracted as a sub-
string, and then the input string stream ss is used to take advantage of the automatic formatting of the extrac-
tion operator >> to get the integer value into n so it can be returned.

Here is the get () function:
void get (string& student_rec, fstreamé& students, string id)
{ while (!students.ecf())
{ getline(students, student_rec);
if (student_rec.substr(O,Q) == id)} break;
}

}
This continues reading records from the student_rec file until it finds the one that has the same id as

that passed in to the function. Notice that it uses the string substr () function to extract the 9-character id
from each student record.
Here is the update () function:
void update(stringé& student_rec, char grade, int credit)
(int grade points = 4 - int(grade - ‘A');
grade_points = (grade_points < 0 ? 0 : grade_points);
string s = student rec.substr(22,7);
istringstream iss(s);
int credits;
iss >> credits;
float gpa, points;
iss >> gpa:;
points = credits*gpa + credit*grade_points;
credits += credit;
gpa = points/credits;
ostringstream oss;
oss << credits << '\t' << setprecision(3) << gpa;
s = oss.str();
student_rec.replace (22, 7, s.substr(0,7));
}
First it converts the letter grade into its numeric equivalent: 4 foran 'A',3fora 'B',2fora 'C',1fora
'D',and 0 foran 'F'.Then it uses the input string stream iss to extract the numeric credits and gpa
from the student record. These lie in columns 23-29 of the student_rec. It computes the student’s new
credits and gpa. Then it uses the output string stream oss to insert thenew credits and gpa into
the string s, Finally it uses the string substr () and replace() functions to insert these new values
back into the student_rec.
Here is the put () function:
void put (string student_rec, fstreamé& students)
(student_ rec += string(l, '\n'); // append the newline character
const char* p = student_rec.c_str();
int location = students.tellg();
location -= STUDENT_REC_SIZE;
students.seekp (location};
students.write(p, STUDENT_REC_SIZE};

}
The student_rec contains 29 characters. Each record in the Students.dat file is 30 characters long, the last

being the newline character. So we have to append '\' to student_rec before writing it back to the file.
Then we can update the file by re-writing the record. The write () function requires the equivalent C-string

p to be passed.

124 STRINGS AND FILES

Review Questions

6.1 What is the difference between a C-string and a C++ string?

6.2 What is the difference between formatted input and unformatted input?

6.3 Why can’t whitespace be read with the extraction operator?

6.4 What is a stream?

6.5 How does C++ simplify the processing of strings, external files, and internal files?
6.6 What is the difference between sequential access and direct access?

6.7 Whatdothe seekg() and seekp() functions do?

6.8 Whatdothe read() and write() functions do?

Problems

6.9 Describe what the following code does:
char c¢sl{] = "ABCDEFGHIJ";
char c¢s2([] = "ABCDEFGH";
cout << ¢s2 << endl;
cout << strlen(cs2) << endl;
cs2{4] = 'X';

[CHAP. 6

if (strcmp({csl, cs2) < 0) cout << csl << " < " << ¢s2 << endl;

else cout << ¢cs8l << " >= " << ¢s52 << endl;
char buffer{80];
strepy (buffer, csl);
strcat (buffer, c¢s2);
char* ¢s3 = strchr (buffer, 'G'):
cout << c¢s3 << endl;
6.10 Describe what the following code does:
string s = "ABCDEFGHIJKLMNOP";
cout << s << endl:
cout << s.length() << endl;
s[8) = "!"';
s.replace(8, 5, "xyz");
s.erase (6, 4):
cout << s.find("!'");
cout << s.find("?");
cout << s.substr(e6, 3);
s += "abcde";
string part(s, 4, 8);
string stars(8, '*');
6.11 Describe what happens when the code

string s;
int n;
float x:

cin >> s >> n >> x >> s;
executes on each of the following inputs:
a ABC 456 7.89 XYZ
b, ABC 4567 .89 XYZ
C. ABC 456 7.8 9XYZ
d. ABC456 7.8 9 XYZ
e. ABC456 7 .89 XYZ

CHAP. 6] STRINGS AND FILES 125

6.12

6.13

6.14

6.15

f ABC4 56 7.89XY Z
g AB C456 7.89 XYZ
h. 2B C 456 7.89XYZ

Trace the execution of the merge program in Example 6.11 on page 117 on the following two
data files:

north.dat south.dat
27 35 38 52 55 61 81 87 31 34 41 45 49 56 63 74
92 95

Show each value of the variables nl1, n2, morel, and more2, as they change.

Programming Problems

Write a program that reads full names, one per line, and then prints them in the standard tele-
phone directory format. For example, the input

Johann Sebastian Bach

George Frederic Handel

Carl Phillipp Emanuel Bach

Joseph Haydn

Johann Christian Bach

Wolfgang Amadeus Mozart
would be printed as:

Bach, Johann S.

Handel, George F.

Bach, Carl P. E.

Haydn, Joseph

Bach, Johann C.

Mozart, Wolfgang A.
Write a program that counts and prints the number of lines, words, and letter frequencies in
its input. For example, the input:

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long 1 stood

And looked down one as far as I could

To where it bent in the undergrowth;
would produce the output:

The input had 5 lines, 37 words,

and the following letter frequencies:

A: 10 B: 3 C: 2 D: 13 E: 15 F: 1 G: 3 H: 4
I: 7 J: 0 K: 1 L: 8 M: O N: 12 0: 20 P: O
Q: 0 R: 11 S: 5 T: 11 U: 3 Ve 3 W: 6 X: 0

Y: 2 Z: 0
Implement and test the following function:
void reduce(stringé& s);
// Changes all capital letters in s to lowercase
// and removes all non-letters from the beginning and end.
// EXBMPLE: if s == "'Tis,", then reduce(s) makes it "tis"

126 STRINGS AND FILES [CHAP. 6

Hint: First write and test the following three boolean functions:
bool is uppercase(char c};
bool is lowercase(char c¢);
bool is_letter(char c);

6.16 Modify your program from Problem 6.14 so that it counts the frequencies of words instead of

letters. For example, the input
[I] then went to Wm. and Mary college, to wit in the spring of
1760, where I continued 2 years. It was my great good fortune,
and what probably fixed the destinies of my life that Dr. Wm.
Small of Scotland was then professor of Mathematics, a man
profound in most of the useful branches of science, with a happy
talent of communication, correct and gentlemanly manners, & an
enlarged & liberal mind. He, most happily for me, became soon
attached to me & made me his daily companion when not engaged in
the school; and from his conversation I got my first views of the
expansion of science & of the system of things in which we are
placed.

would produce the output
The input had 11 lines and 120 words,
with the following frequencies:

i: 3 then: 2 went: 1

to: 3 wm: 2 and: 4

mary: 1 college: 1 wit: 1

in: 4 the: 6 spring: 1

of: 11 : 6 where: 1

continued: 1 years: 1 it: 1

was: 2 my: 3 great: 1

good: 1 fortune: 1 what: 1

probably: 1 fixed: 1 destinies: 1

life: 1 that: 1 dr: 1

small: 1 scotland: 1 professor: 1

mathematics: 1 a: 2 man: 1

profound: 1 most: 2 useful: 1

branches: 1 science: 2 with: 1

happy: 1 talent: 1 communication: 1

correct: 1 gentlemanly: 1 manners: 1

an: 1 enlarged: 1 liberal: 1

mind: 1 he: 1 happily: 1

for: 1 me: 3 became: 1

soon: 1 attached: 1 made: 1

his: 2 daily: 1 companion: 1

when: 1 not: 1 engaged: 1

school: 1 from: 1 conversation: 1

got: 1 first: 1 views: 1

expansion: 1 system: 1 things: 1

which: 1 we: 1 are: 1
placed: 1

6.17 Write a program that right-justifies text. It should read and echo a sequence of left-justified
lines and then print them in right-justified format. For example, the input
Listen, my children, and you shall hear
Of the midnight ride of Paul Revere,
On the eighteenth of April, in Seventy-five;
Hardly a man is now alive
Who remembers that famous day and year.

CHAP. 6] STRINGS AND FILES 127

6.18

6.19

6.20

6.21

6.22

would be printed as
Listen, my children, and you shall hear
Of the midnight ride of Paul Revere,
On the eighteenth of April, in Seventy-five;
Hardly a man is now alive
Who remembers that famous day and year.

Implement and test the following function:
string Roman(int n);
// Returns the Roman numeral equivalent to the Hindu-Arabic
// numeral n.
// PRECONDITIONS: n > 0, n < 3888
// EXBMPLES: Roman(1776) returns "MDCCLXXVI",
7/ Roman (1812) returns "MDCCCXII", Roman(1945) returns
"MCMXLV"
Implement and test the following function:
int HindArabic(string s);
// Returns the Hindu-Arabic numeral equivalent to the Roman
// numeral given in the string s.
// PRECONDITIONS: s contains a valid Roman numeral
// EXAMPLES: HindArabic ("MDCCLXXVI") returns 1776,
// HindArabic ("MDCCCXII") returns 1812
Note that this is the inverse of the Roman () function in Problem 6.18.
Hint: Write an auxiliary function int v(string s, int i) thatretumns the digit for the
Roman numeral character s{i];e.g, v("MDCCCXII", 1) returns 500.

Implement Algorithm 1.4 on page 6 to convert decimal numerals to hexadecimal:

string hexadecimal (int n);

// Returns the hexadecimal numeral that represents n.

// PRECONDITION: n >= 0

// POSTCONDITION: each character in the returned string is a

7/ hexadecimal digit and that string is the dexadecimal

// equivalent of n

// EXAMPLE: hexadecimal (11643) returns "2d7b"
Hint: Write an auxiliary function char c(int k) that returns the hexadecimal character
for the hexadecimal digit k; e.g., c(14) returns 'e"'.

Implement Algorithm 1.4 on page 6 to convert hexadecimal numerals to decimal:
int decimal (string s);
// Returns the decimal numeral that represents the hexadecimal
// numeral stored in the string s.
// PRECONDITION: s.length() > 0 and each s{i] is a hexadecimal
// digit
// POSTCONDITION: the returns value is the decimal equivalent
// EXAMPLE: decimal("2d7b") returns 11643
Note that this is the inverse of the hexadecimal () function in Problem 6.20.
Hint: Write an auxiliary function int v(string s, int i) that returns the decimal
digit for the hexadecimal character s[i];e.g., v("2d7b", 3) returns 12.

Implement and test the following function:

void reverse(string& s);

// Reverses the string s.

// POSTCONDITION: s[i] <--> s[len-i-1]

// EXAMPLE: reverse(s) changes s = "ABCDEFG" into "GFEDCBA"
Hint: Use a temporary string.

128

6.23

6.24

6.25

STRINGS AND FILES [CHAP. 6

Implement and test the following function:

bool is palindrome(string s);

// Returns true iff s is a palindrome

// EXAMPLES: is palindrome ("RADAR") returns true,

/7 is_palindrome ("ABCD") returns false
Modify the program in Example 6.11 on page 117 so that it merges the following two files of
sorted lines of text, writing the resulting sorted lines both to a file named Presidents.dat
and to cout:

Democrats.dat Republicans.dat

Carter, James Earl Bush, George Herbert Walker
Clinton, William Jefferson Eisenhower, Dwight David
Johnson, Lyndon Baines Ford, Gerald Rudolph
Kennedy, John Fitzgerald Nixon, Richard Milhous
Roosevelt, Franklin Delano Reagan, Ronald Wilson
Truman, Harry S

Hint: Use getline(fin, s).

A certain image file format stores graphic images using one byte per pixel (256 colors) It
uses the first 8 bytes to store the image’s dimensions: the first four-byte integers giving the
number of rows and the second the number of columns. The remaining bytes represent the
two-dimensional image stored in row-major form. For example, the first 8 bytes evaluate to
the two integers 5000 and 6400, then the file will have 32,000,000 more bytes (a 32-MB file)
for its 32,000,000 pixels, arranged in 5000 rows of 6400 pixels each. Write the following
function that cleans up a noisy image file by smoothing erroneous pixels, If a pixel value dif-
fers from the average value of its four neighboring pixels by more than a given tolerance,
then that value is changed to the average value. For example, the call clean(f, 16)
would make the following change:

72 |78 1 80| 79| 83 72178 80| 79| 83
73177 |78 | 84 | 88 73 (77|78 (84) 88
771 79| 21|82 85 77 79|80 82]| 85
76181 |821(87 |89 76 | 81 | 82 | 87 | B9
80| 16 | 84 | 85| 90 B0 | 16)84 | 85| %0

void clean(fstream& f, int tolerance);
// Cleans the image file by averaging singularities.
// PRECONDITIONS: f is bound to a file that contains mn+8 bytes,

/7 where m and n are 4-byte unsigned integers stored in the
// first 8 bytes; f is open for input and output

// POSTCONDITION: no pixel value differs from the average of its
/7 four neighbors by more than tolerance

Hint: The locations of the four neighbors of a pixel located at byte x are x-n, x-1, x+1,
and x+n (north, west, east, and south),

CHAP. 6] STRINGS AND FILES 129

6.26

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Modify the program in Example 6.15 on page 121 so that assumes a 3-digit credits field
(instead of 2 digits) in the Students.dat file. Then adjust the actual data file accordingly,
change the record for Hope Hanes to 114 credits, and run your program.

Solutions

A C-string is an array of chars that uses the null character "\0' to mark the end of the string. A C++
string is an object whose string type is defined in the <string> file and which has a large rep-
ertoire of function, suchas length() and replace():

char c¢s[8] = "ABCDEFG"; // cs is a C-string

string s = "ABCDEFG"; // s 1s a C++ string

cout << s << " has " << s.length() << " characters.\n";

s.replace(4, 2, "yz"); // changes s to "ABCDyzG"

Formatted input uses the extraction operator >> which ignores whitespace. Unformatted input uses
the get () and getline () functions. The get () function reads the next character in the input
stream without ignoring whitespace. The getline () function reads all the rest of the characters in
the input stream until it reaches the newline character '\n', which it extracts and ignores.

Whitespace (blanks, tabs, newlines, ezc.) cannot be read with the extraction operator because it ignores
all whitespace.

A stream is an object that manages input and output between a program and a data source. C++ allows
<iostream> objects for interactive I/O (viz., cin and cout), <fstream> objects for exter-
nal files, and <sstream> objects for internal files (string streams).

C++ simplifies the processing of strings, external files, and internal files, by defining the same family
of functions and operations for all three. For example, the extraction operator >> works the same way
for inputting a double from the keyboard, from an external file, or from a string stream.

Sequential access must begin at the beginning and access each element in order, one after the other.
Direct access allows the access of any element directly by locating it by its index number or address.
Arrays allow direct access. Magnetic tape has only sequential access, but CDs had direct access. If you
are on a railroad train, to go from one car to another you must use sequential access. But when you
board the train initially you have direct access. Direct access is faster than sequential access, but it
requires some external mechanism (array index, file byte number, railroad platform).

The seekg{) and seekp () functions position the get pointer and the put pointer, respectively, in
an external file to allow direct access. For example, the call input.seekg(24) positions the get
pointer at byte number 24 in the file bound to the file stream named input.

The read() and write() functions are used for direct access input and output, respectively, of
external files. For example, the call input.read(s.c_str(), n) wouldcopy n bytesto the
string s directly from the file bound to the file stream named input.

char csl[] = "ABCDEFGHIJ"; // defines csl to be that C-string
char cs2[}] = "ABCDEFGH"; // defines csl to be that C-string
cout << cs2 << endl; // prints: ABCDEFGH
cout << strlen(cs2) << endl; // prints: B8
cs2[4] = 'X'; // changes c¢s2 to "ABCDXFGH"
if (strcmp(csl, cs2) < 0) cout << csl << " < " << ¢s2 << endl:;
else cout << csl << " >= " << ¢s?2 << endl;

// prints: ABCDEFGHIJ < ABCDXFGH
char buffer({80]; // defines buffer to be a C-string of < 80
chars
strcpy (buffer, csl); // changes buffer to "ABCDEFGHIJ"
strcat (buffer, cs2); // changes buffer to "ABCDEFGHIJABCDXFGH"
char* cs3 = strchr(buffer, 'G'); // make cs3 point to buffer[6}
cout << c¢s3 << endl; // prints: GHIJABCDXFGH

130 STRINGS AND FILES

6.10 string s = "ABCDEFGHIJKLMNOP"; // defines s to be that string
cout << s << endl; // prints: ABCDEFGHIJKLMNOP
cout << s.length() << endl:; // prints:
s(8) = "t'; // changes s to "ABCDEFGH!JKLMNOP"
s.replace (10, 5, "xyz"): // changes s to "ABCDEFGH!JxyzP"
s.erase (2, 4); // changes s to "ABGH!JxyzP"
cout << s.find("!") << endl; // prints:
cout << s.find("?") << endl; // prints:
cout << s.substr{(3, 6) << endl; // prints:

s += "abcde"; // changes s to "ABGH!JxyzPabcde"
string part(s, 1, 10); // defines part to be "BGH!JxyzPa"
string stars(8, '*'): // defines stars to be "r*xkskkrun

6.11 a.ABC 456 7.89 XYZ

Assigns "ABC" to s,456to n,7.89to x,andthen "XYZ" to s.
b. ABC 4567 .89 XYZ

Assigns "ABC" to s,4567to n,0.89to x,andthen "XYZ" to s.
¢. ABC 456 7.8 9XYZ

Assigns "ABC" to s,456to n,7.8to x,andthen "9XYZ" to s.
d ABC456 7.8 9 XYZ

Assigns "ABC456" to s, and then crashes because 7.8 is not a valid integer literal.
e. ABC456 7 .89 XYZ

Assigns "ABC456" to s,7to n,0.89t0 x,andthen "XYZ" to s.
f. BBC4 5 67.89XY 2

Assigns "ABC4" to s, 56to n,and then crashes because 7.89XY isnotavalid float lit-

eral.
g AB C456 7.89 XYZ

Assigns "AB" to s and then crashes because C456 is not a valid integer literal. (Note that the
hexidecimal numeral <4586, which can also be written C456, would qualify as a valid integer lit-

eral. But on input, hexadecimal numerals must be prefixed with “0x”, as in 0xc456.)
h. AB C 456 7.89XYZ
Assigns "ABC" to s and then crashes because C is not a valid integer literal.

6.12 Tracing the merge program:

nl n2 morel more?2
27 31 true true
35
34
41
38
52
45
49
56
55
6l
63
81
74
92
87 false
95 false

CHAP. 6] STRINGS AND FILES 131

6.13 int main ()
{ string word, first, last;
char c;
bool is_first, is last = true;
string name[32];
int n=0;
while (cin >> word)

{ cin.get (c); // should be either a blank or a newline
is_first = is_last; // current word is a first name
is_last = bool(c == '\n'); // current word is a last name

if (is_first) first = word;

else 1f (is_last) name[n++) = word + ", " + first;

else first += " " + word.substr(0,1) + ".%; // add initial
}
--n;

for (int i=0; i<n; i++)

cout << "\t' << i+l << ". " << name[i) << endl:
}
6.14 int main{()
{ string word;
const int SIZE=91; // for frequency array (int('2') == 90)
int lines=0, words=0, freq[SIZE] = {0}, len;
char c;

while (cin >> word)
{ ++words:;
cin.get(c);
if {(c == '\n') ++lines;
len = word.length():
for (int 1i=0; i<len; i++)
{ ¢ = word([i]:
if (¢ >= 'a' && c <= "2') c += 'A' - ‘a‘'; // capitalize ¢
if (c >= 'A' && c <= '2"') ++freqlc); // count c

}
cout << "The input had " << lines << " lines, " << words
<< " words, \nand the following letter frequencies:\n";
for (int i=65; i<SIZE; 1i++)
{ cout << '"\t' << char(i) << ": " << freq[i};
if (1 > 0 && 1%8 == 0) cout << endl; // print 8 to a line
}

cout << endl;

132

6.15

6.16

bool is_upper {char
{ return bool(c >=

STRINGS AND FILES

c)
'A' && C <= 'Z');

[CHAP. 6

}
bool is lower (char c)
{ return bool(c >= 'a' && c <= "'z');
}
boeol is letter (char c)
{ return bool(is_upper(c) || is lower(c));
}
void reduce({string& s)
{ while (s.length() > 0 && !is letter(s{0]))
s.erase (0, 1);
int k = s.length() - 1;
while (k > 0 && !is_letter(s{k--1))
s.erase (k+1, 1):
int len = s.length();
if (len == 0) return;
for (int i=0; i<len; i++)
if (is_upper(s[i])) s[i) += 'a' - 'A‘';
}
int main{)
{ string s;
const int SIZE=1000;
string word[SIZE};
int lines=0, words=0, n=0, freq[SIZE]={0};
char c;
while (cin >> s)
{ reduce(s);
if (s.length == 0) continue;
++words;
cin.get (c);
if (c == '\n') ++lines;
for (int i=0; i<n; i++)
if (word(i] == s) break;
if (i == n) word[n++] = s;
++freqli}:
}
cout << "The input had " << lines << " lines and " << words
<< " words,\nwith the following frequencies:\n";
for (int i=0; i<n; i++)

{ s = word([i):;
if (1 > 0 && i1%3 == 0) cout << endl; // print 3 to a line
cout << setw(l6) << setiosflags(ios::right)
<< s.c_str() << ": " <L setw(2) << freq[il:

}
cout << endl;

// assume at most 1000 different words
// holds words read

// count line

// add word to list
// count word

CHAP. 6] STRINGS AND FILES 133

6.17 int main ()
{ const int SIZE=100; // maximum number of lines stored

string line([SIZE], s;
int n=0, len, maxlen=0;
while (!cin.eof())
{ getline(cin, s):
len = s.length():
if (len > 0) cout << s << endl:;

if (len > maxlen) maxlen = len;
line[(n++) = s;
}
--n; // n == number of lines read

for {(int i=0; i<n; i++)
{ s = line(i]};
len = s.length();
cout << string(maxlen-len, ' ') << s << endl;

}

6.18 string Roman(int n)
{ int d3 = n/1000; // the thousands digit

string s{d3, 'M'");

n %= 1000;

int d2 = n/100; // the hundreds digit
if (d2 == 9) s += "CM";

else if (d2 >= 5)

{ s += "D";

s += string(d2-5, 'C');
}

else if (d2 == 4) s += "CD";

else s += string(d2, 'X');

n %= 100;

int d1 = n/10; // the tens digit
if (dl == 9) s += "XC";

else if (dl >= 5)

{ s += "L";

s += string(dl-5, 'X');
}

else if (dl == 4) s += "XL";
else s += string(dl, 'X');

n %= 10;

int d0 = n/1; // the ones digit
if (d0 == 9) s += "IX";

else if (dO0 >= 5)

{ s += "V";

s += string(d0-5, 'I');
}
else if (d0 == 4) s += “IV";
else s += string(do, 'I');
return s;

134 STRINGS AND FILES [CHAP. 6

6.19 int v{string s, int i)
{ char ¢ = s[i);

if (¢ == 'M') return 1000;
if (¢ == 'D') return 500;
if (c == 'C') return 100;
if (¢ == 'L') return 50;
if (¢ == 'X') return 10;
if (c == 'V') return 5;

if (¢ == 'I') return 1;

=
[t}
s
[
s}
o’
o |

}
int HindArabic(string s)
{ int n = v (s,0);
int len = s.length();
for (int i=1; i<len; i++)
if (v(s,i) <= v(s,1-1)) n += v(s,i);
else n -= 2*v(s,i-1);
return n;
}
6.20 char c(int k)
{ assert(k >= 0 && k <= 15);
if (k < 10) return char(k + '0');
return char(k - 10 + 'a');
}
string hexadecimal (int n)
{ if (n == 0) return string(l, '0');
string s;
while (n > 0)
(s = string(1l, c(n%l6)) + s;
n /= 16;
)
return s;

}

6.21 int v(string s, int i)
{ char ¢ = s([i]);
assert(c >= '0' && c <= '9' || ¢ >= 'a' && c <= '"f");
if (c >= '0' && c <= '9') return int{c - '0"});
else return int(c - 'a' + 10);

}

int decimal (string s)

{ int len = s.length();
assert(len > 0);

int n=0;
for (int i=0; i<len; i++)
n = 16*n + v(s,i);

return n;
}
6.22 void reverse(string& s)
{ string temp = s;
int len = s.length();
for (int i=0; i<len; i++)
s(i) = temp(len-i-1];

CHAP. 6]

6.23

6.24

6.25

STRINGS AND FILES

bool is_palindrome(string s)

{

}

int len = s.length();
for (int 1i=0; i<len/2; i++)

if (s[i) '= s[len-i-1}) return false;
return true;

bool more(ifstream& fin, stringé& s)

{

}

cout << s << endl;
fout << s << endl;
return more(fin, s):;

bool more(ifstream& fin, string& s)

{
}

if (getline(fin, s))} return true;
else return false;

int main{()

{

}

ifstream finl("Democrats.dat");
ifstream fin2 ("Republicans.dat");
ofstream fout (“"Presidents.dat"):
string sl, s2;

bool morel = more(finl, sl);

bool more2 = more(fin2, s2);
while (morel && more2)

135

if (81 < s2) morel = copyl(fout, finl, sl):

else more2 = copy(fout, fin2, s2);
while (morel)

morel = copy(fout, £finl, sl);
while (more2)

more2 = copy(fout, £in2, s2);
fout << endl;

typedef unsigned short int Byte;

const int MAX = 4*255;

void clean(fstream& f, int tolerance);

{

long unsigned int m, n;

// 4* maximum value for a Byte

// 4-byte integers

string pixel(1,' '); // each pixel is a l-character string

string north(l,' '), west(1,' '), east(l,'
int x, sum;

Byte p, a, b, ¢, d, ave;

f.seekg(0);

f > m >> n; // read dimensions of image

'y, south(l,' '"):

for (int i=1; i<m-1; i++) // examine every interior pixel

for (int j=1; j<n-1; j++)

{ x =1i*n + J + 8; // the address of the current pixel

f.seekg(x);
f.read(pixel.c_str(), 1):

p = Byte(pixel([0}); // convert string character to a Byte

.seekg (x-n);
.read(north.c_str(), 1):
= Byte (north[0]);
.seekg(x-1);
.read(west.c_str(), 1);
= Byte(west([0]);

.seekg (x+1);
.read(east.c_str(), 1);

HhoHh O Hh Hh D B

136

}

STRINGS AND FILES

c = Byte(east[0]);
f.seekg(x+n});
f.read(south.c_str(), 1);
d= Byte(south[0]);

sum = a + b + c + b;

[CHAP. 6

sum = (sum > MAX ? MAX : sum); // watch out for overflow
ave = sum/4;
if (p > ave + tolerance || p < ave - tolerance)

{ f.seekp(x):
pixel (0] = char(ave);
f.write(pixel.c_str(), 1);
}

Note: This solution is not optimized for speed.

Chapter 7

Abstract Data Types

In computer science the term “abstraction™ refers to the idea of disregarding implementation
details and imagining the ideal that is being represented. For example, when you click on a button to
send your email message, you imagine some kind mechanism that transports your message. You
don’t want to think about the actual software code that is being executed by various computers in
order to deliver your message. Instead, you imagine the abstraction of an email delivery device.

7.1 PROCEDURAL ABSTRACTION

The term procedural abstraction is used to describe the use of functions as fundamental actions
without regard to the details of their implementation. For example, using a sort () function on an
array is a procedural abstraction. When we use the function in a program, we assume that the function
has already been written and tested thoroughly. This idea is often referred to as off-the-shelf sofiware.
It is like putting a battery in a camera; we know what the battery is supposed to do, and we assume
that it will work properly. But we don’t want to think about how the battery works. Instead, we
depend upon our confidence that it will work properly so that we can concentrate on the task at hand
(using the camera to take good photographs).

The discipline of structured programming requires that we decompose our programs into reliable
functions that work like the batteries in a camera. These functions may be written by different people
at different times. But it is their responsibility to ensure that they work properly.

To facilitate procedural abstraction, a function is often written in two parts: its interface and its
implementation. To keep these two parts separate, they are often stored in different files. For
example, on a UNIX system, the interface fora sort () function might be stored in a file named
sort.h (called a header file) and the implementation might be stored in a file named sort.cc
(the source code file).

The interface is the part that the user (called the client) sees. It contains all the information that
the compiler needs in order to compile a program that calls the function. That includes the declaration
of the function, called its prototype, and possibly other definitions and declarations. It also contains
all the documentation that the client needs in order to use the function correctly.

The implementation is the actual complete definition of the function. This, of course, is the
function’s algorithm: the detailed instructions that the computer needs in order to perform the
function. It is analogous to the internal workings of the battery that you put in your camera. It is
essential for the program to work but irrelevant to the client who writes the program. Consequently,
the implementation file is often compiled separately and provided to the user only as an object
module in machine language. This is called information hiding. Preventing the client from viewing
the function’s implementation ensures that the programs that use the function will be independent of
its algorithm. This is advantageous because it guarantees that, like replacing one battery with another,
a newer version of the function could replace the current one without having to make any changes in
the program that uses it. Such modularization is essential to structured programming.

137

138 ABSTRACT DATA TYPES [CHAP. 7

EXAMPLE 7.1 Abstractinga sort() Function
Here are four files:

program.cc sort.cc
#include "sort.h" #include <iostream>
#include "sort.h"

int main()

{ int a, b, c: void print(int x, int y, int z)
/... { cout << x << ", " <<y << ", "
sort(a, b, c); << z << endl;

/7. }
return 0;

} int main{()

{ int a = 77;
int b = 33;

sort.h int ¢ = 99;

void swap(int& x, inté& y, inté& z) sort(a, b, c);

// POSTCONDITION: x <= y <= z print(a, b, c):

sort(a, c, b});

print{a, c, b):
sort (b, a, c);

sort.cc print (b, a, c);
void swap(int& x, int& y) sort (b, c, a);
{ int t = x; print (b, ¢, a);
X = y; sort{(c, a, b);
y = t; print(c, a, b);
} sort(c, b, a);
print(c, b, a);
void sort(inté& x, int& y, inté& z) return 0;
(if (y < x) swap(x, y): }
if (z < y) swaply, z);
if (y < x) swap(x, y);
}

The file named my program.cc contains the client program which calls the sort () function. To
compile successfully, it must include the precompiler directive #include "sort.h".

The file named sort.h contains the function interface. This is the function prototype together with a
comment that specifies what the function does.

The file named sort.cc contains the function implementation. This is the complete definition of the
function. In this case, that includes an auxiliary swap () function.

The file named test sort.cc contains the function test driver. It is a temporary program whose only
purpose is to test the function thoroughly.

The implementors of the function write the function interface, implementation, and test driver. They could
then compile the function on a UNIX system like this:

$ cc++ -c sort.cc

$ 1ls sort*
sort.cc sort.h sort.o
Here, the dollar sign ($) is taken to be the UNIX prompt, and cc++ is the C++ compile command. The UNIX

-c option on the compile command tells the compiler to compile but don’t link the source code. This is neces-
sary because the sort.cc file contains no main () function (it is not a complete C++ program). The
UNIX 1s command then shows the result of the compile-but-don’t-link command: it produced the object

CHAP. 7] ABSTRACT DATA TYPES 139

module named sort.o which contains the machine language translation of the C++ code in sort.cc.
This is where information hiding takes place: the function implementors can supply their customers with the
function interface sort.h and this binary file without revealing the implementation algorithm.
The customers write the client program my program.cc and then they could compile and run it in a
UNIX environment like this:
$ cc++ -o my program my program.cc sort.o
$ ls my program*
my_program my_program.cc
$ my program
The C++ compiler compiles the client program in the file my_program.cc and then links it with the object
module sort.o to produce the executable file named my program. This program is then run simply by
using that file name as a UNIX command. (The UNIX option -0 my_program tells the compiler to use the
name my program for the executable file.)
The implementors can compile and run their test driver the same way:
$ cc++ -o tast_sort test sort.cc sort.o
$ ls test_sort*
test sort test sort.cc
S te;t_sort B
Of course, they should do this before they deliver their product to their clients.

EXAMPLE 7.2 Interchanging Modules
Suppose that some time after delivering their first version of their sort () function the implementors
develop the following improved version: After testing this version thoroughly, they can produce an object

sort.cc

vold sort(inté& X,

{ 1if (x > y)
{ int t =

y:

t;

ints y)

X;

void sort(ints& x,

{ sort(x,
sort (y,
sort (X,

y)i:
z);

v

int& vy,

int& z)

module for it and ship it out to their customers. If a customer had compiled her application program separately,
like this:

$ cc++ -c my program.cc

$ 1ls my program*

my program my_ program.cc my_program.o
then she could upgrade her application without having to recompile it, like this:

$ cc++ -o my program my program.o sort.o
The big advantage here is that the program is improved without changing any of its source code.

When you implement a function you should take the point of view of fulfilling a contract which
specifies exactly what the function is required to do. These specifications then become the documen-
tation for the function’s specification file. In the “real world” the specifications may be written by the

customer.

140 ABSTRACT DATA TYPES [CHAP. 7

Function specifications are often written in terms of preconditions and postconditions. A precon-
dition is a statement about the function’s parameters that is assumed to be true before the function is
called. A postcondition is a statement about function’s output (i.e., its return value and any arguments
passed by reference) that is guaranteed to be true after the function returns.

EXAMPLE 7.3 Preconditions and Postconditions

double geometric mean(double x, double y);
// PRECONDITION: x >= 0.0 && y >= 0.0
// POSTCONDITION: r*r == x*y, where r is the value returned

7.2 FUNCTION TEMPLATES

The swap() function (see Example 7.1) is widely used in sorting and other essential
algorithms. The two values that it interchanges might have type int in some applications and type
float or string in others. But the algorithm itself is the same regardless of the type of its two
parameters. C++ provides a mechanism that saves the programmer from having to write separate
definitions for different type versions of the same function. Called a function template, it provides the
minimal information needed by the compiler to generate its own definitions of the function whenever
it needs them.

EXAMPLE 7.4 A swap() Function Template
Here is a template for swap () functions, followed by a program that will use three instantiations of it:
template <class T>
void swap(T& x, T& y)
{ Tt = x;
X =y;
y = t;
}
int main{()
{ int a = 44;
int b = 66;
swap(a, b)
float s =
float t =
swap (s, t)
string mr "George";
string ms "Martha'";
swap (mr, ms); // compiler generates void swap(string, string);
return 0;
}
When the compiler reads swap (a, b) itrecognizesthat a and b have the (same) type int and uses
the template to generate the function by substituting int for T inthe three places where it occurs in the tem-
plate. It does the same again when it reads swap (s, t) except that it substitutes float for T in the
same three places. And when it reads swap (mr, ms) itsubstitutes string for T.

// compiler generates void swap(int, int);

OV b -

// compiler generates void swap(float, float);

N~

The only difference between a function definition and a function template definition is that the
latter is preceded by the code template <class T> and the symbol T is used in place of a type.
The symbol is called a template parameter.

CHAP. 7] ABSTRACT DATA TYPES 141

7.3 DATA ABSTRACTION

Data abstraction is a generalization of procedural abstraction. The latter (see Section 7.1) facili-
tates the development of software by separating the interfaces of user-defined functions from their
implementations. The former does the same for user-defined data types. C++ extends this facility by
allowing the user to incorporate functions (operations) within the data types which are called classes.

EXAMPLE 7.5 A Ratio Class
Here is a C++ class definition for a type whose objects represent ratios (fractions):

class Ratio

{ public:
Ratio(int num, int den) { num = num; den = den; }
void print() { cout << _num << '/' << _den; }
private:
int _num; // numerator
int _den; // denominator

¥

The definition block contains two parts, one labeled public and one labeled private. Data objects
and functions declared in the public section may be used anywhere in the program: in main () orinany
other function. But data and functions declared in the private section may only be used within the class
itself. In this case, we have two function members (Ratio () and print())inthe public section and
two datamembers (_num and _den)inthe private section. Notice thatthe private data num and
_den are used within the class itself (in the Ratio () and print () functions)butnotin main (). This
is called information hiding: the internal details (_num and _den) of an object are “hidden™ from the outside
world. In most programmer-defined classes like this, most of the class functions are in the public section

and most of the class data are in the private section.

Most C++ programmers follow the convention of capitalizing the name of a new class; e.g Ratio; this
distinguishes it as the name of a programmer-defined type. Another recommended method is to prefix an
underscore to the name of each private member. This allows the same names without the underscore to be
used in other places (e.g., num = num inthe Ratio() function)to make the code easier to understand.

Note that the bodies of the class functions (Ratio () and print ()) are set on the same lines as their
heads. This is normally done only with very simple functions. More often, the function bodies will be defined
elsewhere, even in a separate file, leaving only the function declarations within the class definition. Also note
that the class data (_ num and _den) are declared on separate lines, with a comment for each. That form is
recommended, instead of simply declaring int _num, den;.

Finally, note that the first member function has the same name as the class itself (Rat i o) and that it has no
return type. Such class functions are called constructors. A constructor is a special member function that is
automatically invoked whenever an object of the class is declared (i.e., “constructed”).

Here is a little program that uses this Ratio class;

int main ()
{ Ratio x(3,4); // constructs the object x representing 3/4
x.print(); // calls the print{) function for the object x

cout << endl;
return 0;
}
The first statement in main (), Ratio x(3,4) invokes this constructor, which creates the object x and
passes the arguments 3 and 4 to the parameters num and den.

142 ABSTRACT DATA TYPES [CHAP. 7

At this point, the object x can be visualized as shown at right. The name of

the object is x; its type is Ratio; it has two fields (data members) named num * num

and _den, both of type int; and their values are 3 and 4, respectively. - int
Thecall x.print () produces the output 3/4.

p p tp den[::]

To summarize, a class defines a new type in C++. The class contains it

Ratio

data and functions, with the data (also called fields) usually in the private
section and the functions (also called methods or operations) usually in the
public section of the class declaration, like this:
class ObjectType
{ public:
ObjectType() { /* definition of constructor ObjectType() */ }
void f({short k) { /* definition of function f{) */ }
int g() { /* definition of function g{() */)
private:
float a;
char c;
}:
In external functions (such as main ()), class objects (also called instances) are declared as any other
objects are declared, like this:
ObjectType u, V;
The member functions of the class can only be called when “bound” to a specific object of the class,
like this:
u.f(44); // the call f() is bound to the object u
int n = v.g{(); // the call g{() is bound to the object v
The class object to which a member function call is bound is called the implicit argument for the call.
For example, the call u.f(44) actually has two arguments: the explicit argument 44 and the
implicit argument u.
A class constructor has the same name as the class itself, it has no return type, it is invoked
automatically when the class is instantiated (i.e., an object of that class type is declared), and it
cannot be called explicitly.

EXAMPLE 7.6 Defining the Addition Operation for the Ratio Class
Like all numeric types, the Ratio type should “know” how to add. We can give it this ability by including a
sum () member function:
class Ratio
{ public:
Ratio(int num, int den) { num = num; _den = den; }
void print() const { cout << num << '/' << _den; }
Ratio sum(Ratio y)
{ int num = num*y. den + _den*y. num;
int den = _den*y. den;
Ratio temp (num, den):;
return temp;

}

private:
int num; // numerator
int _den; // denominator
}:
int main{()
{ Ratio r(3,4), s(2,3), t(0,1); // constructs objects r, s, and t
t = r.sum(s); // assigns to t the sum of r and s

t.print (); // calls the print() function for the object t

CHAP. 7] ABSTRACT DATA TYPES 143

cout << endl;
return 0;
}

The first line of the main() function constructs the three Ratio objects r, s, and t, which
represent 3/4, 2/3, and 0/1, respectively. The second line calls the sum() member function, passing the
argument s and using r as the implicit argument (we say that r “owns” the call). This assigns 3-3 +4-2 =
17 to the local variable num and 4:3 = 12 to the local variable den. Then it constructs the local Ratio
object temp using the values 17 and 12 to represent the ratio 17/12, and returns that object’s value to where
the function was called in main (). Then that value (the pair {17,12}) is assigned to t, and then t is printed
on the fourth line. The resulting outputis 17/12.

Notice that the member data values of the implicit argument r are references without the “dot™ notation:
int den = _den*y._den;. Thatis because whatever object “owns” the function call, its num and
_den fields are directly accessible. When the call is r.sum(s),theline int den = _den*y. den;
means int den = r._den*s._den;. Ifthe call were a.sum(s), then the same line would mean int
den = a._den*s._ den;.

Also note here that an object (s) of type Ratio is passed to a function, an object (temp) of type
Ratio isused as a local variable within a function, and an (anonymous) object of type Ratio is assigned to
another Ratio object (t). The point is that objects of programmer-defined types can be used the same way as
objects of fundamental types (e.g., int, float, etc).

The sum() function in Example 7.6 is a bit awkward because it represents the addition opera-
tion + which takes two operands, but it must defined with only one (explicit) parameter. That is a
result of the function being a member of the Ratio class, which requires it to have one implicit argu-
ment (the object that owns the call: r in r.sum(s)). The function would be more natural if it could
be called using both operands (r and s) as explicit parameters like this:

t = sum(r,s);
That would require the function to be declared as a non-member function, like this:
Ratio sum(Ratio x, Ratio y)
{ int num = x. num*y. den + y. den*y. num;
int den = x. den*y. den;
Ratio temp(num, den);
return temp;
}
But that won’t work because the function needs access to the private data members num and _den
of the objects x and y; only member functions are granted that access. Fortunately, C++ provides an
exception to that rule, precisely for situations like this. The solution is to make the sum() functiona
“friend” of the Ratio class.

7.4 C++ friend Functions

A friend function of a class is a non-member function that has the privileges of a member
function of the class, namely access to the class’s private members. One reason for making a function
a friend of a class instead of an actual member of the class is to eliminate the requirement of the
implicit argument, making instead all arguments passed to the function explicit. This simplifies the
syntax and makes the code more readable.

A function is declared to be a friend of a class simply by declaring the function within the
class and preceding its declaration with the keyword friend:

144 ABSTRACT DATA TYPES

EXAMPLE 7.7 Using friend Functions

This works the same as Example 7.6. The changes are shown in boldface:

class Ratio
{ public:
Ratio(int num, int den) { _num = num;

void print() const { cout << num << '/' << _den;

friend Ratio sum(Ratio x, Ratio y)

{ int num = x. num*y. den + x. _den*y. num;

int den = x. den*y. den;
Ratio temp(num, den);
return temp;
)
private:
int _num; // numerator
int den; // denominator
}i
int main()
(Ratio r(
t = sum(
t.print(
cout << endl;
return 0;

3
r,

)

Theform t = sum(r, s) is anotational improvement over the form t

Example 7.6.

,4), s(2,3), t(0,1); // constructs objects r,
s); // assigns to t the sum of r and s
)i // calls the print() function for the object t

[CHAP. 7

and t

r.sum(s) that was used in

As mentioned earlier, the actual definitions of a class’s member functions are usually specified

separately. This is illustrated in the next example.

EXAMPLE 7.8 Separating the Definitions of Member Functions from Their declarations

This is the same class as in Example 7.7:

class Ratio
{ friend Ratio sum(Ratio, Ratio);

public:
Ratio(int, int); // constructor
void print() const;

private:
int _num; // numerator
int den; // denominator

}:

Ratio sum(Ratio x, Ratio y)

{ int num = x. num*y., den + x. den*y. num;
int den = x. den*y._den;
Ratio temp (num, den);
return temp;

)

Ratio::Ratio(int num, int den)
{ num = num;

_den = den;
}
void Ratio::print()
{ cout << num << '/' << _den;
}

CHAP. 7] ABSTRACT DATA TYPES 145

The only significant change here is that the bodies of the friend function sum() and of both member
functions Ratio () and print () have beenremoved from the class, thereby separating the function def-
initions from their declarations. We have also shifted the friend function up to the beginning of the class
definition to emphasize that it is not a member function. Its placement outside of the public and private
declaration sections of the class is irrelevant since it is not a member of the class.

Notice the necessity of the scope resolution operator in the prefix Ratio:: before the names of the
member functions Ratio () and print () in their definitions. A class is like a namespace, restricting the
scope of the names declared within. Of course, the definition of the sum () function does not need any scope
resolution because it is not declared to be the member of any class; itis onlya friend ofthe Ratio class.

The definitions of class functions are usually separated from their declarations that are given
inside the class, like this:
// the interface for class ObjectType:
class ObjectType

{ public:
ObjectType () // constructor
void f(short);
int g();
private:
float a:
char c;

}i

// the implementation for class ObjectType:
ObjectType: :ObjectType ()

{ // definition of constructor ObjectType() goes here
}

void ObjectType::f (short k)
{ // definition of function f() goes here

}

int ObjectType::g()
{ // definition of function g() goes here

}
The first part is called the class interface, and the second part is called the class implementation. This

separation makes it easier to use the class because all the information that the programmer needs to
use the class is given in its interface, leaving its implementation details hidden typically in a separate
file. It also allows the class’s creator to change the class implementation without affecting its
interface or the programs that use it.

7.5 OVERLOADING OPERATORS

An operator is a function that can be called with an alternative infix syntax form. For example,
the addition operator + is usually used like this:
c =a + b;
But is can also be used in its formal form, like this:
c = operator+(a, b):
As a function, its name is operator+.
Recall that any function in C++ can be overloaded. That means that the same name can be used
for different functions, as long as their parameter lists are different. For example, the following two
distinct functions can be defined in the same scope:

146 ABSTRACT DATA TYPES [CHAP.7

void swap(int x, int y) { int temp=x; x = y; y = temp; }

void swap(float x, float y) { float temp
Then the following code will execute as intended:

int m=33, n=66;

swap(m, n); // swaps the integers m and n

float a=4.44, b=8.88;

swap(a, b); // swaps the floats a and b
The calls are made to the separate functions, distinguished by their different parameter lists.

A class defines a new type. To give the new type functionality comparable to the operations that

exist for fundamental types, we usually overload the operators used for those operations. For
example, the addition operator defined for numeric types can be overloaded for our new Ratio

type:

[
»
»

1

<
<

Il
o+
o
3

'a

EXAMPLE 7.9 Overloading the Addition Operator
This class is equivalent to that defined in Example 7.8. The only changes are shown in boldface:

class Ratio
{ friend Ratio operator+ (Ratio, Ratio);

public:
Ratio (int, int); // constructor
void print () const;

private:
int _num; // numerator
int _den; // denominator

}i

Ratio operator+ (Ratio x, Ratio y)

{ int num = x. num*y. den + x. den*y. num;
int den = x._den*y. den;
Ratio temp(num, den);
return temp;

}
The implementations of the Ratio() and print () functions are omitted since they are identical to those

in Example 7.8.
The advantage to naming the function operator+() instead of sum() is that the operator name
allows the function to be called like this:
Ratio r(3,4), s(2,3), t(0,1);
t =r + 58;
This is a significant improvement over the form t = sum(r, s) used in Example 7.7.

The other arithmetic operators, operator- (), operator* (), and operator/{), can be
overloaded the same way.

In addition to overloading arithmetic operators, it is also convenient to overload the input and
output operators operator>>{) and operator<<{().

EXAMPLE 7.10 Overloading the Input and Qutput Operators

This extends Example 7.9:
class Ratio
{ friend Ratio operator+(Ratio, Ratio);
friend istream& operator>>(istream& istr, Ratio& r);
friend ostream& operator<<(ostream& ostr, const Ratio& r);
public:
Ratio{int, int); // constructor

CHAP. 7] ABSTRACT DATA TYPES 147

private:
int _num; // numerator
int _den; // denominator

}i

istream& operator>>(istream& istr, Ratio& x)

{ char ch; // used to eat the slash character '/’
istr >> x. num;
if (istr.peek() == '/') istr >> ch >> x._den;

else x. den = 1;
return istr;

}

ostream& operator<<(ostream& ostr, const Ratio& x)
{ if (x._den == 1) ostr << x. num;

else ostr << x. num << '/' << x._den;

return ostr;

}
The implementation of the Ratio () constructor is omitted since it is the same as in Example 7.8.

Note that the output operator operator<< replacesthe print () function.

With these overloaded operators, we can write the following more natural looking code:
Ratio r(3,4), s(2,3), t(0,1);

cin >> r >> s; // calls operator>>(istreamé&,Ratiog&) twice
t =r + s;
cout << t << endl; // calls operator<<(ostream&,constRatio&) once

The second line first makes the call operatorss>{cin, r), passing the arguments cin and r to the
parameters ostr and x, respectively, both by reference. If the input is 22/7, then the function reads 22
into r. num and 7 into r._ den (ignoring the slash character). Since r was passed by reference, the
resulting ratio {22, 7} is stored in r.

Note how the third line uses the peek () function to determine whether the next character in the input
stream is the slash character. If it is (as in the input 22/7), then that character is read into ch and the next
integer isread into r._den. This code allows integer input also to be accepted by the input function (e.g., 250
would be read and stored as {250, 1}).

The input function returns the input stream as a reference. This allows it to be passed along to the next call
to the input function when the operator >> is chained as in

cin >> r >> §;
In fact, these two calls are actually implemented as
operator>>(operator>>(cin, r), s);
s0 a second ratio can be read into the object s.

7.6 CLASS INVARIANTS

One probiem that is likely to occur with ratios (fractions) is that they are likely to be stored in
non-reduced form such as 24/40 and —11/-8. Even if they are always in reduced form when they are
created, non-reduced forms can still result, as with 1/6 + 3/8 = 26/48. This can be confusing because
a single ratio can have an unlimited number of different forms (e.g., (-5)/4 = (-10)/8 = (-15)/12 = -
= 5/(—4) = --). This problem can be solved by specifying class invariants.

A class invariant is a condition that is forced upon all instances of the class. We shall specify the
following two class invariants for the Ratio class:

1. The data members num and _den have no common factors greater than 1.

2. The data member den > 0.

148

ABSTRACT DATA TYPES [CHAP. 7

These two conditions ensure that no two distinct Ratio objects are numerically equal unless they
have the same values stored in their _num and _den fields; i.e., that every fraction that can be
represented as a Ratio object has a unique representation.

Class invariants are typically enforced by means of private utility functions.

EXAMPLE 7.11 Enforcing Class Invariants
This extends Example 7.10:
class Ratio

{

}i

friend Ratio operator+(Ratio, Ratio);
friend istream& operator>>(istream&, Ratio&);
friend ostream& operator<<(ostream&, const Ratiok);

public:
Ratio(int, int); // constructor
private:
void _reduce(); // enforces the class invariants
int _num; // numerator
int _den; // denominator

Ratio operator+ (Ratio x, Ratio y)

{

}

int num = x. num*y. den + X. den*y. num;
int den = x. den*y._den;

Ratio temp(num, den);

temp._ reduce();

return temp;

istream& operator>>(istream& istr, Ratio& x)

{

char ch; // used to eat the slash character '/’
istr >> x._num;
if (istr.peek() == '/') istr >> ch >> x. den;

else x._den = 1;
%x._reduce();
return istr;

Ratio::Ratio(int num, int den)

{

}

_num = num;
_den = den;
_reduce();

int ged(int m, int n)

{

assert(m > 0 && n > 0);

while (m > 0)

{ 1f (m < n) swap(m,n);
m -= nj

}

return n;

CHAP. 7] ABSTRACT DATA TYPES 149

void Ratio:: reduce()

{ if (_num == 0 || _den == 0)
{ num = 0;
_den = 1;
return;
}
if (_den < 0) // enforces constraint: den > 0
{ num *= -1;

:den *= =1;

}

int abs num = (_ num < 0 ? - _num : num); // =] num|
int g = gcd(abs_num, _den);:

_num /= g; // enforces constraint that ratio be in lowest terms
den /= g;

}
The reduce() functionisa private member function of the Ratio class that is used by the

addition operator operator+ (), the input operator operator>> (), and the constructor Ratio (). The
gcd () function does not need to be a member function because it does not access any private dataand is
used only by the _reduce () function. Note that the gcd () function does use the swap() function
which would be defined just above it in the class implementation file.

The _reduce () function first checks for division by 0; if the denominator is 0, the ratio is changed to
the default 0/1. Next it checks for a negative denominator to enforce the second class invariant. Then it uses the
conditional expression operator to set up the absolute value of the numerator: if the condition (num < 0)
is true it assigns ~ num to abs_num; otherwise it assigns _num to it. Then it uses the gcd() function
to obtain the greatest common divisor g of abs num and _den. Since the greatest common divisor is a
multiple of all other common divisors, dividing num and den bythe g guarantees that the resulting pair
will have no common divisors greater than 1.

The assert () function used inthe gcd() function is assumed to be defined elsewhere. Its single
parameter accepts a condition (i.e., an int). If the condition is false (i.e., evaluates to 0), then the program
aborts at that point. If the condition is true (i.e., evaluates to non-zero), then the program continues. Such a
function is defined in the old C header file assert.h, whichisnamed cassert in Standard C++.

7.7 CONSTRUCTORS AND DESTRUCTORS

There is still room for improvement of the Ratio class. For example, we can use an initializa-
tion list for the constructor:

EXAMPLE 7.12 Initialization Lists for Constructors
class Ratio
(friend Ratio operator+ (Ratio, Ratio);
friend istream& operator>>(istreamé&, Ratiok);
friend ostream& operator<<(ostream&, const Ratios&);

public:
Ratio(int, int); // constructor
private:
reduce () ; // enforces the class invariants
int _num; // numerator
int _den; // denominator
}i
Ratio::Ratio(int num, int den) : _num(num), _den(den)

{ _reduce();

1

150 ABSTRACT DATA TYPES [CHAP. 7

The only change here (shown in boldface) over Example 7.11 is the initialization list in the implementa-
tion of the constructor Ratio():
_num(num), _den({den)
This is simply an alternative for the assignment statements
_I')le = num;
_den = den;
which were in the body of the function.

Initialization lists are very specialized: they can be used only in constructors and only for initial-
izing member data. But they are convenient and are widely used.
A more significant improvement is to use default values for the constructor parameters:

EXAMPLE 7.13 Default Values for Parameters

class Ratio

{ friend Ratio operator+{Ratio, Ratio);
friend istream& operator>>(istream&, Ratio&);
friend ostream& operator<<(ostreamé&, const Ratios);

public:
Ratio(int=0, int=1); // constructor
private:
_reduce(); // enforces the class invariants
int num; // numerator
int _den; // denominator

}:
No change is needed here in the implementation. We have simply added (in boldface) “=0" and “=1" to
the parameter list of the constructor’s declaration. The effect is to use the value 0 for the parameter num and 1
for the parameter den if values are not passed in as arguments. For example:

Ratio x(5,7); // creates the object x representing the ratio 5/7
Ratio x(5); // creates the object x representing the ratio 5/1
Ratio x; // creates the object x representing the ratio 0/1

By including these default values in the constructor’s declaration, we have the equivalent of three different
(overloaded) constructors, one with 2 parameters (num and den) as in Example 7.11, one with 1 parameter
(num) and one with 0 parameters. Note that, unlike all other functions, a constructor with 0 parameters is called
without using parentheses:
Ratio x; // creates the object x representing the ratio 0/1
Also note that when arguments are passed to some of the parameters that have default values, they are
matched to those parameters in the same way that all arguments are matched with parameters: in the order in
which they are listed. Thus the call
Ratio x(5); // creates the object x representing the ratio 5/1
matches the argument 5 to the first parameter (num), leaving the second parameter (den) to use its default
value 1.
Finally note that these default values 0 and 1 help enforce the Ratio class invariant that _den never
be 0 or negative, and they nicely allow whole numbers (ints like 5) to be represented as ratios.

Default values can be specified for the parameters of any function in C++ (not just class construc-
tors). The only restrictions are (1) the values must be given in the parameter list of the function decla-
ration but not its definition (if separate); (2) if only some of the parameters are given default values,
they must be listed after all other parameters in the parameter list. If you include the names of the
parameters in the function declaration (an option in C++), then the initial values are listed on their
right, like this:

Ratio(int num=0, int den=1);

CHAP. 7] ABSTRACT DATA TYPES 151

EXAMPLE 7.14 A Copy Constructor for the Ratio Class

A class may have many constructors. The one that can be invoked with no arguments is called the
default constructor. The default constructor implemented here is also invoked when one or two
integer arguments are used (see Example 7.13).

A constructor may also be invoked with an argument of the same class, like this:

Ratio x(22,7); // invokes the default constructor
Ratio y{x); // invokes the copy constructor, copying x into y
Ratio z=x; // invokes the copy constructor, copying x into z

The copy constructor looks like the default constructor:
class Ratio
{ friend Ratio operator+(Ratio, Ratio);
friend istream& operator>>(istream&, Ratio&):;
friend ostream& operator<<{ostream&, const Ratio&};

public:
Ratio({int=0, int=1); // default constructor
Ratio{const Ratiog); // copy constructor
private:
_reduce(); // enforces the class invariants
int _num; // numerator
int _den; // denominator
bi
Ratio::Ratio(const Ratio& r) : _num(r. num), _den{r._den)

{
}

The copy constructor’s single parameter is passed by constant reference. This means that the function can
access the argument passed but it cannot change it. In this implementation, it simply copies the values of the
argument’s _num and _den fields into the corresponding fields of the new object being constructed.

7.8 THE FOUR AUTOMATIC MEMBER FUNCTIONS

Every class in C++ must have four special member functions: a default constructor, a copy
constructor, an assignment operator, and a destructor. Since these member functions are required, the
compiler will create them automatically if they are not defined explicitly in the class.

The defauit constructor is the constructor that can be called with no arguments. It is invoked
whenever a declaration without parameters is executed, like this:

ObjectType x; // creates the object x of type ObjectType

The copy constructor is the constructor whose header has the special form:

ObjectType (const ObjectType&):;
It is invoked automatically in three special cases:
(1) whenever a newly declared object is initialized:
ObjectType y=x; // the copy constructor is invoked to initialize y
with x
(2) whenever an object is passed by value to a function:
void f(ObjectType x)
{ //...

}
f{y); // the copy constructor is invoked to copy y into x

152 ABSTRACT DATA TYPES {CHAP. 7

(3) whenever an object is returned by value from a function:
ObjectType f()
{ ObjectType y;
/7
return y;

}

x = £(); // the copy constructor is invoked to copy y into x
The assignment operator is the overloaded operator whose header has the special form
ObjectType& operator=(const ObjectTypes&);
It is invoked whenever one object is assigned to another:
ObjectType x, Y;
//

x = y; // the assignment operator is called to copy y into x
The destructor is the function whose header has the special form:
~ObjectType ()
It is invoked automatically wheneve: - :lject goes “out of scope™:
if (t > 0)
{ ObjectType x;
VYA

} // the destructor is invoked for x

EXAMPLE 7.15 The Assignment Operator

Here are an assignment operator for the Ratio class:
Ratio& Ratio::operator=(const Ratio& r)
(_num = r. num;

den = r. den;
return *this;

}
Although it is not a constructor, the assignment operator is almost the same as the copy constructor (see

Example 7.14): it copies the values of the argument’s num and _den fields into the corresponding fields of
the implicit argument (the object that “owns” the call). Then the function returns that implicit argument with the

statement:
return *this;

The C++ keyword this can be used only within class member functions; it always refers to the
implicit argument. For example, when the statement
y = %
executes for the existing Ratio objects x and vy, it is equivalent to the call

y.operator=(x);
which passes the explicit argument x to the parameter r and uses y as the implicit argument. In
that case, this is a pointer to (i.e., the memory address of) y, and *this is a synonym for y
itself. So the complete effect of this call to the assignment operator is really
y. num = X._ num;
y. den = x._den;
Remember that the assignment operator, like the default constructor, the copy constructor, and

the destructor, will be created automatically by the compiler if it is not explicitly specified in the class
definition. In that case, the compiler implements it in the simplest way possible: by copying the fields
of the object on the right of the assignment into the fields of the object on the left. Since that is
precisely what this implemented version does, it really does not need to be included at all in the class
definition. In fact, the only times that the assignment operator, the default constructor, the copy
constructor, or the destructor really need to be explicitly implemented is when they would do more
than the obvious. In the Ratio class, that applies only to the default constructor which is

CHAP. 7] ABSTRACT DATA TYPES 153

implemented to work with optional int parameters. Example 7.18 illustrates a class where the
destructor needs to be implemented explicitly.

7.9 ABSTRACT DATA TYPES

An abstraction is an idealization in the mathematical sense: it is an imaginary idea that usually
can be only approximated in the “real world.” One of the best example of this is the set of all integers
Z= {..,-2,-1,0,1,2,3, ... }. This set is essential to most mathematics. But it does not really exist
because it is infinite. We can imagine it in our minds, but there is no way to represent it in the real
world, by computer or any other means. The best we can do is approximate it. That is what the type
long does. On a standard 32-bit workstation, a long object may assume any one of the
4,294,967,296 elements of the set long = { ~2147483648, -, -2, -1, 0, 1, 2, 3, -, 2147483647 }.
That is a big set and is quite adequate for most programs. But it is infinitesimal compared to Z.

The point here is that the real set long is far different from the ideal set Z, and the successful
programmer must keep that difference in mind. In practice, the difference becomes painfully apparent
when integer overflow occurs.

EXAMPLE 7.16 Integer Overflow
This program will produce erroneous output on most standard 32-bit PCs and workstations:
int main{()

{ long n=1;
for (int i=0; i < 20; i++)
{ n *= 4;

cout << n << endl;
}
return 0;
}

Assuming that the largest value of type long is 2147483647 (=231 - 1), this program will suffer integer
overflow as soon as i reaches 16. The actual output looks like this on one UNIX workstation:

4

16

64

256

1024

4096

16384

65536

262144

1048576

4194304

16777216

67108864

268435456

1073741824

0

0

0

0

0
On another workstation, the last 5 numbers output are negative! In both cases, those values are obviously incor-
rect. The problem simply is that the next number after 1073741824 (= 22°) would ideally be 4294967296

(=2%2); but that is greater than the largest value that n can have.

154 ABSTRACT DATA TYPES [CHAP. 7

In computer science, we use the term abstract data type (“ADT”) to describe the ideal which the
real implemented data type represents: Z is the ADT which type long represents. Of course, there
may be several different representations of the same ADT. For example, in C++ all the integer types
(bool, char, short, long, unsigned char, unsigned short, unsigned, and unsigned
long) are representations of Z.

An ADT is a description of an ideal type which could be implemented in different ways in a
program. The description includes the set of all values that the ideal type could have, the set of
operations that could be performed on objects of that type, and any other information (e.g., class
invariants) that should be imposed on the objects. The ADT serves as a “blueprint” for the program-
mer who implements the type. It also serves as a specification that can be used when deriving
algorithms, so that they can be implemented after the ADT has been implemented.

An ADT may be based upon a mathematical abstraction (as Z is) or upon more practical consid-
erations. For example, we may want to define an ADT for graphic images in order to build a type
named image that could be used in computer graphics programs. Our choice of operations to define
for the ADT would likely be based upon previous experience, both with computers and with real
visual images.

EXAMPLE 7.17 An ADT for Stacks

A stack is a container that uses the “last-in-first-out” (“LIFO) method for insertions and removals. Imagine
a stack of trays in a lunch room: when you “push” a tray onto the stack, it goes on top; when you “pop” a tray
off the stack, you get the one that was on the top.

Here is a formal ADT specification for stack:

ADT: Stack
Represents:
A sequence of elements, all of the same type.

Access:
A stack allows access only at one end of the sequence, called the rop of the stack. Both inser-
tions and removals must be made at the top.

Constructors and Destructors:

create Creates an empty stack of a given maximum size.

destroy De-allocates the memory used for the stack.
Access Functions:

top Returns the last element on the stack.

is empty Returns true ifthe stack is empty; otherwise returns false.

is_full Returns true ifthe stack is full; otherwise returns false.
Mutator Functions:

push Inserts a new element at the top of the stack.

pop Removes and returns the element from the top of the stack.

EXAMPLE 7.18 An Implementation of the ADT: Stack with Element Type char
class Stack

{ public:
Stack (int s=100); // sets the default maximum number at 100
~Stack():

char top() const;

bool is empty() const;
bool is full() const:
void pugh(const char);
char pop():

CHAP. 7] ABSTRACT DATA TYPES 155

private:
char* a; // the stack itself: a dynamic array of char
int max; // the maximum number of elements on the stack
int _count; // the number of elements on the stack
i
Stack::Stack(int m) : max(m), _count(0)
{ _a = new char[_max];
assert(_a != 0);

}

Stack::~Stack()
{ delete [] _a;
}

char Stack::top() const
{ assert (_count > 0);
return _a[_count-1];

}

bool Stack::is_empty() const
{ return bool(_count == 0);

}

bool Stack::is full() const
{ return bool(_count == max);

}

void Stack::push(const char x)
{ assert(_count < maxj);
_a[_count++] = x;

}

char Stack::pop()
{ assert(_count > 0);
return _a[--_count];

}
The class has three private data members: a dynamic array named _a, and two integers named _max and

_count. A dynamic array in C++ is a pointer (i.e., an address in memory) that can be used like an ordinary
array (i.e., with the subscript operator, as in _a (4]). But unlike an ordinary array, the size of a dynamic array
may be declared at run-time by means of the new operator: _a = new char [_max], and whose memory
allocation can be de-allocated (i.e., returned to the “heap” of memory available for use by other dynamic
objects) by means of the delete operator: delete [] _a.

The integer _max holds the maximum number of elements that can be pushed onto the stack, and the
integer _count contains the actual number of elements that are currently on the stack. Note the class invari-
ant: 0 < count £ _max.

Note the use of the assert () function defined in the header <cassert>. This function will abort the
program if the condition passed to it is false. In the constructor, the condition {_a != 0) means that the new
operator was successful; i.e,, that there was enough dynamic memory available to allocate _max elements.
The other conditions used in the calls to assert () will prevent the array index _count from going out of
range; i.e., they enforce the class invariant: 0 € count £ _max.

Also note the effective use of the postincrement and predecrement operators inthe push () and pop ()
functions. Since _count is always the location of the next element to be pushed onto the stack (the top of the

156 ABSTRACT DATA TYPES [CHAP.7

stack is always _a{_count-1)), it has to be incremented after a new item is pushed onto the stack and it has
to be decremented before the top element is popped off the stack.
After this code executes:
Stack s(20):
s.push('A');
s.push('B');
cout << s.pop() << endl;
s.push{'C');
s.push('D");
cout << s.pop{) << endl;
s.push('E'});
the Stack object named s would look like this:

The shaded part of memory represents those bytes that have been allocated for the dynamic s
array _a. Its abstraction should be imagined as shown at right.

[o]]

w
s
2

Review Questions

7.1 What is the difference between procedural abstraction and data abstraction?
7.2 What s an implicit argument?
73 Whatisa friend function?
7.4 What is the purpose of separating a class implementation from its interface?

7.5 Show how the line
cin >> £ >> s >> t;
is actually implemented for Ratio objects. (See Example 7.10.)

Problems

7.6 Implement the multiplication operator * forthe Ratio class.

7.7 A queue is a container that uses the “first-in-first-out” (“FIFO”) method for insertions and
removals. Imagine a line of people waiting to buy tickets to a movie: People enter the queue
at the back and leave the queue from the front.

Implement the following ADT for queues, with element type char:

ADT: Oueue

Represents:
A sequence of elements, all of the same type.
Access:
A queue allows access only at the ends of the sequence, called the back and the front of the

CHAP. 7] ABSTRACT DATA TYPES 157

queue. Insertions are allowed only at the back, and removals are allowed only at the front.
Constructors and Destructors:

create Creates an empty queue of a given maximum size.

destroy De-allocates the memory used for the queue.
Access Functions:

back Returns the last element in the queue.

front Returns the first element in the queue.

is empty Returns true if the queue is empty; otherwise retums false.

is_full Returns true ifthe queue is full; otherwise returns false.
Mutator Functions:

enter Inserts a new element at the back of the queue.

leave Removes and returns the first element from the front of the queue.

7.8 Write a function that uses a stack to reverse a queue.
7.9 Clock arithmetic is based on the notion of a [2-hour clock which “wraps around” the time
every 12 hours. The arithmetic operations are the same as with ordinary integers, except for
the wraparound property that keeps all values within the finite range { 1,2,3,4,5,6,7,8, 9,
10, 11, 12 }. Mathematicians call this modulo 12 arithmetic. (It is equivalent to the set named
Z,, with the slight difference that “0” is used in place of “12”.) For example, 7+9=4,7-9
=10, and 7*9 = 3. (Division is omitted.)
Implement the following ADT for Z,:
ADT: Hour
Represents:
An element from the finite set { 1,2,3,4,5,6,7,8,9,10, 11,12 }.
Coustructors and Destructors:

create Creates an object whose value is between 0 and 1, inclusive.
Arithmetic Operators:
sum Returns the sum of two given hours.
difference Returns the difference of two given hours.
product Returns the product of two given hours.
Input/Output Operators:
input Reads a value for an hour from standard input.
output Prints the value of an hour to standard output.
7.10 Implement the following ADT for a random number:
ADT: Random
Represents:

An object represents a device that generates random numbers. It uses a “seed” integer that
generates the random numbers and is changed after each generation.
Coustructor:
create Creates a random number generator. If no seed is passed to it, it accesses the
system clock to initialize the seed.
Mutator Function:
reset Changes the seed for the existing object. If no seed is passed to it, it accesses
the system clock to initialize the seed.
Generator Functions:

integer Generates an integer selected at random from a uniform distribution in the
range /o < n < hi, where the default value for i is INT_MAX and for /o is 1.
real Generates a real number selected at random from a uniform distribution in the

range 0.0 <x < 1.0.

158

7.11

7.12

7.13
7.14
7.15

7.16

7.17

ABSTRACT DATA TYPES [CHAP. 7

Implement the following ADT for a pair of dice:
ADT: Dice

Represents:

An object represents two dice, in terms of the sum of their values shown.
Domain:

The finite set { 2, 3,4,5,6,7,8,9,10, 11,12 }.

Constructor:
create Creates an object whose value is between 2 and 12, inclusive,
Access Function:
toss Simulates the tossing of the two dice. The value of each die is selected from a

uniform distribution of integers from 1 to 6, and then their sum is returned.
Implement the following ADT for an address:

ADT: Address
Represents:
An object represents a mailing address.
Constructor:
create Creates an address with optional given string values for the fields.
Access Functions:
street Returns @ string with the street component of the address.
city Retunsa string with the city component of the address.
state Returnsa string with the state or province of the address.
code Retums a string with the postal code (e.g., ZIP Code) of the address.
country Returnsa string with the country component of the address.
Mutator Function:
set street Sets the street fieldto a given string value.
set city Sets the city fieldto a given string value.
set state Sets the state field to a given string value.
set code Sets the code fieldto a given string value.
set:count ry Sets the country field to a given string value.
Output Operator:
output Prints the complete mailing address.

Implement the subtraction operator for the Ratio class. (See Example 7.9 on page 146.)
Implement the division operator / forthe Ratio class.

Implement the following member function for the Queue class (Problem 7.7):

int size();
// returns the number of elements in the queue

The mathematical set Z,= { 0, 1,2, ..., n~1 } is used in abstract algebra with many important
practical applications in coding theory and other sciences. The simplest version is the case
where n=2: Z, = {0, 1}, which is equivalent to the type bool. Another familiar version is
the case where n = 12: Z,, is similar to the Hour class in Problem 7.7. Write up a complete
ADT specification for Z,. Then implement it. Call it ModN. Use & const int N = 7.
Include all the arithmetic operations, including the division (/) and remainder (%) operators.
(It is a mathematical fact that division works in Z, only if 7 is a prime number. For example,
it does not work in Z,, because 6/2 has more than one answer: 2*3 = 6 but 2*9 =18 = 6 in
Z,,, so 6/2 could be either 3 or 9!)

Implement the following ADT for a coin purse:

ADT: Purse

Description:

CHAP. 7]

ABSTRACT DATA TYPES 159

An object represents a coin changer or coin purse that can contain any number of pennies (1¢),
nickels (5¢), dimes (10¢), and quarters (25¢).

Invariant:

The number of coins is minimal for the given monetary value.

Constructor:
create

Access Functions:

pennies
nickels
dimes
quarters
value

Creates a purse with a given number of pennies, nickels, dimes, and quarters.

Returns the number of pennies in the purse.
Returns the number of nickels in the purse.
Returns the number of dimes in the purse.
Returns the number of quarters in the purse.
Returns the total value of the coins in the purse.

Mutator Functions:

insert
remove
empty

Adds a given monetary value to the purse.
Removes a given monetary value to the purse.
Empties the purse.

7.18 Implement the following ADT for a measured distance:

ADT: Distance

Description:

An object represents a single (non-negative) measured distance.
Constructors and Destructors:

create

Access Functions:

cm
km
in
ft
mi

Creates an object that represents a single measured distance in a given number
of meters.

Returns the distance measured in centimeters.
Returns the distance measured in kilometers.
Returns the distance measured in inches.
Returns the distance measured in feet.
Returns the distance measured in miles.

Mutator Functions:

set cm
set_km
set in
set_ft
set_mi
add_cm
add_knm
add_in
add ft
add mi
subEract_cm
subtract km
subtract:in
subtract ft
subtract mi
Operators:
assignment
multiply
divide

Resets the distance measured in centimeters.
Resets the distance measured in kilometers.
Resets the distance measured in inches.
Resets the distance measured in feet.

Resets the distance measured in miles.

Adds a distance measured in centimeters.
Adds a distance measured in kilometers.
Adds a distance measured in inches.

Adds a distance measured in feet.

Adds a distance measured in miles.
Subtracts a distance measured in centimeters.
Subtracts a distance measured in kilometers,
Subtracts a distance measured in inches.
Subtracts a distance measured in feet.
Subtracts a distance measured in miles.

Assigns another distanceto *this.
Multiplies *this by a non-negative real number.
Divides *this by a positive real number.

Friend Operators:

multiply
divide

Multiplies one distance by another.
Divides one distance by another.

160

7.19

7.20

7.21

7.22

7.23

ABSTRACT DATA TYPES (CHAP.7

Write and implement a complete ADT similar to that in Problem 7.11 for a class named
Dice that represents the sum of a three four-sided dice tossed. (Each die is a tetrahedron.)

Write and implement a complete ADT similar to

that in Problem 7.11 for a class named Tack that

uses the Random class (Problem 7.10) to repre-

sent the state of a tossed thumbtack. Assume that

the thumbtack lands with its point up 60% of the

time. The two outcomes are 0 (for point up) and 1 0 (up) 1 (down)
(for point down).

Implement the following ADT for a date:
ADT: Date

Description:
An object represents a specific date in history.
Invariants:
There was no year 0; the day after Dec 31 1 B.C.asJan 1 1 A.D.
The month field can have only 12 different values.
The day field must be a positive integer that does not exceed the number of days in its month.

Constructor:

create Creates an object representing a date given its era, year, month, and day.
Access Function:

era Returns the date’s era, either BC or AD.

year Retumns the card’s year; e.g., 1969.

month Returns the card’s month; e.g., July.

day Returns the card’s day; e.g., 26.
Arithmetic Functions:

add Adds a given number of days to the date.

subtract Subtracts a given number of days from the date.
Output Operator:

output Prints the date; e.g., “July 26, 1969 A.D.™

Hint: Use a private utility function named is_leap () that determines whether the year
is a leap year.

Write and implement a complete ADT for a class named Person whose objects represent
people. Then implement it. Include fields for Address (see Problem 7.10), date of birth,
date of death, identification number (e.g., Social Security Number in the U.S.A.), sex, tele-
phone number, email address, and web page URL. Use the Date class (Problem 7.11) for
DOB and DOD. Include an access function that returns the person’s age in years on a given
date.

We can imagine a queue as a row of seats, where the first person to arrive sits in the left-most
seat, the second person sits to the right of him, etc., each new arrival sitting to the right of the
previous arrival. This is the same as a stack, except that the departure algorithm is different.
If it were a stack, the first to leave would be the one at the right end (i.e., the last one who
arrived). But since it is a queue the first to leave is the one on the left end (i.e., the first one
who arrived). Dynamically, there is another distinction between a stack and a queue: When
one leaves a stack, he or she is the only one who moves, but when one leaves a queue, all the
others in the queue shift one seat to the left. That shifting requires much movement of data in
the array implementation.

CHAP. 7] ABSTRACT DATA TYPES 161

a. In the implementation in Problem 7.7, we chose not to shift the elements in the leave()
function. This allows it to run faster, but it makes inefficient use of the allocated space.
(Each seat is used only once!) Modify the 1eave () function so that after each departure,
everyone remaining in the queue shifis one scat to the left. For example a char queue
implemented as in Problem 7.7 with max =20 would look like this after 18 arrivals, 16
departures, and then § more arrivals:

Note that in this implementation, the _frort pointer is redundant and could be omitted.

b. Instead of shifting everyone to the left after each departure, we could simply “wrap
around” the end whenever there are no thore seats on the left. For example a char queue
implemented as in Problem 7.7 with max =20 would look like this after |8 arrivals, 16
departures, and then 8 more arrivals:

Implement this algorithm for the leave () function. This is the most efficient implemen-
tation of the leave () function when an array is used. It is called a circular array.
7.24 A deque (thymes with “neck”) is a container that allows insertions and removals at both
ends. The word is a contraction for “double-ended queue.” Here is how a deque could be
implemented using dynamic arrays:

s -

Array subscripts are shown here even though the actual memory addresses would be large
hexadecimal numbers instead. The deque is allowed to grow and shrink on both the left and
the right. Growth would start in the middle at a[max/2]. The _left pointer points to the
last element inserted on the left, and the _right pointer points to the position where the
next insertion would be made on the right. (This asymmetry is a result of maintaining the
conventions used in all the other container classes that the difference between the two point-

162

7.25

7.26

7.27

7.28

7.29

7.30

7.1

7.2

7.3

7.4

7.5

ABSTRACT DATA TYPES {CHAP. 7

ers equals the number of elements in the container.) Write a formal ADT for the deque data
structure, and then implement it for elements of type char.

Write and implement a complete ADT for a class named Angle whose objects represent a
specific plane angle measurement. This class will be similar to the Distance class in Prob-
lem 7.18. Include access functions that return the equivalent measure in degrees, radians, and
grads. Also include mutator functions for increasing or decreasing the measure.

Write and implement a complete ADT for a class named Numeral whose objects represent
specific positive integers. This class will be similar to the Distance class in Problem 7.18.
Include access function that return the Roman numeral equivalent (e.g., MCMCDVIII) and
the Hindu-Arabic equivalent (e.g., 1998). Also include mutator functions for increasing or
decreasing the value.

Write and implement a complete ADT for a class named Money whose objects represent a
specific amount of money. This class will be similar to the Distance class in Problem
7.18. Include access functions that return the equivalent amount in primary currencies, such
as dollars, pounds, marks, and yen. Also include mutator functions for increasing or decreas-
ing the amount in dollars.

Write and implement a complete ADT for a class named Book whose objects represent pub-
lished books. Include fields for author, title, publisher, year, and ISBN.

Write and implement a complete ADT for a class named Complex whose objects represent
complex numbers (e.g., 2.91 — 74.03i). Include member functions like those for the Ratio
class.

Write and implement a complete ADT for a class named Time whose objects represent spe-
cific times of day (e.g., 7:52:29 p.m.). Also include mutator functions for increasing or
decreasing the time by a given number of seconds.

Solutions

Procedural abstraction refers to the creation of an independent function whose use does not depend
upon the knowledge of its implementation. Data abstraction refers to the creation of a programmer-
defined data type (a class in C++) which may include operations that are specific to that type. Like
procedural abstraction, data abstraction includes the assumption that the user of the type needs no
knowledge of its implementation.

The implicit argument of a class member function call is the object that owns the call. For example, in
thecall x.print () toprintthe Ratio object x (in Example 7.5), the object x isthe implicit
argument. (That call has no explicit arguments.)

A friend function in C++ is a function that is declared inside a class but is not a member of the
class. As a friend, the function is given access to the private members of the class. But as a non-
member function, it is called without an implicit argument.

Separating a class’s implementation from its interface has two main advantages:

a. Tt makes it easier to use the class because all the information that the programmer needs to use the
class is given in its interface, leaving its implementation details hidden typically in a separate file.

b. It also allows the class’s creator to change the class implementation without affecting its interface
or the programs that use it. Indeed, the class’s user can even compile the programs that use it before
the class’s implementation has been written.

The implementation of cin >> r >> s >> t; wouldbe
operator>>(operator>>(operator>>(cin, r), s), t);

CHAP. 7] ABSTRACT DATA TYPES 163

7.6 This is similar to the addition operator + given in Example 7.9:
Ratio operator* (const Ratio& x, const Ratio& y)
{ int num = x. num*y. num;
int den = x._den*y._den;
Ratio z(num, den);
return z;
}
7.7 The implementation is quite similar to that for a stack of chars (see Example 7.18.):
class Queue
{ public:
Queue (int s=100); // sets the default maximum number at 100
~Queue () ;
char front() const; // returns the element at the front
char back() const; // returns the element at the back
bool is _empty() const;
bool is full() const;
void enter (const charé);
char leave();

private:
char* _a; // the queue itself: a dynamic array of char
int _max; // the maximum number of elements on the queue
int _front; // the location of the next element to leave
int _back: // the location for the next element to enter
}i
Queue::Queue(int m) : max(m), front(0), back(0)
(_a = new char(_max];
assert(_a != 0);

}

Queue: : ~Queue ()

{ delete [] _a;

}

char Queue::front () const

{ assert (_back > front);
return a[_front];

}

char Queue::back() const

{ assert (_back > front):
return a[back-1];

}

bool Queue::is_empty() const

{ return bool{ back == front);

}

bool Queue::is full() const

{ return bool(back == max);

}

void Queue::enter (const char& item)

{ assert(back < _max);
_a[back++] = item;

}

char Queue::leave()

{ assert(_front < _back);
return _a[_front++];

}

164 ABSTRACT DATA TYPES [CHAP. 7

Following the execution of this code:
Queue g(20):
g.enter('A');
g.enter ("B'};
cout << g.leave({} << endl;
g.enter{'C'};
g.enter{'D'};
cout << g.leave() << endl;
g.entexr('E');
the Queue object named q would lcocok like this:

R

PLEsRs$2 4N

Its abstraction should be imagined like the picture at right. Note that the
is full () function wiil reu%m true aﬁexP max elel%}:mtshave armived, q
regardless of how many have left. Methods of correcting this inefficiency are Queue
given in Problem 7.23.
7.8 void reverse(Queueé& gq)
{ Stack s;

while(!q.is_empty()}
s.push(g.leave());
while(!s.is_empzy())
g.onter({s.pcpl());
}
This assumes that the Stack and Queue classes are both implemented with the same element
type.
7.9 The implementation is similar to that for the Ratio class (see Example 7.18.):
class Hour
{ friend Hour operator+{const Hour&, const Hourk);
friend Hour operator-{const Hour&, const Houré&);
friend Hour operator® {const unsignedé&, const Houré&):
friend istream& operator>>{istream&, Hours);
friend ostreamé& operator<<i{ostream&, const Hours);
public:
Hour (inz=0) ; // constructor
private:
short _value;
void _reduce();
}:
Hour operator+(const Hour& hl, const Hour& h2)
{ Hour sum = hl + h2;
sum._reduce();,
return sum;
}
Hour operator-(const Hour& hl, const Houré& h2)
{ Hour difference = hl - h2;
difference. _reduce();
return difference;

CHAP. 7]

ABSTRACT DATA TYPES 165

Hour operator*(const unsigned& n, const Hour& h)
{ Hour product = n*h;

product. reduce();

return product;
}
istream& operator>>(istream& istr, Houré& h)
{ istr >> h;

h. reduce();
}
ostream& operator<<(ostream& ostr, const Hour& h)
{ ostr << h. value << ":00";
}
Hour::Hour (int value) : _value(value)
{ _reduce();
}
void Hour:: reduce()
{ while (value < 1)

_value += 12;
while (value > 12)
_value -= 12;

}

As in the Ratio class, the _reduce () function is a private utility function used to enforce the
class constraint. If _value is out of range (i.e., either < 1 or > 12), then we repeatedly add or sub-
tract 12 until it is in range.

7.10 This solution is adapted from [Stroustrup2]:

#include <iostream>
#include <climits>

#include <cmath>

#include <ctime>

typedef unsigned long ulong;

const int MAX = INT_MAX; // =2,147,483,647 or 32,767
class Random
{ public:

Random (ulong seed=0);

void seed(ulong seed=0); // allows client to reset
seed

int integer(ulong hi=MAX, ulong lo=1l);
double real();

private:
ulong seed; // INVARIANT: 0 <= seed <= ULONG MAX
void _randomize(); // resets _seed

}i
Random: : Random (ulong s)
{ if (s > 0) _seed = s;
else _seed = time (NULL):
_randomize();
}
void Random::seed(ulong s)
{ if (s > 0) seed = s;
else seed = time (NULL):
_randomize();
}
int Random: :integer (ulong hi, ulong lo)
{ _randomize();
return seed/10 % (hi - lo + 1) + lo;

}

166 ABSTRACT DATA TYPES

double Random::real ()
q[c]p]E]
Queue
{ _randomize();
return double(_seed) /ULONG MAX;
}

volid Random:: randomize ()

(_seed = (1103515245* seed + 123456789) % ULONG_ MAX;

}
Here is a test driver for the class:

int main{()

{ Random random;
const int NUM=10;
const int CNT=10000;
const int MEAN=CNT/NUM;
int bucket [NUM] = (0};
int n, ssdev=0;
for (int i=0; 1 < CNT; i++)
{ n = random.integer (NUM-1,0); // 0 <= n <= 9

bucket {n] ++; // count n

[CHAP.7

ssdev += (n-MEAN)* (n-MEAN) ; // sum its deviation squared

}
for (int j=0; j < NUM; j++)
cout << "\t" << j << ": " << bucket[j] << endl;
cout << "Standard deviation = " << sqrt(ssdev/CNT)
for (i=0; 1 < 25; i++)
cout << random.integer(2) << ", ";
cout << endl:
for (i=0; 1 < 25; i++)
cout << random.integer(6) << ", ';
cout << endl;
for (i=0; 1 < 20; 1i++)
cout << random.integer(99,10) << " "
<< random.integer (9999, 1000) << " "
<< random.integer {999999,100000) << " "
<< random.real () << endl;
return 0;
}
7.11 This solution uses the Random class given in Problem 7.10:
$#include "Random.h"
class Dice
{ public:
Dice() : sum{2) { }

<< endl;

void tossf3 { _sum = random.integer(6) +_ random.integer(6);

int sum() { return _sum; }

private:
Random random; // random number generator
int sum; // the sum of the two dice

}:

Whena Dice object is created (by the class constructor), it creates a Random object whose seed is
initialized from the system clock. Then whenever the Dice object's toss () function is called, it
makes two independent calls to the integer () functioninthe Random class. Each of those calls
returns a random integer in the range from 1 to 6, thereby simulating two independent dice tosses. The
sum is assigned to _sum. Note that the distribution of this sum is not uniform. For example, a 9 is

CHAP. 7] ABSTRACT DATA TYPES 167

twice as likely as an 11, because there are 4 ways ({3,6}, {4,5}, {5,4}, or {6,3}) thata 9 can occur but
only 2 ways ({5,6}, {6,5}) that an 11 can occur.

7.12 class Address
{ public:
Address{string="", string="", string="",string="",string="");
string street() { return _street; }
string city() { return city; }
string state() { return _state; }
string code() { return _code; }

string country() { return _country; }
void set_ street(string street) { _street = street; }
void set city(string city) { city = city; }
void set state(string state) { _state = state; }
vold set _code(string code) { _code = code; }
void set country(string country) { _country = country; }
private:
string _street;
string city;
string _state;
string code;
string country;
}i
Address: :Address(string street, string city, string state,

string code, string country) : _street(street), _city(city),
_state(state), _code(code), _country(country) { }
7.13 class Ratio
{ friend Ratio operator-(Ratio, Ratio);
[/ een

}i
Ratio operator-{Ratio x, Ratio y)
{ int num = x. num*y. den - X. den*y. num;
int den = x. _den*y. den;
Ratio temp(num, den);
return temp;
}
7.14 class Ratio
{ friend Ratio operator/(Ratio, Ratio);
/..
}i
Ratio operator/(const Ratio& x, const Ratio& vy)
{ assert(y. num != 0);
int num = x. num*y. den;
int den = x._den*y. num;
Ratio z(num, den);
return z;
}
7.15 int Queue::size()
{ return back - _front;
}
7.16 ADT: ModN
Description:
An object represents one of these integers: 0, 1, 2, 3, 4, 5, or 6.
Invariant:
The private data _n is an integer in the range 0—6.

168 ABSTRACT DATA TYPES [CHAP. 7

Constructor:
create Creates an object with default value 0.
Access Functions:
value Returns the value stored.
Friend Functions:
add Adds two ModN objects.
subtract Subtracts one ModN object from another.
multiply Multiplies two ModN objects.
divide Divides one ModN object by another.
remainder Obtains the remainder from the division of one ModN object by another.
input Extracts a ModN object from an input stream.
output Inserts a ModN object into an output stream.

const int N = 7;

class ModN

{ friend ModN operator+ (ModN, ModN)
friend ModN operator- (ModN, ModN);
friend ModN operator* (ModN, ModN)
friend ModN operator/ (ModN, ModN)
friend ModN operator$%$ (ModN, ModN);
friend istream& operator>>(istream&, ModN&);
friend ostream& operator<<(ostream&, const ModN&);

public:
ModN{int n=0) : n(n) { }
ModN (const ModN& x) : n(x. n) { }
ModN& operator=(const ModN& x) { n = x. n; return *this; }
ModN& operator=(const int n) { n = n%N; return *this;)
int value() const (return n; }

private:
int n;

i
ModN operator+ (ModN x, ModN y)
{ ModN z:
Z. n = (X. n+ y. n)%N;
return z;
}
ModN operator- (ModN x, ModN y)
{ ModN z;
z. n= (x. n-y. n+ N)$N;
return z;
}
ModN operator* (ModN x, ModN y)
{ ModN z;
z. n = (x. n*y. n)%N;
return z;

}
ModN operator/ (ModN x, ModN vy)

{ assert(y. n != 0);
ModN z;
z. n=x.n/ y.n;

return z;

CHAP. 7]

7.17

7.18

ABSTRACT DATA TYPES 169

ModN operator$ (ModN x,
{ assert(y. n != 0);
ModN z;
Zz. n=x.n% y. n;

return z;

}

ModN vy)

istream& operator>>(istreamé& istr, ModN& x)

{ int n;
istr >> n;
X. n = n%N;

return istr;

}

ostream& operator<<(ostream& ostr, const ModN& x)

{ ostr << x. n;
return ostr;
}

class Purse
{ public:

Purse(int p=0, int n=0,

_p{p), _n(n), d(d),
int pennies{()
int nickels ()

int d=0, int gq=0)
_qf(q) { _reduce(); }
const { return p; }

const { return n; }

int dimes() const { return _d; }
int quarters() const { return g; }
int value() const { return p + 5* n + 10* d + 25* q; }
void insert (int n) { p += n; reduce(); }
void remove (int n) { :p -= n; :reduce(); }
void empty() { p= n= _d= qg=0; }
private:
int p; // number of pennies in the purse
int n; // number of nickels in the purse
int d; // number of dimes in the purse
int _q; // number of quarters in the purse
void reduce();
bi
void Purse:: reduce()
{ int v = p + 5* n + 10*_d + 25*_g;
assert (v >= 0);
g = v/25; v %= 25;
d = v/10; v %= 10;
n = v/5; v %= 5;
_b =vs
}
class Distance
{ friend Distance operator* (double, Distance);

friend Distance operator/(Distance, double);

public:

Distance (double m=0)

double cm()
double km{()
double in ()
double ft ()
double mi ()

const
const
const
const
const

{
{
{
{
{

return
return
return
return
return

void add cm(double cm) {

void add km(double km) {
void add in(double in) {

:o_m(m) { }

100* m; }

_m/100; }

m/0.0254; } // 1 in == 0.0254 m
“m/0.0254/12; }
“m/0.0254/12/5280; }

m = cm/100; }
m = 100*km;)

_m

0.0254*in; }

170 ABSTRACT DATA TYPES [CHAP.7

void add ft(double ft) { m = 0.0254*12*ft; }

void add_mi{double mi) { m = 0.0254*12*5280*mi; }
void add_cm(double cm) { m += cm/100; }

void add km(doukle km) { m += 100*km; }

void add _in(double in) { m += 0.0254*in; }

void add_ft(double ft) { _m += 0.0254*12*ft; }

vold add mi (double mi) { m += 0.0254*12+%*5280*mi; }
void subtract_cm(double cm) { m -= cm/100; }

void subtract_km{double km) { _m -= 100*km; }

void subtract in(double in) { m ~= 0.0254*in; }
void subtract_ft(double ft) { m -= 0.0254*12*ft; }

void subtract_mi{double mi) { m ~-= 0.0254*12+*5280*mi; }
Distance& operator={const Distance&):
Distance& operator*={const double);
Distance& operator/=(const double);
private:
double m; // meters
}i
Distance operator*(double t, Distance x)
{ assert(t >= 0.0);
Distance y(t*x. _m);
return y;
}
Distance operator/(Distance x, double t)
{ assert(t > 0.0);
Distance y(x. m/t);
return y,
}
Distance& Distance::operator=(const Distance& Xx)
{ m= x. m;
return *this;
}
Distance& Distance::operator*=(const double t)
{ assert(t >= 0.0);
_mor= oty
return *this;
}
Distance& Distance::operator/=(const double t)
{ assert(t > 0.0);
m /= t;
return *this;
}
7.19 ADT: Dice

Represents:
An object represents three four-sided dice, in terms of the sum of their values shown.
Domain:
The finite set { 3,4,5,6,7,8,9,10,11,12 }.
Constructor:
create Creates an object whose value is between 3 and 8, inclusive.
Access Function:
toss Simulates the tossing of the three dice. The value of each die is selected from

a uniform distribution of integers from 1 to 4, and then their sum is returned.

171

CHAP. 7] ABSTRACT DATA TYPES
#include "Random.h"
class Dice
{ public:
Dice() : _sum(3) {)
void toss()
{ sum = r.integer(4) + r.integer(4) + r.integer(4);
)
int sum() { return sum; }
private: B
int sum; // the sum of the three dice
Random _r; // random number generator
bi
7.20 ADT: Tack
Represents:
An object represents the position of a dropped thumbtack.
Domain:
The finite set { DOWN, UP }.
Constructor:
create Creates an object whose state is UP.
Access Function:
toss Simulates the tossing of the thumbtack. The state (DOWN or UP) is selected
at random so that UP occurs 60% of the time..
#include "Random.h"
enum State { DOWN, UP);
class Tack
{ public:
Tack() : state(UP);
State toss()
{ int n = random.integer(3):
if (n < 3) return DOWN; // 2/5 = 40%
else return UP;
)
private:
State _state;
Random _random;
}e
7.21 const int FIRST YEAR = 1601;

cons
clas

{

t int LAST YEAR = 10000;
s Date

friend istream& operator>>(istream&, Dates);
friend ostream& operator<<(ostream&, const Dateé&);
friend bool operator==(const Date&, const Dateg);
friend bool operator!=(const Date&, const Date&);
friend bool operator<(const Date&, const Date&):
friend bool operator>(const Date&, const Date&);
friend bool operator<=(const Date&, const Date&);
friend bool operator>=(const Date&, const Dates&);
friend Date operator+(const Date&, const int);
friend Date operator-(const Date&, const int);
friend int operator-(const Date&, const Dates&);

public:

Date (int =1601, int =1, int =1);
int day of year() const;
int year() const;

172

ABSTRACT DATA TYPES [CHAP.7

int month() const;

int day() const;

int days() const;
string weekday() const;
Date operator++();

Date operator--{():

Date& operator+=(const int);

Date& operator-=(const int):
private:

int days; // number of days elapsed since Dec 31 1600
}:
bool 1s leap_year(int year)

{ if (year % 400 == 0) return true; // 2000 is a leap year
if (year % 100 == 0) return false; // 1900 is not a leap year
if (year % == () return true; // 1996 is a leap year
return false; // 1999 is not a leap year

}
int days_in_menth(int m, int y)
(if (m == 2) return (is_leap year(y) ? 29 : 28);
if (m == | m == [l m == 6 || == 11) return 30;
return 31;
}
int elapsed(int y, int m, int d)
// returns the number of days between 1600~12-31 and y-m~-d
{ int n = 0;
for (int yy=FIRST YEAR; yy<y: yyt++)
n += (is leap year(yy) ? 366 : 365);
for (int mm=1; mm<m; mm++)
n += days_in_month(mm, y);
return n + d;
}
istream& operator>>(istream& istr, Date& x)
{ int year, month, day:;
char ¢; // to eact the '-'
cin >> year >> c¢ >> month >> ¢ >> day;
x. days = elapsed(year, month, day);
return istr;
}
ostream& operator<<(ostream& ostr, const Date& x)
{ ostr << x.year() << "-=-";
int m = x.month();
if (m < 10) ostr << "0";
ostr << m << "-";
int d = x.day();
if (d < 10) ostr << "0";
ostr << d;
return ostr;
}
inline bool operator==(const Date& x, const Dateé& y)
{ return bool (x._days == y._days);
}
inline bool operator!=(const Date& x, const Date& y)
{ return bool(x. days != y. days);
}

CHAP. 7] ABSTRACT DATA TYPES 173

inline bool operator<(const Date& x, const Date& y)
{ return bool(x._days < y._days):
}
inline bool operator<=(const Date& X%, const Date& y)
{ return boocl(x._days <= y. days):
}
inline bool operator>(const Date& x, const Date& y)
{ return bool(x. days > y. days):
}
inline bool operator>=(const Date& x, const Date& vy)
{ return bool(x._days >= y. days);
}
inline Date operator+(const Date& x, const int n)
{ Date y = x:
y. days += n;
return y;
}
inline Date operator-(const Date& x, const int n)
{ Date y = x;
y._days -= n;
return y;
}
inline int operator-(const Date& x, const Date& vy)
{ return x. days - y. days;
}
Date::Date(int y, int m, int d)
{ assert (y >= FIRST_YEAR);
assert(l <= m && m <= 12);
assert (1 <= d && d <= days_in month(m, y));
_days = elapsed(y, m, d);
}
int Date::day of year() const
{ int diy; // number of days in year
int n = _days;
for (int y=FIRST_YEAR; y<LAST_YEAR; y++)
{ diy = (is_leap year(y) ? 366 : 365);
if (n <= diy) return n;
n -= diy;
}
return n;

}

int Date::year () const
{ int diy; // number of days in year
int n = days;

for (int y=FIRST YEAR; y<LAST_YEAR; y++)
{ diy = (is_leap year(y) ? 366 : 365);
if (n <= diy) return y;
n -= diy;
}
return LAST_YEAR;
}
int Date::month () const
{ int dim; // number of days in month
int y = year();
int n day of year():

174

}

ABSTRACT DATA TYPES

for (int m=1; m<12; m++)

{ dim = days_in month(m, y);
if (n <= dim) return m;
n -= dim;

}

return 12;

int Date::day() const

{

}

int dim; // number of days in month
int y = year();
int n = day of year():;
for (int m=1; m<12; m++)
{ dim = days_in month(m, y);
if (n <= dim) return n;
n -= dim;
}

return n;

inline int Date::days() const

(
}

return _days;

string Date::weekday() const

// Zeller's Algorithm

{

}

const string WEEKDAY[7]

i { "Sun"' "Mon"’ "TUe", "Wed"' "Thu"'

int y = year();

int m = month{);

int d = day/();

m=1+ (m + 9)%12;

if (m > 10) --y:

int ¢ = y/100;

y %= 100;

int 1 = ((13*m - 1)/5 + d + y + y/4 + c/4 + 5*c)%7;

return WEEKDAY({1i];

inline Date Date::operator++/()

{

}

++_days:
return *this;

inline Date Date::operator--{()

{

}

inline Date& Date::operator+=(const int n)

{

}

inline Date& Date::operator-=(const int n)

{

}

-~ days;
return *this;

_days += n;
return *this;

_days -= n;
return *this;

(see Reilly & Federighi,

[CHAP. 7

CHAP. 7] ABSTRACT DATA TYPES 175

7.22 class Person
{ public:

Person(string lname, string fname, string id)
_lname(lname), fname(fname), _id(id) { }

string lname() const { return _lname; }

string fname() const { return fname;)}

string id() const { return _id; }

Address address() const { return _address; }

Date dob() const { return dob; }

Date dod() const { return dod; }

string sex() const { return sex; }

string phone() const { return _phone; }

string email () const { return _email; }

string url() const { return _url; }

int age(Date date) const (return (date - dob)/365.2425;)

void set lname(string lname) { lname = lname;)}

void set fname(string fname) { fname = fname;)}

void set_id(string id) { _id = id; }

void set address(Address address) { _address = address; }

void set_dob(Date dob) { dob = dob; }

void set dod(Date dod) { dod = dod; }

vold set sex(string sex) { _sex = sex; }

void set_phone(string phone) { phone = phone;)}

void set_email(string email) { email = email; }

void set url(string url) { _url = url; }
private:

string _lname;
string fname;
string _id;
Address _address;
Date dob;
Date _dod;
string _sex;
string _phone;
string email;
string _url;
Vi
7.23 a. The code for the member functions in this implementation is the same as that given in the solution
to Problem 7.7 except that each occurrence of _front is replaced with 0, and the leave()
function is changed to
char Queue::leave ()
{ assert (0 < _back};

char temp = _a[0];
for (int i=1; i < _back; i++)
_afi-1] = _afi};

return temp;

}
b. The code for the member functions in this implementation is the same as that given in the solution
to Problem 7.7 except for the enter () function and the leave () function:
void Queue::enter (const char& item)
{ assert(_back != max && _back != front - 1);
_a{_back++] = item;
if (_back == _max) _back = 0; // wrap around
}

176 ABSTRACT DATA TYPES [CHAP. 7

char Queue::leave()

{ assert(back != front);
return a[front++];
if (_front = max) front = 0; // wrap around
if (front == back) front = back = 0; // reset

}
7.24 ADT: Deque
Represents:
A double-ended sequence of elements, all of the same type.
Access:

A deque allows access only at the two ends of ends of the sequence, called the /eff and the right
of the deque. Each end acts independently like a stack: last-in-first-out.

Constructors and Destructors:

create Creates an empty deque of a given maximum size.
destroy De-allocates the memory used for the deque.
Access Functions:
left Returns the last element inserted at the left.
right Returns the last element inserted at the right.
is empty Returns true if the deque is empty; otherwise returns false.
is_full Returns true if the deque is full; otherwise returns false.

Mutator Functions:
enter left Inserts a new element at the left end of the deque.
enter right Inserts a new element at the right end of the deque.
leave left Removes and returns the left-most element from the deque.
leave_right Removes and returns the right-most element from the deque.
class Deque

{ public:
Deque (int s=100); // sets the default maximum number at 100
~Deque () { delete [] _a; }
char left() const { return _a[0]; }
char right () const { return a[max-1]; }
bool is _empty () const;
bool 1s full() const { return bool(_left == right-1); }

vold enter left (const charg):
vold enter right (const charé);
char leave left();
char leave right();

private:
char* _a; // the Deque itself: a dynamic array of char
int max; // the maximum number of elements on the Deque
int left; // the next available element of the left

int right; // the next available element of the left
i

Deque: :Deque(int m) : max(m), left(0), _right(m-1)
{ _a = new char[_max];
assert(a t= 0);

)

inline bool Deque::is_empty() const
{ return bool(left == 0 && _right == max-1);
}

CHAP. 7]

ABSTRACT DATA TYPES 177

void Deque::enter left(const char& item)
{ assert(_left != right-1);
for (int i=_left; i>0; i--)
_a[i) = _a[i-1]; // shift all the left elements right
++ lefrt;
_af[0] = item;
}

void Deque::enter right (const charé& item)

{ assert(left != right-1);
for (int i= right; i < max-1; i++)
_af{i] = _a(i+l1l}); // shift all the right elements left
-- _right;
_al max-1]} = item;

}

char Deque::leave_ left ()
{ assert(_left > 0Q);

char temp = _af[0];
for (int i=0; i < left-1; i++)

~a[i} = _a[i+l]); // shift all the left elements left
-- left;

return temp;

}
char Deque::leave right()
{ assert(right < max-1);

char temp = a[max-1];
for (int i= max-1; 1 > right+l; i--)

_af[i)] = _ali-1]; // shift all the right elements right
++ _right;

return temp;

Chapter 8

Pointers

A pointer is an address of a byte in main memory. Pointers are widely used in C++ to facilitate
efficient dynamic processing of data.

8.1 POINTERS

If 7 isany type,then 7* isthe derived type “pointerto T.” The base type T may be a built-in
type,such as int or float. Orit may be a user-defined type, such as Date or Person.

EXAMPLE 8.1 A Pointertoan int
int n = 22; // defines the integer n initialized to 22
int* p = &n; // defines the pointer p initialized to the address of n
This code defines

two objects: the integer ﬂfﬁ By
n and the pointer p. iR,

Both are initialized: n \,\

with the value 22, and p >,

with the value &n, N,

which means the e

memory address of the
object n. We think of p
as an arrow that points to the object n, as shown here on the left. But really p is an object whose value is a
memory address, perhaps the hexadecimal address 0x3fffcbé, as shown above on the right.

Note that the pointer contains only the address of the first byte occupied by n. In this ¢example, n isan
integer occupying the four bytes Cx3fffcb8 to 0x3fffcbb,but p contains only the address of the first
byte Ox3f ffcbB.

8.2 THE DEREFERENCE OPERATOR

The asterisk symbol ¢ has two related uses in C++. When used as a suffix on a type, as in
Example 8.1, it defines the pointer type derived from the base type. It is also used as a prefix to the
name of a pointer. In that context it is called the dereference operator. The resulting expression refers
to the object to which the pointer points. This is called dereferencing the pointer.

EXAMPLE 8.2 Dereferencing a Pointer
Date x{1969,7,201; // the object x represents the date Jul 20, 1969
Date* p = &x: // the pointer p points to the obrect x
cout << "Man stepped onto the moon on " << *p << endl;

Here p pointstoa Date object, where Date is a user-defined class (see page 171). The pointer is
dereferenced in the output statement: *p is the same as x, so x s inserted into the output stream, thereby
printing

Man stepped onto the moorn on 19€9-37-20

178

CHAP. 8] POINTERS 179

The relationship between p and x is illustrated in

. . « X
the picture at right. Note that p has type Date %a@-\> _days [134610

and x hastype Date. T

When a pointer points to a class object, as in
Example 8.2 above, there is an alternative nota-
tion for calling a member function bound to a dereferenced pointer. The following two forms are
equivalent:

(*p).£();

p->f();
The second of these two equivalent forms is generally preferred because it is simpler and because the

combination symbol -> suggests the pointer relationships.

Date

EXAMPLE 8.3 Binding a Function Call to a Dereferenced Pointer

This code continues from Example 8.2:

Date y(1972,12,17);

Date* g = &y;

cout << "Apollo 17 left the moon on " << g->weekday() << ", "

<< g->month () << "/" << (*qg).day() << "/" << y.year() << endl;
cout << "The era of moon landings lasted " << y - *p << " days.\n";
The output is
Apollo 17 left the moon on Sun, 12/17/1972
The era of moon landings lasted 1246 days.

8.3 POINTER OPERATIONS

Pointer values may be output with the insertion operator <<.

EXAMPLE 8.4 Pointer IO
Date x(1941,12,7); // the object x represents the date Dec 7 1941

Date* p = &x; // the pointer p points to the object x
cout << x << "\t' << p << '\t' << *p << endl;

The output is
1941-12-07 Ox3fffccd 1941-12-07

This shows that the Date object x is stored in memory beginning at byte number- 0x3fffccd.

However, pointers cannot be input:
cin >> p; // ERROR: the insertion operator is not defined for pointers

Pointers may be assigned to other pointers of the same type.

EXAMPLE 8.5 Assigning Pointers
This code continues from Example 8.3:
q = p:; [/ now both p and g point to x

cout << "Apollo 11 landed on the moon on "™ << g->weekday() << ", "
<< g->month{) << "/" << g->day() << "/" << g->year() << endl;

The output is
Apollo 11 landed on the moon on Sun, 7/20/1969

Pointers can also be incremented and decremented.

180 POINTERS

EXAMPLE 8.6 Pointer Arithmetic

char s[] = "ABCDEFGH";

char* p = &s[3]; // p points to s[3]
cout << "*p = " << *p << endl;

++p; // p points to s[4]
cout << "*p = " << *p << endl;

p += 3; // p points to s(7}
cout << "*p = " << *p << endl;

p -= 6; // p points to s(1]
cout << "*p = " << *p << endl;

--p; // p points to s{0]
cout << "*p = " << *p << endl;
Here is the output:

*ID = [)

*p = B

*ID = }{

*ID = B

*ID = }X

The pointer p is initialized to point to s[3] which contains 'D'.
Incrementing p advances it to pointto s[4] whichcontains 'E°'.
Adding 3 to p advances it to pointto s[7] which contains 'H'.
Subtracting 6 from p moves it back to pointto s{1] which contains
'B'. Then decrementing it moves it back to point to s{0] which
contains 'A’':

Pointers can also be subtracted from other pointers:

EXAMPLE 8.7 Subtracting Pointers

char s{] = "ABCDEFGHIJ";

char* p = &s[3}: // p polnts to s[3]
char* q = &s[6); // q points to s[6]
cout << "*p = " << *p K ", *g =" << *q;
--p; // p points to s[2]
++q7 // q points to s[7]
cout << "\t*p = " << *p << ", *g = " << *g;
cout << "\tgq - p = " << g - p << endl;
The output is

*p=D, *qg=¢G

*p =C, *gq=H

q-p=>3

The pointer p is initialized to point to s({3] which
contains 'D', and then the pointer q is initialized to point to
s[6] which contains 'G'. Decrementing p makes it point to
s[2] which contains 'C', and then incrementing g makes it
point to s[7] which contains 'H'. Now g contains an
address which is 5 bytes higher than the address in p,so g - p
evaluates to 5.

Arithmetic on pointers depends upon the size of their base
types. Incrementing a pointer to char increases its value by 1.
But incrementing a pointer to double increases its value by 8.
In general the unit used in arithmetic on pointers of type pointer
to T is sizeof (T).

[CHAP. 8

s (RIBICIDIETFIC[H]

char*

char*

s [A[B[CTRIE[ETe o)

char®

char*

0 7
S A]B C|D|E|F GlH

ar*

char*

NEERBEEER

char*

char*

CHAP. 8] POINTERS 181

EXAMPLE 8.8 Pointer Arithmetic with Unit Size 4
int a(] = { 22, 33, 44, 55, 66, 77, 88, 99 };

int* p = &a(3]: // p points to a[3]
cout << "p = " << p <<« ", *p = " << *p << endl;

+1p; // p points to al4]
cout << "p = " <K<K p <", *p =" K *p << endl;

p += 3; // p points to al7]
cout << "p = " <K<K p << ", *p = " << *p << endl;

p -= 6; // p points to a[l]
cout << "p = " KK p <", *p =" K *p << endl;

--p; // p points to a[0]
cout << "p = " KK p <", *p =" << *p << endl;
The output is

p = 0x3fffcb4, *p = 55

p = 0x3fffcb8, *p = 66

p = Ox3fffccd, *p = 99

p = 0x3fffcac, *p = 33

p = 0x3fffca8, *p = 22

The pointer p is initialized to pointto a[3] which contains 55. Incrementing p advances it to point to
a[4] whichcontains 66. This changes the value of p from 0x3fffcb4 to 0x3fffcbs, an increase of
4. Adding 3to p advances it to pointto a[7] which contains 99. This changes the value of p from
Ox3fffcb8 to Ox3fffcc4, an increase of 12. Subtracting 6 from p moves it back to pointto a{1]
which contains 33. This changes the value of p from 0x3fffcc4 to 0x3fffcac, a decrease of 24.
Then decrementing it moves it back to pointto a [0] which contains 22. This changes the value of p from
0x3fffcac to 0x3fffcas, adecrease of 4, -

Note that pointers in the same expression must point to the same type:
int n = 22;
double x = 3.141592653589793;
int* p = &n;

double* g &x;
cout << p << endl; // ok
cout << g << endl; // ok

cout << g - p << endl; // ILLEGAL: *p and *g have different types
Here p has type pointerto int and g has type pointer to double.

A pointer expression such as p+5 makes sense and acts like a pointer. In particular, it can be
dereferenced: * (p+5) refers to the object located at address p + S*sizeof(T), where T is the
base type for the pointer p. If p has type pointer to short,then p+5 points to the address p+10;
but if p has type pointerto double, then p+5 points to the address p+40.

EXAMPLE 8.9

int a[] = { 22, 33, 44, 55, 66, 77, 88, 99 };
int* p = &al[2]; // p points to a[2]
cout << "p = " <K< p << ", *p =" << *p << endl;
int* g = p+3; // q points to al[5]
cout << "g = " << g <<« ", *g = " << *qg << endl;
cout << "p+d = " << ptd << ", *(p+d) = " << *(p+d) << endl;
cout << "g-2 = " << g-2 << ", *(g-2) = " << *(g-2) << endl;
cout << "g - p = " << g - p << endl;

The output is

p = 0x3fffcb0, *p = 44

q Ox3fffcbe, *q = 77
p+4d = Ox3fffccO, *(p+4) = 88

182 POINTERS [CHAP. 8

g-2 = 0x3fffcbd, *(g-2) = 55

q-p=3
The pointer p is initialized to pointto a {2] which contains 44 ataddress 0x3ff £cb0. Then the pointer
q is initialized to pointto a [5] which contains 77 ataddress 0x3£ffcbc. Note that this is 12 bytes far-
ther than O0x3fffcbO. The expression p+4 evaluates to Ox3fffccO which is 16 bytes farther than
O0x3£ffcbO. It is the first of the four bytes that contain a[6] whichis 88, so the dereferenced expression
*(p+4) evaluates to 88. Similarly, the expression g-2 evaluatesto 0x3fffcbd which is 8 bytes ahead
of 0x3fffcbc; that is the first of the four bytes that contain a[3] which is 55, so the dereferenced
expression * (gq-2) evaluates to 55. Finally, the expression g - p evaluatesto 3 because the distance
from O0x3fffcb0 to Ox3fffcbe is3 four-byte units:

0x3f £ febo)
Ox3fffcbl
0 1 2 3 4 5 6 7 ox3fteenz 44
Ox3fffcba
al 221 33i 44 I 55T 66T77 f88 r99] Ox3fffebdl] >
Ox3f ffcbs)
ox3fftene[2 O]
0x3fffcb?
Ox3fffcbe
Ox3fffch9
0x3fffcba_66: q
O%3f £ fcbb 4/,,_@
0x3fffcbe h
ox3ftfebdl 777 int*
0x3fffche[
ox3tffcbf _1
Ox3fffcco) —
Ox3fffcel
0x3fffcc2:88_'
0x3fffccl

— — int?®

Ox3€ffccd
Ox3€fffcch

Ox3€ffcch 99
Ox3fffcc?

The array a is pictured above on the left. The diagram on the right shows a detail of memory where the array
is stored. The pointer p points to byte number 0x3f£ffcb0 which is the first of the four bytes that hold
a (2], and the pointer g points to byte number Ox3fffcbc which is the first of the four bytes that hold
a5].

8.4 THE REFERENCE OPERATOR

Like the asterisk symbol *, the ampersand symbol & has two related uses in C++. When used as
a prefix to the name of an object, it is called the reference operator. As the previous examples
illustrate, the reference operator returns the address of the object:
p = &y; // assigns the address of y to the pointer p
But we have also used the ampersand as suffix to a type:
void swap(float& x, float& y);
When used this way, the ampersand defines a derived type, called a reference type. For example,
floats& is the type “reference to float.” This is the way reference parameters are declared in
functions. (See Example 4.13 on page 75.)
A reference is a synonym or alias; i.e., another name for an existing object. Chapter 4 describes
how references are used for passing to and returning from functions. References are also used
independently of functions.

EXAMPLE 8.10 Declaring References
This code uses the Person class defined on page 175:
Person student 6025("Lewis", "Lois", "491176025");
Person& assistant = student_6025;

CHAP. 8] POINTERS 183

Person& lois = assistant;
lois.set phone("418-3306");

It defines a single Person object with three different names: student 6025, assistant,and lois.

Then it sets the phone number for that single object:

student_6025
_lname{Lewis | _sexri
assistant string string
fname[Lois] address[
lOiS - string - Address
1d{491176025 | _phone[418-3306]
string string
~dob[| _emailfﬁ 1
Date string
_dod| | _url|]
Date string

Person

Like constants, references must be initialized. That should seem reasonable, since you couldn’t
have an alternative name for something that doesn’t exist.
Although not required, pointers should also be initialized.

The reference and dereference operators are inverses in the sense that each reverses the action of
the other.

EXAMPLE 8.11 The Reference and Dereference Operators
Address x("72 N Main", "Troy", "NY", "12180",
Address y("49 Elm St", "Troy", "MI", "48099",

"USA") ;
"USA") ’.

Address* p = &x; // p points to x
Address* q = &y; // g points to y
Address z = *p; // initializes z to x
z = *&y; // assigns y to z

p = &*qg; // assigns g to p

Note that although the reference operator can be applied to any lvalue, the dereference operator
can be applied only to pointers:
Address** pp = &p;
z = *x;

// ok: p has type Address*
// ERROR: x is not a pointer

8.5 NULL POINTERS

The number zero (0) is an integer literal that can be used as a pointer value. But as an address,
0x0 would locate the first byte in memory, which is certainly outside any memory segment allocated
to a program. So 0 is a valid pointer value that cannot be dereferenced. It is called the null value, and
any pointer whose value is zero is called a null pointer.

Null pointers are often used to indicate the end of something, like a list or a tree. But since they
cannot be dereferenced, they are a common cause of run-time error.

EXAMPLE 8.12 Bus Errors
This program defines a version of the Standard C strchr () function for finding characters within C-
strings. The locate () function prints the index of the given character within the given string if it is found.

184 POINTERS (CHAP. 8

But if the character is not in the string, the program crashes on the dereference *p because in that case p is
the null pointer:
char* strchr{char* s, char c¢)
{ for (char* p=s; *p; p+t)
if (*p == c) return p;
return 0;

}

void locate(char* s, char c)
{ char* p = strchr(s, c);

if (*p == 0) cout << "Not found"” << endl; // ERROR
else cout << "The first occurrence of the character '" << c
<< "'\n\tin the string \"" << s
<< "\"\n\tis at position: " << p - s << endl;
}
int main{()
{ locate("Newton, Isaac, 1642-1727", 'a'});

"Leibniz, Gottfried Wilhelm, 1646-1716", '1');
"Gauss, Carl Friedrich, 1777-1855", 'k'});

locate
locate
}
The output is
The first occurrence of the character 'a'
in the string "Newton, Isaac, 1642-1727"
is at position: 10
The first occurrence of the character 'l'
in the string "Leibniz, Gottfried Wilhelm, 1646-1716"
is at position: 21
Bus error
On the third callto the locate () function, the strchr () functionreturns 0 to p. Since the dereference
*p is not possible when p is 0, the program crashes with a “Bus error.” This code is repaired simply by
changing the conditionto (p == 0).

Notice how the for loop works inthe strchr() function. It is controlled by the pointer p which
traverses the string s. The C-string variable s contains the address of the first character in the string, so the
loop is initialized by setting p = s. The characters in the string reside in consecutive bytes in memory, so
++p moves it down the string one character at a time. And since every C-string ends with the null character 0,
the condition *p !'= O can be used to continue the loop. But the condition *p != 0 is equivalent to the
condition *p because any non-zero integer value (or pointer values) is always interpreted as the bool value
true, and the zero integer value (or null pointer) is always interpreted as the bool value false. Thus, the
form

for (char* p=s; *p; pt+)
neatly and succinctly traverses the C-string, giving access to each character of s through *p. This is a stan-
dard technique in C programs.

The bus error illustrated in Example 8.12 was caused by dereferencing the null pointer. A similar
run-time error occurs when a dangling pointer is dereferenced. In that case, the diagnostic error mes-
sage from the operating system is likely to be “Segmentation fault” because the dereference is an
attempt to access a memory location that is outside the segment allocated to the running process.

8.6 DYNAMIC ARRAYS

A dynamic array is an array whose size can be changed dynamically while the program is running.
We used dynamic arrays to implement the Stack, Queue, and Deque classes in Chapter 7.

CHAP. 8] POINTERS 185

EXAMPLE 8.13 Using a Dynamic Array in the Stack Class
Here are the relevant parts of the Stack class defined on page 154:
class Stack

{ public:
Stack(int s=100); // sets the default maximum number at 100
~Stack():
/7.,
private:
char* a; // the stack itself: a dynamic array of char
int max; // the maximum number of elements on the stack
int _count; // the number of elements on the stack
}i
Stack::Stack(int m) : _max(m), _count(0)
{ _a = new char[_max];
assert(a != 0);

}
Stack::~Stack ()
{ delete [] _a;

}
The dynamic array a is declared to bea char* because the array’s element type is char. If the class

were for stacks of Person objects instead of stacks of chars, we would declare its dyramic array as

Person* a;
The default constructor uses the new operator to allocate space for m elements of type char to the array
_a. This storage allocation occurs dynamically, at the moment a declaration such as

Stack stack(500); // creates a stack that can hold up to 500 chars
executes. Those 500 bytes of memory remain allocated to _a until the stack goes out of scope. At that
moment, the destructor is invoked, which uses the delete operator to deallocate the storage.

Notice the call
assert(_a != 0);

in the constructor. This is done to check whether the storage allocation was successful. If the operating system
is unable to allocate the number of bytes requested, it sets the pointer _a to 0. That would likely happen upon
a declaration such as

Stack big stack(5000000); // asks for 5 MB of memory

The new and delete operators are used to allocate and deallocate dynamic arrays. But they
can also be used to allocate and deallocate individual objects.

EXAMPLE 8.14 Dynamic Objects
This example uses the Person class defined on page 175 and the Date class defined on page 171.
Person* p = new Person("Wells", "Ward", "614405927");
p->set dob(Date(1980,8,18));

P

Pem@\ _lname [Wells | _sex r 7
string string
_fname [Ward | _address| |
string Address
_id[614405327 | _phone {598-0311]
string string

_dob| | _email|
Date string

_dodr] _url[
Date string

Person

186 POINTERS [CHAP. 8

The first line uses the new operator to create an anonymous Person object. It initializes its 1name,
_fname,and _id fields, and defines the pointer p to point to it. The second line dereferences the ;;ointer)
tocallthe set dob member function to set the object’s _dob field.

Note how the Date constructor is used in the second line to create an anonymous temporary Date
object to represent the date Aug 18 1980. That object is passed to set_dob() member function of the
Person classtosetthe Person object’s dob field. The Date objectis passed by value, sothe Date
class copy constructor copies the data into the _dob field.

8.7 THE this POINTER

When a class member function is called, it must be bound to an instance of the class. For
example,
Person sara("Smith", "Sara", "510880457");
sara.set_email ("ssmith@richmond.edu"):
The call set_email ("ssmith@richmond.edu") is bound to the object sara. To carry out its
instructions, the function needs access to both the explicit argument "ssmith@richmond.edu®
and the implicit argument sara. Member functions can access their explicit arguments by means of
their parameters. Member functions can access their implicit argument by means of the this
pointer.
The C++ keyword this can be used only within member functions. It is a predefined pointer
that always points to the object to which the member function call is bound.

EXAMPLE 8.15 Using the this Pointer
This member function for the Purse class (defined on page 169) determines whether a variable is a
synonym for its implicit argument
bool is_same(Purseé& x)
{ return bool (&x == this);

}
If x and y are Purse objects, this function could be called like this:

if (x.is same(y)) cout << "It's the same purse.\n";
The function returns true if the address of y is the same as this which points to x; ie,if x and y have
the same address. That condition determines, by definition, whether x and y are names for the same object.

Of course, this function is unnecessary. The call could be replaced by the condition (&x == &y).

Whenever a class member function has to return a reference to its implicit argument, it should

return *this;
That is the standard code for the overloaded assignment operator.

EXAMPLE 8.16 An Assignment Operator for the Stack Class
This member function could be added to the Stack class (defined on page 154) to allow the assignment

of one stack to another:
Stack& Stack::operator=(const Stacké& x)

{ if (&x == this) return *this;
_max = X._Mmax;
_count = x._count;

_a = new char[max];

for (int 1 = 0; i < _count; i++)
_ali]l = x._alil;

return *this;

CHAP. 8] POINTERS 187

The function returns immediately if its explicit argument is the same object as its implicit argument. Otherwise,
it copies the values of max and _count, allocates the dynamic array _a, and then copies the stack ele-
ments from x to *this.

The assignment operator returns *this so that the operator can be used in a cascade assign-
ment, like this:
zZ =Yy = X;
This calls the assignment operator twice, like this:

z.operator=(y.operator=(x)});
The inside call assigns x to y and returns a reference to y. Then the outside call uses that reference

as its explicit argument, and assigns y to z.

Warning: Without the explicit definition of the class assignment operator, the compiler will generate
a default version of it. But this default version simply performs a bitwise copy of an object’s data
members. For classes like Person and Purse, a bitwise copy is completely adequate, so there is
no need to include an explicit definition of the assignment operator. However, for classes like Stack
whose member data are dynamic, a bitwise copy produces incorrect results. A bitwise copy of the
data member _a will not duplicate the array; it simply duplicates its name. So the assignment of one
Stack object to another would result in two separate objects using the same array to hold their data.

Any class whose member data use pointers should either include explicit definitions of the class’s
copy constructor and assignment operator, or those two member functions should be disabled by
declaring them to be private, like this:

class Stack

{ public:
Stack(int s=100); // sets the default maximum number at 100
~Stack();
/7. ..

private:

char* a:; // the stack itself: a dynamic array of char
int max; // the maximum number of elements on the stack
int :count; // the number of elements on the stack

Stack (const Stacké& x) {}
Stacké& operator=(const Stacké& x) { return *this; }

Yi
As private function members, they can be called only from within the class itself.

Review Questions

8.1 What is the difference between p and *p? (Assume that p is a pointer type.)

8.2 What is the difference between x and &x?

8.3 What is the difference between ++(*p) and * (++p)?

8.4 Why must a reference be initialized?

8.5 What boolean expression determines whether two names, x and y, are names for the same
object?

8.6 What is a dangling pointer?

8.7 What’s wrong with storing pointers in a file?

8.8 What is the difference between a static array and a dynamic array?

8.9 How are dynamic arrays better than static arrays?

8.10 Whatisthe this pointer?

188 POINTERS [CHAP. 8

8.11 Why should the assignment operator of a class return *this?

8.12 Why is it important to define the copy constructor and the assignment operator explicitly
private in aclass whose data members include pointers, instead of allowing the compiler
to generate its default versions of these two member functions?

8.13 What does the new operator do?
8.14 What does the delete operator do?

Problems

8.15 Tell what is wrong with each of the following:
a. int n = 44;

int* p = &n;
t+({*p);
int m = p;

b. int* p = new int;
*p = 44;
int* q = p;
delete p;

c. int* p = new int;
*D = 44;
int* g = new int;
p = q;

d, int n = new int;
n = 44;

8.16 Trace the following code, showing each value of each variable:
int a[]l = { 22, 33, 44, 55, 66, 77 };
int* p = &a[3); // assume that p gets the value 0x3fffcbc here
int n = *p;
++{*P);
++p;
int* q = &a[5];

*(--q) = 88;
p -= 3;
n=g-ps

8.17 Draw pictures to show the effect of the following code:
double* p = new double;
*p = 3.141592653589793;
short* q = new short([5];
*q = 44;
*(g+4) = 88;

8.18 Draw pictures to show the effects of the following statements:
string* p = new string ("ABCDEFG");
string s = *p; // s is a copy of *p;
string& r = *p; // r is a synonym for *p
string* g = &s; // g points to s

r(5] = '?';
g->erase (3, 2);
s{1l] = *!';

p->replace(2, 1, "$=$");

CHAP. 8] POINTERS 189

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

Programming Problems

Write declarations for each of the following
a. A pointertoa char,
b. A C-string wich can have up to 19 characters.
¢. A pointer to a C-string.
d A string object.
e. A pointertoa string object.
f A static array of 8 string objects.
g. A dynamic array of 8 string objects.
Write statements for each of the following;:
a. Initialize a pointer p to pointtoa Person object x.
b. Assign the Person object y to the object to which p points.
c. Initialize a pointer g to the address of the pointer p.
d. Initialize a reference r tothe Person object x.
Write and run a program that declares the following objects and then prints their addresses: a
bool, a short,an int,a float,a double,a string of 5 characters, and an array of 5
floats:
a. using static allocation;
b. using dynamic allocation.
Implement the following function for the Purse class (defined on page 169):
int f(Purse* p, Purse* q);
// Returns 1 if p and q point to the same purse. Returns 0 if p
// and g point to different purses which have the same contents.
// Returns -1 if the two purses have different contents.
Implement the following function:
bool same(Person& x, Person& y);
// Returns true iff x and y are the same person.
Implement the following function from the <cstring> library for C-strings:
int strlen(const char* s);
// Returns the number of non-null characters in the C-string s.
Implement the following function from the <cstring> library for C-strings:
char* strcat(char* sl, const char* s2);
// RBppends a copy of the C-string s2 to sl, and returns sl.
Implement the following function from the <cstring> library for C-strings:
char* strcpy(char* sl, const char* s2j;
// Copies the non-null characters of s2 into sl, and returns sl.
Implement the following function from the <cstring> library for C-strings:
int strcmp(const char* sl, const char* s2);
// Compares sl and s2 lexicographically. Returns a negative
// integer is sl < s2, a positive integer if sl > s2, and 0
// if the two strings have the same value.
Implement the following function from the <cstring> library for C-strings:

char* strstr(const char* sl, const char* s2);
// Searches sl for the substring s2. If found, its address in sl

// is returned. Otherwise, 0 is returned.

190

8.1

8.2
83

84

8.5
8.6

8.7

8.8

8.9
8.10

8.11
8.12

8.13

8.14

8.15

8.16

POINTERS [CHAP. 8

Solutions

If p is a pointer, then the value stored in p is a memory address and the value of *p is the value
stored at that address.
If x is an object, then the value of &x is the address of that object in memory.
If p isapointer to an integer, then ++ (*p) increments that integer, whereas the value of the expres-
sion * (++p) is whatever is stored in the memory location immediately after that integer. For exam-
ple, if a is an array of short integers, and if p pointsto a[2], then ++ (*p) increments a[2],
while * (++p) refersto a(3).
A reference is a synonym for an existing object, so it must be bound to an existing object when it is
declared.
Two names, x and v, are names for the same object iff (&x == &y).
A dangling pointer is a pointer whose value is an unallocated (or deallocated) address; i.e., a pointer
that does not point to any existing object.
Pointers are volatile data: as memory addresses, they are useful only during the execution of the pro-
gram in which they were created. Once a program has terminated, all its data in memory are lost, and
so any references to the memory locations at which they were stored is meaningless. Data is stored in
files on disks so that they can be retrieved and reused by different programs at different times. If that
reuse is not possible, then there is no reason to store it.
A static array is declared like this:
double x[N]:
Its dimension (N) must be a constant, determined at compile-time. A dynamic array is declared like as:
double x = new double(n}];
Its dimension (n) may be a variable whose value is set at run-time.
Dynamic arrays are more flexible than static arrays because their sizes can be variables.
The this pointer is a pointer that is available inside class member functions. It points to the object
to which the function call is bound.
The assignment operator should return *this to allow cascade assignments, suchas z=y = x;
The compiler-generated versions of the copy constructor and the assignment operator simply make a
bitwise duplicate of each object being assigned or copied. If the class data members include pointers,
the values to which they point will not be duplicated.
The new operator is used to allocate storage dynamically (at run-time) to arrays and anonymous
objects. For example:
short* a = new short(10}; // allocates 20 bytes for the array a
float* p = new float; // allocates 4 bytes for a float
The delete operator is used to deallocate storage dynamically. For example:
delete (] a:; // deallocates the storage allocated to the array a
delete p; // deallocates the storage allocated at p
a. The initialization
int m = p;
is illegal because m hastype int and p hastype pointerto int.
b. The statement
delete p;
leaves q dangling. It deletes the only int allocated, so g has nothing to point to.
¢. The assignment
P = Qq;
renders the value 44 inaccessible. It remains allocated, but its “handle” p has been removed.
d. The new operator returns a pointer, not an int. So the code should be written as in b.

al0) |al(l] |al2){al3]]|al4])ial5] P n q
22 33 44 55 66 77)0x3fffcbc |55
56 O0x3fffccO
88 O0x3fffcco
Ox3fffcbd)| 3

CHAP. 8] POINTERS 191

8.17
dEWM.141592653589793J ?m@w g EEE Y
double 1
2
3
88 |
8.18
o o 1 i
string a[B[C[D[E]F]|G]
string
Ao — 2 AREREEE
string* A|B|C|D E F
string

pl&}— [:
string® AIB|CIDIE}|?}|G
string
q s 0 4 6
string’ |A[B]C[D]E[Fi
string

g->erase (3, 2)

string*

pl;_l r 0 6
alBlC]DIE]?]G]

string

a[@}— Jf
K= ABIC[FIG

string

192 POINTERS [CHAP. 8

s(1] = 't

A p— AR
string* ABCDE?G

string

s o)
st [A[[C[F[c]

string

p->replace (2,1, "$=5§")

Vs

plo}— I AREERRRRRS
string* AB$=$CDE°G
string
q[E}“--i: 2
R BHEEH
string
8.19 a. char* pc;
b. char c¢s[20];
¢. char** pcs;
d string s;
e. string* ps;
f string al[8];
g string* p = new string[8];
8.20 a. Person* p = &x;
b *p = y;
¢. Person** q = &p;
d Person& r = x;
821 4 int main()
{ bool is ok = true;
cout << "gis ok = " << &is ok << endl;
short k;
cout << "&k = " << &k << endl;
int n;
cout << "&n = " << &n << endl;
float x;
cout << "&x = " << &Xx << endl;
double z;
cout << "&z = " << &z << endl;
string s(5, ' ");
cout << "&s = " << &s << endl;
float b[5];

cout << "&b (0] = " << &b[0] << endl; }

CHAP. 8]

8.22

8.23

8.24

8.25

8.26

827

POINTERS
int main()
{ bool* pb = new bool;
cout << "pb = " << pb << endl;
short* pk = new short;
cout << "pk = " << pk << endl;
int* pn = new int;
cout << "pn = " << pn << endl;
float* px = new float;
cout << "px = " << px << endl;
double* pz = new double;
cout << "pz = " << pz << endl;
string* ps = new string(5, ' ');
cout << "ps = " << ps << endl;
float* py = new float([5}:;
cout << "py = " << py << endl;

}

int f(Purse* p, Purse* q)

{ if (p == q) return 1;
if (p->pennies() != g->pennies()) return -1;
if (p->nickels() != g->nickels{()) return -1;
if (p->dimes{() != g~>dimes{()) return -1;
if (p->quarters() != g->quarters()) return -1;
return 0;

}
int same(Person& x, Person& y)
{ return bool (&x == &y);

}

int strlen(const char* s)
{ for (const char* p=s; *p; pt++)
return int(p - s);
}
char* strcat(char* sl, const char* s2)
{ char* p;
for (p=sl; *p; p++)
for (; *s2; p++, S2++)
*p = *s2;
*p = *s2;
return sl;
}
char* strcpy(char* sl, const char* s2)
{ while(*s2)
*gl++ = *S2++4;
*sl = 0;
return sl;
}

int strcmp(const char* sl, const char* s2)
{ while (*sl && *sl++ == *g2++)

’

return *sl - *s2;

193

194 POINTERS

[CHAP. 8
8.28 char* strstr(const char* si,
{ if (*s2 == 0) return

const char* s2)
for (; *sl;

(char*) (sl);

sl++)
{ char* p = (char*) (sl);
char* q = (char*) (s2);
while (*p == *q && *p)
if (*p++ == 0) return 0;
else if (*g++ == 0) return (char*) (sl);
if (*g++ == 0) return

}

return 0;

(char*) (sl);

Chapter 9

Lists

A list is a sequence of elements of the same type. A list is like an array, with one essential distinc-
tion: arrays provide direct access to their elements; lists provide only sequential access. For example,
the 100th element of an array a can be changed directly: a[99] = 65432; But in a sequential
access list, the 100th element cannot be changed until it has been located, typically by traversing
through its preceding 99 elements. The trade-off for this slower access time is the more efficient
methods that lists have for inserting and deleting elements. To insert a new element into the 100th
element of a 1000-clement array would require shifting the following 900 elements. But the same
insertion can be made to a linked list without moving any elements.

9.1 LINKED STRUCTURES

Arrays are inefficient when an element needs to be inserted or deleted from the sequence. That is
because arrays are stored contiguously in memory. Linked lists overcome the problem by storing
their elements in non-contiguous memory locations. For this strategy to work, each element has to be
stored together with the memory address of the next element in the list. These two items are encapsu-
lated together into an object called a node. A linked list is then a sequence of nodes, each node
containing an element and the address of the next node in the list:

[22 | | 44 |®] [55 |@f

Node Node Node

This shows a linked list containing the sequence of integers (22, 33, 44, 55). It consists of four Node
objects, each containing an integer data member and a pointer to the next node. Since the pointer in
the last node doesn’t point to anything, it is the null pointer (0) indicated by a “grounded” arrow.
Here is a definition for a Node class to implement liked lists of ints:
class Node
{ public:
Node (int data, Node* next) : data(data), next(next) { }
private: - B
int data;
Node * _next;
bi
Then the linked list shown above could be constructed like this:
Node* list = new Node(55, 0);
list new Node (44, list):;
list = new Node (33, list):
list = new Node (22, list):
Recall that the new operator uses the class’s constructor to build the new node. So the expression
new Node (44, list)
constructs a new Node object, assigns 44 to its _data field, and copies the address from the list

pointer into its _next field.

il

195

196 LISTS {CHAP.9

To make any practical use of such a list, we need functions that have access to the nodes’ data
and next fields. Since they are declared to be private members of the Node class, such functions
would have to be either members too or friends of the Node class. Both of those design options
are unwieldy. A preferred method is to declare the functions members of a separate List class
which is then declared to be a friend of the Node class. This is done by many authors. But it has the
disadvantage of leaving the Node class as an independent class. Since these nodes are used only to
construct lists (in Chapter 12 we use a different type of node to implement trees), it is better to nest
the Node class inside the List class, like this:

class List

{ private:
class Node
{ //...
bi

/e
}:
That allows only members of the List class access to the Node class members.
The List class functions could include a print () function that works like this:

for (Node* p = list; p != 0; p = p-> next)
cout << p~-> data << " ";
The output would be
22 33 44 55

An insert() function could insert the new element 50 in front of 55 like this:
Node* pre;
for (Node* p = list; p != 0 && p->_data != 55; p = p-> next)
pre = p;

pre-> next = new Node (50, p);
This uses a pre-pointer named pre to keep access to the node that precedes the node located by p.
This is necessary because when the loop terminates, p is pointing to the node that contains 55, and it
is its predecessor (the one containing 44) that has to be changed to point to the new node being

inserted. Here’s how the list looks after this insertion:

This illustrates the real value of linked lists: the insertion of the new element can be made without
moving any of the list’s element. Deletions are just as efficient.

9.2 C++ structs

C++ inherits from the C language a type called struct (for “structure”). In C++,a struct is
the same as a class except for the minor distinction:
* The default access category is private for classes and public for structs.
The “default access category” means the access category (public, protected, or private) that
is used if you do not specify one explicitly in your definition.

CHAP. 9] LISTS 197

EXAMPLE 9.1 The Default Access Category Is private for classes

class X
{ void f(); // private access
char c; // private access
public:
void g(); // public access
int n; // public access
private:
void h(); // private access
float z; // private access

}i
This class has six members: X::f (), X::¢, X::h(),and X::z have private access; X::qg()
and X::n have public access.

EXAMPLE 9.2 The Default Access Category Is public for structs

struct Y
{ void f(); // public access
char c; // publiec access
public:
void g():; // public access
int n; // public access
private:
void h(); // private access
float z; // private access
}:
This structure has six members: Y::£(), Y::c, Y::g(),and Y::n have public access;

Y::h() and Y::z have private access.

So unless you use inheritance, the only difference between a struct and a class is the
access category of those data members that are declared without an explicit access category. Of
course, if you always explicitly specify the access categories of all your data members (as we have
done throughout this book), then there is no difference.

Most C++ programmers prefer to use classes instead of structs. But Bjarne Stroustrup, the
creator of C++, recommends using a struct instead ofa class if all its members are public:

struct Node
{ Node (int data, Node* next) : _data(data), _next(next) { }
int data;
Node* _next;
b
This makes the code simpler.
The List class then looks like this:
class List
{ private:
struct Node
{ Noda(int data, Node* next) : _data(data), _next(next) { }
int data;
Node* _hext;
Y
public:
List();
/e
}i
Warning: Some older pre-Standard C++ compilers do not support nested classes and structures.

198 LISTS [CHAP. 9

9.3 LINKED INPLEMENTATION OF THE Stack ADT

Here is our abstract type definition for stacks (from page 154):

ADT: Stack
Represents:
A sequence of elements, all of the same type.

Access:
A stack allows access only at one end of the sequence, called the tgp of the stack.

Constructors and Destructors:

create Creates an empty stack of a given maximum size.

destroy De-allocates the memory used for the stack.
Access Functions:

top Returns the last element on the stack.

is_empty Returns true ifthe stack is empty; otherwise returns false.

is_ full Returns true if the stack is full; otherwise returns false
Mutator Functions:

push Inserts a new element at the top of the stack.

pop Removes and returns the element from the top of the stack.

In Chapter 7 we used a dynamic array to implemented this ADT. That required the specification
of the maximum stack size. We can avoid that restriction now by using a linked list instead.
Here is a linked implementation of this ADT for stacks of char elements:
class Stack
{ private:

struct Node
{ Node(int data, Node* next) : _data(data), _next(next) { }

char data;
Node* next;

};

public:
Stack() : _top(0) { }
~Stack()
char top() const { assert(top != 0); return _top-~-> data; }
bool is empty() const [return bool(_top == 0): }
bool is full() const { return false; }
void push(const char c) (_top = new Node(c, topl); 1}
char pop():;
private:
Node* top;

i
Stack::~Stack ()

{ for (Node* p = top; p;)
(_top = p~>_next;
delete p;

}

}

char Stack: :pop ()

{ assert(_top != 0);
Node* p = top:
char ch = E—>_data;
_top = p-> next;
delete p;
return ch;

CHAP. 9] LISTS 199

A Stack class of any type T would have the same definition with char replaced by T.

The definition of the Node structure is completely encapsulated as a private declaration
nested inside the Stack class. Consequently, all members of the Stack class can access the
_data and _next members of the Node class, but nothing outside of the Stack class can.

EXAMPLE 9.3 Using the Stack Class’s push() Function
After the execution of the code

Stack x;

x.push('A');
x.push('B");
x.push('C");
x.push('D");

the Stack object x would look like this:

top

Stack: :Node Stack: iNode Stack: :Nade

The details of each Stack: :Node object look are shown shown at right.

The call x.push('A') executes the statement next [__._]——-b
top = new Node(c, _top): . dode®
where c contains the char 'A'. This is an assignment statement, so the system data
first evaluates the expression - chat

new Node(c, _top) Stack: ‘Node

This expression invokes the new operator which calls the Node constructor
to create anew Node object. The Node constructor is defined as
Node (int data, Node* next) : _data(data), _next(next) {)
so the parameter data is matched to the argument c, and the parameter next is matched to the argument
_top. Then the constructor’s initialization list

_data (data), _next (next)
executes, initializing the new node’s _data field with the value of the data parameter and its _next

field with the value of the next parameter. The value of the data parameter is the value of the argument ¢
which is the character 'A°, so the new node’s _data field is initialized with the character 'A°*. The value
of the next parameter is the value of the argument _top which was initialized tobe 0 by the Stack
constructor, so the new node’s _next field is initialized with the pointer value 0 which is the null pointer.
This is indicated by the “grounded” arrow in the diagram above. Finally, the Node constructor executes the
statements in its function body. But that body is empty, so the Node constructor has finished its work. The
new operator then returns the address of the new Node object as the value of the expression
new Node(c, _top)

This value, the address of the new node, is then assigned to _top.

The successive calls x.push('B'), x.push('C'),and x.push('D') execute the same way.
Each time, anew Node object is constructed with its _data field initialized with the character passed and
its: _next field initialized with the address stored in the Stack object’s _top field. That address is
always the address of the last node inserted into the list, so the nodes get linked as illustrated in the picture
above. Note that nearly all the work is done each time by the Node constructor.

200 LISTS [CHAP.9

EXAMPLE 9.4 Using the Stack Class’s top() and pop() Functions

Assume that the following statements execute after those in Example 9.3:
char ch = x.top{();

Xx.pop(}:
Thecall x.top () executesthe assert () macro first to ensure that the stack is not empty. If it is, the
program will abort at that point. (Better no answer than the wrong answer!) If the condition (top != 0) is

true, then the _top field must contain the memory address of a Node object. Then the expression
_top->_data will retumn the character stored in the _data field of that node pointed. In this case, that
character is 'D'. It is then returned by the top () function and consequently assigned to the object ch.

The call x.pop () executesthe assert () macro again to ensure that the stack is not empty. If the
condition (top !'= 0) is true, thenthe local pointer p is initialized with the address storedin top;
i.e., it is set to point to the same thing to which _top points: the node containing 'D’: B

x ch

t op @‘ char

Stack: :Node

Stack: :Node

u Stack: :Node
P

This saves that node’s address temporarily so that top can be reassigned to point to the next node (the one
containing 'C'). Then the local char object ch is initialized with the (' D') that is stored in *p:

x ch['D']

char

Stack: :Node Stack: :Node

p u Stack: :Nede

Finally, the delete operator is invoked to deallocate the memory space occupied by the node *p, and the
character stored in ch is returned (but not used).

9.4 ITERATORS

Linked structures like the Stack implementation shown above differ from arrays in that they
have no built-in mechanism for direct access. A stack does not need direct access; it is meant to allow
access only at its top, which was implemented as the front of the list. But to take advantage of the
efficient means that linked lists enjoy for insertions and deletions, we need some kind of mechanism
for accessing any node in the list. One popular method is to assign ordinal numbers to the nodes: the
3rd node, the 8th node, etc., analogous to an array index. However the more modern approach,
employed extensively in the ISO C++ Standard Library, is to use iterators.

An iterator is an object that locates a node in a linked data structure. It works just like a pointer
into an array. Here is an abstract data type for general iterators:

ADT: Iterator
Represents:
A locator and accessor for the elements of a linked data structure.

CHAP. 9] LISTS 201

Constructors and Destructors:
create Creates an iterator initialized by a node pointer.
Access Functions:
is_inactive Retums true iff the iterator is not currently locating an element.
dereference Retums areference to the element located by the iterator.
Mutator Functions:
increment Advances the iterator so that is locates the next element.
decrement Backs the iterator up so that it locates the preceding element.
assignment Assigns one iterator to another.
Operators:
equality Returns true if the two given iterators locate the same element.
inequality Retumns true if the two given iterators locate different elements.

Here is a general iterator interface for this ADT:
class Iterator

{ public:
Iterator (Node¥*);
bool operator! () const;
T& operator* () const;
Iterator& operator++();
Iterator& operator—--{(};

Iterator& operator={const Iterator&);
friend bool operator==(const Iteratoré&, const Iteratoré&);
friend bool operator!=(const Iterator&, const Iteratoré&);
private:
Node* p; // points to the node that contains the element
b
Not surprisingly, the iterator class is implemented as a node pointer.
We can visualize a List iterator like this:

[n } ‘{7'E3 [} } [ok 1 { D } { ok]_______{ X }______{_7257—]

Node Node ode Node Node Node Node

it
P

Node

Tterator

This shows an iterator named it that is bound to a list of chars and is currently locating the
element 'C'. It could have been declared as

List::Iterator it;
provided that the Iterator class is defined inside the List class. This iterator is not initialized,
it is created by the default constructor generated by the compiler. It would need some mechanism
provided by the List class itself to attach itself to a particular list node. The Standard approach is to
define the following member function in the 1ist class for this purpose:

Tterator begin{();
This function returns an iterator that locates the first node of the list. The following code could be
used to initialize it and then position it to the third element of a list x shown in the picture above:

it = x.begin(}); // now it locates element 'A'
++it; // now it locates element 'B’'
++it; // now it locates element 'C'

cout << "The current element is "™ << *it << endl;

202

LISTS [CHAP. 9

This would print
The current node is C

9.5 A List ADT

Here is an abstract data type definition for lists:

ADT: List

Represents:
A sequence of elements, all of the same type.
Access:

Elements are accessed and modified through iterators that are bound to the list. At any time dur-
ing its existence, an iterator either locates a single element in the list, or it locates the end of the
list which is defined to be the null position that follows the last element. Iterators may be set to
the beginning or the end of the list, they can be advanced to the next element or backed up to the
previous element, and they can be tested for locating the end of the list.

Constructors and Destructors:

create Creates an empty list.
copy Create a duplicate of another list.
destroy Destroys the list.
Access Functions:
size Returns the number of elements in the list.
empty Returns true if the list is empty; otherwise returns false.
front Returns the first element in the list.
back Returns the last element in the list.
begin Returns an iterator locating the first element in the list.
end Returns an iterator locating the null position that foliows the last element.

Mutator Functions:
push_front Inserts a given element at the front of the list.
push_back Inserts a given element at the back of the list.
pop front Deletes the element at the front of the list.

pop_back Deletes the element at the back of the list.

assign Replace the elements in the list with those of another list.

insert Inserts a given element in front of the element located by a given iterator.
erase Removes the element located by a given iterator.

remove Removes all the elements that have a given value.

clear Removes all the elements from the list.

These 18 operations are actually defined by the ISO C++ Standard for the standard library 1list
class which covered in Chapter 10.

EXAMPLE 9.5 List Processing
Here is some code that uses the list operations specified in the ADT:

List x; // constructs the empty list x
x.push_front('C'); // inserts 'C' at the front of the list x
x.push front('B'); // inserts 'B' at the front of the list x
x.push front('A'); // inserts 'A' at the front of the list x
x.push front('X'); // inserts 'X' at the front of the list x
x.push back('D"); // inserts 'D' at the back of the list x
x.push _back('E"); // inserts 'E' at the back of the list x
x.push_back('F"); // inserts 'F' at the back of the list x

(E e} - £

CHAP. 9] LISTS 203

x.pop_front(); // removes 'X' from the front of the list x
x.pop_back(}; // removes 'F' from the back of the list x

a—{ e —{o ek -]

List y = x; // constructs the list y as a copy of the list x

x.clear () ; // removes the remaining 5 elements from x

X = y; // assigns y to a, making x a duplicate of y

List::Iterator it; // constructs the detatched iterator it

it = x.begin(); // assigns it to locate the first element of X

++it; // advances it to locate the second element of x

++1it; // advances it to locate the third element of x
it

1 [r—n
[a—{E e —{o e} - £ _

X.insert (it, 'X"); // inserts 'X' in front of the third element of x

it

[—e o —LE} -

it = x.end{): // assigns it to locate the null end of x
it
v | 1o] [[(v~] [y] f r a
['a'] ['B'] U'X'] 1'C'y 'D'] "B

List::Iterator jt; // constructs the detatched iterator jt
jt = x.insert{it, 'Z'); // inserts 'Z' at end of x, locating jt there

ra—se't+—xt—c o —E}+—{2'F-7]

X.insert(jt, 'Y'); // inserts 'Y' in front of 'Z' in x

X val. [vaJl {vcl} Jl'D'

204 LISTS [CHAP. 9

-=jt; // backs up jt to locate the sixth element 'E’
--jt; // backs up jt to locate the fifth element 'D'
it
tpt rmt Tyt Ter rmme 1R Tyt L A8) r -
A'j e —x——clt—o ey }—z} -1
jt
x.erase(jt); // removes the fifth element 'D’

x.remove {'X');, // removes the third element 'X'
it
lA' IBl |cl1r ‘[.E'[L J['Y'}'_‘—{'Z'}""—Eij
jt
it = x.begin(); // assigns it to locate the first element of x
*it = "G’ // changes the first element to 'G'
it
G 'B’l 'C‘l ['E'} IL'Y‘JI {IZI}___[]

4

jt

9.6 A List CLASS

Here isa List class that implements the ADT defined above for lists of ints. It begins with a
typedef that allows the use of the symbol T in place of the element type int. This is done so that
the class definition can be modified to any element type simply by changing the typedef.

typedef int T;
class List
{ private:
struct Node
{ friend class Iterator;
Node (T data, Node* prev=0, Node* next=0)
_data({data), _prev(prev), _next(next) { }

CHAP. 9] LISTS 205

T _data;
Node* prev;
Node* next;

}i

public:
class Iterator
{ friend class List;
public:

Iterator(Node* p) : p(p) { }
bool operator!{) const { return (_p ? false : true); }
T& operator* () const { return p-> data; }
Iterator& operatort++() { _p = _p-> next; return *this; }
Iterator& operator--{() { p = p-> prev; return *this; }

Iterator& operator=(const Iterator& it)
{ p = it._p; return *this; }
friend bool operator==(const Iterator& it, const Iterator& jt)

{ return bool(it. p == jt. p); }
friend bool operator!=(const Iterator& it, const Iterator& jt)
{ return bool{it. p != jt. p): }
private:

Node* p; // points to list node
}i

public:
List() : front(0), back(0), size(0) { }
List (const Listé&):
~List () { clear(); }
List& operator=(const Listé&);
int size() const { return size; }
bool empty() const | return bool(size == 0); }
T& front() const { return _front-> data; }

T& back() const { return _back-> data; }

void push_front (const Té&);

void push back{const T&);

void pop_front{();

vold pop back();

Iterator_begin() { return Iterator(front); }

Iterator end{() { return Iterator(O)? }

Iterator insert(Iteratoré&, const T&);

void erase(lIteratoré&);

void remove {const Té&);

void clear();

private:

Node* _front;

Node* back;

int _size;

}i
This class interface has four parts: the private definition of the Node structure, the public
definition of the Iterator class, the public declarations of the 18 List member functions,
and the private declarations of the three List data members front, back,and size.
This implementation of the List class uses a doubly linked list. Think of a list as a sequence of

linked elements, like a train of railroad cars on a track. We should be able to move from any node
forward or backward. We obtain that double mobility by usinga _prev (for “previous”) pointer and

a _next pointer in each node. Thena List object looks like this:

206 LISTS [CHAP. 9

I\ B! ek D!

st: :Node 1s5t::Node 18t::Node 1st::Node

The details of a Node object can be visualized as shown at

right.
Here is the implementation of the List copy _next Noges '

constructor: -
List::List{(const Listé& X) prev
: front(0), _back(0), _size(x._size) — Nﬁg
(if (x. size == 0) return;
Node* p = x. front; _data
Node* g = front = new Node(p-> data);
for (int 1i=1; i< size; i++)
{ p = p~>_next;
g = q-> neXt = new Node(p->_data, q);
assert (q):

1back = q;

}
This copies the nodes in x into the list being constructed. It uses two Node pointers, p and q, to
traverse the two lists, x and *this. For each node that p pointstoin x it creates a new node and
assigns its address to g->_next. The two lists are traversed by assigning p-> next to p and
g-> next to g in each iteration of the for loop. The assert(q) call checks to ensure that the
new operator was successful; it will fail in the unlikely event that the system runs out of memory.

Here is the assignment operator:
List& List::operator=(const List& x)

List::Node

{ clear();
if (x. size == 0) return *this;
_size = X._size;
Node* p = x. front;
Node* g = front = new Node(p->_ data):

for (int i=1; i< _size; i++)

{ p = p~>_next;
g = g-> next = new Node(p->_data, q);
assert (q);

}
_back = q;
return *this;

}
It works just like the copy constructor. The only differences are that it must clear () the *this

list at the beginning and it has to return *this at the end of the call.
The push_front () function inserts the element t at the beginning of the list:

CHAP. 9] LISTS 207

void List::push front(const T& t)

{ if (size == 0) _front = _back = new Node(t);
else front = front-> prev = new Node(t, 0, _front);
++_size;

)
If the list is empty, the new node becomes both the front and back node. Otherwise, it

becomes the new _front node and it in turn points to the old _front node.
The push_back() function works the same way as the push_front () function except that
it becomes the back node of a non-empty list:
void List::push back({const T& t)

{ if (_size == 0) _front = back = new Node(t):
else back = back-> next = new Node(t, back);
++ size;

}
The pop_front () function removesthe front element if the list is not empty:

void List::pop front ()

{ if (_size == 0) return;
Node* p = _front;
if (size == 1) _front = _back = 0;
else
{ front = front-> next;

_front-> prev = 0;

}
delete p;
~--_size;

}

If the list contains only one element, then it is emptied by setting front = back = 0. Otherwise

the front pointer is advanced.
The pop back() function works the same way as the pop front () function; just substitute
_back for _front and _prev for _next:
void List::pop back()

{ if (_size == 0) return;
Node* p = back;
if (size == 1) _front = back = 0;
else

{ _back = back-> prev;
_back-> next = 0;
}
delete p;
-~ _size;
}
The insert() function inserts the given element in front of the node located by the given
iterator:
Iterator List::insert(Iterator& pos, const T& t)
{ if (!'pos)}) // null iterator means insert at end of list
{ push_back(t);
pos. p = back;
}

else

{ Node* p = pos. p;
if (p == _fronE) _front = p-> prev = new Node(t, p-> prev, p);
else p-> prev = p-> prev-> next = new Node(t, p-> prev, p);

++_size;

208 LISTS [CHAP. 9

--pos; // pos should point to newly inserted element
}
return pos;
}
If the null iterator is passed, then the push back() function is called to insert the new element at
the end of the list. Otherwise, the new node is hooked up between *p and * (p-> prev), where p
is the Node pointer defined in the iterator pos.
The erase() function is the inverse of the insert() function. It removes the element

located by the given iterator:

void List::erase(lterator& pos)

{ if (!pos {| _size == 0} return;
Node* p = pos. p;
pos. _p = p->_next; // pos locates next element, after erasure
p->_prev->_next = p-> next;
p-> next-> prev = p-> prev;
delete p;
-- _size;

}
If the iterator is null or the list is empty the function returns immediately.

vcl |Dl |El

List::Node List::Node List::Node

it
_P
Node*

List::Iterator

The given iterator is reset to locate the next element. Then the _next pointer of the previous
element and the prev pointer of the next element are reset to keep the list connected after the
current element is deleted:

it
_p
Nede?

List::Iterator

Then *p is deleted:
The remove () function removes all the elements that equal the given value t:

void List::remove (const T& t)
{ if (_front == 0) return;
Node* p next = _front->_ next;

CHAP. 9] LISTS 209

it
_P
Node*

List::Iterator

for (Node* p= front; p; p = p_next, p next = p-> next)
if (p->_data == t)
{ if (p == front) front = p-> next;
else p-> prev-> next = p-> next;
if (p == _back) _back = p-> prev;
else p-> next-> prev = p-> prev;
delete p;
-- _size;

}

}
If the list is empty, the function returns immediately. Otherwise, it traverses the entire list with a for

loop. At each node, if the data matches the given value t, then the node is removed using the

same code as in the erase () function.

Since *p may be deleted at the end of an iteration, p-> next must be saved before the
delete can execute. This is done with the p next variable, which is assigned right after p is
updated in the control of the for loop. The expression p = p_next, p next = p-> next uses
the comma operator, which has nearly the same effect as a compound statement. This comma expres-
sion first assigns p = p_next and then assigns p next = p-> next.

The clear() function removes all the elements from the list, leaving it empty:

void List::clear ()
{ Node* p= front;
while (p?
{ front = p-> next;
delete p;
p = front;

}
_back = 0;
_size 0;

}
The pointer p traverses the list, from front to back, deleting each node in succession.

Review Questions

9.1 What is the difference between arrays and linked lists, in terms of:
a. the relative memory locations of their elements?
b. the kind of access allowed?
¢. the efficiency of insertions and deletions?
d. the efficiency of traversing the entire list?
9.2 For each of the following lists, decide which implementation would be better, an array or a
linked list:

210

9.3

9.4
9.5

9.6
9.7

9.8

9.9

LISTS [CHAP. 9

a. a list of the first 1000 prime numbers;

b. an alphabetized list of all the words on a page;

c. a chronological list of the U.S. presidents;

d. an alphabetical telephone list of all your friends;

e. an alphabetical list of the 63 Standard C++ keywords;

/. anumerical list of the 127 ASCII characters;

2. alist of passengers booked for an airline flight;

h. a grocery list.

What is the difference between a class anda struct in C++?

When is it better to use a struct?
Why were the Node structs declarations nested inside the Stack and List classes?

What is an iterator?

Describe the effect of each of the following operations on an iterator it:

a 'it

b *it

Cc. ++it

d --it

e it = jt

What is the difference between the erase () and remove () functions inthe List class?

Problems

Draw pictures to show the effects of the statements in the following code fragment when it
executes:

List x;
.push back('A
.push:back('B
.push_back('C
.push back('D
x.push_back('E
List::Iterator
*it = 'V';
++it;
X.insert (it, 'W'});
it = x.end();
x.insert (it, 'Z2'):

L -

")
)i
)i
Y)i
")
i

t = x.begin();

~-it;

--it;

List::Iterator jt = x.begin();
*3t = *it;

jt = it;

x.erase(it);

x.remnove ('C')
x.pop_front{);
x.pop_back();

Programming Problems

9.10 Implement the Queue class (page 163) as a linked structure.

CHAP. 9] LISTS 21

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

The implementation of the List::remove() function on page 208 is inefficient inside its
for loop because it checks every node pointer for being the _front pointer and for being
the back pointer. Modify this code to make it more efficient.

The code for the implementation of many of the List functions is a little simpler if the List
class itself is implemented using a circular list with a dummy node instead of a linear list:

_dum

Node*

_size

nt

List

One big advantage is that no null pointers are used. Re-implement the List class using cir-
cular lists.

Implement the following constructor for the List class defined above in

List(int n, T& t);

// Constructs a list containing n copies of the element t.

// This is a Standard Library function for the C++ list class.
Implement the following member function for the List class defined in Problem 9.12:

void insert (Iterator& pos, int n, T& t);

// Inserts n copies of the element t at the position pos.

// This is a Standard Library function for the C++ list class.
Implement the following member function for the List class defined in Problem 9.12:

void erase(Iteratoré& posl, Iteratoré& pos2);

// Removes all the elements from position posl up to but not

// including the element at position pos2.

// This is a Standard Library function for the C++ list class.
Implement the following member function for the List class defined in Problem 9.12:

void swap(Listé& x);

// Swaps the contents of *this with those in the list x.

// This is a Standard Library function for the C++ list class.
Implement the following member function for the List class defined in Problem 9.12:

void splice(Iterator& pos, List& x);

// Moves all the elements from the list x to *this in front of

// the element located at position pos.

// This is a Standard Library function for the C++ list class.
Implement the following member function for the List class defined in Problem 9.12:

void reverse();

// Reverses the contents of the list.

// This is a Standard Library function for the C++ list class.

212 LISTS [CHAP. 9

9.19 Implement the following member function for the List class:

void sort();

// Sorts the elements of the list into nondecreasing order.

// This is a Standard Library function for the C++ list class.
9.20 Implement the following member function for the List class:

void unique();

// Removes all but the first element from each run of

// consecutive equal elements in the list.

// Precondition: the list is sorted in nondecreasing order

// Postcondition: the list is sorted in nondecreasing order,

/7 and all the elements are unique.

// This is a Standard Library function for the C++ list class.

9.21 Implement the following member function for the List class:
void remove_all duplicates();

// Removes all duplicate elements from the list.
// Postcondition: all the elements are unique.

9.22 Implement the following non-member function for List objects of type char:
void append(Listé& x, const char* cs);
// Copies the non-null characters from the C-string cs into the
// end of list x.

9.23 Implement the following non-member function for List objects of type char:
void copy(Listé& x, List::Iterator& pos, const char* cs);
// Copies the contents of the C-string cs into the list x at
// position pos.

9.24 Implement the following non-member function for List objects of type char:
void copy(char* cs, Listé& x);
// Copies the contents of the list x into the C-string cs

9.25 Implement the following non-member function for List objects of type char:
void copy{char* cs, List& x, List::Iteratoré& posl,
List::Iterator& pos2);
// Copies the contents of the sublist x from position posl up
// to but excluding position pos2 into the C-string cs
9.26 Implement the following member function for List objects of type char:
void halve(Listé& y);
// Divides *this in half, making y its second half.
// Postconditions: *this contains only its first half;
// y contains the second half of *this.
// Example: if x = ABCDEFG, then x.halve(y) changes x to ABC
// and y to DEFG.

9.27 Implement the following non-member function for List objects of type char:
// Divides x in half, making y its second half.
// Postconditions: x contains only its first half;
// y contains the second half of x.
// Example: if x = ABCDEFG, then x.halve(y) changes x to ABC
// and y to DEFG.

9,28 Implement the following member function for List objects of type char:
void split (Listé& y):
// Splits *this, moving every other element to y.
// Postconditions: *this contains only its first, third, fifth,
// etc., elements; y contains the second, fourth, sixth, etc.,
// elements that were in x.
// Example: if x = ABCDEFG, then x.split(y) changes x to ACEG
/7 and y to BDF.

CHAP. 9] LISTS

9.29

9.30

9.31

9.32

9.33

9.34

9.35

Implement the following non-member function for List objects of type char:
void split(Listé& x, List& y):
// Splits x, moving every other element to y.
// Postconditions: x contains only its first, third, fifth,
etc.,
/7 elements; y contains the second, fourth, sixth, etc.,
// elements that were in x.

213

// Example: if x = ABCDEFG, then split(x, y) changes x to ACEG

/7 and y to BDF.
Implement the following non-member function for List objects of type char:

void intersection(List& z, List& x, List& y);
// Makes z the set-theoretic intersection of lists x and y.

// Postconditions: z contains only copies of elements that are in

// x and y; z contains no duplicates; x and y are unchanged.

// Example if x = (1, 2, 3, 1, 5, 4) and y = (4, 6, 5, 7, 6)
// then z becomes (5, 4).
Implement the following non-member function for List objects of type char:

void complement (List& z, Listé& x, List& y):
// Makes z the set-theoretic complement of list y in list x.

// Postconditions: z contains only copies of elements that are in

// x but not y; z contains no duplicates; x and y are
unchanged.

Implement the following non-member function for List objects of type char:

List::Iterator find(List::Iteratoré& posl,
List::Iterator& pos2, T& t);

// Searches for element t from position posl up to but excluding
// position pos2. If found, the position of its first occurrence

// is returned; otherwise, pos2 is returned.
// This is a Standard Library function.
Implement the following non-member function for List objects of type char:
List::Iterator adjacent find(List::Iterator& posl,
List::Iterator& pos?2);

// Searches for an adjacent pair of equal elements from position
// posl up to but excluding position pos2. If found, the position
// of the first element of the first pair is returned; otherwise,

// pos2 1s returned.
// This is a Standard Library function.
Implement the following non-member function for List objects of type char:

void count (List::Iterator& posl, List::Iterator& pos2,
T& t, inté& n);

// Counts the number of occurrences of the value t in the range

// from position posl up to but excluding position pos2.
// The number of occurrences is added to n.
// This is a Standard Library function.
Implement the following non-member function for List objects of type char:
bool equal (List::Iterator& posl, List::Iteratoré& pos2,
List::Iterator& pos3);
// Returns true iff the elements from position posl up to but
// excluding position pos2 are the same as the same number of
// elements that begin at position pos3.
// This is a Standard Library function.

214

LISTS [CHAP. 9

9.36 Implement the following non-member function for List objects of type char:

List::Iterator search(List::Iterator& posl, List::Iterator& pos2,
List::Iteratoré& pos3, List::Iterator& posd);
// The four iterators define two segments of elements, the first
// from position posl up to but excluding position pos2, and the
// second from position pos3 up to but excluding position pos4.
// If the second segment is found as a subsequence of the first
// segment, then that position in the first segment where the
// subsequence begins is returned; otherwise, pos2 is returned.
// This is a Standard Library function.

9.37 Implement the following non-member function for List objects of type char:

void shuffle(Listé& x);

// Performs a perfect shuffle on list x.

// For example, it transforms the list (1, 2, 3, 4, 5, 6, 7, 8)
// into (1, 5, 2, 6, 3, 7, 4, 8).

9.38 Implement the following non-member function for List objects of type char:

9.1

9.2

9.3

9.4

void remove all duplicates(Listé& x);

// Removes all duplicate elements from the list x.

// For example, it transforms the list (1, 2, 6, 4, 1, 5, 2, 5, 3)
// into (1, 2, 6, 4, 5, 3).

Solutions

a.The elements of an array are stored contiguously (next to each other) in memory; the elements of a

o

b

d

e.

f
g
h.

linked list may be scattered about in non-contiguous locations.

. Arrays allow direct access; linked lists allow only sequential access.

Insertions and deletions are very inefficient with arrays because they have to shift existing elements
to maintain order; insertions and deletions are very efficient with linked lists because only one
pointer has to be changed.

Arrays and linked lists are equally efficient in traversing the structure, because traversal only
requires moving from each element to the next adjacent element.

. A list of the first 1000 prime numbers should be stored in an array because the list is static (i.e.,

the total number of elements is known in advance and does not change), it can be created in order,
and the array index can be used to number the elements.

An alphabetized list of all the words on a page should be stored in a linked list because each
word should be inserted in its correct alphabetical location.

A chronological list of the U.S. presidents should be stored in an array because the list is static,
it can be created in order, and the array index can be used to number the elements.

An alphabetical telephone list of all your friends should be stored in a linked list because it is
dynamic (i.e., it changes frequently) and has to be maintained in order.

An alphabetical list of the 63 Standard C++ keywords should be stored in an array because the
list is static, it can be created in order, and a binary search can be used to find elements quickly.

A numerical list of the 127 ASCII characters should be stored in an array because the list is
static, it can be created in order, and the array index can be used to number the elements.

An alphabetical list of passengers booked for an airline flight should be stored in a linked list
because it is dynamic and has to be maintained in order.

A grocery list can be stored in an array because the order is irrelevant: new items simply can be
added to the end of the list.

There is no difference betweena class anda struct except when some members are not given
an explicit access category (public, protected, or private). The default access category for
classesis private, while for structsitis public.

Usea struct instead ofa class if no members (neither functions nor data) need to be pri-
vate (or protected).

CHAP. 9] LISTS 215

9.5

9.6
9.7

9.8
9.9

The Node struct declarations were nested inside the Stack and List classes because (1) the
Node definition depends upon what kind of linked data structure (Stack, Queue, List, Tree,
etc.) is using it; (2) the members of the enclosing class (Stack, Queue, efc.) need public access to
all the Node class’s data members (_data, next, efc.), but at the same time their scope should
be limited to the enclosing class.

An iterator is an object that is used to locate elements in a linked data structure.

a. The operation !it determines whether it is active. The boolean expression evaluates to true
if it currently locates a node, and false if the iterator is null.

b. The operation *it returnsthe data value stored in the node to which it points.

¢. The operation ++1it advances the iterator to the next node in the data structure.

d. The operation --it backs the iterator up to the preceding node in the data structure.

e. The operation it = jt resets it to point to the same node to which the iterator jt points.

The erase() function deletes the element located by a given iterator. The remove ()
function deletes all (zero or more) the elements that equal a given _data value.

List x;
X.push_back('A')
x.push back('B')
x.push _back('C'");
D)
E")

’
1

’

’

X.push back('D'

’

X.push_back(

List::Iterator it = x.begin();

it

Ca—{E e o=t -]

*it = 'V';

it

v —{s8}F—{c o —e}F-1_]

++it;

it

v —{s e - {1

X.insert(it, 'W');

it

v —{w —{e—{e o} -

'

216 LISTS [CHAP.9

it = x.end{();

it
4

o —{e—{e—{o—{E} - L]

X.insert (it, 'Z2');

it

Cvi—{wt—{®}+r—c o+ z}-{_]

--1it;
--it;
it
[lv!}__{‘WlJl {va} llvc|[l {'D'll {'E'} IIZI ____[:j
List::Iterator jt = x.begin();
it
l|vvl rlwll L'B'Fl ll'c'l 1|D|' {'E'JL ‘{'Z' ___[:j
jt
*3t = *it;

llDl [lwll__ IlB‘} Il‘C'[L 1’Dl]l {‘E'lr Jl'ZI ___[—j

jt

jt o= ity

r‘DlH'wl} FB‘} {ICI} er|l IIEI IZ' o

'
L

CHAP. 9]

9.10

X.erase(it);

LISTS

it
o " {2} - { _]
x.remove ('C');
it
D W] %w%—{!] -
t
jt

x.pop_front ();

i;

E {23 -{_] 2

x.pop back();

[e} -

it
¥,

?

class Queue
{ private:

struct Node
{ Node(int data,

1

jt

Node* next)

char _data;
Node* next;

}s;

_data(data), next (next)

}

public:
Queue() : _top(0) { }
~Queue () ;
char front () const { return front-> data; }
char back() const { return back-> data:; }
bool is empty() const { return bool(front == 0);
bool is full({) const { return false; }
void enter (const char c) { back = new Node(c, _back);
char leave():;

}

{

217

}

218 LISTS [CHAP.9

private:
Node* front;
Node* back;
}i
Queue: : ~Queue ()
{ if (_front == 0) return;
for (Node* p = _front-> next; p; p = p-> next)
delete front;
}
char Queue::leave()
{ assert(front != 0);
Node* p = _front;
_front = p-> next;
char ch = p-> data;
delete p:
return ch;

}

9.11 void List::remove (const T& t)
{ Node* p=_ front;
if (p == 0) return;
while (p-> data ==t && p '= back)
{ delete front;
-- _size;

_front = p = p-> next;

}

while (p != _back)

if (p~> data == t)

{ p—>_prev-> next = p-> next;
p->_next-> prev = p-> prev;
delete p;

-- size;

p = p->_next;
}

if (p->_data == t)
{ delete back;
-- size;

_bgck = p-> prev;
}
}
9.12 typedef char T;
class List
{ private:
struct Node
{ friend class Iterator;

Node (T data=0, Node* prev=0, Node* next=0) : _data(data)
{ _prev = (prev?prev:this); _next = (next?next:this); }
T _data;

Node* prev;
Node* next;
}i
public:
class Iterator
{ friend class List;
public:
Iterator (Node* p) : pi(p) { }
bool operator! () const { return bool(! p || ! p-> data); }

CHAP. 9]

}i

{

LISTS
T& operator*() const { return p-> data; }
Iterator& operator++() { p = p-> next; return *this;
Iterator& operator-—-() { p = p-> prev; return *this; }

Iterator& operator=(const Iterator& it)
{ p = it. p; return *this; }

219

}

friend bool operator==(const Iterator& i, const Iteratoré& j)

{ return bool(i. p == j. p); }
friend bool operator!=(const Iterator& i, const Iterator& j)
{ return bool(i. p != j. p); }
private:

Node* p; // points to list node
}i

public:
List () : _size(0) { _dum = new Node(); }
List (const Listé&);
~List () { clear{); }
Listé& operator=(const Listg);
int size{) const { return size; }
bool empty() const { return bool(size == 0); }
T& front() const { return dum-> next-> data; }
T& back() const { return dum-> prev-> data; }

void push front (const T&);
void push back(const Té&);
void pop_ front();
void pop back();
Iterator begin() { return Iterator(dum-> next); }
Iterator end() { return Iterator(dum); }
Iterator insert(Iterator&, const f&);
void erase(Iteratoré&);
void remove (const Té&):
void clear();
private:
Node* dum;
int size;

List::List (const List& x) : _size(x._size)
dum = new Node();
if (x. size == 0) return;
Node* p = x._dum-> next;
Node* q = dum-> prev = _dum->_next
= new Node (p->_data, _dum,_ dum);

}

for (int i=1; i< _size; i++)

{ p = p->_next;
q = gq->_next = _dum->_prev = new Node(p-> data, q, _dum);
assert (qg);

}

List& List::operator=(const List& x)

{

clear():

_size = x._size;

_dum = new Node();

if (x. size == 0) return *this;
Node* p = x. dum-> next;

Node* g = dum-> prev = _dum-> next

new Node (p->_data, dum, dum);

220 LISTS [CHAP. 9

for (int i=1; i< _size; i++)

{ p = p~>_next;
g = g->_next = _dum-> prev = new Node(p-~>_data, g, _dum);
assert(q);

}

return *this;

}
void List::push_front(const T& t)

{ if (size == 0)
_dum-> next = dum-> prev = new Node(t, dum, dum) ;
else h h
_dum-> next = dum-> next-> prev
= new Node(t, dum, dum-> next);
++ size; - B h

}
void List::push back(const T& t)
{ if (size == 0)
*dam->_next = _dum-> prev = new Node(t, _dum, _dum);
else h
_dum-> prev

tt

_dum->_prev-> next
new Node(t, _dum-> prev, dum);

++ size;
}
void List::pop_front ()

{ if (_size == 0) return;
Node* p = dum-> next;
_dum-> next-> next-> prev = _dum;
_dum-> next = dum-> next-> next;
delete p;
--_size;

)
void List::pop_back()

(if (size == Q) return;
Node* p = _dum~-> prev;
_dum-> prev-> prev-> next = _dum;
_dum-> prev = _dum-> prev-> prev;
delete p;
-- size;

}

Iterator List::insert (Iterator& pos, const T& t)
{ if (!pos || _size == 0) return pos;
Neode* p = pos._p;
pos. p = p->_prev = p-> prev-> next = new Node(t, p-> prev, p);
++ size;
return pos;
!

void List::erase(Iterator& pos}

(if (!pos || _size == 0) return;
Node* p = pos._ p;
p->_prev-> next = p-> next;
p->_next-> prev = p-> prev;
pos. p = 0;
delete p;

-~_size;

CHAP. 9] LISTS 221

void List::remove(const T& t)
(Node* p next;

for (Node* p= dum-> next; p != _dum; p = p_next)
(p_next = p-> next;
if (p->_data == t)
{ p-> prev-> next = p-> next;
p->_ next-> prev = p-> prev;
delete p;
--_size;

}
1
}

void List::clear ()
(Node* p next;

for (Node* p=_ dum-> next; p != _dum; p = p_next)

(p_next = p-> prev-> next = p-> next;
p->_next-> prev = p-> prev;
delete p:

}

_size = 0;

1
9.13 List::List(int n, T& t) : _size(n)

(_dum = new Nodel();
for (int i=0; i<n; i++)
_dum-> next = dum-> next-> prev =newNode(t, dum, dum-> next);

}

914 void List::insert(Iterator& pos, int n, T& t)
{ Node* p = pos._p;
for (int 1i=0; i<n; i++)

p->_prev = p-> prev-> next = new Node(t, p-> prev, pl;
1
9.15 void List::erase(lterator& posl, Iterator& pos2)
(if (!posl |t !pos2) return;

Node* p_next = posl. p-> next;
for (Node* p = posl. p:; p != pos2. p;
p = p_next, p_next = p-> next)
{ p—> prev-> next = p-> next;
p—>:next—>:prev = p->:prev;
delete p;
-- _size;
1
}
9.16 void List::swap(List& X)
(Node* p = x._dum;
X. dum = dum;
_dum = p;
int temp = X. size;
x. size = size;
_sfze = temp;
1
917 void List::splice(Iterator& pos, List& x)
{ Node* p = pos. _p;
for (Iterator itx = x.begin(); !!'itx; ++itx)
p-> prev = p-> prev-> next = new Node(*itx, p-> prev, p):

222

9.18

9.19

9.20

9.21

LISTS [CHAP.9
void List::reversel()
{ Node* p;
Node* temp;
for (p = _dum; p->_next != dum; p = p-> prev)
{ temp = p-> next; B
p->_next = p-> prev;
p~>_prev = temp;
}
temp = p->_next;
p-> next = p-> prev;
p->_prev = temp;
}
void List::sort()
// implements the Bubble Sort
{ if (size < 2) return;
T temp;
for (Node* end=_dum; end-> prev != dum-> next; end = end-> prev)
{ Node* g = _dum->_next-> next; N
for (Node* p= dum-> next; q != end; p = q, g = g->_next)

{ 1f (p—->» _data > g->_data)
{ temp = p-> data;
p-> data = g->_data;
g->_data = temp;
1

)

void List::unique ()

{ if (_size < 2) return;
T pt:;
Node* g
Node* g next;

for (Node* p= dum-> next; p-> next !=
p=_ _ p=2_

{ pt = p->_data;
q = p~>_next;

_dum; p = p-> next)

g_next = g-> next;
for (; g != _dum && g->_data == pt;
g = g_next, g_next = g->_ next)
{ g->_prev-> next = g->_next;
g->_next-> prev = g-> prev;
delete q;

}

void List::remove_all duplicates()

{ if (_size < 2) return;
T pt:
Node* q;

Node* g next;
for (Node* p= dum-> next; p->_next !=
{ pt = p—-> data;

q = p->_next;

g_next = g->_next;

_dum; p = p-> next)

CHAP. 9] LISTS 223

for (; g != dum; g = g _next, g _next = g->_next)
{ if (g->_data == pt)
{ g-> prev-> next = g-> next;
g-> next->_prev = g->_prev;
delete q;
}

}
}
9.22 void append(List& x, List::Iterator pos, const char* cs)
{ for (char* p=(char*) (cs); *p; p++)
x.push_back (*p);
}
9.23 void copy(List& x, List::Iterator& pos, const char* cs)
{ for (char* p=(char*) (cs); *p; pt++)
{ x.insert (pos, *p);

++pos;
}
}
9.24 void copy(char* cs, List& x)
{ for (List::Iterator it = x.begin(); it != x.end(); ++it)

*cs++ = *it;
*cs = 0; // C-strings must be terminated with the null character

}

9.25 void copy(char* cs, List& x, List::Iterator& posl,
List::Iterator& pos2)
{ for (List::Iterator it = posl; it != pos2; ++it)
*cs++ = *it;

*cs = 0; // C-strings must be terminated with the null character

}

9,26 void List::halve(List& x)
{ x.clear():;
X. size = size - _size/2;

_size /= 2;

Node* p = _dum;

for (int i=0; i<=_size; i++) // find middle node:
p = p->_next;

p->_prev-> next = _dum;
_dum->_prev-> next = x._dum;
X._dum-> prev = _dum-> prev;

dum-> prev = p-> prev;
5->_prgv = x. dum;
x. dum-> next = p;
}
9,27 void halve (List& x, Lists& y)
{ y.clear():
int n = x.size();
n -=n/2;
char c;
for (int i=0; i<n; i++) // locate the middle of x:
{ ¢ = x.back();
X.pop_back();
y.push front (c);
}

224

9.28

9.29

9.30

9.31

9.32

9.34

LISTS [CHAP. 9
void List::split(Listé& x}
{ x.clear(}:
X._size = _size - _size/2;
_size /= 2;
Node* p = _dum-> next;
Nede* g = X._dum;
for (; p != _dum && p-> next != dum; p = p-> next, g = g-> next}
{ g-> next = p-> next; - -
p->_next-> prev = g;
p—>_next = g->_next-> next;
p->_next-> prev = p;
g-> next-> next = x. dum;
X. dum-> prev = g-> next;
}
}
void split (List& x, Listé& y)
{ y.clear();
char c;
for (List::Iterator it = x.begin(); it !'= x.end(};}
(++it;
if (it == X.end()) return;
c = *it;
y.push back(c);
X.erase (it);
}
}
List intersection(List& x, List& y)
(List z;
List xx = %;
Xx.remove_all duplicates():;
for (List::Iterator it = xx.begin(); it != xx.end(); ++it}
for (List::Iterator jt = y.begin(); jt '= y.end():; ++jt)
if (*it == *jt)
(z.push back(*it);
break;

}
return z;
}
List complement (List& x, List& y)
{ List z = X;
z.remove_all duplicates();

for (List::Iterator it = y.beqgin(); it != y.end();

z.remove (*it);
return z;
}
List::Iterator find(List::Iterator& posl,
List::Iterator& pos2, T& t)
{ for (List::Iterator it = posl; it != pos2; ++it}
if (*it == t) return it:
return pos2;
!

++1t)

void count (List::Iterator& posl, List::Iteratoré pos2,Té& t,inté n)

(n=0;
for (List::Iterator it = posl; it != pos2; ++it}
if (*it == t) ++n;

CHAP. 9] LISTS 225

9.35 bool equal (List::Iterator& posl, List::Iterator& pos2,
List::Iterator& pos3)
{ List::Iterator it = posl;
List::Iterator jt = pos3;

while (it != pos2)

{ if (*it != *jt) return false;
++1it;
++3t;

}
return true;
}
9.36 List::Iterator search(List::Iterator& posl, List::Iterator& pos2,
List::Iterator& pos3, List::Iterator& pos4)
{ List::Iterator it=posl:
List::Iterator jt=posl;
List::Iterator kt=pos3;

while (it != pos2)
{ jt = it;
kt = pos3;
while (jt != pos2 && kt != posd && *kt == *jt)
+4+jt, ++kt;
if (kt == pos4) return it;
++it;

)

return pos2;

Chapter 10

Standard Container Classes

10.1 CONTAINERS

A container is an object that contains other objects. The contained objects, called the elements of
the container, must have the same type. Arrays, stacks, queues, and lists are containers.

A container class is a class whose instances are containers. The Stack class defined on
page 154, the Queue class defined on page 163, and the List class defined on page 204 are
container classes. The new ISO C++ Standard Library defines a collection of container classes
including stack, queue, and list. (Note that we capitalized the names of our own container
classes to distinguish them from the standard classes.) This chapter summarizes the standard
container classes.

10.2 TEMPLATES

The Stack, Queue, and List classes in Chapters 7 and 9 define containers whose element
type is char. With slight modification, these definitions can be changed for other element types.
However C++ provides a better method for being able to change the underlying element type without
having to change the container definition. This is done with a template.

A remplate is an outline for the definition of a function or class that uses parameters in place of
types or objects. The template can then be instantiated by substituting types and objects for the
template parameters. In C-++, both functions and classes can be defined from templates.

EXAMPLE 10.1 The swap() Function Template
template <class T>
void swap(T& x, T& y)
{ T temp = X%:
X =y
y = temp;
}
This function template can be used to define a swap () function for any argument type:
int m=22, n=44;

cout << "m = " << m << ", n =" << n << endl;

swap (m, nj;

cout << "m = " << m << ", n =" << n << endl;

string r="Washington”, s="Jefferson";

cout << "r = " <« r <<« ", s =" << 5 << endl;

swap (r, S);

cout << "r = " << r << ", s = " << s << endl;
The output is

m=22, n= 44

m= 44, n = 22

r = Washington, s = Jefferson

r = Jefferson, s = Washington

226

CHAP. 10] STANDARD CONTAINER CLASSES 227

When the compiler encounters the first call to swap (), it uses the fact that the arguments m and n
have type int to generate the following function definition:
void swap (int& x, int& y)
{ int temp = Xx;
X = y;
y = temp;
t
Note that this is done simply by substituting the type int for the template parameter T.
When the compiler encounters the second call to swap (), it uses the fact that the arguments r and s
have type string to generate the following function definition:
void swap(string& x, string& y)
{ string temp = x;
X = y:
y = temp;
}
This is done simply by substituting the type string for the template parameter T.

The effect of the function template is to shorten the source code by having a single template in place of
several different function definitions. The compiler uses the template to generate the definitions based upon the
calls that it finds in the source code. Note that the efficiency provided by the template occurs only within the
source code file. The resulting executable file is no more efficient than if the source code had included two
separate non-template definitions.

Note the required code

template <class T>
that precedes the function header. The symbol T is the name of the remplate parameter. Any valid identifier
may be used for the name; the letter “T” stands for “type.”

EXAMPLE 10.2 A stack Class Template
This template is the same as the definition on page page 154 except with T in place of char:
template <class T>
class Stack

{ public:
Stack(int m=100) : _max(m), _size(0) { _a = new T[max]; }
~Stack() { delete [] a; }
bool is empty () const { return bool (_size == 0); }
bool is full{) const { return bool(size == max); }

int size{) const { return size; }
T top() const { return ~a[:size—l]; }
void push(const T& t) { _a[size++] = t;)}
T pop() { return _al[--_size]; }
private:
™ a; // a dynamic array of elements of type T
int max; // the maximum number of elements on the stack
int _size; // the number of elements on the stack
b
This class template can be used to definea Stack class for any element type:
Stack<int> int stack;
int stack.push(66);
int stack.push(88);
cout << "int stack.top() = " << int stack.top{) << endl;
Stack<string> string stack; -
string_stack.push("Madison");
string_stack.push("Monroe");
cout << "string_stack.top() = " << string stack.top() << endl;

228 STANDARD CONTAINER CLASSES [CHAP. 10

The output is
int stack.top() = 88
str;ng_stack.top() = Monroe
Note that, unlike a function template, the instantiation of a class template requires the extra < > syntax
{eg, <int>, <string>)as a suffix onto the template name (e.g, Stack<int>, Stack<string>)to
indicate what type is to be substituted for the template parameter T. Function templates don’t need this extra
syntax because the type is already specified as the argument type.

10.3 THE STANDARD C++ CONTAINER CLASSES AND THEIR OPERATIONS

The C++ Standard Library defines the following ten container class templates:

stack<T>

queue<T>

deque<T>

vector<T>

list<T>

priority queue<T>

set<T>

multitiset<T>

map<K, T>

multimap<K, T>
In each case, the template parameter T stands for the container’s element type. For example the type
vector<double> would be used to declare a vector whose elements have type double.

The map and multimap templates have two template parameters, K and T, which stand for
the key type and the data type. For example the type map<string,Student> would be used to
declare a map object (a.k.a. a table or an associative array) each of whose elements contains a
string object paired witha Student object. The string object would be the student’s identifi-
cation code (e.g., Social Security Number), and the Student object would be the data record for the
student identified by that code. (The Student class would be user-defined, similar to the Person
class in Problem 7.22 on page 160.) The ID code is called the key value for the record.

The common fundamental operations for these classes include:
Constructors and Destructors:

x () Default constructor: creates an empty container x.

x(y) Copy constructor: creates a duplicate x of container y.

x(n) Creates a container x with n copies of the default element.

x(n,t) Creates a container x with n copies of the element t.

x(p,q) Creates a container x withthe g-p elements *p..* (g-1).

~x () Destructor: destroys the container x and all of its elements.
Assignment Functions:

assign(n) Replaces current contents with n copies of the default element.

assign(n,t) Replaces current contents with n copies of the element t.

assign(p,q) Replaces current contents with the q-p elements *p..* (g~1).

operator=(y) Assignment operator: replaces current contents with those of container y.
Iterators:

begin() Returns the position of the first element of the container.

end () Returns the position the dummy element at the end of the container.
Access Functions:

front () Returns the first element of the container.

back () Returns the last element of the container.

operator(] (i) Subscript operator:e.g, x[4] = 99.

at (i) Range-checked subscript function: e g, x.at (4) = 99.

CHAP. 10] STANDARD CONTAINER CLASSES 229

size () Returns the number of elements in the container.

empty () Returns true if the container is empty otherwise, false.
Mutator Functions:

push_front (t) Inserts the element t at the beginning of the container.

pop_front () Removes the first element in the container.
push_back (t) Inserts the element t at the end of the container.
pop_back () Removes the last element in the container.
insert (p) Inserts the default element in front of element *p.
insert (p, t) Inserts the element t in front of element *p.

insert (p,n, t) Inserts n copies of the element t in front of element *p.
insert (p,q,r) Inserts r—gq elements copied from another container in front of element *p.

erase (p) Removes the element *p.
erase (p, q) Removes the g-p elements *p..* (g-1).
swap (y) Swaps all of its elements with those in container y.

Relational Operators:
operator==(y) Returns true ifthe container’s contents are the same as those of y.
operator!=(y) Retuns true ifthe container’s contents are not the same as those of y.
operator<(y) Retumns true if the container lexicographically precedes container y.
Here, x and y are container objects, n and i are non-negative integers, t is an element for the
container, and p, g, and r are iterators that locate positions in the containers.

Tterators on containers work the same way as pointers on arrays. If p and g are iterators on the
same container and k is a positive integer, then:

*p is the element at position p;

++p advances p to the next position;

--p moves p back to the preceding position,

p+k locates the position k elements after p;

p-k locates the position k elements before p;

g-p is the number of elements in the subsequence from *p to * (g-1);
We use the notation *p..* (g-1) to denote the subsequence from element *p to the element * (q-1).
For example, if p locates the third element and g locates the eighth element of a 1ist object x,
then the value of the expression g-p is 5, which is the number of elements in the subsequence from
the element *p (the third element)to * (g-1) (the seventh element).

In computer science, elements of sequences are always numbered beginning with the number
zero. This is called zero-based indexing. The inescapable consequence of this protocol is that the
ordinal number of an element is always one more than the index of the element. The 8th element is
element number 7:

The The The The
first second third eighth
element ciement ciement element

e e e —{r—{e—{E]

This is consistent with the fact that the number of elements in a subsequence is one more than the
difference between the first and last element numbers. The sequence pictured above has 8 elements,
which is one more than the difference 7 — 0 = 7. The subsequence CDEFG has 5 elements, which is
one more than the difference 6 — 2 = 4, as shown in the figure below. Because of this intrinsic
anomaly between cardinal and ordinal numbers, the C++ Standard Library always delineates a
subsequence by specifying the position of its first element and the position of the element that

230 STANDARD CONTAINER CLASSES [CHAP. 10

The subsequence CDEFG has § elements
A

~
[a s —{c e }—AF}— 6 f|—"u]

6-2=4

- -

follows its last element. So the subsequence CDEFG would be delineated by the two iterators p and
g that locate elements C and H:

Then the notation *p...* (q-1) correctly represents the subsequence CDEFG because p locates C
and g-1 locates G
Consistency may be, as Henry David Thoreau wrote, “the hobgoblin of little minds,” but it is

essential to good software. It is the hallmark of the C++ Standard Library. To remain consistent to the
protocol described above for subsequences, the Standard Library always includes a dummy element
appended to the end of every sequence. This element cannot be accessed, but it can be located by an
iterator. Indeed, if ContainerClass<ElementType> is any container class, then the code

ContainerClass<ElementType> x;

ContainerClass<ElementType>::iterator p = x.begin{();

ContainerClass<ElementType>::iterator g = x.end{);
declares x to be a container of that type and p and g to be iterators on x that locate the beginning

and the end of the sequence:
The entire x 1ddi dbyi p and g, where p = x.begin() snd g = x.end()
- —
A

J|B|| [‘C' "D’ oK TR G "H' _ ="
L 1 = 3 4 B 6 7 L -

o |

Then element number i can be located as * (p+i).

Note that the access * (p+i) appears to be direct access, just like x{i). But the actual
implementation of the iterator function operator+() depends upon the container class. If
ContainerClass is vector, it will be direct access. But for the container classes that are
implemented as linked structures, p+i is done by sequential access: i callsto ++p.

CHAP. 10] STANDARD CONTAINER CLASSES 231

10.4 THE C++ STANDARD stack CLASS TEMPLATE

A stack is a “last-in-first-out” container (see Example 7.17 on page 154). The C++ Standard
Library defines the stack<T> class template in the <stack> file. Here is a (simplified) partial
listing of its interface:

template <class T>
class stack

{ public:

stack(): // default constructor
stack(const stack&): // copy constructor
~stack(); // destructor
stack& operator=(const stacké&); // assignment operator
bool empty () const; // returns true iff empty
int size{) const; // return number of elements
T& top{): // returns the top element
void push{const T&); // pushes element onto stack
void popl(): // removes top element

private:
/...

i
Note that the pop() function does not return the element removed by it. It has to be accessed
separately by the top() function. Also note that the top() function returns by reference (see
Section 4.9 on page 76) so it can be used to change the top element without removing it, like this:

s.top () = 44;)

EXAMPLE 10.3 Using the Standard stack<T> Class Template
Here is a complete C++ program thatusesa stack of strings:
#include <iostream>
#include <stack>

using namespace std;
typedef stack<string> string stack;

void load(string stack& s)
{ s.push({"alpha");
s.push ("beta");
s.push ("gamma") ;
s.push("delta”");
s.push("epsilon");
}
void dump(string stack& s)
// Postcondition: the stack s is empty
{ int n = s.size{();
for (int k=1; k <= n; k++)
{ cout << "\t' << k << ", " << s.top{() << endl;
s.pop();
}

}
void transfer(string_ stack& sl, string stack& s2)

{ while (!s2.empty())
{ sl.push(s2.top{())
s2.pop{):
}

’

232 STANDARD CONTAINER CLASSES [CHAP. 10

int main{)

{ string stack letters;
load({letters):
string stack backup = letters; // uses the copy constructor
cout << "In reverse order:\n";
dump (letters);
transfer (letters, backup):
cout << "In order:\n";
dump {(letters);

}

The output is
In reverse order:
1. epsilon

2. delta
3. gamma
4. beta

5. alpha

In order:

1. alpha
2. beta

3. gamma
4. delta
5. epsilon

The letters stack is loaded with the names of the first six Greek letters. Then the copy constructor is
used to construct a clone named backup. The dump () function empties and prints in reverse order the
contents of the stack passed to it. Next, the transfer () function transfers the contents of stack s2 into
s1. Since stack access is last-in-first-out, the transfer from the backup stack tothe letters stack loads
the names into the letters stack in reverse order. Consequently, the second call to dump () prints the
letter names in their proper order.

10.5 THE C++ STANDARD queue CLASS TEMPLATE

A queue is a “first-in-first-out” container (see Problem 7.7 on page 156). The C++ Standard
Library defines the queue<T> class template inthe <queue> file. Its class interface is essentially
the same as that for the stack<T> template, using the same names for its member functions. The
difference, of course, is that the pop () function for queue classes removes elements from the other
end. Here is a (simplified) partial listing of its interface:

template <class T>
class queue

{ public:
queue () ; // default constructor
gueue (const queue&); // copy constructor
~queue () ; // destructor
gueue& operator=(const queue&);// assignment operator
bool empty({) const; // returns true 1iff empty
int size{) const; // return number of elements
T& front(); // returns the front element
T& back(); // returns the back element
void push{const T&); // inserts element at back
void pop{(); // removes element from front

private:

/...
):

CHAP. 10] STANDARD CONTAINER CLASSES 233

Note that, like the stack::top() function, the front() and back{() functions return by
reference so they can be used to change those two elements without removing them.

EXAMPLE 10.4 Using the Standard queue<T> Class Template
Here is a complete C++ program that uses a queue of strings:
#include <iostream>
#include <queue>
using namespace std;
typedef queue<string> string queue;

void load(string queue& s)
{ s.push("alpha"};

s.push ("beta");
s.push {("gamma");
s.push("delta");
s (

.push{"epsilon"};
}

void dump(string queue& s}
// Postcondition: the stack s is empty

{ int n = s.size(});
for (int k=1; k <= n; k++)
{ cout << '"\t' << k << ", " << s.front{) << endl;
s.pop{):

}

void transfer(string queue& sl, string queue& s2)
{ while (!sZ2.empty())
{ sl.push(s2.front{());
s2.pop();

}

int main{)
{ string Qqueue letters;
load({letters);
string queue backup = letters; // uses the copy constructor
cout << "In order:\n";
dump (letters);
transfer{letters, backup):
cout << "In order:\n";
dump(letters);
}

The output is
In order:
1. alpha
2. beta
3. gamma
4. delta
S. epsilon

234

STANDARD CONTAINER CLASSES [CHAP. 10

In order:
1. alpha
2. beta
3. gamma
4. delta
S. epsilon

This is the program from Example 10.3, except using queues in place of stacks. The only difference in its
output is that, reflecting the first-in-first-out nature of queues, this dumps the letters in their proper order the

first time.

10.6 THE C++ STANDARD vector CLASS TEMPLATE

A vector is a sequence of elements that supports direct access. As an abstract type, it simply gen-
eralizes the ordinary array type. The C++ Standard Library defines the vector<T> class template
in the <vector> file. Its class interface is the prototype for all the Standard container class tem-
plates. With few exceptions, for each member function of the vector class there is an equivalent
member function for each of the other container classes (stack, queue, list, set, map, efc.).
Here is a (simplified) partial listing of its interface:

template <class T>
class vector

{

) s

friend bool operator==(const vector&, const vectoré&);
friend bool operator<(const vector&, const vectoré&);

public:
typedef T* iterator;
vector(); // default constructor
vector (const vectoré&): // copy constructor
vector (int, const T&); // auxiliary constructor
vector(iterator, iterator); // auxiliary constructor
~vector(); // destructor
vectoré& operator=(const vector&); // assignment operator
void assign(int, const T&); // assigns a given value
void assign(iterator, iterator); // copies elements from object
void resize(int); // changes size of vector
void swap(vectoré&); // swaps elements with object
bool empty() const; // returns true iff empty
int size() const; // return number of elements
iterator begin(); // locates first element
iterator end(); // locates dummy element at end
T& operator[] (int); // subscript operator
T& at(int); // range-checked access
T& front(): // accesses the first element
T& back () // accesses the last element
void push back(const Té&): // inserts element at end
void pop back(): // removes last element

iterator insert(iterator, const T&);:

void insert(iterator, int, const T&):;

void insert(iterator, iterator, iterator);

iterator erase(iterator);

iterator erase(iterator, iterator);

void clear(): // removes all the elements

private:

/e

CHAP. 10] STANDARD CONTAINER CLASSES 235

EXAMPLE 10.5 Using the Standard vector<T> Class Template
Here is a complete C++ program that uses the Standard vector<T> class template::
#include <iostream>
#include <vector> // defines the Standard vector<T> class template
using namespace std;
typedef vector<double> vec;
typedef vector<bool> bits;

template <class T>
void copy({vector<T>& v, const T* x, int n)
{ vector<T> w;
for {(int i=0; i<n; 1i++)
w.push back (x[i]);
v = W,

vec projection(vec& v, bitsé& b)
{ int v _size = v.size();
assert{b.size() >= v_size);
vec w;
for (int i=0; i<v_size; i++)
if (b[i]) w.push back(v[i]);
return w;

void print {vecé& v)

{ int v_size = v.size{();
for (int i=0; i<v_size; i++)
cout << v[i] << " ";

cout << endl;
}

int main{)
{ double x[8] = { 22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9 };
veC v;
copy(v, X, 8);
bool y[8] = { false, true, false, true, true, true, false, true };
bits b;
copy (b, y, 8);
vec w = projection{v, b);
print (v);
print{w);
}
The output is
22.2 33.3 44.4 55.5 66.6 77.7 88.8 99.9
33.3 55.5 66.6 77.7 99.9
This illustrates the vector class push back() and size() member functions.
The purpose of the projection{v, b) function isto use the bit vector b as a mask to remove
selected elements of the vector v. The resulting vector w is called the projection of v onto the subspace
determined by b.

236 STANDARD CONTAINER CLASSES {CHAP. 10

10.7 THE C++ STANDARD list CLASS TEMPLATE

A list is a sequence of elements that do not have direct access. A definition of the ADT List is
given in Chapter 9 along with an implementation for lists of elements of type char.
The C++ Standard Library defines the 1ist<7T> class template inthe <list> file. It is distin-
guished from the vector<T> class template class by the following features:
* it lacks the direct access provided by the subscript operator and the at () function;
* itincludes push front(), pop front(),and remove () functions;
* its insert () and erase () functions are much faster than those for vectors.
These distinctions reflect the fundamental trade-off between the fast direct access provided by
contiguous storage (vectors) and the fast insertions and deletions provided by linked storage (lists).
Due to the special nature of its linked implementation, the 1ist<T> class template includes
some other member functions not included in the vector<T> class template:
template <class T>

class list
{ // same functions as in vector<T>

public:
class iterator; // defined elsewhere
void push front (const T&): // inserts element at beginning
void pop front(); // removes first element
void remove (const T&); // removes elements
void sort(): // sorts the list
void unique(); // removes all duplicates
void merge () ; // removes all duplicates
void splice(iterator, listé&); // inserts elements from other list
void reverse(); // reverses the elements
private:
[/,

}i
Unlike vector iterators which are just pointers to elements, 1ist iterators are separate objects, as
defined in Chapter 9. The 1ist classes can push and pop both at the end (like the vector classes)
and at the beginning of the sequence. The other member functions declared here for 1ist classes
are defined as non-member generic functions for the vector classes. (See Section 10.8.)
Note that the subscript operator is defined for 1ist classes; but it does not give direct access.
The reference x[6] is implemented by 6 increments ++p of an iterator initialized at x.begin().

EXAMPLE 10.6 Using the Standard 1ist<T> Class Template
This program uses a list of strings to find the most popular fruit among a group of people. The program

reads a sequence of names of fruit and stores them in a list. Each item is inserted so that the list is maintained in
alphabetical order. No name is inserted more than once. Instead, each name is stored together with its ordinal
number within the input. For example, “pear” was the 1Ist, 15th, and 22nd name input, so it is stored in the list
like this:

pear 01, 15, 22
This is one of the list elements.

#include <iomanip.h>

#include <iostream.h>

#include <vector> // defines the Standard vector<T> class template

using namespace std;

typedef list<string> SL; // string list type
typedef list<string>::iterator SLI; // string list iterator type

CHAP. 10] STANDARD CONTAINER CLASSES 237

string extract word(SLI& it)
// returns the word stored in *it:
{ string element = *it; // the complete element *it
int k = element.find('\t"'}; // location of the tab
return element.substr (0, k)}; // the substring ahead of the tab
}
bool found(SL& x, SLI& it, stringé& new word)
// searches the list x for the new_word:

{ for (it=x.begin(); it != x.end(); ++it)
{ string word = extract_word(it);
if (word == new word) return true;

if (word > new word) return false;

}

}

string literal(int n)

// returns the string literal for the integer n:

{ string s(2); // a 2-character string
s[0] = char('0' + n/10); // the tens digit
s{l] = char('0' + n%l0); // the ones digit
return s;

}

void print (SL& Xx)

// prints the entire list, numering each element:

{ int i=1;
for (SLI it=x.begin(); it != x.end(); ++it, ++1i)
cout << setw(4d) << i << ", " << *it << endl:
)
int main{()
{ SL x; // x is an empty list of strings
SLI it = x.begin(); // it is an iterator on x

string new_word;

int count=0;

while (cin >> new_word)

{ ++count;
if (found(x, it, new word)) *it += ", " + literal(count);
else x.insert (it, new word + "\t" + literal(count));

}

print (x);

Each iteration of the main while loop reads one word from cin, counts it, and searches for it in the list x.
If it is found to be already in the list, then the string *it at that element is appended with the current count.
Otherwise the new_word andits count are inserted into a new element in the list. The while loop ter-
minates when the end-of-file is detected. Then the entire list is printed.

Here is the input:

pear peach prune orange plum lemon lime banana
peach raisin grape date lemon mango pear lime
apple fig orange peach mellon pear orange apple
cherry lemon cherry drape raisin orange peach mango
apple cherry date peach
And here is the output:

1. apple 17, 24, 33

2. banana 08

3. cherry 25, 27, 34

4, date 12, 35

5. fig 18

6. grape 11, 28

238 STANDARD CONTAINER CLASSES [CHAP. 10

7. lemon 06, 13, 26
8. lime 07, 16
9. mango 14, 32

10. mellon 21
11. orange 04, 18, 23, 30

12. peach 02, 08, 20, 31, 36
13. pear 01, 15, 22

14. plum 05

15. prune 03

16. raisin 10, 2%
This shows that peaches are the most popular fruit among these 36 people, being the favorite of persons number
2,9, 20, 31, and 36. Notice that the list elements are in alphabetical order. Also notice that the output forms a
histogram (a frequency chart), from which the mode (most frequent item) is easily discernible.

The extract_word() function is passed a reference to the iterator it. It assigns the element *it
to the string element, and then uses the find() function fromthe string class to locate the position
of the tab character '\t ' within the string. This character follows the last letter of the fruit name in each list
element, so its index number k can be used to extract that name from the element. This is done with the string
class’s substr () function. The parameters (0, k) tellitto extract the first k characters (from position
0 to position O+k). That is the fruit name which is then returned.

The found() function is passed a reference to the list x, a reference to the iterator it, and areference
to the string new word. It uses a for loop to traverse the list, searching for an element that contains
new_word. It applies the extract_word() function to the iterator at each element to extract the fruit
name in that element. If that word isthe same as new_word, thenthe found() functionreturns true.
Otherwise, it either returns false or continues to the next iteration of the for loop, depending upon
whether the word in the current list element is greater (lexicographically) than new_word. This way, if the
function does return false, then the iterator it is positioned at the correct location in the list at which the
new word should be inserted to maintain alphabetical order. On the other hand, if the function returns
true, meaning that the new_word is already in the list, then again the iterator it returns locating that
particular element, thereby allowing main() to update it. The iterator it must be passed by reference for
this to work.

The literal() function simply constructs a string that is the literal equivalent to the integer
passed to it. For example, if n has the value 27, then the function returns the string "27". This is done by
extracting the ten’s digit (the 2) and the one’s digit (the 7) separately and then assigning themto s[0] and
s [1], respectively. This returned string is used by main ().

Ifthe new word was found, thenthe element *it is updated simply by appending ", " and the
string literal. For example, the 27th word is cherry. When that word is input, the list looks like this:

N

N

x[apple 17, 24 |——{banana 08 — cherry 25 F—_daxe

1 B

it

new_ word
count

The found() function positions the iterator it at the third element and returns true. Then the statement
*it 4= ", " 4+ literal (count});
appends the string ", 27" to the string stored in that element, changing the list to

x| apple 17, 24 }———{banana 08 4}———{cherry 25, 27 dase

1 B

it

CHAP. 10] STANDARD CONTAINER CLASSES 239

10.8 GENERIC ALGORITHMS

The C++ Standard Library is the result of the 1998 ISO standardization of the C++ programming
language, which expanded its library by including a collection of classes and functions that were
developed in the early 1990s by Alexander Stepanov and Meng Lee. Before the conclusion of the
ISO standardization process, this separate collection was knows as the Standard Template Library.
Because it is primarily a collection of classes, iterators, and implemented algorithms, Bjarne Strous-
trup suggested the acronym CIA for the library. Regardless of the name, the implementation of the
generic algorithms in the library are one of its most distinctive features.

The generic algorithms are defined in the Standard Library file <algo>. These algorithms are
implemented as non-member functions (also called free functions). The file includes over 70 of these
functions, most of which apply to most of the standard container classes. Here is a listing of some of
the most useful:

find(start, stop, t): // find t in subseq
adjacent_find(start, stop); // find adjacent equal pair in subseq
count (start, stop, t, n): // count occurrences of t in subseq
equal (start, stop, pos); // return true iff subseql == subseq?
search(startl, stopl, start2, stop2); // find subseq2 in subseql
copyl(start, stop, pos); // replace subseg?2 with subseql
swap(t, u); // interchange t and u
swap_ranges (start, stop, pos); // interchange subseql with subseq2
replace(start, stop, t, u); // replace every t in subseq with u
fill(start, stop, t);: // replace every element in subseq with t
remove (start, stop, t); // remove every element t in subseq
unique(start, stop); // remove all duplicates in subseq
reverse(start, stop):; // reverse the elements in subseq
rotate (start, mid, stop):; // shift subseq (mid-start) to left & wrap
random_shuffle(start, stop); // randomly permute subseq
sort (start, stop); // sort the subseq
nth_element (start, nth, stop); // partition the subseq about nth
binary_search(start, stop, t);: // search subseq for t
min(t, u); // return (£t < u ? t : u)
max(t, u}; // return (£t >u ? t : u)
min_element (start, stop):; // return smallest element in subseq
max_element (start, stop):; // return largest element in subseq
next_permutation(start, stop); // permute the subseq

Here, start, stop, pos,and mid are iterators, t and u are elements, and n is a positive
integer. In the comments, subseq and subseql referto the elements *start...* (stop-1) or
startl...(stopl-1), and subseq2 refers to the elements *start2...+*(stop2-1) or
pos...(pos+(stopl-startl)-2).

The details of these algorithms are explained in the Problems below.

Review Questions

10.1 What is the difference between a class template and a template class?

10.2 What, if anything, is wrong with the following code. Explain,
Stack<Stack<short>> s;
10.3 Is the Ratio class (see Chapter 3) a container class?

10.4 What is the difference between a vector and an array?

240

10.5
10.6
10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

10.16

10.17

STANDARD CONTAINER CLASSES [CHAP. 10

What are the differences between C strings and C++ strings?

What is “fragmented memory” and why is it bad?

a. What is the difference between the subscript operator and the at () function?

b. Why is one preferred over the other?

What is the difference between the stack, queue, deque,and vector template classes?

Programming Problems

Omit the member function is full() in the definition for class template Stack<T> in
Example 10.2 on page 227. Replace it with a private utility function named _expand ()
that dynamically doubles the size of the stack and copies the entire contents of the old stack
into the first half of the new stack. Then use that utility function in the push() function to
prevent overflow.

Convert the Ratio class (see Chapter 7) into a template that allows ratios of numbers other
than ints. For example, Ratio<long> and even Ratio<double> would be valid
classes.

Use the Standard list template defined in the <list> file to implement a Deque<T>
class template. (See Problem 7.7 on page 156) Declare a list as the (only) data member and
then call the appropriate list member functions to implement the corresponding deque mem-
ber functions. For example, the deque’s push back() function is the same as the
push_back () function defined in the Standard 1ist class.

Use the Standard deque template defined in the <deque> file to implement the
Stack<T> class template. Declare a deque as the (only) data member and then call the
appropriate deque member functions to implement the corresponding stack member func-
tions. For example, the stack’s pop() function is simply the pop back() function
defined in the deque class. This is how stack is defined in the C++ Standard Library.

Use the Standard deque template defined in the <deque> file to implement the
Queue<T> class template. Declare a deque as the (only) data member and then call the
appropriate deque member functions to implement the corresponding queue member func-
tions. For example, the queue’s pop() function is simply the pop front() function
defined in the deque class. This is how queue is defined in the C++ Standard Library.

Use the Standard queue template defined in the <queue> file and the Person class
(Problem 7.22 on page 160) to simulate a line of people waiting for movie tickets.

Modify the projection() function in Example 10.5 on page 235 so that it returns the
vector v after erasing the elements in the slots where b[i] is false. Use the erase()
function defined in the vector class. Use iterators instead of integers.

Add the following function to the program in Example 10.5 on page 235:

int freq(SL& x, stringé& word)

// returns the number of times word appeared in the input
Locate the word in the list x and then count how many numbers are in that element.

Implement the following generic Standard Library function defined in <algo>:
template <class Src, class T>
Src find(Src i, Src j, const T& t)
// Searches for t in the subsequence *i...*(j-1); if found, its
// position k is returned; otherwise, j is returned.
// Invariant: no elements are changed.

CHAP. 10] STANDARD CONTAINER CLASSES 241

oy S va I g BN g BN ey
e X 1B X——16r

1x]

>[5

{4]
3

k = find(i, 3, X):

[o]

=1 I+~ 1 I~1 INTH
[EF—{x}—c}—Tu}—x]

4

gt
~ =

10.18 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class T>
Src adjacent find(Src i, Src j);
// Returns the position k of the first occurrence of a pair of
// adjacent equal elements among the elements *i...*(j-1).
// If no equal adjacent elements are found, j is returned.
// Invariant: no elements are changed.

O

ol — o5 Tol
OF—110—0F—10F

i

- [

= adjacent find(i, 3);

I

10.19 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class T>
void eount(Src i, Src j, const T& t, int& n);
// Increments n for each occurrence of the value t among the
// elements *i...*(j-1).
// Invariant: no elements are changed.

242 STANDARD CONTAINER CLASSES [CHAP. 10

10.20 Implement the following generic Standard Library function defined in <algo>:
template <class Src>
bool equal (Src i, Src j, Src p):
// Returns true iff the subsequence *i...*(j-1) is the same as the
// subsequence *p...*(p+tn-1) where n = i - j.
// Invariant: no elements are changed.

oy S =y SO -y R = R ey
BB E—6]

{1]

]

[e—{}—{c—{p}—e}—F}—c
p
b = equal(i, j, p); b

10.21 Implement the following generic Standard Library function defined in <algo>:
template <class Srcl, class Src2>
Srcl search(Srcl i, Srcl j, Src2 p, Src2 q);
// Searches the sequence *i...*(j-1) for a subsequence that equals
// the sequence *p...*(g-1l). If found, position k where it begins
// is returned; otherwise, j is returned.
// Invariant: no elements are changed.

o]

f ?

i—{—{o—{i—Ho——H{o—{i—{1}—0]
t t
p gq

k = search(i, j, p, qQ);

i f—{if—o}—1—o}—o—o—1]
t t t
i k J

i—{i—{o—{1}—o}—0] (1}—0]

CHAP. 10] STANDARD CONTAINER CLASSES 243

10.22 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class Dst>
Dst copy(Src i, Src j, Dst p):
// Replaces the n elements *p...*(p+n-1) with the n elements
// *i...*{3-1), where n = j-i. Returns the position k = p+n.
// Invariant: size is unchanged.

o =]

k = copy{i, 3, p)

[a—{s—{c—{o—{eF—{r—{c—{a}—]
i j
(e} (c—p—{e}—r}—

o [2]

10.23 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class T»>
void replace(Src i, Src j, const T& t, const T& u);
// Replaces each occurrence of the value t with the value u in
the
// sequence *i...*(j-1).
// Invariant: size is unchanged.

ey <l = =1 =1 =1 =7
@?@L&@JL&@&.@
i ;|
replace (i, j, X, Y);

244 STANDARD CONTAINER CLASSES [CHAP. 10

10.24 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class Dst>
Dst swap ranges (Src i, Src j, Dst p);
// Interchanges the n elements *p...*{(p+n-1) with the n elements
// *i...*(j-1), where n = j-i. Returns the position k = p+n.
// Invariant: size 1s unchanged.

o]

k = swap _ranges(i, j, p)

A—{o—{rR——{s—1—{uv—{v}—{6}—{1]
i 3
(e—{s}—c—{o—{et—Ar—{c—In}—x]
)

10.25 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class T>

void £ill(Src i, Src j, const T& t);
// Replaces each of the elements *i...*{j-1) with a copy of the

// value t.
// Invariant: size is unchanged.

fill(i, 3, X):

[x]
=]
()

R

' ?

CHAP. 10] STANDARD CONTAINER CLASSES 245

10.26 Implement the following generic Standard Library function defined in <algo>:

template <class Src, class T>

Src remove(Src i, Src j, const T& t);

// Shifts to the left the n elements among *i...*(j~1) that are
// not equal to t. Returns the position k = i+n.

// Postconditions: none of the elements among *i...*(k-1) are
// equal to t; all the other elements are left unchanged.

// Invariant: size is unchanged.

[x—x}—o—{EF—x—e}—{u}—x]

$ t

k = remove (i, j, X);

D]
t t

Warning: The remove () function does not remove any elements. Instead, it overwrites
some of the elements in the subrange *i...*(k-1) range removing the t values.

10.27 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class T>
Dst remove copy(Src i, Src j, Dst p, const T& t);
// Replaces the first n elements of the sequence at *p with the n
// elements in the sequence *i...*(j-1) that are not equal to t.
// Returns the position k = p+n.
// Postconditions: none of the elements among *p...*(k-1) are
// equal to t; all the other elements are left unchanged.

(Ko —{e—{x}—{c—]

t t

oL oL [l [T11 ~71 [t 1
[R—s}—{1——u}—{v}—{w}—Xx]

246 STANDARD CONTAINER CLASSES [CHAP. 10

10.28 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class T>
Src unique(Src i, Src j);
// Overwrites up to n-1 elements starting with element *i among
// the sequence *i...*(j-1), where n is the number of distinct
// elements in that range. Returns: the position k = i+n.
// Postconditions: all of the elements among *i...*(k-1) are
// distinct; all the other elements are left unchanged.

(AF—8F—cj—B}—p|—c}—{al—E}—D]

y ?

k = unique (i, j);

[A}—{8}—c}—{p)—a—{cj—a—{E}—p]

$ t ot

i J

Warning: Like the remove () function, the unique() function achieves its desired
result only in the resulting subsequence *i...*(k-1).

10.29 Implement the following generic Standard Library function defined in <algo>:

template <class Src, class T>
void reverse(Src i, Src j);
// Reverses the seqguence *i...*(j-1).

reverse (i, j):

10.30 Implement the following generic Standard Library function defined in <algo>:
template <class Src, class T>
vold rotate(Src i, Src k, Src Jj);
// Replaces the subsequence *i...*(i+n-1) with *k...*(j-1), and
// the subsequence *(i+n)...*(j-1) with *i...*(k-1),
// where n = j-k.

CHAP. 10] STANDARD CONTAINER CLASSES 247

10.1

10.2

10.3

10.4

10.5

B D]
fos t

rotate (i, j, Kk):

]

AF—{pf—E}——E—GI—1B

t ot

i

N

Solutions

A class template is only an outline for a class; it includes one or more template parameters. A template
class is a specific class that is generated by the compiler from a class template; it specifies what
type(s) are to be substituted in for the template parameter(s). For example,

template<class T> class Stack (//... }: // a class tem-
plate

Stack<int> sl; // a template class used to declare the stack
sl

Stack<double> s2; // a template class used to declare the stack
s2

Here s1 is declared to be a stack whose elements have type int and s2 is declared to be a stack
whose elements have type double. Note that when the declaration of s1 is compiled, the compiler
uses the template to create a complete class definition forthe Stack<int> type, and when the dec-
laration of s2 is compiled, the compiler uses the template to create a separate class definition for the

Stack<double> type.
There is nothing wrong with this code (although some compilers may not yet be able to compile it). It
declares s to be a stack whose elements are stacks whose elements are shorts. It is equivalent to

typedef Stack<short> short stack type;

Stack<short stack type> s;
The object s could be used like this:

Stack<short> ssl, ss2;

ssl.push(22); // now ssl contains 1 element: 22

ss2.push(44); // now ss2 contains 1 element: 44

s.push (ssl): // now s contains 1 element: ssl

s.push(ss2); // now s contains 2 elements: ssl and ss2
The object s is a container of containers.
The Ratio class (Chapter 3) a not really a container class. Although Ratio objects (ie, frac-
tions) do contain pairs of numbers, they themselves are used as numbers with the usual arithmetic
operations (+, -, *,and /)being defined for them. Containers do not interact with other containers
that way: one doesn’t subtract a stack from a queue or even from another stack. Moreover, a ratio
always contains exactly two numbers (its numerator and its denominator), whereas containers allow
the insertion and removal of many elements.
A vector is a container object; an array is a built-in structured type. A vector has all the extra
functionality provided by the vectot<T> class template and the free functions defined in the Stan-
dard Library. In the context of object-oriented programming, arrays are like linked lists; they provide
a method of implementation.
A C-string is just a null-terminated array of chars. A C++ string is an object that has all the
functionality provided by the Standard C++ string class.

248

10.6

10.7

10.8

10.9

STANDARD CONTAINER CLASSES [CHAP. 10

Fragmented memory occurs when the memory allocated to a process consists of small, disconnected
segments. This renders the unallocated memory less usable because it is “fragmented;” i.e., broken
into little pieces. Requests from the new operator for large contiguous blocks are more tikely to fail.

a. The at () function checks the range on the subscript value and rejects it if it is out of range.

b. So this function is safer to use than ordinary subscripting. But checking the index range takes extra
time. So the programmer wanting fast code should opt for using the subscript operator and ensure
that the code itself prevents the subscript from going out of range.

The stack, queue, deque, and vector templates all have the same functionality. The only
difference between deques and vectors is the efficiency of their operations. Since a deque is meant to
be changed only at its ends, insertions and deletions there are much faster than they are for vectors. On
the other hand, the subscript operator and at () function are much faster for vectors than for deques.
The only differences between stacks, queues, and deques are their names for the functions used to
read, insert, and delete at their ends. Both the stack and the queue templates use push () for
push_back (). The stack templates uses pop() for pop_back() andthe queue tem-
platesuses pop () for pop_front (). The stack template also uses top () forthe back ()
function. (Technically, the stack and queue templates are adaptors that use the deque tem-
plate as their default implementation. They can also use the vector template orthe list tem-
plate. These alternate implementations change the efficiency of certain operations.)

Here are the changes:
template<class T>

class Stack

{ public:
Stack(int);
~Stack();

bool is_empty() const;
void push(const T);

T pop():

private:
void _expand(); // used to prevent stack overflow
T a: // the stack itself: a dynamic array of type T
int _max; // the maximum number of elements on the stack
int _count; // the actual number of elements on the stack

i

template<class T>

void Stack<T>::push(const T x)

{ if (_count == max) _expand();
_a[_Eount++] = X;

}

template<class T>

void Stack<T>:: expand()

{ T* new a = new T[2* max]; // allocate storage for array
new a B
assert(new_a != 0); // abort if not enough memory
for (int i=0; i < _count; i++) // copy all of _a into new_a
new_af(i] = _alil;
T* temp a = _a; // hold address _a in temp a
_a = new_a; // copy address new_a into _a
_max *= 2; // double max
delete {[] temp a; // return old storage back to heap

}
The execution of the _expand () function looks like the picture shown below.

The object s would have been created by
Stack<char> s;
s.push('A');
s.push('B");
s.push('C');

CHAP. 10] STANDARD CONTAINER CLASSES 249

N TN N
RERACEES AR

.............

Then _expand() iscalled with s. a(C] containing 'A'. s._a[l] containing 'B’,
s. a[2] containing 'C', s. max containing 3, and s. count containing 3. The array
new a is created and allocated 6 bytes in memory. The 3 elements ('A', 'B',and 'C')in a
are then copied into the first 3 elements of new_a. Then the pointer temp a is created and initial-
ized to point to the same memory location to which = _a points. This is done so that access to that
location can be kept after _a is reassigned to point {o the new array new_a. Finally the space used
by the old array is returned to the heap so that it can be reused later by other processcs.
10.10 f#incliude "algo™ // defines swapl()
#inciude <assert.h> // defines assert()
tempilate <class T>
class Ratio
{ friend Ratio operator+(const Ratio&, ccnst Ratio&);
friend Ratio operator-{(const Ratio&, const Ratio&);
friend Ratio operator*{const Ratio&, const Ratio&);
friend Ratio operator/{const Ratio&, const Ratio&);
public:
Ratio(T num=0, T den=1): num(num), _den(den) { _reduce(}; }
Ratio{const Ratiok x): num{x. num}, _den{x._den} { reduce();)

250 STANDARD CONTAINER CLASSES [CHAP. 10

Ratio& operator-() { num *= -1; }
T num() const { return num; }
T den{) const { return _den; }
operator double{) const { return double(_num)/double(_den); }
private:
T _num;
T _den;
void _reduce(); // reduces fraction to lowest terms
}bi
template <class T>
Ratio<T> operator+(const Ratio<T>& x, const Ratio<T>& vy)
{ T num = x._num*y._den + x._den*y. num;
T den = x._den*y._den;
Ratio<T> z(num, den):
z._reduce();
return z;
}
template <class T>
Ratio<T> operator-(const Ratio<T>& x, const Ratio<T>& y)
{ T num = x._num*y._den - X._den*y. num;
T den = x._den*y._den;
Ratio<T> z (num, den);
z._reduce();
return z;
}
template <class T>
Ratio<T> operator*(const Ratio<T>& x, const Ratio<T>& y)
{ T num = X. num*y. num;
T den = x._den*y. den;
Ratio<T> z(num, den);
z._reduce();
return z;
}
template <class T>
Ratio<T> operator/(const Ratio<T>& x, const Ratio<T>& vy)
{ assert(y. num != 0);
T num = X. num*y. den;
T den = X. den*y. num;
Ratio<T> z (num, den):;
z. reduce();
return z:;
}
template <class T>
T gcd(T m, T n)
{ assert(m > 0 && n > 0);
while (m > 0)
{ 1f (m < n) swap(m,n);
m %= n;
}
return n;
}
template <class T>
void Ratio<T>:: reduce()
{ if (_num == fl _den == 0) { num = 0; den = 1; return; }
if (den < 0) { num *= -1; den *= -1;)}
int sgn = (_num < 0 ? -1 : 1);

CHAP. 10] STANDARD CONTAINER CLASSES 251

_num *= sgn;
T g = gcd(_num, _den);
_num /= g;
_den /= g;
_hum *= sgn;
}
10.11 This conforms to the Standard C++ deque class template defined in <deque>:
template <class T>
class Deque

{ public:
Deque (const list& x) : list(x); // auxiliary constructor
int size() const { return _list.size();)}
bool empty() const { return bool(_list.size() == 0);)}

T& front() const { return list.front(); }
T& back() const { return list.back(): }
void push front(const T& t) { _list.push front(t); }
void push back(const T& t) { _list.push back(t); }
void pop front() { _list.pop front(); }
void pop_back() { _list.pop back(); }
private:

list<T> list;

):

10.12 This conforms to the Standard C++ stack class template defined in <stack>:
template <class T>
class Stack

{ public:
Stack (const deque& deque) : deque(deque); // aux. constructor
int size() const { return ;aeque.size(); }
bool empty() const { return bool(deque.size() == 0); }

T& top() const { return _deque.back(); }
void push(const T& t) { _deque.push back(t); }
void pop() (_deque.pop back(); }
private:

deque<T> _deque;

};

10.13 This conforms to the Standard C++ queue class template defined in <queue>:
template <class T>
class Queue

{ public:
Queue (const deque& deque) : _deque(deque); // aux. constructor
int size() const { return deque.size(); }
bool empty() const { return bool(deque.size() == 0); }

T& front () const { return _deque.front(); }
T& back() const { return deque.back(); }
void push(const T& t) { deque.push back(t); }
void pop() { _deque.pop_front(); }
private:
deque<T> _deque;
)i
10.14 int main{()
{ gqueue<Person> line;
line.push(Person("Clinton”, "William"));
Address whitehouse("1600 Pennsylvania Avenue", "Washington");
line. front () .set_address(whitehouse);
line.push(Person("Clinton", "Hillary")):
line.push(Person("Gore", "Albert")):

252 STANDARD CONTAINER CLASSES [CHAP. 10

cout << "There are " << line.size() << " people in line.\n";
cout << "The name of the first person in line is "

<< line.front().fname{) + " " + line.front{).lname()<<endl;
cout << "His street address is "

<< line.front{).address().street{) << endl;

cout << "The name of the last person in line is "

<< line.back().fname() + " " + line.back().lname () <<

endl;

}
The output from this program is
There are 3 people in line.
The name of the first person in line is William Clinton
His street address is 1600 Pennsylvania Avenue
The name of the last person in line is Albert Gore
10.15 Note that this alternative function requires that v be passed by value because it changes v:
vec projection{vec v, bitsé& b)
{ vec::iterator itv = v.begin();
bits::iterator itb = b.begin();
while (itv !'= v.end{())
{ if (*itb++) v.erase(itv);
++itv;
}
return v;

}

10.16 int number of numbers (SLI& it)
{ int count=0;
string element = *it;
int k = element.find('\t');
return {element.length() - k + 1)/4;

}
int freq(SL& x, string& word)
{ string x _word;

for (SLI it=x.begin(); it != x.end(]); ++it)
{ string x_word = extract_word(it);
if (word == x_word) return number of numbers(it);

}

return 0;
}
10.17 template <class Src, class T>
Src find(Src i, Src j, const T& t)
{ while (i '= j && *i != t)
+4+i;
return i;

}

10.18 template <class Src, class T>
Src adjacent find({(Src i, Src j)
{ if {i == 3) return j;
for {Src k = i+l; k != 3; ++1i)
{ if (*k == *i) return i;
k = i; // with linked lists, this would be faster than ++k
}

return j;

CHAP. 10] STANDARD CONTAINER CLASSES 253

10.19 template <class Src, class T>
void count (Src i, Src j, const T& t, inté& n)
{ while (i t= j)
if (*i++ == t) ++n;
}
10.20 template <class Src>
bool equal (Src i, Src j, Src p)
{ while (i != 3)
if (*i++ != *p++) return false;

return true;

}

10.21 template <class Srcl, class Src2>
Srcl search(Srcl i, Srcl 3, Src2 p, Src2 q)
{ while (i !'= 3)

return equal{p, q, i++);
return j;

}

10.22 template <class Src, class Dst>
Dst copy(Src i, Src j, Dst p)
{ while (i != j)
*PH+ = *i++;

return p;

}

10.23 template <class Src, class T>
void replace(Src i, Src j, const T& t, const T& u)
{ for (; i '= j; ++1)
if (*1i == t) *i = u;
}
10.24 template <class Src, class Dst>
Dst swap_ranges(Src i, Src j, Dst p)
{ while (i != 3j)

swap (*i++, *p++);
return p;

}

10.28 template <class Src, class T>
void fill(Src i, Src j, const T& t)
{ while (i != 3)
*1++ = t;
}
10.26 template <class Src, class T>
Src remove (Src i, Src j, const T& t)
{ Src k=i;
while (i != j)
{ 1f (*1 !'= t) *k++ = *i;
++1;

}

return k;

}

10.27 template <class Src, class Dst, class T>
Dst remove copy(Src i, Src j, Dst p, const T& t)
{ while (i != 3j)
{ if (*i != t) *p++ = *i;
++1i;

}

return p;

}

Chapter 11

Recursion

11.1 INTRODUCTION

Some functions are naturally self-referential: they can be expressed easily in terms of themselves.

For example, the factorial function n! can be defined using the recurrence formula:

n'=n(n-1)
This is called recursion because the function being defined on the left of the equals sign recurs
(appears again) on the right side.

The factorial function can also be defined iteratively, as it was in Example 4.4 on page 68.
However some functions cannot be implemented easily without recursion. Other functions, which do
admit both iterative and recursive solutions, are easier to understand in their recursive form. So
recursion is an essential tool of the computer scientist.

11.2 THE BASIS FOR A RECURSIVE DEFINITION

The recurrence formula

n=n-(n-1!
describes how each value of the factorial function can be computed in terms of the previous value.
For example,

51=5.41

Then since 4! = 24, it follows that 5! =5 - 24 = 120.
But how do we know that 4! = 24?7 By the same recurrence formula:
4!1=4.3!
And this depends upon the knowledge that 3! = 6.

So recursion causes a chain of similar computations. Each computation uses the same function on
a previous value. The chain must end at some point. That ending is called the basis for the recursion.

The basis for the factorial function is

or=1
From that definition, we can use the recurrence formula
nl=n-(n—1)!

to compute all other values of the factorial function:
It=1-0=1-1=1
21=2.11=2.1=2
3I1=3.21=3.2=6
41=4.31=4.6=24
5!=5.41=5-24=120
elc.

254

CHAP. 11] RECURSION 255

Every recursive definition must have two parts: a basis and a recurrence relation. The two parts
are often expressed together in a combination formula like this:

nt ={ 1,ifn=0
n-(n-1),ifn>0

This simply combines the basis formula
n=1,ifn=0
with the recurrence formula
nl=n-(n-1),,ifn>0
into a single expression that completely defines the factorial function.

11.3 IMPLEMENTATIONS OF THE factorial() FUNCTION

In Example 4.5 on page 69 we computed the factorial function iteratively; i.e., with an explicit
loop. Now we can compare the two implementations.

EXAMPLE 11.1 Recursive Implementation of the Factorial Function
Here is a direct translation of the above recursive definition into C++:

long factorial (int n)
{ if (n == 0) return 1;
else return n*factorial(n-1);

}
The essential feature of this recursive implementation is that the function calls jtself if n > 0, and it calls itself

repeatedly if n > 1. For example, the call factorial(5) will generate the 5 recursive calls: facto-
rial(4), factorial (3), factorial(2), factorial(l),and factorial (0).

EXAMPLE 11.2 Iterative Implementation of the Factorial Function

Here is the iterative implementation from Chapter 3:
long factorial (int n)

{ long f=1;
for (int i=2; 1 <= n; i++)
f *= i;

return f;

Note that if n <2, the loop never iterates and | is returned.

The important difference between the two implementations is that the call factorial (n-1) in
the recursive implementation replaces the for loop in the iterative implementation. On most
computer systems, function calls take much longer to execute than loop iterations. Therefore,
recursion generally is much slower than iteration. The advantages of recursive code are that it is often
more intuitive and simpler to implement when the problem being solved is naturally recursive. There
are examples in Chapter 12 where a non-recursive implementation is not feasible.

EXAMPLE 11.3 Summing Recursively
This function recursively adds the first n elements of an array of floats:
float sum(float al[], int n)
{ if (n == 0) return afl0];:
else return a[n] + sum(a, n-1l);
}
The next example shows that, in some cases, the basis of a recursive function may do nothing,

256 RECURSION [CHAP. 11

11.4 ACTIVATION FRAMES

When a function is called, the current environment (non-static local variables, values, types, etc.)
is saved by the operating system in a data structure called an activation frame. This structure is
pushed onto the run-time stack which is another data structure maintained by the system while the
program is running. When the function returns, its activation frame is popped from the run-time stack
and its contents are used to restore the environment which it left when it was called. The data stored
in an activation frame include the address of the statement where the function is called. This is the
return address which the system needs to continue executing the program after the function returns.

EXAMPLE 11.4 Reversing a String

This function recursively reads a string from standard input and prints it in reverse:
void reverse/()
{ char c;
cin.get (c);
if (¢ == '\n') return;
reverse () ;
cout << ¢y
return;

int main{()
{ cout << "Enter a string:\n";
reverse () ;

}
Here is the output:

Enter a string:

Ciao!

loaiC

There are two calls to the reverse () function here: one from main () and a recursive call from

reverse () itself. Suppose that the address of the next instruction after the call from main() is
0x0120b4, and that the address after the call from reverse () is 0x012006. Then during the execution
of this program, the run-time stack would progress like this:

Ret addr: 0x012006
Local var: ch: ‘o°

Ret addr: 0x012006 Ret addr: 0x012006
Local var: ch: 'a’ Local var: ch: ‘'a'
Ret addr: 0x012006 Ret addr: 0x012006 Ret addr: 0x012006

Local var: ch: "1’ Local var: ch: 'i' Local var: ch: "1’
Ret addr: 0x0120bd l:J‘> Ret addr: 0x0120b4 :> Ret addr: 0x0120b4 l:J‘> Ret addr: 0x0120bd4
Local var: ch: 'C’ Local var: ch: 'C’ Local var: ch: 'C’ Local var: ch: 'C’

This shows the run-time stack after each of the five calls to the print () function. Note how the individual
characters 'C', 'i', 'a', 'o',and '!' are stored: each in its own local version of the variable c.

When the user presses the Return key, the newline character '\n' is read into the variable c. This
prevents another recursive call to reverse (). The newline character is read and the function returns. This
pops the top activation record off the run-time stack, telling the system to return to the address 0x012006
and reassign the value '!' to c. Then that call to the reverse () function finishes by printing the ' 1
and returning. This pops the next activation record off the run-time stack, telling the system to return to the
address 0x012006 and reassign the value 'o' to c. Thenthe 'o' is printed and that call returns. As the
successive calls return, the run-time stack progresses like this:

CHAP. 11] RECURSION 257

Ret addr: 0x012006
ch: '!!

Local var:
Ret addr: 0x012006 Ret addr: 0x012006¢
Local var: ch: ‘o’ Local var: ch: 'of
Ret addr: 0x012006 Ret addr: 0x012006¢ Ret addr: 0x012006
Local var: ch: 'a‘ Local var: ch: 'a' Local var: ch: 'a'

Ret addr: 0x012006 Ret addr: 0x012006 Ret addr: 0x012006 Ret addr: 0x012006
it Yo

Local var: ch: "1’ Local var: ch: 'i Local var; ch: 'i’ Local var: ch:
Ret addr: 0x0120bd :> Ret addr: 0x0120b4 |::> Ret addr: OX0120b4 |::> Ret addr: 0x0120bd
Local var: ch: 'C' Local var: ch: 'C’ Local var: ch: 'C’ Local var: ch: 'C'

11.S THE FIBONACCI SEQUENCE

A function may include more than one recursive call. The best example of this is the Fibonacci
sequence, defined by
0,ifn=0
n=9ifn=1
SIn-1)+f(n-2),ifn>1

So

f0)=0,

AH=1,

) =A0)+AN)=0+1=1,
SIH=AD+A2)=1+1=2,
fH=/2)+f3)=1+2=3,
f5)=/3)+f4=2+3=5,
etc,

Here are the first 18 Fibonacci numbers:

n fin)
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

10 55

11 89

12 144

13 233

14 377

15 610

16 987

17 1597

It can be shown that the Fibonacci sequence increases exponentially.

258 RECURSION [CHAP. 11

EXAMPLE 11.5 The Fibonacci Function

This recursive function is a direct translation of the definition of the Fibonacci numbers:
int f(int n)
{ if (n < 2) return n;
else return f(n-1) + f£(n-2);
}
The functionreturns 0 for £(0) and 1 for £(1) because inthose two initial cases the (n < 2) con-
dition in the if statement is true. For £ (2) the functionreturns £ (1) + £(0) whichisO+1=1.
For larger values of n, the function makes a cascade of recursive function calls. Here is the calling tree for
f (5). The calls are indicated with dashed arrows:

After cascading 14 recursive calls, the original call f(5) returns 5. This clearly is not an efficient way to com-
pute the Sth Fibonacci number.

11.6 THE EUCLIDEAN ALGORITHM

A positive integer d is a divisor of a larger integer » if » is some multiple of d; i.e., n = k-d for
some integer k. For example, 7 is a divisor of 812 because 812 =116-7.

A positive integer d is a common divisor of two larger integers m and » if it is a divisor of both m
and ». For example, 7 is a common divisor of 812 and 924 because 812 =116-7 and 924 = 132-7.

A positive integer d is the greatest common divisor of two larger integers m and » if it is a
common divisor of m and », and no other common divisor of m and » is greater than d. For example,
28 is the greatest common divisor of 812 and 924 because the only common divisors that 812 and 924
have are 1, 2, 4,7, 14, and 28. You can also see that 28 is the greatest common divisor of 812 and 924
from the facts that 812 =29.28 and 924 = 33.28. If there were a common divisor larger than 28, then
the multipliers 29 and 33 would have to have a common divisor. The greatest common divisor of two
integers m and » is often denoted by gcd(m, n). Thus ged(812, 924) = 28.

Greatest common divisors are useful for reducing fractions. For example, to reduce the fraction
812/924, we first find the gcd(812, 924) = 28, and then we simply divide the numerator and denomi-
nator by the ged: 812/28 = 29, 924/28 = 33, so 812/924 = 29/33.

It might seem that finding gcds of large integers could be very tedious and time-consuming. But
fortunately the ancient Greeks discovered a clever algorithm for finding the ged(m, ») without having
to compute all the divisors of m and »n. The algorithm was described in Euclid’s great mathematical
encyclopedia, the Elements,” and so it has come to be known as the Euclidean Algorithm.

* Book V11, Proposition 2.

CHAP. 11] RECURSION 259

The algorithm is most easily understood from an example. Consider the numbers m = 528 and
n = 936. Euclid says to repeatedly subtract the smaller number from the larger number until you end
up with 0; then the last positive number in the sequence must be the greatest common divisor:

936 — 528 = 408
528 — 408 = 120
408 — 120 = 288
288 — 120 = 168
168 — 120 = 48
120 - 48 = 72
72-48=24
48-24=24
24-24=0

Thus: ged(528, 936) = 24.
Euclid’s proof that this algorithm is correct is based entirely on the recurrence relation:
ng(m: ’l) = ng(n'— m, m)

This, together with the facts that gcd(m, n) = ged(n, m) and ged(g, g) = g, guarantee that every pair of
numbers in the progression have the same gcd which must be the last number in the progression. In
the example above, this means: gcd(528, 936) = gcd(408, 528) = gcd(120, 408) = gcd(120, 288) =
ged(120, 168) = ged(48, 120) = ged(48, 72) = gcd(24, 48) = ged(24, 24) = 24,

EXAMPLE 11.6 The Euclidean Algorithm
The modern computer version of the Euclidean Algorithm uses the remainder operator n % m in place of
the subtraction n - m. This is valid because division is the same as repeated subtraction.
This recursive function finds the greatest common divisor of its two arguments:
int ged(int m, int n)
{ if (m > n) return gecd(n, m);
if (m == 0) return n;
return gcd (n%m, m);

}
Here is a trace of the call gcd (936, 528):

main gdc {936,528) gdc (528, 936) gdc (936,528) gdc (936,528)
m[936] m[528]
n[528] n[o36]

11.7 THE RECURSIVE BINARY SEARCH

The Binary Search for an element x in a sorted array a[) looks at the middle element of the
array. If that is not x, then it continues the search in the half that could contain it. The process contin-
ues this recursive step until either x is found or the sub-array is empty.

260 RECURSION [CHAP. 11

EXAMPLE 11.7 The Recursive Binary Search
If x is among the first n elements of the sorted array a [] its location is returned; otherwise, —1 is
returned:
int find(float* a, int start, int stop, float x)
{ 1f (start > stop) return -1;
int mid = (start + stop)/2;
if (x == a{mid]) return mid;
if (x < a[mid]) return find(a, start, mid-1l, x):;
if (x > a[mid]) return find(a, mid+l, stop, x);
}
Here is a test driver:
int main ()
{ float a()] = { 22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9 };
int k = find(a, 0, 8, 77.7);

cout << "k = " << k << endl;
k = find(a, 0, 8, 50);
cout << "k = " << k << endl:;

}
The first call from main () searches for 77.7 in the array a. Two recursive calls are made before x is
found at position 5:

find(a,0,8,77.7) find(a,5,8,77.7) find(a,5,5,77.7)

The second call from main () searches for 50. Three recursive calls are made before it is determined that
x 1s not in the array:

find(a,0,8,50) find(a,0,3,50) find(a,2,3,50) find(a,3,3,50) find(a,3,2,50)

The Binary Search algorithm uses the divide-and-conquer strategy, each time dividing the
remaining segment of the array in half and continuing the search on the half that could contain x. So
the number of calls cannot exceed the number of times the array can be halved. That number is called
the binary logarithm of n, written Ign, where n is the size of the array. This is called the complexity
function for the algorithm, and is written O(lgn). It is a relative measure of how fast the algorithm can
be executed. It means that the execution time is roughly proportional to Ign. So, for example, if you
have two arrays of sizes n, and n,, and if n, = n,?, then it should take the Binary Search only about
twice as long to run on the larger array. That is because 1g(n?) = 2-Ign. For example, if it takes 3 milli-
seconds to run on an array of 200 elements, then it shouldn’t take more than 6 milliseconds to run on
an array of 40,000 elements.

The Binary Search algorithm requires that the array be sorted first.

CHAP. 11] RECURSION 261

11.8 THE TOWERS OF HANOI

We have seen important examples of functions that are more naturally defined and more easily
understood using recursion. The Towers of Hanoi game is a classic example of a problem whose
solution demands recursion. The game consists of a board with three vertical pegs labeled “A”, “B”,

ﬁ ﬁ
u u

A

and “C”, and a sequence of n disks with holes in their centers. The radii of the disks are in an
arithmetic progression (e.g., 6 cm, 7 cm, 8 cm, 9 cm, ...) and are mounted on peg A. The rule is that
no disk may be above a smaller disk on the same peg. The objective of the game is to move all the
disks from peg A to peg C, one disk at a time, without violating the rule.

The solution to the Towers of Hanoi game is naturally recursive:

* Move the smaller n— 1 disks from peg A to peg B.
* Move the remaining disk from peg A to peg C.
* Move the smaller n — 1 disks from peg B to peg C.

The first and third steps are recursive: apply the complete solution to »—1 disks. The basis to this
recursive solution is the case where n = 0: in this case, do nothing. That makes the expanded solution
for the case of n =1 disk:

* Move the disk from peg A to peg C.
Then the expanded solution for the case of n = 2 disks becomes
* Move the top disk from peg A to peg B.
* Move the second disk from peg A to peg C.
* Move the top disk from peg B to peg C.
And then the expanded solution for the case of n = 3 disks becomes
* Move the top disk from peg A to peg C.
* Move the second disk from peg A to peg B.
* Move the top disk from peg C to peg B.
* Move the remaining disk from peg A to peg C.
* Move the top disk from peg B to peg A.
* Move the second disk from peg B to peg C.
* Move the top disk from peg A to peg C.

Note that the use of the general recursive solution here requires the substitution of different peg
labels. So it is better to express the general solution using variables

To move »n disks from peg x to peg y using the auxiliary peg z:

* Move the smaller n— 1 disks from peg x to peg z.
* Move the remaining disk from peg x to peg y.
* Move the smaller n — 1 disks from peg z to peg y.

262 RECURSION [CHAP. 11

If we name this three-step algorithm hanoi(n, x, y, z), then we can see that our solution for the case
n =2 was hanoi(2, A, C, B), and our solution for the case » = 3 was:
* hanoi(2, A, B, C).
* Move the top disk from peg A to peg C.
* hanoi(2, B, C, A).
The general solution is easily implemented into C++:

EXAMPLE 11.8 The Towers of Hanoi Puzzle
This function prints all the steps to the solution of the Towers of Hanoi puzzle with n disks:
void print(int n, char x, char y, char z)
// prints the solution for moving n disks from peg x to peg y:
if (n > 0)
{ hanoi(n-1, x, z, y):
cout << "Move top disk from peg " << x " to peg " << y << endl;
hanoi(n-1, z, y, x);

}
Here is a sample run for four disks:
#include <iostream>

void print(int n, char x, char y, char z);
// prints the solution for moving n disks from peg x to peg y:

int main()
{ print (4, 'a', 'C', 'B');
}

Here is the output:

Move the top disk from peg A to peg B.
Move the top disk from peg A to peg C.
Move the top disk from peg B to peg C.
Move the top disk from peg A to peg B,
Move the top disk from peg C to peg A.
Move the top disk from peg C to peg B.
Move the top disk from peg A to peg B.
Move the top disk from peg A to peg C.
Move the top disk from peg B to peg C.
Move the top disk from peg B to peg A.
Move the top disk from peg C to peg A.
Move the top disk from peg B to peg C.
Move the top disk from peg A to peg B.
Move the top disk from peg A to peg C.
Move the top disk from peg B to peg C.

11.9 MUTUAL RECURSION

In some cases there is computational advantage to having two (or more) functions call each other
recursively. This is called murual recursion. As with ordinary recursion, this requires that each
function have a basis and that each recursive call reduce the order of the problem.

CHAP. 11] RECURSION 263

A classic example is the mutually recursive definitions of the sine and cosine functions. These

functions satisfy the identities

sin x = 2 sin(x/2) cos(x/2)

cos x = 1 -2 sin?(x/2)
and the approximate identities

sin x = x — x3/6

cosx = 1 -x22
for very small values of x. The two identities provide the mutually recursive calls, and the two
approximate identities provide the bases for the two functions. The recursive calls reduce the order of
the problem by replacing x with x/2.

EXAMPLE 11.9 Mutually Recursive Sine and Cosine
The following s () and c () functions compute the sine and cosine:
#include <iomanip> // defines the setprecision() function
#include <iostream> // defines cin and cout objects
#include <cmath> // defines the sin() and cos() functions
const double EPSILON=0.005;
double s(double x); // computes the sine of x
double c(double x); // computes the cosine of x

int main()
{ double x;
cout << setprecision(10);
do
{ cin >> x;
cout << "\ts = " << s(x) <<« ", c = " << c(x) << endl;
cout << "\tsin(x) = " << sin(x) << ", cos(x) = " << cos(x) <<endl;

} while (x '= 0.0);

}

double s (double x)

{ if (x < EPSILON && -x < EPSILON) return x*(l - x*x/6);
return 2*s(x/2)*c(x/2);

}

double c(double x)

{ 1f (x < EPSILON && -x < EPSILON) return 1 - x*x/2;
return 1 - 2*s(x/2)*s(x/2);

}

int main ()
{ double x;
do
{ cin >> x;
cout << "\ts = " << s5(X) << ", c = " << c(x) << endl;
} while (x != 0.0);
}

Here is a test run:

1.2
s = 0.932039086, c = 0.3623577545
sin(x) = 0.932039086, cos(x) = 0.3623577545
1.5
5 = 0.9974949866, c = 0.07073720167
sin(x) = 0.9974949866, cos(x) = 0.07073720167

264 RECURSION [CHAP. 11

3.14159265358979

s = 1.392019833e-11, c = -1
sin({x) = 3.231085104e-15, cos(x) = -1
0.01
s = 0.009999833334, c = 0.9999500004
sin(x) = 0.009999833334, cos(x) = 0.9999500004
-1.2
s = -0.932039086, c = 0.3623577545
sin(x) = -0.932039086, cos(x) = 0.3623577545
0
s = 0, ¢ = 1
sin(x) = 0, cos(x) = 1

The test driver reads x interactively and then prints the values of s (x) and c(x) and also the values of
sin(x) and cos(x) to 10 significant digits. The accuracy of these functions is remarkable, especially con-
sidering how simply their code is. The power of recursion is evident here.

Note that the expression x — x*/6 is coded as x* (1 - x*x/6). This is done to reduce roundoff error.
When x is small, x> is much smaller than x2. So x*/6 could be insignificant (smaller than the computer’s
machine number) while x%/6 is not. In this case, x — x*/6 will be the same as x, but x(1 — x2/6) will not be; i.e., the
factored expression will have a more accurate computational value.

11.10 BACKUS-NAUR FORM

Although recursive definitions may seem like circular reasoning, they are frequently used in
computer science to specify programming language grammars. This use of recursion was developed
by John Backus and Peter Naur in the 1950s to define the Algol programming language, and so it is
generally referred to as Backus-Naur Form, or BNF. A BNF grammar consists of a sequence of
explicit and recursive definitions. The explicit definitions define new symbols in terms of existing
symbols. The recursive definitions define new symbols in terms of themselves and other existing
symbols. For example, the grammar rules of the C++ language ([Ellis] p. 388) define the new term

unary-operator to be one of the symbols *, &, +, -, !, or ~. This explicit definition would be
expressed in BNF as
<unary-operator> ::=* | & [+ | - [! [~
Here, the meta-symbol ::= means that the object on its left is being defined, and the meta-symbol
| means “or”.
The symbols *, &, +, -, !,and ~ are called terminals because they are not defined in terms of

any other symbols. The symbol <unary-operator> is called a nonterminal because it is defined
in terms of other symbols. BNF definitions are called productions because they “produce” new terms
from existing terms.
Here is the BNF production for the C++ nonterminal <statement-list>:
<statement-list> ::= <statement> | <statement-list> <statement>

This recursive definition means that a statement-list is either a statement or a
statement-list followed by a statement. The C++ compiler would use this production to
verify that the expression

X = 22; y = 44; 2z = 66;
is avalid statement-list by means of the following logic:

e“x = 22;”isavalid statement.

» Therefore, “x = 22;” isa valid statement-list.

*“y = 44;” isavalid statement.

» Therefore, “x = 22; y = 44;” isavalid statement-1list,

CHAP. 11] RECURSION 265

*“z = 66;” isavalid statement.
» Therefore, “x = 22; vy = 44; z = 66; isavalid statement-list.
Here is the BNF production for the C++ nonterminal <compound-statement>:
<compound-statement> ::= { [<statement-list>] }
This production includes the terminals { and }. It also uses the meta-symbol [], which means
that whatever is listed inside the brackets is optional. So this production could also be expressed as
<compound-statement> ::= { } | { <statement-list> }
meaning that a compound-statement is either just a pair of empty braces { } oritisa
statement-list enclosed in braces. Thus, for example,
{ x =22; v = 44; z = 66; }
is a valid compound-statement.

EXAMPLE 11.10 A BNF Grammar for Simple Expressions with Binary Digits

Given the eight terminals +, -, *, /, {,), 0,and 1 and the five nonterminals <bit>, <num>,
<factor>, <term>, and <expr> defined by the BNF grammar
<expr> ::= <term> | <expr> + <term> | <expr> - <term>
<term> ::= <factor> | <term> * <factor> | <term> / <factor>
<factor> ::= (<expr>) | <num>
<num> ::= <bit> | <num> <bit>
<bit> ::=0 | 1

verify that the string (101 + 1) /10 is a valid expression.
We use the metasymbol —0 to denote the application of one of the productions:
<expr> —0 <term>
—0 <term> / <factor>
—0 <factor> / <factor>
—0 (expr) / <factor>

-0 (expr + <term>) / <factor>

-0 (<term> + <term>) / <factor>

—0 (<factor> + <factor>) / <factor>

—0 (<num> + <num>) / <num>

—0 ({ <num> <bit> + <num>) / <num> <bit>

—0 (<num> <bit> <bit> + <num>) / <num> <bit>
—0 (<bit> <bit> <bit> + <bit>) / <bit> <bit>
—0 ({ <bit> <bit> <bit> + <bit>) / <bit> <bit>
-0 (1 01+ 1) /10C= (101+1)/10

Note that the first four productions in the grammar use mutual recursion: <expr> is defined in terms of
<term>, which is defined in terms of <factor>, which is defined in terms of <expr>.

Review Questions

11.1 A recursive function must have two parts: its basis, and its recursive part. Explain what each
of these is and why it is essential to recursion.

11.2 How many recursive calls will the call factorial (10) generate?

11.3 How many recursive calls will the call £ (6) to the Fibonacci function generate?

11.4 What are the advantages and disadvantages of implementing a recursive solution instead of
an iterative solution?

11.5 How many recursive calls could the Binary Search make on an array of 1000 elements if the
item being sought is not in the list?

266

11.6

11.7

11.8
11.9
11.10

11.11

11.12
11.13

11.14
11.15
11.16
11.17

11.18
11.19

11.20

11.21

RECURSION [CHAP. 11

If the Binary Search takes 7 ms to run on an array of 250 elements, how long would you
expect it to take to run on any array of 62,500 elements?

Problems

Use the BNF grammar defined in Example 11.3 on page 255 to verify that the string
10*110+1 is a valid expression.

Write a BNF grammar for valid C++ identifiers.
Write a BNF grammar for a valid hexadecimal numerals.
Produce some valid sentences from this BNF grammar:

<sentence> ::= <subject> <predicate>

<subject> ::= <noun-phrase>

<predicate> ::= <verb> | <verb> <noun-phrase>

<noun-phrase> ::= <article> [<adjective>] <noun>

<article> ::=my | your | his | hers | someone's

<adjective> ::= loyal | big | dumb | clever | immodest | dirty
<noun> ::= dog | sister | boyfriend | girlfriend | roommate
<verb> ::= bit | bumped into | threw up on | insulted | kissed

Programming Problems

Recursion is expensive because each recursive function call carries a lot of overhead. Modify
the recursive implementation of the factorial() function (Example 11.1 on page 255) by
handling the cases for n < 4 separately.

Write a recursive function that returns the sum of the first n squares.

Write a recursive function that reads lines of text from one file and then prints the lines in
reverse order in another file.

Write a recursive function that returns the power x”,

Write a recursive function that returns the power x”, using at most 2 Ig n recursive calls.
Write a recursive function that returns the maximum element in an array.

Write a recursive function that returns the maximum among the first n elements of an array,
using at most Ig n recursive calls.

Write a recursive function that prints the binary numeral for a positive integer.

Write a recursive function that prints the octal numeral for a positive integer. In your test
driver, use the oct manipulator (defined in <iomanip>), like this:

cout << oct << n << dec << endl;

to compare check function’s results.

Write a recursive function that prints the hexadecimal numeral for a positive integer. In your
test driver, use the hex manipulator (defined in <iomanip>), like this:

cout << hex << n << dec << endl;

to compare check function’s results.

[Hint: use a separate function hex (n) that returns the hexadecimal character for an integer
in the range 0 <n < 16.]

Werite an iterative implementation of the Fibonacci function.

CHAP. 11] RECURSION 267

11.22

11.23
11.24
11.25
11.26
11.27

11.28

11.29

11.30

11.31

11.32
11.33

11.34

11.35

The binomial coefficient c(n,k) for integer parameters n and k is defined to equal 1 for k=0
orn,and equaltoc(n—1,k— 1)+ c(n— 1, k) for 0 < k <n. Implement this recursive function.
Write a recursive function that returns the integer binary logarithm of a positive integer.
Draw the calling tree for the call ¢ (5,2) to the recursive binomial coefficient function.
Implement an iterative version of the Euclidean Algorithm.

Implement an iterative version of the Binary Search.

Ackermann’s function A(m,n) is defined recursively by

n+l,ifm=0
A(m,n) =3 g(m-1,1),if n=0and m>0
A(m=1,A(m,n-1)),ifm.n>0

a. Implement and test Ackermann’s function for0 <m <3 and 0 <n < 8.

b. Prove that A(3,n) =2"3 -3, foralln > 0.

¢. Compute 4(4,4).

d. Assuming that the largest value an int can have is 2,147,483,647 (= 23! - 1), determine
the computable domain of the Ackermann function.

Note that this function has no practical use. It’s value is the insight into recursive functions

that its study brings.

Write a recursive function to find a path through a maze. Represent the maze by an n-by-n
array of Os and s, where a 0 means occupied (part of the maze wall) and a | means unoccu-
pied (open path). Use a vector d whose values 0, 1, 2, and 3 mean that the last move was
left, down, right, or up, respectively.

Write a recursive function that prints all #n! permutations of the first n integers. For example,
the call print (s, 0, 3) would print the 6 permutations: 012, 021, 102, 120, 201, 210.
Write and test a recursive function that returns the sum of the first n integers. Compare your
results with the values given by the closed form function n (n + 1)/2.

Write and test a recursive function that returns the sum of the first n cubes. Compare your
results with the values given by the closed form function n’(n + 1)%/4.

Write and test a recursive function that prints n stars in a row.

Write and test a recursive function that returns the integer logarithm with base b of a positive
integer n. Use the log() function defined in <cmath> and the algebraic identity

_ logx

log,» logb

to check your answers. (Hint: see Problem 11.33.)

The inefficiency of the recursive Fibonacci function can be overcome by storing previously
computed values instead of recomputing them. Modify and test the function in Example 11.5
on page 258 by storing each computed value in an array named fib[].

Re-implement and test the Fibonacci function (Example 11.5 on page 258) using the follow-
ing close form formula:

n) = N _yn
fn) L_‘Lﬁ

where @ = (1 + V5)/2 = 1.618033988749895... and y = 1 — ¢ = —0.618033988749895.... The
mathematical constant ¢ is called the Golden Mean.

268

11.36

11.37

11.38

11.39

11.40

11.41

11.42
11.43

11.44

RECURSION [CHAP. 11
Determine empirically (i.e., by running a test-driver on different inputs) the largest value of
n for which your system will compute factorial (n) correctly. Then modify the solution
to Problem 11.11 so that the function returns the value —1 to signal an error if n is out of
range (i.e., either too big or too small).
Write and test the following function:
int lcm(int m, int n);
// returns the least common multiple of m and n.
Hint: use the Euclidean Algorithm (Example 11.3 on page 255) and the identity:
ged(m, n)-lem(m, n) =m-n
Write and test the following recursive function:
int is_increasing(float al[], int n);
// returns 1 if the first n elements of the array al[] are
// increasing; otherwise returns 0.
Write and test a program that reads lines of text from an external file and then prints the same
text but with each word written backwards. (See Example 11.3 on page 255.) For example:
meno. txt
Can you tell me, Socrates, whether virtue naC uoy llet em, setarcoS, rehtehw eutriv
1s acquired by teaching or by practice; s1 deriuqca yb gnihcaet ro yb ecitcarp:
or :f neirther by teaching nor practice, ro f1 rehtien yb gnihcaet ron ecitcarp,
then whether 1t comes to man by nature, nrht rehtehw ti semoc ot nam yb erutan,
or 1n what other way? roc n1 tahw rehto yaw?
Write and test a program that reads lines of text from an external file and then prints the same
words but in reverse order on each line. (See Example 11.3 on page 255.) For example:
meno, txt
Can you tell me, Socrates, whether virtue virtue whether Socrates, me, tell you Can
1s acquired by teaching or by practice: practice; by or teaching by acquired 1s
or if neither by teaching nor practice, practice, nor teaching by neither if cor
then whether it comes to man by nature, nature, by man to comes it whether then
or in what other way? way? other what in or
Write and test a recursive function that implements the Interpolation Search. This is the same
as the Binary Search (Example 11.3 on page 255), except that the division point div
(named mid in the Binary search) is selected each time so that the ratio (div - first)/
(last - first) isthesameastheratio (x ~ a[first]})/(al[last] - a[first]).
Note that this is the “common sense” algorithm that most people use when they look up a
word in the dictionary.
Run the Towers of Hanoi solution for 5 and for 6 disks.
Modify the Towers of Hanoi function so that it counts and prints the number of disk moves
made. Then extend this sequence {0, [, 3, 5, 11, ...} up to the case of 10 disks. Use this
empirical data to obtain a formula for the number of moves for n disks.
Modify Example 11.3 on page 255 using the alternative identities

sin x = (4 cos’(x/3) — 1) sin(x/3)
cos x = (1 - 4 sin?(x/3)) cos(x/3)

CHAP. 11] RECURSION 269

11.45 Implement the hyperbolic sine and cosine (sinh x and cosh x) using mutual recursion and the

11.1

11.2
11.3

11.4
11.5

11.6

11.7

11.8

11.9

identities:
sinh x = 2 sinh(x/2) cosh(x/2)
cosh x = 1 + 2 sinh%(x/2)
sinh x = x + x%/6
coshx =~ 1+x%2

Solutions

The basis of a recursive function is its starting point in its definition and its fina} step when it is being
called recursively; it is what stops the recursion. The recursive part of a recursive function is the
assignment that includes the function on the right side of the assignment operator, causing the function
to call itself; it is what produces the repetition. For example, in the factorial function, the basis is n! =
1 if n =0, and the recursive part is n! =n-(n—1) if n> 0.

The call factorial (10) will generate 10 recursive calls,

The call f(6) to the Fibonacci function will generate 14 + 8 = 22 recursive calls because it
calls £(5) and f (4), which generate 14 and 8 recursive calls, respectively.

A recursive solution is often easier to understand than its equivalent iterative solution. But recursion
runs more slowly than iteration.

The number of recursive calls that the Binary Search function will make on an array of 1000 elements
is the number of times the list can be divided in half: Ig»n=1g1000 = 10. If the item is not in the list, the
function has to make one more call to stop the recursion. So the maximum number of possible recur-
sive calls is 11.

The Binary Search has O(lg #) complexity, which means that its running time is roughly proportional
to 1g n, where 7 is the number of elements in the array. Since lg(n?) = 2-lgn, squaring the size of the
array should double the running time of the search. Therefore, it should take about 14 milliseconds to
run the Binary Search on the array of 62,500 elements (since 62,500 = 250%).

<expr> — <term>

— <term> + <term>
— <term> * <factor> + <term>
— <factor> * <factor> + <factor>
— <num> * <num> + <pum>
— <num> <bit> * <num> <bit> + <bit>
— <bit> <bit> * <num> <bit> <bit> + <bit>
— <bit> <bit> * <bit> <bit> <bit> + <bit>
- 10*110+1=10*110+1
<identifier> ::= <alpha/num-char> <digit>
<alpha/num-char> ::= <alpha> | _ | <digit>
<alpha> ::= <upper-alpha> | <lower-alpha>
<upper-alpha> ::=A | B | C | DJ]J]EJF| G| HI|I| J]K]L
MINJTOIPITQIRIS|]TI|UO]VI]WIX
Y { 2
<lower-alpha> ::=a (b cidljel £ftg !l hti] j | k|1
m|njlolpltaglrls|tiulvi]w)]
y |z
<digit> ::= 0 1) 1 1 2) 31 4151 61}7]| 8139
<hexa-num> ::= <hexa-digit> | <hexa-num> <hexa-digit>
<hexa-digit> ::= <hexa-alpha> | <digit>

<hexa-alpha> A|JB|CI|D]J]EJ]Filalblcldlel]H-f
<digit> ::=0 | 1 | 2 | 31 4| 5| 61 71819

270 RECURSION [CHAP. 11

11.10 <sentence> —0 <subject> <predicate>.
—(0 <noun-phrase> <predicate> .

—0 <noun-phrase> <verb> <noun-phrase>
—0 <article> <noun> <verb> <article> <adjective> <noun>.
—0 my brother kissed your sister.

11.11 Just handle some more of the lower-value cases non-recursively:
int factorial{int n)

{ if (n == 0 || == 1) return 1;
if (n == 2} return 2;
if (n == 3} return 6;

return n*factorial (n-1};
}
11.12 This is similar to Example 11.3 on page 255:
int sumOfSquares(int n)
{ if (n == 0) return 0;
return n*n + sumOfSquares(n-1);
}
11.13 This is similar to Example 11.3 on page 255:
void reverse(ofstream& output, ifstream& input)
{ char buffer({80];
if (input.getline(buffer, 80))
{ reverse(output, input};
output << buffer << endl;
}
}

11.14 This is similar to Example 11.3 on page 255:
float power (float x, int n)

{ 1f (n == 0) return 1;
return x*power (x, n-1);
}

11.15 This modifies the solution to Problem 11.14:
float power(float x, int n)

{ if (n == 0) return 1;
if (n%2) return x*power(x, n-1);
float y = power(x, n/2);
return y*y;
}
Note ﬂ:je need here for the local variable vy. Without it, two (identical) recursive calls would be
required.
11.16 This is similar to Example 11.3 on page 255:
float max(float af], int n)
{ if (n == 1) return a[0];
float m = max(a, n-1);
if (a{n-1] > m) return a{n-1];
return m;
}

11.17 float max(float a{], int lo, int hi)
{ 1if (lo == hi) return allo):;

int mid = (lo + hi)/2;
float maxlo = max(a, lo, mid}, maxhi = max(a, mid+1l, hi);
return (maxlo > maxhi ? maxlo : maxhi):;

CHAP. 11}

11.18

11.19

11.20

11.21

11.22

11.23

11.24
11.25

RECURSION

void print binary(int n)
{ if (n >= 2) print_binary(n/2);

cout << n%2;
}

void print_octal (int n)

{ if (n >= 8) print_octal(n/8);

cout << n%8:;
}

char hex(int n)

271

// returns the hexadecimal digit for n

{ assert(n > 0 && n < 16);
if (n < 10) return char('0' + n);

else return char('a‘

}

+ n - 10);

void print hexadecimal {int n)

{ if (n >= 16) print hexadecimal (n/16};

cout << hex(n%l6);

}

int f(int n)

{ if (n < 2) return n;
int £0=0, fl=1, f£2;
for (int i=2; i < n;
{ £f2 = £f0 + f£1;

£f0 = f1;
f1 £2;
}
return (f0 + £f1);
}

int c(int n, int k)
{ if (k< 0 || k > n)

i++4)

return 0;

return 1;

return c(n-1, k-1) + c(n-1, Kk):

}

int lg(int n)

{ if (n < 2) return 0;
return lg(n/2) + 1;

}

The calling tree is shown on the next page.

int ged(int m, int n)
{ while (m t!= n)
{ if (m > n)
{ int temp = m;
m = n;
n = temp;

return n;

272 RECURSION {CHAP. 11

c(S,2)
c{4,2) ctd, 1)
c(3,2) c(3, 1) c{3, 11 ci(3,0
c(2,2) c{2,1) c(2,1) c(2,0) ci2,1) c(2,0)
(1,1} c(l,0) cil cil, cil c(1,0)

11.26 int find{(float* a, int start, int stop, float Xx)
{ while (start <= stop)
{ int mid = (start + stop)/2;
if (x == a[mid]) return mid;
if (x < a[mid]) stop = mid - 1;
if (x > almid]) start = mid + 1;
}
return -1;
}
11.27 a. int ackermann(int m, int n)
{ if (m == 0) return n+l;
else 1f (n == 0) return ackermann(m-1, 1);
else return ackermann(m-1, ackermann(m, n-1))
}
int main()
{ for (int m=0; m <= 3; m++)
{ for {(int n=0; n <= 8; n++)
{ cout.width(8);
cout << ackermann(m, n):
}

cout << endl;

}

The output is
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 5 7 9 11 13 15 17
5 13 29 61 125 253 509 1021

b. By definition A(1,1) = A(0, A(1,0)) = A(0, A(0,1)) = 4(0,2) = 3, s0 for n = 0:
AB,n) = A(3,0)=A(2,1) = A(l AQ2,0)) = A(l Ad, 1)} A(33) A(0, 41 2)) A(O A0, 4(1,1)))
= A(0, A(0,3)) = A(0, 4) = 5, and 2" - =8-3=

CHAP. 11] RECURSION 273

aA@4)‘ﬂ3AM3»A@3)1«3A@2»A@2)lﬂ3A@]»A@])I«3A@0»
A(4 0)=A(3,1)=13, . A(4,1)=A(3, A(4, 2 3, -3=2'"-3=65536-3=65533,

s A(4,2) = A(3, A(4, 1)) AQ3, 65533 =2 533*3 = 265536 3Ix 265536 = 2765536 = 22716,

o A(4,3) = A(3, A(4,2)) = AG3, 2"2"]6) = 2”“‘6*3 3= 22A2”'6 = 27272116,

. A(4,8) = A(3, A(8,3)) ~ A(3, 2/272716) = 23T 1643 _ 3 5 92227166 = DAQAYADAL G,
mem@mMMMMMMmmmmVWW%A%MMMMWmmmmﬁ
A(4,0)=13 = 16=2"2"2 =23,

A(4,1) = 65535 = 65536 = 27222 = 2/,
A(4,2) = 265536 _ 3 5, 224 =)Ang
A(4,3) = 2273 =26,
A(4,4) = 2770 = 2717,
This is called super exponentiation.
Note that 4(4,2) = 2""5 is far greater than the estimated number (108!) of particles in the universe.
d. From the definition and from parts a—c above, we can conclude
A0, ny=n+1,
A(l, n)=n+2,
A2, n) = 2n-+3
A3, n)=2"3-3,
A4, n) = 2”¢(n-+3)
A(5, 0) = A4, 1) =25
Then, since A(m, n) increases with m and with », it follows that A(m, n) < 2,147,483,647 only for:
m =0 and n <2,147,483,646,
m=1and n<2,147,483,645,
m=2and n<1,073,741,822,
m=3and n< 14,
m=4andn<]1.
11.28 void print(Maze m, int n, int i, int j, int d)
{ if (d != 0 && m(i+1,3])
{ cout << " -> (" << i4l << ", " <K< J << "),
print(m, n, i+l, j, 0);
} else if (d !'= 1 && m(i,j+1])
{ cout << " _> (" << i << "’ " <<]+1 << ")ll;

print (m, n, 1, j+1l 1);

} else if (d '= 2 && m[i-1,3])
{ cout << " -> (" << i-1 << ", " << j << "";

print(m, n, i-1, j, 2);

} else if (d != 3 && m[i,j-11)
{ cout << " -> (" << i << "’ " <<]_1 << ll)";

print(m, n, i, j-1, 3};

}
}

11.29 This function prints permutations:

void print(string s, int k, int n)
{ if (k == n)

{ for (int i=0; i<=n; i++)

cout << s[i);
cout << endl;

}
else
for (int i=k; i <= n; i++)
{ swapl(s[i), s(k])
print(s, k+1, n);
swap(s[i], slkl);
}

274 RECURSION [CHAP. 1]

Here is a test driver for it:

int main ()

{ int n;
cin >> n;
print ("ABCDEFG", 0, n-1);

}

11.30 int sum(int n)

{ if (n < 2) return n;
return n + sum(n-1);

}

11.31 int sum(int n)
{ if (n < 2) return n;

return n*n*n + sum(n-1);
}
11.32 void print(int n)
{ if (n == 0) return;
print (n-1);
cout << MW",
)
11.33 int log{int b, int n)
{ if (n < b) return 0;
return 1 + log(b, n/b);
)
Here is a test driver for it:
int main()
{ for (int n=10; n<260; n += 10)
{ cout << "\t" << n << "\t" << log(3, n) << endl:;
cout << "\t\t" << int(log(n)/log(3)) << endl;

}
11.34 int fib(100],
int f({int n)
{ if (n < 2) return fib([n] = n;
return fib(n) = f(n-1) + f(n-2);
}

11.35 const double PHI =
const double PSI =

double recip sqrtd
double f(int n)
{ return recip_sqrt5*(pow(PHI,n) - pow(PSI,n)};
}
11.36 This test driver finds the first positive integer for which the factorial() function overflows:
int mainf()
{ long fact, pre=1;
for (int n=1; n < 100; n++)
{ fact = factorial (n);
cout << setw(d) << setiosflags(ios::right) << n << "! ="
<< setw(1l2) << factorial(n)
<< setw(20) << fact << "/" << pre << " ="
<< fact/pre << endl;

1.618033988749895; // the Golden Mean
1.0 - PHI; // the conjugate of the Golden Mean

1.0/sqrt(5.0);

CHAP. 11] RECURSION 275

if (fact/pre != n) break;
pre = fact;
}
}
The condition (fact/pre != n) willbe false when factorial(n) = n'. On the

author’s UNIX workstation, this happens when n = 13. Here is the revised function:
int factorial(int n)

{ assert(n >= 0 && n <= 12);

// 12! = 479,001,600

// 13! = 6,227,020,800

// LONG_MAX == 2,147,483, 647

if (n == 0 || n == 1) return 1;
if (n == 2) return 2;

if (n == 3) return 6;

return n*factorial (n-1);
}

11.37 int lem(int m, int n)
// returns the least common multiple of m and n

{ return m*n/gcd(m,n});
}

Chapter 12

Trees

12.1 GENERAL TREES

A tree of order k is either the empty set or a pair (r, S), where r is a single element and S is a
sequence of k disjoint trees. The single element r is called the root of the tree and the elements of the
set S are called its subtrees. If all the subtrees of a root are empty then the root is called a leaf.

In general, roots are called nodes. If x is a node and y is the root of a subtree of x, then we cally a
child of x and x the parent of y. More generally, if there is a sequence of nodes x,, x,, X, ..., x, where
each x, is the parent of x,,,, then we call x, an ancestor of x, and x, a descendant of x; . In this case,
we call the sequence (xg, x|, X3, ..., X,) @ path from x; to x,,. Note that the root of a tree is the only node
that has no parents, and the leaves are the nodes that have no children (i.e., all their subtrees are
empty). Nodes that do have children are called interior nodes. The depth of a node is the number of
its ancestors. The Aeight of a tree is the maximum depth of its nodes. The empty tree is defined to
have height —1.

EXAMPLE 12.1 A Tree of Height 3 and Order 4

The tree shown at right has 15 nodes, 6 interior nodes (A,
B, C,E, G H), and 9 leaf nodes (D, F, J, K, L, M, N, O). Node
A is its toot. Node C is the parent of node H. The tree has
height 3 because the deepest leaves (K, L, M, N, O, and P)
have depth 3. The tree has order 4 because the node with the
most children, C, has 4 children.

EXAMPLE 12.2 A Tree of Height 3 and Order 6
The tree shown below has 16 nodes, 1 at level 0, 6 at level
1, 4 at level 2, and 5 at level 3. It has height 3 and order 6.

276

CHAP. 12] TREES 277

Sometimes it helps to partition a tree into its various levels. The subset of all nodes of depth d
form the level d for a tree. A tree of height 4 has the A+ 1 levels 0, 1, 2, ..., h. The tree in Example
12.2 has its 4 levels labeled.

12.2 BINARY TREES

A binary tree is a tree of order 2. This means that every node has exactly two subtrees, either one
of which may be empty. They are called the left subtree and the right subtree of the node. If they are
non-empty, their roots are called the /eft child and the right child of the node.

EXAMPLE 12.3 A Binary Tree of Height 4
This binary tree has 14 nodes, 5 leaves, and height 4:

The left child of node B is node D. Node B has no right child because its right subtree is empty.

A binary tree is fud! if all its leaves are at the same level and every interior node has two children.

EXAMPLE 12.4 The Full Binary Tree of Height 3
The tree shown at right is the full binary tree of height 3.
Note that it has 15 nodes: 7 interior nodes and 8 leaves.
Theorem 12.1 The full binary tree of height 4 has
21 _ 1 nodes: 2" — 1 internal nodes and 2 leaves.
Proof: The full binary tree of height A =0 is a sin-
gle leaf node; soithas2"-1=2~-1=1-1=0
internal nodes and 2% = 2°= 1 leaf. More generally,
assume (the inductive hypothesis) that the theorem is true for all full binary trees of height less than A
> 0. Then consider a full binary tree of height 4. Both of its subtrees has height A — 1, so we apply the
formulas to them: m; = 2#1— 1 mg =2%1-1,] =2# and [y = 2*". Then
m=m +mpg+1=2"-1)+2F - 1)+ 1=22F1_-1=21_],
and
=l + g =214 21 =2.21 =2k
Q.E.D.

Corollary 12.1 The full binary tree of height 4 has n =271 - | nodes, so h+ 1 = Ig(n+1).
Corollary 12.2 In any binary tree with 7 nodes and height i: h+ 1 <n<2#'_ 1 andlignl<h<n-1.

278 TREES [CHAP. 12

A complete binary tree is either a full binary tree or one that can be made into a full binary tree by
adding leaves on the right at the bottom level.

EXAMPLE 12.5 A Complete Binary Tree of Height 3
The tree shown at right can be made into the full binary

tree of height 3 by adding 5 leaves on the right at level 3.

Theorem 12.2 In a complete binary tree with n nodes

of height #: 28 < n<2#1 -1, and h=1g n).

Complete binary trees are important because of
the simple way in which they can be stored in an array.

This is achieved by assigning index numbers to the
tree nodes by level, as shown in the picture below. The beauty in this natural mapping lies in simple
way that it allows array locations of the children and parent nodes of a node stored in the array.

Algorithm 12.1 The Natural Mapping of a Complete Binary Tree into an Array
To navigate about a complete binary tree stored by its natural mapping in an array:

1. the parent of the node stored at location k is stored at location k/2;

2. the left child of the node stored at location & is stored at location 2k;

3. the right child of the node stored at location k is stored at location 2k + 1.
For example, node E is stored at location k = 5 in the array; its parent (node B) is stored at location
k/2 = 5/2 = 2 in the array, its left child (node K) is stored at location 2k = 2-5 = 10 in the array, and its
right child (node L) is stored at location 2k + 1 =2-5 + 1 = 11 in the array.

The use of the adjective “complete” should now be clear: The defining property for complete
binary trees is precisely the condition that guarantees that the natural mapping will store its nodes in
an array with no empty elements. A binary tree that is not complete, such as the one shown in Exam-

ple 12.3 above would leave gaps in the array. (See Problem 12.12.)
Warning: Some authors use the term “almost complete binary tree” for a complete binary tree and
the term “complete binary tree” for a full binary tree.

CHAP. 12] TREES 279

12.3 TREE TRAVERSALS

Trees are nonlinear data structures. So it is not obvious how to traverse a tree; i.e., to move
systematically from one node to the next, visiting each node exactly once.

The most obvious way to traverse a general tree is the same method used above in the natural
mapping of a complete binary tree: move from left to right, level by level. This is called the /evel
order traversal.

Algorithm 12.2 The Level Order Traversal of a General Tree

To traverse a non-empty tree of height A:

1. Visit the root.
2. For each level, from level 1 to level A, visit the nodes from left to right.

EXAMPLE 12.6 A Level Order Traversal

The level order traversal of the tree shown in Example 12.1 visits the nodes in the order A, B,C, D, E,F, G
HI1LKLMNO,P

There are two other standard traversal algorithms for general trees: the preorder traversal and the
postorder traversal. They are very similar. They are also both recursive.

Algorithm 12.3 The Preorder Traversal of a General Tree
To traverse a non-empty tree:
1. Visit the root.
2. Do a preorder traversal on each subtree.

EXAMPLE 12.7 The Preorder Traversal of a Tree of Order 4
The preorder traversal of the tree shown in Example 12.1 visits the nodes in the order A, B, E, K, L, M, C,
FGN,HO,PJ,D.
Algorithm 12.4 The Postorder Traversal of a General Tree
To traverse a non-empty tree:
1. Do a postorder traversal on each subtree.
2. Visit the root.

EXAMPLE 12.8 The Postorder Traversal of a Tree of Order 4
The level order traversal of the tree shown in Example 12.1 visits the nodes in the order K, L, M, E, B, F,
N,GO,PHJC D A.

Both the preorder and the postorder algorithms are usually expressed in their specialized versions
for binary trees:
Algorithm 12.5 The Preorder Traversal of a Binary Tree
To traverse a non-empty binary tree:
I. Visit the root.
2. If the left subtree is non-empty, do a preorder traversal on it.
3. If the right subtree is non-empty, do a preorder traversal on it.

EXAMPLE 12.9 The Preorder Traversal of a Binary Tree
The picture below shows the preorder traversal on the full binary tree of height 3. The nodes are visited in
the order A,B,D,H, J,E,K,L,C,F M,N,G O, P.

280 TREES [CHAP. 12

Note that the preorder traversal of a
binary tree can be obtained by circum-
navigating the tree, beginning at the root
and visiting each node the first time it is
encountered on the left side of the route.
This is illustrated by the picture here.

Algorithm 12.6 The Postorder Traversal of a Binary Tree
To traverse a non-empty binary tree:
1. If the left subtree is non-empty, do a postorder traversal on it.
2. If the right subtree is non-empty, do a postorder traversal on it.
3. Visit the root.

EXAMPLE 12.10 The Postorder Traversal of a Binary Tree
Here is how the preorder traversal looks on the full binary tree of height 3:

The nodes are visited in the order P, O, G N,M,F,C,L,K,E,], H, D, B, A.

The Preorder Traversal visits the root first and the Postorder Traversal visits the root last. This
suggests a third alternative for binary trees: visit the root in between the traversals of the two sub-
trees. That is called the inorder traversal.

Algorithm 12.7 The Inorder Traversal of a Binary Tree
To traverse a non-empty binary tree:
1. If the left subtree is non-empty, do a preorder traversal on it.
2. Visit the root.
3. If the right subtree is non-empty, do a preorder traversal on it.

CHAP. 12] TREES 281

EXAMPLE 12.11 The Inorder Traversal of a Binary Tree
Here is how the preorder traversal looks on the full binary tree of height 3:

The nodes are visited in the order P, G O, C,N, FE, M, AL, E, K, B,], D, H.
12.4 EXPRESSION TREES

An arithmetic expressionsuchas (5 - x)*y + 6/(x + z) isacombination of arithmetic
operators (+, -, *, /,efc.), operands (5, x, y, 6, z,efc.), and parentheses to override the
precedence of operations. Each expression can be represented by a unique binary tree whose structure
is determined by the precedence of operations in the expression. Such a tree is called an expression
tree.

EXAMPLE 12.12 An Expression Tree
Here is the expression tree for the expression (5 - x)*y + 6/(x + z):

Here is an recursive algorithm for building an expression tree:

Algorithm 12.8 Build an Expression Tree
The expression tree for a given expression can be built recursively from the following rules:
1. The expression tree for a single operand is a single root node containing that
operand.
2. If E, and E; are expressions represented by expression trees T, and T,, and if
op is an operator, then the expression tree for the expression £, op E, is the
tree with root node containing op and subtrees T, and 7,.

An expression has three representations, depending upon which traversal algorithms is used to
traverse its tree. The preorder traversal produces the prefix representation, the inorder traversal pro-

282 TREES [CHAP. 12

duces the infix representation, and the postorder traversal produces the postfix representation of the
expression. The postfix representation is also called reverse Polish notation or RPN.

EXAMPLE 12.13 The Three Representations of an Expression
The three representations for the expression in Example 12.12 are:
Prefix:+*-5xy/6+xz

Infix:5-x*y+6/x+z

Postfix (RPN): 5x-y*6xz+/+

Ordinary function syntax uses the prefix representation. The expression in Example 12.13 could
be evaluated as
sum(product (difference(5, x), y), quotient (6, sum(x, z)))
Some scientific calculators use RPN, requiring both operands to be entered before the operator.
An expression can be evaluated by applying the following algorithm to its postfix representation:

Algorithm 12.9 Evaluating an Expression from Its Postfix Representation
To evaluate an expression represented in postfix, scan the representation from left to right:
create a stack for operands;
while (not at end of representation)
{ read the next token x from the representation;
if (op is an operand) push its value onto the stack:;
else
{ pop a from the stack;
pop b from the stack;
evaluate ¢ = b op a;
push c onto the stack;
}

the top element on the stack is the value of the expression;

EXAMPLE 12.14 Evaluating an Expression from Its Postfix Representation
Evaluate the expression in Example 12.13 using 2 for x, 3 for y, and 1 for z:

4 4
@ LELLLELLELLT BABRBARRENRE
4= >
(1] o1 e O o] e[1 o[3 <[J

\ 4
: Ll Tel [T :
g
0 O

o] OPE]

[flfﬁldf]ldl
(5] op[=] al2] 3]

Il[l%[l] Iljll*lllf[l
= Dg

o1 o1 &[] p[3] o1 a3l <[]

CHAP. 12]

=

=

=

TREES 283

4 \ 4
Lodal-fyl-Jolxf:] g Lslal-Tolefolafa]] /][]
3

o[J [J a1 pls] ol 2l <[E]

pRsmEnARANN nRBMBnARRAD
=>
o[[0 0 [J ol2] olx] [0 <[E]

4
Llal-Tsl-Jelxfe]" IJ Llel-Tol-lelsle]]/]-]
o =
b[I] opm am c[Z] bm op a[Z] c

12.5 ADTs FOR BINARY TREES AND THEIR ITERATORS

Since trees are nonlinear structures, they have fewer elementary operations than lists. More of
their functionality is managed by their iterators. Here is an ADT for binary trees:

ADT: BinaryTree

Represents:

A container that either is empty or consists of a root element and two disjoint binary trees, called its
left subtree and its right subtree.

Access:

Elements are accessed sequentially by means of iterators.

Constructors and Destructors:

create Creates an empty binary tree.

create Creates a binary tree with a single given root element.

create Creates a binary tree with given root, left subtree, and right subtree.

create Creates a complete binary tree from a given array.

destroy De-allocates all the memory used for the binary tree.

Access Functions:

is empty Returns true if the binary tree is empty; otherwise returns false.

size Returns the number of elements in the binary tree.

height Retumns the height of the binary tree.

preorder Returns a preorder iterator initialized at the root.

inorder Retumns an inorder iterator initialized at the root.

postorder Returns a postorder iterator initialized at the root.

levelorder Returns a level-order iterator initialized at the root.

end Retums an iterator initialized at the dummy end node.

Mutator Functions:

grow_left Inserts the given element as the left child of the leaf located by the given itera-
tor. Returns an iterator locating the new element.

grow_right Inserts the given element as the right child of the leaf located by the given iter-

ator. Returns an iterator locating the new element.

284

TREES [CHAP. 12

insert_left Inserts the given element at the position located by the given iterator. The
prior subtree rooted there becomes the left subtree of the new element.

insert right Inserts the given element at the position located by the given iterator. The
prior subtree rooted there becomes the right subtree of the new element.

prune Removes the leaf located by the given iterator.

erase left Removes the element located by the given iterator and replaces the prior sub-
tree rooted there with its left subtree, destroying its right subtree if any.

erase_right Removes the element located by the given iterator and replaces the prior sub-
tree rooted there with its right subtree, destroying its left subtree if any.

clear Removes all the elements from the tree.

The fourth constructor creates a complete binary tree from a given array, like this:

CompleteBinaryTree t{a,7);

s[alelclolelF] =

The actions of the mutator function are illustrated by the diagrams shown below. Note that the

grow and prune functions affect only the leaves of the tree, whereas the insert and erase
functions can be applied to any element in the tree. The grow and insert functions leave the
given iterator unchanged and return an iterator locating the new element. The given iterator is lost
with the prune and erase functions. The prune function removes one element, but the erase
functions will remove an entire subtree.

There are four kinds of binary tree iterators, one for each of the four traversal algorithms:

preorder, inorder, postorder, and level-order.

CHAP. 12] TREES 285

t.prune (i)

t.erase_left(i);

Constructors and Destructors:

create Creates an iterator for a given binary tree and a given traversal order.

destroy De-allocates the memory used by the iterator.

Access Functions:

order Returns an enum constants PRE, IN, POST, LEVEL, or END, indicating
what kind of iterator it is.

reset Resets the iterator to the root of the tree.

is_null Returns true iff the iterator is not locating an element.

is_root Returns true iff the current element is the root of the tree.

is_leaf Returns true iff the current element is a leaf.

dereference Returns a reference to the current element.

parent Returns an iterator that locates the parent of the current element.

left child Returns an iterator that locates the left child of the current element.

right child Returns an iterator that locates the right child of the current element.
Mutator Functions:

increment Moves the iterator to the next element.

decrement Moves the iterator to the previous element.

assign Assigns a given iterator to it.

Operators:

equality Returns true iff the given iterator is equal to it.
inequality Returns true iff the given iterator is not equal to it.

Compare these ADTs with those for lists (page 202) and their iterators (page 200).
12.6 CONTIGUOUS IMPLEMENTATION

Like lists, binary trees can be implemented using either contiguous storage or linked storage. The
contiguous implementation depends upon the natural level-order numbering of the tree elements:

This “linearizes” the tree, designating a unique location in the array for each element.

286

TREES [CHAP. 12

] bl 10 11 22 23

[Talelclolelelelnl [Dol KT WM T LTI TIN LT LT Iol7l

The disadvantage of the natural mapping for general binary trees is obvious: many of the
allocated array elements may be left unused. As shown on page 278, the criterion that no elements be
unused translates directly into the definition of a complete binary tree.

Theorem 12.3 A binary tree with n elements is complete if and only if its natural mapping maps it
into the array elements a(1] through a[n], leaving no gaps.

Because of this fact, we use the contiguous implementation only for complete binary trees.
This version uses a typedef for the element type instead of a template:
typedef short T;
class CompleteBinaryTree
{ public:
class Iterator
{ public:

enum Order { END, PRE, IN, POST, LEVEL };

Iterator (CompleteBinaryTree&, Order=IN);

Order order();

bool reset();

becol operator! (); // returns true iff iterator is null
bool is_root();

bool is_leaf();

T& operator*(); // read-write access to current element
Iterator parent();

Iterator left child():

Iterator right child();

void operator++();

void operator--();

friend bool operator==(Iterator&, Iterator&);

friend bool operator!=(Iterator&, Iterator&);

private:
CompleteBinaryTree* p; // the tree being traversed
int k; // index locating current element in p-> v
Order _order; // END, PRE, IN, POST, or LEVEL

int start(int);

int next pre(int, int);
int :next:in(int, int);
int _next pest(int, int);

CHAP. 12] TREES 287

friend class Iterator;
CompleteBinaryTree();
CompleteBinaryTree (T*, int);
~CompleteBinaryTree();
bool is_empty();

int size();

int height();

Iterator precorder();
Iterator inorder():
Iterator postorder();
Iterator levelorder();
Jterator end();

protected:
const int CAP=2; // initial capacity
T v, // the dynamic array of elements
int _size; // the number of elements in v
int _cap; // the number of elements allocated to v
_reallocate(); // doubles the capacity _cap

}i
The Iterator class is a subclass of the CompleteBinaryTree class, so any external reference
to its members must include the scope resolution prefix CompleteBinaryTree::Iterator::
For example, the enumeration constant CompleteBinaryTree::Iterator::LEVEL specifies
that an iterator uses the level-order traversal algorithm to traverse the tree.

The enumeration type Order defines five constants that are used to characterize each
iterator object. An iterator object whose order field has the value PRE will traverse the tree
following the preorder traversal algorithm. Similarly, the IN, POST, and LEVEL constants indicate
inorder, postorder, or level-order traversal iterators, respectively. The special END constant is used to
indicate that the iterator is positioned at the “end” of the tree; i.e., at the imaginary position that
would follow the last element in any traversal. This provides a return type for the end () function
that can be used in a loop like this:

CompleteBinaryTree::Iterator it;
for (it = x.postorder(); it '= x.end(); ++it)
cout << *it << " M;
This would print the contents of the tree using a postorder traversal. It is consistent with the end ()
functions defined in the C++ Standard Library. Note that, using the type definition
typedef CompleteBinaryTree::Iterator CBTI;
the three lines could be written more simply as
for (CBTI it(x, CBTI::POST); it != x.end(); ++it)
cout << *it << " ";

The Iterator subclass leaves its default constructor, its copy constructor, its destructor, and
its assignment operator to be defined by the compiler. The constructor declared here takes two
arguments: a pointer to the tree to which it is bound, and one of the five enumeration constants to
indicate what traversal order algorithm it uses or if it is an “end” iterator.

The picture below shows a preorder iterator i bound to a tree x and their implementations. The
iterator object’s pointer p points to the CompleteBinaryTree object to which it is bound. Its
data member _k is the array index of the iterator’s current element (66), and its _order member
has the value PRE, indicating that it is a preorder traversal iterator. The tree object contains the
dynamic array _v and the two ints _size and _cap. The array elements v{1) through
_v[_size) contain the actual tree elements. The member _cap (for “capacity”) contains the actual
number (8) of elements allocated to the array. When _size == _cap-1, the array is automatically

288

resized, doubling its capacity. That maintenance activity is handled by the

TREES

v T22]33]ealss[ee (7])

qu‘t'lln;;x:fr'-' |

_k _order _size[z] cap
int -~

int Order
order

ahort*

CompleteBinaryTree: :1tecator

function.
The mutator functions defined in the BiparyTree ADT are not implemented for the
CompleteBinaryTree class because their actions do not preserve completeness, as the pictures on
page 284 show.

EXAMPLE 12.15 Testing the CompleteBinaryTree Class

This program illustrates the use of the CompleteBinaryTree Class:
const int SIZE=20;
void print family(CBTI& it)

{ CBTI pt = it.parent(};
CBTI 1t = it.left child{();
CBTI rt = it.right child();

cout << *it << " has";

1f(!pt) cout << " no parent ";

else cout << " parent " << *pt;

if(!'lt) cout << ", no left child ";

else cout << ", left child " << *1lt;
if(frt) cout << ", and no right child.\n":

CompleteBinaryTree

else cout << ", and right child " << *rt << ".\n";

}
int main{()
{ short a[SIZE+1];
for (int i=1; 1<SIZE+1; 1i++)
af{i]l = 1i;
CBT x(a, SIZE);
cout << "\nPreorder traversal:\n";

for (CBTI it (x, CBTI::PRE); it != x.end(); ++it)
cout << *it << " ";

cout << "\nInorder traversal:\n";

for (it = x.inorder(); it != x.end(); ++it)
cout << *it << " ";

cout << "\nPostorder traversal:\n";

for (it = x.postorder(); it != x.end(); ++it)

cout << *it << " ",

[CHAP. 12

_reallocate()

CHAP. 12] TREES 289

cout << "\nlLevel-order traversal:\n";

for (it = x.levelorder(); it != x.end(); ++it)
cout << *if << " ";
cout << endl;
cout << "The tree has " << x.size() << " elements.\n";

cout << "The tree has " << leaves(x) << " leaves.\n";
cout << "The height of the tree is " << height(x} << ".\n";
it = x.preorder(); print_family(it});
t+it; print family(it);
++1it; ++it; ++1t; ++1it;
++it; print family(it);
++1t; print family(it):;
++it; print family(it);
++it; print family(it):;
++it; print family(it);
}
The output is
Preorder traversal:
124816 17 9 18 19 5 10 20 11 3 6 12 13 7 14 15
Inorder traversal:
16 8 17 4 18 9 19 2 20 10 5 11 1 12 6 13 3 14 7 15
Postorder traversal:
16 17 8 18 19 94 20 10 11 5 2 12 13 6 14 15 7 3 1
Level-order traversal:
1234567891011 12 13 14 15 16 17 18 19 20
The tree has 20 elements.
The tree has 10 leaves.
The height of the tree is 4.
1 has no parent , left child 2, and right child 3.
2 has parent 1, left child 4, and right child 5.
9 has parent 4, left child 18, and right child 19.
18 has parent 9, no left child , and no right child.
19 has parent 9, no left child , and no right child.
5 has parent 2, left child 10, and right child 11.
10 has parent 5, left child 20, and no right child.
The complete binary tree looks like this:

The 20-element tree is created from a 21-element array by the second declared constructor. Then four different
iterators are used to traverse the tree by the four traversal algorithms. Next, the size(), leaves (), and
height () member functions are tested. Then a special print family () function is used to test the
parent (), left child(),and right child() member functions.

290 TREES [CHAP. 12

12.7 LINKED IMPLEMENTATION

Most applications of binary trees require the more general insertion and deletion functions
defined in the BinaryTree ADT. These are using links, similar to the List implementation on
page 204. Again, we use a typedef instead of a template:

typedef short T;

class BinaryTree

{ private:
struct Node

{ Node(T& data, Node* left=0, Node* right=0) : data(data) { }
T _data;
Node* pre; // points to parent

Node* left;
Node* _right;
}:
public:
class Iterator
{ friend class BinaryTree;
public:
enum Order { END, PRE, IN, POST, LEVEL };
Iterator (BinaryTree&, Order =IN);
Order order();
bool reset();
bool operator!();
T& operator* (),
bool is_ root():
bool is leaf():;
Iterator parent(}:
Iterator left _child();
Iterator right child{();
void operator++(};
friend bool operator==(Iterator&, Iteratoré&);
friend bool operator!=(Iterator&, Iteratoré&);

private:
const BinaryTree& _tree;
Node* _p;

Order order; // END, PRE, IN, POST, or LEVEL
Node* start(); // returns the index of starting element

}i

friend class Iterator;

BinaryTree() : _root(0) { }

BinaryTree (T&);

BinaryTree (T&, BinaryTree&, BinaryTree&);

BinaryTree(T*, int};

bool is empty();

int size():

int height();

Iterator preorder();

Iterator inorder();

Iterator postorder();

Iterator levelorder();

Iterator end();

Iterator grow left(Iterator, const T&);

Iterator grow right(Iterator, const T&);

CHAP. 12}

TREES

Iterator insert left(Iterator, const T&);
Iterator insert right(Iterator, const T&);
void prune(Iterator);
void erase_left(Iterator);
void erase right (Iterator);
void clear (Iterator);

protected:
Node* _root;

}i

291

The BinaryTree::Node type defines three pointers, one to each child and one to the parent.
The resulting BinaryTree objects that use these nodes are called threaded trees.

The BinaryTree::Iterator class is nearly the same asthe Iterator class defined within
the CompleteBinaryTree class on page 286. The only essential difference is that this version
uses Node pointers instead of ints.

This picture shows the implementation of a preorder iterator i bound to a tree x:

X _root (@ > _data _preg:l
Node Node
T BinaryTree
| left
| - ode
|
|
|
[data pre
' - - Node
I left right
I - Node* Node*
I BlnaryTree::
|
1 |
* treerj
T BinaryTreek @
data - re
P & > — P Node*

_right
N

O

BinaryTree::Nogde

_order

Order
BinaryTree::lterator

_left _right [??_1
Node* Node

BinaryTree::Node

_data _pra?:l
Node

_left

Node*

_right

Node*

BinaryTree: :Node

The dashed line indicates that i. tree is a reference (i.e., a synonym) for x. The black dots
without arrows represent null (i.e., 0) pointers.

The implementation shown above represents the BinaryTree
object x and the Iterator object i that we normally would draw
as shown in the picture on the right. Compare this with the picture

on page 287.

292 TREES [CHAP. 12

12.8 FORESTS

A forest is a collection of trees.

EXAMPLE 12.16 A Forest

Here is a forest consisting or three trees:

() OO,

(8) (c) 0

®© ©® @ & W & @
O O W@

A forest can be represented by a single binary tree by means of the following algorithm:

Algorithm 12.10 The Natural Mapping of a Forest into a Binary Tree
1. Map the root of the first tree into the root of the binary tree.

2. If node X maps into X' and node Y is the first child of X, then map Y into the
left child of X'.

3. If node X maps into X' and node Z is the sibling of X, then map Z into the
right child of X'. The roots of the trees themselves are considered siblings.

EXAMPLE 12.17 Mapping a Forest into a Binary Tree
Here is the mapping of the forest shown in Example 12.16:

For example, in the original forest, C has oldest child F and next sibling D; so in the resulting binary tree,
C has left child F and right child D.

CHAP. 12] TREES 293

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

12.11
12.12

12.13

12.14

12.15

12.16

12.17

12.18

12.19

12.20

Review Questions

How many ancestors can the root of a tree have?

How many descendants can a tree leaf have?

How many leaf nodes does the full binary tree of height 4 =3 have?

How many internal nodes does the full binary tree of height # =3 have?
How many nodes does the full binary tree of height # = 3 have?

How many leaf nodes does a full binary tree of height / have?

How many internal nodes does a full binary tree of height & have?

How many nodes does a full binary tree of height / have?

What is the range of possible heights of a binary tree with n = 100 nodes?
Why is there no inorder traversal for general trees?

Problems

Prove Corollary 12.12.2 (on page 277).

Show the array obtained by using the natural mapping to store the binary tree shown in
Example 12.3.

Give the order of visitation for each of the three standard traversal algorithms (level order,
preorder, and postorder) of the tree of order 6 shown in Example 12.2.

Give the order of visitation for each of the three standard traversal algorithms (level order,
preorder, and postorder) of each of the five trees shown in Problem 12.20.

Give the order of visitation for each

of the four standard traversal algo-

rithms (level order, preorder, inor-

der, and postorder) for the full

binary tree shown here.

Write the expression tree for the
expression a*(b + c)*(d*e + /).

Write the prefix and the postfix rep-
resentations for the expressions in
Problem 12.16.

Draw the binary tree that represents

the forest that consists of the single

tree that is shown in Example 12.1

on page 276.

Draw the forest that is represented by the
binary tree shown on the right.

For each of the five trees given below, list
the leaf nodes, the children of node C, the
depth of node F, all the nodes at level 3, the
height of the tree, and the order of the tree.

294

12.21

12.22

12.23

TREES [CHAP. 12

Programming Problems

Implement the following member function of the CompleteBinaryTree::Iterator
class (page 286):

bool operator! (});

// Returns true iff the iterator is not locating an element.
Implement the following member function of the BinaryTree::Iterator class
(page 290):

bool operator! (});

// Returns true iff the iterator is not locating an element.
Implement the following member function of the CompleteBinaryTree::Iterator
class (page 286):

bool is_root();

// Returns true iff the current element is the root of the tree.

CHAP. 12] TREES 295

12.24

12.25

12.26

12.27

12.28

12.29

12.30

12.31

12.32

12.33

12.34

12.35

12.36

Implement the following member function of the BinaryTree::Iterator class
(page 290):

bool is root();

// Returns true iff the current element is the root of the tree.

Implement the following member function of the CompleteBinaryTree::Iterator
class (page 286):

bool is_leaf();
// Returns true iff the current element is a leaf of the tree.

Implement the following member function of the BinaryTree::Iterator class
(page 290):

bool is leaf();

// Returns true iff the current element is a leaf of the tree.

Implement the following member function of the CompleteBinaryTree::Iterator
class (page 286):

T& operator*();
// Returns a reference to the current element.

Implement the following member function of the BinaryTree::Iterator class
(page 290):

T& operator*();

// Returns a reference to the current element.

Implement the following member function of the CompleteBinaryTree::Iterator
class (page 286):

Iterator parent();
// Returns the location of the parent of the current element.

Implement the following member function of the CompleteBinaryTree::Iterator
class (page 286):

Iterator left child{():

// Returns the location of the left child of the current element.
Implement the following member function of the CompleteBinaryTree::Iterator
class (page 286):

int start{();
// Returns the index of the first element in a traversal.

Implement the following member function of the CompleteBinaryTree::Iterator
class (page 286):

void operator++();
// Advances the iterator to the next element.

Implement the following member function of the CompleteBinaryTree class (page 286):
bool is_empty();
// Returns true iff the tree is empty.

Implement the following non-member function for the CompleteBinaryTree class:
int leaves (CompleteBinaryTree& x);
// Returns the number of leaves in the tree x.

Implement the following non-member function for the CompleteBinaryTree class:
int depth(Iterator& it);
// Returns the depth of *it.

Implement the following non-member function for the CompleteBinaryTree class:
int height (CompleteBinaryTree& x);
// Returns the height of x.

296

12.37

12.38

12.39

12.40

12.41

12.42

12.43

12.44

12.45

12.46

12.47

12.48

12.49

12.50

TREES [CHAP. 12

Implement the following member function of the BinaryTree::Iterator class
(page 290):

Iterator parent();

// Returns the location of the parent of the current element.
Implement the following member function of the BinaryTree::Iterator class
(page 290):

Iterator left child{);

// Returns the location of the left child of the current element.
Implement the following member function of the BinaryTree::Iterator class
{page 290):

Node* start();

// Returns a pointer that points to the first traversal element.
Implement the following member function of the BinaryTree::Iterator class
(page 290):

void operator++();

// Advances the iterator to the next element.

Implement the following member function of the CompleteBinaryTree class (page 286):
int size();

// Returns the number of elements in the tree.

Implement the following member function of the BinaryTree class (page 290):
int size(});

// Returns the number of elements in the tree.

Implement the following member function of the BinaryTree class (page 290):

bool is empty():

Implement the following member function of the CompleteBinaryTree class (page 286):
int height ();

// Returns the height of the tree.

Implement the following member function of the BinaryTree class (page 290):

int height () ;

// Returns the height of the tree.

Implement the following member function of the CompleteBinaryTree class (page 286):

Iterator preorder(};

// Returns an iterator on the tree with PRE _order.

Implement the following member function of the BinaryTree class (page 290):

Iterator preorder{();

// Returns an literator on the tree with PRE order.

Implement the following member function of the BinaryTree class (page 290):

Iterator grow_left (Iterator i, const T& t);

// Inserts the element t as the left child of the leaf element

*1.

// Returns an iterator locating the new element.

Implement the following member function of the BinaryTree class (page 290):

Iterator insert left(Iterator i, const T& t);

// Inserts the element t at the position i. The prior subtree

// rooted there becomes the left subtree of the new element.

// Returns an iterator locating the new element.

Implement the following member function of the BinaryTree class (page 290):
void prune(Iterator 1i};
// Removes the leaf element *i.

CHAP. 12] TREES 297

12.51

12.52

12.53

12.54

12.55

12.56

12.57

12.58

12.59

12.60

12.61

12.62

12.63

12.64

12.65

Implement the following member function of the BinaryTree class (page 290):
void erase left(Iterator 1i);
// Removes the element *i and replaces it with its left subtree,
// destroying its right subtree.

Implement the following member function of the CompleteBinaryTree class (page 286):

void clear();
// Removes all the elements from the tree.

Implement the following member function of the BinaryTree class (page 290):

void clear();
// Removes all the elements from the tree.

Implement the following member function of the CompleteBinaryTree class (page 286):
BinaryTreeé& operator=(const BinaryTree&);
// Assignment operator.

Implement the following member function of the BinaryTree class (page 290):
BinaryTree& operator=(const BinaryTree&);
// Assignment operator.

Implement the following non-member function for the BinaryTree class (page 290):
int leaves(BinaryTree& x);
// Returns the number of leaves in the tree x.

Implement the following non-member function for the BinaryTree class (page 290):
int depth(Iteratoré& it);
// Returns the depth of *it.

Implement the following non-member function for the BinaryTree class (page 290):
int height (BinaryTree& x);
// Returns the height of x.

Implement the following non-member function for the BinaryTree class (page 290):
Iterator grandparent (Iterator& it);
// Returns the location of the grandparent of *it.

Implement the following non-member function for the BinaryTree class (page 290):
Iterator sibling(Iterator& it);
// Returns the location of the sibling of *it.

Implement the following non-member function for the BinaryTree class (page 290):
Iterator uncle(Iterators& it});
// Returns the location of the uncle (aunt) of *it,.

Implement the following non-member function for the BinaryTree class (page 290):
int ancestors(Iterator& it);
// Returns the number of ancestors of *it.

Implement the following non-member function for the BinaryTree class (page 290):
int descendants({Iterator& it);
// Returns the number of descendants of *it.

Implement the following non-member function for the BinaryTree class (page 290):
void reflect (BinaryTreeé& x);
// Transforms x into its mirror image.

Implement the following non-member function for the BinaryTree class (page 290):
void defoliate(BinaryTree& x);
// Removes all of the leaves of x.

298

12.66

12.67

12.68

12.69

12.1
12.2
12.3
12.4

12.5

12.6
12.7
12.8
12.9

12.10

12.11

12.12
12.13

12.14

TREES [CHAP. 12

Implement the following non-member function for the BinaryTree class (page 290). A
binary tree is balanced if at every node, the difference between the heights of the two sub-
trees is no more than 1:
bool is _balanced(BinaryTree& x);
// Returns true iff x is balanced.
Implement the following non-member function for the BinaryTree class (page 290):
bool is full(BinaryTree& x};
// Returns true iff x is full.
Implement the following non-member function for the BinaryTree class (page 290):
bool is complete(BinaryTree& x);
// Returns true iff x is complete.
Modify the contiguous implementation of the CompleteBinaryTree class on page 286,
using the Standard type vector<T> in place of the array v

Solutions

The root of a tree cannot have any ancestors because it has no parents.

A leaf cannot have any descendants because it has no children.

The full binary tree of height 4 has 2% leaves. So the full binary tree of height 3 has 2 = 8 leaves.

The full binary tree of height 4 has 2%~ 1 internal nodes. So the full binary tree of height 3 has 2> - | =

7 internal nodes.

The full binary tree of height 4 has 2#*1 — | nodes. So the full binary tree of height 3 has 2>*! — | =24~

1 =16 -1 =15 nodes.

The full binary tree of height 4 has 2* leaves.

The full binary tree of height 4 has 2"~ 1 internal nodes.

The full binary tree of height 4 has 2"*! — 1 nodes.

By Coroll 12.12]Z (on page 277), in any binary tree: | | nl<h<n-l. Thusjna inary tree with

100 nodes | 1g 100J<h<100-1 =99. Sincet?é 1001 =1 (log100)/(log2) =|l.6.6 = 6, it follows

that the height must be between 6 and 99, inclusive: 6 < h < 99.

The inorder traversal algorithm for binary trees recursively visits the root in between traversing the left

and right subtrees. This presumes the existence of exactly two (possibly empty) subtrees at every

(non-empty) node. In general trees, a node may have any number of subtrees, so there is no simple

algorithmic way to generalize the inorder traversal.

For a given height 4 > 0, the binary tree with the most nodes is the full binary tree. Corollary 12.12.1

(on page 277) states that that number is n = 241 — |, Therefore, in any binary tree of height A, the
number n of nodes must satisfy n < 2*! — 1. The binary tree with the fewest nodes for a given height

h is the one in which every internal node has only one child; that linear tree has n = & + 1 nodes

because every node except the single leaf has exactly one child. Therefore, in any binary tree of height

h, the number » of nodes must satisfy n> h + 1.

The second pair of inequalities follows from the first by solving for A.

The picture below shows the natural mapping of the binary tree shown in Example 12.3.

Level order traversal: A,B,C,D,E,F,GH,J,K,L,M,N, O, P, Q.

Preorder traversal: A, B, H, M, N, C, D, E,JK,O L P Q, F, G

Postorder traversal: M, N, H,B,C,D,J, O,K,P,Q,L,E, F. G A.

a. Level order traversal: A,B,C,D,E,F, GH,J,K,L, M, N, Q, P, Q.
Preorder traversal: A, B,F, L, C,GM,N,H,D,], O, E,K,P, Q.
Postorder traversal: L, F, B, M,N,GH,C,0,J,D,P,Q,K,E A

b. Level order traversal: A,B,C,D,E,F, GH,J,L,M,N,O,P,Q,R, S
Preorder traversal: A, B,F,L,PM,Q,R,C,D,GH,N, S§,J,0,E
Postorder traversal: P, L, Q, R, M,F,B,C, G, S,N,H O,], D, E, A.

¢. Level order traversal: A,B,C,D,E,F GH, J K,L, M,N,O,P,Q,R S, T,U,V,W, X, Y, Z.
Preorder traversal: A, B,E,FH,LLJL K MO, PLQ, R, T,V Y, W,85,U, X, Z,N,C,D,G
Postorder traversal: E, L, H,J,O,P, Y, VW, TR, Z, X, U, S,Q, M, N,K,F,B,C,G D, A

CHAP. 12] TREES 299

[Talelclol Telrlelw[[T ke[W[T T T T TN TTT o]

d. Level order traversal: A,B,C,D,EEFGH, LK, L, M,N,O,P,Q,R,S, T
Preorder traversal: A, B,D,F,K,L,GH,C,E,J, M,PQ R,S, T,N,O
Postorder traversal: K, L, F, GH,D,B,P,Q,R,S, T, M,N, O,], E, C, A,
e. Level order traversal: A,B,C,D,E,F,GH,J,K,L,M,N,O,P, Q,R,S, T.
Preorder traversal: A, B, G K, P, Q,C,D,H, L M,R, N, E,F,J,O,S, T.
Postorder traversal: P, Q,K, G, B,C,L, R, M\,N, H,D,E,S, T,Q,], F, A.
12.15 Level order traversal: A, B,C,D,E,F,GH,], K,L,M,N, O, P.
Preorder traversal: A, B,D,H,LE,K,L,C,F,M, N, G O, P.
Inorder traversal: H, D, J, B,K,E,L,M,F,N,C, O, G, P.
Postorder traversal: H, J, D,K,L,E,B,M,F, N, O, G P,C, A
12.16 The expression tree for a*(b + c)*(d*e + f) is

shown at right.
12.17 The prefix representation is *a*+bc+*def, and
the postfix representation is abc+de*f+**.

12.18 The binary tree that represents the tree shown in
Example 12.1 on page 276 is shown below.

300

TREES [{CHAP. 12

12.19 The forest that produced the given binary tree is obtained by reversing the natural map:

12.21

12.22

12.23

12.24

12,25

12.26

12.27

12.28

12.29

. the leaf nodes are L, M, N, H, O, P, Q; the children of node C are G and H; node F has depth 2; the

nodes at 3 three are L, M, N, O, P, and Q; the height of the tree is 3; the order of the tree is 4,
the leaf nodes are C, E, G, O, P, Q, R, and S; node C has no children; node F has depth 2; the nodes
at level 3 are L, M, N, and O; the height of the tree is 4; the order of the tree is 4;
the leafnodes are C, E, G, J, L, N, O, P, W, Y, and Z; node C has no children; node F has depth 2;
the nodes at level 3 are H, J, and K; the height of the tree is 9; the order of the tree is 3;
the leaf nodes are G, H, K, L, N, O, P, Q, R, S, and T; the only child node C has is node E; node F
has depth 3; the nodes at level 3 are F, G, H, and J; the height of the tree is 5; the order of the tree is
5,
the leaf nodes are D, E, L, N, P, Q, R, S, and T; node C has no children; node F has depth 1; the
nodes at level 3 are K, L, M, N, and O; the height of the tree is 4; the order of the tree is 5,

bool operator! ()

{ return bool(k == 0);

}

bool operator! ()

{ return bool{(k < 1 |{ _k > p-> size);

}

bool is_root()

{ return boocl{ k == 1);

}

bool is_root()

{ return bool(p == tree. root);

}

bool is leaf()

{ return bool(2* k > p-> size);

}

bool is_leaf()

{ return bool{ p-> left == 0 && -p->_right == 0);

}

T& operator* ()

{ return (_p-> v)[_Kk];

}

T& operator*()

{ return p->_data:;

)

Iterator parent ()

{ CBTI it(* p):
it. k = k/2;
return it;

}

CHAP. 12]

12.30

12.31

12.32

TREES 301

Iterator left child{()

{ CBTI it(* p):
it. k = 2*_k;
return it;

}

int start{int size}

// returns number of start node:

{ if (_order == PRE || _order == LEVEL) return 1;
else return last power(size);

}
void CBTI::operator++ ()

{ if (_order == PRE)
{ 1f (size+l == 2*last_power (size)
Il {_k >= last_power (size) && _k < size))
{ if (_k == size) return 0; // last is youngest daughter
if (2*_k <= size) return 2*_k; // interior node returns son
++ k; // male leaf's sister
while (k%2 == 0) // while male
k /= 2; // ~ move to parent
}
else // tree is not full
{ if (_k == last power (size) - 1) return 0;
if (_k >= last_power (size) && _k%2 == 0)
{ k += 2;
while (k%2 == 0) // while male
_k /= 2; // move to parent
}
else
{ if (_k == size) return O; // last is youngest daughter
if (2*_k <= size) return 2*_k; // interior node returns son
++ k; // male leaf's sister
while (k%2 == 0) // while male
_k /= 2; // move to parent
}
}
else if (_order == IN)
{ if (size+l == 2*last_power (size)) // tree is full
{ if (_k == size) return O; // last 1s youngest daughter
if (2% _k <= size) // interior node:
{ _k=2*k + 1; // move to daughter
while (2* k <= size} // while not a leaf
_k *= 2; // move to son
} // male leaf descendant
if (_k%2 == 0) return _k/2; // male leaves return parent
++_k; // move to male cousin
while (k%2 == 0) // while male
k /= 2; // move to parent

_k /= 2; // return aunt

}

302

12.33

12.34

12.35

12.36

TREES [CHAP. 12
else // tree is not full
{ if (_k == last_power (size) - 1) return 0;
if (_k >= size/2 && _k < last_power (size))
{ ++_k; // move to male cousin
while (_k%2 == 0) // while male
k /= 2; // ~ move to parent
_k /= 2; // return aunt
)
else
{ if (_k == size) return k/2;
if (2*_k <= size) // interior node:
{ k=2*_k + 1; // move to daughter
while (2*_k <= size) // while not a leaf
_k *=2; // move to son
} !/ male leaf descendant
if (_k%2 == 0) return _k/2; // male leaves return parent
++_ki // move to male cousin
while (k%2 == 0) // while male
_k /= 2; // move to parent
_k /= 2; // return aunt
)
}
}
else if (_order == POST)
{ 1f (sizet+l < 2*last power (size) && _k == size) return _k/2;
if (_k == 1) return 0; // last is root
if (_k%2 == 1) return _k/2; // return parent of females
++ ki // move to sister
if (2* k > size) return k; // return leaf
while (2*_k <= size) // while not a leaf
_k *=2; // move to son
)
else k= (_k + 1)%(_p->_size + 1);

}
bool is empty() const
{ return bool(root == 0);
}
int leaves (CBT& x)
{ int count=0;
for (CBTI it = x.preorder(); it != x.end(); ++it)
if (it.is_leaf()) ++count;
return count;
}
int depth(CBTI& it)
{ if (it.is root()) return 0;
return 1 + depth(it.parent());
}
int height (CBT& X)
{ int max=0, depth_it;
for (CBTI it(x); !'tit; ++it)
{ depth it = depth(it);
if (depth_it > max) max = depth_it;
)

return max;

Chapter 13

Sorting

This chapter outlines the six standard sorting algorithms: the Bubble Sort, the Selection Sort, the
Insertion Sort, the Merge Sort, the Quick Sort, and the Heap Sort. The first three are O(n?) sorts and
the second three are O(n Ign) sorts.

13.1 PRELIMINARIES

Each of these algorithms is defined as a C++ function template on an array a of n elements of
type T, where T is the template parameter. The function prototype is:
template<class T>
void sort (T* a, int n);
// Precondition: a has at least n elements.
// Postcondition: a[0] <= a[l] <= a[2] <= ... <= a[n-1].

Each sorting function should be tested with the same test driver:
int main{()
{ int a[] = { 77, 44, 99, 66, 33, 55, 88, 22, 44 };
print(a, 9);
sort(a, 9);
print{a, 9);

This uses the following print () function template:
template<class T>
void print (T* a, int n)
{ for (int i=0; 1 < n; 1i++)
cout << afi] << ", ";
cout << endl;
}

Some of the sorting algorithms move data by swapping elements in the array. The following
swap () function template is used to perform that task:
template<class T>
void swap(T& x, T& y)

{ T temp=x;
X = y;
y = temp;

}

13.2 THE BUBBLE SORT

The Bubble Sort is probably the simplest of the sorting algorithms. Its name come from the idea
that the larger elements “bubble up” to the top (the high end) of the array like the bubbles in a carbon-

ated beverage.

303

304 SORTING

Algorithm 13.1 The Bubble Sort
template<class T>
void sort{(T* a, int n)
{ for (int i=1; i < n; i++)
for (int j=1; j <= n-i; j++)
if (alj-1] > a[j]) swapf{alj-1],

aljl):

[CHAP. 13

// Invariant: the i largest elements are in the correct locations.

}

EXAMPLE 13.1 Tracing the Bubble Sort

Here is a trace of the Bubble Sort on the array of 9 integers listed above:

a[0)| a[l)| a[2]] a[3]] a[4)| a[5]] a[6]] a[7)| a[8]
77 44 99 66 33 55 88 22 44
44 77
L 66 99
33 99
55 99
88 99
22 99
44 99
66 77
33 77
55 77
22 88
44 88
33 66
55 66
22 77
44 77
33 44
22 66
44 66
22 55
44 55
2 44
22 33

On each iteration of the outside i loop, the next largest element “bubbles up” to the right. On the
first iteration, 99 bubbles up, bouncing off of 11, 33, 55, 88, 22, and 66. On the second iteration, 88
bubbles up, bouncing off of 66. Also notice that 77 bubbles upto a[4] on the second iteration.

Theorem 13.1 The Bubble Sort is correct.

Proof: The loop invariant can be used to prove that the Bubble Sort does indeed sort the array. After
the first iteration of the main i loop, the largest element must have moved to the last position. Wher-
ever it began, it had to be moved step-by-step all the way to the right, because on each comparison
the larger element is moved right. For the same reason, the second largest element must have been
moved to the second-from-last position in the second iteration of the main i loop. So the two largest
elements are in the correct locations. This reasoning verifies that the loop invariant is true at the end
of every iteration of the main i loop. But then, after the last iteration, the n-1 largest elements

CHAP. 13] SORTING 305

must be in their correct locations. That forces the nth largest (i.e., the smallest) element also to be in
its correct location, so the array must be sorted. Q.E.D.

Theorem 13.2 The complexity of the Bubble Sort is O(r).

Proof: The complexity function O(n*) means that, for large values of », the number of loop iterations
is proportional to n°. That means that, if one large array is twice the size of another, it should take
about four times as long to sort.

The inner j loop iterates n—1 times on the first iteration of the outside i loop, n—2 times on the
second iteration of the i loop, n—3 times on the third iteration of the i loop, etc. For example,
when n = 7, there are 6 comparisons made on the first iteration of the i loop, 5 comparisons made
on the second iteration of the i loop, 4 comparisons made on the third iteration of the i loop, etc.,
so the total number of comparisons is 6 + 5 +4 + 3 + 2 + 1 = 21. In general, the total number of com-
parisons will be (n—1) + (n-2) + (n-3) + - +3 + 2 + |. From Theorem 13.3, this sum is n(n—1)/2. For
large values of n, that expression is nearly #%/2 which is proportional to n?. Q.E.D.

Theorem 13.3 Thesum 1 + 2+ 3 + - + (1=3) + (n-2) + (n—1) = n(n-1)/2.
Proof: If n is odd, we can add the n—] numbers in pairs so that each pair sums to »: add the first to the
last to get (1 + (n—1)) = n; add the second to the second-from-last to get (2 + (n—2)) = »; add the third
to the third-from-last to get (3 + (n—3)) = n; etc. There are (»—1)/2 pairs and each pair sums to », so
the total must be ((n—1)/2)(n) = n(n-1)/2.
If n is even, then n+1 is odd and we can apply the previous argument to the sum 1 + 2 +3 + - +
(n=2) + (n—1) + (n) to get the expression on the right with (n+1) in place of n:
1+2+3+-+(n=-2)+(n-1)+(n)=(n+t)(n)y2
Then simply subtract » from both sides:
1+243++(m=-2)+n-1)=m+1)n)V2-n=@+n)2-(2n)/2 =nn-1)/2. Q.E.D.

The simple formula in Theorem 13.3 is widely used in computer science. Here is an easy way to
visualize it:

1 e e o";o e o6 0o 0 06 o o

2 0 @ ° oo e 0o 0 0 0 0o
3 e 0 @ © 060600600 0 o0
e o o o ¢ 0606 0¢6.0606 0 0 0

e o 0 0 o "_14 e 060606060000

e 06 0 0 0 o e o6 0 0 o oo e o

-2 6 @ 6 6 e o o © 060600 0 0.0 0
-1 @ @€ & @ &6 & 0 @ @ e e 0 0 0 o“\\g
— ~- _ — ,, /

The dots on the left accumulate to 1 +2 + 3 + -+ + (n—2) + (n—1). The total number of dots on the
right is n(n—1). There are twice as many dots on the right as on the left. Therefore:

1+2+3+-+(n=-2) +(n-1)=(172)(n-1)n) = n(n—-1)/2,

306 SORTING [CHAP. 13

13.3 THE SELECTION SORT

The Selection Sort works like the Bubble Sort: on each iteration of the main i loop, the next
largest element is moved into its correct position. But instead of “bubbling” these elements into
position, the Selection Sort finds the element to be moved without first moving any elements. Then it
is put into place with a single swap. This is more efficient than the Bubble Sort.

This implementation of the Selection Sort puts the next smallest element (instead of the next
largest element) in place on each iteration of the main i loop. Both versions work equally well.

Algorithm 13.2 The Selection Sort
template<class T>
void sort(T* a, int n)
{ for (int i=0; i < n-1; i++
{ int min=i;
for (int j=i+l; j < n; j++)
if (a[j] < a(min)) min = J;
// Invariant: a[min] <= a[j] for i <= j < n.
swap (a[min], alil);
// Invariant: the subarray a[0:1i] is sorted.

}

EXAMPLE 13.2 Tracing the Selection Sort
Here is a trace of the Selection Sort on the same array of 9 integers:

a[0] a[l} a[2] a[3] a[4] a[5] a[6] a[7] a[8]
77 44 99 66 33 55 88 22 44
22 88

33 44
44 99
44 66
55 99
66 99
77 88

Theorem 13.4 The Selection Sort is correct.

Proof: This proof is similar to that for the corresponding theorem for the Bubble Sort. The first loop
invariant is true because each time an element a[§] was found to be less than a[min], the value of
min was changed to j. That was done for all j inthe range from i upto n-1. The second loop
invariant follows from the first, because the swap() putsthe ith smallest element into position

a[i]. On the last iteration of the outer loop, i == n-2. So after that, elements a[0] up to a[n-2])
must be in their correct positions. That forces the nth element, a [n-1] also to be in its correct position.
Q.E.D.

Theorem 13.5 The complexity of the Selection Sort is O(n?).

Proof: Again, the proof is essentially the same as that for the corresponding theorem for the Bubble
Sort. On the first iteration of the outer i loop, the inner j loop iterates n—1 times. On the second, it
iterates n—2 times. This progression continues, giving a total of

(n-H+(n-2)++2+1=n(n-1),2. Q.E.D.

CHAP. 13] SORTING 307

13.4 THE INSERTION SORT

The Insertion Sort is so named because on each iteration of its main loop it inserts the next
element in its correct position relative to the subarray that has already been processed. This is the
common method people use to sort playing cards dealt to them in card games. Unlike the Bubble Sort
and the Quick Sort, the Insertion Sort does not use the swap () function. Instead, it shifts elements
over to make room for each new element inserted. In the ith iteration of the main loop, all the
elements on the left of a[i] thatare lessthan a[i] are shifted one position to the right, making
room for the insertion of a[i] into is correct position relative to the previously processed i-1
elements.

Algorithm 13.3 The Insertion Sort
template<class T>
void sort(T* a, int n)
{ for (int i=1; 1 < n; i++)
{ T temp = al[i];
for (int j=i; j > 0 && alj-1] > temp; j--)
alj) = a[3-1];
a(j] = temp;
// Invariant: a[0] <= a[l] <= ... <= a[i].

}

EXAMPLE 13.3 Tracing the Insertion Sort
Here is a trace of the Insertion Sort on the same array of 9 integers:

a[0] a[1] a[2] a[3] a[4] a[s] a[6] a[7] a[8]
77 44 99 66 33 55 88 22 44
44 77

66 77 99

33 44 66 77 99

55 66 77 99

88 99

22 33 44 55 66 77 88 99

44 55 66 77 88 99

Theorem 13.6 The Insertion Sort is correct.

Proof: As with the previous two correctness theorems, this too will be proved as soon as the algo-
rithm’s loop invariant is verified. On the first iteration of the main i loop, a[1] is compared with
a[0] and interchanged if necessary. So a[0] <= a[1] after the first iteration. If we assume that
the loop invariant is true prior to some kth iteration, then it must also be true after that iteration has
finished, because during it a[k+1] is inserted between the elements that are less than or equal to it
and those that are greater. It follows from the Principle of Mathematical Induction then that the loop
invariant is true for all k. Q.E.D.

Theorem 13.7 The complexity of the Insertion Sort is O(n?).

Proof: The proof is similar to that for the corresponding theorems for the Bubble Sort and the Selec-
tion Sort. On the first iteration of the outer i loop, the inner j loop iterates once. On the second, it
iterates once or twice, depending upon whether a(1] > a[2].On the third iteration, the inner j
loop iterates at most three times, again depending upon how many of the element on the left of a[3]

308 SORTING [CHAP. 13

are greater than a[3). This pattern continues, so that on the kth iteration of the outer loop, the inner
loop iterates at most k times. Therefore, the total number of iterations is

14243+ +(n=2) + (n-1) = n(n—1)/2. Q.E.D.

Theorem 13.8 If the array is already sorted, the Insertion Sort has complexity O(n).
Proof: In this case, the inner loop will iterate only once for each iteration of the outer loop. So the
total number of iterations of the inner loop is

14141+ +1+1=n-1. Q.E.D.

An algorithm that has complexity function O(») is said to be /inear, or to “run in linear time.”
The term “linear’ is used because the graph of the equation y = x is a straight line. Similarly, an algo-
rithm that has complexity function O(r?) is said to be quadratic because y = x? is a quadratic equa-
tion. We can summarize the last two theorems by saying that the Insertion Sort is a quadratic
algorithm whose “best case” performance is linear.

At first glance, Theorem 13.8 seems silly: why would anyone re-sort an array that is already
sorted? Of course, one wouldn’t. But one might often need to sort an array that is already nearly
sorted. In those cases, Theorem 13.8 suggests that the Insertion Sort will be almost linear. It certainly
will be faster than the Bubble Sort or the Selection Sort.

13.5 THE MERGE SORT

The Merge Sort is a recursive algorithm. It works by splitting the array into sorted 2-element
subarrays, merging them pairwise into sorted 4-element subarrays, merging them into sorted 8-
element subarrays, etc., until the are only two sorted subarrays to be merged. After that last merge, a
single sorted “subarray” remains.

The C++ code exploits the fact that an array name is actually a pointer that supports pointer
arithmetic. For example, a+4 is the subarray of a that begins with element a[4]. So the call

sort (a+4, m);
applies the sort () function to the subarray { a[4], al5], ..., a[4+m-1] } containing m
elements.

The Merge Sort is noticeably more complicated than any of the three previous algorithms. It is
recursive and it uses an auxiliary function that has four separate loops. But these complicating factors
produce an algorithm that is much faster than the others.

Algorithm 13.4 The Merge Sort
template<class T>
void merge(T* a, int nl, int n2)
{ T* temp = new T[nl+n2]);
int i=0, j1=0, j2=0;
while (j1 < nl && j2 < n2)
temp[i++] = (a[jl] <= a[nl+j2] ? a[jl++] : alnl+j2++]);
while (jl1 < nl)
temp[i++] = a[jl++];
while (j2 < n2)
temp[i++] = (a+nl) [j2++];
for (i=0; i < nl+n2; 1i++)
ali)] = temp(i];
delete [] temp;

=]

CHAP. 13] SORTING 30

template<class T>
void sort(T* a, int n)

{ if (n > 1)
{ int nl = n/2;
int n2 = n - nl:;

sort (a, nl);
sort (a+nl, n2);
merge {(a, nl, n2);
}
)
Here is a trace of the Merge Sort on the same array of 9 integers:
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8]
77 44 99 66 33 55 88 22 44
44 77

66 99
66 77

N
(38
S
S
o0
oo

22 33 44 5
22 33 44 44 55 66 77 8

W

oo
O
=]

Here is the calling tree for this example:

sort (a+l, 1)

merge (a,

sort (a+2,2) sort{a+2,1)

sort(a+3,1)

merge (a,2,2) merge (a+2,1,1)
sort(a+4, 4) sort(a+4,2) D sort (a+4,1)

sort(a+5,1)

oyt

merge (a+4,1,1)

sort (a+6,2) sort (a+6,1)

sort (a+7,1)

T

merge(a,4,4) merge (a+4,2,2)

merge (a+6,1,1)

The Merge Sort is correct, but its proof is beyond the scope of this outline.

310 SORTING [CHAP. 13

Theorem 13.9 The complexity of the Merge Sort is O(n 1gn).

Proof: In general, the Merge Sort works by repeatedly dividing the array in half until the pieces are
singletons, and then it merges the pieces pairwise until a single piece remains. The number of itera-
tions in the first part equals the number of times » can be halved: that is Ign, the binary logarithm of n.
In terms of the number and sizes of the pieces, the second part of the process reverses the first; merg-
ing two pieces reverses halving them. So the second part also has ign steps. So the entire algorithm
has 2-1gn steps. Each step compares all n elements. So the total number of comparisons is 2n Ign,
which is proportional to n Ign. Q.E.D.

This analysis can be visualized like this:

C]

C 11 .

I [1C - - 1C —
ENnN | I I 11 1IC T f— I3
OO COCOOCCOOC OO OO c/ar/
OOooo00ooooooo0ooooooooopooooaoooaon

S | I | G | U U G i) v | o Y s oy |

I | S | S 1(1 1{ 1

lgn-1< C—] 1 1C—]
[| - —

— —

- v

~

n

13.6 THE QUICK SORT

The Quick Sort is like the Merge Sort: it is recursive, it requires an auxiliary function with several
loops, and it has O(n 1gn) complexity. But in mast cases, it is quicker than the Merge Sort; hence its
name.

The Quick Sort works by partitioning the array into two pieces separated by a single element that
is greater than all the elements in the left piece and smaller than all the elements in the right piece.
This guarantees that the single element, called the pivor element, is in its correct position. Then the
algorithm proceeds, applying the same method to the two pieces separately. This is naturally
recursive, and very quick.

Algorithm 13.5 The Quick Sort
template<class T>
void quicksort(T* a, int lo, int hi)
{ if (lo >= hi) return;
T pivot = a[hi];
int i = lo - 1;
int j = hi;
while (i < j)
{ while (a[++i] < pivot) ;
while (j >= 0 && a[--j] > pivot) ;
if (i < j) swap(alil, aljl):
}
swap(al[i}l, a[hil]);
// Invariant: a[j] <= a[i} <= al[k] for lo <= j < i < k <= hi

CHAP. 13]

quicksort(a,
quicksort(a,

}

lo,
i+1,

template<class T>
int n)

void sort (T* a,
{ quicksort (a,

}

0,

i-1);
hi);

n-1);

EXAMPLE 13.4 Tracing the Quick Sort

Here is a trace of the Quick Sort on the same array of 9 integers:

SORTING

311

a[0]] a[1]] a[2]] a[31] a[4]] a[5]] a[6]] a[7]] a[8]
77 44 99 66 33 55 88 22 44
22 77

33 99
44 66
33 44
55 99
66 99
77 88

Warning: Some authors write the Quick Sort algorithm so that the pivot element is chosen each time
to be the first element of the subarray instead of the last element. Other authors choose the middle

element. These versions work equally well.

The Quick Sort is correct, but its proof is beyond the scope of this outline.

Theorem 13.10 The complexity of the Quick Sort is O(n Ign).

The proof of the general statement in this theorem is beyond the scope of this outline. However,
the analysis of the “best case” is not.
The Quick Sort proceeds through a series of steps. At each step, each piece of the array is split in
two pieces. In the best case, each pivot element will be the median value among those in its piece. So
the partition of each piece will result in its being split into two pieces of equal length. Thus, on each
step, each piece is halved, like this:

[]
[1]
i C T I . —]
8RN |) i 1C 2] 10 I []
OO OO a3 cCcacac4g
O000000000000O0000Oocooocoodooooooaon
— v
v
n

With the splitting balanced this way, the number of steps is Ign. Since each step compares all n
elements, the entire process takes n lgn comparisons.

13.7 HEAPS

A binary tree is said to have the heap property if the elements along any path from root to leaf are
non-increasing. A heap is a complete binary tree that has the heap property.

312 SORTING [CHAP. 13

EXAMPLE 13.5 A Heap

The binary tree shown at right has the
heap property. It has six root-to-leaf paths,
one for each leaf: 88-66-55-33, 88-66-55-55,
88-66-66-11, 88-66-66-33, 88-77-55-22, and
88-77-44. Each one is non-increasing (i.e., x
2y if y follows x in the sequence).

Note that the heap property is consis-
tent with ordinary family trees of people:
each child is younger than his/her parent.

Theorem 13.11 In a heap, every element is the maximum value of all the elements in its subtree.
Proof: Every element y in the subtree rooted at a given element x is in a path from x to a leaf. That
path can be extended back up to the root of the whole tree. In that path, y follows x. So by the heap
property, x = y. Q.E.D.
Corollary 12.3 In a heap, the largest element is at the root, and the smallest element is at some leaf.

Warning: Some authors define a heap by the opposite condition: the elements along any path from
root to leaf are non-decreasing. The two versions are equally useful. In this version, the root of every
subtree contains the minimum value in the subtree.

Warning: The word “heap” is also frequently used to describe the collection of unallocated bytes in
memory. Other authors refer to this as the free store. It is not related to the heap property of binary
trees.

By definition, a heap is a complete binary tree. This means that a heap can be stored naturally in
an array. (See Section 12.2.)

EXAMPLE 13.6 A Heap Stored as an Array
Here is the heap from Example 13.5, stored in an array of 13 elements:

(> [as[es] o ss[es ss]aa]oals]a[za]z2]

Note that the heap property is easy to see in the tree structure, but it is not clear at all in the linearized array.
13.8 THE HEAP SORT

A heap is, by definition, partially sorted, because each linear string from root to leaf is sorted.
This leads to an efficient general sorting algorithm called the Heap Sort. As with all sorting
algorithms, it applies to an array (or vector). But the underlying heap structure which the array
represents is used to define this algorithm.

CHAP. 13] SORTING 313

Like the Merge Sort and the Quick Sort, the Heap Sort uses an auxiliary function which is called
from the sort () function. And also like the Merge Sort and the Quick Sort, the Heap Sort has
complexity function O(n 1gn). But unlike the Merge Sort and the Quick Sort, the Heap Sort is not
recursive.

The natural mapping (see EXAMPLE 12.1 on page 276) of a complete binary tree into an array
maps the n elements of the tree into array elements a[1} through a[n}. But to be consistent with
all our other sorting algorithms, the n elements should be stored in positions a[0:n-1] in the
array. So for this reason, we modify the natural mapping so that the correspondence looks like this:

> [oafeslrssleslss[eala[ss[oaas]e2]

The only consequences of this modification are that now:
¢ the children of element & are elements 2k+1 and 2k+2;

e the parent of element k is elements (k—1)/2;
These recurrence relations are used in the algorithm to traverse paths back and forth between root and
leaves.

Algorithm 13.6 The Heap Sort

template<class T>
void heapify(T* a, int k, int n)
{ Tt =alk];

while (k < n/2)

{ int j = 2*k + 1; // make j the oldest child of k
if (j+1 < n && a3} < a[j+1l]) ++3;
if (t > a[jl) break:;
alk} = aljl;

k = 3;

}

alkl = t;

}

template<class T>
void sort (T* a, int n)
{ for (int i= n/2 - 1; i >= 0; i--)
heapify(a, i, n);
for (i = n-1; i > 0; i--)
{ swap(a[0}, alil):;
// Invariant: the elements a[i:n-1]} are in the correct positions.
heapify(a, 0, i};
// Invariant: the subarray a[0:i-1] has the heap property.
}
}

The sort () function first converts the array so that its underlying complete binary tree is trans-
formed into a heap. This is done by applying the heapify() function to each nontrivial subtree.

34 SORTING [CHAP. 13

The nontrivial subtrees (i.e., those having more than one element) are the subtrees that are rooted
above the leaf level. In the array, the leaves are stored at positions an/2) through ain]. So the
first for loopinthe sort () function applies the heapify() functionto elements a{n/2-1}
back through a{0] (which is the root of the underlying tree). The result is an array whose corre-
sponding tree has the heap property:

(] 1 3 J L]] s 7 [
[s9]66|88[44]33[55[77]22]44] <:'_"">

Now the main (second) for loop progresses through n-1 iterations. Each iteration does two
things: it swaps the root element with element a[i]), and then itapplies the heapify() functionto
the subtree of elements a[0:i-1]. That subtrec consists of the part of the array that is still unsorted.
Before the swap() executes on each iteration, the subarray a[0:i) has the heap property, so by
Corollary 12.3 a[i] 1is the largest element in that subarray. That mcans that the swap() puts
element a(i] in its correct position.

The first seven itcrations of the main for loop have the effect shown by the seven pictures
below. The array (and its corresponding imaginary binary tree) is partitioned into two parts: the first
part is the subarray a(0:i-1) that has the heap property, and the second part is the remaining
ali:n-1] whose elements are in their correct position. The second part is shaded in each of the
seven pictures below. Each iteration of the main for loop decrements the size of the first part and
increments the size of the second part. So when the loop has finished, the first part is empty and the
second (sorted) part constitutes the entire array. This analysis verifies that the Heap Sort works:

CHAP. 13) SORTING 315

k : 3 > & £y &

{ssieaissiaeizaing]

316

SORTING [CHAP. 13

EXAMPLE 13.7 Tracing the Heap Sort

Here is the trace of the Heap Sort on this array:

a[0]] alll] a21| al31| a@dl] al5i] al6l] al7l] a8
77 44 99 66 33 55 88 22 44
66 33
99 88 77
44 99
88 77 44 44
2 88
77 55 2
44 77
66 44
22 66
55 2
33 55
44 33
33 44
44 33
22 44
33 2
22 33

Notice that, like the Bubble Sort, the Heap Sort does not detect when it is sorted. The last two swaps
are made after the array is sorted.

Theorem 13.12 The complexity of the Heap Sort is O(n Ign).

Proof: Each calltothe heapify () function takes at most Ign steps because it iterates only along a
path from the current element down to a leaf. The longest such path for a complete binary tree of n
elements is Ign. The heapify () function iscalled n/2 times in the first for loop, and n-1 times
in the second for loop. That comes to less than (3n/2)-1gn, which is proportional to n lgn. Q.E.D.

13.1
13.2

13.3

13.4

Review Questions

Why is the Bubble Sort so slow?

The proof to Theorem 13.2 concludes that the Bubble Sort makes n(n—1)/2 comparisons.
How does it follow that its complexity function is O(n?)?

Problems

If an O(n?) algorithm (e.g., the Bubble Sort, the Selection Sort, or the Insertion Sort) takes
3.1 milliseconds to run on an array of 200 elements, how long would you expect it to take to
run on a similar array of 400 elements?

If an O(r?) algorithm (e.g., the Bubble Sort, the Selection Sort, or the Insertion Sort) takes
3.1 milliseconds to run on an array of 200 elements, how long would you expect it to take to
run on a similar array of 40,000 elements?

CHAP. 13] SORTING 317

13.5

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14
13.15

13.16

13.17

13.1

13.2

If an O(n lgn) algorithm (e.g., the Merge Sort, the Quick Sort, or the Heap Sort) takes 3.1
milliseconds to run on an array of 200 elements, how long would you expect it to take to run
on a similar array of 40,000 elements?

The Insertion Sort runs in linear time on an array that is already sorted. How does it do on an
array that is sorted in reverse order?

How does the Bubble Sort perform on

a. an array that is already sorted?

b. an array that is sorted in reverse order?

How does the Selection Sort perform on

a. an array that is already sorted?

b. an array that is sorted in reverse order?

How does the Selection Sort perform on

a. an array that is already sorted?

b. an array that is sorted in reverse order?

How does the Selection Sort perform on

a. an array that is already sorted?

b. an array that is sorted in reverse order?

How does the Selection Sort perform on

a. an array that is already sorted?

b. an array that is sorted in reverse order?

The Bubble Sort, the Selection Sort, and the Insertion Sort are all O(n?) algorithms. Which is
the fastest, and which is the slowest among them?

The Merge Sort, the Quick Sort, and the Heap Sort are all O(n lgn) algorithms. Which is the
fastest, and which is the slowest among them?

Improve the Bubble Sort by making it smart enough to stop when the array is sorted.

The Merge Sort applies the general method, known as divide and conquer, to sort an array. It
divides the array into pieces and applies itself recursively to each piece. What other sorting
algorithm(s) use this method?

The Merge Sort is parallelizable. That means that parts of it can be performed simulta-
neously, independent of each other, provided that the computer has multiple processors that
can run in parallel. This works for the Merge Sort because several different parts of the array
can be subdivided or merged independently of other parts. Which of the other sorting algo-
rithms described in this chapter are parallelizable.
Trace by hand the execution of each of the six sorting algorithms on the array:

int a{) = { 44, 77, 55, 99, 66, 33, 22, 88, 77 }

Solutions

The Bubble Sort is so slow because it operates only locally. Each element moves only one position at
a time. For example, the element 99 in Example 13.1 is moved by six separate calls to the swap ()
function to be put into is correct position at a [8].

The jump from n(n—1)/2 to O(n?) is justified as follows:

a. For large values of n (e.g., n > 1000), n(n—1)/2 is nearly the same as n%/2.

b. A complexity function is used only for comparisons. For example, how much longer will it take to
sort an array that is twice as large? For that analysis, proportional functions are equivalent. And
szi)rzcg n*/2 is proportional to n%, we can drop the (1/2) factor and simplify our conclusion with

n).

318

13.3
13.4

13.5

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13
13.14

13.15

13.16

SORTING [CHAP. 13

The OXn?) algorithm should take 12.4 milliseconds (4 times as long) to run on the 400-element array.

The ((n?) algorithm should take 124 seconds (40,000 times as long) to run on the 40,000-element
array. That’s about 2 minutes. This answer can be computed algebraically as follows. The running
time ¢ is proportional to n2, so there is some constant ¢ for which 1 = ¢-n?. If it takes t = 3.1 ms to sort n
= 200 elements, then 23.1 ms) = ¢-(200 eltsf, so ¢ = (3.1 ms)/(200 elts)? = 0.0000775 ms/elt?. Then,
for n = 40,000, t = ¢:n* = (0.0000775 ms/elt*):(40,000 elt)? = 124,000 ms = 124 s.

The O(n Ign) algorithm should take 1.24 seconds (400 times as long) to run on the 40,000-element
array. This answer can be computed algebraically. The running time ¢ is proportional to n lgn, so there
is some constant ¢ for which ¢ = c-n-lgn. If it takes ¢ = 3.1 ms to sort n = 200 elements, then (3.1) =
¢(200)1g(200), so ¢ = (3.1ms)/(200-1g(200)) = 0.0155/Ig(200). Then, for n = 40,000, ¢ = c-n'lgn =
(0.0155/1g(200))-(40,000-1(40,000)) = 620-(1g(40,000)/1g(200)). Now 40,000 = 2002, so 1g(40,000) =
1g(200%) = 2:1g200. Thus, 1g(40,000)/1g(200) = 2,s0 t = 6202 ms = 1240 ms = 1.24 5.

The lnsertion_ Sort has its worst performance on an array that is sorted in reverse order, because each
new element inserted requires all of the elements on its left to be shifted one position to the right.

The Bubble Sort, as implemented in Algorithm 13.1, is insensitive to input. That means that it will
execute the same number (7(n—1)/2) of comparisons regardless of the original order of the elements
in the array. So it doesn’t matter whether the array is already sorted or whether it is sorted in reverse
order; it is still very slow.

The Selection Sort is also insensitive to input: it takes about the same amount of time to sort arrays of
the same size, regardless of their initial order.

The Merge Sort is also insensitive to input: it takes about the same amount of time to sort arrays of the
same size, regardless of their initial order.

The Quick Sort is quite sensitive to input. As implemented in Algorithm 13.5, the Quick Sort will
degrade into an O(n*) algorithm in the special cases where the array is initially sorted in either order.
That is because the pivot element will always be an extreme value within its subarray, so the partition-
ing splits the subarray very unevenly, thereby requiring » steps instead of lgn.

The Heap Sort is a little sensitive to input, but not much. The heapify() function may require
fewer than lgn iterations.

The Bubble Sort is slower than the Selection Sort, and the Insertion Sort (in most cases) is a little
faster.

The Merge Sort is slower than the Heap Sort, and the Quick Sort (in most cases) is faster.
template<class T>
void sort (T* a, int n)
{ bool sorted=false;
for (int i=1; i < n && !sorted; i++)
for (int j=1; j <= n-i; j++)
{ sorted = true;
if (a(j-1] > al3il)
{ swap(a[j-1], aljl);
sorted = false;

}

Among the six sorting algorithms presented here, only the Merge Sort and the Quick Sort apply the
method of divide and conquer. Like the Merge Sort, the Quick Sort divides the array into pieces and
then applies itself recursively to each piece.

Besides the Merge Sort, the only other sorting algorithm among the six described here that is parallel-
izable is the Quick Sort. The partitioning process in the quicksort() function could be performed
simultaneously on several separate sections of the array.

Chapter 14

Searching

14.1 THE SEQUENTIAL SEARCH ALGORITHM

The simplest algorithm for searching a container for an element with a given value is the Sequen-
tial Search Algorithm. 1t simply iterates through the container until the item is found or the end is
reached.

Algorithm 14.1 The Sequential Search

// preconditions: a is an array with n elements;

/7 0 <= begin <= end <= n;

// postconditions: returns: i;

/7 begin <= i <= end;

// if i < end then a[i] == target.

template <class T>
int find(const T* a, int begin, int end, const T& target)
{ for (int i=begin; i<end; i++)
if (a[i} == target) return i;
return end;

}

EXAMPLE 14.1 Using the Sequential Search
This uses the find () function defined in Algorithm 14.1:
const int SIZE=12;
int a{SIZE} = { 44, 66, 77, 33, 88, 66, 99, 55, 66, 66, 44, 88 };
int target=66;
int loc=0;

for (/7)
{ loc = find(a, loc, SIZE, target):
if (loc == SIZE) break;

cout << target << " was found at location " << loc++ << endl;
}
The output from this program fragment is
66 was found at location
66 was found at location
66 was found at location
66 was found at location 9

Theorem 14.1 The Sequential Search Algorithm has complexity O(n).

Proof: If the target is not in the container, then the algorithm will compare it with every element. If
the target is in the container, then assuming that each location is equally likely, the algorithm will
make n/2 comparisons on average. Q.E.D.

(oo BN 2 I ol

An algorithm that has complexity function O(n) is called a linear algorithm and is said to run in
linear time.

319

320 SEARCHING [CHAP. 14

14.2 THE STANDARD C++ find() FUNCTION TEMPLATES

Standard C++ implements the Sequential Search Algorithm with a family of find() function

templates for container classes. The general prototype is:
template <class In, class T>
In find(In begin, In end, const T& target);
where In is an iterator class defined within the container class.

EXAMPLE 14.2 Using the Standard f£ind() Function for 1list Containers
list<string> presidents;
list<string>::iterator it=presidents.begin();
presidents.insert (it++, "Washingten");
presidents.insert (it++, "Adams");
presidents.insert (it++, "Jefferson");
presidents.insert (it++, "Madison”);
presidents.insert(it++, "Monrce");
presidents.insert (it++, "Adams");

for (;:)
{ it = find(presidents, it, presidents.end(), "Adams");
if (it == presidents.end()) break;

cout << "Adams was found." << endl;

}
The output from this program fragment is:

Adams was found.
Adams was found.

14.3 THE BINARY SEARCH ALGORITHM

The Sequential Search Algorithm is inefficient. Imagine using it to find a name in the telephone
book! Fortunately, telephone books and dictionaries are sorted so that we can find things more
efficiently. For example, to find “Miller” in the telephone book, most people open it somewhere near
the middle. If they see the name “Parker” then they know that “Miller” must be in the first half, so
they repeat the process on that half. This is the Binary Search Algorithm: divide the remainder in half
and repeat the process on the half that could contain the target. Note that this is the same divide-and-
conquer strategy that was used in the Merge Sort and the Quick Sort.

Algorithm 14.2 The Binary Search

// preconditicns: a[0] <= a[l] <= al[2] <= ... <= a[n-1)];
/7 0 <= begin <= end <= n;

// postconditions: returns: i;

// begin <= 1 <= end;

// if 1 < end then a[i] == target.

template <class T>
int find(const T* a, int begin, int end, const T& target)
{ int lo=begin;

int hi=_end-~1;

while (lo <= hi)

{ int mid = (lo + hi)/2; // locate the middle
if (a[mid] == target) return mid;
if (a[mid] > target) hi = mid - 1; // search the lower half
else lo = mid + 1; // search the upper half

}

return end;

CHAP. 14] SEARCHING 321

EXAMPLE 14.3 Tracing the Binary Search
const int SIZE=12;
int target = 66;
int a[SIZE) = { 22, 33, 33, 33, 44, 55, 66, 66, 77, 88, 88, 99 };
int loc = find(a, 0, SIZE, target);
if (loc == SIZE) cout << target << " was not found\n";
else cout << target << " was found at location " << loc << endl;

begin end target lo hi mid almid]
0 12 66 0 11 5 55
6 8 77
7 6 66
The output is

66 was found at location 6

Unlike the Sequential Search, the Binary Search cannot be used to find all the occurrences of the
target. Indeed, the find() cannot tell which occurrence it has found. The trace in Example 14.3
found the first occurrence of 66. But the call find(a, 2, 10, target) will find the second

occurrence (a [71) instead. (See Problem 14.7.)

Theorem 14.2 The Binary Search Algorithm has complexity O(lgn).

Proof: If the target is not in the array, then the algorithm will divide the array in two repeatedly until
the subarray is empty. The number of times that » can be divided in two is Ign. If the target is in the
container, then the number of iterations will be at most ign. Q.E.D.

The Binary Sort is easily expressed as a recursive algorithm:

Algorithm 14.3 The Recursive Binary Search
// preconditions: a is a sorted array with n elements:

// al0] <= all] <= a[2] <= ... <= a[n~-1];
/7 0 <= begin <= end <= n;

// postconditions: returns: i;

// begin <= 1 <= end;

// if i < end then af{i] == target.

template <class T>
int find(const T* a, int begin, int end, const T& target)

{ 1f (begin > end) return -1; // target not found
int mid = (begin + end)/2; // locate the middle
if (a[mid] == target) return mid;

if (a[mid] > target) return find(a, begin, mid - 1, target);
return find(a, mid + 1, end, target);
}
Theorem 14.3 The Recursive Binary Search Algorithm has complexity O(lgn).
Proof: Each call makes at most one recursive call, and that recursive call is on a subarray of size at
most »/2. Therefore, the complexity function f{n) satisfies the recurrence relation:
AD=1,
fn)y=1+Rn/2);
The function f{r) = 1 + lgn is a solution because A1) =1 +1gl =1 +0=1and 1 + An/2) =
1+(1 +lg(n/2))=2+1g(n/2)=2+(Ign-1g2)=2+(Ign—-1)=1 + Ign =f(n). Q.E.D.

322 SEARCHING [CHAP. 14

EXAMPLE 14.4 Tracing the Recursive Binary Search
Here is a trace of the Recursive Binary Search (Algorithm 14.3) on an array of strings:
string a(8]
= {"beef", "corn", "fish", "kale"”, "lamb", "milk", "okra", "rice"};
int loc = find(a, 0, 8, "kale");

find(a,0,8, "kale") find(a, 0, 3, "kale") find(a, 2, 3, "kale") find(a, 3, 3, "kale")

begin begin
end end

mid mid

14.4 BINARY SEARCH TREES

The Binary Search algorithm uses the classic divide-and-conquer method to solve the problem.
This method can be generalized by using a data structure that reflects the method, namely a binary
tree. The main idea of the binary search is to look in the middle and then go left or right according to
whether the middle is larger or smaller than what you are searching for. Applied to a binary tree, that
means look in the left subtree if the root element is larger, or look in the right subtree if the root
element is smaller. For this to work, every element in the left subtree must be less than (or equal to)
the element in the root, and every element in the right subtree must be greater than (or equal to) the
element in the root. A binary tree that has this property at every element is called a binary search tree.

EXAMPLE 14.5 Building a Binary Search Tree
The following sequence of pictures shows the binary search tree that results from inserting the input
sequence 44, 77, 55, 22, 99, 33, 88:

Insert 44 Insert 77 > (49) | Insenss >
D D (27

Insert 99

Insert 22

Insert 88

Insert 33

CHAP. 14] SEARCHING 323

The last item, 88, was inserted with the following steps: the element at the root (44) is less than 88 so move
to its right subtree; the element at that root (77) is less than 88, so move to its right subtree; the element at that
root (99) is greater than 88 so move to its left subtree; that subtree is empty, so insert 88 there.

If a binary search tree is balanced, it allows for very efficient searching. Like the Binary Search,
it takes O(lgn) steps to find an element in a balanced binary search tree. But without further restric-
tions, a binary search tree may grow to be very unbalanced. The worst case is when the elements that
are being inserted are in sorted order. In that case, the tree degrades to a linked list, thereby making
the search algorithm an O(r) sequential search.

EXAMPLE 14.6 An Unbalanced Binary Search Tree
This is the same input data as in Example 14.5, but in a different order:
99,22, 88,33, 77, 55, 44. The resulting binary search tree is shown at right.
This shows that the same input in different order produces a different
tree. But more importantly, it shows that it is not unlikely for the binary
search tree to be linear, or nearly linear.

14.5 AVL TREES

The way to avoid the problem illustrated in Example 14.6 is to
impose some balancing constraints on the binary search tree. An
AVL tree is a binary search tree in which the difference between the
heights of the two subtrees is no more than 1 at every element in the
tree. The name comes from the two inventors of this method: G M.
Adel’son-Velskii and Y. M. Landis.

The insertion algorithm for AVL trees maintains a balance
number at each node, defined to be the height of the node’s right subtree minus the height of its left
subtree. For the tree to remain balanced, each balance number must be 1, 0, or —1. If an insertion
changes a balance number to 2 or to -2, then the insertion algorithm performs a subtree rotation to
restore the balance. The following example illustrates the algorithm,

EXAMPLE 14.7 AVL Tree Insertions

This example illustrates the various kinds of rotations required by the AVL insertion algorithm to keep the
tree balanced. The data being inserted are strings holding the names of the U.S. presidents, inserted in chrono-
logical order.

The first picture shows the insertion of the seventh president, Andrew Jackson, into the tree where the first
six presidents have already been inserted. The balance number for each node is shown directly beneath it.
Before Jackson is inserted, the node containing Adams, J. has balance number |, and the other 5 nodes
have balance number 0. The string Jackson is lexicographically less than Jefferson, greater than
Adams, J.,and greaterthan Adams, J.Q.,sothe moves lefi, right, and right down the tree from the root.
This leads Jackson to become the right child of Adams, J.Q. That changes the balance number of each
of the three nodes along the insertion path. The balance number for Jefferson decreases by 1 because the
new node is to its lefi. The balance numbers for Adams, J.,and Adams, J.Q., increase by | because the
new node is to their right. The resulting changes create an imbalance (a balance number of 2) at Adams, J.:
The node that has the illegal balance number (in this case, Adams, J.) is called the pivot for the
required rotation. Since the pivot’s balance number is +2, a rotate left operation is performed.
(A balance number of -2 would require the symmetrically opposite rotate right operation.) The
pivot becomes the left child of its own right child (Adams, J.Q.), which is moved up to take the
place of the pivot. This reduces the pivot’s balance number by 2 (making it 0) and it reduces the

[F%]
119}
£

SEARCHING [CHAP. 14

balance number of the node that replaces the pivot by 1 (making it 0 in this case). The net effect is
that the balancc is restored, while preserving the binary scarch tree property.

The picture on the next page illustrates a double rotation. The eleventh president »ol:x s
inscried as the left child of Tyler. This causes an imbalancc three levels higher, at Monroe, which
is therefore the pivot element for the rotation. But the balance number of the pivot (2) has the
opposite sign from the balance number (-1) of its child (Van 3Surer) on the insertion path. The
opposite signs indicate that a double rotation is necessary to restore balance. So first, a single rotation
right about the child of the pivot is performed, and then a rotation left about the pivot is performed:

Although a bit complicated, the insertion algorithm for AVL trees is very efficient, requiring the
changing of only several pointers. The result is a balanced binary search tree that provides very effi-
cient access.

14.6 HASH TABLES

The Binary Search is the prototypical method for finding things stored in a computer. Its O(lgn)
speed is adequate for most tasks. The AVL tree enhiances that speed with the efficiency that a binary
tree provides for insertions and deletions. But these methods require the elements to be sorted accord-
ing to some intrinsic ordering defined for the element type. For example, when storing strings, the
lexicographic ordering is used. The evaluation of the ordering operator itself incurs some overhead.
Moreover, the requirement that such an order be defined in the first placc may be an imposition.

Hash tables provide an alternative to storing clements in sorted order. Instead, they use a hash
function which computes the location of thc clement in an array. The function that computes the
location is called a hash function, and the array where the clements are stored is called a hash table.

325

CHAP. 4] SEARCHING

N
X

326 SEARCHING [CHAP. 14

EXAMPLE 14.8 A Hash Table for Composers
Here is a class template definition for hash tables:

template <class T>
class HashTable

{ public:
HashTable (int size) : _size(size)
{ _v = new T({size]; for (int i=0; i<size; i++) _v({i] = T(): }

int size() { return _size; }
T& operator[] (int k) { return v[k]; }
protected:
T wv;
int _size;
bi
This abstracts a simple dynamic array. It initializes each element with the default value T () for the type T.
In this example, we will use the following type for T:
struct Composer
{ bool is_null() { return bool(lname.length() == 0); }
string lname;
string fname;
int yob;
int yod;
string nationality:;
}i
It includes the is _null () function for testing for the “null” object, which is defined here to be the Com-
poser object whose lname field (for “last name”) is the empty string.
We use the following data, stored in a text file named Composers.dat:

Vivaldi Antonio 1678 1741 Italian

Bach Johann Sebastian 1685 1750 German
Mozart Wolfgang Amadeus 1756 1791 Austrian
Beethoven Ludwig van 1770 1827 German
Berlioz Hector 1803 1869 French

Chopin Frederic 1810 1849 Polish

Liszt Franz 1811 1886 Hungarian

Brahms Johannes 1833 1897 German

Dvorak Antonin 1841 1904 Czech

Grieg Edvard 1843 1907 Norwegian

Sibelius Jean 1865 1957 Finnish
Stravinsky Igor 1882 1971 Russian

Barber Samuel 1910 1981 American

Britten Benjamin 1913 1976 English

This file has 14 lines. Each line contains a last name followed by a tab, a first name (which may contain a
blank) followed by a tab, a birth year followed by a tab, a death year followed by a tab, and a nationality.
The main program is
int main{()
{ ifstream fin("Composers.dat");
Composer composer;
HashTable<Composer> table (TABLE_SIZE);
while (get (composer, fin))
(int k = hash(composer.lname + composer.fname);
while (!table(k]).is null())
k = (k+1) % TABLE SIZE;
table[k] = composer7
}
print (table);

CHAP. 14] SEARCHING 327

Its output is
0. Dvorak, Antonin (1841-1904), Czech
1. Mozart, Wolfgang Amadeus (1756-1791), Austrian
2. Vivaldi, Antonio (1678-1741), Italian
3. Beethoven, Ludwig van (1770-1827), German
4. Chopin, Frederic (1810-1849), Polish
5. Bach, Johann Sebastian (1685-1750), German
6. Grieg, Edvard (1843-1907), Norwegian
7. Sibelius, Jean (1865-1957), Finnish
8. Stravinsky, Igor (1882-1971), Russian
9. Britten, Benjamin (1913-1976), English
10. Liszt, Franz (1811-1886), Hungarian
11.
12.
13.

14. Berlioz, Hector (1803-1869), French
15. Barber, Samuel (1910-1981), American
16. Brahms, Johannes (1833-1897), German
It has inserted each of the 14 Composer objects inthe table. It uses the following hash () function to
select a location in the table to insert the object:
int hash(string s)
{ int h=0;
for (int i=0; i<s.length(); i++)
h += int(s[(i]);
return h % TABLE SIZE:;

}
This function returns an integer that is computed from the given string s. The computation simply adds the

characters (as integers) in the string and then computes the remainder k § TABLE SIZE to ensure that k
isinrange (0 < k < TABLE_SIZE).
The main program uses a while loop to read each of the 14 records from the Composers.dat file
and stores them in the hash table. For each record, it hashes the string
composer.lname + composer.fname
which is simply the concatenation of the composer’s last name and first name. For example, the hash function
computes the number 5 for the second record, hashing the 20-character string “BachdJohann Sebastian”.
If the hashed location in the table element is already occupied by another record, then the while loop locates
the next available position. The record is inserted at location k by the statement
table[k] = composer;
Finally, after all the objects have been inserted into the table, the program prints the entire table.
Here is the rest of the program:
#include <fstream>
$#include <iomanip>
#include <iostream>
#include <sstream> // use <strstream> in pre-Standard C++
using namespace std;
const int BUF SIZE=80;
const int TABLE SIZE=17;
bool get (Composer& composer, ifstream& fin)
{ char buffer[BUF _SIZE], temp[BUF SIZE]:
fin.getline (buffer, BUF_SIZE);

if (fin.fail()) return false;

istrstream ss(buffer); // binds the string stream ss to buffer
ss.getline(temp, BUF SIZE, '\t'); composer.lname = temp;
ss.getline(temp, BUF SIZE, '\t'); composer.fname = temp;

ss >> composer.yob >> composer.yod;
ss.getline(temp, BUF_SIZE, '\t'); // eat tab

328 SEARCHING (CHAP. 14

ss.getline(temp, BUF SIZE); composer.nationality = temp;
return true;
}
void print (Composer& composer)
{ cout << composer.lname << ", " << composer.fname << " ("
<< composer.yocb << "-" << composer.yod << "), "
<< composer.naticnality << "\n";
}
template <class T>
void print (HashTable<T>& t)
{ for (int k=0; k<t.size(); k++)
{ cout << setiosflags(ios::right) << setw(4) << k << ", ";
if ('t(k]l.is null()) print(t(k]);
else cout << endl;
}

}
The get () function reads one line at a time from the data file into the string stream (see Section 6.7 on page

118) named ss and then uses the getline() function to extract the tab-terminated fields from ss. It
returns true unless the end-of-file has been detected.

EXAMPLE 14.9 Resolving Collisions
The details of how the program in Example 14.8 works can be seen by the following enhancement:
int main()
{ ifstream fin("Composers.dat”);
Composer composer;
HashTable<Composer> table(TABLE SIZE);
int collisions=0;
while (get(composer, fin))
{ int k = hash(composer.lname + composer.fname);
cout << "hash(" << composer.lname + composar.fname

<< "y = " << k << endl;
rasolve_collision(table, composer, k, collisions):
table[k] = composer;

cout << "\t" << composer.lnama << " inserted at " << k << endl;
}

cout << "There wara " << collisions << " collisions.\n";

}
This relegates the collision resolution to a separate function which reports each collision:

template <class T>
void resolve collision(HashTable<T>& t, Composer& c, int& k, inté& n)
{ while (!t[k]l.is null())
{ cout << "\tCOLLISION AT " << k << "\t";
print (t[k]):
k = (k+1) % TABLE SIZE:
++n;
}
}
Here is the output from the program running on the same input as Example 14.8:
hash(VivaldiAntonic) = 2
Vivaldi inserted at 2
hash(BachJohann Sebastian) = 5
Bach inserted at 5
hash (MozartWolfgang Bmadeus) = 1
Mozart inserted at 1
hash(BeethovenlLudwig van) = 1

CHAP. [4] SEARCHING 329

COLLISION AT 1 Mozart, Wolfgang Amadeus (1756-1791), Austrian
COLLISION AT 2 Vivaldi, Antonjo (1678-1741), Italian
Beethoven inserted at 3

hash(BerliozHector) = 14
Berlioz inserted at 14

hash (ChopinFrederic) = 2
COLLISION AT 2 Vivaldi, Antonio (1678-1741), Italian
COLLISION AT 3 Beethoven, Ludwig van (1770-1827), German
Chopin inserted at 4

hash(LisztFranz) = 10
Liszt inserted at 10
hash (BrahmsJohannes) = 16
Brahms inserted at 16
hash(DvorakAntonin) = 16

COLLISION AT 16 Brahms, Johannes (1833-1897), German
Dvorak inserted at 0 :
hash(GriegEdvard) = 4 :
COLLISION AT 4 Chopin, Frederic (1810-1849), Polish
COLLISION AT 5 Bach, Johann Sebastian (1685-1750), German
Grieg inserted at 6
hash(SibeliusJean) = 7
Sibelijius inserted at 7
hash(StravinskyIgor) = 8
Stravinsky inserted at 8
hash (BarberSamuel) = 15
Barber inserted at 15
hash(BrittenBenjamin) = 2
COLLISION AT Vivaldi, Antonio (1678-1741), Italian
COLLISION AT Beethoven, Ludwig van (1770-1827), German
COLLISION AT . Chopin, Frederic (1810-1849), Polish
COLLISION AT Bach, Johann Sebastian (1685-1750), German
COLLISION AT Grieqg, Edvard (1843-1907), Norwegian
COLLISION AT Sibeljius, Jean (1865-1957), Finnish
COLLISION AT 8 Stravinsky, Igor (1882-1971), Russian
Britten inserted at 9
There were 14 collisions.
The first collision occurs with the insertion of the fourth record:
Beethoven Ludwig van 1770 1827 German
At this point in the program, the hash table looks like that shown at the top of the next page. Since
the Mozart record is already occupying element 1, the Beethoven record is inserted into the next
available position: element 3. This counts as 2 collisions because 2 extra table elements had to be

examined before the insertion could be made.
The rest of the run reports a total of 14 collisions, 2 with the insertion of Beethoven, 2 with the
insertion of Chopin, 1 with the insertion of Dvorak, 2 with the insertion of Grieg, and 7 with the

insertion of Britten.

~N oy s W

14.7 SEARCHING A HASH TABLE

Hash tables are valued for their fast look-up speed. Once the table has been built, any existing
element can be found the same way it was inserted: hash the element’s key to a number k, look at
table [k}, and if it’s not there follow the programmed coilision resolution algorithm until the item is
found or the table has been exhausted. The key for a record is the part of the record that is passed to

330 SEARCHING [CHAP. 14

{"Mozart", "Wolfgang Amadeus", 1756, 1791, "Austrian"}

{"Vivaldi", "Antonio", 1678, 1741, "Italian"}

{"Bach", "Johann Sebastian”, 1685, 1750, "German"}

W - O U N W NN~ O

10
11
12
13
14

15
16

the hash function. The key in Example 14.9 is the concatenated string “composer.lname +
composer . fname”.

EXAMPLE 14.10 Searching a Hash Table
Hereisa find() function for the hash table created in Example 14.9:

template <class T>
bool find(HashTable<T>& t, Composer& c, inté& k)
{ int count=0;

while (t(k].lname != c.lname && count++ < TABLE SIZE)
k = (k+1) % TABLE_SIZE;
return bool(t[k].lname == c.lname);

}
It follows the same steps as the resolve_collision() function.

EXAMPLE 14.11 Testing the £ind () Function
Here is a modification of the program in Example 14.8 that allows the user to search the hash table using a
find () function:
int main()
{ ifstream fin("Composers.dat™);
Composer composer;
HashTable<Composer> table (TABLE_SIZE);
while (get (composer, fin))
{ int k = hash{composer.lname + composer.fname);:
while ('tablef{k}.is null())
k = (k+1) % TABLE SIZE;
table(k] = composer;
}
for (::)
{ get (composer, cin);
int k = hash(composer.lname + composer.fname);

CHAP. 14] SEARCHING

cout << "hash(" << composer.lname + composer.fname
<< ") = " << k << endl;
if (find(table, composer, k))
{ composer = tablel[k};
cout << composer.fname + " " + composer.lname
<< " was born in " << composer.yob << endl;
}
else
cout << composer.fname + " " + composer.lname
<< " was not found in the hash table." << endl;
}
}
It uses the following get () function for interactive input:
void get (Composer& composer, istream& in)
{ char buf[BUF SIZE]};
cout << "Enter composer's last name: ";
in.getline(buf, BUF_SIZE); composer.lname = buf;
cout << "Enter composer's first name: ";
in.getline(buf, BUF SIZE); composer.fname
}
And it uses the following version of the find () function from Example 14.10:
template <class T>
bool find(HashTable<T>& t, Composer& c, inté& k)
{ int count=0;
while (t([k}.lname != c.lname || t([k].fname != c.fname)
{ if (++count == TABLE_SIZE || t([k}.is null()) return false;
cout << "\tNOT FOUND AT " << k << "\t";
print (t[k});
k = (k + 1) % TABLE SIZE;
}
return true;
}
Here is the result of a test run:
Enter composer's last name: Barber
Enter composer's first name: Samuel
hash (BarberSamuel) = 15
Samuel Barber was born in 1910
Enter composer's last name: Grieg
Enter composer's first name: Edvard
hash (GriegEdvard) = 4
NOT FOUND AT 4 Chopin, Frederic (1810-1849), Polish
NOT FOUND AT 5 Bach, Johann Sebastian (1685-1750), German
Edvard Grieg was born in 1843
Enter composer’'s last name: Frank
Enter composer's first name: Cesar
hash (FrankCesar) = 6
NOT FOUND AT
NOT FOUND AT
NOT FOUND AT

buf;

Grieg, Edvard (1843-1907), Norwegian

Sibelius, Jean (1865-1957), Finnish

Stravinsky, Igor (1882-1971), Russian
NOT FOUND AT Britten, Benjamin (1913-1976), English
NOT FOUND AT 10 Liszt, Franz (1811-1886), Hungarian

Enter composer's last name: Mahler

Enter composer's first name: Gustav

hash (MahlerGustav) = 11

Gustav Mahler was not found in the hash table.

H w0 0 Jo

331

332 SEARCHING (CHAP. 14

Enter composer's last name: Bach
Enter composer's first name: Carl Phillipp Emanuel
hash (BachCarl Phillipp Emanuel) = 15
NOT FOUND AT 15 Barber, Samuel (1910-~1981), American
NOT FOUND AT 16 Brahms, Johannes (1833-1897), German
NOT FOQUND AT 0 Dvorak, Antonin (1841-1904), Czech
NOT FOUND AT Mozart, Wolfgang Amadeus (1756-1791), Austrian
NOT FOUND AT Vivaldi, Antonio (1678-1741), Italian
NOT FOUND AT Beethoven, Ludwig van (1770-1827), German
NOT FOUND AT Chopin, Frederic (1810-1849), Polish
NOT FOQUND AT Bach, Johann Sebastian (1685-1750), German
NOT FOUND AT Grieg, Edvard (1843-1907), Norwegian
NOT FOUND AT Sibelius, Jean (1865~1957), Finnish
NOT FOUND AT Stravinsky, Igor (1882-1971), Russian
NOT FQUND AT Britten, Benjamin (1913-1976), English
NOT FOUND AT 10 Liszt, Franz (1811-1886), Hungarian
Carl Phillipp Emanuel Bach was not found in the hash table.
The find() function has the same number of collisions as the resolve collision() function for
items that are in the table.

W oo~ oYW=

As Example 14.11 shows, hash tables have one significant disadvantage: searching for an item
that is not in the table has O(n) complexity. In other words, it degenerates into a linear search of the
entire table.

14.8 COLLISION-RESOLUTION ALGORITHMS

The critical issue with hash tables is to minimize the number of collisions. The best way to do
that is to ensure that the table does not become very full. As long as there are about twice as many
table elements as items in the table, it will enjoy the rapid O(1) search speed.

The ratio of the number n of items in the table to the number SIZE of elements in the table is
called the load factor A = n/SIZE. As long as this ratio remains below 50%, the hash table will
provide fast look-ups. If it is allowed to grow past 75% or 80%, the number of collisions will increase
dramatically, causing a serious degradation of efficiency.

Another way to minimize collisions is to use an efficient collision resolution algorithm. The
algorithm used in the previous examples simply followed a linear search to find the next available
space to insert the new item. This is called /inear probing. This simple method can lead to clustering,
as the previous examples show.

EXAMPLE 14.12 Clustering of Hash Table Items

The picture at the top of the next page shows how the hash table from Example 14.8 looks after the first 10
records were inserted. This shows a serious clustering problem. Eight of the ten items (all except numbers 10
and 14) are in a single cluster. Consequently, any new item that hashes to 16 will undergo 8 collisions before it
finds the empty element number 7. Any new item that hashes to 0 or to 1 will collide 7 or 6 times.

Clearly, the performance will be improved if the hash function distributes the items more evenly,
spreading the gaps around to allow new items to find empty spaces more quickly. The ideal hash
function distributes items uniformly, so that the load factor A for the entire table also applies to each
sub interval of the table. For example, if A = 40%, then every subinterval (say of SIZE/10 elements)
is also 40% occupied. That of course, is a theoretical ideal which is rarely achieved in practice. But it
serves to characterize the efficiency of hash functions.

CHAP. 14] SEARCHING 333

0| {"Dvorak"”, "Antonin", 1841, 1904, "Czech"}

1| {"Mozart", "Wolfgang Amadeus", 1756, 1791, "Austrian"}
2| {"Vivaldi", "Antonio”, 1678, 1741, "Italian"}

3| {"Beethoven", "Ludwin van", 1770, 1827, "German"}

4| {"Chopin", "Frederic", 1810, 1849, "Polish"}

S| {"Bach", "Johann Sebastian”, 1685, 1750, "German"}

6| {"Grieg", "Edvard", 1843, 1907, "Norwegian"}

7

8

9

10| {"Liszt"”, "Franz", 1811, 1886, "Hungarian"}

11

12

13

14| {"Berlioz", "Hector”, 1803, 1869, "French”}

15

16| {"Brahms", "Jochannes", 1833, 1897, "German"}

The following two theorems quantify the problem of a full hash table:

Theorem 14.4 If collisions are resolved by linear probing, then the expected number E, of collisions
when searching for a resident item in a hash table with load factor A is
-1 1
£ =50+
Theorem 14.5 If collisions are resolved by linear probing, then the expected number E, of collisions
when searching for a absent item in a hash table with load factor A is

Eq = %(1 * (1 _l)\)z)

For example, if the table is 90% full (i.e., A = 0.90), then E, = 5.5 collisions and E, = 50.5 collisions!
(This of course, assumes that SIZE is quite large.)

Review Questions

14.1 What are the advantages and disadvantages of using the Binary Search on an array (vec-
tor)?

14.2 What are the advantages and disadvantages of using a Binary Search tree?
143 What are the advantages and disadvantages of using an AVL tree?

14.4 What are the advantages and disadvantages of using a hash table?

14.5 What is linear probing?

14.6 What is clustering?

334

14.7

14.8

14.9

14.10

14.11
14.12

14,13

14.14

14.15

14.1
14.2

SEARCHING [CHAP. 14

Problems

Trace the call find(a, 2, 9, 66) tothe find() function implemented with the Binary
Search (Algorithm 14.2) using the array given in Example 14.3.

Trace thecall find(a, 0, 7, 66) tothe find() function implemented with the Binary
Search (Algorithm 14.2) using the array given in Example 14.3.

Trace the call find(a, 0, 12, 20) tothe find() function implemented with the
Binary Search (Algorithm 14.2) using the array given in Example 14.3.

Suppose that a hash table with SIZE 1000 contains 950 elements and linear probing is used
to resolve collisions.

a. How many collisions would you expect when searching for an item that is in the table?

b. How many collisions would you expect when searching for an item that is not in the table?
Solve Problem 14.10 assuming that the hash table contains 990 elements.

Here are the U.S. Postal abbreviations of the first 10 states, in the order that they ratified the
U.S. Constitution: DE, PA, NJ, GA, CT, MA, MD, SC, NH, VA. Show the AVL tree after the
insertion of each of these strings.

Programming Problems

Append the following record to the Composers.dat file and then re-run Example 14.9:
Bernstein Leonard 1918 1990 American

Modify Example 14.9 so that it hashes only on the composer’s last name. Notice how differ-

ent the resulting hash table is.

The linear probing method for resolving collisions in a hash table is likely to cause cluster-

ing. A better method, called quadratic probing, resolves collisions by the following algo-

rithm:

. Hash to a value k.

. If cell a[k) isoccupied, try cell af{q) where g = (k + 1) % TABLE SIZE.

. If that cell is occupied, try cell a{q) where q = (k + 4) % TABLE SIZE.

. If that cell is occupied, try cell a[gq] where g (k + 9) % TABLE SIZE.

. If that cell is occupied, try cell a[q] where g (k + 16) % TABLE SIZE.

. If that cell is occupied, try cell a[q) where g (k + 25) % TABLE SIZE.

. Continue the pattern, using the index value q = (k + j*j) % TABLE SIZE,
where j is incremented on each iteration.

Re-run Example 14.9 using quadratic probing. Notice that this is similar to linear probing,

which is the same except that it uses the new index value g = (k + j) % TABLE SIZE,

where j is incremented on each iteration.

o

~N AN A W =

Solutions

The only disadvantage of using the Binary Search on an array (or vector) is that it requires the
array to be sorted. The advantage is O(lgn) search speed.

The disadvantage of a binary search tree is that it may become very unbalanced, in which case search-
ing degenerates into an O(n) algorithm. The advantage is the efficiency that a binary tree enjoys for
insertions and deletions.

CHAP. 14] SEARCHING 335

14.3

144

14.5

14.6

14.7

14.8

14.9

14.10

14.11

14.12

The advantage of an AVL tree is that it is always balanced, guaranteeing the O(lgn) speed of the
Binary Search algorithm. The disadvantages the complex rotations used by the insertion and removal
algorithms needed to maintain the tree’s balance.

The advantages of a hash table are that it affords O(1) search speed and it does not depend upon any
intrinsic comparison operation for its element type. The disadvantage is that the fast search speed only
applies to items that are in the table; searching for an absent item takes n probes. Another disadvantage
is that the fast search speed depends upon the number of collisions incurred when the item was
inserted, and that number grows rapidly when the table becomes nearly full.

Linear probing is the hashing method that resolves collisions by looking sequentially for the next
unoccupied cell.

Clustering is the phenomenon that occurs in a hash table when the hash function does not distribute its
values uniformly. When collisions are resolved by linear probing, the table tends to become unbal-
anced, with dense clusters of occupied cells and only a few runs of unoccupied cells.

Tracing the call find(a, 2, 10, 66):

begin end target lo hi mid a[mid]
2 10 66 2 9 5 55
6 9 7 66

The function returns 7.
Tracing the call find{a, 0, 7, 66):

begin end target lo hi mid a[mid]
0 7 66 0 6 3 33
4 5 55
6 66

The function returns 6.
Tracing the call find(a, 0, 12, 20):

begin end target lo hi mid a[mid]
0 12 20 0 11 5 55

4 2 33

1 0 22

The function returns 12.

The load factor is A = n/SIZE =950/1000 = 0.95:

a. By Theorem 14.4, E, = (1/2){(1 + 1/0.05) = 10.5 collisions.
b. By Theorem 14.5, E, = (1/2)(1 + 1/0.05%) = 200.5 collisions.

The load factor is A = n/SIZE =990/1000 = 0.99:

a. By Theorem 14.4, E, = (1/2)(1 + 1/0.01) = 50.5 collisions.

b. By Theorem 14.5, E, = (1/2)X(1 + 1/0.012) = 5000.5 collisions. This number is greater than SIZE,
so we should conclude that the correct answer is E,= SIZE = 1000 collisions.

336 SEARCHING [CHAP. 14

CHAP. 14]

SEARCHING 337

14.13 The Bernstein record hashes to 15, which then experiences 15 collisions before finally being inserted

at position 11:

Dvorak, Antonin (1841-1904), Czech
Mozart, Wolfgang Amadeus (1756-1791), Austrian
Vivaldi, Antonio (1678-1741), Italian
Beethoven, Ludwig van (1770-1827), German
Chopin, Frederic (1810-1849), Polish
Bach, Johann Sebastian (1685-1750), German
Grieg, Edvard (1843-1907), Norwegian
Sibelius, Jean (1865-1957), Finnish
Stravinsky, Igor (1882-1971), Russian
Britten, Benjamin (1913-1976), English

10. Liszt, Franz (1811-1886), Hungarian

11. Bernstein, Leonard (1918-1990), American

12.

13.

14. Berlioz, Hector (1803-1869), French

15. Barber, Samuel (1910-1981), American

16. Brahms, Johannes (1833-1897), German
There were 27 collisions.

W XoXJdIonUIWNDHO

14.14 Here is a run of the revised program:

hash(Vivaldi) = 5

Vivaldi inserted at 5
hash(Bach) = 9

Bach inserted at 9
hash (Mozart) = 8

Mozart inserted at 8

hash (Beethoven) = 10
Beethoven inserted at 10
hash (Berlioz) = 13

Berlioz inserted at 13
hash (Chopin) = 14
Chopin inserted at 14

hash (Liszt) = 7
Liszt inserted at 7
hash (Brahms) = 10

COLLISION AT 10 Beethoven, Ludwig van (1770-1827),
Brahms inserted at 11
hash (Dvorak) = 3
Dvorak inserted at 3
hash (Grieg) =1
Grieg inserted at 1
hash (Sibelius) = 16
Sibelius inserted at 16
hash (Stravinsky) = 15
Stravinsky inserted at 15

hash (Barber) = 12
Barber inserted at 12
hash (Britten) = 14

German

COLLISION AT 14 Chopin, Frederic (1810-1849), Polish
COLLISION AT 15 Stravinsky, Igor (1882-1971), Russian
COLLISION AT 16 Sibelius, Jean (1865-1957), Finnish

Britten inserted at O
0. Britten, Benjamin (1913-1976), English
l. Grieg, Edvard (1843-1907), Norwegian
2.

338

SEARCHING

Dvorak, Antonin (1841-1904), Czech
Vivaldi, Antonio (1678-1741), Italian

Liszt, Franz (1811-1886), Hungarian

X0 1O U W

10. Beethoven, Ludwig van (1770-1827), German
11. Brahms, Johannes (1833-1897), German
12. Barber, Samuel (1910-1981), American
13. Berlioz, Hector (1803-1869), French
14. Chopin, Frederic (1810-1849), Polish
15. Stravinsky, Igor (1882-1971), Russian
16. Sibelius, Jean (1865-1957), Finnish

There were 4 collisions,

Enter composer's last name: Chopin

hash (Chopin) = 14

Frederic Chopin was born in 1810

Enter composer's last name: Brahms

hash(Brahms) = 10

NOT FOUND AT 10 Beethoven, Ludwig van (1770-1827),

Johannes Brahms was born in 1833

14.15 Here is the revised function:

template <class T>

void resolve collision(HashTable<T>& t, Composeré& c,

int& n)
{ int kO=k;
for (int j=1; 't[k].is_null(); j++, n++)
{ cout << "\tCOLLISION AT " << k << "\t";
print (t[k});
k = (kO + j*j) % TABLE SIZE;
}
}

Here is the output:

hash (VivaldiAntonio) = 2
Vivaldi inserted at 2
hash (BachJohann Sebastian) = 5
Bach inserted at 5
hash (MozartWolfgang Amadeus) = 1
Mozart inserted at 1
hash (BeethovenLudwig van) =1

COLLISION AT 1 Mozart, Wolfgang Amadeus

Austrian

COLLISION AT 2 Vivaldi, Antonio (1678-1741),

Mozart, Wolfgang Amadeus (1756-1791), Austrian
9. Bach, Johann Sebastian (1685-1750), German

[CHAP. 14

German

inté& k,

(1756-1791),

Italian

COLLISION AT 5 Bach, Johann Sebastian (1685-1750), German

Beethoven inserted at 10

hash (BerliozHector) = 14
Berlioz inserted at 14
hash (ChopinFrederic) = 2

COLLISION AT 2 Vivaldi, Antonio (1678-1741),

Chopin inserted at 3
hash(LisztFranz) = 10

Italian

COLLISION AT 10 Beethoven, Ludwig van (1770-1827), German

Liszt inserted at 11
hash (BrahmsJohannes) = 16
Brahms inserted at 16

CHAP. 14] SEARCHING 339

hash (DvorakAntonin) = 16
COLLISION AT 16 Brahms, Johannes (1833-1897), German
Dvorak inserted at 0
hash (GriegEdvard) = 4
Grieg inserted at 4
hash(SibeliusJean) = 7
Sibelius inserted at 7
hash(StravinskyIgor) = 8
Stravinsky inserted at 8
hash (BarberSamuel) = 15
Barber inserted at 15
hash (BrittenBenjamin) = 2
COLLISION AT 2 Vivaldi, Antonio (1678-1741), Italian
COLLISION AT 3 Chopin, Frederic (1810-1849), Polish
Britten inserted at 6
Dvorak, Antonin (1841-1904), Czech
Mozart, Wolfgang Amadeus (1756-1791), Austrian
Vivaldi, Antonio (1678-1741), Italian
Chopin, Frederic (1810-1849), Polish
Grieg, Edvard (1843-1907), Norwegian
Bach, Johann Sebastian (1685-1750), German
Britten, Benjamin (1913-1976), English
Sibelius, Jean (1865-1957), Finnish
Stravinsky, Igor (1882-1971), Russian

WO ~doy e WD = O

10. Beethoven, Ludwig van (1770-1827), German

11. Liszt, Franz (1811-1886), Hungarian

12.

13.

14. Berlioz, Hector (1803-1869), French

15. Barber, Samuel (1910-1981), American

16. Brahms, Johannes (1833-1897), German
There were B collisions.

Appendix A

Algorithms

Algorithm 1.1 The Babylonian Algorithm for Computing the Square Root of 2 1

Algorithm 1.2 Conversion from Binary to Decimalc..ccoooiviiveceiiee oo 5
Algorithm 1.3 Conversion from Binary to Decimal by Horner’s Methodcccooooooo. .. S
Algorithm 1.4 Conversion from Decimal to Binarycccooooeiiiiincieeeiceeee e 6
Algorithm 1.5 Decimal Integer to Hexadecimalcccooooeiiiiiniiinii e, 20
Algorithm 1.6 Converting Hexadecimal to Decimal by Horner’s Method RN 22
Algorithm 1.7 Converting Binary to Hexadecimalcccvnininin e, 22
Algorithm 3.1 The Euclidean Algorithm...................iii e 59
Algorithm 5.1 The Sieve of EratoSthenes..............ccoooocviiiciiiiiiiii e 94
Algorithm 5.2 The Bubble SOTtoccooiiiiiiece e 95
Algorithm 12.1 The Natural Mapping of a Complete Binary Tree into an Array................... 278
Algorithm 12.2 The Level-Order Traversal of a General Tree............cccoevvevnecvcenvnnneene. 279
Algorithm 12.3 The Preorder Traversal of a General Treeccccooovoeveuevereeivecrereeenn 279
Algorithm 12.4 The Postorder Traversal of a General Treec.oooovuervviovriniiererennn, 279
Algorithm 12.5 The Preorder Traversal of a Binary Treec.cooiiviieniioieniine, 279
Algorithm 12.6 The Postorder Traversal of a Binary Treecc.ccoccneiieninennienenennnns 280
Algorithm 12.7 The Inorder Traversal of a Binary TI€€c....cocovivierveievicreieiiveeriaan. 280
Algorithm 12.8 Build an EXPression TIEEccccvoviriorriiemeieeneiennieseeseeseses e sesrne 281
Algorithm 12.9 Evaluating an Expression from Its Postfix Representation SR 282
Algorithm 12.10 The Natural Mapping of a Forest into a Binary Treeccoc.ocovvvevvienrnennnn. 292
Algorithm 13.1 The Bubble SOrtcccooiiiii e e 304
Algorithm 13.2 The Selection SOTtc.covceiveiiiiiiieni e e 306
Algorithm 13.3 The InSertion Sort ..ot e e 307
Algorithm 13.4 The Merge Sort ... 308
Algorithm 13.5 The Quick Sort............cocoviiiii 310
Algorithm 13.6 The Heap SOtc.ooooiiiiiiiiiniii ittt cre e 313
Algorithm 14.1 The Sequential Search ..., 319
Algorithm 14.2 The Binary Search.........c..ccooiiiiiiinii e, 320
Algorithm 14.3 The Recursive Binary Search...........ccccooioiiiiiiiiccee 321

340

Appendix B

References

[Adams]
C++ An Introduction to Computing, by Joel Adams, Sanford Leestma, and Larry Nyhoff.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-02-369402-5.

[Adamson]
Programming with C++, by T. A. Adamson.
Macmillan, New York, NY (1995) 0-02-300821-0.

[Aho}
Foundations of Computer Science, C Edition, by Alfred V. Aho and Jeffrey D. Ullman.
Computer Science Press, New York, NY (1995) 0-7167-8284-7.

[Ammeraal]
C++ for Programmers, by L. Ammeraal.
John Wiley & Sons, Inc, New York, NY (1991) 0-471-93011-3,

[Astrachan)
A Computer Science Tapestry, by Owen L. Astrachan.
McGraw-Hill, Inc., New York, NY (1997) 0-07-002036-1.

[Barclay]
C++: Problem Solving and Programming, by K. Barclay and B. Jordan.
Prentice Hall, Englewood Cliffs, NJ (1993) 0-13-126673-X.

[Bar-David]
Object-Oriented Design for C++, by K. Barclay and B. Jordan.
Prentice Hall, Englewood Cliffs, NJ (1993) 0-13-630260-2.

[Barton]
Scientific and Engineering C++, by John J. Barton and Lee R. Nackman.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-53393-6.

[Benedicty]
Discrete Mathematical Structures, by Mario Benedicty and Frank R. Sledge.
Harcourt Brace Jovanovich, New York, NY (1987) 0-15-517683-8.

[Bergin]
Data Abstraction, the Object-Oriented Approach Using C++, by Joseph Bergin.
McGraw-Hill, Inc., New York, NY (1994) 0-07-911691-4.

[Bermanl)
Data Structures via C++, by A. Michael Berman.
Oxford University Press, New York, NY (1997) 0-19-510843-4.

[Berman2]
Introduction to Combinatorics, by Gerald Berman and K. D. Fryer.
Academic Press, New York, NY (1972) 0-07-911691-4.

341

342 REFERENCES

[Bronsonl)
A First Book of C++, by Gary J. Bronson.
West Publishing Company, St. Paul, MN (1995) 0-12-092750-0.

[Bronson2]
Program Development and Design Using C++, by Gary J. Bronson.
PWS Publishing Company, Boston, MA (1997) 0-314-20338-9.

[Budd1}

An Introduction to Object-Oriented Programming, Second Edition, by Timothy A. Budd.

Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-82419-1,

[Budd2]
Data Structures in C++ Using the Standard Template Library, by Timothy A. Budd.
Addison-Wesley Publishing Company, Reading, MA (1998) 0-20[-30879-7.

[Buzzi-Ferraris)
Scientific C++, by G Buzzi-Ferraris.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-63192-X.

[Capper]
Introducing C++ for Scientists, Engineers and Mathematicians, by D. M, Capper.
Springer-Verlag, London (1994) 3-540-19847-4.

[Cargill]
C++ Programming Style, by Tom Cargill.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-56365-7.

[Carrano)
Data Abstraction and Problem Solving with C++, by Frank M, Carrano.
Benjamin/Cummings Publishing Company, Redwood City, CA (1993) 0-8053-1226-9.

[Carroll)
Designing and Coding Reusable C++, by Martin D. Carroll and Margaret A. Ellis.
Addison-Wesley Publishing Company, Reading, MA (1995) 0-201-51284-X.

[Christian]
Microsoft Visual C++ Run-Time Library Reference, by K. Christian.
Microsoft, Redmond, WA (1994) 1-55615-803-3.

[Cline)
C++ FAQs, by Marshall P. Cline and Greg A. Lomow.
Addison-Wesley Publishing Company, Reading, MA (1995) 0-201-58958-3.

[Cohoon]
C++ Program Design, by James P. Cohoon and Jack W. Davidson.
Richard D. Irwin, Chicago, IL (1997) 0-256-19744-X.

[Collins)
Data Structures: An Object-Oriented Approach, by William J. Collins.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-56953-1.

[Coplien]
Advanced C++, Programming Styles and ldioms, by James O. Coplien.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-54855-0.

[APP. B

APP. B] REFERENCES 343

[Dale]
Abstract Data Bypes, by Nell Dale and Henry M. Walker.
D. C. Heath and Company, Lexington, MA (1996) 0-669-35444-9.

[Decker]
Working Classes, Data Structures and Algorithms Using C++, by Rick Decker and Stuart Hirshfield

PWS Publishing Company, Boston, MA (1996) 0-534-94566-X.

[Deitel]
C++ How to Program, Second Edition, by H. M. Deitel and P. J. Deitel,
Prentice Hall, Englewood Cliffs, NJ (1998) 0-13-528910-6.

[Dorfman]
C++ by Example: Object-Oriented Analysis, Design, & Programming, by L. Dorfman.
McGraw-Hill, New York, NY (1995) 0-07-911954-9.

[Dewhurst]
Programming in C++, Second Edition, by Stephen C. Dewhurst and Kathy T. Stark.

Prentice Hall, Englewood Cliffs, NJ (1995) 0-13-182718-9.

[Drozdek]
Data Structures and Algorithms in C++, by Adam Drozdek.
PWS Publishing Company, Boston, MA (1996) 0-534-94974-6.

[Eckel]
Thinking in C++, by B. Eckel.
Prentice-Hall, Englewood Cliffs, NJ (1995) 0-13-917709-4.

[Ege]
Object-Oriented Programming with C++, by R. Ege.
AP Professional (1994) 0-12-232932-5.

[Ellis]
The Annotated C++ Reference Manual, by Margaret A. Ellis and Bjame Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-51459-1,

[Flamig]
Practical C++ Algoeirhms and Data Structures, by B. Flamig.
John Wiley & Sons, Inc, New York, NY (1993) 0-471-55863-X.

[Ford]
Data Structures with C++, by William Ford and William Topp.
Prentice-Hall, Englewood Cliffs, NJ (1996) 0-02-420971-6.

[Friedman]
Pmbl%nn Solving, Abstraction, and Design Using C++, Second Edition, by Frank L. Friedman and Elliot
B. Koffman.
Addison-Wesley Publishing Company, Reading, MA (1997) 0-201-30002-8.

[Gersting]
Mathematical Structures for Computer Science, Third Edition, by Judith L. Gersting.
W. H. Freeman and Company, New York, NY (1993) 0-7167-8259-6.

[Goldstine]
The Computer from Pascal to von Neumann, by Herman H. Goldstine.

Princeton University Press, Princeton, NJ (1972) 0-691-08104-2.

344 REFERENCES [APP. B

[Gorlen])

Data Abstraction and Object-Oriented Programming in C++, by K. E. Gorlen, S. M. Orlow, and P. S.
Plexico.

John Wiley & Sons, Inc, New York, NY (1993) 0-471-55863-X.

[Graham] ,
Learning C++, by Neill Graham.
McGraw-Hill, Inc, New York, NY (1991) 0-07-023983-5.

[Gray]
Programming with Class, by N. A. B. Gray.
John Wiley & Sons, Inc, New York, NY (1994) 0-471-94350-9.

[Gurganus)
Microsoft Visual C++ Windows Primer, by K. Gurganus and D. Alexander.
AP Professional (1994) 0-12-308650-7.

[Hanly]
Essential C++ for Engineers and Scientists, by Jeri R. Hanly.
Addison-Wesley Publishing Company, Reading, MA (1997) 0-201-88495-X.

[Hansen}
The C++ Answer Book, by Tony L. Hansen.
Addison-Wesley Publishing Company, Reading, MA (1990) 0-201-11497-6.

[Harary}
Graph Theory, by Frank Harary.
Addison-Wesley Publishing Company, Reading, MA (1969).

[Hausner]
Discrete Mathematics, by Melvin Hausner.
Saunders College Publishing, Orlando, FL (1992) 0-03-003278-4.

[Headington])
Data Abstraction and Structures Using C++, by Mark R. Headington and David D. Riley.
D. C. Heath and Company, Lexington, MA (1994} 0-669-29220-6.

[Henderson]
Object-Oriented Specification and Design with C++, by Peter Henderson.
McGraw-Hill Book Company, London, UK (1993) 0-07-707585-4.

[Horowitz)
Fundamentals of Data Structures in C++, by Ellis Horowitz, Sartaj Sahni, and Dinesh Mehta.
W. H. Freeman and Company, New York, NY (1995) 0-7167-8292-8. °

[Horstmannl]
Mastering Object Oriented Design in C++, by Cay S. Horstmann.
John Wiley & Sons, Inc, New York, NY (1994) 0-471-59484-9.

[Horstmann2])
Computing Concepts with C++ Essentials, by Cay S. Horstmann,
John Wiley & Sons, Inc, New York, NY (1997) 0-471-13770-7.

[Hubbard]
Programming with C++, by John R. Hubbard.
McGraw-Hill, New York, NY (1996) 0-07-030837-3.

APP. B] REFERENCES 345

[Ince]
Object-Oriented Software Engineering with C++, by D. Ince.
McGraw-Hill, New York, NY (1991) 0-07-707402-5.

[Johnsonbaughl]
Discrete Mathematics, Third Edition, by Richard Johnsonbaugh.
Macmillan, New York, NY (1993) 0-02-360721-1.

[Johnsonbaugh2]
Object-Oriented Programming in C++, by Richard Johnsonbaugh and Martin Kalin.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-02-360682-7.

[Kamin}]
Programming with Class. A C++ Introduction to Computer Science, by Samuel N. Kamin and Edward
M. Reingold.
McGraw-Hill, New York, NY (1996) 0-07-051833-5.

[Knuthl)
The Art of Computer Programming, Volume 1. Fundamental Algorithms, Second Edition,
by Donald E. Knuth.
Addison-Wesley Publishing Company, Reading, MA (1973) 0-201-03809-9.

[Knuth2)
The Art of Computer Programming, Volume 2. Seminumerical Algorithms, Second Edition,
by Donald E. Knuth.
Addison-Wesley Publishing Company, Reading, MA (1981) 0-201-03822-6.

[Knuth3)
The Art of Computer Programming, Volume 3: Sorting and Searching, by Donald E. Knuth,
Addison-Wesley Publishing Company, Reading, MA (1973) 0-201-03803-X.

[Kolman}
Discrete Mathematical Structures, Third Edition, by Bernard Kolman, R. C. Busby, and S. Ross.
Prentice Hall, Englewood Cliffs, NJ (1996) 0-13-320912-1.

[Kruglinski]
Inside Visual C++, by David J. Kruglinski.
Microsoft, Redmond, WA (1996) 1-55615-891-2.

{Ladd]
C++ Templates and Tools, by Scott Robert Ladd.
M&T Books, New York, NY (1995) 0-55851-437-6.

[Lafore]
Object-Oriented Programming in C++, Second Edition, by R. Lafore,
Waite Group Press (1994) 1-878739-73-5.

[Lambert]
Introduction to Computer Science with C++, by Kenneth A. Lambert, D. W. Nance, and T. L. Naps.
West Publishing Company, St. Paul, MN (1996) 0-314-07399-6.

[Langsam]
Data Structures Using C and C++, Second Edition, by Y. Langsam, M. Augenstein, and A. Tenenbaum.
Prentice Hall, Englewood Cliffs, NJ (1996) 0-13-036997-7.

346 REFERENCES

[Leavens]
Visual C++: A Developer s Guide, by A. Leavens.
M & T (1994) 1-55851-339-6.

[Lee]
The Apprentice C++ Programmer, by Peter A. Lee and Chris Phillips.
International Thompson Computer Press, London, UK (1997) 0-534-95339-5.

[Lipschutzl]
Schaum s Outline of Discrete Mathematics, Seymour Lipschutz.'
McGraw-Hill, Inc., New York, NY (1976) 0-07-037981-5.

[Lipschutz2]
Schaum s Outline of Essential Computer Mathematics, Sevmour Lipschutz.
McGraw-Hill, Inc., New York, NY (1982) 0-07-037990-3.

[Lipschutz3]
Schaum s Outline of Data Structures, Seymour Lipschutz.
McGraw-Hill, Inc., New York, NY (1986) 0-07-038001-5.
[Litvin]
C++ jor You++, by Maria Litvin and Gary Litvin.
Skylit Publishing, Andover, MA (1997) 0-9654853-X.

[Lippman]
The C++ Primer, Second Edition, by Stanley B. Lippman.
Addison-Wesley Publishing Company, Reading, MA (1991) 0-201-54848-8.

[Main]
Data Structures & Other Objects, by Michael Main and Walter Savitch.
Addison-Wesley Publishing Company, Reading, MA (1997) 0-8053-7470-1.

[Mercer]
Computing Fundamentals with C++, by Rick Mercer.
Franklin, Beedle & Associates Incorporated, Wilsonville, OR (1995) 0-938661-72-8,

[Meyers1}
Effective C++, by Scott Meyers.
Addison-Wesley Publishing Company, Reading, MA (1992).

[Meyers2]
More Effective C++, by Scott Meyers.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-63371-X.

[Model]

Data Structures, Data Abstraction: A Contemporary Introduction Using C++, by M. L. Model.

Prentice Hall, Englewood Cliffs, NJ (1994) 0-13-088782-X.

[Murrayl]
C++ Strategies and Tactics, by Robert B. Murray.
Addison-Wesley Publishing Company, Reading, MA (1993) 0-201-56382-7.

[Murray2]
Microsoft C++ 7: The Complete Reference, by W.H. Murray and C. Pappas.
Osborne/McGraw-Hill (1992).

[APP. B

APP. B] REFERENCES 347

[Nagler]
Learning C++, by Eric Nagler.
West Publishing Company, St. Paul, MN (1993) 0-314-02464-6.

[Nelson]
C++ Programmers Guide to the Standard Template Library, by Mark Nelson.
IDG Books Worldwide, Inc., Foster City, CA (1995) 0-56884-314-3.

[Nielsen]
Software Development with C++, by Nielsen.
AP Professional (1995) 0-12-518420-4.

[Oualline]
Practical C++ Programming, by Steve Oualline.
O’Reilly & Associates, Sebastopol, CA (1995) 1-56592-139-9.

[Parker]
Algorithms and Data Structures in C++, by A. Parker.
CRC Press (1993) 0-8493-7171-6.

[Perry]
An Introduction to Object-Oriented Design in C++, by Jo Ellen Perry and Harold D. Levin.

Addison-Wesley Publishing Company, Reading, MA (1996) 0-201-76564-0.

[Plaugerl]
The Standard C Library, by P,]. Plauger.
Prentice Hall, Englewood Cliffs, NJ (1992) 0-13-131509-9.

[Plauger2)
The Draft Standard C++ Library, by P. J. Plauger.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-13-117003-1,

[Pohll]
Object-Oriented Programming Using C++, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1993) 0-8053-5384-4.

[Pohl2}]
C++ for Pascal Programmers, Second Edition, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1994) 0-8053-3158-1.

[Pothering]
Introduction to Data Structures and Algorithm Analysis with C++, by G. J. Pothering and T. Naps.
West Publishing Company, St. Paul, MN (1995) 0-314-04574-0.

[Prata])
C++ Primer Plus, Third Edition, by Stephen Prata.
Waite Group Press, Corte Madera, CA (1998) 1-57169-131-6.

[Ranade & Zamir)
C++ Primer for C Programmers, by Jay Ranade and Saba Zamir.
McGraw-Hill, Inc., New York, NY (1994) 0-07-051487-9,

[Riordan)
Introduction to Combinatorial Analysis, by John Riordan.
John Wiley & Sons, Inc, New York, NY (1958).

348 REFERENCES

[Rudd]
Mastering C++, by Anthony Rudd.
John Wiley & Sons, Inc, New York, NY (1995) 0-471-06565-X.

[Sahni]
Data Structures, Algorithms, and Applications in C++, by Sartaj Sahni.
ACB/McGraw-Hill, New York, NY (1998) 0-07-109219-6.

[Satir]
C++: The Core Language, by Gregory Satir and Doug Brown.
O’Reilly & Associates, Sebastopol, CA (1995) 0-56592-116-X.

[Savitch]
Problem Solving with C++, by Walter Savitch.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-8053-7440-X.

[Schildtl]
C++ from the Ground Up, by H. Schildt.
Osborne/McGraw-Hill, New York, NY (1994) 0-07-881969-5.

[Schildt2]
C++: The Complete reference, Third Edirior_1, by H. Schildt.
Osbormme/McGraw-Hill, New York, NY (1995) 0-07-882123-1.

[Sedgewick]
Algorithms in C++, by Robert Sedgewick.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-51059-6.

[Sengupta]
C++ Object-Oriented Data Structures, by Saumyendra Sengupta and Carl Phillip Korobkin.
Springer-Verlag, New York, NY (1994) 0-387-94194-0

[Sessions]
Object-Oriented Data Structures in C++, by Roger Sessions.
Prentice Hall, Englewood Cliffs, NJ (1992) 0-13-630104-5.

{Shammas]
Advanced C++, by Namir Clement Shammas.
SAMS Publishing, Carmel, IN (1992) 0-672-30158-X.

[Shiflet)
Data Structures in C++, by Angela B. Shiflet.
West Publishing Company, St. Paul, MN (1996) 0-314-06744-2.

[Stepanov]

“The Standard Template Library,” Technical Report HPL-94-34, by A. A. Stepanov and M. Lee.

Hewlett-Packard Laboratories, April 1994,

[Stevens]
C++ Database Development, by Al Stevens.
MIS:Press, New York, NY (1994) 1-55828-357-9.

{Stroustrupl]
The Design and Evolution of C++, by Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-54330-3.

[(APP.B

APP. B] REFERENCES 349

[Stroustrup2]
The C++ Programming Language, Third Edition, by Bjare Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1997) 0-201-88954-4.

[Teale]
C++ [OStreams, by Steve Teale.
Addison-Wesley Publishing Company, Reading, MA (1993) 0-201-59641-5.

[Tuckerl]
Fundamentals of Computing I, C++ Edition, by Allen B. Tucker et al.
McGraw-Hill, Inc., New York, NY (1995) 0-07-065506-5.

[Tucker2]
Fundamentals of Computing I1, by Allen B. Tucker et al.
McGraw-Hill, Inc., New York, NY (1993) 0-07-065452-2.

[Wang]
C++ with Object-Oriented Programming, by Paul S. Wang,
PWS Publishing Company, Boston, MA (1994) 0-534-19644-6.

[Weiss]
Data Structures and Algorithm Analysis in C++, by Mark Allen Weiss.
Benjamin/Cummings Publishing Company, Redwood City, CA (1994) 0-8053-5443-3.

[Winston]
On to C++, by Patrick Henry Winston.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-58043-8.

[Wirth]
Algorithms + Data Structures = Programs, by Nicklaus Wirth.
Prentice-Hall, Inc., Englewood Cliffs, NJ (1976) 0-13-022418-9.

[Zamir]
C++ Primer for Non C Programmers, by S. Zamir.
McGraw-Hill, New York, NY (1995) 0-07-072704-X.

Index[]

Al

abacus, 1

absolute file name, 10

absolute frequency, 93

abstract data type, 153, 154

abstraction, 137

access function, 157

activation frame, 256

Ada Augusta Byron, 10

adaptor, 248

ADD, ¢

adjacent find() function, 239, 241

Aiken, Howard H., 2, 12 13, 1§

algorithm, {, 10, 16, 239
inorder traversal, 293
level order traversal, 293
postorder traversal, 293
preorder traversal, 293

almost complete binary tree, 278

ALU, §, 15

ampersand, 182

Analytical Engine, 2, 10

ancestor, 276, 293

ancestors() function, 297

anonymous enumeration type, 94

Arabic numerals, 5

argument, 73

argument passing, 74
arithmetic and logic unit, §
arithmetic operator, 27
ARPANet, 3

array, 31, 239

ASCTL, 8§, 12

assembly language, 9
assert(), 72, 149, 155

assign() function, 228

assignment operator, {51, 152, 228, 297

assignment operators, 28
assignment oprator, 25
assignment statement, 25
associative array, 228
asterisk, 182

asymptotic analysis, 54
at() function, 228, 240
AUX, 8

AVL tree, 323, 333, 335

BU

Babbage, Charles, 10, 12, 15,17
Babylonian Algorithm, 1, 14
back() function, 228

Backus, John, 10, {2, 15

Backus-Naur Form, 264

BASIC programming language, 10
basis, 254

begin() function, 228

Berners-Lee, Tim, 3

big O classification, 54

binary logarithm, 54

binary numeral, {4, 266

binary operator, 28

Binary Search, 259, 266, 267, 320, 334
binary search tree, 322, 333, 334
binary tree, 277, 283

binary tree iterator, 291
binary_search() function, 239
binomial coefficient, 267

bitwise copy, {87

BNF grammar, 264, 266

body of a function, 24

bool type, 29, 30

boolalpha flag, 30

Boolean, 29

booting the system, §, 16

Bubble Sort, 303, 304, 305, 316, 317
built-in types, 31

byte, 4

COD

C programming language, 10

C string, 240

C++ programming language, 10, 16

calling tree, 258
cascade assignment, 187
cd, 10
CD-ROM, 12, 15
ceil() function, 33
census, 2
CERN, 3
char type, 31
character code, §
child, 276
Chinese glyph characters, 7
cin, 11, 26
class, 141
deque, 228
list, 226, 228
map, 228
multimap, 228
multiset, 228
priority queue, 228
queue, 226, 228
set, 228
stack, 226, 228
vector, 228
class implementation, 145, 156
class interface, 145

class invariant, {47

class template, 227, 239

clear() function, 297

clock speed, 3

clustering, 332, 333, 335

cmath file, 33

COBOL programming language, 10, 12, {5
collision resolution, 328, 332
comma operator, 209

compiler, {1

compile-time, 12

compile-time error, 16

complete binary tree, 278, 286, 288
complexity, 305, 306, 307, 308, 310, 311, 316
computer, i

computer program, 16

const parameter, 82

const reference parameter, 74
const value parameter, 74

constant, 29

constructor, 149, 157

container, 226

container class, 226

copy constructor, 151

copy() function, 239, 243

core memory, 3

correctness, 54

count() function, 239, 241
counting, 1

cout, 11, 24, 26

CPU. 3,8, 15

current directory, 10

DO
dangling pointer, 193¢
data abstraction, 141, 156
data type, 7
date class, 171
days in_month, {72
debugger, 12, 36
decimal numeral, 14

default argument, 73

default constructor, 151
default value, 73, 150
defoliate() function, 297
delete, {55

dept, 276

depth() function, 295, 297
deque, 176

deque class, 228

derived types, 31
descendant, 276, 293
descendants() function, 297
destructor, 151, 157

dice, 158

Difference Engine, 2, 13, 17
digit, §

DIR, 10

direct access, 230

directory file, 9

divide and conquer, 317, 320, 322 Fibonacci, 81, 257, 267

dynamic, 187 file, &

dynamic array, 155 file system, 9

EO fill() function, 239, 244
Eckert, J. Presper, 2, 12,15 find() function, 239, 240

Egyptians, 1 finger, 1

empty() function, 229 Finite Differences, {3

end() function, 228 flag, 101
end-of-file, 94 floating-point overflow, 38

ENIAC. 2. i3 15 floating-point underflow, 35

. : 3
enter() function, 163, 176 floor() function, 33

enumeration constant, 287 forest, 292, 293

enumeration type, 31, 94 FORTRAN programming language, {0, 13, 15

EPROM, i6 fraction, 7

equal() function, 239, 242 fragmented memory, 240

equality operator, 229 FreeBSD, 8

erase() function, 229 frequency tally, 93

erase_left() function, 297 friend, 143, 164

Euclidean Algorithm, 80, 267 front() function, 228

. . . 1 - ’7 o Te B
excess-127 floating-point representation, 8 full binary tree, 277, 293

exp() function, 33 function, 67

explicit argument, {52 adjacent_find(), 239, 241

exponent, 7 ancestors(), 297
expression, 28 assign(), 228
expression tree, 281 at(), 228, 240
extraction operator, 27 back(), 228

FO begin(), 228

fetch-execute cycle, 9 binary_search(), 239

clear(), 297
copy(), 239, 243
count(), 239, 241
defoliate(), 297
depth(), 295, 297
descendants(), 297
empty(), 229
end(), 228

enter(), 163, 176
equal(), 239, 242
erase(), 229
erase_left(), 297
fill(), 239, 244
find(), 239, 240
front(), 228
grandparent(), 297
grow_left(), 296
height(), 295, 296, 297
insert(), 229
insert_left(), 296
1s_balanced(), 298
1s_complete(), 298
1s_empty(), 157, 295, 296
is_full(), 157, 298
1s_leaf(), 295
1s_root(), 294, 295
leave(), 163, 176

leaves(), 295, 297

left child(), 295, 296
max(), 239
max_element(), 239
min(), 239
min_element(), 239
next permutation(), 239
nth_element(), 239
parent(), 295, 296
pop_back(), 229
pop_front(), 229
preorder(), 296
prune(), 296
push_back(), 229
push_front(), 229
random_shuffle(), 239
reflect(), 297
remove(), 239, 245
remove_copy(), 245
replace(), 239, 243
reverse(), 239, 246
rotate(), 239, 246
search(), 239, 242
sibling(), 297

size(), 229, 296
sort(), 239

strcat(), 111

strchr(), 111

stremp(), 111

strepy(), 111
strlen(), 111

swap(), 229, 239
swap_ranges(), 239, 244
uncle(), 297
unique(), 239, 246
function declaration, 67, 82, 144
function definition, 67, 82, 144
function template, 140, 226
fundamental operations, 228

fundamental types, 30

GO

GB, 13, 15

gcd, 259

generic algorithm, 239
gigabyte, 16

Golden Mea, 267
grandparent() function, 297
greatest common divisor, 258
grow_left() function, 296
HO

hardware, 3

hash table, 324, 333, 335
heap, 311, 312

heap property, 312

Heap Sort, 313, 316

heapify, 313

height, 276, 277, 293

height() function, 295, 296, 297
hexadecimal numeral, 14, 266
Hindu-Arabic numerals, 5
histogram, 238

Hollerith, Herman, 2, 12, 15
Hopper, Grace, 10

Homer's Method, 5, 14

I

IAS, 13, 15

IBM, 2, 10

IDE, 12, i3, 15

identifier, 26
implementation, 137
implicit argument, 152, 156
induction, 54

inequality operator, 229
infinite loop, 61

infix representation, 282
initialization list, 149
initialized, 6

initializer, 29

inorder traversal algorithm, 280, 289, 293
input device, 15

input operator, 27

input stream, 26

insensitive to input, 318

insert() function, 229

insert_left() function, 296
insertion operator, 24

Insertion Sort, 307

instantiate, 226

Institute for Advanced Study, 2
int type, 30

integer, {6

integer overflow, 35

Integrated Development Environment, 12
Intel Corporation, 3

interface, 137

internal node, 276, 293

Internet, 3

10stream, 24

1ostream.h, 11

1s_balanced() function, 298
1s_complete() function, 298
1s_empty() function, 157, 295, 296
1s_full() function, 157, 298
is_leaf() function, 295

1s_root() function, 294, 295
iterative, 255

iterator, 229, 283, 285

JO

Jacquard, Joseph Marie, 2, 12, 15
Java programming language, 10, 16
KO

KB, (3,15

Kemeny, John, {0
key, 228, 329
keyword, 26
kilobyte, 16

Kurtz, Thomas, 10

LO

leaf, 277, 293, 312

leap vyear, 172

leave() function, 163, 176

leaves() function, 295, 297

left child, 278

left_child() function, 295, 296
Leibniz wheel, 2

Leibniz, Gottfried Wilhelm, 2, 12, 15
less than operator, 229

level, 277

level order traversal algorithm, 279, 289, 293
lg, 54

linear algorithm, 308, 319

linear open addressing, 332

linear probing, 333, 335

linear time, 317

link-time error, 12

LINUX, 8

list, 236

list class, 226, 228

literal, 28

LOAD, ¢ Merge Sort, 308, 310, 317

log() function, 33 method, 142

loglO() function, 33 method of finite differences, 2, 13, i7
logical error, 12, 16, 35 MHz, 13, 15

long type, 30 microprocessor, 3

Is, 10 min() function, 239

lvalue, 25, 77 min_element() function, 239

MO mode, 238

machine language, i1, 16 modulus operator, 27

Macintosh, & MS-DOS, &

MacOS, 8 multimap class, 228

main memory, 4 multitiset class, 228

main() function, 24 Murphy's Law, 33

map, 228 mutator function, 57

, ion. 262. 2
map class, 228 mutual recursion, 262, 269

Mark 1, 2 NO

mask, 235 name, 26

mathematical induction, 54 nanosecond, 3

Mauchly, John W, 2, 12 15 natural mapping, 278, 292
max() function, 239 negation operator, 294
max_element() function, 239 Netscape,

maze, 267 newline character, 24
MB, 4, 13,15 next_permutation() function, 239
megabyte, 4, 16 NEXTSTEP, 8

megaherz, 3 nibble, 22

member function, 142 node, 276

memory, 4 nth_element() function, 239

OO parallelizable algorithms, 317

O(n lgn), 310,311,316, 317 parameter list, 67

O(n), 368 parent, 276, 278

O(n2), 305 parent() function, 295, 296

object, 76, 141 partition, 310

object module, 11 Pascal programming language, {0

octal numeral, 266 Pascal, Blaise, 2, 10, 12, 15
offset, 98 path, 10, 276

opcode, 8 path name, 16

operand, 8, 28 PC, 13,15

operating system, &, 16 permutation, 267

operator, 143 pivot element, 310

assignment, 228, 297 plain file, 9

equality, 229 pointer, 31
inequality, 229 pop(), 155
less than, 229 pop_back() function, 229

negation, 294 pop_front() function, 229

subscript, 228 post increment operator, 2.8

order, 276 postcondition, 140

OS, 8, 11,13, 15 postfix increment operator, 28

0S/2,8 postfix representation, 282

output device, 15 postorder traversal algorithm, 279, 280, 289, 293
output stream, 26 pow() function, 33

overflow, 35, 38, 153 pre increment operator, 28

overloaded, {45, 152 precompiler directive, 25

overloading, 77 precondition, 71, 140

PO predicate, 72

parallel processing, 4 prefix increment operator, 28

prefix representation, 281

preorder traversal algorithm, 279, 289, 293

preorder() function, 296

pre-Standard C++, 24, 52

principle of mathematical induction, 54

priority queue class, 228

procedural abstraction, 137, 156

programming language, 10
prototype, 67

proving correctness, 54
prune() function, 296
push(), 155

push_back() function, 229
push_front() function, 229
QO

quadratic algorithm, 308
queue, {56, 163, 232
queue class, 226, 228
Quick Sort, 316, 311

RO

RAM, 13, 15

random, 157

random_shuffle() function, 239

real number, 16
recurrence formula, 254
recurrence relation, 255, 313

recursion, 254

recursive binary search, 321

recursive call, 265

reference, 31

reference parameter, 74, 82
reference type, 182

reflect() function, 297
relative frequency, 93
remove() function, 239, 245
remove_copy() function, 245
replace() function, 239, 243
return by reference, 76, 82
return statement, 69, 82
reverse Polish notation, 282
reverse() function, 239, 246
right, 278

Ritchie, Dennis, {0

ROM, 13, 15

root, 16,276,293, 312

root directory, 10

rotate() function, 239, 246
roundoff errors, 35

run-time error, 11, 16, 34
SO

Schickard, Wilhelm, 2, 12, 15
search() function, 239, 242
secondary storage device, {6
segmentation fault, 184
Selection Sort, 306, 317

sentinel, 53

Sequential Search Algorithm, 319

set class, 228

short type, 7, 30
sibling() function, 297
sign bit, 7

signed type, 30

Silicon Valley, 3

SIMM, 4, 13,15

sin() function, 33

size() function, 229, 296
Solaris, 8

sort, 303, 313

sort() function, 239
source code, 16

sqrt() function, 33

stack, 154, 231

stack class, 226, 228
Standard C++ Library, 24, 32
Standard Library, 287
std namespace, 24
STORE, ¢

strcat(), 111

strchr(), 111

stremp(), 111

strepy(), 111

strlen(), 111

Stroustrup, Bjarne, {2, 15, 29

structured programming, 137

subdirectory, 10

subscript operator, 228

subtree, 276

swap() function, 229, 239
swap_ranges() function, 239, 244
syntax errors, 33

TO

table, 228

tally, 93

TB, 15

template, 226
template class, 239
template parameter, 227
terabyte, 16

test driver, 7¢

this, 152

threaded tree, 291

tilde, 10

token, 25

Towers of Hanoi, 261, 268
traverse, 279

tree, 276

LU

unary operator, 28

uncle() function, 297
underflow, 38

Unicode, 7, 29

uninitialized, 6

unique() function, 239, 246
UNIVAC, 2, 13, 15
UNIX, 8, 16, 94

user name, {0

A\

vacuum tubes, 3

value parameter, 74, 82
vector, 234, 239

vector class, 228
VLSI, 3

void function, 69, 82
void type, 30

von Neumann, John, 2, 12, 15
VRAM, i6

WO

wchar t type, 7, 29
wide character type, 29
Windows 95, 8, 16
Windows NT, 8

Wirth, Niklaus, 10
working directory, 10

World Wide Web, 3

X

XENIX, 8

VAR

zero-based indexing, 229

