

Computer Science Principles
The Foundational Concepts of Computer Science

Kevin Hare

with a foreword by Pindar Van Arman

YELLOW DART PUBLISHING

Copyright © 2022 by Yellow Dart Publishing
All rights reserved. This book or any portion thereof
may not be reproduced or used in any manner whatsoever
without the express written permission of the publisher
except for the use of brief quotations in a book review.

4th Edition

All inquiries should be addressed to:
Yellow Dart Publishing
info@apcompsciprinciples.com

Microsoft product screenshots used with permission from Microsoft

Adobe product screenshots reprinted with permission from Adobe Systems Incorporated.

Adobe®, Adobe® Dreamweaver®, and Adobe® Photoshop are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States and/or other countries.

Google and the Google logo are registered trademarks of Google Inc., used with permission

ISBN: 978-1-7345549-5-3

Foreword

I envy readers of this computer science textbook. It's not like the textbook I started out with. That book was filled
with exercises that resembled math problems. Algorithms were described along with demonstrations of the most
efficient way to use them. We were then challenged to solve these problems in the most efficient way possible. It's
not that these exercises weren't fun, but they were very rigid and usually had a single correct answer. This put
creative types like me at a disadvantage. I wanted to experiment with software and try different approaches, even if
they were not the best approaches. The textbook I remember was not designed for that. It emphasized efficiency
over creativity.

But this textbook is different. Computer science is a creative field, and this textbook's approach celebrates this
creativity. This textbook will put you well on your way to understanding how to use modern software applications,
what makes them work, and how you can improve on them to write your own applications.

As an artist, I think this creative approach is the most interesting way to tackle any problem.

My art is a little unusual. I design creative algorithms then have several custom robots use these algorithms to create
paintings, one brushstroke at a time. These AI generated paintings are a record of both how far I have come in the
discipline of computational creativity, and how far artificial intelligence in general has developed.

My most recent painting robot project is called CloudPainter, and it can paint some wonderful paintings. I named it
CloudPainter not because every new computer-related thing needs to have the word “cloud” in it, but because I
want my latest robots to be able to look into the clouds and be inspired by them to create their artwork. We humans
might notice that a cloud resembles a dragon and use that as inspiration to let our imaginations run wild. I wanted
my robots to be able to do the exact same thing. I wanted them to imagine the images they painted.

We have had some success toward that goal. While my earliest robots were relatively simple machines that dipped a
brush in paint and dragged the brush around a canvas, my most recent robots use dozens of artificial intelligence
algorithms, a handful of deep-learning neural networks, and continuous feedback loops to paint with increasing
creative autonomy.

Exactly how far has their creativity come?

Famed New York magazine art critic Jerry Saltz recently reviewed one of my robotic paintings. Speaking of the
Portrait of Elle Reeve, he began it “doesn’t look like this was made by a computer.” He then paused and continued,
“That doesn’t make it any good.” It sounds like a bad review, but I loved it. A couple years ago, no one even
considered our paintings to be art. Now people at least think they're bad art. That's progress!

To make a portrait that didn’t look like a computer made it, my robots used all their creative abilities to re-imagine
Elle Reeve’s face in an abstract impressionist style then painted it based on strokes modeled from a famous Picasso.

Jerry Saltz’ admission that this painting could have been done by a human hand was a major milestone in my
artistic career. As I mentioned, few have even acknowledged my art as art. Some looked at my painting robots and
called them over-engineered printers. Other naysayers complained that our paintings were little more than images
run through the equivalent of a Photoshop filter.

Beyond the robots and their paintings, people often took offense at the very idea of what I was trying to do, which
was to create artistic robots. For many it was a grotesque attempt to mimic the very essence of what makes us
human. My attempts threatened and worried people. I remember one exhibition where an artist pulled me over and

said “I don’t know whether to be impressed or disgusted with your work.”

Over the years, however, there also have been many who understood exactly what I was trying to accomplish. The
author of this book, Kevin Hare, was one of them. We first met while teaching in Washington, DC. Kevin was a
computer science teacher. I taught art. My friendship with Kevin was unexpected. Our classrooms were on opposite
sides of campus, and one would think that there would be little overlap in our curriculum. As we got to know each
other, however, it quickly became apparent that we were on similar wavelengths. We both realized the creative
power of software. We had many conversations where we discussed the similarities between our creative processes.
Both of us realized just how similar writing code was to making art.

As I read this book, I was reminded of many things he shared with me about the creative aspects of computer
design. You will find it in his style as well as in the exercises he provides. This book does not just ask you to
complete a task for the sake of completing it. It challenges you to have fun with the code to do things that you are
interested in.

His concern for keeping your interest can even be seen in the order in which he covers the material. The book
begins by introducing the basics, as would be expected, but then it does something unusual. The second unit goes
right into the creative side of software by exploring photo editing. As an artist, this made perfect sense to me. It
even mirrored my own journey into computer science. The first programs I used were photo editing tools like
Photoshop. As I needed these tools to do more than they were capable of, I found myself writing my own. This got
me started in computer science and eventually led to my AI robots.

The truly fun part of computer science is learning how to use code to be better at the things you love. Kevin Hare
understands this perfectly and goes out of his way to teach you things that have interesting practical applications.

At its core, software is a tool that helps us do things much more efficiently. Simple programs like word processors
let us write more words per minute. Spreadsheets let us do complex accounting and analysis. More complex
programs like Photoshop and Garage Band help us make art and compose music. Those of us who take the time to
understand and master these tools have a great advantage over those who do not.

Do you like playing an instrument? Unit seven will help you make a website for your band. Enjoy making art, like I
do? Creative applications are discussed in multiple units, beginning with unit two. Want to make billions of dollars
creating the hot new crypto-currency? Look no further than unit five's discussion of cryptography.

Regardless of your interest, this book will get you started on the path to writing software that helps you excel.
Making yourself better at whatever you want to be better at has never been easier.

Pindar Van Arman

Creator, CloudPainter
www.cloudpainter.com

Software Alternatives
This book discusses a wide variety of concepts but also explores a few specific pieces of software. These programs
may require a large one-time payment or—more commonly today—a monthly fee. Other software, like many
smartphone apps, earn revenue from an advertising-based model. Many applications discussed in this book offer a
free-trial period that you can use to try out a product before purchasing it.

Free and open-source software (FOSS, discussed in unit 9) allows users and developers the freedom to share and
improve upon software. FOSS allows users to use software without charge, it also allows them to access and modify
the source code. The following FOSS applications can be used to accomplish similar tasks and to open the same file
types as Excel, Photoshop, or Dreamweaver.

LibreOffice is similar to the Microsoft Office suite and includes applications for word processing, spreadsheets,
slideshows, databases and more. It can be used in place of Excel in unit 4. Created from OpenOffice in 2010, it can
be found at https://www.libreoffice.org/

GIMP (GNU Image Manipulation Program) can be used as an alternative to Photoshop (discussed in unit 2.5). This
free and open-source software is used to manipulate raster images. More information can be found at
https://www.gimp.org/

Photopea, an ad-supported web-based image editor, has a very similar look, feel, and workflow to Photoshop,
including the ability to edit .PSD files. Since nothing needs to be downloaded, Photopea makes a great substitute for
Photoshop, especially for Chrome Book users. Photopea can be found at https://photopea.com

Brackets is a free and open-source text editor created by Adobe. It is an excellent free solution for web
development and can serve as an alternative to Dreamweaver in unit 7.5. Although any text editor and web browser
can be used to create web pages, Brackets has a variety of tools to help with the workflow. It can be downloaded at
http://brackets.io/

Numerous other applications, both free and paid, can perform similar tasks, and more are being created and updated
every day. As you explore and dive deeper into specific topics, research and explore the software that best fits your
needs.

1 - Hardware, Software, Number Systems, and Boolean
Expressions

“It’s hardware that makes a machine fast. It’s software that makes a fast machine slow.” - Craig Bruce

Introduction
If you have ever turned on a phone or surfed the Internet then you have used a computer and should have a basic
understanding of what happens when you click the mouse or touch the screen—and how fast it happens! A
computer is an electronic device that processes data according to a set of instructions or commands, known as a
program. Before creating spreadsheets, manipulating images, understanding the Internet, making websites,
encrypting data, or learning how to code, it is important to understand the basics of every computer. All computers
—desktops, laptops, tablets, and smartphones—convert data into ones and zeros and have the same basic
components: software and hardware. In this unit, we'll define some of computing's most basic terms and explore
how computers work at the most elemental level.

Software
At the lowest level, computer software is just a series of ones and zeros. It cannot be touched physically and is
usually stored on the computer's hard drive. We can consider software as belonging in two general categories: the
operating system and the applications.

The operating system (OS) includes the desktop, start menu, icons, file manager, and common services shared by
other programs. It manages hardware and software resources and provides the visual (graphical or text-based)
representation of the computer. Again, at its most basic level, the software is just a series of ones and zeros—
usually billions of them at any one time—that cannot usually be understood by a human, so the operating system
helps make these ones and zeros easy to read and understand. Some popular operating systems include Windows
10, MacOS Catalina, and GNU/Linux.

Pretty much everything else on your computer, except for saved files, are applications, including word processors,
photo editing software, web browsers, games, and music players. A few popular applications include Microsoft
Office, Adobe Photoshop, Apple Music, Google Chrome, and Fortnite.

Hardware
The physical parts of the computer are known as hardware. These devices—such as the monitor, keyboard,
speakers, wires, chips, cables, plugs, disks, printers, mice, and many other items—can be touched. There are two
categories of hardware: the core and the peripherals. The core is made up of the motherboard, the central
processing unit (CPU), the main memory, and the power supply. Peripherals consist of the input and output (I/O)
devices and the secondary memory.

Everything that happens on a computer goes through the core. Together, the core components—motherboard, CPU,
main memory, and power supply—do all the heavy lifting in the computer.

Also called a logic board, a motherboard is the standardized printed circuit board that connects the CPU, main
memory, and peripherals to each other. Since many different manufacturers make parts for computers, there are a
handful of standard form factors to make sure circuits and hardware fit together properly. Most motherboards also
contain a small integrated chip and firmware, which stores the BIOS—or basic input/output system—as a way to
communicate with the computer (especially before an operating system exists). The POST (or power-on self-test)
process is also found in this firmware. POST runs basic checks to make sure all core components and peripherals
are powering on correctly, usually verified by a chime or series of lights on the motherboard.

The Central Processing Unit (CPU) carries out every command or process on the computer. It can be described as
the brain of the computer, and it is extremely fast, with a speed that is usually measured in gigahertz—billions of
processes per second. By the time information gets to the CPU, it is broken down to ones and zeros. One of the
reasons it can process so many commands is because it only needs to recognize these two numbers.

The main memory temporarily stores information while the CPU is actively processing it. It is much faster than
secondary memory, which is used for long-term data storage. Achieving this speed is more expensive, so the main
memory is usually much smaller than the secondary. Main memory is like an office desk. There is only a limited
amount of room on the desktop, but you can quickly access items on it, like a pen or stapler. Secondary memory is
like a bookshelf on the other side of the room. If you have a book you only need occasionally, you might keep it on
this shelf, where there is much more room. To consult this book, you need to get up and walk across the room,
which takes more time. While using the book, it sits on your desk (your main memory). Unlike a physical desk,
however, the main memory only takes a copy of “the book” and leaves another copy in the secondary memory.
Main memory is often referred to as RAM, or random-access memory. In other words, information can be
retrieved from or written to any location in the memory. The computer does not have to go through everything
stored in the memory to get to the information at the very end. Think about old cassette tapes. To get to the next
song, the current song either needs to be played all the way through or fast forwarded through. This kind of memory
is called sequential memory. RAM is more like a CD. To get the next song, just hit next. Remember, the main
memory temporarily holds information while the CPU processes it. As a result, the more RAM a computer has, the
less often it needs to retrieve information and—all other things being equal—the faster it can run programs and the
more programs it can run simultaneously.

Just like the power adapter on other electronic devices, a computer’s power supply converts AC power from the
electrical grid to the lower voltage DC power that is needed to power the computer's components. Most power
supplies contain a fan to keep them cool and a switch to change between different voltages.

Nearly everything else in the computer is called a peripheral, which means it operates at the outside edge of the
computer. A user interacts with a computer through peripherals—not the CPU or main memory. Peripherals include
the secondary memory, all input and output devices, video or graphics cards, and more.

Secondary memory is all memory accessed by the computer, except the main memory. It is used for long-term
storage and is physically changed whenever files are saved or deleted. This change makes secondary memory
slower than the main memory—although it is still very fast. Secondary memory is much larger than the main
memory, and changes are usually only made when a user alters the information stored there, for instance when
saving or deleting a file. Common secondary memory devices include hard drives, floppy disks, CD-ROMs, USB
storage devices, and flash drives. These peripherals store the software (both OS and applications) that the main
memory will access.

A user interacts with a computer using input and output (I/O) devices. Without them, computers would not be
very useful. Input devices allow users to send instructions or data to a computer. Keyboards and mice are the most
common input devices. They tell the computer when something is typed or clicked. Other input devices include
joysticks, microphones, and scanners. Output devices take something from the computer and send it to the user.
Monitors and printers are the most common output devices. Others include speakers and virtual reality goggles.
Some devices provide both input and output. A touchscreen, for example, takes input when touched and also
displays output as a monitor.

Main memory is usually volatile while secondary memory tends to be non-volatile. The distinction here has to do
with the stored information and the power supply. In the case of volatile memory, information is lost when the
power is turned off whereas with non-volatile memory, the information remains. So when you shut down your
computer, the main memory is wiped clean, but—thankfully—the secondary memory will remain as is!

Remember that a computer —at its lowest level—only reads zeros and ones. You can think of a computer like a
light switch: it is either on or off. When it comes to RAM, a computer can just mark the “switch” on or off, but
floppy disks and CD-ROMs work a little differently. Floppy disks are magnetic, and CDs and DVDs use light. A
CD has a smooth surface with pits. The smooth parts represent zeros, and the pits stand for ones. In the case of CD-
Rs and CD-RWs, the surface becomes reflective when heated to one temperature and non-reflective when heated to
another.

Number Systems
In everyday use, we use a numeral system that uses numerals from zero to nine, so for every number there are ten
different options in each place. As in decagon or decathlon, the prefix dec- means ten, so it makes sense that the
name of our numeral system starts with dec-. The numeral system we ordinarily use is called base-ten, or decimal,
and it uses ten numerals ranging from zero to nine, which are also called digits. In base-two, or binary, there are
only two numerals used: zero and one. As in the words bicycle, bifocal, or bipartisan, the prefix bi- means two, so
each numeral in binary is called a bit, which is the smallest unit of information that a computer can process: zero or
one, off or on. These bits are so small that it is more practical to group them into bunches of eight, otherwise known
as bytes.

Each address in memory contains one byte of information, but all except the most rudimentary units of information
are larger than one byte, so storing them requires multiple bytes. With today's computers, a byte is an exceedingly
small amount of memory, so instead of talking about them in the millions or billions, we use the larger units below.
Since the computer only processes zeros and ones, everything is measured in base-two, so one byte is two to the
zeroth power, or one. The next unit is the kilobyte, which is two to the tenth power, or 1,024. Notice that a kilobyte
contains more than one-thousand bytes, the usual meaning of the prefix kilo. A megabyte is 220, a gigabyte 230, and
a terabyte 240.

Sometimes when companies release hardware, such as hard drives or smartphones, they will consider a megabyte as
one-million bytes instead of 220 bytes or a gigabyte as one-billion bytes instead of 230 bytes. If an mp3 player is
advertised as having a capacity of twenty gigabytes, the company will put only twenty-billion bytes of memory in
it, when twenty gigabytes actually means approximately 21.475 billion bytes. In this case, the customer has been
shorted and really bought fewer than 19 GB of storage when they were expecting a full 20 GB.

Understanding the base-ten, or decimal, system will make understanding the base-two, or binary, system easier.
Binary works in the same exact way as decimal, except that the digits range from zero to one. Therefore, instead of
using powers of ten, binary uses powers of two. For example, the first digit is multiplied by 20, not 100, the second
digit is multiplied by 21, not 101, and so forth. From right to left, the places in the decimal system go 1, 10, 100,

1000… (that is: 100, 101, 102, 103...). In binary, they go 1, 2, 4, 8, 16, 32, 64… (that is: 20, 21, 22, 23, 24, 25, 26...).
Here is an example of a binary number: 1101 0010.

Converting Binary → Decimal
To convert from binary to decimal, simply add the values in binary that are “on” (1 represents on and 0 represents
off).

Converting Decimal → Binary
To convert decimal to binary, simply figure out (from left to right) if the binary value needs to be “on” (or a 1). If
turning the value on does not make the sum of the number exceed the number, then it should be a 1 (otherwise it is
a 0).

Hexadecimal (also known as base 16) is a common number system used in computer science. Since there are only
ten digits (0-9), the first six letters are used to represent the remaining six characters (a-f). Each character in
hexadecimal represents four bits (or a half of a byte). To represent a full byte, two hexadecimal characters are used.
These range from 00 (representing 0) to ff (representing 255). The chart on the following page shows what each
hexadecimal digit represents:

Decimal Hexadecimal Binary

0 0 0000 0000

1 1 0000 0001

2 2 0000 0010

3 3 0000 0011

4 4 0000 0100

5 5 0000 0101

6 6 0000 0110

7 7 0000 0111

8 8 0000 1000

9 9 0000 1001

10 a 0000 1010

11 b 0000 1011

12 c 0000 1100

13 d 0000 1101

14 e 0000 1110

15 f 0000 1111

When a hexadecimal number is larger than a nybble (or half of a byte), the left-most hex digit is worth more, as
with any other base. In the decimal number 123, the 3 is worth 3 since it is in the ones place, but the 1 is worth 100
since it is in the hundreds place.

Converting Hexadecimal → Binary
To convert a hexadecimal number into binary, look at each nybble individually:

To convert these to decimal, just follow the steps to convert binary to decimal from earlier in this unit.

Converting Binary → Hexadecimal
To convert from binary to hexadecimal, just follow the reverse of above:

We have ten fingers, so it makes sense that our society uses base-ten. It makes early counting simple. Since all of us
have been using base-ten since preschool, we find it easy to work with. Some have argued, however, that base-
eight or octal would be the easiest system to use, especially in computing. Since base-ten uses numerals 0–9, base-
eight uses 0–7 (there is no 8 or 9). These numerals could be eight symbols or emojis, as long as everyone agreed on
a standard. For this example, let’s stick with 0–7. The ones place (100) would still be the ones place (80), but the
tens place (101) would be the eights place (81). Every place after that would increase by a power of eight instead of
by a power of ten (or a power of two in the case of binary and a power of sixteen in the case of hexadecimal).

Converting Octal → Decimal
Converting base-eight is just like converting binary, but instead of the places doubling, they increase by a power of
eight:

ACII and Character Encoding
ASCII stands for American Standard Code for Information Interchange. Computers can only understand numbers,
so letters and symbols must be converted into numbers. This standard provides an agreed-upon protocol to encode
other characters as numbers. This includes lowercase letters, uppercase letters, symbols, spaces, tabs, delete,
backspace, and more. The first 32 characters (0-31) were used for teletype machines and are now considered
obsolete. Most modern character encoding systems, like Unicode, are based on ASCII but allow for the encoding of
many more characters, including other alphabets and emojis.

Boolean Logic
Boolean algebra or Boolean logic is a branch of algebra where variables can only have two values: true or false.
Introduced in the mid-1800s by George Boole and used in a variety of applications, Boolean logic has become
prevalent in digital electronics and programming.

There are three basic operations in Boolean logic: AND, OR, and NOT, also known as conjunction, disjunction, and
negation respectively. There are several ways to represent each of these basic operations, which are also known as
gates, including using the words AND, OR, and NOT. AND operations can also be represented with a conjunction
symbol (∧), an ampersand (&), or several other methods including, as we will see in the programming unit, two
ampersands (&&). OR operations can use the disjunction symbol (∨), a pipe (|), an addition symbol (+), or a
double pipe (||). NOT operations can use the negation symbol (¬), a tilde (~), a caret (^), an exclamation mark (!), or
a horizontal bar above other expressions. For the examples in this unit, we will use ∧, ∨, and ¬.

We will also use a fourth operation, exclusive or, that is a combination of other basic operations. Symbolized as
XOR, this operation can also be represented by a plus sign inside a circle (⊕).

Operation Symbol
AND ∧

OR ∨

NOT ¬
XOR ⊕

AND
When an expression uses an AND operation, then both sides of the expression must be true in order for the entire
expression to evaluate to true. The expression A ∧ B is only true if both A and B are true. Consider the eligibility
requirements for President of the United States. Two requirements are that you must be at least 35-years old AND
you must be a natural born citizen. If you are younger than 35, you may not serve as president even if you are a
natural born citizen. Likewise, if you are 35 or older but are not a natural born citizen, you cannot be president.
Both conditions must be true for the expression to be true.

OR
When the OR operation is used between two expressions, then only one thing has to be true for the entire
expression to evaluate to true. If both things are true then the expression satisfies this requirement that at least one
thing be true, so it evaluates to true. The only way an expression containing only OR operations can evaluate to
false is if all included statements are false. Therefore, in the expression A ∨ B, if A is true the entire expression is
true regardless of what B is. It is also true if B is true, regardless of A's truth or falsity. Think about the
requirements to see an R-rated movie: You must be 17-years old OR be accompanied by someone who is 21-years
old or older. If you are accompanied by a 21+ year old, your age doesn't matter. If you are 17+, it doesn't matter
whether or not you are accompanied by someone over the age of 21.

NOT
The NOT operation simply reverses the associated expression. If the expression evaluates to true, it becomes false
and if it is false, it becomes true. ¬A evaluates to false if A is true and vice versa. To evaluate ¬ (A ∧ B), first
follow the order of operations and evaluate the parenthesis first. So if—and only if—A and B are both false then A
∧ B would be false. The entire expression would then be ¬ false, and something that is NOT false is true.

XOR
As we will see below, in actual logic gates, an exclusive or operator is made up of AND and OR gates. But the idea

behind them is as simple as basic logic operations. If two expressions are separated by an XOR operator then
exactly one of those things must be true. If neither or both are true then the whole expression is false. In A ⊕ B,
either A needs to be true and B needs to be false or B needs to be true and A needs to be false for the expression to
be true. Think about having to choose between taking the bus or driving to school. You cannot do both and if you
do neither, you will miss computer science class! To be at school, you must choose exactly one way to get there. If
an expression contains multiple XOR operators then it will be true when it contains an odd number of true
statements. To see this in action, try drawing the gates and filling out a truth table with three, four, five, or more
XOR gates, as described in the next section.

Logic Gates
A logic gate is a physical device that can carry out logical operations by taking one or more Boolean values as input
and producing one Boolean value as output. When talking about computers, these two Boolean values are 0 and 1.
In electronic circuits, a 0 represents no current running through the wire and 1 represents current running through
the wire.

The physical process of creating the basic gates and the XOR gate is outside the scope of this book, but by adding a
level of abstraction—reducing information and detail to facilitate focus on relevant concepts—these gates can be
represented with the following symbols:

The inputs are usually represented with A, B, C, D, etc. while the final result is represented with an R. Notice that
NOT gates only take one input.

XOR gates are not basic gates. Rather, they can be created by combining the basic gates AND, OR, and NOT.
There are several ways to construct XOR gates, one of which is pictured below. These details can be abstracted out
and the XOR symbol used instead.

Truth Tables
When evaluating Boolean expressions, it is helpful to write out all possible outcomes in a table where each column
represents a variable or expression being evaluated. This truth table will show possible values for inputs and a true
or false value for the overall expression’s result.

Examples
A NOT gate and truth table using false and true and one input:

An AND gate and truth table using false and true with two inputs:

An XOR gate and truth table using 0’s and 1’s with two inputs:

A more complicated circuit with three inputs and multiple gates:

Summary
As we've explored in this unit, a computer is a machine, and at its most basic level, it is hardware—a physical thing
that you can touch. On its own, hardware isn't useful as much more than a paperweight, but once software—the
operating system, programs, and is added, it's a different story. Software interacts with hardware as a series of ones
and zeros—switches being turned on and off—but these binary numerals can encode text, pictures, sound, video,
and the complicated programs that make computers useful to human beings. Binary and decimal are not the only
number systems used in computer science, and other number systems, like hexadecimal and octal can be even easier
to work with than decimal. Boolean algebra allows us to abstractly represent the logic of computers and digital
electronics. In the following unit, we'll have the chance to use computers for creativity as we turn to one of the most
popular and useful applications ever created: Adobe Photoshop.

Important Vocabulary
Abstraction – reducing information and detail to facilitate focus on relevant concepts Application – almost
everything on the computer except saved files and the operating system, including word processors, photo editing
software, web browsers, games, and music programs ASCII – American Standard Code for Information
Interchange Binary – base-two, numeral system that uses zero and one BIOS – basic input/output system Bit –
each numeral in the binary system, zero or one Boolean Logic – a branch of algebra where variables can only have
two values: true or false Byte – eight bits Central Processing Unit (CPU) – carries out every command or process
on the computer and can be thought of as the brain of the computer Computer – an electronic device that processes
data according to a set of instructions or commands, known as a program Core – the central processing unit (CPU),
the main memory, the motherboard, and the power supply Decimal – base-ten, numeral system that uses zero to
nine Digit – each number in the decimal system, zero to nine Hardware – the physical parts of the computer,
including devices such as the monitor, keyboard, speakers, wires, chips, cables, plugs, disks, printers, and mice
Hexadecimal – base 16, number system that uses 0-9 and a–f Input and output (I/O) devices – how the user
interacts with the computer Main memory – memory that temporarily stores information while the CPU is actively
processing it, also called RAM Motherboard (logic board) – the standardized printed circuit board that connects
the CPU, main memory, and peripherals Nonvolatile – does not need a power supply. Information is physically
written to the device Nybble (or Nibble) – half byte, four bits Operating System – software that provides common
services to other programs, manages hardware and software resources, and provides the visual representation of the
computer Peripherals – the input and output (I/O) devices and the secondary memory POST – power-on self-test
Power Supply – converts AC electricity to the lower voltage DC electricity that is needed to power the computer
Random Access Memory (RAM) – memory that can be retrieved from or written to anywhere without having to
go through all the previous memory Secondary Memory – used for long term storage and is physically changed
when files are saved or deleted Sequential memory – memory used to store back-up data on a tape Software –
includes the operating system and the applications. It is usually stored on a computer's hard drive and cannot
physically be touched. At the lowest level, it is a series of ones and zeros Truth Table – a table made up of rows
and columns of Boolean variables and resulting Boolean expressions Volatile – needs a power supply. Turning off
the power deletes information

2 – Pixels and Images
“Creativity is contagious. Pass it on.” - Albert Einstein

Introduction
The ability for anyone with a personal computer to easily and convincingly manipulate images may be one of the
most significant changes of the last several decades, and the development of the graphical user interface was a huge
step forward for making computers accessible to non-specialists. In this unit, we'll begin by introducing a couple of
the ways in which images can be represented digitally before moving on to one of the most popular programs for
manipulating these images, Adobe Photoshop. The ability of computers to display, create, transmit, and alter images
has transformed our culture, not to mention the work lives of countless professionals. Programs like Adobe
Photoshop have been central to this transformation. By the end of this unit, you should have a basic grasp of what
digital images are and how you can create and change them.

Digital Images
Since the invention of the graphical user interface (GUI) this method of using visual icons to interact with an
operating system has replaced most text-based interfaces, such as command-line interfaces, which rely purely on
textual input from the user. Storing images and graphics as digital data has thus become paramount. GUIs have
paved the way for the mice and touch-screen interfaces that have helped make computers more intuitive and user
friendly. Graphics range from simple icons and text to large photographs and digital art. Adobe Photoshop and
other software for creating and editing images have contributed to these graphical advances.

A pixel, short for picture element, is the basic unit of color on a computer display. The size of pixels on a screen
varies depending on the display's resolution. If a display has more pixels then these pixels will be smaller and the
image quality will be better. Scanning a picture or taking a digital photo turns an image into millions of individual
pixels. In order to be understood by computers, these pixels are represented as binary numbers. Large pixels can
make an image look blocky, a phenomenon known as pixelation. Contrary to what you may have seen in movies,
there is no way to “enhance” these images since they do not contain the binary information for the missing pixels.
When AI software, provided by Google and other companies, produces an enhanced digital zoom effect, it is doing
so by combining digital information from multiple images taken at the same time.

All computers and digital televisions use these millions of pixels to produce images. Images created by using pixels
are considered to be raster images. Sometimes, however, greater precision is needed, so vector images use
mathematical formulas to represent shapes. While this unit will deal with raster images, you should be familiar with
the basics of vector graphics as well.

In a raster, a grid of pixels represents image data. Photoshop and many other photo editing applications deal mainly
with such images. By modifying individual pixels, these applications can create effects, correct color, touch up
photos, and improve images in a seemingly endless amount of ways. Photoshop can also deal with vector graphics,
in which images are made from a combination of points connected by lines and curves. Adobe Illustrator was
designed to create and edit vector images. In Photoshop two main uses of vector graphics are seen in the pen tool
and in text. Vector graphics' advantage lies in their ability to scale. No matter how large an image becomes, a vector
file can simply recalculate the shapes. For this reason, graphic designers work primarily in vector. They might need
to create an image that will be used as a tiny icon or be scaled up and placed on a giant billboard. When raster
images are scaled up, each pixel becomes larger, potentially leading to unacceptable levels of pixelation.

Some of the most common file types associated with raster graphics include the Joint Photographic Experts Group
(.jpg/.jpeg), Portable Network Graphics (.png), Bitmap (.bmp), Graphics Interchange Format (.gif), Tag Image File
Format (.tif/.tiff), and Photoshop Document (.psd). Popular vector files include Adobe Illustrator (.ai), Scalable
Vector Graphics (.svg), Portable Document Format (.pdf), and Encapsulated PostScript (.eps). Although PDF and
ESP files are vector formats, they can also contain raster images.

The simplest raster images are black and white. Each pixel in a black-and-white image takes up only a single bit
since only two distinct values (black or white) are possible. A “0” could—and usually does—stand for black while
“1” could represent white. You can think of this as a light being turned off (0) or on (1). Black-and-white images
are therefore a fraction of the size of other formats and are used mainly for small logos or icons. Text could be
stored as black-and-white raster images, but it would suffer from pixelation when the text is scaled up. For this
reason, fonts are stored as vector files.

While black-and-white images have the advantage of size, they are limited to simple applications, like images of
text or basic icons. In order to make shades of gray, different amounts of black and white can be mixed together.
Using 8 bits (1 byte) to represent shades of gray yields 28 or 256 different possibilities. Even though these images
only use one byte per pixel, they still take up eight times as many bits as black-and-white images.

Color images usually use even more bits per pixel. Color pixels can take up one byte, for a total of 256 colors (more
on this in the next unit), but the human eye can distinguish over 10 million colors, so realistic images need to
include at least that many possibilities. It is also important to know an image's main medium. Colors for displaying
images on a screen differ slightly from those for printed images.

There are two main color models to consider: CMYK and RGB. CMYK is used for printing and stands for cyan,
magenta, yellow, and black (key), where the number associated with each letter is the percentage of each color
used. This is the subtractive color model, meaning white is the color of the paper and black is the combination of
all the colors. Most printers have a separate black ink cartridge since it is more cost effective than combining the
other three colors and then needing to replace these cartridges more often.

RGB (which stands for red, green, and blue) refers to the color of light used in most monitors and screens. RGB is
an additive color model. This means that no light is black and the combination of all light is white. Instead of using
a percentage from 0–100, RGB (the 8-bit version) uses one byte (28 or 0–255) to represent each color. Since there

are three colors, each RGB value (1 pixel) is 3 bytes of data (24 bits), much larger than the single bit each pixel in a
black and white image uses. If the RGB value of a color is (255, 0, 0), all the red light is on and no green or blue
light is on, so it would be a red pixel. Likewise, (0, 0, 255) would be blue. Using 24 bits to represent color gives 224

possible combinations, that is 16,777,216 colors.

RGB color is often represented using decimal or hexadecimal. The decimal representation, which is seen above, is
often placed in parentheses and sometimes preceded by the letters RGB: RGB (255, 255, 255). Converting these
three decimal values to hexadecimal is very common, especially in web design. To represent 0 – 255 in
hexadecimal, the values 00 (0) – ff (255) are used. These 6-digit hex codes are usually preceded by the pound (#)
sign: #ffffff. At the lowest level, of course, the computer will read either of these values as the 24-bit binary code:
1111 1111 1111 1111 1111 1111.

With over sixteen million different colors, RGB has many similar shades. So if a pixel has high red values, but still
has low amounts of green or blue, it would still be a shade of red, like #d2150b or RGB (150, 50, 50). Likewise,
shades of yellow could be made with higher amounts of red and green, like #999900 or RGB (230, 240, 42).
Tertiary colors, like orange, can be created by having high values of one color and somewhere around 50% of
another color. Orange is similar to yellow, but with less green light. Two shades of orange could be represented as
#ff8000 or RGB (200,100,20). You can use the color picker tools built in to all the popular photo editors or
available online to explore other colors. These tools will often display RGB and hex values as well. Some will
display the closest corresponding CMYK color along with other color models such as HSB (hue, saturation,
brightness) or Lab color, which fall outside the scope of this book.

Gray
As we have seen, equal amounts of red, green, and blue light create the illusion of white light, and equal amounts of
no light create the color black. Since shades of gray come between black and white, it makes sense that
approximately equal amounts of red, green, and blue light make gray. RGB (33, 33, 33) or #d2d2d2 would both be
gray. The first is a dark gray, since it is closer to black (RGB (255, 255, 255)), and the second a lighter gray, since it
closer to white (#ffffff).

Motion
Computers display more than just static images. There is movement on the screen, animations, and more. These
effects are nothing more than pixels changing at a rapid rate. Computer screens modulate light by changing each
one of millions of pixels many times per second. A display’s refresh rate, measured in Hertz or cycles per second,
determines how many times each pixel changes each second. 60 Hz, 75 Hz, and 144 Hz are common refresh rates,
and higher end displays, such as those made for professional gamers, can reach rates of 240 Hz to 300 Hz. Film and
TV most often use 24 Hz and 29.97 Hz, respectively. When such content is displayed on a 60 Hz monitor, for
example, frames will need to be repeated or up-conversion applied by interpolating synthesized frames. This effect
can cause “motion smoothing,” which looks great for scrolling but is less than ideal for action movies or sports.
Even good graphics cards cannot change millions of individual pixels simultaneously. Rather, each pixel is changed
individually, usually from left to right and top to bottom. This happens so quickly that our eyes cannot distinguish
it.

Common Sizes
Monitors and televisions come in a variety of standard sizes with set aspect ratios and numbers of rows and
columns of pixels. HD and 4K refer to well-known standards. When someone says, “HD”, they most likely mean
Full High Definition or a width of 1,920 pixels by a height of 1,080 pixels (1920x1080). 4K usually refers to Ultra
High Defintion, which has four times the resolution of HD: 3,480 pixels wide by 2,160 pixels tall (3840x2160). HD
adds up to 2,073,600 pixels while 4K displays four times as many, 8,294,400 total pixels.

Summary
In this unit, we learned about two of the most important ways to store and display graphics digitally, rasters and
vectors. These graphic formats are used to encode everything from the typefaces used in this book to the images on
your HDTV. We've also had a chance to start working with a program that is indispensable to many creative people.
Photographers, graphic designers, magazine editors, and many, many other professionals use Photoshop every day
in their careers. By mastering the tasks introduced above, you'll be well on your way to acquiring a set of skills with
virtually unlimited potential. All these images—along with video, audio, and other information—can use massive
amounts of data storage. In order to store and transmit all this data efficiently, compression is necessary. In unit
three, we'll turn to this essential aspect of computing.

Important Vocabulary
Additive Color – a color model where no light is black and the combination of all light is white, like RGB CMYK
– color model used for printing. Stands for cyan, magenta, yellow, and black (key), where the number associated
with each letter is the percentage of each color used Graphical User Interface (GUI) – an interface that uses
images to represent a system's folders and files Pixel – short for picture element. The basic unit of color on a
computer display Pixelation – when individual pixels are too large and the image begins to look blocky Raster –
an image format that represents data in a grid of dots or pixels RGB – color model used for most monitors or
screens. Stands for red, green, and blue, referring to the color of light Subtractive Color – a color model where no
light is white and the combination of all light is black, like CMYK Text-Based Interface – an interface purely
made up of text input from the user Vector – an image format that represents data through a combination of points
connected by lines and curves

2.5 – Adobe Photoshop
“You can hardly turn around and not see something that was done in Photoshop.” - John Knoll

Introduction
First published in 1990, Adobe Photoshop is considered to be the industry standard graphics editor and is the
current market leader for commercial bitmap and image manipulation. Along with Adobe Acrobat, it is one of the
most well-known pieces of software produced by Adobe Systems. It is used in most jobs related to the use of visual
elements and is usually simply referred to as “Photoshop.” Indeed, this program is so ubiquitous that its name is
oftentimes used as verb, so you can “photoshop” a picture just as you would xerox a document or google who
played Willow on Buffy the Vampire Slayer (although Adobe Systems would prefer that you didn't).

With Photoshop, a user can create and modify digital images or—rather—images in electronic form. Photoshop
allows users to create original artwork, modify or combine existing pictures, add text or special effects to a
webpage, and restore or touch up old photographs, among other tasks. The images to be modified can come from
many places, including the web, digital cameras, or scanners. Once created or imported, the artwork can be
modified. Users can rotate or resize these images. They can add text or change colors, and they can combine these
images with others.

When you are ready to save an image, there are many possible file types to choose from. The most common are
.psd, .png, .jpg, and .gif. Photoshop's native file format is .psd. Most other applications cannot read this format but
can read the other three file types, which are also significantly smaller in size than the Photoshop format.

When modifying images in Photoshop, it's always a good idea to keep a copy of the original image in case you need
to reuse the image or correct a mistake. To make sure the original image remains unaltered, use the Save as...
command as soon as the image has been opened then choose a different name for the image that is going to be
modified. This will create a copy of the original that will remain untouched and can be opened if there is ever a
need to start from scratch.

The workspace is the area between the tool option bar and the status bar. The workspace includes all the palettes,
the toolbar, and the open document windows.
The title bar contains the name of the program as well as the close, minimize, and maximize buttons.

The tool options bar is located under the menu bar and shows more options for the selected tool from the toolbox.
When a new tool is selected, the tool option bar will change to accommodate the selected tools. This option bar
contains very useful additions to the selected tool that vary from tool to tool.

The palettes are small windows which start stacked up on the right side of the workspace. These palettes may be
moved anywhere in the workspace and reordered as desired. The most useful palettes are the history palette and the
layer palette, which show the last twenty actions performed and information about each layer in the image
respectively.

Located at the bottom of the screen, the status bar displays information about the file size and the active tool.

A layer is a part of the image that can be modified independently. They work much like those anatomy books that
use clear pages to show the body's different systems, where each page can be folded back to show what the layer
underneath looks like. Photoshop supports up to 8000 layers. Since the images that are blocked by other layers are
still there, layers can contribute to very large file sizes. Images can be flattened to decrease file sizes. Flattening an
image discards all image information that cannot be seen or is blocked. Other than .psd, most formats do not
support layers, so saving in these formats will automatically flatten the image.

The layer palette shows the active layer by highlighting it. Multiple layers can be selected by holding down shift or
control/command. To make layers easier to see, individual layers can be hidden. To do this, click the eye icon to the
left of the layer. Clicking the empty box where the eye used to be will make the layer visible again. Changing the
layer’s opacity to 0% from the top of the layer palette will achieve the same effect.

The toolbar contains frequently used Photoshop commands. Each tool is marked by a graphical representation of
what the tool does. When the user moves the pointer over a tool, a screen tip will appear stating the name of the tool
and the keyboard shortcut in parentheses. Some tools have other tools hidden behind them, denoted by a small
triangle at the bottom right hand corner of the tool. To see the hidden tools, hold down the pointer on the tool or
right click.

When editing or combining images, you may need to take one piece of the image and either move or edit it.
Photoshop offers many ways to select parts of images, including the marquee tool, the magic wand, and three types
of lasso tools.
The marquee tool , which has rectangular and elliptical options, should be used when the object is either a
rectangular or round shape.

The magic wand can be used when the background is significantly different from the
image. This tool automatically detects changes in color, so it is useful when an object
is on a solid background. For other irregular shapes, the best way to select them is to
use the lasso tools.

The three lasso tools are regular, polygonal, and magnetic. The regular lasso tool
should be used for tracing the entire image by hand. When an object's edges are all
straight, use the polygonal lasso. Like the magic wand tool, the magnetic lasso
automatically detects changes in color. To use this tool, trace the object roughly, and
the lasso will set anchors along the edges of the image.
In the tool option bar for each of these tools, there are
three useful options for making selections. The new
selection tool is used when starting from scratch. The
add to selection tool is used when a part is missing from
the original selection or when another object needs to be
added. The subtract from selection tool is used to

remove part of the selection from the object.

There are also useful options in the select menu under the menu bar: all, deselect, and
inverse. All selects the whole layer, deselect gets rid of any selections on the page, and
inverse switches what is selected and unselected so that anything selected becomes
unselected and anything unselected becomes selected. The modify option under this menu
contains other useful options, which allow the selection to be expanded or contracted.

Now that an object has been selected, use the move tool to drag the selection from one
image to another or to move it within the same image. If the move tool is not selected, then
dragging the selection will only move the marquee or the dotted line, not the image
selection itself. Right clicking inside the selection also allows for a new layer to be created
from the selection, either by copying or cutting the selection.

Another way to select part of an image is to erase
everything else. If an error is made, however, it can be
hard to restore the deleted portion. The solution to this
problem is masks. Masks allow you to crop out parts of
a picture without modifying the pixels, so if a mistake is made, you can easily fix it by changing the mask, not the
picture itself.

If a layer is locked as a background, double the click the layer in the layer palette, name it, and click ok to create a
new layer. To begin masking, click the mask button that looks like a square with a circle cut out at the bottom of the
layer palette. You can also go to the layer menu and select layer mask and reveal all. Once a mask is on the layer, it
can be effectively erased by painting the mask black.

Alternately, you can achieve the opposite effect by painting the mask white. It is important to set the paint brush
being used to 100% hardness in order to create a perfect edge. Otherwise, the picture will appear to have a glowing
edge. While using masks, use the zoom tool to get closer to the pixel level to get a crisp edge. Holding down shift
and clicking with the paint brush will cause the dots to connect in a straight line, making the edges much crisper.
See the list of useful shortcuts at the end of this unit.

Once an image has been masked, it is a
good idea to duplicate this layer and lock
the original as a master copy. If mistakes
are made that cannot be reversed then a
new duplicate can be made from the master
copy. One way to create a duplicate of the
masked layer is to hold down the ctrl key
and click on the thumbnail of the mask. This selects the white area of the mask.
Next make sure the thumbnail of the image is selected and select Layer… New...
Layer via Copy from the menu bar. Double click the name of the original copy,
rename it “master,” then click the padlock icon at the top of the layer palette. Now
that the master copy is locked, turn off the layer’s visibility and drag it to the
bottom of the layer palette.

Transformations are a way to scale, skew, distort, warp, flip, rotate, and shift the perspective on a layer. The most
useful of these is scale. Scaling up usually does not work well since the layer can become pixilated. To scale down
a layer select Edit… Transform… Scale, or use the keyboard shortcut for free transform: ctrl/command + t. To
ensure that the dimensions of the layer do not get distorted, hold down shift and grab the layer by a corner. When
the transformation is complete, press enter to accept the changes or esc to cancel the transformation.

Filters are a way to edit an image's pixels to create a desired look or
feel. There are several filters built into Photoshop. A downside of
filters is that they do change the pixels, so the only way to remove a
filter is to undo or step backwards. Smart filters store the original
layer's information allowing these filters to be easily removed or
changed. If a smart filter was not applied then there will be no way to
recover the original image once the file has been saved and closed.
Categories of filters include artistic filters, stylize filters, render
filters, noise filters, blur filters, and sketch filters. All the filters can be seen by selecting the filter menu in the
menu bar. Each category of filter includes many actual filters, such as colored pencil, smudge stick, watercolor,
pinch, ripple, wave, gaussian blur, tiles, clouds, and glowing edges. Most of these filters have sub-menus as well
that are indicated with an ellipsis. To see most categories at the same time, select Filter Gallery….

Layer styles are a good way to add effects to a layer. Unlike filters, layer
styles can be turned on or off and changed as needed, even if the file has
been saved and closed. Most of the options in layer styles affect the edge
of the layer, so if a layer takes up the whole canvas, then layer styles
might not be the best choice. A few useful styles are the drop shadow,
outer glow, bevel and emboss, and stroke. To bring up the layer styles
window, double click to the right of the layer name on the layer palette
or select Layer… Layer Styles from the menu bar. The check boxes can
turn the styles on and off, and more options can be seen by clicking on
the name of the style.

A gradient is a fill in which two or more colors blend together. The default gradient colors are the current
foreground and background, but infinite possibilities can be selected by clicking on the preview of the gradient in
the tool option bar. Gradients can also use transparency to achieve certain effects. In addition to colors, there are
also five different types of gradients: linear, radial, angle, reflected, and diamond.

The type tool allows users to add text to Photoshop images, as in magazine and newspaper advertisements, which
use to text to help get a message across to an audience. In such advertisements, many different fonts and colors can
be used to emphasize certain parts of the overall image. In most cases, text or type should be used sparingly in
Photoshop, as the overall file should mostly be the image itself. Text can be used to reinforce or complement an
existing image. The text should be direct and large enough to be easily seen without being so large as to detract
from the image itself.

There are three main font families: serif, sans serif, and symbols. A serif is a tail,
or stroke, at the end of a character, and the word sans translates to “without.” In
other words, serif fonts contain a tail or stroke on most characters while sans serif
fonts do not. Symbols are unique characters such as $, #, &, @, and *.

When the type tool is used, it automatically adds a new layer to the file. Simply
click and type to add text. To change the size, color, or font of the text, highlight
the text and change these things in the tool option bar at the top of the window.
Selecting all the text in a layer can be done by double clicking on the thumbnail of
the text layer in the layer palette. For more options to adjust the font, such as
tracking or kerning, use the character palette, which looks like an A with a vertical bar to the right when collapsed.
Many characteristics of fonts can be changed. One aspect that can be modified is the type spacing—the amount of
space between characters. The type spacing can be set to monotype or proportional spacing. Monotype makes every
character take up the same amount of space (i takes up the same amount of space as w). With proportional spacing,
each letter takes up a different amount of space depending on the letter (this book uses proportional spacing!).

Summary
In this sub-unit, we’ve had a chance to start working with a program that is indispensable to many creative people.
Photographers, graphic designers, magazine editors, and many, many other professionals use Photoshop every day
in their careers. By mastering the tasks introduced above, you'll be well on your way to acquiring a set of skills with
virtually unlimited potential.

Shortcuts
Ctrl + N: New document
Ctrl + O: Open document
Ctrl + S: Save
Ctrl + A: Select All
Ctrl + D: Deselect
Ctrl + Z: Undo
Ctrl + Alt + Z: Step Backwards (Undo more than 1 step)
Ctrl + Shift + Z: Step Forward (Redo more than one step)
Alt + Mouse Scroll: Zoom in/out
Space Bar: Hand tool (move around zoomed picture)
V: Move tool
B: Brush tool
G: Paint Bucket/Gradient Tool
E: Eraser
T: Type Tool
M: Marquee tools (rectangular, elliptical)
L: Lasso tools (free lasso, polygonal, magnetic)
W: Magic wand tool
D: Set foreground/background to black/white
X: Flip foreground and background color
[: Make brush one size smaller
] : Make brush one size larger
Shift + click: Paint/draw straight lines
Ctrl + J: New layer via copy
Ctrl + Click: Select contents of the layer
(on layer thumbnail) (white part of masks)

3 - Compressing Data

“No physical quantity can continue to change exponentially forever. Your job is delaying forever.” - Gordon
Moore

Introduction
Today's world is filled with endless audio, images, videos, apps, and more. We're saving, sending, and downloading
more data than ever before. Hard drive sizes may be increasing, but uncompressed files will still fill them up
quickly. For example, an uncompressed, ninety-minute, HD (1080p) movie takes up approximately one terabyte of
hard drive space. A common compression format for video called H.264 allows the same movie to be stored using
only 65 gigabytes, fifteen times smaller than the uncompressed version. By using a video space calculator, it is easy
to see how different formats (or numbers of frames per second) can result in dramatically different file sizes.

And that's just referring to space on a personal hard drive. Today, most of this digital information is sent over the
Internet (which we will return to in unit six). The larger the file size, the longer it takes to download. Or even worse,
streaming movies and TV shows may suffer from poor image quality or buffering! Given the amount of data sent
over the Internet every second, it is important to keep file sizes small without compromising the quality of the
material.

The choice of how to compress data will be determined by the trade-off between size and quality. If you aren't
willing to sacrifice any quality then size of the compressed file will not be much smaller than the original. But if
you just want a song to sound good on a personal speaker then some loss of quality is acceptable. Enough data can
be removed from an mp3 to significantly reduce the file size without detracting from the listening experience.

In some cases, when data storage and bandwidth are plentiful, there is no need to shrink data, and files can be left
uncompressed. That is, all the information from the original file will be kept in the same format without changing
it a single—wait for it—bit. Anytime an analog signal is converted into digital some data is, by definition, lost, so
when we talk about uncompressed data, we're referring to saving all the digital data that was captured by analog-to-
digital audio converters or digital cameras.

In other cases, when smaller size is more important than perfect fidelity, it may be okay to lose some data. To
achieve this smaller size, a codec, or a computer program that encodes or decodes is used. When data is lost during
this process, it is known as lossy compression. Ideally, the human eye or ear will not be able to detect this loss of
data. An entire branch of psychology—psychophysics—deals with this this issue. A sub-branch called
psychoacoustics focuses specifically on sound. These sciences study the relationship between stimulation and
sensation and are essential for lossy compression techniques. To give an example, the human eye cannot see the
difference between very similar shades of green, so when compressing an image, the computer may look at colors
that are very similar and change them all to the same color. When dealing with millions of colors, this
simplification could greatly reduce the file size, allowing it to load faster on websites or to be sent faster through
email. For an audio file, this might mean a reduction in the sample rate (the number of values taken per second
when converting an analog signal to a digital one) or bit rate (the number of total bits per second of audio). An
audio file's sample rate could be reduced from 96 kHz to 44.1 kHz without the human ear (or really the human
brain) being able to notice enough difference to justify the much larger file size. We'll return to audio compression
in a moment.

In situations where a decompressed file needs to maintain all the original information it had before it was
compressed then it is important not to lose any bits. When compressing text files or emails, for example, it is
necessary to maintain all the original information, otherwise certain letters or words might be missing. This kind of
compression is known as lossless compression, as it does not lose any data during compression. For some people
who work with audio or video, lossless compression is essential. These professionals may need all the detailed
information from the original file when mixing tracks or making precise changes to images. When working with
most types of data, there are many options for both lossless and lossy compression.

On its own, data itself may not be useful. Additional information about the data is needed. This “data about the
data” is known as metadata. Even though the Greek prefix meta- means “after,” it usually comes at the very
beginning of the file. Most file types require metadata and have a strict set of rules about where it is located and
how long it needs to be. Metadata may include title, author, keywords, date created, location where it was created,
file size, height, width, and so on. Examples of what this metadata could look like will be discussed later in this
unit.

Compressing Text
Given the rapidly falling costs of storage and bandwidth, large file sizes might not seem like a big deal, but as we
will see in unit six, smaller file sizes are crucial when sending information thousands of miles over the Internet.
Images, audio files, and videos are much larger than text files, generally speaking, but with the sheer number of
emails and text messages sent every day, text compression is just as important. When compressing text, however, it
is critical that no data is lost. Losing ten percent of an email might make it unreadable, so text compression will
almost always be lossless.

As you'll recall from unit one, ASCII is a standard for encoding text in binary. In ASCII, each character is
represented by eight bits (one byte). To figure out where any given character begins, just find bits that fall at an
index that is divisible by eight. Since every character must be a block of eight bits, it is easy to locate one in the
middle of a file. Fixed-length code contains blocks of code that are always the same size. One issue with this
approach is wasted bits. For example, in ASCII, the letter “A” is 100 0001, only seven bits. If the fixed length is 32
bits then all proceeding bits would need to be 0. The character “A” would then be 0000 0000 0000 0000 0000 0000
0100 0001.

An alternative to all these leading zeros is variable-length code, where each representation can be a different
length. An early example of variable-length code is Morse Code. Samuel Morse, one of the inventors of the
telegraph, realized that some letters, like “e” and “t”, were more common than others, such as “j” or “z”. For this
reason, Morse Code represents “e” with a dot and “t” with a dash, while “j” and “z” are “dot-dash-dash-dash” and
“dash-dash-dot-dot,” respectively. Morse and others created this system in the 1830s, long before the invention of
the digital computer, and telegraph operators could distinguish between letters by pausing between each one.

Unlike nineteenth-century telegraph operators, modern computers do not pause between commands. Instead, they
use a specific type of variable-length code called prefix-free code (sometimes called prefix code). As in Morse
Code, prefix-free code allows some characters' codes to be shorter than others. This can be seen in Huffman trees
(more in a moment), where more common characters have shorter binary codes than infrequent ones. Prefix-free
code works by ensuring that the beginning of each character does not match any other character. To see how this
works, let's consider a simplified alphabet with only three letters (A, B, and C). In this example, if “A” starts with 0
and “B” with 1 then “C” could not start with 0 or 1 since those codes already stand for “A” and “B”. Instead, “A”
could be 0, “B” could be 10, and “C” could be 11.
Since characters are not evenly distributed in English or other languages, this creates the possibility of substantial
data savings. It is more efficient to use a few bits for commonly used characters even if that means that less
common characters need a dozen or more bits. For example, the letter “e” (which is used 13% of the time) shows up
approximately 21,000 times in this book. The letter “j” (used less than .2%) only occurs about 250 times. So if it
takes five bits to represent “e”, that's 105,000 (5 x 21,000) bits total. If “j” needs 15 bits (to avoid repeating any
prefixes), that's 3,750 (15 x 250) bits for a total of 108,750 (105,000 + 3,750). If we stuck with 8-bit ASCII values
then “e” would take up 168,000 (8 x 21,000) bits and “j” would use 2,000 (8 x 250) bits for a total of 170,000
(168,000 + 2,000) bits. In this example, the fixed-length code is 56% larger than the variable-length option!

Prefix-free code is not just for text. It can be used whenever frequencies or patterns in code, known as redundancy,
can be found. Finding redundancy—whether frequent colors in images, repeated sounds in audio files, or patterns of
bits in applications—is the key to lossless compression.

In the early 1950s, an MIT doctoral student named David Huffman discovered the most efficient way to generate
prefix-free code. His method uses binary trees (a tree that can have, at most, two nodes or “branches”) sorted by
frequency. Returning to the example above, this method does not assume the letter “e” to be most frequent. Instead,

the code first scans all characters in the file and creates a tree starting with the least used characters at the bottom
and working up to the most used at the top. Since the resulting tree has the most frequent characters on top, the
“path” down the tree to get to them is shortest. With only two options at each node, the path taken to reach any
character can be represented with a zero or one, ensuring that all characters will be prefix free. The result of this
process is known as a Huffman tree.

The diagram below shows a Huffman tree created from the first paragraph of this book's foreword by
CloudPainter's Pindar Van Arman (ignoring case).

Each node is either the sum of all the characters below it, or it is a character, along with its frequency in the
paragraph. To compress a character, locate it in the tree and starting at the top (there are 299 total characters in the
paragraph) trace a path to it. Every time you take the left path, mark a zero. Every time you take the right path, mark
a one. So to compress the first character, the letter “I”, start from the top, take the left path, then the right twice, and
finally the left to get 0110. The next character, “space,” would be encoded as 110. Notice that “I”, which appears 17
times, uses four bits while “space,” which shows up 48 times, uses three. The letter “P”, which only appears twice,
converts to 0011110 for seven total bits. To decompress the resulting code, working in binary, simply follow the
same pattern until a character is reached then start back at the top with the next character.

Huffman coding has been proven to be the most efficient way to compress text at the level of individual characters,
but since this breakthrough, many more compression algorithms have been developed, most building upon
Huffman’s original insight.

In the example above, redundancy can be found in the encoding of individual characters, but redundancy can also
be found in groups of characters, such as common words or patterns of letters, which may then be represented with
a single character or symbol. Let’s assume that every time the word “and” appeared in this book, it was replaced
with a plus sign. The word “and” appears approximately 780 times in this book, taking up 2340 characters. If each
“and” was replaced with a plus sign, it would take up only 780 characters. If the spaces before and after the word
are included (and) that represents 3900 characters. Using a plus sign could reduce these 3900 characters to only
780 (plus six characters of metadata to tell the next user that the file was compressed). Imagine if other common
words or letter groupings were changed into symbols. The letters “th” appear almost 4500 times in this book. Just
by swapping “and” and “th” for symbols, we can reduce the length of this book by almost 8500 characters. That is

more than five full pages! However, a key or dictionary in the metadata is needed to explain what words and letter
groups were swapped. Otherwise, the result would be useless gibberish.

Without a dictionary, a message such as, “How much ♣ ♠a ♦♥if a ♦♠♥♣?” is nearly meaningless, but by following
the dictionary (or metadata) to the right, the message can be decompressed to read: “How much wood could a
woodchuck chuck if a woodchuck could chuck wood?”

♣ wood

♥ chuck

♦ ♣♥

♠ could

The original message contains 58 characters and the compressed message contains 20 characters in the message and
20 characters in the key (metadata). This might not seem like much, but this simple compression made the file
about 30% smaller. Imagine taking that uncompressed HD movie from the beginning of this unit and making it 30%
smaller. The original file was a terabyte, so this would save about 300 gigabytes. Obviously, video cannot be
compressed in exactly this manner, but there are even more ways to compress video to make it much smaller than
the original. But think of how much text is on a computer: Word documents, emails, and more. If everyone tried to
send dozens of uncompressed emails every day, Internet speeds would be at risk, a topic we'll return to in unit six.

In practice, however, even this simple compression could result in more dramatic savings. Since computers only
deal with binary, these four symbols might actually be represented as 00, 01, 10, and 11. As seen earlier, characters
in ASCII take up eight bits, so the word “wood” would be reduced from 32 bits to 2 bits. By combining this
technique with Huffman trees, we can create prefix-free code in which the most common patterns have the shortest
code.

Abraham Lempel and Jacob Ziv developed another kind of dictionary coding in an algorithm published in 1977,
known simply a LZ77. Rather than defining a new dictionary, this algorithm references previous instances of the
pattern in the code. So if “hello” (or rather the long string of bits that represents “hello”) showed up earlier in the
text, the algorithm would specify how for to jump back in the code to repeat the five bytes (if in ASCII) that made
up “hello.” To give a simplified example, this algorithm could use one byte to define first how far to go back in the
code then how may characters to repeat or copy. So if “hello” appeared 30 characters before its subsequent instance,
the binary code 11110101 could be used. The first five bits (11110) indicate how far to go back (30 characters) and
the final three (101) indicate how may characters to repeat (the five characters of “hello”). In actual practice,
multiple bytes would most likely be used to indicate a larger jump back.

Images use much more data than most text files. A 20,000-character document (more than 15 pages of this book)
contains approximately 20,000 bytes (ignoring metadata), or about 19.5 kilobytes. Even a small 400-pixel-by-400-
pixel image using 8-bit RGB color (that is eight bits per color per pixel) contains 160,000 pixels, which each
require three bytes. That's a total of 480,000 bytes (ignoring metadata), or about 468.8 kilobytes. Most digital
images are much larger and have millions of pixels, so it is important to compress them. There are two general ways
to compress images. The first method is to find patterns, as in the above examples of compressing text. The second
is to find unimportant information and toss it out. The first method is an example of lossless compression, but the
second discards some data and is therefore lossy.

A simple example of converting binary code to a black and white image will help clarify how ones and zeros can
become an image on a monitor. Black and white work well for this example, since they can be represented by a
single bit. In this example, we will use zero for white and one for black (even though we know from unit two that
black is represented as zero or off while white is on or all RGB colors). In addition to the color data, there must also
be metadata to indicate such things as height and width.
00000110 0000101 10101010 10101110 10101010 10101000

 width height pixel data

 metadata

In this example, the metadata are two bytes (sixteen bits) long and represent width and height, one byte for each.
This kind of information is predetermined by the file type, and every file of this type must follow the same rules. If
the first byte is converted from binary, it equals six, and the height is five. So, this image is six pixels by five pixels.
The remaining four bytes of this file represent each pixel's color, black or white. Just like reading, start at the top
left and fill in the appropriate colors. Ones will be black and zeros will be white. Continue to the next row when
needed. The result will say “Hi”.

The image encoded through this process is uncompressed and uses a total of 48 bits, or 6 bytes. Lossless
compression could reduce the file size. One way to reduce its size is to look for continuous streaks or runs of black
or white pixels. Looking at the pixels from left to right, there are not many runs of black or white pixels since, most
of the time, they alternate between single black or white pixels. But there are runs of alternating black and white
pixels (one black then one white pixel), so, starting in the top left, there is a run of nine black-then-white pixels,
then two black pixels (or one run of BB), then a run of eleven black-then-white pixels. Expressed simply: 9BW,
1BB, 11BW. This expression can be converted to binary by specifying that six bits defines a run, where the first
four bits indicate the length of the run and the final two bits represent the pattern. So 9BW would be 1001 01. 1BB
would be 0001 00, and 11BW would be 1011 01. The entire image could then be encoded as 10 0101 0001 0010
1110, a total of 18 bits. With 16 bits of metadata, this image can be stored in 34 bits, almost thirty percent smaller
than the uncompressed version.

This method of looking for redundancies or patterns as runs in the code is known as run-length encoding. A simple

example of applying run-length encoding to text would be converting AAAAAAAAAABBBBBBBBBBCCCCC to
10A,10B,5C. In an RGB image, such encoding might specify that there are three-hundred red pixels in a row
instead of using the three-byte code for red three-hundred times.

Compressing Images
Psychophysics plays an integral role in compression. Extensive research has been conducted on how humans see
the color gray and how many shades human perception can distinguish. Different studies have concluded that
humans can perceive anywhere from less than a dozen to several hundred distinct shades of gray. In a 2012 article
published in the Journal of the Royal Society Interface, University of Cincinnati researchers found that humans can
detect only about thirty distinct shades of gray. If this is true then what need is there to use a full byte to represent
256 shades? Thirty-two unique shades can be represented in binary using only five bits, which is 37.5% smaller.
One way to compress a grayscale image, then, would be to throw out all but 32 shades of gray. Discarding data,
like those other 224 grays, is lossy compression. There is no way to get that data back. The key to good lossy
compression is finding the appropriate balance between size and quality. This technique can be used alongside
lossless compression methods, such as run-length encoding to compress data even further.

Similarly, color images can be compressed by grouping similar colors and discarding the rest. Using eight bits for
each red, green, and blue value yields over 16.3 (224) million possibilities, but the human eye can only distinguish
about ten-million colors. Two colors only a few bits away from each other will appear identical, so compression
algorithms for images take these similar colors and save them all as the same color. Most of the time this
simplification should not change the quality of the image, but when these algorithms are too aggressive, pixelation
or color banding (which can be seen in the .gif file below) can occur.

A few common file formats that compress images include: .png, .bmp, .gif, and .jpg. Portable Network Graphics
(.png) files use a lossless compression algorithm called Deflate which is a combination of LZ77 and Huffman
Trees. Bitmaps (.bmp) use run-length encoding, which is also lossless. Graphic Interchange Format (.gif) uses a
dictionary algorithm based on Terry Welch’s additions to LZ78 (the successor to LZ77). Finally, Joint Photographic
Experts Group (.jpg) files use lossy compression by breaking images into eight-pixel by eight-pixel blocks and
using a method based on the mathematical operation discrete cosine transform. JPEGs remove high-frequency
information in a process called quantization.

Compressing Video
Video compression uses similar techniques as the above examples. Since video is usually made up of 24 or 30
images displayed every second, one technique is simply to compress each image. This method is known as
intraframe or spatial compression. If the frame-rate of a movie is 24 frames per second then 90 minutes of video
would contain 2,160 individual images or frames, and each of these images could be compressed independently
using the same algorithms applied to other images.

Similarities from one frame to the next can also be used to reduce file size. Interframe or temporal compression
reuses redundant pixels from one frame to the next, so if eighty percent of the background barely changes,
interframe compression simply leaves those pixels as is (or slightly moves or rotates them), only making changes to
the twenty percent of pixels that do need updating.

Video compression is extremely important for streaming video, especially live video. Digital connections have a
limited bit rate, the number of bits that can be processed per second. A typical home wireless connection might
have a bit rate of twenty megabits per second (Mbps). As seen in unit one, the prefix “mega-” is used here to mean
million, not 220, so twenty-million bits can be transferred per second. A 4k television displays 3,840 pixels by 2,160
pixels, a total of 8,294,400 pixels per frame. At 24 frames per second, one second of 4k video takes up 199,065,600
bits, requiring a dedicated connection speed of about 200 Mbps, not counting audio. If there is not enough
bandwidth (the amount of bit rate available, discussed in unit six) then some data will not be transferred, resulting
in compromised image quality or—even worse—buffering.

Compressing Audio
Lossless and lossy methods of compressing audio files use similar methods to those discussed above. Two well-
known uncompressed audio file formats are .aiff in macOS and .wav in Windows. These formats are both actually
containers that may package pulse-code modulation (PCM) streams, one method for converting analog signals into
a digital form. Using metadata, these formats can also be used to contain compressed audio formats.

The fidelity of the digital representation encoded in a PCM stream is determined, in part, by the sample rate and the
bit depth. As mentioned earlier in the unit, sample rate refers to the process of taking many digital representations
of an analog signal. Sample rates in audio are generally measured in kilohertz (thousands of cycles per second), and
common rates include 8 kHz for telephone calls, 44.1 kHz for CD and mp3 audio, 96 kHz for DVD audio, and 192
kHz for Blu-ray audio. Most humans cannot distinguish differences between sample rates that exceed 60 kHz, or
60,000 samples per second.

While sample rate refers to how often a digital representation is created, bit depth refers specifically to the number
of bits used for each sample taken of the analog wave's amplitude. Common bit depths include 16 bit for CD audio
and 24 bit for DVD audio. A 16-bit depth allows 65,536 (216) possible values for each sample and a 24-bit depth
allows for about 16.8 million values.

The bit depth and sample rate of an audio file determine its bit rate. To determine the bit rate of an audio file,
multiply its sample rate by its bit depth. A 44.1 kHz audio recording with a 16-bit bit depth translates to a 705,600
bits-per-second bit rate. Stereo audio uses two channels, so a stereo CD track recorded at these levels would have
double the bit rate, 1,411,200 bits per second.

The sub-branch of psychophysics that deals with how humans hear sound, psychoacoustics, has found that humans
can hear sound in a range from 20 Hz to 20,000 Hz (20 kHz), so there is little need to record frequencies outside
this range. One lossy way to compress audio is to discard redundant data within this range, just like discarding color
information when compressing image files. Other compression methods include changing the sample rate or bit
depth, resulting in a lower bit rate. Two of the most popular lossy compression formats are .mp3 and .aac (made
popular by Apple iTunes). The lossless methods discussed earlier can also be applied to audio files. For example,
run-length encoding can be applied to periods of silence.

Summary
The modern world generates an enormous amount of information, and we don't just store this data, we move it
around, oftentimes from one side of the planet to the other. Without compression, storing and moving all this
information would be prohibitively expensive if not impossible. Compression, then, is one of the foundations of
modern computing, and by gaining an understanding of the basics of compression, you have taken another step
toward understanding how computers work—and work together—today. The ability of computers to display, store,
transmit, and alter pictures and other forms of media is exciting, but an even more fundamental role of computing is
the storage and processing of information, the subject of the next unit. Unit four will introduce two distinct ways of
dealing with information: spreadsheets and databases. You will have a chance to begin learning Microsoft Excel, a
program that anyone who has ever worked in an office will be familiar with. Gaining familiarity with this
surprisingly powerful application will prepare you for an even more surprising number of jobs.

Important Vocabulary
Binary Tree – a data structure that can, at most, have two nodes or “branches”
Bit Depth – refers to the amplitude of the analog wave and specifically to the number of bits used for each sample
Bit Rate – the number of bits that can be processed per second
Codec – a computer program that encodes or decodes
Dictionary – a key in metadata explaining the instructions to encode or decode compressed data
Discarding Data – a type of lossy compression that removes unneeded data with no way to get that data back
Fixed-length Code – blocks of code that are always the same size
Huffman Tree – a prefix-free binary tree that is the most efficient way to compress individual characters
Interframe Compression –a video compression that re-uses redundant pixels from one frame to the next, also
known as temporal compression
Intraframe Compression – a technique used by compressing each frame of a video, also known as spatial
compression
Lossless – data compression that does not lose data during compression
Lossy – data compression that loses data during compression
Metadata – additional data about the main data, usually at the beginning of a file
Prefix-Free Code – a specific type of variable-length code that does not use pauses
Psychoacoustics – a sub-branch of psychophysics that deals specifically with sound
Psychophysics – a branch of psychology that focuses on the fact that the human eye or ear cannot perceive the loss
of certain data
Redundancy – finding frequencies or patterns in code
Run-Length Encoding – looking for redundancy or patterns as runs in the code
Sample Rate – how often an analog signal is used when converting to digital, usually measured in kHz
Uncompressed – all the information from an original file in the same format
Variable-length Code – each data block can be a different length

4 – Storing Data: Spreadsheets and Databases

“The goal is to turn data into information, and information into insight.” - Carly Fiorina

Introduction
Data is everywhere. People have always collected information for multiple purposes. Data used to be relatively
simple. Early humans recorded where they could find food and tracked weather patterns. With advancing
technologies, however, data has become easier to collect and subsequently used for many more purposes. During
the last fifty years, tracking television viewing habits has led to the current state of TV and targeted advertising.
With this data, companies and advertising agencies can better target the consumers who are interested in their
products. These companies save millions of dollars by not wasting money on consumers who are unlikely to buy
their products while increasing sales by targeting their ads at more-likely-to-buy consumers. The existence of
countless data sets creates a need for automated methods to store and retrieve information. This data could be
someone's personal finances, which could be stored in a spreadsheet, or it could be a company's inventory and
product details, for which a database would be more appropriate. Some data sets are so large or complex that an
individual or small business alone could not gather, store, or analyze them using traditional methods. The field that
deals with such information has come to be known as “big data.”

Visualizing data
Data is powerful, but humans cannot look at large datasets and immediately see trends or extract information from
them. Fortunately, we now have powerful software and data libraries that can help us make sense of this
information. A few clicks of a mouse or a couple lines of code can turn thousands of numbers on a spreadsheet into
a line graph with trend lines, an interactive 3-D model, or an animation. Visual display allows more information to
be displayed, and multiple datasets can be combined to reveal the bigger picture. Modern computers make these
tasks easier, but data visualization long predates the transistor. Two celebrated, historical examples of data
visualization are Charles Minard’s map of Napoleon’s 1812-13 Russian Campaign and John Snow’s mapping of
cholera outbreaks in 1854.

Minard’s map skillfully displays several pieces of data: the size of the French army, location using latitude and
longitude, distance traveled, direction traveled, relative dates, and temperature. The infographic shows the size of
the army with the line’s thickness and indicates where troops broke off from the main force. As the line moves from
left to right, the thinning line shows the loss of troops from battles or the elements. Moscow lies on the right side of
the map, which is where the troops turn back and make their way back west, as seen in the thinning black line. The
sub-freezing temperatures faced on the return trip can be seen at the bottom. The black line briefly widens as troops
rejoin from previous offshoots but thins again at the crossing of the Berezina River. The contrast between the
original line and the black line on the left side of the map is devastatingly effective at showing how this campaign
ended. Viewed separately, map coordinates, dates, temperatures, and troop numbers would not tell the same story,
and piecing together dates and locations with temperatures would be tedious. It’s not the whole story, but this
infographic displays an easy to understand summary of the campaign, all without the help of a computer.

Infographic of Napoleon’s 1812 Russian campaign - Charles Minard, 1869

John Snow, an English Physician, knew something when he mapped the locations of cholera cases, eventually
showing that the cases stemmed from a contaminated water supply. Before this discovery, cholera was not
understood to be water-borne, and for this reason, John Snow is now considered to be one of the founders of
modern epidemiology.

Mapping a cholera outbreak - John Snow, 1854.

Today both Minard and Snow might be called data scientists. Data science is a relatively new field that uses a
variety of methods, including algorithms, to make sense of structured and unstructured data. Popular programming
languages like Python and R have libraries to assist in data wrangling, visualization, and modeling.

Misleading Data
Data visualization is powerful, but it can be dangerous if misinterpreted, misused, or manipulated. Countless
examples of misleading charts can be found in advertising, news outlets, politics and anywhere data is displayed.
One of the most common misinterpretations of data is the assumption that correlation implies causation. Just
because one set of data trends in similar fashion to another does not mean that one caused the other or vice versa.
While causation may in fact be present, it cannot be found from this data alone. One admittedly ridiculous example
of this would be noticing that the louder you sing in the shower, the higher the stock market rises. You could
measure and chart your singing volume on the same graph as the daily gain or loss of the stock market, and they
might look very similar. But does this mean that your singing is causing fluctuations in the market? Depending on
who you are, probably not. Could it be that you’re singing more loudly because you just made a lot of money?
Maybe, but more evidence is needed.

Correlation does not imply causation

Another common way for charts, especially bar graphs, to mislead is through manipulating the range of the axes.
The two graphs below visualize identical data. The only change is that the range of the left graph’s y-axis is from
48.95% to 49.45% while the right graph’s y-axis ranges from 0% to 100%. In the left graph, B appears to be three
times taller than A while the right graph more honestly shows B as only 0.3% higher than A. Without labels on the
graph, people might overlook the values on the y-axis. Both graphs are technically correct, but the left graph uses
techniques that are likely to deceive the viewer. When looking at data—assuming it is factual—make sure to check
the axis and labels to avoid making snap judgements or assumptions.

The graph on the left makes it appear that B is 3x better than A The graph on the right clearly shows that B is only
.3% better than A

Simpson’s paradox can also lead to misinterpreted data. This phenomenon occurs when groups of data individually
trend in one direction, but when they are combined, this trend disappears or is reversed. Simpson’s paradox may be
found in medical trials and the social sciences and can be the result of poorly designed experiments or—as in the
previous example—be misused to mislead for personal or financial gains.

An example of Simpson’s paradox - Individually each set trends downwards (left), but when plotted together the
trend reverses (right)

Implying causation that is not supported by the evidence, manipulating the values of an axis, and Simpson’s
paradox can all lead to factual data being incorrectly understood. It is therefore important to look deeper into the
data and not draw quick conclusions based on a glance at a pretty graph. It is also important to consider data’s
source. Who benefits from these results? Unfortunately, completely fabricated data also exists, so it is essential to
find reputable sources. Does the latest viral infographic on Instagram originate from a legitimate source? Can you
even tell who created it before it was shared around?

Spreadsheets
Prior to the introduction of electronic spreadsheets, accounting and bookkeeping had to be done by hand on paper—
a slow and laborious process. With the introduction of VisiCalc on the Apple II (in 1979) and Lotus 1-2-3 on the
IBM PC (in 1983), these tasks quickly became computerized. Since then, the use of spreadsheets has spread well
beyond financial record keeping. Microsoft Excel gradually supplanted Lotus 1-2-3 and—with the release of
version five in 1993—became the overwhelmingly dominant spreadsheet application. The program features an
intuitive interface and graphing tools and is capable of a high level of calculation. These features—along with
aggressive marketing and its bundling as part of Microsoft Office—have made Excel one of the most popular
computer applications to date.

A spreadsheet is basically a grid used to store information, usually numbers. This grid consists of rows and
columns. Rows go from left to right like rows of seats in a movie theater and are labeled using numbers starting at
one. In Excel, there are over one million possible rows. Columns go from top to bottom like the columns that used
to hold up Greek ruins. Columns are labeled using letters starting with A. When more than 26 columns are present,
double letters are used, continuing with AA, AB, AC, AD, etc., then triple letters starting with AAA, AAB… all the
way until XFD.

Each individual piece of the grid—where the rows and columns intersect—is called a cell. Each cell is labelled with
the column letter followed by the row number so that A1 is the cell at the top left of the spreadsheet. Three basic
items can be placed into the cells: labels, constants, and formulas. A label is text that describes some part of the
spreadsheet, such as a name or amount. Labels are not meant for the computer but rather for humans to better
understand the information in the cell. A constant is any number that the user enters into the spreadsheet. It will not
change unless the user changes it manually. A formula is an equation that can perform calculations on existing
cells. All formulas must start with an equal sign. Examples of formulas are: =5 + 6*5 or =2*F4 - A7. Notice that F4
and A7 are cells, so whatever numbers are in these cells will be subtracted or multiplied. If this cell contains a label
or has been left blank, then errors may occur.

Functions
Excel has many built-in functions that can help manipulate data. Some of these
functions include finding minimums or maximums, calculating averages or sums,
performing trig functions, and carrying out conditional statements. There are more
than two-hundred functions in Excel. They can be found either by knowing the
name of the function or by going to Formulas… Insert Function… A list of
functions will then pop up that can be narrowed down by searching or selecting a
category. Notice that all functions (like formulas) begin with an equal sign.

At the bottom of the window, there will be a brief description on what the function
does. A more detailed description will be given when the function is selected.

The following chart shows some useful functions and how they look when entered
into the cell:

Embedding Functions
Functions and formulas can work together. Some functions can even be embedded—or inserted—into other
functions. For example, if you wanted to find what group of cells had the highest average, then you might write it
like this:
=max(average(A1:A20), average(B1:B20), average(C1:C20))

Formatting
Formatting is a way to make the data in a spreadsheet more visually appealing. This
can be done by changing the look of numbers; altering the font, color, or size; adding
borders; or aligning the text in different ways. By right clicking on a cell, or
selecting Formatting… Format Cells… under the Home tab, the format cells window
will appear. There will be six tabs to choose from at the top of this window. These
tabs can easily be mastered by experimenting with the different options.

Conditional Formatting
Excel has some built-in formatting tools that will automatically perform calculations for the user. Some of these
tools can highlight cells that meet specific criteria, such as equaling a value, being greater than a certain value, or
being less than a certain value. Other tools can highlight cells that are in the top or bottom five or ten or that have
any given value. It can also be done with percentages. Conditional formatting can also turn cells into mini graphs
using data bars or different color schemes. These graphs are determined by the highest
and lowest values and can be modified by going into more options.

To remove conditional formatting, highlight the cells and select Clear Rules in the
conditional formatting menu.

Auto Formatting
Excel also includes several pre-made templates that can change a spreadsheet's look automatically, eliminating the
need to change colors and borders by hand. To use a template, select the cells that are to be formatted, then select
Formatting… Format as Table… from the Home menu bar.

Charts

Excel can create charts and graphs from the data in a spreadsheet. There are several different charts that can be
created, the most common being the bar, pie, and line charts. Under each chart type, there are sub-types that can
give the graph more effects, such as making it three-dimensional or showing relationships throughout the data.
Remember that a line graph shows change over time. To choose the desired type of chart, select it under the Insert
tab.

Before a chart type is selected, the data range needs to be chosen. This can be done by highlighting the cells that
contain the data. To select cells that are not adjacent, choose the first set of cells, then hold down the ctrl key and
select the next set. Once you have selected the data, click on the type of chart as shown in the picture above. The
Design, Layout, and Format tabs that will appear when you click on the chart can be used to add titles as well as
axes names, legends, and data labels. Some of these tabs are shown below.

Printing
There are many options for printing an Excel document. These options can all be found under File… Page Setup…

Under the Page tab, the orientation of the page can be set (either vertical or horizontal). The spreadsheet may also
be scaled to fit on a desired number of pages. Another useful tab is the Sheet tab. The most useful item under this
tab is the Gridlines checkbox under the Print section. When checked, this tab will display the lines in the
spreadsheet. Excel does not show gridlines by default.

Spreadsheet applications are essential tools for organizing and calculating. As
the most popular of these programs, Excel is ubiquitous in offices around the
world. Spreadsheets make calculating budgets, organizing large events, or
managing groups of people much more manageable. Mastering the powerful
features of Excel will serve you well in an enormous variety of careers.

Databases
Another format for storing and processing data is the database. A database is simply an organized collection of data
stored in tables. Like spreadsheets, these tables are made up of rows and columns. Throughout these tables, the data
is consistent. In a database, consistency refers to the fact that information in one table does not contradict itself in
any other table throughout the database. So if one table in a bank's database states that you have $5 in your account
then any other tables with your information must also state that you have $5.

Inconsistencies commonly occur in mutual relationships. For example, a school's database might have separate
tables for individual students and for class registrations. If a student's table indicates that they are enrolled in
CS301-3 then CS301-3's table of enrolled students must also list this student. One cannot be true without the other.
Fixing this inconsistency should be pretty easy, but others may not be so simple.

Inconsistencies could be introduced in a database when a program terminates before completing all transactions.
The database might not know which transactions it needs to run again when the program starts back up. Let's say
you try to buy something on Amazon but your transaction is interrupted after your credit card is charged but before
this information gets sent to Amazon. On restart, the database might again seek to withdraw from your account,
double charging you. To prevent this issue, all transactions must be idempotent. Idempotency means that an
operation will result in the same end result no matter how many times it is performed. This property is seen in
write-ahead logging, in which all changes are written and saved to a log before they're applied to the database, so
all the components involved in a transaction need to be carried out before the entire transaction is considered
complete. Such transactions are known as atomic transactions since they cannot be broken down while being
executed. In the Amazon example, the atomic transaction would be all the steps involved in making the sale. If
every part does not finish then none will. One way to prevent such inconsistencies is to work backward in the write-
ahead log. This method is known as a rollback, returning back to the state before the write-ahead log began.

Inconsistencies may also arise if multiple transactions modify data from the same cell simultaneously. One way to
prevent this error is to lock the cell that needs to be modified. If, for example, an account balance needs to be
altered by two separate transactions then the first transaction would lock the row, make its changes, and then unlock
the row. After the row is unlocked, the second transaction would then do the same. A deadlock can occur when two
transactions are trying to lock the same row and neither can continue until the other is complete. In such cases, it is
essential to have the ability to rollback one transaction to let the other finish.

The two-phase commit protocol provides another way to check whether multiple rows are free to use. This
protocol is a standardized way to make sure all data can be written without any inconsistencies. The first phase is a
check to see if all processes can be completed. If they can be written without issue then the second phase will
commit all processes. If not, this phase will rollback.

When using databases, it is oftentimes convenient to use multiple tables to store data that is connected in some way
to other data. A relational database can be used for this purpose. Relational databases have multiple tables that are
connected or related through the use of unique keys, a column holding a unique value that distinguishes each record
from all others. A school's database might include one table that contains students, using their unique student ID
numbers as their keys. Another table might contain courses, using unique course IDs as keys. A virtual table or
view could be created from this information using Structured Query Language or SQL (more in a second). Virtual
tables are temporary tables made up of parts of other tables that help to reduce redundant data. In this example, a
student's record might contain the unique course ID of a class they are taking, and this course ID might serve as a
key in another table (perhaps storing more detailed course information). A new virtual table could then use the
course ID to combine parts of the student's table, such as their schedule, with parts of the courses table, like teacher,

meeting location, time, etc. This way the student record only needs the course ID to retrieve all the data about the
course without the need to independently store all course data for each student. Course updates can then be made
simply by modifying the course's table. There is no need to separately update this information for each and every
enrolled student.

SQL
Structured Query Language (SQL) is the language used to manage, access, and manipulate relational databases.
Although tables can be modified, this section focuses on creating virtual tables by accessing certain elements or
combining parts of multiple tables. SQL ignores white space and is not case-sensitive. Statements can therefore be
broken into several lines for easier readability, and “SELECT” is equivalent to “select.” The lack of case sensitivity
refers only to keywords, not to table names, columns, or text contained in an entry. Some of the most important
keywords in SQL are discussed here: SELECT, DISTINCT, FROM, WHERE, LIKE, ORDER, BY, ASC, DESC,
LIMIT, JOIN, and ON.

Assuming you are already connected to the proper database, you can access the class_year of all students from a
table called students with the following query:

This would return every student’s class year, including duplicates, which could become an issue for databases with
hundreds, thousands, or even millions of records. The result would also be unsorted. To get unique values that are
sorted in descending order, use DISTINCT to only list unique values and ORDER BY to sort the data. Following
that with DESC will put the results in descending order while ASC will give you ascending order.

In order to limit the results to a certain number of rows, use LIMIT. The asterisk (*) can be used to specify all
columns of a table. This example returns all columns from the first twenty rows.

If you only need the columns first_name, last_name, and gpa from the 100 students with the lowest GPAs, this
statement could be used:

It is common to want only records that match specific criteria, which can be achieved using the WHERE keyboard.
If you only want the records from students with the last name “Smith,” the equal sign can be used to check for an
exact match:

The logical operators AND, OR, and NOT may also be used in conjunction with the WHERE keyword. In the
following example, only records of students with the first name Sue who have a GPA of 4 will be shown:

Often, when querying a database, you don’t want to match an exact string. Rather, you’re seeking entries that
contain a specific word or start with a certain letter or letters. Such partial matches can be indicated using the
keyword LIKE paired with wildcard characters. Two common wildcard characters are the percent sign (%) and the
underscore (_). “%” represents zero or more unknown characters, and “_” represents exactly one unknown
character. “LIKE ‘W%’” would return entries of any length that start with a capital “W.” “LIKE ‘%ing’” would
return only entries ending in “ing.” “LIKE ‘%and%’” returns any string containing “and.” “LIKE ‘A%a’ returns
entries that begin with capital “A” and end with lowercase “a.” The following query shows all students with a first
name beginning with “A” and ending in “y”:

The “_” wildcard is less commonly used but works in a similar fashion. It represents exactly one character—not
zero and not more than one. “LIKE ‘T_m’” would return strings like “Tim,” “Tom,” and “Tum” but exclude
“Tram” and “Totem.” These wildcards can work in tandem. The following query will show names like “Tim,”
“Tom,” “Timmy,” and “Tomas”:

To combine entries from two or more tables, use the JOIN keyword. There are several kinds of join statements. The
default type is the inner join, which returns rows where both tables include the specified data. The ON keyword
indicates how the tables being joined are related. ON specifies the column relationship between the original table
and the one it is being combined with. In the following example, the student table is joined with the sports table
using a common link, the student’s social security number. Then only students on the dance team who are in the
10th grade are shown in alphabetical order by their last name.

Aliases can be used to shorten table names. In lines three and four of this example, st and sp are created as aliases

for students and sports, respectively, so anytime the students table is referenced, the shorter st can be used. Another
way to make columns more user friendly is to rename them in the new table. In this example, the keyword AS is
used when selecting columns to rename last_name to Last in the new table.

Aggregate functions in SQL can be applied to several values in a column. Many of these will be familiar from the
spreadsheet section above: min, max, sum, avg, and count. For functions, parentheses are used to specify the
columns being aggregated. To find the average GPA of all students:

Scalar functions return data from a single value. Useful scalar functions include round, upper/ucase, and
lower/lcase. Strings are case-sensitive, so a search for “Bob” would not match to “bob.” lower or lcase provides a
solution to this problem. In this example, we use the lower function on the entry than compare it to a lower-case
string:

This section only scratches the surface of what SQL can accomplish. These keywords are useful when searching for
data, sorting and filtering results, and even renaming column headers. These functions can help with case-sensitivity
and rounding long decimals, and other tasks. There are many other keywords and functions that can be used to
create new data, modify existing data, and remove unwanted data.

As with any computing system, fault-tolerance, the ability of a system to continue to run properly even if one piece
fails, is an imperative property for databases. The protocols discussed above make sure that databases can continue

to work properly even when errors occur.

Big Data
Big data often refers to sets of data that are larger than a consumer software application can handle. This could be
data collected from hundreds of sources, including mobile phones, software, web browser logs, cameras, and
wireless networks. A few key features of big data are the volume of the data, the rate at which it is collected, the
variety of types, and the fact computers can “learn” from it. The volume is important since it is not a sample of data
from different groups of people: It is all the data from all the people, so there is—in principle—less room for error.
The rate at which data is collected is also important since, given the speed of processors and fiber optics, the data is
in real-time. Big data's variety allows text, audio, video, and more to be collected simultaneously and analyzed. This
allows the data to be seen from different angles, making the results even more accurate. Finally, computers can see
trends and patterns in this data that would take humans many lifetimes to sift through. Not only can computers see
the trends, but they can also learn from them and use them when analyzing similar data in the future. Big data is
very powerful and companies pay top dollar to obtain it.

In 2012 Facebook bought Instagram for one-billion dollars. That is billion—with a “B.” Any programmer at
Facebook easily could have designed an app that did the exact same thing as Instagram, probably with
improvements. So why pay one-thousand-million dollars for an app? At the time, Instagram had thirty-million
users, and it had a lot of data about those thirty-million users. This data included how often they were on the app,
how long they used the app per session, what profiles they looked at, what pictures they liked, all their search
results, and more. The app itself was not worth one-billion dollars, but the large data set Instagram collected and the
site's daily active users were worth that much to Facebook.

Big data is seen in many other industries, including government, education, media, healthcare, banking, real estate,
retail, and more. The app Waze (acquired by Google for almost one-billion dollars) used to collect every user’s
data, even when the app was not open. When installed, the user gave permission to always use their location. If the
user’s geolocation is on a road then the app can record their speed. This information can be used to predict traffic
and help reroute other users in real-time.

Summary
It would be hard to underestimate the role data has come to play in our economy and society. Spreadsheets have
gone from being the cumbersome physical tools of accountants to essential and flexible digital tools for most office
workers. Databases store untold amounts of data, replacing everything from the library card catalog to student
schedules to banking records and making entirely new kinds of records possible. These tools and their more
sophisticated successors have made big data possible. In the final unit, on the impact of computing, we'll discuss
some of the social and economic effects of this turn to big data. In the following unit, however, we'll consider the
available tools for keeping all this sensitive data secure, including encryption and other defenses against malicious
hackers.

Important Vocabulary
Atomic transaction – transaction where all components must be carried out before the transaction is considered
complete such that all occur or none occur Big Data – sets of data that are larger than a consumer software
application can handle Consistency – refers to the fact that information from one table does not contradict itself in
any other table throughout a database Deadlock – when, in a database, two transactions are trying to lock the same
row and neither can continue until the other is complete Fault-tolerance – the ability for a system to continue to
run properly even if one piece fails Idempotency – when an operation results in the same end result no matter how
many times it is performed Keys – a database column that holds a unique value that distinguishes each record from
others Relational database – a database that has multiple tables that are connected by the use of unique keys
Rollback – returning back to the state of a database before the write-ahead log began Simpson’s paradox – a
phenomenon that can occur when multiple groups of data trend in one direction but when combined with other sets
the trend disappears or reverses Structured Query Language (SQL) – the language used to manage, access, and
manipulate relational databases Two-phase Commit Protocol – a standardized way for databases to make sure all
transactions are able to write without any inconsistencies before committing Virtual Tables – temporary tables that
are made up of parts of other tables that help in reducing redundant data Write-ahead Logging – a method for
avoiding inconsistencies in which all transactions are written and saved to a log before they are applied to a
database

5 - Protecting Data: Heuristics, Security, and Encryption

“If you put a key under the mat for the cops, a burglar can find it, too. Criminals are using every technology tool
at their disposal to hack into people’s accounts. If they know there’s a key hidden somewhere, they won’t stop
until they find it.” - Tim Cook

Introduction
When it comes to using computers and networks, good security practices are no longer optional. Data breaches,
distributed denial of service attacks, viruses, worms, Trojan horses, and ransomware have all been in the news in
recent years. Major cities, financial firms, hospital systems, and even national militaries have all faced such attacks.
Administrators of these systems have an obligation to take appropriate measures to ensure their security, but
individual users should also take steps to secure their accounts by adopting best practices, such as using strong and
unique passwords. Of course, the best password in the world won't keep data secure if it is stored and transmitted in
the clear. That's where encryption comes in. Encryption can be a controversial topic, but it is essential for
everything from secure online banking to private communications, and it is a major topic of this unit.

Heuristics
In programming, a heuristic approach is an approach that gives results that are “good enough” when an exact
answer is not necessary. This is seen in the famous traveling salesman problem (TSP), in which a hypothetical
salesman is given a list of cities and the distances between them and is tasked with mapping out the shortest route
for visiting each city and returning home to the original city. With only a few cities, the problem is simple, but it
becomes exponentially more difficult as more cities are added. The TSP is computationally hard, meaning even a
computer would take too long to find the exact solution. An instance using 85,900 “cities” was solved in 2006, but
it took the equivalent of a computer running 24 hours a day for 136 years. The amount of time and computational
power to find this solution was out of proportion to the result. It would have been more sensible to find a “good”
route in a much shorter amount of time.

While calculating the best solution is difficult, it is easy to quickly check if any given solution is best. For this
reason, the TSP is an NP problem (“nondeterministic polynomial time”—a concept which lies outside the scope of
this book), meaning it can be verified—but not solved—in polynomial time (roughly meaning a feasible or efficient
amount of time). The greatest amount of time it would take to solve TSP (Big O notation, the measurement of time
complexity, another concept that lies beyond the scope of this book) is exponential. Other NP problems include
solving a Sudoku puzzle and scheduling students' classes while minimizing conflicts.

A problem that can be both solved and verified in polynomial time is classified as a P problem. Some common P
problems in computer science are multiplying numbers, sorting data, and finding factors. Does it then follow that P
and NP problems are not equal to each other? Maybe, but this question has not been proven either way, and if you
can prove it, you will be the winner of one of the seven Millennium Prizes and one-million dollars richer!

Security
With all this sensitive and valuable data being transferred every second, it is important to keep it secure. You
probably would not yell your social security or credit card numbers across a crowded room. Similarly, you should
not send this data through insecure methods. There are several ways that malicious security hackers—“black hats”
who exploit weaknesses on a computer or network—can steal or disrupt data. Some of these hackers just want to
harm or break a network while others want to gather this data for other purposes, including identity theft or
obtaining credit card numbers. Not all hackers seek to do harm. A hacker is any skilled user of technology who uses
their prowess to solve problems. “White hat” security hackers explore the vulnerabilities on a computer or network
—with the owner's consent—in order to help fix weaknesses and make data more secure.

In information security (InfoSec) there is a model designed to guide policies known as the CIA triad (not to be
confused with the Central Intelligence Agency). These letters stand for confidentiality, integrity, and availability.
Confidentiality means that private data should remain private and companies should take steps to ensure that
hackers do not access this information. Integrity means that data should be protected from being altered or deleted
by hackers or non-human events. Finally, the availability of data means that all data should be accessible by
authorized parties at appropriate times.

Malware is another name for malicious software. Hackers might carry out harmful tasks by installing such software
with the intention of causing damage to a computer or network. Common types of malware include, but are not
limited to, viruses, worms, logic bombs, Trojan horses, and botnets.
A virus is a program that infects other programs and usually spreads to other programs or computers by copying
itself repeatedly. Most viruses spread due to user behavior. Opening an email attachment from an unknown source
or plugging an infected USB drive into a computer can cause a virus to be installed. Once installed, it can be hard to
remove a virus since it masks itself as another program. Luckily, today’s anti-virus software can catch most of these
threats. While viruses need an application to use as a host, worms are standalone pieces of malware that can disrupt
a network. Like a virus, a worm spreads by copying itself repeatedly, but in the case of worms, human interaction is
not necessary.

Viruses and worms often contain malicious code that will not execute until certain conditions are met. Such code is
known as a logic bomb. A common example is code that will delete or encrypt data after a fixed amount of time. A
developer might also add a logic bomb to their code designed to trigger if they are ever fired from their job or after
a set amount of time. In such cases, their former employer might have to pay them to fix this new “unknown”
problem.

Malware can also be designed to hide its true intent. An app, advertisement, email, or game may seem innocent but,
once opened or installed, deliver a malicious payload. In the Iliad, Homer tells of ancient Greek soldiers pulling a
similar stunt at the gates of Troy by hiding inside a giant wooden horse, presented as a gift. This gift appeared
innocent, but the payload was malicious. This type of malware is therefore known as a Trojan horse. Many Trojan
horses serve as a backdoor to the infected computer, providing attackers with a way to access a device or network
without permission. Not all backdoors are malicious, however. A company may need to access its employees'
devices to provide technical support and security updates, for example.

Another way hackers can cause havoc for a website is the distributed denial-of-service attack (DDoS). In this
method, hackers flood a site with fake requests, making the site’s resources unavailable for legitimate users. This
method does not steal any information or try to install any viruses, it simply hurts the site’s business. Most websites
can handle a lot of traffic, so hackers need to use huge numbers of computers for these attacks, more than a group of
bad actors' computers can handle. Instead of trying to carry out this attack manually, they deploy a large network of

Internet robots (bots for short), known as a botnet. To build a botnet, hackers distribute malware to a user's
computer (or smartphone, smart TV, router, or other connected device), usually in the form of a Trojan horse. This
Trojan horse's payload is a malicious bot. Once installed, the bot connects to a central computer called the
command-and-control server that instructs the bot what to do next. These botnets are commonly used for DDoS
attacks, but they can also be used for other malicious activities like spying and brute-force attacks, among others.
There are many possible motives for a DDoS attack including spite, revenge, and blackmail. Defenses against
DDoS attacks include blocking certain IP addresses and firewalls.

Hackers also try to steal data through phishing—using “bait” to trick users into entering sensitive information like
usernames, passwords, or credit card numbers. Hackers may create a fake site or email that looks identical to a
trustworthy website and try to get users to log in or update their information. Instead of logging in to the real site,
though, this information is sent directly to the hackers, who can easily test these usernames and passwords on
hundreds of other sites in a matter of seconds. Spear phishing targets a specific person or group using pre-existing
knowledge. If phishing is trawling with a wide net then spear phishing is going after one particular fish. One way
users can protect themselves against phishing is by always making sure the URL is correct before entering sensitive
information. Any site can add a subdomain to the beginning of their URL, so https://amazon.com and
http://amazon.ft543ffj.com are completely different domains (the actual site is ft543ffj.com—more about domains
in the next unit). Another way that users can protect themselves is by making sure they never use the same
password for more than one website.

Password strength is equally important. Many users think if they use a number and a symbol in their password
then it will be hard to crack. This is not the case. The main way to increase the strength of a password is by making
it longer. Hackers compile a list of passwords they find every time data is data stolen. If a user's password is on that
list, it takes no time at all to break into their accounts. Hackers can even test all these passwords to see if there is an
at sign (@) in place of an A or a dollar sign ($) in place of an S, so these common substitutions do not increase
password strength. Since length is the main indicator of a strong password, something like “Bhdiu3fbEieef$nei3rf”
would be great, but it is doubtful anyone would—or could—memorize a password like that for every site they visit.
Password management sites—like 1Password.com, LastPass, and KeePass—can be used to generate and store these
random passwords. Another technique is to combine four or more random words into one long word. If one of the
words is obscure, that's even better, so a great password that is easier to remember than random characters could be
“paperelephantchartreusecoconut.” This is longer than the previous example but much easier to remember. It's a
good practice to use a password like this one to log in to a password management site and to have this site store
different, long, and random sets of characters for all other sites. This way, you only need to memorize one
password. It should go without saying that you should keep this password secret—and don't use the example from
this book!

A user can do everything right when it comes to creating a secure and unique password, but that's not always
enough. If a company fails to take proper precautions when storing passwords, it does not matter how strong an
individual's password is. If a hacker gets access to a company's database that stores user credentials in plaintext then
the hacker would have a list of human readable usernames and passwords. Yet another reason to never reuse
passwords! For this reason, passwords should not be stored in plaintext. Instead, only hashed versions of passwords
should be retained. Hashing is the process of running data through a function—such as MD5, SHA-256, or bcrypt
—that takes data of various sizes and returns a fixed length value, the hash. These functions are considered one-
way functions since they are easy to calculate but hard to undo. Regardless of passwords' original lengths and
complexities, all hashed value will look similar. Companies that use hashed passwords never even need to know the
original passwords. They simply store the hashed values. When a user attempts to log in, the attempted password is
run through the same hash function used to store the password, and the two values are compared to each other.

Using SHA256, the password hashes of “paperelephantchartreusecoconut”, “123!”, and “grn734hdf$$fgdh!gs”
would be:

"58CC480580F302B31AC8C42D470DF5C3CC7ABEC35D99098288A5A3AC3B56A449"
"78577E725501C2753D8C1A78E4609EDA072EB7FEE5092F8E45385BE1CC1098DF"
"90CE9D24B12D0F33BBC3F920392A9AF0A7994A59543FE844132EE298C547C1DE"

respectively. All three hashed passwords contain the same number of characters, and any change in the plaintext
passwords would drastically change their hashed values. It is not advisable to use SHA256 or MD5 for hashing
passwords, however, since hackers can quickly compute them. bcrypt is a safer choice when dealing with
passwords.

Cybersecurity is a cat-and-mouse game where attackers are constantly finding new ways to circumvent new
safeguards, including hashing. Besides brute force, hackers can thwart hashed passwords by using a kind of
dictionary attack known as lookup or rainbow tables. These attacks are effective because a given password, say
“123!”, will always return the same hash. To protect against these attacks, passwords can be salted before they are
hashed. A salt is a random set of characters added to the password, resulting is something like “123!34567fdh
!*gj4”. Now the hashed result will look completely different every time “123!” is used. With a long and random
enough salt, lookup and rainbow tables are not useful for cracking passwords.

Multi-factor authentication (MFA) offers a way to protect against hackers who do phish or steal users'
credentials. MFA combines two or more methods of authentication. When exactly two methods are implemented,
MFA is more commonly known as two-factor authentication (2FA). These methods can combine something the
user knows, something the user has, and something the user is. Something the user knows includes a password, a
social security number, security questions, or any other knowledge that only the user should know. Something the
user has includes a phone, a physical ID card, a debit card, a physical authentication token such as Yubikey or RSA
SecureID, or a software authentication token like Authy or Duo. Something a user is includes fingerprints, a face
scan, an iris scan, voice recognition, or even DNA. Using an ATM provides a well-known example of 2FA. The
user needs their debit card (something they have) and their PIN (personal identification number, something they
know) in order to access their bank account. If a bad actor steals your debit card, they cannot take all your money
since they do not know your PIN. Likewise, if MFA is enabled and a hacker has your username and password, they
would not be able to access your account without an additional form of authentication. This other form might be a
six-digit code that changes every thirty seconds on a keychain fob or a text message or call to your cell phone.
Either way, the hacker will not have this information, adding another layer of security.

Encryption
The most basic form of cryptography—methods for sending data securely in the presence of an adversary—is
encryption, which is simply taking text and converting it so that it is illegible. The reverse process—converting the
illegible text back into legible text—is known as decryption. To be able to encrypt and decrypt data, a list of
instructions is needed. A cipher is a pair of algorithms—the lists of instructions—that give details on how to
encrypt and decrypt the data. There is also a shared secret—or key—that is needed to make the encryption harder to
crack.

One famous cipher is the Caesar cipher or Caesar shift where each letter is shifted the same amount. So if the shift
(or key) was set to 1, then “A” would become “B”; “R” would become “S”; “X” would become “Y”; and “Z’”
would loop around to the beginning of the alphabet and become “A.” If the shift was 10, it would move each letter
10 places ahead and “A” would become “K.” To decrypt the message, simply shift the key backwards.
Example:
 Key: 14

Plain text: Computer Science is fun
 Encrypted text: Qcadihsf Gqwsbqs wg tib
This is a very simple cipher to use, but patterns of letters make it simple to crack or decipher. Using computers, this
cipher would be solved in a split second.

Another example of simple encryption is the random substitution cipher. In this cipher, a letter is mapped or
swapped with another letter in the alphabet, so “A” could be mapped to “F”; ‘”B” could be mapped to “Z”; “C”
could be mapped to “A” and so on until all 26 letters were mapped to another letter.

Example:
 ABCDEFGHIJKLMNOPQRSTUVWXYZ

Key: SGPFNEYQUJKRCDVMIZAXHWOLBT
Plain text: Computer Science is fun
Encrypted text: Pvcmhxnz Apundpn ua ehd

This seems much harder to crack than the Caesar cipher, but it also has patterns, which makes it easy to break. This
can be done quickly by a computer, but it can also be done by hand by looking at reoccurring sets of letters and
letter frequency. The letter “E” is the most common letter in the English language, so whatever letter shows up most
in the encrypted text is probably mapped to “E.” If the same three letters appear multiple times, this could be the
word “the,” solving three letters at once.

A more difficult cipher to crack is the Vigenère cipher, which has similarities to the Caesar cipher and dates to the
1460s. As with the Caesar cipher, the Vigenère cipher uses a key to set the amount of letters the message will shift,
but in the Vigenère cipher, the key is much longer and not the same for every letter. If the key was a phrase like
“applesaretasty” then the first 14 characters would shift according to what letter was in the key at that place. The
first letter would shift by “A” or 0, the second and third by “P” or 15, and so on. The fifteenth letter would start
back at the beginning of the key. This process would then repeat itself until the whole text is encrypted.

Even though this cipher is difficult to crack, patterns and letter frequencies can still be used to find the key. The
only way to make it unbreakable would be to have a key that was longer than the text itself, removing any patterns
that arise (one-time pads use this method).

Example (assuming “_” is the 27th letter):

 Key: APPLESARETASTY
Plain text: COMPUTER_SCIENCE_IS_FUN

Encrypted text: CCA_YKEHDKC_XKCTOTWRFKR

A famous example of breaking ciphers and decrypting messages can be seen in the film The Imitation Game, which
tells the true story of Alan Turing, an English mathematician—he would be called a computer scientist today—who
helped crack the German Enigma machine during World War II, allowing the Allies to read encrypted German
messages and shortening the war by several years. A YouTube search will turn up videos that show exactly how the
machine worked and how it was eventually cracked.

When talking about encryption, it is common to refer to two people communicating with each other while another
tries to listen in. Traditionally, these two people are named Alice and Bob while the eavesdropper is called Eve (get
it?). To use any of the previously discussed cipher examples, a shared key is needed that no one else knows. This
type of key is called a secret or private key. If Alice and Bob both know the private key and Eve does not then
encryption and decryption are simple. Eve will not be able to read the message between Alice and Bob, even if she
intercepts it. Without the private key, the message looks like jumbled characters. Since Alice and Bob each use the
same key both to encrypt and decrypt the message, it is known as symmetric key encryption. This method works
well to send secret messages, but the problem is obtaining the private key. What if Alice is in New York and Bob is
in Tokyo? If they try to send the key to each other then Eve may be able to intercept it en route and decrypt any
future messages.

Public key encryption is a system that allows Alice and Bob to publicly publish a key that everyone, including
Eve, can see. One way to think about public keys is by considering padlocks. Encrypting a message using Bob’s
public key is like putting a padlock on the message that only Bob has the key to, so if Alice wants to send an
encrypted message to Bob, she encrypts it using Bob’s public key. Only Bob has the information needed to unlock
the “padlock” and read the message. Since the encryption key is different than the decryption key, public key
encryption is also known as asymmetric key encryption.

Public key encryption works by creating a problem that is computationally hard, like the traveling Salesman
dilemma described at the beginning of this unit. A computer could crack the cipher, but it would take several super
computers hundreds or even thousands of years (Unless and until quantum computers become widely available.
These machines could theoretically make cracking current encryption algorithms trivially easy). Even though public
key encryption is tough to break, it is very simple to use. A problem that is easy in one direction and difficult in the
other is known as a one-way function. Another one-way function, which is used in public keys as well, is clock or
modular arithmetic. Imagine that an analog clock was set to 12:00 then someone moved the hour hand to 3:00. It
might appear that the hour hand was only moved ahead 3 hours, but it could have been moved ahead a full rotation
plus 3 hours which is 15 hours or 2 full rotations plus 3 hours which is 27 hours. It could have been moved ahead an
infinite number of rotations plus 3 hours. It is impossible to know. The only person who has this information is the
person who moved the clock ahead. This problem is easy for the person moving the clock hand but impossible for
anyone who does not know how many rotations were made. In a very broad way, this is how public key encryption
works.

Two of the most commonly used public key encryption algorithms are Diffie-Hellman (named after Whitfield
Diffie and Martin Hellman) and RSA (named after Ron Rivest, Adi Shamir, and Leonard Adleman). Diffie-
Hellman was one of the first public key encryption protocols and dates to the mid-1970s. Diffie-Hellman is
considered a key exchange algorithm, a way to swap the private keys needed for other encryption algorithms.

RSA followed Diffie-Hellman. In addition to asymmetric encryption, it also allows for digital signatures. The

digital signature is an electronic signature that, by using a public key, can be verified to be authentic. Both these
algorithms are integral to security today.

Another application of public key encryption can be seen when browsing the web. It is important to trust the
website being visited and also to have a secure connection, so Eve cannot see—or alter—what is being
communicated between the user and the site. This happens every time https:// is used. The “s” stands for secure and
indicates that the Diffie-Hellman key exchange, RSA, or other methods are being used to secure the connection
through a digital handshake. This process is called Transport Layer Security (TLS). Its predecessor was Secure
Sockets Layer (SSL). TLS is the newer protocol, but this process is still referred to as SSL, even though TLS is
being used. SSL uses a public key by authenticating a Digital Certificate, a trusted third-party file that verifies that
the site is controlled by the legitimate owner. When possible, always use SSL (https) to visit websites. HTTPS
Everywhere is a free and open source browser plug-in released by the Electronic Frontier Foundation and the Tor
Project that forces https over http whenever possible.

Summary
Some of the largest and most profitable enterprises to ever exist in human history are built on the foundation of big
data. In order to keep all this information secure, cryptography and other security practices are indispensable. As
this book goes to press, data security and privacy are front-page news and the subject of heated congressional
hearings. Given the power and profits built on the control of this information, the debate over who owns data, how
it should be protected, and what it can be used for is unlikely to be resolved anytime soon. A basic understanding of
the underlying technology is essential not just for computer users but for citizens. Similarly, networks drive the
modern economy. In the following unit, we'll discuss the networks that connect computers to each other, especially
the network of networks that is foundational not just to computer science but to modern life: The Internet.

Important Vocabulary
Asymmetric key encryption – element of the CIA triad stating that data should be accessible by authorized parties
at appropriate times Availability – a different key is used to encrypt and decrypt a message Backdoor – a secret
way to bypass traditional access to a device or network Botnet – a large network of internet-robots called bots
controlled by a command-and-control server, often used for DDoS attacks Caesar Cipher – a shift cipher where
each letter is shifted the same amount CIA Triad – in information security (InfoSec), the model designed to guide
policies: Confidentiality, Integrity, Availability Cipher – a pair of algorithms that give details on how to encrypt
and decrypt data Computationally hard – a problem that takes too long even for a computer to find the exact
solution Confidentiality – element of the CIA triad stating that private data should remain private DDoS –
distributed denial-of-service attack, hackers flood a site with fake requests, making all the site’s resources
unavailable for legitimate users Decryption – the reverse process of encryption Digital Certificate – a trusted
third-party file that verifies a site as legitimate Digital signature – an electronic signature that, by using a public
key, can be verified authentic Encryption – taking text and converting it so it is illegible Hacker – anyone who
uses their technological skills to solve problems. A malicious security hacker exploits weakness on a computer or
network and can steal or disrupt data Hashing – the process of running data through a one-way function that takes
data of varying sizes and returns a unique fixed length value Heuristic approach – an approach that gives results
that are “good enough” when an exact answer is not necessary Integrity – element of the CIA triad stating that data
should not be altered or deleted by unauthorized methods Key – in cryptography, a shared secret to make
encryption harder to crack Logic bomb – code that has been placed into software that waits to run until specific
conditions are met Malware – malicious software intended to cause damage to a computer or network Modular
arithmetic – using the remainder when dividing, also known as clock arithmetic Multi-factor authentication
(MFA) – using two or more methods for verifying a user NP problem – nondeterministic polynomial time, a
problem that can be verified, but not solved, in polynomial time One-way Function – a problem that is easy in one
direction and difficult in the other P problem – polynomial time, a problem that can both be solved and verified in
polynomial time Phishing – using “bait” to trick a user into handing over sensitive information like usernames,
passwords, or credit card numbers Private Key – a shared secret needed to decrypt a message Public Key – a
system that allows a key to be publicly published Salting – adding a random set of characters to a password before
it is hashed to protect against rainbow table attacks Spear phishing – a type of phishing attack that targets a
specific person or group using pre-existing knowledge SSL – Secure Sockets Layer, issues digital certificates for
websites Substitution Cipher – a cipher where a letter is mapped or swapped with another letter in the alphabet
Symmetric Key Encryption – the same key is used both to encrypt and decrypt a message TLS – Transport Layer
Security, issues digital certificates for websites Traveling Salesman Problem (TSP) – an NP-hard problem that,
when given distances between pairs of cities, seeks to map out the shortest route between many cities and return
back to the original city Trojan Horse – malware disguised to hide its true intent Two-factor Authentication
(2FA) – a subset of MFA where exactly two methods for verifying a user are implemented Virus – a program that
infects other programs and usually spreads to other programs or computers by copying itself repeatedly Worm – a
standalone piece of malware that can disrupt a network by copying itself repeatedly without human interaction

6 - The Internet

“The goal of the Web is to serve humanity. We build it now so that those who come to it later will be able to
create things that we cannot ourselves imagine.” - Tim Berners-Lee

Introduction
On its own, a computer is a useful tool, but when connected to other computers, its potential increases
exponentially. As consequential as the introduction of personal computers was, its impact on society was not as
significant as the introduction of many other technologies, such as the telephone, radio, or the automobile. This
changed with the rise of the Internet. Is there any aspect of modern life that has not been altered by the Internet?

A computer network is a group of computers that are connected so they can share resources using a data link—
either a cable or wireless connection. Networks can vary in size from those serving large businesses with thousands
of computers that are all sharing files to a school with twenty computers to a family with three computers all
connecting to the same home media server. The Internet is a network of these smaller networks connected
according to a specific set of rules that computers use to facilitate their communications with each other. These
rules are called protocols and the one the Internet uses is aptly named Internet Protocol (IP), which works closely
with Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

The Internet is not as new as it may seem. Its origins date to 1969 and an agency of the U.S. Department of Defense
called the Advanced Research Projects Agency (ARPA), which added the word “Defense” to the beginning of its
name in 1972 to become DARPA. This agency created a packet-switching network appropriately known as the
Advanced Research Projects Agency Network, or ARPANET. ARPANET was the first network to use the TCP/IP
protocols that make up the Internet Protocol Suite, which is still used today (but which did not become the standard
until 1982). ARPANET broke data up into smaller, more manageable pieces called packets (or datagrams in
unreliable protocols, such as UDP), which continue to be the basis for digital communication today. Even though it
was decommissioned on February 28, 1990, ARPANET is still considered the foundation of today’s Internet.

The Internet Protocol Suite (TCP/IP Model)
While the Internet uses several communication protocols, it is built on the foundation of TCP/IP. In the early 1970s,
DARPA researchers Bob Kahn and Vint Cerf built on earlier protocols to invent the Transmission Control Protocol
(TCP). While it has been updated over the decades, TCP, combined with Internet Protocol (IP), remains at the heart
of the Internet suite still used today. Because ARPA/DARPA originally funded the development of this model, it is
also known as the Department of Defense Model (DoD Model). There are newer models that share the same name,
but this book uses “Internet Protocol Suite” to refer to this original model. The Internet Protocol Suite contains
four abstract layers. Abstraction—one of this course’s “computation thinking practices”—is an important concept in
computer science. In this case, it means that each layer focuses on its own functions and does not need to know
what the other layers are doing. These layers are the application layer, the transport layer, the Internet layer, and the
link layer.

The Application Layer
The application layer is the top layer of the Internet Protocol Suite. This layer defines rules for different user
application and works closely with the transport layer to determine whether the data needs to be reliable or not.

One service that operates at the application layer is the World Wide Web. While many people commonly refer to
the Web as if it is the entire Internet, they are not the same thing. The Internet has many services, which each use
separate protocols at the application layer. The Web is just one of them. Other important application layer services
and protocols include email (Internet Message Access Protocol or IMAP, Post Office Protocol or POP, and Simple
Mail Transfer Protocol or SMTP), the Domain Name System (DNS), Internet telephony (Voice over Internet
Protocol or VoIP), and file transfer (FTP or SFTP). Numerous protocols exist at the application layer including
The Onion Router (Tor), Bitcoin, BitTorrent, Secure Shell (SSH), and Remote Desktop Protocol (RDP). These
protocols, along with many others, each provide specific services.

Websites display on browsers using the Hypertext Transfer Protocol (HTTP) or Hypertext Transfer Protocol Secure
(HTTPS), which provides an encrypted connection between the browser and website (using SSL/TLS or similar, as
discussed in unit five). For this reason, website addresses always begin with http:// or https://. Although, modern
browsers sometimes hide this part of the address.

Hypertext Transfer Protocol takes its name from Hypertext Markup Language (HTML), the standard language for
creating web pages. A markup language is a way to format text so it stands out—changing colors, fonts, alignment,
etc. It is not a programming language. HTML uses tags that are between angle brackets (< and >) and is usually
paired with Cascading Style Sheets (CSS) and JavaScript. We will return to HTML and CSS in unit seven and
JavaScript in unit eight.

A website is made up of files stored on a computer, also called a server. A server could be a home computer, part
of a large server farm, or anything in between. When a computer requests a specific file (like a website) or service
from a server, it is known as the client. The Internet runs on this client-server model. A client sends a request to a
server then the server sends the requested information back to the client. The client can request the server by using
its unique IP address (IPv4 or IPv6). It would be very tedious to memorize every IP address of every webpage, so
instead, domain names are used.

A domain name is simply a name given or linked to an IP address. These are the website names that are typed into
the web browser, like google.com or wordpress.org. Google’s IP address is 8.8.8.8 (not that hard to remember) and
WordPress's is 74.200.243.254 (among others). Domain names are broken into the top-level domain (TLD) and
subdomains (including the second-level domain (SLD). Top-level domains are the highest level in the DNS
hierarchy. They are the letters which follow the last period in the domain name, including .com, .org, .edu, .net, .co,
and .eu. There are over 1,500 TLDs, which include countries and generic top-level domains, some of which may be
restricted for specific purposes. Domain name assignments are managed by the Internet Assigned Number
Authority (IANA), a non-profit organization which is a department of the Internet Corporation for Assigned Names
and Numbers (ICANN).

Besides the home page, most websites contain many other pages or files. These files and folders use a Uniform
Resource Locator or URL to call or locate specific files from the domain. An example of a URL is
https://www.youtube.com/watch?v=dQw4w9WgXcQ. The domain name of this file is youtube.com. When a domain
name is used on its own, the URL will usually default to opening a file called index.html or home.html, so entering
the domain name https://apcompsciprinciples.com into your browser's address bar will cause it to open the URL
https://apcompsciprinciples.com/index.html. Any domain can also be preceded by a subdomain, which is any
domain that is part of another domain, so pages like https://videos. apcompsciprinciples.com,

https://www.apcompsciprinciples.com, and https://mail. apcompsciprinciples.com are all owned by
apcompsciprinciples.com. Organizations usually use subdomains when they want to allocate unique names to
distinct parts of the organization, such as videos and mail in the examples above. Every domain outside of the top-
level domains are technically subdomains, so apcompsciprinciples is both a second-level domain (immediately to
the left of the top-level domain) and a subdomain of com.

Other parts of the URL include the protocol (usually http or https), the path to the file requested, and occasionally a
port number. Paths dig deeper into the folders that contain the document and follow the top-level domain using
slashes (/). A port number sometimes follows the top-level domain, indicated by a colon. The default ports are 80
for http and 443 for https. These ports do not need to be specified as they are used automatically for these protocols.

When a client requests a file from a server, the first thing the client needs to do is to determine the IP address of the
URL's domain name, which is the function of the Domain Name System (DNS), a protocol on the application layer.
The DNS is one of the smaller networks that make up the Internet and contains many servers that act like phone
books. These computers are called name servers and contain many IP addresses and their matching domain names.
Most of these name servers are owned by Internet Service Providers (ISPs), such as Comcast, AT&T, Time
Warner, Verizon, Cox, and others. If the first name server does not contain the requested domain’s IP address, it
will ask another name server for it. If that name server does not know it, it will ask another name server. This
process will continue until the IP address is found and sent back through the name servers to the client.

Since there are so many IP addresses and domain names, most name servers only contain a small portion of them,
but there are thirteen Root Name Servers that contain every single domain name and IP address in the world. Most
of the root name servers are networks of computers, providing redundancy in case of failure. They are named A–M
and are maintained by a handful of different companies, groups, and universities. A few of these are Verisign,
University of Maryland, U.S. Army Research Lab, and ICANN.

The Transport Layer
After a website's IP address has been obtained, the client’s request can be prepared for transmission to the server by
using transport layer protocols. The Transmission Control Protocol (TCP) breaks down the request into smaller,
more manageable pieces called packets. TCP also numbers these packets, so when they are reassembled (on the
server side), they will be in the correct order. When TCP finishes, the packets are handed off to the Internet Protocol
found on the network layer of the Internet Protocol Suite.

The User Datagram Protocol (UDP) also breaks data down into packet-like structures known as datagrams. UDP
works much like TCP but instead of numbering the packets, UDP sends the datagrams to the server without
verifying whether any or all datagrams reached their destination. This protocol works best when time is of the
essence, such as in video games or real-time audio and video. These applications cannot afford to re-request
datagrams since the moment has already passed.

Since, TCP packets are numbered, it is easy to keep track of missing packets. If the server or host sees that packet
number 25 is missing, it will request it again. Once the packet makes it to the destination, it is reassembled into the
original file. This ensures that all packets eventually make it to the correct destination. Verifying that all packets are
received increases the total time to send all packets, so there is a trade-off. That every packet will eventually arrive
(or that their failure to arrive will be known) makes TCP reliable. A reliable protocol is one that lets the client
know if all packets sent made it to the server. In contrast, when UDP drops packets, they are neither re-requested
nor resent, so this protocol is generally faster but unreliable.

Overall, the Internet is fault-tolerant: Even if there is an error, the system will still work properly. Without this
property, the whole system could fail if a single packet was misplaced, a cable was cut, or a router went down.

The Internet Layer
Once the data is ready to be transferred, the Internet Protocol (IP) creates addresses and attaches them to each
packet, creating a way to keep track of packets as they travel across the physical Internet.
Just as every business and home has a unique address so the post office can deliver mail, every computer and
connected device has its own address, known as an Internet Protocol address or IP address for short. Even though
everything on the computer is stored in binary, IP addresses are usually written in a form that humans can
understand, like telephone numbers. Since every computer, printer, router, smartphone, and assorted device is
connected to the Internet, the number of IP addresses in use is growing fast. Along with domain names, IP
addresses are managed by IANA and ICANN.

Internet Protocol has gone through many versions, but the fourth version (IPv4) routes the most Internet traffic.
IPv4 uses 32-bit addresses, which allow for a possible 232 or 4,294,967,296 possible addresses. These addresses are
broken down into 4 bytes, each separated by a period and displayed in decimal, giving a value from 0-255. An IPv4
address looks something like: 34.203.4.189.

Four billion IP addresses seemed like more than enough back in the early 1980s when IPv4 was created, but with so
many people on the Internet using multiple devices today, they have run out. In the late 1990s the Internet
Engineering Task Force (IETF) came up with an addressing system that uses 128-bits, called IPv6. This allows for
2128 possible addresses, that is more than 3.4 x 1038 possibilities. This number is extremely large, much larger than
the number of grains of sand or even the number of atoms on the planet. There will never be close to that many
addresses. Since writing these addresses in bits require 128 ones and zeros, they are written in hexadecimal and
might look like this: 2001:0db8:85a3:0000:0000:8a2e:0370:7334. Since there are so many unused bytes, zeros can
be omitted and replaced with a double colon: 2001:0db8:85a3::8a2e:0370:7334. Most sites have both an IPv4 and
IPv6 address to prepare for a smooth transition to using IPv6 exclusively, something that most people won’t even
notice when it happens.

Since IP addresses are stored in software, they can change and be deleted. For this reason, all devices that are
connected to a network also have a unique, physical address stored in the computer’s ROM. This address is called
the media access control address, or MAC address for short. Since they are physically added by the manufacturer,
a MAC address can also indicate what brand of device is attached to the address. In practice, though, malicious
actors and others can easily mask or “spoof” MAC addresses.

The Link Layer
The link layer is the Internet Protocol Suite's lowest level. In the TCP/IP Model, this layer includes the protocols
that manage the interface between physically connected nodes on a local network. The intricacies of the link layer
are outside the scope of this course, but protocols included in this layer include the Address Resolution Protocol
(ARP), the Reverse Address Resolution Protocol (RARP), and the Neighbor Discovery Protocol (NDP).

The Physical Internet
Unlike some Internet Protocol Models, TCP/IP does not specifically name a physical layer. Whether or not it's
listed as a distinct layer, the next step in the process is physically transferring binary data from the client to the
server.

Before any of this data can travel anywhere, it must first be converted (or modulated) from ones and zeros to the
appropriate signal (light, electricity, or radio waves). A modem is the device that handles both the modulation, for
outgoing signals, and the demodulation, for incoming signals.

Once the other protocols have done their work, the data is sent to a networking device used to direct Internet traffic
called a router. In home networks, routers are usually plugged into a modem, and it is common to see consumer
products that serve as both router and modem. The newly made packets are sent to this router first. This personal
router then sends the packets to the ISP’s routers, and from here they are sent to many different routers along the
“route” to the client. These packets are trying to find the fastest route possible using IP, so if there is high traffic at
one router, they will take a different path. Much like roadways in the US, if there is a major accident or traffic jam,
the cars (packets) will take a different road. The TCP’s job of numbering and addressing the packets is important in
case some packets don’t make the trip. This is not uncommon. The client will simply ask for the missing packets by
number instead of repeating the entire request. When the server receives these packets, it does the same process in
reverse.

The server first collects the bits and turns them into packets then TCP arranges them in order and turns the packets
back into a message. The request is then processed and sent back to the client in the same manner.

The closest part of the Internet's physical infrastructure, as mentioned above, is the first router that data is sent to.
This router is usually a local business or home router. The data then gets sent to the ISP’s router. For Internet
provided over a cell signal (4G, 5G, LTE, etc.), the router is stored at the cell tower’s location. Once the data
reaches the ISP’s initial point of contact, the packets are then sent through several more routers that are connected
to the previous router by one of three mediums: electricity, light, or radio waves.

Electricity
One way to send these packets from one router to the next is by using copper wires. These copper wires send pulses
that get converted to ones and zeros. Copper wire is found in most of the wires seen when connecting routers over a
short distance and includes telephone wires (dial-up), DSL (another way to use telephone lines), Ethernet (cat5/6
cables), and cable Internet (coaxial). Category 5 and 6 cables are the predominant way to use electricity for
networking today. Referred to simply as cat5 or cat6, these cables use twisted pairs (a method of twisting two wires
together to reduce interference) to send signals over copper wires. There are a few potential downsides to using
these cables. First, the signal can become degraded when sent over a long distance. Second, these wires are affected
by electrical disturbances, such as lightning. Wired networking is usually much faster and more reliable than
wireless, since there is less interference, but it is not nearly as fast as the speed of light.

Light
The fastest way to send packets, especially over long distances, is by using infrared light in the form of hair thin,
transparent fibers called fiber optic cables (either single-mode or multimode). Not only is using fiber optic cables
faster, but they also have a higher bandwidth and are not disturbed by electromagnetic interference. Fiber optic
cables can consist of anywhere from a single pair up to several hundred pairs of fibers that can transmit light pulses
that get converted back into ones and zeros by modems.

The two main types of fiber optic cable are single-mode and multimode cables. Multimode cables are thicker
(about 62.5 microns) than single-mode (about 10 microns) and can send light at different wavelengths through the
same fiber. These extra wavelengths result in higher bandwidth but cause distortion over long distances (more than
a few miles). For longer distances, single-mode cable is used. These are thinner and carry just one wavelength or
mode but can carry a signal across very long distances.

While fiber optic cables are becoming more prevalent in large cities, they are most common in large underwater
systems that connect continents. An interactive map of the cables resting at the bottom of oceans and where they
connect to land can be seen on TeleGeography’s website (https://www.submarinecablemap.com/). Once the data
reaches land, it travels from router to router until it arrives at the correct location. Since this data is traveling at the
speed of light, it takes a fraction of a second to travel from Europe to the United States. Most of the cable's girth is
used to protect the hair-thin fibers that send the data thousands of miles in a split second.

Radio
The final way to transfer data is by radio waves. Radio waves are the part of the electromagnetic (EM) spectrum
from 3 Hz to 3000 GHz. Since these waves exist on the EM spectrum, they travel at the speed of light—in theory.
However the Earth is not a vacuum, so some mediums (gas, water, air, glass) slow the signal down while other
things (cement, wood, humans) absorb some of the signal.
Some frequencies on the electromagnetic spectrum are used for AM and FM radio, broadcast television, satellite
radio, microwaves, GPS, other forms of communication, and of course many Internet related transmissions. These
frequencies are usually assigned by a branch of each country's government, especially since some frequencies do
not travel very far. Lower frequencies travel farther since they face less electromagnetic interference and can better
pass through objects. With so many towers available nowadays, high frequencies can be just as useful. US
frequency allocations are public and are provided by the US Department of Commerce. Most television, cell phone,
GPS, Wi-Fi, Bluetooth, walkie-talkie, and cordless phone signals are found in the UHF (ultra-high frequency)
range, which spans 300 MHz to 3 GHz. Allocations are always changing as old technology becomes obsolete and
new technology becomes more in-demand. The most popular wireless protocols have recently been rebranded as
Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), and Wi-Fi 6 (802.11ax). Wi-Fi 4 works in both the 2.4 GHz and 5 GHz
bands and can reach speeds up to 450 Mbps under perfect conditions. Wi-Fi 5 only uses the 5 GHz band and can
reach speeds up to several Gbps. The newest Wi-Fi standard at the time of writing is Wi-Fi 6. This protocol debuted
in late 2019 and can use all bands from 1 GHz up to 6 GHz, theoretically reaching speeds up to 11 Gbps under
perfect conditions.

Most current cellular devices use a fourth-generation technology called 4G, and some are already moving to the
fifth generation, aptly named 5G. 4G uses bands on the spectrum ranging, depending on the cell carrier, from
600MHz to 2.5 GHz. 4G brought speeds over ten times faster than 3G and paved the way for steaming video, ride-
sharing apps, and more.

5G uses multiple bands of radio spectrum, but the most commonly discussed type is called millimeter-wave 5G.
Millimeter-wave 5G uses frequencies from 24.25 GHz to 52.60 GHz and drastically improves not only bandwidth
but also latency in comparison to 4G. Unfortunately, these speeds come at the cost of needing many more small
cells to make up for the shorter distance that these radio waves can travel without degradation.

Speed
When sending digital data, everything is broken down to ones and zeros—or bits. The number of bits that can be
processed per second is called the bit rate. The broader term bandwidth refers to the amount of resources available
to transmit data and is usually measured in bit rate or frequency. Latency is sometimes defined as the amount of
delay when sending digital data over a network but is more commonly understood as the round-trip time
information takes to get from the client to the server and back. Latency is measured in milliseconds and can be
found by pinging an IP address or URL. Since this data is traveling at the speed of light, latency between North
America and Europe is less than 50 milliseconds, in other words, fast.

Summary
Since its origins as a communication tool for researchers, the Internet has grown to encompass nearly every aspect
of modern life. Built on protocols—sets of rules—that allow computers on many different networks to
communicate with each other, the Internet can seem like an amorphous, non-material thing: a cloud. But all this
information is being sent through a physical infrastructure made up of modems, routers, and servers, each sending
and receiving signals using electricity, light, and radio waves. While the Internet includes numerous protocols and
is more than just the World Wide Web, for many, the Hypertext Transfer Protocol (HTTP)—the set of rules for
transmitting websites—is synonymous with the Internet. In the following unit, we turn to the tools you need to
create your own websites: HTML and CSS.

Important Vocabulary
ARPANET – the Advanced Research Projects Agency Network, the first network to use TCP/IP Bandwidth – the
amount of resources available to transmit data Client – any computer that requests a service Cloud computing –
using a remote server to store files Datagrams – Similar to packets, used in unreliable protocols such as UDP DNS
– Domain Name System, one of the smaller networks that make up the Internet. It contains many servers that act
like phone books Domain Name – a name given or linked to an IP address Fault-Tolerant – a property of IP. If
there is an error, it still works properly FTP – File Transfer Protocol, used for transferring files between a client and
a server HTML – Hyper Text Markup Language, the standard markup language for creating web pages HTTP –
Hyper Text Transfer Protocol, used for websites HTTPS – a secure version of HTTP that uses SSL/TLS IMAP –
Internet Message Access Protocol, used for email Internet – a network of smaller networks connected using
specific sets of rules that computers use to communicate with each other Internet Protocol Suite – Often referred
to as TCP/IP, the four abstract layers in the DoD Model of the Internet IP – Internet protocol, a set of rules for
sending packets over the Internet IP Address – a unique identifier for every device on the Internet IPv4 – the
version of IP that uses 32-bit addresses IPv6 – the version of IP that uses 128-bit addresses ISP – Internet Service
Provider Latency – the amount of delay when sending digital data over the Internet or the round-trip time
information takes to get from the client to the server and back MAC (media access control) Address – a unique,
physical address that is stored in the computer’s ROM Modem – a device that handles both the modulation and the
demodulation of signals Name Server – a server that contains many IP addresses and their matching domain names
Network – a group of computers that are connected so they can share resources using a data link Packets – small
chunks of data used in TCP/IP POP – Post Office Protocol, used for email Protocol – a specific set of rules
Reliable – a protocol that lets the client know if the server received all sent packets Root Name Server – one of
thirteen servers that contain every IP address and its matching domain name Router – a networking device that
routes Internet traffic to the destination Second-Level Domain – the second highest level in the DNS hierarchy,
found directly to the left of the top-level domain in a domain name Server – any computer that provides a service
SMTP – Simple Mail Transfer Protocol Subdomain – precedes the domain name, owned by the domain
https://subdomain.domain.com TCP – Transmission Control Protocol, a set of rules for breaking down requests into
smaller, more manageable, numbered packets Top-Level Domain – the highest level in the DNS hierarchy, found
to the right of the final period in a domain name UDP – User Datagram Protocol, like TCP and usually used for
streaming media URL – Uniform Resource Locator, specifies where to find a file on a domain VoIP – Voice over
Internet Protocol, used for telephony Web (World Wide Web) – the part of the Internet that uses HTTP and
HTTPS

7 – Web Design: HTML and CSS

“A successful website does three things: It attracts the right kinds of visitors. Guides them to the main services or
product you offer. Collect Contact details for future ongoing relation.” - Mohamed Saad

Introduction
Since Tim Berners-Lee first deployed HTTP in 1989—more than thirty years ago—the World Wide Web has
grown to a previously unimaginable scale, and websites have gained ever greater levels of complexity. There are
now many useful tools available to craft complex and aesthetically pleasing websites, including HTML (Hypertext
Markup Language) and CSS (Cascading Style Sheets) editors. A few popular pieces of software for writing and
editing web pages are text editors (most are free or included with operating systems), Adobe Brackets (a free
download), and Adobe Dreamweaver (not free). There are also free frameworks that can be used as a starting point,
such as Bootstrap.

Editors
HTML and CSS can both can be written with nothing more than a simple text editor. That said, countless tools exist
to make the process easier. Some of these tools are built into editors and include features like color coding, auto-
complete, spell check, help finding bugs, and automatically closing things that need to be closed. A few popular
editors include Notepad++, Sublime Text, TextPad, and Brackets.
Some editors also support WYSIWYG (what you see is what you get), which is similar to changing fonts and colors
on Microsoft Word. Dreamweaver is a WYSIWYG editor that will be explored in the next sub-unit.

HTML
Tim Berners-Lee created Hypertext Markup Language (HTML, currently in version 5.2) while working as a
physicist at CERN. Berners-Lee is credited with creating HTML and the World Wide Web (not to be confused with
the Internet) when he sent a March 1989 memo to CERN management titled Information Management: A Proposal.
The original memo called this hypertext system “Mesh,” but Berners-Lee renamed it “HTML” when writing the
code in 1990.

As the name suggests, markup languages like HTML are similar to a draft term paper that an English teacher has
marked up with a red pen. The markups are easily distinguished from the text itself. Instead of a red pen, HTML
uses tags to add markup. These tags are contained inside angle brackets (< and >). Tags can be used to directly
insert content (like images) into pages or can affect any text that is surrounded by an opening and a closing tag
(such as paragraphs and links).

Basic Structure
The file extension .html indicates HTML files, but .htm extensions may also be seen. They're holdovers from the
time when some systems could only use three-letter file extensions. HTML files all follow a similar structure:

The first line defines the document type, which has become much simpler in HTML 5: <!DOCTYPE html>. The next
tag, which surrounds the rest of the document, tells the document that anything between the opening <html> and
closing </html> tags should be read as HTML. This tag is useful since things like CSS and JavaScript can also be
embedded in an HTML file.

The next section is the header of the document, defined by the <head> and </head> tags. This section includes various
metadata and the title of the page that will be displayed by a browser. The <title> and </title> tags are used to define the
title.

The body of the webpage is the final part of the structure. Defined by <body> and </body>, it includes all visible
elements of the page. Many other tags are used in this section. Here are some of the most common:

Attributes
Some tags contain attributes inside the opening tag's (or only tag's) angle brackets. Each tag has specific attributes
that it can use. The site https://www.w3schools.com is a great resource for all available tags and attributes (as well
as for CSS and JavaScript help). A few common attributes include id, class, src, and href. We will return to the id
and class attributes in the CSS sections, but these attributes can be added to HTML tags as shown in these
examples:

Notice that the name of the attribute is followed by an equals sign and the value assigned to it is inside quotes. Also,
multiple attributes can be used by leaving a space between them. Other examples of attributes include:

These examples define the source of an image to display and a hyperlink to reference, respectively.

CSS
Cascading Style Sheets (CSS) is a style sheet language used to describe the presentation—that is the look and
formatting—of a document written in a markup language. The most common application is to style web pages
written in HTML. CSS is designed primarily to enable the separation of document content (written in HTML or a
similar markup language) from document presentation, including elements such as the colors, fonts, and layout.
This separation can improve accessibility, provide more flexibility and control over presentation characteristics,
enable multiple pages to share formatting, and reduce complexity and repetition in structural content, such as by
allowing for table-less web design. CSS also allows the same markup page to be presented in different styles for
different rendering methods, such as on screen or in print, on a specific device, or depending on screen width and
resolution. While the author of a document typically links the document to a specific CSS style sheet, readers can
use a different style sheet, perhaps one on their own computer, to override the one the author has specified.

CSS specifies a priority scheme to determine which style rules apply in case more than one rule applies to an
element. In this so-called cascade, priorities or weights are calculated and assigned to rules, so the results are
predictable.

To define CSS rules, an HTML file can either use the <link> tag to link to a separate file with the extension .css or
use the <style> and </style> tags. When defining CSS rules, state the rule followed by braces ({ and }). Within the
braces, all properties can be refined by listing the name of the property followed by a colon and the new desired
effect. Each line inside the braces ends with a semicolon:

Rules
There are three general types of CSS rules: tag, class, and ID. The first type of rule is the tag rule which will
redefine what an HTML tag looks like, including body, h1, h2, h3, a, div, img, and many more. The word tag here
refers to the HTML tags in the document. There are over 90 available, but only a handful of them will be used
often. A few of the most common ones are body, the heading tags (h1-h6), the anchor tag for links (a), div tags, the
paragraph tag (p), and the image tag for pictures (img). As websites become more complex, more tags will be used.

The class rule will be applied to any HTML tag belonging to a specific class. Their names always begin with a
period. Class rules can be applied to any type and any number of HTML elements. They can even be added to small
parts of elements like paragraphs or headings by automatically adding the tags around the selection. Class
tags can do countless other things, such as putting borders on tags, changing fonts or background colors, aligning
elements, and adding padding or margins.

To add a rule to one specific element, ID rules are used. Since IDs are unique names for elements, each ID must be
different. To create the rule for the ID, name it beginning with the pound/hash symbol (#).

There are also pseudo class selector rules, which include link:, visited:, :hover, and :active. They are usually
preceded by the a tag (e.g. - a: visited) but can be used on any tag (e.g. - h2: hover). The cascading nature of CSS
means that the rules at the bottom of the list happen last, so for links these rules should be created in the above
order. If hover were to be listed above visited in the CSS, then hover would only work if the link had not been
visited yet.

Rules inside of rules can also be used, such as div #container h1. This rule would only be applied to an h1 tag
inside a div tag with the ID “container.” If the same property needs to be added to multiple elements, they can be
named and separated by commas: #container, h1, h2, .highlight.

Defining CSS Rules
So what kinds of things can these different CSS rules do?
Commonly used properties include margin and padding. These modify the box, which is an invisible border around
all tags and is very useful when sizing and laying out a webpage. The box can easily be seen if a border or
background is added to the rule.

By default, a tag's width is 100% of the page, and its height is only as tall as needed to fit the material. These
proportions can be changed using width and height properties. Float determines what side of the page the tag is
aligned to—left by default. Padding refers to the inside of the box and controls how close things are to the inside
edge (think of a padded cell, which keeps the person inside away from the hard wall). Margin is the outside of the
box and sets how close other tags can come to the edge.

@Media Queries
In addition to using CSS to change the look of the page, it can also be used to change the look of many other media
queries. These queries include conditions that will check to see if the user is looking at a print preview, whether
they are in landscape or portrait mode on a tablet or cell phone, and their screen resolution. There are many other
conditions, including the most important one, max-width.

Max-width will check to see how wide the screen is and use the defined styles for this width. This is important
when designing websites that respond to the device being used. Most websites should not look the same on a large
desktop display as on a mobile phone. For example, little or no padding will be displayed on cell phones since real
estate is scarce on such a small screen. Also, images may be different sizes on cell phone screens or even removed
altogether.

To add these media queries, use @Media (min-width:1200px) {…}. The specific type of media would replace the
content inside the parentheses, which is currently set for a minimum width of 1200 pixels. The rules for that media
type would be inserted in-between the braces. This feature is useful when, for example, you need to define what a
website looks like when displayed both in landscape mode and at a specific aspect ratio. Once the media query is
added, add styles while the new media query is selected. The cascading property of CSS will make sure the new
styles take effect since they are below the others on the style sheet.

When defining different styles based on width, a common set of break points are devices larger than 1200 pixels
(large desktops), between 992 pixels and 1199 pixels (regular desktops and tablets in landscape mode), between 768
pixels and 991 pixels (most tablets in portrait mode), and smaller than 767 pixels (most smart phones).

On a desktop, website content will move when the size of the window is changed. To avoid this, a container div tag
(simply a div tag surrounding everything in the site with the ID: container) with a set width is used on the two
largest screen sizes (e.g. width: 950px). Since tablet and smartphone screen sizes cannot be changed, it is
appropriate to use percent of the screen when setting the width of a container div tag (e.g. width: 90%). It is also
important to note that margins and padding will affect the percentage of a tag. This means that if a div tag is set to
100% and other elements around it have padding or margin, the width may be more than 100% of the page. To
ensure that the page cannot scroll to the left or right, make sure that the total width of the elements does not add up
to more than 100%.

Summary
With the skills introduced in this unit, you will be able to start creating your own websites that will adapt to
whatever display they're viewed on, whether that is a giant desktop monitor or a tiny smartphone. HTML and CSS
serve as the backbone of the World Wide Web, and you can write them using a simple text editor or with
sophisticated, specialized programs like Dreamweaver. The original vision of the World Wide Web imagined a
decentralized space where anyone could have their own website, linked to other websites through hyperlinks. With
the rise of Facebook, Instagram, Twitter, and other social media sites, much creative expression on the Internet has
moved into these corporate controlled “walled gardens,” isolated from the wilds of the Web, but by creating our
own websites outside of these corporate silos, we can help to maintain some of this original vision of the Web as a
place where anyone can express themselves. The World Wide Web is undeniably important for contemporary
culture and society, but at an even deeper level, code has come to define our modern economy. Familiarity with the
basics of programming—the topic of the following unit—will provide you with important skills for navigating the
modern economy.

7.5 – Adobe Dreamweaver

“Sure some medical experts say coffee could be a health hazard, but they obviously never built a web site
before!” - Geoff Blake

Introduction
Originally created by Macromedia, Dreamweaver is now developed by Adobe Systems, which acquired
Macromedia in 2005. Dreamweaver is available for both Mac and Windows operating systems. Recent versions
have incorporated support for web technologies such as CSS, JavaScript, and various server-side scripting
languages and frameworks including ASP, ColdFusion, and PHP.

Creating a New Website
Nearly every webpage on the Internet contains more than one file. It might have multiple pages, pictures, style
sheets, or other assets. As a website becomes more complex, the number of files needed to make it work also grows.
To keep these files or assets organized, websites will be stored in folders with many subfolders containing many
other files.

To create a new site, click Site… New Site… on the menu bar. When the
following window comes up, give the site a name next to “Site Name:” This
name will be used inside Dreamweaver and will not be seen anywhere on the
website itself. Next click the folder icon next to the text field labeled “Local
Site Folder:” This folder should be empty. It can be a previously existing
folder, or it can be created when the folder icon is clicked.

Creating New Pages
Once a site has been defined, a folder with the site's files will show up in the Files panel on the bottom right hand
side of the screen. For a new site, this folder will most likely be empty. To add a new page to the site, right click on
the folder and select New File. If the new file is a web page, make sure the file extension is .html. You can also
create new folders by right clicking. A new folder named assets should be created, which in turn will contain four
new folders: images, css, fonts, and js. These subfolders will contain any images, style sheets, unique fonts, and
JavaScript files, respectively.

Views
At the top left of the file window, there are three buttons that let the user change the view of the website. These
views are code, split, and design/live. Code shows behind-the-scenes stuff, such as the html and css code.
Design/live shows what the page will look like in a web browser. Split allows the other two views to be open
simultaneously.

Sometimes it is easier to change content on a webpage in the design view, but the
live view is helpful to get a better idea of how the site will appear in a browser.
Some CSS elements will not show up in the design view, nor will responsive
webpages that change depending on the width of the page. Both design and live
views have their own advantages.

Properties Panel
The properties panel is located at the bottom of the screen. Depending on what is selected on the page, different
properties will be displayed. There are formatting options here for text, such as color and font. Do not use these
options to change the look of text! There are many useful things that show up in the properties panel, including links
and page properties, but not text formatting. Text formatting should be done through CSS.

Adding Pictures and Links
To add a picture, simply save the image into the images folder and then drag the picture onto the page. Use the
properties panel to change the size, ID, source, class, alt tag, and more. There are also tools to modify the image,
crop it, and even open it in Photoshop.

Links are also found on the properties panel. Simply copy and paste any URL into the text field labeled Link. If an
existing webpage on the site is the desired link then drag the target symbol to the HTML file or image on the Files
tab. Alternatively, click on the folder icon and select the file. If you wish to have the link open in a new window or
tab, change the Target dropdown to the desired action.

Forms
The Form dropdown in the Insert tab is an easy way to access form elements, such as check boxes, text fields, radio
buttons, checkboxes, buttons, and more—all of which will be used in the JavaScript unit of this book.

CSS Rules
While in the “CSS Designer” tab, click the plus sign next to the Selector section.
Dreamweaver will automatically try and guess what you are trying to add by looking at
the currently selected element. To make changes, simply delete the text and write the
desired rule.

Class Rules
Once added to the CSS, these classes will show up in the Class dropdown found in the Properties panel. Class rules
can be applied to any type and any number of HTML elements. Remember, the text formatting buttons should not
be used, so class tags are the best way to bold, underline, or italicize things.

ID Rules
To add IDs to elements, find the “ID” text field in the “Properties” panel. To create the rule for the ID, name it
beginning with the pound/hash symbol (#). If the CSS rule for an ID is created before using an ID in the HTML
then this ID will show up in the “ID” dropdown section in the “Properties” panel.

Defining CSS Rules
There are five sections on the right-hand “CSS Designer” Property panel that
will jump down to the corresponding section of the menu: Layout, Text,
Border, Background, and More. Many of the menus are self-explanatory:
type is the font for the specific rule; background is the background; and
border is the border around the rule. There is also a “Show Set” checkbox in
the top right corner of this panel. If this box is checked then only the styles
being used will been shown. To see all styles, make sure this box is
unchecked.

@Media Queries
To add these media queries, simply click the plus sign next to “@Media” in the “CSS Designer” panel. In this pop-
up box, there will be at least one drop-down menu for any given condition. Multiple conditions can be added by
clicking the plus sign that will show up when the cursor hovers over the current condition. This feature is useful
when, for example, you need to define what a website looks like when displayed both in landscape mode and at a
specific aspect ratio. Once the media query is added, add styles while the new media query is selected. The
cascading property of CSS will make sure the new styles take effect since they are below the others on the style
sheet. When break points are added to the media query, they can be seen in the live view (see below image) at the

top of the page.

Bootstrap
Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive, mobile first projects on
the web. Created at Twitter as Twitter Blueprint in 2010 and first released in August 2011, it has since had more
than twenty releases.

The entire framework—as well as all the documentation—can be found
and downloaded at getbootstrap.com. The download contains everything
needed to start a site, including CSS files, JavaScript files, and fonts.
Luckily, Dreamweaver already stores all this information, which can be
accessed by choosing the Bootstrap tab under “New Document”
“HTML.” It is important to have already set-up the website (site… new
site from earlier in this unit), otherwise all the assets will be saved in
whatever the most recent file’s folder is. Uncheck the “Include a pre-built
layout” checkbox to start fresh.
All the Bootstrap files and folders should now be visible in the File tab. This includes a css
folder with a read-only bootstrap.css file, a fonts folder with various files, and a js folder
with a couple JavaScript files. To get the index.html page into the root folder, simply click
file save and rename the blank html page as index.html. It should be in the correct folder
already.

Since the CSS file is read-only, it cannot be modified. This is intentional. Since style
sheets cascade, a new style sheet can be created below the read-only one. To do this, click
the plus sign next to “Sources” in the “CSS Designer” tab and select “Create A New CSS
File.” Save this into the appropriately named “css” folder. Styles can be created or
overwritten here. An appropriate name for this file could be “custom.css.”

Once the Bootstrap files are set up, Bootstrap components can be added to the blank
HTML page (work in the live view to best see these components). A list of components can be found on the “Inset”
tab’s drop-down menu under “Bootstrap Components.”

These components can be added by dragging them into the body in the live view, but they may not respond in the
desired way. To drag a component into another component or tag (div, p, h1, etc.), drag and hover over the element
until the inside edges glow blue. To put the component before or after the element, look for a green bar while
hovering. Again, these might not act in the desired way or end up in the desired position.

To better place components, select the element above or below where it should go and click—don't drag—the
component. A pop-up will appear giving options to place the new component before, after, nested, or—sometimes
—wrapped around the selected element. Likewise, it may be easier to place components in the correct spot by
dragging over the </> symbol and using the DOM representation of the page.

8 - Programming: JavaScript

“To me programming is more than an important practical art. It is also a gigantic undertaking in the
foundations of knowledge.” - Grace Hopper

Introduction
There are numerous programming languages in which software can be written. Low-level languages (binary,
assembly, machine language, etc.) are considered “close to the metal” (that is the hardware) and have little or no
abstraction. While these languages interface directly with the computer, which makes them run quickly, it is
difficult for human beings to read or write them. High-level languages (C, Java, Python, etc.) are easier for humans
to read, which makes them easier to debug. High-level languages also rely on abstraction and already existing
libraries. A compiler or interpreter turns a high-level language into a low-level language before it gets sent to the
hardware.

Since JavaScript cannot stand alone—it needs a web browser to run—many consider it a scripting language and not
a true programming language, but JavaScript should still be considered a high-level language. First introduced in
December 1995, JavaScript was originally developed by Brendan Eich of Netscape Communications Corporation.
Along with HTML and CSS, JavaScript is one of the foundational technologies of the modern Web. JavaScript is a
scripting language with a syntax loosely based on C. Like C, it has reserved keywords and no input or output
constructs of its own. Where C relies on standard I/O libraries, a JavaScript engine relies on the host environment
into which it is embedded, such as a web browser.

Debugging
Depending on the development environment, debugging can prove to be quite difficult. Since errors in JavaScript
only appear in run-time (i.e., there is no way to check for errors without executing the code) and since JavaScript is
interpreted by the web browser as the page is viewed, it may be difficult to track down an error's cause. Today's
web browsers, however, come with reasonably good debuggers. With the arrival of integrated toolbars and plug-ins,
an increasing amount of support for JavaScript debugging has become readily available.

For inexperienced programmers, scripting languages are especially susceptible to bugs. Because JavaScript is
interpreted, loosely-typed, and has varying environments (host applications), implementations, and versions,
programmers should take exceptional care to make sure the code executes as expected.

Development Process
In computer programming, the process of creating and developing software should be both iterative and
incremental. It should be incremental in that it is done in small chunks and iterative in that it continuously repeats
these steps. The main steps in this process are design – implement – test. The design phase consists of
brainstorming and prototyping and is the most creative step in the process. The implement phase is putting the
design into code. Since the design is already set, this phase should be the least creative. The test phase is checking
to see if the code runs properly and finding errors or debugging the program. Since this process is iterative, the
design phase is repeated after the test phase, and the program is constantly updated and improved. This process
takes place every time a new version of software is released.

JavaScript
To insert JavaScript into HTML, you must use the <SCRIPT> tag. To close this tag when the JavaScript is
complete, use the </SCRIPT> tag. JavaScript should be placed somewhere within the body of the HTML code,
depending upon when and where the programmer wants to display their JavaScript program.

As with HTML, the computer does not read white space in JavaScript. Most commands in JavaScript, therefore,
need to end in a semicolon to tell the computer when one command ends and another begins. JavaScript also uses
programming's three basic logic structures: sequence, selection, and iteration. Sequence is the structure that runs
one line after another, in order, without skipping or repeating code. So, after line 1 comes line 2 and after line 1001
comes line 1002. Selection uses if statements to select certain values, and iteration means to repeat a process. In
programming this is accomplished by using loops. We will discuss selection and iteration in more detail below.

Comments are used to let the programmer—and anyone who looks at their code—know exactly what is going on.
The programmer can use comments to define variables more clearly and to specify what they are trying to
accomplish in certain areas of the program. Comments are especially helpful when going back to older projects
after not looking at them for an extended period or when collaborating with others.

Using Variables
Variables are a way to store information. They can store many kinds of data, including text and numbers. Before
they can be used, variables must first be defined. JavaScript uses the keyword var to set up a new variable. The
word following var is the name of the new variable. The programmer may name this variable anything they would
like. The name they choose should be relevant to what is being stored. For example: if the programmer is storing a
string of text that says “Hello, how are you doing today?” then the variable might be called greeting. If the variable
is storing someone’s last name it might be called lastName. Notice that lastName is one word: Variables cannot
have spaces nor can they start with anything except a letter. Also notice that the letter l in lastName is lower case
while the N is upper case. This is called “camel casing” because the first letter is lower case and every new word is
upper case, somewhat resembling a camel's humps. This is one way to avoid spaces. Using underscores is another
way: last_name.

This line of code creates a variable named “greeting” that has nothing stored to it yet.

Strings
One thing a variable can store is a string, which is another way of saying text. A string may contain any character
on the keyboard (even the space bar counts as a character). A string can be identified because it is surrounded by
quotation marks. To create a string, the programmer must use quotation marks. “Hello, how are you?” is an
example of such a string. Any input that is received from a prompt is in string form, even numbers.

This line of code assigns the string “Hello, how are you?” to the variable “greeting.”
Both creating the variable and assigning the variable can be combined into one step:

Numbers
A number differs from a string in that a string cannot be multiplied, rounded, or have any other mathematical
operation applied to it. Another important difference is that, unlike strings, numbers do not have quotation marks
around them.

This command creates a variable named myAge and assigns it the value 17.

Alerts
The programmer can send a message to the user before they access the webpage. In JavaScript, this is called an
alert. An alert pops up in a dialog box on the webpage. To make this happen, use the alert command:

Notice that the parentheses contain a string. They could also contain a
number or a variable. Whatever is written in the parentheses will be
displayed in the alert. The command must end in a semicolon to let the
program know it is finished.
A variable can also be placed inside the parentheses. Remember that
there are no quotation marks around a variable!

Prompts
Prompts are like alerts in that they pop up in a dialog box. The difference between prompts and alerts is that
prompts ask the user for input. Since input is coming into the program, it needs to be stored somewhere. Recall that
variables are used to store information and that all inputs are stored as strings. The prompt(“Enter input: ”,
“Default Text”); returns whatever the user enters into the prompt. To store this input, let’s assign a variable to this
prompt:

This command stores the user's input with the variable userInput.

Concatenation
To combine two stings together, concatenation must be used. Concatenation is the combination of two strings. To
concatenate two strings in JavaScript, use the “+” sign. This operator can be used as many times as needed in the
program:

Converting Strings into Numbers
Remember that any input to the program is stored as a string, so whenever a user inputs something into a prompt, it
is stored as a string. This is a problem if a number is entered into the prompt. For example, if 17 is entered into the
prompt, it will be stored as “17”, a string. In order to apply math to a string, it must first be converted into a
number. The command to do this is parseInt(); and parseFloat(); for integers and decimals (i.e. floating-point
numbers) respectively. Again, this command returns a number, which must be stored somewhere. The programmer
probably does not need to keep the string “17” stored, so whatever variable was used to store it can be written over:

The first line prompts the user to enter their age, which takes the form of a string. This string, which needs to be
converted to a number, is inside the parentheses on the second line. The userAge on the left side of the second line
is the new number.

Basic Math Operations
Now that there are numbers stored, mathematics can be applied to them. First, set up a new variable to store the
solution then assign the equation to this variable. Addition (+), subtraction (-), multiplication (*), and division (/)
can all be used here.

This line creates a new variable called dogAge and sets it to the user’s age multiplied by 7.

Selection
Sometimes it is not necessary to run an entire script on a webpage. There are times when certain conditions need to
be met to run a block of code. For example, if the user inputs their age, there could be a different alert for kids,
teenagers, and adults.

If the user inputs an age below thirteen, they get one message. People between thirteen and seventeen get another
message, and everyone eighteen and older gets another. This allows the computer to decide between multiple cases,
called selection in computer programming. Selection, along with sequence and iteration are the three logic
structures in programming.

If Statements
The way to provide separate selections depending on the user’s age can be accomplished by using if statements.
An if statement begins with the word “if” (notice the lower-case “i”). The condition that needs to be met follows
inside the parentheses. Conditions use the following symbols:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal
to

== Equal to

!= Not equal to

After the parentheses are closed around the conditional statement, braces { } are opened. Notice: There is no semi-
colon after the parentheses are closed! If the conditional statement is true then anything that comes between these
braces will be executed. If the conditional statement is not true, the code in the braces will be ignored.

A snippet of the code for the age program might look something like this:

Else If Statements
If another if statement follows the first (usually conditions with the same variable), an else if can be used—this
operator will connect the statements together. If the first if statement is true then the else if statement will be
ignored. The order of the statements matters. These statements are exactly like if statements except for the word else
before them.

This example might follow the snippet above:

Since the if statement above covers the ages twelve and below, this statement will only cover the ages from thirteen
to seventeen. Why you ask? Well, if the age is twelve or below, the first if statement will be true, so the program
will never get to the else if statement. There can be unlimited else if statements in the code.

Else Statements
The else statement can be used for any condition that is not met using the if or else if statements. The else
statement works a little differently than the others because it does not need a conditional statement: It will only
happen if the other statements are not true. In the age example, the else statement could look like this:

There can only be one else statement connected to each if statement, but the else statement is not necessary, nor is
the else if. But there can never be an else if or else statement without an if statement!

Switch Statements
The switch statement is like the if statement, but rather than responding to conditions, the switch statement runs a
segment of code for different cases. For example, the user might be asked to pick a number from a menu. The
switch statement lets the programmer run different code depending on the user’s input. The same thing could be
accomplished with if statements, but it is much simpler with the switch.

The switch starts with the command:

Notice: The block is opened with the open brace { (not a parenthesis)

someVariable is usually the variable that the user inputs. This variable can be anything from a single letter or
number to a word or phrase. After the opening brace, the variable is compared to the available options and the
appropriate code is run. In the switch, each option the programmer includes to be tested is called a case. To set up a
case, simply write case followed by the desired input. If this desired input is a word or letter then it must be in
quotation marks—unless you are using an existing variable. Numbers do not need quotation marks. A colon
follows, which tells the computer that the code to run starts here. There can be as much or as little code as is
needed. To tell the computer that the code is ending, the line break; is used. Without break;, the computer will not
know the next case is beginning. Here are a few examples:

If there is something that the programmer wants to happen if none of the cases are met then the default case should
be used. Instead of the word case followed by a case, simply write the word default followed by a semicolon.
Remember JavaScript is case sensitive.

Notice that the default case is not followed by the line break;. Since this case must be the last one, it does not need
to tell the computer that a new case is about to begin.

Iteration
Iteration means to repeat a process. In programming, it is accomplished by using loops. A loop is a block of code
that the programmer wants to run more than once. The number of times a loop is run could be different in each
situation. A loop might need to be run an exact number of times (e.g. ten, one-hundred, etc.), or a loop might need
to be run until a certain condition is met (e.g. until a counter reaches a number or until the user picks the correct
answer to a question). Two kinds of loops are for loops and while loops.

For Loops
For loops are the loops that are used to run a loop an exact number of times. For loops have three parts: The user
must first initialize a counter variable. They must set a condition for the loop to keep executing, and they must set
the increment by which the counter changes. The first part initializes a counter variable. The most common name
for this variable is i. The next part is a condition that tells the loop how long to run: This condition would include
the variable that was just initialized. It might look like this: i < 10. This means if i is less than ten, the loop will
continue to execute. The final part of this loop is the increment, which tells how much to increase or decrease the
counter variable. If the programmer wants to increase the loop by five every time it executes, then they would type:
i = i + 5;. To decrease by twenty every time, the programmer would use: i = i – 20; and so on. Since increasing and
decreasing the counter by one is so common, there is a shorthand way to write it: i++ and i--. These three steps are
contained in one set of parentheses, and each of the steps is separated by semicolons.

The block of code that is to be run in every loop is contained in braces. Together, the entire loop looks like this:

While Loops
A while loop is simpler than a for loop. While loops only have one part to them: the condition. For this reason, the
programmer must set up a variable and make sure the condition is eventually met. An example of a while loop is
prompting the user for a password. If the user guesses the incorrect password, the loop will continue to run, not
letting user continue with the rest of the code.

This code sets up two variables, one for the actual password and one for the user’s guess. Notice that the user’s
guess is just set up as an empty string. The user has not guessed anything yet. The while loop has a condition that
says, if the user’s guess and the password are not equal, the loop will continue. Inside the loop is simply a prompt
that asks the user to enter a password, so the program will continue to present the prompt to the user unless and
until they enter the correct password.

Getting Stuck in Loops
The most common error with loops is using a condition that is always true. One case of this is if the programmer
sets up a for loop that starts at one, whose condition is i < 10, and decreases i by one every time. If i loses one every
time then the condition of i < 10 will always be true. Therefore the loop will never end. If the computer gets stuck
in a loop, two things might happen: (1) there might be an alert that never goes away, causing the user to exit the
program, or (2) the computer tries repeatedly to carry out something that will never happen and tells the user that
the program is not responding. Make sure the loops are not endless before executing a program!

Multiple Conditions
Inside things with conditions, like if statements and loops, the programmer might want to have a case where more
than one condition needs to be met or at least one condition of many is met. Here the && (AND) and || (OR)
symbols can be used. The & symbol is found above the 7 key (hold down the shift key) and the | symbol is found
above the \ key (which is found between the backspace and enter keys). In a situation where a variable called age
needs to be between 18 and 25 then the code could look like this:

If the situation called for the age to be either younger than 18 or at least 55, this code would be used:

Many of these connectors can be used in a single conditional statement, as in the following code:

Objects and Methods
JavaScript is an object-based programming language, which means that certain items in the language are stored as
objects and that each of these objects has specific characteristics. Five important objects used in JavaScript are the
Math object, the document object, the string object, the Date object, and the array object. Each of these objects
has two features: properties and methods.

There are two different kinds of objects: objects that need to be set up by creating a new variable and those that can
be used by simply saying the name of the object. The new keyword is used to create a new object to store in a
variable, and this keyword needs to be used in the date and array objects. These objects will be discussed later in
detail. The string object needs to be saved as a variable too, but the new keyword is not necessary. No variable
needs to be set up for the Math and the document objects. Simply say Math or document when using these objects.
Notice that Math is capitalized and document is all lowercase, JavaScript is CASE SENSITIVE.

Properties hold information about the object. In the string and the array objects, one property is length, which
holds the length of the string or array. In the Math object PI is a property that holds the value of Π (approximately
3.14159). In the document object, some properties are bgColor, fgColor, and title. The document object deals with
the webpage itself, so bgColor holds the background color, fgColor holds the foreground color, and the title is the
title of the page. There are many other properties that can be found using a simple web search.

Methods are things the object can do. In the Math object, there are many methods, such as sin, cos, tan, round,
random, abs, and floor. These methods do something to a number. They don’t just hold information like properties
do. In the string object, methods include toUpperCase and toLowerCase. These take a string and do something to
them. They make them either into all uppercase or all lowercase letters.

In the document object, there are the open, write, and close methods. Here the open method does something by
opening the HTML file so the file can be written to using the write method. After the programmer is done writing to
the HTML document, it needs to be closed using the close method.

In the date object, the important methods are getDay, getDate, getMonth, getHours, getMinutes, and getSeconds.
These methods retrieve information, in the form of a number, about the specified part of the date.

The array object, has many methods as well. Some of the common array methods include join, sort, concat, and
reverse. These methods will be addressed deeper into this unit.

String Methods
Like numbers, strings may be manipulated in JavaScript. One common way to manipulate a string is to change it to
all upper-case letters. To do this, we must call a method. Methods will be discussed in more detail later. To use this
method, there must first be a string variable, which is just a variable with a string stored in it. stringVar will be the
variable in this example. The period (.) is the way to call, or carry out, a method. Here the programmer would write
the string variable, then a period, then the method. The output could be saved as another variable, or it could be
placed directly into an alert. The method that is used to change strings to all CAPITAL LETTERS is toUpperCase(
).

Notice that this method does not have anything between the parentheses:

Similarly, there is a way to return the length of a string. .length is the
method that returns the number of characters in a string. Recall that a
character is anything inside the string, including numbers, letters, symbols,
and even spaces. This method can be called the same way as toUpperCase(
), and the result can also be stored as a variable or placed directly into an
alert. Here is an example that finds the length of a greeting:

Here is a project that combines all the concepts learned thus far:

Math Methods
To use one of the Math methods—or any method—the object must be called upon first. If the programmer wants to
use the round method, first they would have to say Math (the object) then use a period to separate the object and the
method. Together it looks like this:

Here is a list of a few Math methods. More can be found in the appendix:
round(numVar); Rounds to the nearest integer

ceil(numVar); Rounds up to the nearest integer

floor(numVar); Rounds down to the nearest integer

abs(numVar); Returns the absolute value

sqrt(numVar); Finds the square root of the number

pow(numVar, numVar); Raises the 1st # to the 2nd #’s
power

min(numVar, numVar, …); Returns the lowest of the numbers

max(numVar, numVar,
…);

Returns the highest of the numbers

random();
Returns a random number between

0 and 1

Notice that the random method returns a number between 0 and 1. On its own, the usefulness of this method is
extremely limited. A programmer is more likely to desire a random integer between, say, 1 and 10. To get this
result, some math needs to be performed on the new number. First, multiply the random number by 10. Now it is a
random number between 0 and 10—still not an integer. Next take the floor of the number—this makes the number
an integer from 0 – 9. Finally, add 1 to the number to make it an integer between 1 and 10. These steps can be
combined into one:

Note that the order of operations does matter here. To change how many random numbers there can be, simply
change the factor by which .random() is being multiplied. To change the first number, add the new starting number
where the 1 is.

Date Object
The Date object is a little different than the Math object in that it cannot be used simply by saying the name of the
object. Like the string object, this object should be stored in a variable. In the string object, the assignment operator
was all that needed to be used. In the Date object, this is not the case. To assign a new instance of an object to a
variable, use the keyword new. When setting up a new instance of an object, the new keyword precedes the name of
the object, which is followed by a set of parentheses, usually empty. A line that causes all the Date object's
information to be stored in a variable called d would look like this:

Now the programmer can use the methods associated with the Date object by placing the dot operator (a period)
between the variable and the method:

This line will store the number of the month in a variable called month. This number will take the somewhat
awkward form of a number from 0 – 11, January being 0 and December being 11. A simple switch statement can
fix this to display the correct month number or name. Similar steps also need to be taken for the day of the week
and hour of the day.

An example of the code to make the date print out properly is on the following pages.

The Date Object - Displaying Date and Time

Arrays
As programs become more complex, more variables are needed. An easy way to keep these variables neatly
organized is with arrays. Programmers can create their own arrays and place whatever they want into them. Once an
array is populated, more elements can be added without problems—unlike other languages.

The first step is to create the array, name it, and define how large it should be. The array itself is just another
variable, so it looks like setting up any other variable. After naming the array, use brackets to define an empty
array:

Now that you have created an array with nothing in it, each element can be defined:

Remember that an array of size 2 has elements 0 and 1. In JavaScript, it is okay to add more elements than the size
of the array as the array will automatically become one element larger. Another way to do the same thing is to add
all the elements when the array is created.

Instead of leaving the brackets empty, put the array's desired content in the brackets:

Since arrays are objects, they contain properties and methods. An important property of arrays is .length. As with
string objects, length returns the number of items in an object. The first index in an array is 0, so the last one is
always one less than total number of elements in the array. This can be written as:

Knowing the length of an array is useful when an element needs to be added to the end of an array and the exact
size is unknown or has changed. Since the last element in an array is length-1, the next element added would be at
length. This can be written as:

length is also used when using a loop to run through every element in an array. A for loop starting at 0 and ending
at the array's length-1 is best suited for an array. The following code will add someValue to every element in
arrayName, regardless of the array's size.

Arrays also have methods, which are useful in many situations. They can save time by eliminating the need to write
code to perform these tasks. Examples include the .sort() and .reverse() methods. Sort arranges the elements in
alphabetical order, and reverse flips the order of the elements in the array. These methods can be used together to
first alphabetize the array and then flip it so the elements store in reverse alphabetical order, like this:

Other useful methods can be found in the appendix. They can do things like combine multiple arrays, add or
subtract elements to the beginning or end of an array while shifting the position of the other elements, remove
elements that have certain values, and so on.

Searches
An array can hold a large list of data, and it is useful to be able to search through the entire list to see if it contains
certain values. Linear search and binary search are two popular search methods. A linear search starts are the
beginning and checks each element of the list one by one until it finds the item it is searching for. This algorithm is
simple to write and is extremely fast if the list is small or the item is near the beginning of the list. If the list is long
and the item is either not in the list or near the end, it can be “expensive,” meaning it takes up a lot of memory. An
advantage of linear search is that the list does not need to be in order.

A binary search works more like a game of higher or lower. By guessing the middle value of a possible range, a
player can reduce the possibilities by half. Doing this repeatedly rapidly narrows down the possibilities, so guessing
50 when trying to figure out a number between 1 and 100 will eliminate half the range. If the solution is lower than
50 then 50 – 100 can be taken out of consideration. Guessing 25 next will cut the range in half again. A binary
search works in the same way, so in order for it to function, the list must already be sorted. Because it doesn't have
to check each item one by one, binary searches are usually less expensive than linear searches, especially with large
data sets. Sorting the arrays first can be expensive, however, so there are tradeoffs between these two methods of
searching.

Functions
There will be times when certain blocks of code might be used in different places in a program. Instead of rewriting
this code multiple times, a function can be created. A function is like a method, except the programmer sets up
exactly what happens when a function runs. The best place to put these functions is in the header of the HTML file.
To create a function, simply write the word function followed by the name you want to give the function. Make sure
the name is not already being used by any JavaScript methods or keywords. The name is followed by parentheses,
which can be used to accept parameters. The function is then opened—like loops and if statements—with a brace.
Inside the function there can be as much or as little code as necessary. The function ends with a return statement
and a closing brace. The return statement is followed by whatever needs to be sent back to the place where the
function was called. For functions that do not need to return anything, simply write the word return; followed by a
semicolon, or leave it out altogether. The function will automatically return with no value when it hits the closing
brace.

Now that the function has been created, it can be used whenever it's desired by using the line: nameTheFunc(); or
whatever the programmer named it.

Like methods, functions can also take one or more parameters. Simply name the parameters in the parentheses and
separate them by commas if needed. A local copy of this variable can then be used anywhere inside of the function.

Note: all the variables in this example are considered local and can only be used inside the function. If fullName is
used outside this function then an error will occur—unless there is another local variable somewhere with the same
name. This error can be avoided by using a global variable that can be seen by the entire code. To make a variable
global, define it at the top of the JavaScript, above any functions.

The only difference between these two examples is “var fullName” is defined as a variable before the function in
the second example. Therefore “var fullName” does not need to be defined within the function. Because the
variable fullName is global in this example, any function in the document can use and modify it.

Recursion
Recursion provides an alternative solution to an iterative problem. Any function that uses an iterative approach can
also be written using a recursive function and vice versa. In programming, recursion is simply a function that
references itself. A recursive function consists of two parts: a recursive call and a base call. The recursive call is the
conditional statement that calls the current method again. The base call is similar to a condition in the iterative
approach. It is the condition that, when met, causes recursive calls to stop being called and functions to start
returning. As with the iterative approach, it is possible to get stuck in endless recursion, albeit resulting in a slightly
different error. The code to find the factorial of a number illustrates how a function can be both iterative and
recursive:

The Tower of Hanoi problem offers another popular example of recursion. In this problem, disks of decreasing size
must be moved from one of three spots to another with the conditions that a larger disk may never be placed on top
of a smaller one and that only one disk may be moved at a time. A quick Internet search will yield many interactive
examples of this game. This game poses the kind of problem that recursion is well suited to since the solution
involves unstacking a few disks then re-stacking them somewhere else many times, each time increasing the size of
the new stack. When written out in code, Tower of Hanoi's recursive solution takes many fewer lines than the
iterative solution, but the tradeoff is that—depending on the programming language—the recursive solution is
slower due to the way in which functions are called.

A Google search for the word “recursion” will return a link at the top of the results that reads, “Did you mean:
recursion,” which links back to a Google search for “recursion.” Hopefully it is clear why this little joke is (or is
not) funny!

Events
Events are like messages or flags that objects can use to tell each other their state. The events discussed here are
ones that tell when an action, such as clicking a button or moving the mouse over a picture, is performed by the
user. Events are used as attributes of HTML tags, where they allow the programmer to run one line of JavaScript.
There are many events, but the ones that will be most useful now are onclick, onmouseover, onmouseout, and
ondblclick. The most common of these is the onclick event, which will run one line of code when added to a button
(or picture—it works with any tag). This event is in the HTML code, not the JavaScript! In other words, the
programmer must manually go into the code and find where the button is located. The easiest way to do this is by
using the split view in the HTML editor. When the button is clicked, it should highlight the button's HTML code.
Now, at the end of this opening tag (before the >) add the line onclick = “yourFunction()”.

If a button has been added previously then this tag already exists. There is no need to write it out again. The other
three events work in much the same way. ondblclick will run the code if the button is double clicked. onmouseover
and onmouseout will run the code when the mouse hovers over the button and when the mouse leaves the button
respectively. It is possible to have more than one event on a single button, such as onmouseover and onmouseout.

Event Listeners
Events work well in some situations, but the examples above use inline elements, which won’t work well when
applying or updating events to multiple elements or pages. Another drawback of events, inline or otherwise, is that
only one of each type of event can be added to any given element. For example, multiple onclick events might not
lead to the desired result, so for this reason, event listeners are more commonly used. Event listeners can be
triggered by any HTML DOM event (such as click, focus, keydown, etc.) and can call a function (or anonymous
function). They can define the way elements are ordered when the event occurs by using bubbling or capture, as
well as other options, which are outside the scope of this unit.

The addEventListener() function is used to add an event listener to an element, such as a button. The parameters
for this function are the DOM event, the function to be run when the event is triggered, and whether bubbling or
capture are to be used (optional). The following example uses the first two parameters.

In this example and the one below, the event listener is added to an element with the ID of “btn”. In the example
above a function named myFunc will be called when the element is clicked. Notice this function does not (and
cannot) use parameters. It is a reference to a function. The function is not yet being invoked or called. To use
parameters, use an anonymous function:

Anonymous functions do not have a name and can include as much code as needed, including calling other
functions that take parameters, unlike the first example.

Document Object
The document object, which is named document, is automatically loaded when the HTML file is opened in a
browser. A useful method in the document object is getElementById(str); This method uses the id attribute of
any HTML tags in the document. For example, if there were an image with the id: myPicture, it could be accessed
using the following code:

Element Objects
Element objects refer to the HTML elements within the document. Some elements are body, h1, p, and input. They
are also called tags. These elements are typically referred to by their unique ID, as was seen above in the method
getElementById(). One important property of events is innerHTML. This property refers to the text in between
the opening and closing tags of an element. In the HTML code: <h1 id=”myH1”> My Heading </h1> the
innerHTML is “My Heading.” Depending on which side of the assignment operator this property is on, it can either
read or write to the document.

In this example, the h1 would change from “My Heading” to “I Just Changed My Heading.”

To save the current text in the h1 tag with the id of myH1 in a variable, the innerHTML would be on the right side
of the assignment operator, as demonstrated in the following example:

Note: If there is text already existing in the innerHTML—as in the first example—and a value is assigned to it then
it will be replaced.

Forms
Another aspect of functions that makes them great tools is their ability to change hundreds of lines of code into just
one. As we've seen above, when events are used, they can only trigger a single line of code. HTML employs forms
when using items such as text boxes, text areas, check boxes, radio buttons, select (dropdown) boxes, buttons, and
many other useful tools. JavaScript can be used to add some functionality to these things. With buttons, the most
important thing is being able to tell the code that it has been pressed. This is one place where events come into play.
Functions allow these events to trigger more complicated actions than a single line of code would be able to carry
out.

Form Options
Besides buttons, other items—such as radio buttons, check boxes, select boxes, and text areas—can also go into
forms. The programmer needs to make sure that these items are in the forms and that the forms are named with an
ID. It would be simpler if there were only one form on any given page. To name a form, just add an id attribute to
the tag remembering that JavaScript is case-sensitive. Most editors automatically give forms and form elements a
default ID. Make sure to check the tag so that there are not two id attributes.

Without JavaScript, form elements do not have any functionality. Using JavaScript, these buttons, boxes, and text
areas can be used to gather information from the webpage. Like forms, these items all need names, so the
programmer can reference them later using their id attributes. Usually, these elements are automatically named
upon insertion.

Once the forms and fields are all named with ids, functions can be created in JavaScript to add functionality. In
most cases, something will happen if one of the checkboxes is checked. For example, if the user is purchasing
something, the function might add to a total. For this type of function, an if statement could be used. First, tell the
computer to look at the open document. Next, tell the computer what element is being evaluated by using
getElementById(). Now that the computer knows what it is looking at, ask the computer if this box is checked or
not. If the box is checked, the computer will return true, and if the box is unchecked, the computer will return false.
Such an if statement would look something like this:

Radio buttons are like checkboxes except for one major difference: Radio buttons are all linked together. In other
words, when one radio button is checked, no other button can be. To keep radio buttons connected, they are stored
in an array. If five radio buttons are added, they will probably have names like R1[0], R1[1], R1[2], R1[3], and
R1[4]. R1 is the name of the array. Each button is stored as an element in this array, starting at zero. To call on an
element, square brackets are used []. To show these radio buttons in an ID, they would be R1_0, R1_1, R1_2,
R1_3, and R1_4. Even though there are five buttons, the highest element is four because they start at zero.

The if statement for a radio button looks like this:

Select (dropdown) boxes work like radio buttons in that the input they collect is saved in an array. The dropdown
box itself is the array, and each option is an element. One attribute of select boxes is selected, which can be true or
false. By using the method .selectedIndex, the index of the element that is currently selected will be returned (it

will return -1 if nothing is selected). The .option property can be used to call attributes of the individual options, but
in most cases, simply using the .value property on the array is enough:

.value returns the selected element's value. Each element's value needs to be put in the array by adding an attribute
or using the property pallet in an editor.

In cases where information needs to be retrieved or sent to a text field, simply assign a value to the text field or
assign the text field to a new variable. Remember that whatever is on the left-hand side of the equals sign is being
assigned a value. To save the content of the text field, type something along the lines of:

To put something into the text area:

With the skills introduced above, you'll be ready to start making websites that are more interactive than those made
with HTML and CSS alone, but the principals of programming—including the development process, the use of
variables, and iteration—will enable you to better grasp how computers “think” and to understand how software
developers approach a problem.

Summary
In this unit we've had a chance to dig into the nitty-gritty of coding. Programming languages come in numerous
flavors, including low-level languages that interface directly with hardware and high-level languages that are easier
for humans to read, write, and debug. JavaScript is one such high-level language—one of the foundational
technologies of the modern web—that you're now well on your way to mastering. While JavaScript is just one
language with its own distinct syntax (loosely based on C), the basic principles of programming, introduced above,
will serve you well no matter which languages you choose to learn in the future. In this unit, we've had a chance to
spend some time with computers at their most technical. In the following unit, we'll take a step back and examine
the social, economic, and cultural impacts of the computing revolution along with the ethical and legal quandaries
posed by these impacts.

Important Vocabulary
AND – basic logic gate where every part of a statement must be true for the entire statement to be true Binary
Search – a searching algorithm, used on sorted lists, that divides the number of elements to search in half until it is
down to one element Constant – used in coding to store a value that cannot be changed Debugging – finding errors
in code Design – Implement – Test – the three steps of the iterative development process Incremental – done in
small chunks Iterative – continuously repeating steps, achieved in programming by using loops Linear Search – a
searching algorithm that starts at the first index and checks each element of the list one by one until it finds the item
it is searching for OR – basic logic gate where any part of a statement can be true for the entire statement to be true
Recursion – a function that references itself and consists of two parts: a recursive call and a base call Selection –
the logic structure in programming that uses if statements to select certain values Sequence – the structure that runs
one line after another in order Variable – used in coding to store a value that can change

9 – Impact of Computing

“The Internet is not a luxury, it is a necessity.” - President Barack Obama

Introduction
Just a few decades ago, computers were oddities, operated by specialists and housed at universities, research
facilities, and large corporations. With the introduction of the personal computer in the 1970s and 1980s, computing
moved into homes, schools, and small businesses. During the 1990s the Internet became mainstream, connecting
these computers—and their users—to each other. The first decade of the twenty-first century saw smartphones and
other always-on devices make this digital connectivity nearly ubiquitous. While there has long been debate about
computing's impact on society—note the Justice Department's 1990s investigation of Microsoft—it is only during
the last decade that society as a whole has really started to grapple with computing's impact on society, both
positive and negative. The mantra of Silicon Valley developers—that they're making the world a better place—
began as a statement of optimistic faith in the power of technology before becoming a cliché and then a punchline.
The beneficial effects of computing are impossible to deny, but it has become increasingly difficult to ignore the
harms that offset the benefits of innovation. Additionally, computer networks have presented challenges to existing
laws, such as those around intellectual property, privacy, and child protection. As computer users and programmers,
we have an obligation to consider the impacts of our actions. We must ask ourselves whether our actions are ethical,
not just legal, and we must learn about the steps we can take to protect ourselves and others, particularly those who
cannot protect themselves, such as children.

Impact: Making the World a Better Place
Computers have provided exciting new tools for expressing creativity, solving problems, and enabling
communication. Two decades into the twenty-first century, there is hardly an area of human activity that remains
untouched by the power of digital computing.

In the photo editing and web design units of this books, we learned specific methods for using computers to
showcase creativity. Many of today's most popular applications—from TikTok and Instagram to GarageBand and
Canva—allow for the creation and sharing of images, videos, music, and more. There is little doubt that these easy-
to-use and inexpensive (or free) tools have transformed popular culture.

As we saw in the compression, security, and programming units, computers can be used to find solutions to
previously intractable issues. From deciding what song to listen to next to finding cures for diseases and sending
humans into space, algorithms have become indispensable for solving problems both small and large.

The true power of computers only became apparent when they were networked together. One of computing's most
significant impacts has been to enable communication and collaboration. Email, text messaging, and video
conferencing have changed how we talk to each other. Services like Facebook and YouTube have transformed how
we relate to our peers, families, celebrities, and politicians.

Digital communication enables new forms of collaboration. Git repositories like GitHub allow coders to work on
programs simultaneously, while students can use tools like Google's G-Suite to coordinate class projects. Thanks to
the Internet, such collaboration can take place among people who live thousands of miles from each other.

Computers also foster innovation and creativity by providing more opportunities for people to display and share
their work more easily. Platforms and software like WordPress, YouTube, and Instagram allow artists and other
creative workers to find audiences and engaged communities that may not have even existed before the rise of
ubiquitous digital communication.

The benefits of easy communication, collaboration, and sharing can be seen clearly in free and open source
software (FOSS). Open source projects can allow people to build on top of existing ideas, focusing on innovation
without the constant need to reinvent the wheel. According to a 2012 estimate, if the FOSS operating system
Debian—including the Linux Kernel, the GNU tools, and thousands of software packages—were to be developed
from scratch, it would cost over nineteen-billion dollars. Other flavors of Linux, like Ubuntu, benefit from not
having to redevelop all this software, as does the commercial operating system MacOS, which shares much of the
underlying code. Projects like the Raspberry Pi, which includes an optimized variant of Debian, and much of the
Internet, which runs disproportionately on Linux servers, would not exist without this spirit of collaboration.

Obstacles: The Digital Divide
Free and open source software reflects some of the most utopian possibilities of the computer revolution, but even
here obstacles remain that prevent certain groups from fully participating. Indeed, a digital divide characterizes the
computing field, holding people back along lines of gender, race, socioeconomic status, geography, disability or
accessibility needs, and more.

One aspect of the digital divide has been access to the Internet itself. Funding for schools to provide on-campus
access has been growing, but having access to the Internet at home seems to be an important indicator of academic
success. Having broadband at home is directly related to socioeconomic status as well as geography since rural
Internet access is often nonexistent, prohibitively expensive, or unusably slow. More affordable home Internet
prices could help narrow this gap, but there are deep political divides as to how to achieve this goal, with proposed
solutions including both decreased and increased regulation, public investment in infrastructure, municipal
broadband, and cooperatives.
Online censorship falls along similar lines as the digital divide in internet access. Large online platforms have
shown algorithmic racial bias when deciding when to leave or remove content that has been flagged as hateful. One
study showed that white men receive more protection from hateful speech than women or people of color! In
policing content, these platforms seem to deploy algorithms that negatively assess language more often used by
minority groups.

The digital divide affects people with disabilities in terms of both access to information and greater online abuse.
Laws exist that require websites and applications to provide certain accessibility options, so for example, a visually
impaired person using a screen reader could still access the resource. Many disabilities, however, are not addressed
by these tools, and compliance is far from universal. Online abuse can also discourage people with disabilities from
using the Internet. More and better tools to prevent such abuse could improve the online experience for people with
disabilities and other groups facing targeted harassment.

Computer science faces a massive and growing gender gap. Only a quarter of programming jobs are held by
women. In 1984, 37 percent of computer science majors were women, but as of 2014 only 18 percent were. A 2019
study predicted that if current trends hold it would take one-hundred years for computer science researchers to
achieve gender parity. This gender gap cannot be explained through any one cause. STEM-related toys have been
marketed mainly to boys, and oftentimes boys have received more encouragement in developing an interest in
technology (programs like Girls Who Code seek to close this early educational gap). And many women who seek to
enter the field have been discouraged by an unwelcoming or even hostile climate, including outright discrimination
and harassment. Whatever the cause, the gender gap has been economically damaging as necessary and lucrative
jobs have gone unfilled. Moreover, engineers, like other people, inevitably work from their own perspectives, which
has overwhelmingly meant male perspectives, leaving potential products undeveloped and potential markets
unserved.

Lack of home broadband along socioeconomic and geographic lines, racial disparities in online censorship and
protection against hateful conduct, lack of accessibility, and the preponderance of male software engineers are only
a few aspects of the digital divide both in the United States and globally. Recognizing these obstacles to everyone's
full and equal participation in the digital world is a first step toward ensuring that everyone can benefit from the
positive impacts of computing. As long as entire groups of people remain underrepresented as creators and users of
technology, the impact of technological innovation will not be able to reach its full potential.

Effects: It's Complicated
In the sections above, we've considered some of technology's positive impacts and the obstacles many face when
trying to participate in the digital realm. Technology's impacts have not, however, been entirely beneficial.
Technological innovation has had many effects on society, culture, and the economy, some of which have been
harmful, intentionally or otherwise. Innovations that were created with the best intentions have had unintended
consequences. Finding the balance and considering the tradeoffs between technology's beneficial and harmful
effects can be tricky. Some recent or emerging technologies that present us with a mix of beneficial and harmful
effects include social media, ride-sharing apps, and virtual reality.

Few technologies have impacted how we communicate in the twenty-first century more than social media, and there
is little doubt that social media has brought many benefits. Sites like Facebook, Twitter, and Instagram have
enabled people to make and maintain connections with many more people, even people who live thousands of miles
away. These sites have also helped introverts connect with people in ways that feel more comfortable and have
helped others to spread social awareness. On the other hand, research has found that heavy social media use can
lead to anxiety, depression, and lower sleep quality. Social media can promote unhealthy comparisons with others,
oftentimes leading to body image issues and cyberbullying. On a broader level, social media has been used to
spread misinformation and outright lies, threatening democratic discourse and institutions throughout the world.
Assessing whether the benefits are worth the cost is no easy task, and there is an enormous amount of evidence to
stack up on either side. When making such assessments, though, it is important to remember that innovations cannot
be considered in isolation. We need to weigh their impacts on society as a whole.

Just as social media has transformed how we communicate, ride-sharing apps seek to transform how we get around.
These apps, however, have both positive and negative economic effects. Many drivers for companies such as Uber
and Lyft like the flexibility that these apps allow. They can set their own hours and supplement income from other
jobs, and more income means more spending, potentially benefitting their communities. On the other hand, if
people choose to use ride-sharing apps rather than ride public transportation, we are likely to see increased
automobile emissions and reduced government funding for transit, leaving those who rely on buses and trains as
their sole means of transportation vulnerable. A full tally of the benefits (e.g., reduced drunk driving, less need for
individual car ownership) and harms (e.g. low wages, increased congestion, lack of accessibility) of ride-sharing
apps is outside the scope of this book and is the subject of a vigorous public debate. As we develop our own
perspectives, though, it is important to consider both sides with a fair mind.

Along with technology's social and economic effects, its cultural impact should not go unexamined. Virtual reality
(VR) is an emerging technology that could have a tremendous cultural effect. People could have the opportunity to
experience other cultures through simulations, broadening their horizons without the need to travel thousands of
miles. They could learn the norms and traditions of other cultures without embarrassing mistakes and satisfy their
curiosity without risk of offending real people. However, if VR becomes a replacement for rather than a supplement
to real cultural exchange then people would lose the kind of immersive experience that enables a deeper
understanding of other cultures. VR tourism could enable hyper-realistic “visits” to historical landmarks without
experiencing the context of the countries where these landmarks are located. Many residents of hyper-touristed
cities like Barcelona or Paris might welcome the reduced traffic, but others would lose the economic benefits of
tourism. Either way, VR offers both the possibility of enabling cultural experiences that would not be possible
otherwise and the threat of supplanting deeper real-world culture exchange that cannot be simulated.

Beyond these three examples, there are countless ways in which new technologies bring both positive and negative
social, economic, and cultural impacts. Smartphones have put powerful computers and the potential of the entire
Internet into our pockets but have also left us distracted, making it difficult to focus. Self-driving trucks might

reduce highway crashes and increase efficiency while also putting millions of drivers out of work. Streaming video
and inexpensive audio-visual equipment allows us to enjoy movies in the comfort of our own home but without the
communal experience of sitting with others in a theater. When we develop new technologies—whether hardware or
software—it is critical that we take a deep look into all the different ways these innovations can affect the world
around us.

Intellectual Property
Let's say you've written the next hot app, recorded a song that you're sure is going to be a smash hit, or written the
great American novel? What stops someone from coming along and copying your innovation? This issue is at least
as old as the printing press, but digital technology makes it even more acute since one of the features of digital
artifacts is that they are endlessly reproducible without any loss of quality. Governments have legislated a variety of
solutions to this problem that are broadly grouped under the umbrella of intellectual property (IP). These are rights
granted to authors and inventors for exclusive control of their creations, usually for a limited period of time. IP
rights seek to promote innovation through the promise of financial gain, but when applied too broadly or for too
long they can have the effect of stifling innovation by preventing the next generation of creators from building on
the innovations of their predecessors. There is a long-running societal debate underway on appropriate levels of IP
protections. What kinds of creations should receive what kinds of protection and how long should these protections
last?

IP rights apply to intangible goods, so navigating them can sometimes be tricky. Following best practices and
knowing existing laws can make it easier to protect your IP while respecting others'.

A patent is one form of intellectual property. Patents allow inventors to exclude others from using their inventions
without permission and can last up to twenty years. Although patents have historically been applied to physical
inventions, they can also be obtained for software. Legal and filing fees for a patent can run to several thousand
dollars, and they can be difficult to defend in court.

Copyright is another form of intellectual property, which protects original forms of expression. In the United
States, software is legally considered as a type of literary work for the purposes of copyright. In the U.S., copyright
applies once a work is fixed in tangible form. It is not strictly necessary to register a work in order to receive
copyright protections. However copyright registration provides for stronger protections under U.S. law and
typically costs around $50. In the United States, copyright can last for the life of the author plus up to seventy years.
The law does not prohibit “fair use” of a copyrighted work. Fair use allows certain exceptions to copyright for
purposes such as education, news, and reviews, among others.

Trademarks protect brand names and logos in order to distinguish one company's product from other products on
the market. Trademarks protect the source of a product rather than the product itself, so as nearly every soft drink
manufacturer on the planet can tell you, there's no law against putting brown bubbly sugar water in a bottle or can
and selling it. If you label your bottles as “Coca-Cola,” however, you can expect to hear from a certain large
corporation's lawyers very soon. It typically costs a few hundred dollars to register a trademark, which can last for a
decade with the option to renew indefinitely.

IP can be a controversial topic. Mark Twain famously believed that copyright should last forever, like other forms
of property, while others argue that high drug prices enabled by pharmaceutical patents lead to countless
unnecessary deaths and so should not exist at all (Drug companies would respond that without the profits enabled
by patents, these lifesaving pharmaceuticals would never be developed in the first place). Many others have staked
out positions between these two extremes. With debates around IP law unlikely to be resolved anytime soon,
developers and artists have worked together with lawyers to create licenses that promote cooperation and sharing.
Two examples of such licenses can be found in free and open source software and Creative Commons.

Free and open source software allows you to use and build upon others' work and to allow others to use and build
upon your work. The original free software license, the GNU General Public License (GPL), was written by
Richard Stallman in 1989. It allows anyone to use, modify, or sell the licensed software for any purpose. The GPL

is a “copyleft” license, which means that any new software built by modifying the original source code must also be
licensed under the same terms. In this way, it uses copyright not to restrict access to IP but to promote cooperation.
Some newer FOSS licenses, such as the BSD License and the Apache License are “permissive,” that is they don't
impose copyleft's share-alike conditions on derivative works. Whatever license is used, having access to the source
code of free and open source software has security benefits since it is easier find—and fix—backdoors and other
vulnerabilities.

Creative Commons is a non-profit organization founded in 2001 by IP lawyer Lawrence Lessig and others. It
offers six main licenses that promote sharing of copyrighted works. Creative Commons licenses allow creators to
permit others to use their work, subject to certain conditions, without the need to seek permission. Creative
Commons licenses function much like open source licenses and give creators an array of options that include
allowing commercial or non-commercial use, permitting modifications of the work with or without the requirement
to share-alike (imposing the same license on derivative works), and requiring or not requiring that attribution be
given to the original author. In this way, Creative Commons allows creators to open up their work to be reused and
remixed in a flexible and easy-to-understand manner.

Ethics
When designing software and using computers—as in other aspects of life—there are clear laws in place that
prohibit certain actions. Using a computer to steal, spread malicious software, or plagiarize others' work is illegal,
and breaking laws comes with consequences, including the possibility of criminal prosecution or civil penalties.
However, the law provides, at best, a bare minimum standard of conduct. Just because something is legal doesn't
make it right.

Ethical computing demands that as users and developers we hold ourselves to a higher standard. Ethics refers to
the principles, values, standards, and practices that guide individuals and groups in doing what is right. Bullying,
using data for nefarious purposes, or gaining access to systems that you don't have authorization to access may or
may not be illegal, depending on the circumstances, but these activities are probably not ethical. These examples are
relatively clear but other ethical questions can be more muddled, and philosophers have argued since ancient times
about which principles should guide moral values. Should we seek the greatest good for the greatest number, as
utilitarians insist, or should we follow some version of the golden rule and do unto others as we would have them
do unto us? These questions are not easy to resolve, but by weighing them we can develop our own personal and
collective values. With this moral framework, we will have a better capacity to design innovations that take ethics
into account.

Privacy and Security
The concepts of privacy and security are often confused, and they are often violated simultaneously, as during a
data breach. While related, they are distinct concepts. Privacy deals with your personal information, how it is
stored, and how it is shared. Security, on the other hand, refers to the steps companies take to protect your data.
Protecting our privacy and security online often comes with tradeoffs, such as loss of convenience, but responsible
computer users should not ignore these concerns.

How a company deals with personal data is usually spelled out in a lengthy end-user license agreement (EULA)
that most people agree to without a second thought. Since EULAs are generally long, opaque, and purposely
confusing, insisting on reading each of these legally binding agreements would make participating in online life
virtually impossible. When you click “agree,” however, you may be giving permission for a company to sell your
data or to use it for its own profitable activities, such as targeted advertising, which may feel like a violation of your
privacy. In other cases, your data might be sold without even this nominal form of consent, or it might be stolen in a
data breach.

Even though many of these privacy violations are at least technically legal, there are several steps you can take to
help safeguard your privacy online. These safeguards include taking action to limit sites from tracking you. One
way to limit such tracking is by using a private browser that does not store cookies across sites. Another is by using
a virtual private network (VPN) or related service to hide your IP address. On mobile devices, you can check your
privacy settings to ensure that you have not given apps permission to collect unnecessary data, including location,
contact information, or microphone and camera access. Both iOS and Android let you specify these permissions at
the app level and ask that you accept them when the app is installed or first opened.

Deliberately long and confusing EULAs have done little to help consumers make informed choices about their
personal data online. For many companies, protecting users' privacy is not a priority. Indeed, surveillance of user
behavior has in many cases become central to their business models. As public opinion has begun to grapple with
this reality, some laws have been passed to help protect personal data. The Children's Online Privacy Protection Act
(COPPA), a U.S. federal law, protects children under the age of 13. The California Consumer Privacy Act (CCPA)
applies to the largest state in the United States, where many tech companies are based, and the European Union's
General Data Protection Regulation (GDPR) protects personal data both in and outside the world's largest single
market. Each of these laws are unique, but they all aim to protect users and to provide more transparency into online
companies' data collecting practices.

Corporate respect for user privacy is a necessary but not sufficient element of protecting personal data. If bad actors
steal your private data then a company's best intentions are irrelevant. That's why security is also important. As
discussed in Unit Five, hackers have many ways to access your data ranging from your mistakes (such as using
weak passwords or falling for phishing schemes) to companies' failures to provide proper safeguards (such as
storing sensitive data in plaintext). There are obvious things you can do to improve your security, including not
reusing passwords, using multi-factor authentication where available, and learning to recognize phishing attempts.
Unfortunately, you don't have much control over companies' practices. You can try to do business only with
companies that have a solid track record of effective security, and you can hope companies follow existing laws and
regulations intended to ensure that they safeguard personal data. As the number of high-profile data breaches
increases, more companies are hiring Chief Information Security Officers (CISOs) in order to avoid these
embarrassing and sometimes costly mistakes.

Storing data in “the cloud,” that is on distributed servers, raises its own questions in terms of privacy and security.
Cloud computing is definitely convenient. It is easy to use, reliable, globally available, and cheaper to scale, but it is

important to consider potential risks to privacy and security. There are trade-offs between cloud storage and
keeping data on machines that you control. A few questions to think about when deciding whether to use cloud-
based storage are who owns the data, can the service provider access the data, how often do they back up the data,
what privacy and security measures do they have in place, can they use the data to advertise, and are you giving up
privacy protections by putting your data into the cloud.

Whenever we make such decisions we face tradeoffs between privacy, security, convenience, and cost. Each person
or group will feel comfortable with a different balance—and this balance will change depending on what kind of
data we're dealing with. Many people will feel much more strongly about the privacy of their medical data or the
security of their bank accounts than they will about a birthday message to their grandmother. Still, it is impossible
to find the balance that is right for you if you're not informed about the available options and their tradeoffs.

Summary
Computers have become—for better or worse—an inescapable part of modern life. The benefits of the computing
revolution are impossible to deny. Communication, sharing, and collaboration have been made easier and richer by
the presence of computers in our life. Still, in many areas of life, the effects of computing have been murkier. The
social, economic, and cultural effects of networked computers have been both positive and negative, and we would
do well to keep these mixed effects in mind when evaluating new technologies. IP law both protects and sometimes
stifles innovation, which has led to efforts to reform or add flexibility to copyright and other forms of intellectual
property. Ethical computing demands that we, as users and developers, hold ourselves to a higher standard than
what is simply legal, and as users and developers, we have an obligation to protect our own and others' security and
privacy. In these areas, as in others, there are not always easy answers. Our decisions involve tradeoffs, but if we're
informed and thoughtful about the impact of our actions, we can work to find a balance that we're comfortable with.

In the preceding nine units, we've had the opportunity to become acquainted with the foundations of computing and
to learn a set of practical skills that will enable you to use computers more creatively and effectively. If you've
made it this far, you have become a better informed and more skilled computer user, but you have also gained skills
and knowledge that could make you a better artist, a more productive worker, and a more informed citizen.
Computers have become central to modern society in a way that few imagined even a few decades ago. By
mastering the principals of computer science, you are now better equipped to navigate the society we all share.

Important Vocabulary
Copyright – a form of intellectual property, which protects original forms of expression Digital Divide – the gap
between those who have access to technology and those who do not Ethical computing – demands that users and
developers hold themselves to a higher standard. Refers to the principles, values, standards, and practices that guide
individuals and groups in doing what is right EULA – end-user license agreement Patents – allow inventors to
exclude others from using their inventions without permission, can last up to twenty years Privacy – deals with
your personal information, how it is stored, and how it is shared Security – refers to the steps companies take to
protect your data Trademarks – protect brand names and logos in order to distinguish one company's product from
other products on the market VPN – virtual private network

Suggested Reading
Lawrence Lessig. Free Culture: How Big Media Uses Technology and the Law to Lock Down Culture and Control
Creativity. New York: Penguin, 2004. Steven Levy. Hackers: Heroes of the Computer Revolution. Sebastopol, CA:
O'Reilly Media, 2010. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism.
New York: NYU Press, 2018. Jenny Odell. How to Do Nothing: Resisting the Attention Economy. Brooklyn, NY:
Melville House, 2019. Cathy O’Neil. Weapons of Math Destruction. Largo, MD: Crown Books, 2016. Eric S.
Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary.
Sebastopol, CA: O'Reilly Media, 1999. Astra Taylor. The People's Platform: Taking Back Power and Culture in the
Digital Age. New York: Metropolitan Books, 2014. Siva Vaidhyanathan. Intellectual Property: A Very Short
Introduction. Oxford: Oxford University Press, 2017. Shoshana Zuboff. The Age of Surveillance Capitalism: The
Fight for a Human Future at the New Frontier of Power. New York: PublicAffairs, 2019.

Appendix - JavaScript Objects

String Object
var yourVar = “a string”;

yourVar.METHOD();

String Object Properties

Property Description

length Returns the number of characters in the string

String Object Methods

Method Description

toUpperCase() Returns the string in all uppercase letters

toLowerCase() Returns the string in all lowercase letters

charAt(int) Returns what character is at the specified index

substring(int1, int2)
Returns the string from index int1 to

index int2 -1

substring(int) Returns the string from index int to the last character of the string

concat(str1, str2, …) Combines two or more stings together

sup() Changes the string into a superscript

sub() Changes the string into a subscript

parseInt(str) Changes the string into an integer

parseFloat(str) Changes the string into a floating-point number (decimal)

Math Object
Math.METHOD();

Math Object Properties

Property Description

E Returns Euler's constant (approx. 2.718)

LN2 Returns the natural logarithm of 2 (approx. 0.693)

LN10 Returns the natural logarithm of 10 (approx. 2.302)

LOG2E Returns the base-2 logarithm of E (approx. 1.414)

LOG10E Returns the base-10 logarithm of E (approx. 0.434)

PI Returns PI (approx. 3.14159)

SQRT1_2 Returns the square root of 1/2 (approx. 0.707)

SQRT2 Returns the square root of 2 (approx. 1.414)

Math Object Methods

Method Description

abs(num) Returns the absolute value of a number

ceil(num) Returns the value of a number rounded upwards to the nearest integer

floor(num) Returns the value of a number rounded downwards to the nearest integer

round(num) Rounds a number to the nearest integer

min(num1, num2, …) Returns the number with the lowest value of x and y

max(num1, num2, …) Returns the number with the highest value of x and y

sqrt(num) Returns the square root of a number

pow(num, num) Returns the value of x to the power of y

random() Returns a random number between 0 and 1 (excluding 1)

sin(num) Returns the sine of a number

cos(num) Returns the cosine of a number

tan(num) Returns the tangent of an angle

Document & HTML Objects
document.METHOD();
Document Object Properties

Property Description

bgColor Sets or returns the color of the background

fgColor Sets or returns the color of the foreground

title Returns the title of the current document

cookie Sets or returns all cookies associated with the current document

domain Returns the domain name for the current document

lastModified Returns the date and time a document was last modified

referrer Returns the URL of the document that loaded the current document

URL Returns the URL of the current document

Document Object Methods

Method Description

getElementById(“id”) Returns the element of a specific HTML tag using specified ID

blur() Takes focus off the element

focus() Gives focus to the element

click() Simulates a mouse click on the element

Element Object Properties

innerHTML Sets text in between the opening and closing of specific HTML tags

style Sets or returns the value of the style attribute of an element

className Sets or returns the value of the class attribute of an element

Date Object

var yourObj = new Date();

var newVar = yourObj.METHOD();

Date Methods

Method Description

Date() Returns today's date and time

getDate() Returns the day of the month from a Date object (from 1-31)

getDay() Returns the day of the week from a Date object (from 0-6)

getMonth() Returns the month from a Date object (from 0-11)

getFullYear() Returns the year, as a four-digit number, from a Date object

getHours() Returns the hour of a Date object (from 0-23)

getMinutes() Returns the minutes of a Date object (from 0-59)

getSeconds() Returns the seconds of a Date object (from 0-59)

getMilliseconds() Returns the milliseconds of a Date object (from 0-999)

getTime()
Returns the number of milliseconds since midnight Jan 1, 1970. Also, known as Internet

Time.

Array Object
var yourArray = [];
yourArray[0] = something;
yourArray[1] = somethingElse;
...
yourArray.METHOD();

Array Object Properties

Property Description

length Returns the number of elements in the array

Array Object Methods

Method Description

concat(A1, A2,...) Combines two or more arrays and returns an array

reverse() Reverses the order of the array and returns an array

join(str)
Changes the array into a string and separates them with the specified string and returns a

string

sort() Rearranges the array in alphabetical or numerical order and returns an array

push() Adds new elements to the end of an array, and returns the new length

pop() Removes the last element of an array, and returns that element

shift() Removes the first element of an array, and returns that element

unshift() Adds new elements to the beginning of an array, and returns the new length

splice(num and/or str) Adds/Removes elements from an array

slice(int1 , int2) Selects a part of an array, and returns the new array from index int1 to index int2-1

Events
Place the event followed by an equal sign and a function inside of an HTML tag.
<SOMETAG ... anEvent = “yourFunction()”>

Event Description

onclick When the mouse is clicked

ondblclick When the mouse is double clicked

onkeypress When a key on the keyboard is pressed

onkeydown When a key on the keyboard is pressed down

onkeyup When a key on the keyboard is released

onload When the page is loaded

onreset When the refresh button is pressed

onresize When the page is resized

onselect When text on the page is selected

onsubmit When the submit button is pressed

onunload When the page is closed

onmouseover When the mouse is over the element

onmouseout When the mouse is taken off an element

onmouseup When the mouse button is released

onmousedown When the mouse button is pressed down

onmousemove When the mouse moves

onerror When an error occurs on the page

Important Vocabulary

Abstraction – reducing information and detail to facilitate focus on relevant concepts
Additive Color – a color model where no light is black and the combination of all light is white, like RGB
AND – basic logic gate where every part of a statement must be true for the entire statement to be true
Application – almost everything on the computer except saved files and the operating system, including word
processors, photo editing software, web browsers, games, and music programs
ARPANET – the Advanced Research Projects Agency Network, first agency to use TCP/IP
ASCII – American Standard Code for Information Interchange
Asymmetric Key Encryption – a different key is used to encrypt and decrypt a message
Atomic transaction – transaction where all components must be carried out before the transaction is considered
complete such that all occur or none occur
Availability – element of the CIA triad stating that data should be accessible by authorized parties at appropriate
times
Backdoor – a secret way to bypass traditional access to a device or network
Bandwidth – the amount of resources available to transmit the data
Big Data – sets of data that are larger than a consumer software application can handle
Binary – base 2, number system that uses 0, 1
Binary Search – a searching algorithm, used on sorted lists, that divides the number of elements to search in half
until it is down to one element
Binary Tree – a data structure that can, at the most, have two nodes or “branches”
BIOS – Basic input/output system
Bit – each number in the binary system, 0 or 1
Bit Depth – refers to the amplitude of the analog wave and specifically to the number of bits used for each sample
Bit Rate – the number of bits that can be processed per second
Boolean Logic – a branch of algebra where variables can only have two values: true or false
Botnet – a large network of internet-robots called bots controlled by a command-and-control server, often used for
DDoS attacks
Byte – 8 bits
Caesar Cipher – a shift cipher where each letter is shifted the same amount
Central Processing Unit (CPU) – carries out every command or process on the computer and can be thought of as
the brain of the computer
CIA triad – in information security (InfoSec), the model designed to guide policies: Confidentiality, Integrity,
Availability
Cipher – is a pair of algorithms that give details on how to encrypt and decrypt the data
Client – any computer that requests a service
Cloud Computing – using a remote server to store files
CMYK – color model used for printing. Stands for cyan, magenta, yellow, and black (key), where the number
associated with each letter is the percentage of each color used
Codec – a computer program that encodes or decodes
Computationally hard – a problem that takes too long even for a computer to find the exact solution
Computer – an electronic device that processes data according to a set of instructions or commands, known as a
program
Confidentiality – element of the CIA triad stating that private data should remain private
Consistency – in databases, refers to the fact that information from one table does not contradict itself in any other
table throughout a database

Constant – used in coding to store a value that cannot be changed
Copyright – a form of intellectual property, which protects original forms of expression
Core – the central processing unit (CPU), the main memory, the motherboard, and the power supply
CSS – Cascading Style Sheets, redefines mark-up in HTML
Datagrams – Similar to packets, used in unreliable protocols such as UDP
DDoS – distributed denial-of-service attack, hackers flood a site with fake request making all the site’s recourses
unavailable for legitimate users
Deadlock – when, in a database, two transactions are trying to lock the same row and neither can continue until the
other is complete
Debugging – finding errors in code
Decimal – base 10, number system that used 0-9
Decryption – the reverse process of encryption
Design – Implement – Test – the three steps of the iterative development process
Dictionary – a key in metadata explaining the instructions to encode or decode compressed data
Digit – each number in the decimal system, 0-9
Digital Certificate – a trusted third-party file that verifies a site as legitimate
Digital Divide – the gap between those who have access to technology and those who do not
Digital signature – an electronic signature that, by using public key, can be verified authentic
Discarding Data – a type of lossy compression that removes unneeded data with no way to get that data back
DNS – Domain Name System, one of the smaller networks that make up the Internet. It contains many servers that
act like phone books
Domain Name – a name given or linked to an IP address
Encryption – taking text and converting it so it is illegible
Ethical computing – demands that users and developers hold themselves to a higher standard. Refers to the
principles, values, standards, and practices that guide individuals and groups in doing what is right
EULA – end-user license agreement
Fault-tolerance – the ability for a system to continue to run properly even if one piece fails
Fault-Tolerant – a property of IP. If there is an error, it still works properly
Fixed-length Code – blocks of code that are always the same size
FTP – File Transfer Protocol, used for transferring files between a client and a server
Graphical User Interface (GUI) – an interface that uses images to represent a system's folders and files
Hacker – anyone who uses their technological skills to solve problems. A malicious security hacker exploits
weaknesses on a computer or network and can steal or disrupt data
Hardware – the physical parts of the computer, including devices such as the monitor, keyboard, speakers, wires,
chips, cables, plugs, disks, printers, and mice
Hashing – the process of running data through a one-way function that takes data of varying sizes and returns a
unique fixed length value
Heuristic approach – an approach that gives results that are “good enough” when an exact answer is not necessary
Hexadecimal – base 16, number system that uses 0-9 and a-f
HTML – Hyper Text Markup Language, the standard for creating web pages
HTTP – Hyper Text Transfer Protocol, used for websites
HTTPS – a secure version of HTTP that uses SSL/TLS
Huffman Tree – a prefix free binary tree that is the most efficient way to compress individual characters
Idempotency – when an operation results in the same end result no matter how many times it is performed
IMAP – Internet Message Access Protocol, used for e-mail
Incremental – done in small chunks

Input and output (I/O) devices – how the user interacts with the computer
Integrity – element of the CIA triad stating that data should not be altered or deleted by unauthorized methods
Interframe Compression – a video compression that re-uses redundant pixels from one frame to the next, also
known as temporal compression
Internet – a network of smaller networks connected using a specific set of rules that computers use to communicate
with each other
Internet Protocol Suite – Often referred to as TCP/IP, the four abstract layers in the DoD Model of the Internet
Intraframe Compression – a technique used by compressing each frame of a video, also known as spatial
compression
IP – Internet protocol, a unique address for every device connected to the Internet
IP Address – a unique identifier for every device on the Internet
IPv4 – the version of IP that uses 32-bit addresses
IPv6 – the version of IP that uses 128-bit addresses
ISP – Internet Service Provider
Iterative – continuously repeating steps, achieved in programming by using loops
Key – in cryptography, a shared secret to make encryption harder to crack
Keys – a database column that holds a unique value that distinguishes each record from others
Latency – the amount of delay when sending digital data over the Internet or the round-trip time information takes
to get from the client to the server and back
Linear Search – a searching algorithm that starts at the first index and checks each element of the list one by one
until it finds the item it is searching for
Logic bomb – code that has been placed into software that waits to run until specific conditions are met
Lossless – data compression that does not lose data during compression
Lossy – data compression that loses data during compression
MAC (media access control) Address – a unique, physical address that is stored in the computer’s ROM
Main memory – memory that temporarily stores information while the CPU is actively processing it, also called
RAM
Malware – malicious software intended to cause damage to a computer or network
Metadata – additional data about the main data, usually at the beginning of a file
Modem - a device that handles both the modulation and the demodulation of signals
Modular arithmetic – using the remainder when dividing, also known as clock arithmetic
Motherboard (logic board) - the standardized printed circuit board that connects the CPU, main memory, and
peripherals
Multi-factor authentication (MFA) – using two or more methods for verifying a user
Name Server – a server that contains many IP addresses and their matching domain names
Network – a group of computers that are connected so they can share resources using a data link
Nonvolatile – does not need a power supply. Information is physically written to the device
NP problem – nondeterministic polynomial time, a problem that can be verified, but not solved, in polynomial time
Nybble (or Nibble) – half of a byte, 4 bits
One-way Function - a problem that is easy in one direction and difficult in the other
Operating System – software that provides common services to other programs, manages hardware and software
resources, and provides the visual representation of the computer
OR – basic logic gate where any part of a statement can be true for the entire statement to be true
P problem – polynomial time, a problem that can both be solved and verified in polynomial time
Packets – small chunks of data used in TCP/IP
Patents – allow inventors to exclude others from using their inventions without permission, can last up to twenty

years
Peripherals – the input and output (I/O) devices and the secondary memory
Phishing – using “bait” to trick the user into entering sensitive information like usernames, passwords, or credit
card numbers
Pixel – short for picture element. The basic unit of color on a computer display
Pixelation – when individual pixels are too large and the image begins to look blocky
POP – Post Office Protocol, used for e-mail
POST – Power-on self-test
Power Supply – converts AC electricity to the lower voltage DC electricity that is needed to power the computer
Prefix-Free Code – a specific type of variable-length code that does not use pauses
Privacy – deals with your personal information, how it is stored, and how it is shared
Private Key – a shared secret needed to decrypt a message
Protocol – a specific set of rules
Psychoacoustics – a sub-branch of psychophysics that deals specifically with sound
Psychophysics – a branch of psychology that focuses on the fact that the human eye or ear cannot perceive the loss
of certain data
Public Key – a system that allows a key to be publicly published
Random Access Memory (RAM) – memory that can be retrieved or written to anywhere without having to go
through all the previous memory
Raster – an image format that represent data in a grid of dots or pixels
Recursion – a function that references itself and consists of two parts: a recursive call and a base call
Redundancy – finding frequencies or patterns in code
Relational database – a database that has multiple tables that are connected by the use of unique keys
Reliable – a protocol that lets the client know if the server received all sent packets
RGB – color model used for most monitors or screens. Stands for red, green, and blue, referring to the color of
light
Rollback – returning back to the state of a database before the write-ahead log began
Root Name Server – one of thirteen servers that contain every IP address and its matching domain name
Router – a networking device that routes Internet traffic to the destination
Run-Length Encoding – looking for redundancy or patterns as runs in the code
Salting – adding a random set of characters to a password before it is hashed to protect against rainbow table
attacks
Sample Rate – how often an analog signal is used when converting to digital, usually measured in kHz
Secondary Memory – used for long term storage and is physically changed when files are saved or deleted
Second-Level Domain – the second highest level in the DNS hierarchy, found directly to the left of the top-level
domain in a domain name
Security – refers to the steps companies take to protect your data
Selection – the logic structure in programming that uses if statements to select certain values
Sequence – the structure that runs one line after another in order
Sequential Memory – memory used to store back-up data on a tape
Server – any computer that provides a service
Simpson’s paradox – a phenomenon that can occur when multiple groups of data trend in one direction but when
combined with other sets the, trend disappears or reverses
SMTP – Simple Mail Transfer Protocol
Software – includes the operating system and the applications. It is usually stored on a computer's hard drive and
cannot physically be touched. At the lowest level, it is a series of ones and zeros

Spear phishing – a type of phishing attack that targets a specific person or group using pre-existing knowledge
SSL – Secure Sockets Layer, issues digital certificates for websites
Structured Query Language (SQL) – the language used to manage, access, and manipulate relational databases
Subdomain – precedes the domain name, owned by the domain https://subdomain.domain.com
Substitution Cipher – a cipher where a letter is mapped or swapped with another letter in the alphabet
Subtractive Color – a color model where no light is white and the combination of all light is black, like CMYK
Symmetric Key Encryption – the same key is used to encrypt and decrypt a message
TCP – Transmission Control Protocol, a set of rules for breaking down requests into smaller, more manageable,
numbered packets
Text-Based Interface – an interface made up of purely text input from the user
TLS – Transport Layer Security, issues digital certificates for websites
Top-Level Domain – the highest level in the DNS hierarchy, found to the right of the final period in a domain
name
Trademarks – protect brand names and logos in order to distinguish one company's product from other products on
the market
Traveling Salesman Problem (TSP) – an NP-hard problem that, when given distances between pairs of cities,
seeks to map out the shortest route between many cities and return back to the original city
Trojan Horse – malware disguised to hide its true intent
Truth Table – a table made up of rows and columns of Boolean variables and resulting Boolean expressions
Two-factor Authentication (2FA) – a subset of MFA where exactly two methods for verifying a user are
implemented
Two-phase Commit Protocol – a standardized way for databases to
make sure all transactions are able to write without any inconsistencies before committing
UDP – User Datagram Protocol, like TCP and usually used for streaming audio/video
Uncompressed– all the information from an original file in the same format
URL – Uniform Resource Locator, specifies where to find a file on a domain
Variable – used in coding to store a value that can change
Variable-length Code – each data block can be a different length
Vector – an image format that represents data through a combination of points connected by lines and curves
Virtual tables – temporary tables that are made up of parts of other tables that help in reducing redundant data
Virus – a program that infects other programs and usually spreads to other programs or computers by copying itself
repeatedly
VoIP – Voice over Internet Protocol, used for telephony
Volatile – needs a power supply. Turning off the power deletes information
VPN – virtual private network
Web (World Wide Web) – the part of the Internet that uses HTTP and HTTPS
Worm – a standalone piece of malware that can disrupt a network by copying itself repeatedly without human
interaction
Write-ahead Logging – a method for avoiding inconsistencies in which all transactions are written and saved to a
log before they are applied to a database

	Foreword
	Software Alternatives
	1 - Hardware, Software, Number Systems & Boolean Expressions
	2 - Pixels and Images
	2.5 - Adobe Photoshop
	3 - Compressing Data
	4 - Storing Data: Spreadsheets and Databases
	5 - Protecting Data: Heuristics, Security, and Encryption
	6 - The Internet
	7 - Web Design: HTML and CSS
	7.5 - Adobe Dreamweaver
	8 - Programming: JavaScript
	9 - Impact of Computing
	Appendix - JavaScript Objects
	Important Vocabulary

