SCHAUM’S OUTLINE OF

THEORY AND PROBLEMS

of

PROGRAMMING
WITH
C++

JOHN R. HUBBARD, Ph.D.

Professor of Mathematics and Computer Science
University of Richmond

SCHAUM'’S OUTLINE SERIES

McGRAW-HILL
New York . Louis San Francisco Auckland. .Bogotq’ Caracas
Lisbon London Madrid Mexico City ° Milan® Montreal RN S o

New Delhi San Juan Singapore Sydndy { Mokyo , Tsrongo , PRI

JOHN R. HUBBARD is Professor of Mathematics and Computer
Science at the University of Richmond. He received his Ph.D. from The
University of Michigan (1973) and has been a member of the Richmond
faculty since 1983. His primary interests are in numerical agorithms and
database systems. Dr. Hubbard is the author of several other books,
including A Gentle Introduction to the VAX System and The VAX Book.

Schaum’s Outline of Theory and Problems of
PROGRAMMING WITH C++

Copyright © 1996 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a data base or retrieva
system, without the prior written permission of the publisher.

234567891011121314151617181920 PRS PRS 9 0 1 0 9 8 7 6
ISBN 0-07-030837-3

Sponsoring Editors: John Aliano and Arthur Biderman
Production Supervisor: Donald F. Schmidt
Editing Supervisor: Maureen Walker

Library of Congress Cataloging-in-Publication Data

Hubbard, J. R. (John Rast), date
Schaum’s outline of theory and problems of programming with C++ /
John Hubbard.
p- cm. (Schaum'’s outline series)
Includes index.
ISBN 0-07-030837-3
1. C++ (Computer program language) |. Title.
QA76.76.C15H835 1996
005.13'3 = = dc20 96-13964
CIP

McGraw-Hill s

A Division of The McGraw-Hill Companies

Preface

Like al Schaum’s Outline Series books, this is intended to be used primarily for self study,
preferably in conjunction with a regular course in C++ Programming. The book covers nearly dl
aspects of ANSI/ISO Standard C++. It includes over 200 examples and solved problems. The
author firmly believes that programming is best learned by practice, following a well-constructed
collection of examples with complete explanations. This book is designed to provide that
support.

C++ was created by Bjarne Stroustrup in the 1980s. Based upon C and Simula, it has become
the most popular language for object-oriented programming. The find ANSI/ISO Standard was
just recently completed, so some of the standard features described in this book may not yet be
avaladle on al compilers. In paticular, the powerful Standard Template Library is just now
becoming available from some vendors.

Although most people who undertake to learn C++ have aready had some previous program-
ming experience, this book assumes none. It gpproaches C++ as one's first programming
language. Therefore, those who have had previous experience may need only skim the first few
chapters.

C++ is a difficult language for a least two reasons. It inherits from the C language an
economy of expresson that novices often find cryptic. And as an object-oriented language, its
widespread use of classes and templates presents a formidable chalenge to those who have not
thought in those terms before. It is the intent of this book to provide the assistance necessary for
firg-time programmers to overcome these obstacles.

Readers may download the source code for the examples and solved problems in this book
from the author's World Wide Web home page: http:/ /www.richmond. edu/~hubbard/

| wish to thank al my friends, colleagues, sudents, and McGraw-Hill staff who have helped
me with the criticd review of this manuscript, including John Aliano, Arthur Biderman, Peter
Dalley, Chris Hanes, Waker Holt, John B. Hubbard, Arni Sigurjonsson, Andrew Somers,
Maureen Walker, and Nat Withers. Their debugging skills are gratefully appreciated.

Findly | wish to express my gratitude to my wife and colleague, Anita Hubbard, who
reviewed the complete manuscript and worked through most of the problems, including many
that she contributed hersdf. | am greetly in her debt.

Jon R, HussarD

Richmond, Virginia

it

Dedicated to
Anita H. Hubbard

Chapter 1

Chapter 2

Contents

Introduction to Programming in C++ 1
11 SIMPLE PROGRAMS .ot 1
1.2 THE OUTPUT OPERATOR ...t sssss s sssssssssssssssssssssesnes 3
13 CHARACTERS AND STRING LITERALScccoeviiins 3
14 STRING LENGTH coiiiriierntcsnnesis s 4
15 COMMENTS woiciiiiisisssssenss s 5
1.6 VARIABLES, OBJECTS, AND THEIR DECLARATIONS ..o, 7
1.7 KEYWORDS AND IDENTIFIERSooiirississssseeeeeseieeeeees 9
18 INITIALIZING IN THE DECLARATIONcoeiviniiniin s 10
19 CHAINED ASSIGNMENTS. ...t 11
110 THE SEMICOLONcooiiviimiieininieisissississississsesesesesssssssssssssssssssssassessesessssssns 12
111 PROGRAM STYLE ...t sssesess 12
112 INTEGER TYPES ..ottt sstessensns 13
113 SIMPLE ARITHMETIC OPERATORS.cccociiii s 14
114 OPERATOR PRECEDENCE AND ASSOCIATIVITY .o 16
115 THE INCREMENT AND DECREMENT OPERATORS ..., 17
116 COMPOUND ASSIGNMENT EXPRESSIONS..........cccooivninensinsesssnnsnnns 20
117 INTEGER OVERFLOW AND UNDERFLOW ..o 20
118 THE Char TYPE ..t sssssssssssssssssnns 21
Conditional Statements and Integer Types 31
2.1 I PU T 31
22 THE if STATEMENT .. 33
23 THE if.. . else STATEMENT ..., 34
24 RELATIONAL OPERATORS ...\ 35
25 COMPOUND STATEMENTS 36
26 KEYWORDS ..o 37
27 COMPOUND CONDITIONS ...t 38
28 BOOLEAN EXPRESSIONSo, 40
29 NESTED CONDITIONALS ... criiicrreiriiieinnieniiiciie s siisessnniessnsessniessses 41
210 THE switch STATEMENT ... 43
211 THE CONDITIONAL EXPRESSION OPERATORcocooiviiiiiii, 44
202 SCOPE ...ttt bbbt 44
2.13 ENUMERATION TYPES .o 45
214 INTEGER TYPE CONVERSIONS. ..o 47

Vi

Chapter 3

Chapter 4

Chapter 5

CONTENTS
Iteration and Floating Types 57
31 THE Whil e STATEMENT . 57
32 THE do. . .while STATEMENTcmmmmmmmmmmmmmmsmmmmmmmmmmmmmmmmmmmmmsmssnssmssnnnnnns 58
33 THE fOr STATEMENTooomvmvmveeeeeeeeeeseseessssssscsccsssssssssseeeessssssssssssssssssnenne 59
34 THE break STATEMENT iiiiiivisississsanns 61
35 THE gont iNUE STATEMENTcccivvvvvvvisississsans 62
36 THE GOtO STATEMENT ..ocoooiiiiiiiiiiimmririnennsssssssssssssssmssssssssssssssssssssssssss 63
37 REAL NUMBER TYPES ... 66
38 TYPE CONVERSIONS 68
39 ROUNDOFF ERROR ..ottt 69
3.10 THE E-FORMAT FOR FLOATING-POINT VALUEScccccocciivrvrmmmrrmmsnminmnnnnnn 70
311 CONSTANTS, VARIABLES, AND OBJECTScccooooeeeeeememmmmmmmmmmnnnmnnnnnnnnnnns 70
3'12 GENERATING PSEUDO-RANDOM NUMBERSoooovmrrrrrrrrrrrrrrrrrssssssssesssseene 71
Functions 89
41 STANDARD C LIBRARY FUNCTIONS 89
42 USER-DEFINED FUNCTIONScoccooiiiiiviiiiiiis oottt 92
A3 TEST DRIVERS .. oo 92
44 FUNCTION DECLARATIONS AND DEFINITIONS ...\, 94
45 SEPARATE COMPILATION ..o oo 96
46 LOCAL VARIABLES AND FUNCTIONS ...\ 97
A7 vOi d FUNCTIONS ..ot 99
48 BOOLEAN FUNCTIONSoiiiiiiiiiiiiiiioierisscssissessssssessessessessssssssssssssessssssssssi00
A9 1/0 FUNCTIONS . ooviitin oot 103
410 PASSING BY REFERENCEccoiiiviiiiiiiiiiiniitiitoo ot 105
411 PASSING BY CONSTANT REFERENCE 108
412 INLINE FUNCTIONS .00ttt 109
B13 SCOPE) 110
414 OVERLOADINGcooooiii oottt 111
415 THE main() AND exit () FUNCTIONS ..., 112
416 DEFAULT ARGUMENTS ..\ i, 113
Arrays 127
51 INTRODUCTION oooiooooeeeeeeeeeeeeeeeeeeeesssesssssnnnnnns 127
52 PROCESSING ARRAYS .ottt sssisssessens 127
53 INITIALIZING AN ARRAY ...ooovvvimmiiriimmimiisisssssssssssssssssssssmsmmssssssssssssssssssssssssssnns 129
54 PASSING AN ARRAY TO A FUNCTIONcoooooooiimiiiiiiiieeossssssseseeeeseesessessssssseen 131
55 C++ DOES NOT CHECK THE RANGE OF AN ARRAY INDEX.. .o 132
56 THE LINEAR SEARCH ALGORITHM.......ccccommimooooooosoiioiioccceoeseeeeeesessssss 133
57 THE BUBBLE SORT ALGORITHMooovvvvvvvivvivsssssssssssssssmmssmmssmssssssssssssssnnssnnnns 134
58 THE BINARY SEARCH ALGORITHMooocviriimimmmmmmmmmmmmmmmmmmmmmmmsmmsssmsmsmsssssssasnnns 136
59 USING ARRAYS WITH ENUMERATION TYPES ..o 137
510 TYPE DEFINITIONS ...ooooovvimmmmmmmmmmmmmsissses 139
511 MULTIDIMENSIONAL ARRAY'S wooiiiiiinisineneeneeeseessesssssssssssssssssssssssssseees 140

Chapter 6

Chapter 7

Chapter 8

CONTENTS vii

Pointers and References 157
61 INTRODUCTION oo eessssssess s 157
Lo == = =1 1= N =1 N 158
6.3 POINTERS w.ooooceeeceveeees e ssee s sssee s ssse s 159
6.4 DERIVED TYPES ..oooioooeooeeeeeeeeeeoseeeeeeeeeeeeeeseeeeees s seessss s sesee e 161
6.5 OBJECTS AND LVALUES ...cooooiiiteciieeieeececcseeseeseseesessseseseesesesessse s 161
6.6 RETURNING A REFERENCEcoooiovcoioioeecoseeeeecoeeeeeeeeeseeeeeeseeeeee e 162
67 ARRAYS AND POINTERS w..ovooeeeieeeeccessseseeeesessesssseessssssssseee s 163
68 THE NEW OPERATOR ...ooooooieeeeeeeeeeoseeeeeeeeeeeeeeeseeeeeeeesseeeeeseeseeesesese e 166
69 THE delete OPERATOR .o essssesssesessseeenes 167
6.10 DYNAMIC ARRAYS ...oooooioeeeeoeeeeeeoeeseeeeseseeeeseeseseseeseseeeesssseeeseeeee e 167
611 USING const WITH POINTERScccoomciiieeeeeeecessseeeseessesssesssessssseeee 169
6'12 ARRAYS OF POINTERS AND POINTERS TO ARRAYS ..o, 169
6'13 POINTERS TO POINTERS ...ovooeeeieeeeeeeeseesseeessesssseesessssssseee s 170
6'14 POINTERS TO FUNCTIONS ..ocovooeeeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesee s 171
6'15 NUL, NULL, AND VOid ..cccooomiiiiiciiooieieeeceseesieeeccssssesseseeesssss s sessssssseenns 172
Strings 185
71 INTRODUCTION oo oo e oo e e, 185
72 REVIEW OF POINTERS.................. bbb bbb bbb en e bans 185
7.3 STRINGS oo o e e 188
T4 STRING 1O oo e e e e 189
75 SOME cin MEMBER FUNCTIONSooooieiieieieeeeeeeereseeseeeessessessessssnnes 190
7.6 CHARACTER FUNCTIONS DEFINED IN <ctype.h>. ... 194
7.7 ARRAYS OF STRINGS.........ooccooeeiii, rreeersereserserssssressssersnersserersd95
78 THE C-STRING HANDLING LIBRARY ...\, 198
Classes 220
81 INTRODUCTION oo eesee e 220
82 CLASS DECLARATIONSoooiiooooeoeeeeeeeeeeee oo eeeeseeessesseesseesesesesseseesssenes 220
83 CONSTRUCTORSo seeeeeeseeeseeseeesee e ssee s 223
84 CONSTRUCTOR INITIALIZATION LISTS oo 225
8.5 ACCESS FUNCTIONS ...iiioveieeeeeesieeeesseseesee s essesee s 226
8.6 PRIVATE MEMBER FUNCTIONS w..ooooooeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeseeseseeseesseeeon 227
87 THE COPY CONSTRUCTOR 227
88 THE CLASS DESTRUCTOR 230
89 CONSTANT OBJIECTS..ioeeeeeeeeeieeeeeesseeeeeseeeeesesseeseessessessssesessseesseeesesessesseens 231
8'10 STRUCTURES oooooeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeseeseeesesesesseeeseeseessessseeeeesseesessesesseeees 231
811 POINTERS TO OBJIECTS ...oooooooeoeoeeceeeseeseeeeeeessessseeesseessssesessssssssesseesessssennes 232
8'12 STATIC DATA MEMBERSccoooooooooeoooeoeeeeeeeeeeseeeeeeeeeseseseessesseeeseeseesseenees 234
813 static = FUNCTIONMEMBERSccoooooiiioooooiieeeeosoeeseeeseessesseeeeeessesesssseens 236

viii

Chapter 9

Chapter 10

Chapter 11

Chapter 12

CONTENTS
Overloading Operators 249
91 INTRODUCTION sttt ettt ne 249
92 OVERLOADING THE ASSIGNMENT OPERATOR i 249
93 THE this POINTER ... 250
94 OVERLOADING ARITHMETIC OPERATORScooiiiiiiiininiin, 251
95 OVERLOADING THE ARITHMETIC ASSIGNMENT OPERATORS........... .253
96 OVERLOADING THE RELATIONAL OPERATORS ..o 254
97 OVERLOADING THE STREAM OPERATORS ..o 254
98 CONVERSION OPERATORS ...t 256
a9 OVERLOADING THE INCREMENT AND DECREMENT OPERATORS......258
9.10 OVERLOADING THE SUBSCRIPT OPERATOR .o, 260
A string Class 271
10.1 INTRODUCTION i 271
10.2 THE String CLASS INTERFACE ... 271
103 THE CONSTRUCTORS AND DESTRUCTOR .o, 272
104 THE COPY CONSTRUCTOR oo 275
105 THE ASSIGNMENT OPERATOR .o 276
106 THE ADDITION OPERATOR 279
10.7 AN APPEND OPERATOR oottt 281
10.8 ACCESS FUNCTIONS .ottt st 282
109 THE COMPARISON OPERATORS .o 284
10.10 STREAM OPERATORS ..ottt 285
Composition and Inheritance 295
11.1 INTRODUCTION ittt ettt s sesesssessesens 295
11.2 COMPOSITION oottt ittt ettt 295
11.3 INHERITANCE ..ottt 298
11.4 protected CLASS MEMBERS ..o 299
115 OVERRIDING AND DOMINATING INHERITED MEMBERS ..o .301
11.6 private ACCESS VERSES protected ACCESS e, 304
11.7 virtual FUNCTIONS AND POLYMORPHISM. ..o 305
11.8 VIRTUAL DESTRUCTORS ..o 308
119 ABSTRACT BASE CLASSES ... 310
11.10 OBJECT-ORIENTED PROGRAMMING .coiiniiinnnnnsssssns 313
Stream 1/0 328
121 STREAM CLASSES ietieiimimrirminiersieiesersiesesesesssssesesesssesesssesesesesssesssssssesssssens . 328
122 THE 105 CLASS ittt 328
123 108 FORMAT FLAGS ...t 332
124 i0S STATE VARIABLESoc oo 336
125 THE istream AND ostream CLASSES ..., 339
126 UNFORMATTED INPUT FUNCTIONS .o, 340
127 UNFORMATTED OUTPUT FUNCTIONS i, 345
12.8 STREAM MANIPULATORS .o 347

CONTENTS i X

Chapter 13 Templates and lterators 355
131 INTRODUCTION ..o K33
132 FUNCTION TEMPLATES ..ot 35
133 CLASS TEMPLATES ..ot 338
134 CONTAINER CLASSEScviveiiniiirnmiiirisissssisssesssssmsssssssssasssssssssasssssssssssens 360
135 SUBCLASS TEMPLATES ..ot 362
136 PASING TEMPLATE CLASES TO TEMPLATE PARAMETERSo ve. . X4
137 A CLASSTEMPLATE FOR LINKED LISTS ..o 35
138 ITERATOR CLASSES ...\ i) 369
Chapter 14 Libraries 386
14.1 INTRODUCTION ..o 386

142 THE STANDARD C++ LIBRARY ..o 386

14.3 PROPRIETARY LIBRARIES ..., 338

144 CONTENTS OF THE STANDARD C HEADERS ..., 389

145 STRING STREAMS ... 33

14.6 FILE PROCESSING.............c..ccccooiiiiiiiiitiiiies et 39D

147 THE STANDARD TEMPLATE LIBRARY .ooicoveiieseseseseesessesessssesessssesessssesens 399

Appendix A The ASCII Code 405
Appendix B C++ Keywords 409
Appendix C C++ Operators 411
Appendix D C++ Types 413
Appendix E References 414
Appendix F Pre-Defined Functions 41s
Appendix G Hexadecimal Numbers 423

[ndex 425

Chapter 1

Introduction to Programming in C++

A program is a sequence of ingructions for a computer to execute. Every program is written
in some programming language. The C++ (pronounced “see-plus-plus’) language is one of the
newest and most powerful programming languages available. It alows the programmer to write
efficient, structured, object-oriented programs.

This chapter introduces some of the basic features of C++. Y ou should compile and run each
example in this chapter.

1.1 SIMPLE PROGRAMS

Our firgt example illugtrates the main parts of a C++ program.

EXAMPLE 1.1 The Hdlo World Program

#include <iostream.h>
// This program prints "Hello, World."
main()

{
cout << "Hello, World.\n";
return 0;

The #include directive on the first line is necessary for the program to have output. It refers to an
external filenamed i o s t ream h where information about the cout object is provided. Note that the
angle brackets < and > are not part of the file name they are used to indicate that this is a Standard C++
Library file.

The second line is a comment, identified by the double dashes / /. Comments are included in pro-
grams to provide explanations for human readers. They are ignored by the compiler.

The third line contains the function header main () . This is required for every C++ program. It tells
the compiler where the program begins. The parentheses () following mai n are also required.

The fourth and seventh lines contain only the braces { and }. These enclose the body of the
main () function and are aso required for every C++ program.

The fifth line contains the statement

cout << "Hello, World.\n";
This tells the system to send the message '"Hel lo, Wor 1d.\n" tothe cout (“see-out”) object. That
object is the standard output stream which usually represents the computer display screen. The name
cou t stands for “console output.” The output should look like this:

Hello, World.

2 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

The \n symbd is the newline symba. Naote that this snge symbad is formed from the two charaders “\ ’
ad ‘n'. Ruting this symbd a the end of the quated dring tdls the system to begin a new line dter print-
ing the preceding charadtes thus ending the curat line

The sixth line contains the statement ret urn 0. Tha teminates the execution of the program and
reuns contrdl to the computer’'s opearding sydem. The number O is usd to sgnd tha the program hes
ended successfully.

The output statement on the fifth line includes several common C++ symbols. The symbol << is
called the output operator or the insertion operator. It inserts the message into the output stream. The
symbol \n induded & the end of the messsge dands for the newline character. Whenever it gopears in
an ouput messge it causss the curent line of output to be teminated, therdby dating a new line Note
that both of these symbols(<< and \n) requre two deradeas ddeby-sde with no gece bawemn
them.

Note the semicolon ; at the ends of the fifth and sixth lines. C++ requires every statement to end
with a semicdon. It nesd nat be a the end of a line We may put sved daements on the same ling and
we may have one statement extend over severa lines. But no matter how it is positioned on one or more
lines evay daamat mus ed with a samicdon.

We can imeggine the rdaiondhip, of the cout object to the, pragram and the display sxemn like this

Hello, World.

#include <iostream.h>
ain()

e cout

{
| cout << "Hello, wWorld.\n";
}

The output dream cou t ads & a condut, piping the ouput from the program to the diplay screen (or
printer or other output device), byte by byte

The program in Example 1.1 is not minimal. Only some of its parts are required for every
program. In fact, a C++ program need not have any statements. Of course, such an “empty pro-
gram” will not do anything. The next example shows the shortest possible C++ program.
EXAMPLE 12 The Shortest C++ Program

main() {}

This “empty progrlan” does nathing. It amply reveds the required skddon for every G+ program.

Thereturn 0; datement is not required by most compilers. Some compilers will issue a
warning if it is omitted. We indude it in each example in this first chapter.

It is ds0 recommended that you include a the beginning of every program a brief comment
that describes what the program does.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++

1.2 THE OUTPUT OPERATOR

The symbol << iscdled theinsertion operator or the output operator. It inserts objectsinto
the output stream named on its left. We usudly use the cout output stream, which ordinarily
refers to the computer screen. So cou t << 6 6 would display the number 66 on the screen.

An operator is something that performs an action on one or more objects. The output opera-
tor << performs the action of sending the vaue of the expresson listed on its right to the output
dream lisgted on its left. Since the direction of this action gppears to be from right to Ieft, the
symbal << was chosen to represent it. It should remind you of an arrow pointing to the |eft.

The reason cout is caled a stream is that output sent to it flows like a stream. If severd
things are sent to cout, they fal in line, one &fter the other as they are dropped into the stream.
Then they are displayed on the screen in that order.

EXAMPLE 1.3 The Hello World Program Again

This version of our Hello World program has the same output as the other:

#include <iostream.h>

// This program illustrates the sequential ouput of several strings.
main()
{

cout << "Hello, " << "Wor" << "ld.\n";

return 0;

}
Hello, World.

Here the message has been split into three pieces. As the line is executed from |eft to right, each piece is
dropped into the output stream: first " Hel lo, ", then "wor", and findly "1d. \n". Since there are no
newline characters or other symbols added to the stream between these three pieces, they all come out
concatenated into a single ling, just as before.

The output stream cout is usudly used with the insartion operator << in this generd form:
cout << expression << expression << . . . << expression;
This syntax statement says that cou t is followed by one or more pairs, where each pair conssts

of the insertion operator << followed by Someexpressi on. In Example 1.3, there are three
such pairs.

1.3CHARACTERSAND STRING LITERALS

The symbol 'Hel 10, "iscdled a string literal. It condsts of a sequence of characters
delimited by quotation marks.

A character isany member of a predefined character set or aphabet. Most computers these
days use the ASCIl (American Standard Code for Information Interchange) character set. See
Appendix A for the complete code. This set includes the 52 uppercase and lowercase letters of
the adphabet, the 10 digits, adl the punctuation symbols found on your keyboard, and some
nonprinting characters.

The newline character \n is one of the nonprinting characters. It is formed using the
backdash \ and the letter n. There are severd other characters formed this way, including the
horizontal tab character \t that moves to the next tab stop on the line the alert character

\a that produces the system beep when printed. The backdash is dso used to denote the two
printing characters that could not otherwise be used within a dring literd: the quote character
\' and the backslash character itsdf \\.

Characters can be used in a program statement as part of a sring literd, or as individud
objects. When used individudly, they must gppear as character constants. A character constant
is a character enclosed in single quotes. As individual objects, character constants can be output
the same way gring literds are.

EXAMPLE 1.4 Another Version of the Hello World Program

This version of our Hello World progran has the same output as the other versions.

#include <iostream.hs>

// This program illustrates the ouput of strings and characters:
main()
{
cout << "|_b||0, n << W' << o' << I|rll << "ld" << vt << '\n',’
return 0;
}
Hello, Wrld.

The single statement in this program sends seven objectsto cout: the 2 string literals "He 11 o and
"1d", and the 5 character constants 'W , 'o', 'r', '.',and '\n',

Of course, an individua character can dso be used to form a string. The single statement
above could be replaced by

cout << "Hello, " << "W" << "0' .. "r" << "1d" << ". " << "\n";
This gatement sends 7 dring literds to cout. But when deding with individud characters as

separate objects, it is more efficient to use character: constants. String literds are dtored
differently and require some overhead.

The dring that contains zero characters is caled the empty string and is denoted by . We
could print our message using the empty gring, like this:
cout << "Hello, W' << "' << "rl" << "" << "" << "d.\n";
But there’ s not much point in usng the empty string this way.

1.4 STRING LENGTH

The length of adring literd isthe number of charactersit contain. The string literd » ABcoE *
has length 5.

C++ provides a specid predefined function namedstri en () that you can use to obtain the
length of any dring. Thisis illusrated by the next example.

CHAP. I INTRODUCTION TO PROGRAMMING IN C++ 5

EXAMPLE 1.5

This progrlam prints the lengths of severd dring literds

#include <iostream.h>
#include <string.h>
// This programtests the strlen() function:
main ()
{
cout << strlen('Hello, World.\n") << '\n';
cout << strlen("Hello, Wrld.") << '\n';

cout << strlen("Hello, ") << '\n';
cout << strlen("H") << '\n';

cout << strlen("") << '\n';

return O;

}

14

13

7
R
0

The st rl en () fundion smpy counts the number of charades in the adfied dring The fird two
outputs, 14 and 13, reveal that the newline character \n counts as a single character. The string
"Hel lo, "haslength 7, the string " H " has length 1, and the empty string ' * has length 0.

The s tr len () function (pronounced “stir-len”) is declared in the separate file s tring . h
which comes with the C++ programming environment. So when your program needs to use the
strl en () function it should incdudethe # i ncl ude directive

#include <string.h>

on aline somewhere abovethemai n () program block.

1.5 COMMENTS

You can include messages in your program that will be ignored by the compiler. Such a
message, intended only to be read by humans, is caled a comment.

There are two kinds of commentsin C++. The Sandard C comment begins with the combi-
nation dash-gar symbol / * and ends with the star-dash symbol * /. Anything written between
these two symbols will be ignored by the compiler. For example, thisis a comment:

/* This is a C style comment */
The Sandard C+ + comment begins with a double-slash // and extends to the end of the line.
For example, this is a comment:

// This is a C++ style comment

Most C++ programmers prefer to use the double-dash form because it is easer to write and
easer to notice in a program. The C style comment is necessary if you need to imbed a comment
within an executable line of code, but that practice that is not recommended.

6 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

EXAMPLE 1.6 Usng The Two Types of Comments

Hae is ar Hdlo Wold progam with 9x comments addedt

/**\

* Program to denobnstrate comments *
* Witten by J. R Hubbard *
* June 10, 1996 *
* \Version 1.5 *
**/
#include <iostream.h> // This directive is needed to use cout
// This prints message: "Hello, World.":

main()

cout << /* now printing */ "Hello, World.\n"; /* change? */

return O; // Some conpilers will conplain if you omt this line
} /* end of program */

Hello, World.

Thisis a good example of an “overly documented” program. But it does illustrate some of the main uses
o commats

The fird commat is a 6line heeder that identifies the program and programmer. Ndtice tha the fird
two chaades (a the begiming of line 1) ae the dashstar /* ad the lagt two charadters on line 6 are
the da-dash * /. The ssoond commat bagins with the doubledash on line 7. It illustrates a sandard in-
line commert, postioned to the right of the datement that it desribes The third comment oocupies dl of
line 8 It precedes the main () bok ad bidly desyibes whet the progan does The fouth commant
is imbedded indde the output datemat. This is nat_recommended. The fifth comment is & the ed of the
output statement. It illustrates a common technique of software maintenance: the programmer leaves a
mesege to hmsdf to auggest a possble maodificstion & a laer dae The gxth commet, a the end of the
program, hes litle vdue

The next example shows our “Hello, World.” program with only C++-style comments.
EXAMPLE 1.7 Using Only Double-Slash Comments

This vadon dows hov dl the impotant commets ae emdly witten udng the doubledash:

// Program to denobnstrate coments
// Witten by J. R Hubbard

// June 11, 1996

// Version 1.6

[e e e e e e e me e
#include <iostream.h> // This directive is needed to use cout
// Prints nmessage: "Hello, World.":

main()

{
cout << "Hello, World.\n"; // change?
return O; // Some conpilers will complain if you omt this line

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 7

Note thet comments ddimited by the doubledash extend only to the end of the ling they canat gpen sev-
ad liness wes exth line bggns with another doubledash

16 VARIABLES, OBJECTS, AND THEIR DECLARATIONS

A variable is a symbol that represents a storage location in the computer’s memory. The
information that is stored in thet location is cdled the value of the variable. The most common
way tha a variable obtains a vaue is by means of an assgnment. This has the syntax

variable = expression;
The expressi on is fird evduated, and then its resulting vaue is assgned to the vari abl e.
The equals sign “=” isthe assignment operator in C++.
EXAMPLE 18

Here is a simple C++ program with an integer variable named n:

#include <iostream.h>
// Asinple exanple to illustrate assignment:
main ()
{
int n;
n = 66;
cout << n << endl;
return O;

66

The firg line bewean the braces { } dedaes n to be a vaidde of type int . The daemat in the s
ond line asdgns the vdue 66 to n. The satement on the third line prints the vdue of n.

Noe the ue of the symbdic condat endl. This is a preddined iodreeam manipulaor. Sending this
to cou t is equivdet to the endline character \n and then “flushing’ the output buffer.

In the previous example, the variable n has the vaue 66. That vaue is actudly stored in the
computer’s memory as a sequence of bits (0s and 1s). The computer interprets that sequence of
bits as an integer because the variable was declared to be an integer.

A declaration of a variable is a satement that gives information about the variable to the
C++ compiler. Its syntax is

type variable;
where t ype isthe name of some C++ type. For example, the declaration

int n;
tells the compiler two things (1) the name of the variableisn, and (2) the variable hastypei nt .
Every variable must have atype. Its type tells the compiler how the variable' s values are to be
stored and used. We can characterize a type by the set of al possble values. that could be
assigned to a variable of that type. On some computers, the i nt type set congds of dl the
integers in the range from -32,768 to 32,767.

C++ isan object-oriented programming language. Among other things, this means that the
language is good a smulaing systems that consst of interacting objects such as an airport
control’ system. In such a smulation, the objects in the system (airplanes, people, luggage, €etc.)

8 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

are represented by variables in the computer program. So variables are often referred to as
objects themsalves and are visuaized as sdf-contained entities endowed with certain capabili-
ties. In this context we say that the declaration creates the object. The vanable being declared
then is the name of the object.
We can visudize the effect of the declaration i nt n like this
n
int
The declaration creates the object shown here. Its name is n and its type is int. The shaded box
represents that area of memory that has been dlocated to the object to store its vaue. The
guestion marks indicate that no value has been given to the object yet.
An assgnment is one way that an object’s vaue can be changed. For example,
n = 66;
changes the value of n to 66. We can visudize the effect of this assgnment as
n

In C++, adeclaration may agppear anywhere within the program, as the next example shows.
EXAMPLE 1.9

This example shows that a varisble may be declared anywhere in @ C++ program:

#include <iostream.h>

// This program illustrates variable declarations:
main()
{
int x, yl; // decl ares the variables x and yl
x = 17;
yl = 88§;
int y2 = 55; // declares the variable y2, initializing it to 55
cout << x << ", "<<yl << v w<< y2 << endl;
return O;
}
77, 88, 55

The variable y2 isdeclared and initialized after the assignment for yl . We can visualize these three

objects like this:

int int int
Note that a variable cannot be used before it is declared.

In this book, we use boldface in a program to emphasize the part(s) of the program that are
being illustrated by the example. When you copy the program to run it, ignore the boldface.

The last example dso shows how more than one variable may be declared within the same
declaration statement. The Statement

int x, yl;

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 9

declares both x and y1 to be integer variables. In genera, any number of variables may be
declared within the same declaration statement, if they are al declared to have the same type.
The more generd syntax is

type vari, var2, varN;

The variables are amply listed after their t ype. Commeas separate the varidbles in the ligt.

1.7 KEYWORDSAND IDENTIFIERS

In any programming language, a program is made up of individua syntectic ements, cdled
tokens. These include variable names, constants, keywords, operators, and punctuation marks.

EXAMPLE 110

#include <iostream.h>

// A sinple program to illustrate tokens:
main ()
{
int n = 66;
cout << n << endl;
return O;
66
This program shows 15 tokens: main, (,), {, int, n, = 66, ;, cout, <<, endl, return, O,
and } . The token n is a variable; the tokens 6 6, 0, and endl are constants; the tokens i nt and
return are keywords; tokens = and << are operators; the tokens (,), {, ; , and } are punctuation

marks. The first two lines, containing a preprocesser directive and a comment, are not really part of the
program.

Keywords are also called reserved words because they are words that are reserved by the lan-
guage for specia purposes and cannot be redefined for use as variables or for any other purpose.

An identifier is a string of dphanumeric characters that begins with an dphabetic character.
There are 53 aphabetic characters. the 52 letters and the underscore character . There are 63
aphanumeric characters. the 53 alphabetic characters and the 10 digits (0, 1, 2, .. ., 9). s0
main(), int, n, count, andendl areidentifiers. So are St ack, x|, y4, LastName, ad
t he- day- af ter-tonorrow. Notethat C++ iscase-sensitive: it distinguishes uppercase letters
from lowercase letters, so stack and stack are different identifiers.

Identifiers are used to name things, like varigbles and functions. In the program above, nai n
isthe name of afunction, i nt isthe name of atype, n and cout are names of variables, and
endl iSthe name of a congtant. Some identifierslikei nt are called keywords because they are
an intringc part of the programming language itsdf. (The 48 keywords that define the C++
programming language are shown in Appendix B.) Other identifiers like n are defined in the
program itsdf.

10 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

18 INITIALIZING IN THE DECLARATION

A vaiableis initialized by assgning it a vaue when it is declared.
EXAMPLE 1.11 Initializing Variables

This simple program illustrates two ways that a variable can be initialized within its declaration:

#include <iostream.h>
// This shows how to initialize variable as they are declared:

main ()
int george = 44;
int martha = 33;
int sum = george + martha;
cout << george << " + " << martha << " = ' << sum << endl;
return O;

daii3y =

The variables geor ge and martha are initialized to 44 and 33 within their declarations. Then within
the dedadion of the vaiable sum the expression george + martha IS evduaed as 4 + 33, ad the
resiting vdue 77 is asigned to sum

An initidization is nearly the same as an assgnment. Both use the equa sgn “=” followed
by an expresson. The expression is first evauated, and then its value is assigned to the object on
the left of the assgnment operator.

In generd, it is better to initidize variables when they are declared.
Initidization may aso be used in compound declarations, as the next example shows.

EXAMPLE 112 Initializing Variables

#include <iostream.hs>
// This shows how to initialize variables as they are declared:
main()
{
int nl, n2 = 55 n3, n4, n5 = 44, n6;
cout << N2 << ", " << n5 << endl;
return O;
}

The six variablesn1 through n6 are all declared to havetypei nt, but only the two variables n2 and
n 5areinitiaized.

Sore conples (Baland CH, for exanpe will issle a waning if ay vaiddes ae nat intidized

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 1

1.9 CHAINED ASSIGNMENTS

An assgnment itsHlf is an expresson with a vaue. The vaue of the expresson

X = 22
is22. And like any other vaue, the value of an assgnment can be used in another assgnment:
y = (x = 22) ;

Thisis a chained assignment. Fird it assigns 22 to « and then it assigns 22 to y. Compound
assgnments are usudly written without the parentheses:

y = x = 22;
In generd, the vaue of an assgnment is the last vaue that it assigned.

EXAMPLE 113 Embedded Assgnments

This dons how anassignment can be used within an expression:

#include <iostream.h>
// This shows that an assignment can be part of a larger expression:

main()
{
int m n;
m= (n=66) + 9; // (n = 66) is an assignment expression
cout << m << << N << endl;
return O;
75, 66

The compound asdgmat fird asdgns the vdue 66 to n. Then it evdudes the exqresson (n =6 6) +
9 ohtaning the vdue 75. Then it assgns that vdue to m

Embedded assgnments can usudly be avoided. For example, the firgt two lines in the pro-
gram above would be better written as

int n = 66;
int m=n + 9
This ds0 illustrates the preferred practice of initidizing variables as they are declared.

There are some Stuations in which embedded assgnments do make a program more
readable. For example, this single statement is better than 8 separate Satements.

nl =n2 =n3 =n4 =n5 =n6 = n7 = n8 = 65535
We will see other common examples of embedded assignments in Chapter 3.
A chaned assgnment cannot be used as an initidization in a declaration:
int x =y = 22; // ERROR

The reason this is wrong is that initidizations are not assgnments. They are amilar, but the
compiler handles them differently. The correct way to do what was attempted above is

int x =22, vy =22, // XK

12 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

1.10 THE SEMICOLON

In C++, the semicolon is used as a statement terminator. Every statement must end with a
semicolon. This is different from other languages, notably Pascd, which use the semicolon as a
Statement separator. Note that lines that begin with the pound symbol # such as

#include <iostream.h>
do not end with a semicolon because they are not statements; they are preprocessing directives.

We saw in the previous section that C++ statements can be interpreted as expressions. The
converse is aso true: expressons can be used as stand-aone statements. For example, here are
two perfectly vaid C++ Satements:

X + Vi
22,
These statements perform no actions, so they are completely usdess. Neverthdess they are valid
gatementsin C++. We shal see some useful expression statements later.
The semicolon acts like an operator on an expression. It transforms an expresson into a
satement. It is not a true operator because its result is a statement, not a value. But this transfor-
mational point of view helps explain the difference between an expresson and a statement.

1.11 PROGRAM STYLE

The C++ programming language is a free form language: it has no requirements about where
program elements must be placed on the line or on the page. Consequently the programmer has
complete freedom of program dyle. But experienced programmers know that the tasks of
writing, debugging, and maintaining successful software are greetly facilitated by usng a conss-
tent, readable programming style. Moreover, others will find your programs easer to reed if you
conform to standard style conventions. Here are some smple rules that most C++ programmers
follow:

*Put dl your #i ncl ude directives a the beginning of your file
. Put each gtatement on anew line.

« Indent dl statements within a block.

. Leave agpace on either Side of an operator, likethis. n = 4.

These rules are followed nearly everywhere in this book.

Another worthwhile convention to follow is to choose your varidble names carefully. Use
short names to minimize the chances for typographica errors. But aso pick names that describe
what the variable represents. Thisis called self-documenting code. Nearly dl C++ programmers
follow the convention of usng exclusvely lowercase letters in varigble names, except when a
name is composed of severad words where the first letter of each appended word is capitalized.
For example:

char middleInitial;
unsi gned maxUnsignedInt;

These names are easier to read than middieini tial and maxunsignedint. AS an dterna-
tive, some programmers use a underscore to smulate blanks, like this:

char mddle-initial
unsi gned max_unsigned_int;

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 13

112 INTEGER TYPES ’

An integer is awhole number: 0, 1, -1, 2, -2, 3, -3, etc. An unsigned integer is an integer
that is not negative: 0, 1, 2, 3, etc. C++ has the following nine integer types:

char short int unsi gned short int
signed char i nt unsigned int
unsigned char long int unsigned long int

The differences between these nine types is the range of vaues that they dlow. These ranges

depend, to some extent, upon the computer system being used. For example on most DOS PCs,

i nt ranges between the values -32,768 and 32,767, while on most UNIX workstations it ranges
between the values -2,147,483,648 and 2,147,483,647. The“i nt " part may be omitted from the
typenamesshort int, long int, unsigned short int, unsigned int,and unsigned
long int.

The program in the example below prints the ranges of al the integer types on your machine,
These limits, named SCHAR _M N, LonG_MAX, €tc., are condants sored in the header file
<1im t s.h>, sothefollowing preprocessor directive

#include <limits.h>

is needed to read them.
EXAMPLE 1.14 Integer Type Ranges

This program prints the limits to the ranges of the various integer types:

#include <iostream.hs>
#include <limits.h>

// Prints the constants stored in limits.h:
main ()

{

" << CHAR-M N << endl ;
' << CHAR- MAX << endl ;

cout << "m ni mum char
cout << "maxi mum char

cout << "mnimum short ="' << SHRT MIN << endl;
cout << "maxinum short = " << SHRT MAX << endl;

cout << "mnimumint ="' << INT_MIN << endl
cout << "maximum int = ' << INT_MAX << endl;

cout << "mninum |ong " << LONGM N << endl;
cout << "maximum |ong " << LONG MAX << endl;

cout << "mninum signed char = " << SCHAR_M N << endl;
cout << "maximum signed char = ' << SCHAR_MAX << endl;
cout << "maxi mum unsi gned char = " << UCHAR_MAX << endl;
cout << "maxinmum unsigned short = ' << USHRT_MAX << endl;
cout << "maximum unsigned = << UINT_MAX << endl;

cout << "maximum unsigned |long = " << ULONG_MAX << endl;

return 0;

14 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

D

minimum s

maximum signed char = 127 .
maximum unsigned char = 255
maximum unsigned short - 65535
maximum unsigned - 4294967295
maximum unsigned long - 4294967705

This output is from a UNIX workstation. It shows that, on this system, there are really only six distinct
integer ~ types

char range -128 to 127 (1 byte)

short range -32,768 to 32,767 (2 bytes)

i nt range —2.147,483 648 10 2,147,483,647 (4 bytes)
unsi gned char range 0 to 255 (1 byte)

unsi gned short range 0 to 65535 (2 bytes)

unsi gned range 0 t0 4,294,967,295 (4 bytes)

You can tdl, for exanple thet short integers oocoupy 2 bytes (16 hit on this meching because the
range 32,768 to 32,767 covears 65536 = 216 posible vdues (Recdl that a byte is 8 hits the sandad gtor-
ae unit for charattas)

On a PC running Borland C++, this program produces the same ranges except for i nt and
unsi gned which have

int range -32,768 to 32,767 (2 bytes)
unsi gned range 0 to 65,535 (2 bytes)

113 SIMPLE ARITHMETIC OPERATORS

An operator isasymbaol that “operates’ on one or more expressions, producing a vaue that

can be assgned to a variable. We have dready encountered the output operator << and the
assgnment operator -,

Some of the smplest operators are the operators that do arithmetic: +, -, *, /, and ¢.
These operate on integer types to produce another integer type: m + n produces the sum m plus
n, m - n producesthedifference m minusn, -n producesthenegationof n, nrn produces
the product m timesn, m' n produces the integer quotient when m isdivided by n, and m$n
produces the integer remainder when m isdivided by n. These six operators are summarized in
the following table and illustrated in the example below.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ | 15

Table 11 Integer Arithmetic Operators
Operator Description Example

Add m+ n
- Subt ract m- n
- Negat e -n
* Mul tiply m*n
Di vi de m/n

O~

Remai nder nP/

EXAMPLE 115 Integer Operators

This program illusrdes the ue of the dx aithmeic operdors

#include <iostream.h>
// Tests arithnetic operators:
main ()
{
int m= 38,n = 5;

cout <<« M << " + " << N << " " << (M+ n) << endl;

cout <« M << " =~ " << N << " << (m=n) << endl;
cout << et e N << "= " << (-n) << endl;
cout << M << " * " << N << " = " << (M *n) << endl;
cout <« M<< "/ "<< N << " =" << (M 7/ n) << endl;
cout <« M<< " %" << N << " =" << (M%n) << endl;
return O;

3

38 + 5 = 43

38 -5 = 33
- 5 =z =5

38 % 5 = 190

38 / 5 =17

38 85 =3

Note that 38 /5= 7 and 38%5 = 3. These two opadions together provide completeinformation
about the ordinary division of 38 by 5: 38 + 5 = 7.6. The resulting integer part is35+5 = 7, and the frac-
tional part is 3+5 = 0.6. The integer quotient 7 and the integer remainder 3 can be recombined with the
dividend 38 ad the dvisr 5 in the following relation: 7 x 5+ 3=38.

The integer quotient and remainder operators are more complicated if the integers are not
positive. Of course, the divisor should never be zero. But if either m or n isnegative, then nf n
and nt,m may give different results on different machines. The only requirement is that

gn + r ==m
whereqg =mn andr = nom.

For example, -14 divided by 5 is -2.8. For the integer quotient, this could be rounded to -3
or to -2. If your computer rounds the quotient g to -3, then the integer remainder r will be 1.
But if your computer rounds g to -2, then r will be -4.

16 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

EXAMPLE 1.16 Divison with Negative Integers

This progam is usd to detemine how the computer handes the dvison of negive integars

#include <iostream.h>
// Tests quotient and remainder operators:

main()
{
int m=-14, n =5, g=nn, r = m%n;
cout << "m = " << M << endl;
cout << 'n = " << N << endl;
cout << "gq = " << << endl;
cout << '"r = " << r << endl;
cout << "g*n +r="<<"("<< 0 << ")*¥(" << N << ")+ !
<< I << "= " << g*n + 1 << "= "<< mc<< endl;
return O;
}
m = -14
n”: 5
g = B2
¥ = =4

G ¢ r = (F2)%(5) + -4 = -24 = =14

This dons the sare reslts bah from a UNIX workddion usng a Maorda 68040 processor and from a
DOS PC wng an Intd Patium procesor.

1.14 OPERATOR PRECEDENCE AND ASSOCIATIVITY

C++ has a rich repertoire of operators. (Appendix C lists al 55 of them.) Since an expresson
may include several operators, it is important to know in what order the evaluations of the opera
tors occurs. We are aready familiar with the precedence of ordinary arithmetic operators. the *,
/, and % operators have higher precedence than the + and - operators; i.e, they are evauated
fird. For example,

42 - 3%5
isevduated as
42 (3*5) = 42 15 = 27

Moreover, dl the arithmetic operators have higher precedence than the assgnment and output
operators. For example, the satement

n= 42 - 3*5;

will assgn the vdue 27 to n. First the operator * isinvoked to evauate 3 * 5, then the operator
- isinvoked to evaluate 4 2 - 15, and then the operator = is invoked to assign 2 7 to n.

Here is pat of Table C.I in Appendix C.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 17

Table 12 Some C++ Operators

Operator Description Precedence Associativity Arity ~ Example

- Negate 15 Right Unay -n
Multiply 13 Left Binay m*n

/ Divide 13 Left Binay m/n

% Remainder, modulo 13 Left Binay mm

t Add 12 Left Binay m+n
Subtract 12 Left Binay m- n

<< Bit shift |eft, output 11 Left Binay cout << n

= Smple assgnment 2 Right Binay m=n

It lists 8 operators that apply to integer variables. They fdl into five distinct precedence leves.
For example, the unary negate operator - has precedence level 15, and the binary multiply
operator * has precedence leve 13, s0 negative is evduated before multiply. Thus the
expresson m* n isevauated asnt (-n) . Assgnment operators have lower precedence than
nearly dl other operators, s0 they are usualy performed last.

The column labeled “Associativity” tells what happens when severd different operators with
the same precedence level appear in the same expression. For example + and both have
precedence level 12 and are | eft associative, S0 the operators are evaduated from |eft to right. For
example, in the expresson

8 =5 + 4
first 5 is subtracted from 8, and then 4 is added to that sum:
(8 - 5) +4 =23+ 4 =17

The column labeled “Arity” lists whether the operator is unary or binary. Unary means that
the operator takes only one operand. For example, the post-increment operator + + is unary: n+ +
operates on the single variable n. Binary means that the operator takes two operands. For
example, the add operator + isbinary: m + n operates on the two variables m and n.

1.15 THE INCREMENT AND DECREMENT OPERATORS

Of the many features C++ inherited from C, some of the most useful are the increment opera-
tor ++ and decrement operator -. These operators transform a variable into a Satement
expresson that abbreviates a specia form of assgnment.

18 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

EXAMPLE 1.17 Increment and Decrement Operators

This shows how the increment and decrement operators work:

#include <iostream.h>
// Tests the i ncrement and decrenent operators:
main()

{
int m=44,n = 66;

cout << "m = " << M << n = << n << endl;
++m:
-=11;
cout << 'm = " << M << n = << n << endl;
m++;
n==;
cout << "'m = " << M << n = << n << endl;
return 0;

}

w44, n = 66

W48 065

W-46, m - 64

Both the pre-increment operator + +m and the post-increment operator m+ + have the same effect here
they add 1 to the value of m Similarly, both the pre-decrement operator - - n and the post-decrement
operator n- =~ have the same effect here they subtract 1 from the vaue of n.

When used as a stand-done expression satement, ++m and m++ are both equivaent to the
assgnment
m=m+ l;

they amply increase the value of m by 1. Smilarly, the expresson statements --n and n- -
are both equivalent to the assgnment

n=n-1;

they smply decrease the value of n by 1. (The increment operator ++ was used in the name
“C++” because it “increments’ the origind C programming language; it has everything that C
has, and more.)

However, when used as subexpressions (i.e., expressons within expressons), the pre-incre-
ment operaion ++m is different from the pogt-increment operation m+ +. The pre-increment
increases the variable firg before usng it in the larger expresson, wheress the post-increment
increases the vaue of the varigble only after using the prior value of the variable within the larger
expression.

Since the incrementing process is equivalent to a separate assgnment, there are redly two
Statements to be executed when the increment operation is used as a subexpression: the incre-
menting assgnment and the larger enclosing satement. The difference between the pre-incre-
ment and the pogt-increment is smply the difference between executing the assgnment before or
after the enclosing statement.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++

EXAMPLE 1.18 Prellncrement and Post-Increment Operators

This shows the dffeence bewemn the preincremat ad the pod-incrament:

#include <iostream.h>
// Tests the increnment and decrement operators:

main ()
int m= 66, n;
n = ++m
cout << 'm = << Mm<< ", Nn= << n << endl;
n = m++;

<< M << n = << N << endl;
<< m++ << endl;
<< m << endl;
<< ++tmM<< endl;

cout << "m
cout << "m
cout << "m
cout << 'm

return O;
}
BRSOl 6T
m= 68 n= 67
m - 68 ‘
m- 69

19

In the fird assgnment, m is preincramented, inoeasing its vaue to 67, which is then asdgned to n. In

the second assignment, m is post-incremented, so 67 isassigned to n and then m is increased to 68.

In the third output statement, m is post-incremented, so the current value of m (68) is dropped into
the output dreem and then m is increesad to 69. In the lagt output datement, m is preincremeted, O m

is incresssd to 70_firdandthen thet veue is dropped into the output Sream.

Use of the increment and decrement operators as subexpressions can be tricky and should be
used with caution. For example, the order of evauations of expressons that involve them is not

defined by the language and consequently can be unpredictable:

EXAMPLE 119 The Unpredictablilty of the Order of Evaluation of Subexpressons

#include <iostream.h>

main()
int n =25 Xx;
X = 44N % --n;
cout << "m = " << N << ", X = " << X << endl;
cout << *+HtN << ' ' << ++tN << ' " << ++N << endl;
}
e s % o0p
8 7 6

In the asgignment to x, n is fird increment to 6 and then decramented back to 5 before the multiply
opardar is evduded, computing 5 * 5. In the lag ling the three sUbexpressons are evduded from right to

20 INTRODUCTION TO PROGRAMMING IN C++

[CHAP. 1

left. The left associativity of the output operator << isirrelevant because there are no other operators

involved that have the same precedence level.

1.16 COMPOUND ASSIGNMENT EXPRESSIONS

Increment and decrement operators abbreviate certain kinds of assgnments. C++ dso dlows
the assgnment to be combined with other operators. The genera syntax for these combined

assgnments is
vari abl e op= expression

where op is a binary operator. The effect of the combined assgnment is the same as

variable = wvariable op expression
For example, the combined assgnment
n += 8;
has the same effect as the Smple assgnment
n=n+ 8;
It smply adds 8 ton.

EXAMPLE 1.20 Assignment Operators

This shows how to use some of the combined operators:

#include <iostream.h>
// Tests conbined operators:

main()

{
int n = 44,
n +=9;
cout << n << endl;
n ==5,
cout << N << endl;
n *= 2;
cout << N << endl;
return O0;

}

53

48

96

The statement n += 9 adds9to n, the statementn -=
n *= 2 multiplies n by 2.

117 INTEGER OVERFLOW AND UNDERFLOW

5 subtracts 5 from n,

and the statement

Unlike the integers of pure mathematics, the integer objects in a computer are bounded. As
we saw above, each integer type has a maximum vaue and a minimum vaue. If the value of a
variable exceeds either of its bounds, we have what is caled overflow.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 21

EXAMPLE 121 Tegting for Overflow

This program shows what happens when an object of type short overflows:

#include <iostream.h>

#include <limits.hs
// Tests for overflow for type short:

main ()

short n = SHRT_MAX =~ 1,
cout << n++ << endl;
cout << n++ << endl;
cout << nN++ << endl
cout << hn++ << endl;
return O;

}

32766

32767

-32768 \
The values “wrap around” the endpoints of 32,767 and -32,768. In other words, the value that results
when 1 is added to 32,767 is -32,768. This is obvioudy wrong!

Most computers handle overflow this way. The vaues wrap around, so that the number that
comes after the maximum vaue is the minimum vaue. This is the worst kind of error that can
occur on a computer because normaly there is no outside evidence that anything has gone
wrong. Aswe shall see later, C++ fortunately provides mechanisms to help the programmer han-
dle this problem.

Overflow is one kind of a run-time error. Another common example is divison by zero. But
this is not as great a problem because you will know when it happens. the program crashes
Numeric overflow is like an internd hemorrhage: you may not be aware that you are in grave
danger.

1.18 THE char TYPE

In C++, the character type char isone of the integer types. This means that any varigble of
type char may be used in integer expressons just like any other integer. For example, the
integer arithmetic operators apply to char variables

char ¢ = 54;
char d = 2*c - 7;
c += d%3;

The name “char” is short for “character.” The name char isused because when variables of this

type are input or output, they are interpreted as characters. Whenever a character is input, the

system automaticaly stores its ASCII code (see Appendix A) as the vaue of the integer type
char. And whenever avaiable of type char is output, the sysem automaticdly sends the
corresponding character to the output siream. This illusirated in the example below.

22 INTRODUCTION TO PROGRAMMING IN C++

C++ defines three 8-bit integer types. char,

signed char,
two of these are distinct. The type char will be @ther si gned char
depending upon the computer. Use type char for ordinary characters. Use the type unsi gned
char for very short bit-dring. The type si gned
would be a good choice if you needed to store a large quantity of very short integers that would

char

and unsi gned char.

not have to be output by means of the standard output operator <<.

EXAMPLE 122 Character Output

Ths dows hov char vaiddes ae output

#include <iostream.h>

// Tests output of t
main()
{

char ¢ = 64,

cout << C++ <<
cout << Cc++ <<
cout << C++ <<
cout << c++ << €
c = 96;

cout << C++ <<
cout << C++ <<
cout << C++ <<
cout << Cc++ << €
return O;

The first output statement inserts the character variable c into the output stream. Since it has the integer
vaue 64, it is output &s the character “@”. (The ASCII code for the “at” symbol is 64.) Then ¢ isimme-
diady incemented to 65 which causss the dhareder “A” to be output next. (The ASCII code for the letter
A is 65.) The rest of the program continues in a similar way. (Note that on computers that use the

EBCDIC aode the ouput hee wil

ype char:

" /!
"t /1
s /1
ndl ; //

e //
& //
I /1

ndl ; //

be dffeer)

prints
prints
prints
prints

prints
prints
prints
prints

The complete ASCII code is shown in Appendix A.

EXAMPLE 1.23 Obtaining the ASCIl Code

#include <iostream.h>

// Tests output of t

main()

{
char ¢ = "A';
cout << c++ << "
cout << C++ << !
cout << 6++ << "
return O;

ype char:

I@l
|A|
|B|
|C|

" << int(c) << endl;
" << iInt(c) << endl;

<< int(c) << endl;

and increnments ¢
and increnments c¢
and increnments c¢
and increnents c

and increnments ¢
and increnents c¢
and i ncrenents ¢
and increnents c

// prints "A
// prints 'B

But only

Or unsi gned char,

to
to
to
to

to
to
to
to

[CHAP. 1

is not explicitly used very often; it

65
66
67
68

97
98
99
100

and 65
and 66
// prints 'C and 67

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 23

As this program executes, c takes the values 65, 66, 67, and 68. But since character variables are
printed as characters, the first thing printed on each line is the character whose ASCII code is stored in c.
Thus, A, B, ad C ae printed. Weuse int (c) to print the numeric value of the character c.

The expresson i nt (c) iscdled a cast. It converts ¢ from char typeto i nt type This
dlows us to print the ASCII code of a character.

Review Questions

11 Describe the two ways to include comments in a C++- program.

12 Wha is wrong with the following “comment”:

cout << "Hello, /* change? */ World.\n '
13 What does a declaration do?

14 What isthe purpose of the preprocessng directive:
#include <iostream>

15 Isthisavaid C++ program? Explan:

main() { 22; }
1.6 Where does the name of the language “C++” come from?

17 What's wrong with these declarations.

int first = 22, last = 99,new = 44,0ld = 66;

1.8 What's wrong with these declarations:

int x =y = 22;

1.9 Wha's wrong with this program:

main ()
{
n = 22;
cout << n << endl;

24 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

1.10 For each of the following expressons, ether evduate it or explan why it is not a vdid

expression:

a. 37/ (5*%2)

b. 37/5/2

c. 37(5/2)

d. 37%(5%2)

e. 37%5%2

$37-5-2

g (37-5)2

1.11 Evauate each of the following expressons, assuming in esch case that m has the vaue 24
and n hasthe vaue 7:

a. m-8-n
b. m = n = 3
¢. nm

d. mm++

€. nPe+n

f ++m - n- -
g

m+=n -= 2

1.12 Deermine which of the following is a vdid identifier. If it is not vdid, tdl why:
r2d2

H20

secondCousinOnceRemoved

2ndBi r t hday

the-United_St at es-of - Aneri ca

TIME

_12345

X(3)

cost-in-$

SR TS0 a0 T

Solved Problems

113 What is the output from the following program:

#include <iostream.h>
main ()

{
// cout << "Hello, World.\n";

This progran has no output. The doubledash transforms the output dStatement into a comment.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 25

1.14 Wha is wrong with the following program:

#include <iostream.h>
// This program prints "Hello, World."
main ()
{
cout << "Hello, World.\n"
return O0;

The required semicolon is missing from the end of the output statement.

115 Write four different C++ statements that each subtract 1 from the integer variable n.

n=n-1;
n ~=1;
o

n--;

1.16 Write a sngle C++ datement that subtracts the sum of x and y from - and then
increments .

zZ " (X + y++);

117 Write asngle C++ statement that decrementsthe variablen and then addsit tot ot al .

total += --n;

118 Ineach of the following, assume that m hasthe vadue 5 and n has the value 2 before the
Satement executes. Tell what the valuesof m and n will be after the Statement executes
the fallowing:

am *= n++;

bh. m+= --n;

a. n will be 3 and m will be 10.
b.n will be 1 and m will be 6.

1.19 Identify and correct the error in each of the following:

a. cout >> count;
b m= ++n += 2;

a. The output object cou t requires the output operator <<.
The datement should be cou t << count ;

b. Theexpression ++n cannot be on the left side of an assignment.

1.20 Trace the following code fragment, showing the value of each varidble each time it

changes.
int x, vy, z;
X = Y= 2 = 6;
X *= y += 7 -= 4.

First, 6 is assigned to z, y, and x. Then z is decremented by 4, obtaining the value 2. Theny is
incremented by 2, obtaining the value 8. Then x is multiplied by 8, obtaining the value 48.

26

1.21

1.22

123

124

1.25

INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

On most UNIX workstations, thei nt typerangesfrom -2,147,483,648 to 2,147,483,647.
How many bytes will an object of this type occupy in memory?

The range from -2,147,483,648 to 2,147,483,647 covers 4,294,967,296 values. This number is
exactly 232,50 exh int reqires 32 hits which is 4 hytes of memory.

How do the following two statements differ:

char ch A

char ch 65;

Both statements have the same effect: declarech tobeachar andinitidizeit with the value 65.
Sincethisisthe ASCII codefor A , tha character condant can do be used to initidize ch to 65.

What code could you execute to find the character whose ASCII code is100?

char ¢ = 100;
cout << C;

How could you determine whether char is the same as si gned char or unsi gned
char onyour computer?

Run a program like that in Example 1.14 and compare the constants CHAR_MAX, SCHAR_MAX,
and UCHAR_MAX.

Solved Programming Problems

Write a program that prints the first sentence of the Gettysburg Address.

Essentially, all that we need to do here is use a sequence of output statements, sending pieces of the
sentence to the cou t object:

#include <iostream.h>

// Prints the first sentence of the GCettysburg Address:

main ()

{
cout << "\tFourscore and seven years ago our fathers\n";
cout << "brought forth wupon this continent a new nation,\n";
cout << "conceived in liberty, and dedicated to the\n";
cout << "proposition that all nen are created equal.\n";
return O;

_ Fourseore anid seven yeais a0o Our fathers
brought forth upon this continent a new nation, ,
conceived in liberty, and dedicated to the
proposition that all men are created equal.

We coulddso have done this by chaning the pieces with a sngle reference to cou t, like this:

cout << "\tFourscore and seven years ago our fathers\n"
<< "brought forth upon this continent a new nation,\n"
<< "conceived in liberty, and dedicated to the\n’
<< "proposition that all men are created equal.\n";

Note that this is a singlestatement, with asingle semicolon.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 27

1.26

If you want the output linesto be longer (or shorter) than the individual pieces sent to the output

stream, simply adjust your placement of the endline characters ‘\n’:

#include <iostream.h>

// Prints the first sentence of the Gettysburg Address:
main()

{
cout << "\tFourscore and seven years ago our fathers ";
cout << "brought forth wupon\nthis continent a new nation, ';
cout << "conceived in liberty, and dedicated\nto the ";
cout << "proposition that all men are created equal.\n";
return 0;

Fourscore and seven years ago our fathers brought forth upon
this continent o new nation, conceived in llberty, and dedlcated
to the propomtmn that all men are crea.ted equal '

Don't forget to put a blank after the lat word on exch line that doesn't end with an endline charadter.

Write a program that prints the sum, difference, product, quotient, and remainder of two
integers. Initidize the integers with the values 60 and 7.

After declaring integers m and n and initializing them with the values 60 and 7, we useone ouput
datement to print their vaues, andthen oneoutput statement for each of the five operations:

#include <iostream.h>

// Prints sum difference, product, and quotient of given integers:
main()
{

int m= 60, n = 7;

cout << "The integers are " << Mm<< "and " << n << endl;

cout << "Their sum is "<« (m+ n) << end;
cout << "Their difference is " << (m=-n) << endl;
cout << "Their product is << (m * n) << endl;
cout << "Their quotient is "<< (m/ n) << endl;
cout << "Their remainder is ' << (m%n) << endl;
return 0;

}

THe integers dare 60 and 7
Their sum i 67
Their difference is 53
Their product is 470
Their guotient is 8
Their remainder is 4

Note that the quotient 8 and remainder 4 fit the required relationship for the quotient and remainder
from integer division: 60 = (8)(7) + (4).

28

1.27

1.28

1.29

1.30

131

INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

Write a program that prints the block letter “B” ina7 x 6 grid of garslikethis

Fhkkxk

kkkkk

We use one output Satement for each row in the block letter:
#include <iostream.h>

// Prints the block letter "B"in a 7 x 6 grid:
main()
{

cout << "F****0 o oand| ;

cout << "*¥ *1 << endl ;
cout << '* *' << endl;
cout << "kxkk*v <o endl ;
cout << "* * << endl;
cout << "* << endl;
cout << "F****0 o and| ;
return O;

Instead of addingthe endl objectto exh output, we could have ended each quoted dring with the
endline character ‘\n'" likethis:

cout «g "*xE**\p';

Supplementary Problems

Trace the following code fragment, showing the vaue of each variable each time it
changes.
int x, vy, z

X YV = 2
X =

= 5;
*= Y 4

z -z 1;
On most systems, the unsi gned char type ranges from O to 255. How many bytes will
an object of this type occupy in memory?

Supplementary Programming Problems

Write and run a program that prints your name and address.

Write and run a program that prints the first sentence of the Gettysburg Address, with no
more than 40 characters per line.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 29

1.32

133

1.34

1.35

1.36

1.37
1.38
1.39

1.40

11

1.2

13

1.4

15

Run the program in Example 1.11 on your system. Use the output to determine what dif-
ferent integer types are available and how many bytes each requires.

Modify the program shown in Example 1.16 to see how your computer handles the integer
divison of 20 divided by -7. Try to predict what the quotient and remainder will be. Then
run your program to see if you were right:

Write and run a program that prints the firgt letter of your last name as a block letter in a
7 x7 grid of sars.

Write and run a program that prints the first four lines of Shakespeare' s Sonnet 18:
Shall | conpare thee to a summer's day?
Thou art nore lovely and nore tenperate.
Rough winds do shake the darling buds of My,
And summer's |ease hath all too short a date.

To find out what your system does about uninitidized variables, write and run a test pro-
gram that contains the following two lines

int n;

cout << N << endl;
Write and run a program that causes negative overflow of an variable of typeshort int.
Write and run a program that causes overflow of an variable of typei nt .

Write and run a program like the one in Example 1.22 that prints the ASCII codes for only
the 10 digits and the last 5 lowercase letters. Use Appendix A to check your output.

Write and run a program like the one in Example 1.22 that prints the ASCII codes for only
the 10 uppercase and lowercase vowels. Use Appendix A to check your output.

Answers to Review Questions

Oneway isto use the Standard C style comment:
/* like this */
The other way isto use the C++ style comment:
// like this

The first begins with a slash-star and ends with a star-slash. The second begins with a double-slash and
ends & the end of the line

Everything between the double quotes will be printed, including the intended comment.

A declaration tells the compiler the name and type of the variable being declared. It also may be initial-
ized in the declaration.

It indudes the header file i 0 st rean .h into the source code. This includes declarations needed for
input and output; e.g., the output operator <<.

Thisisavalid C++ program. It contains asingle statement: 22; This is an expresson statement
because any condant, like 22, is a vaid expresson. The program does nothing.

16

17

18

19

INTRODUCTION TO PROGRAMMING IN C++

[CHAP. 1

The name refers to the C language and it increment operator + +, The name suggests that C++ isan

advance over C.

The only thing wrong with these declarations is that new is a keyword. Keywords ae resved and car

not be used for vaisble names.

This is an intended declaration. The only way that the equds sign can be used in a decladtion is to initid-
izeavariable. Theexpressionx =y =2 2 isnotavalid initialization because the variable y appears

on the right sde of the fird equas sgn. The correct syntax would be
int x = 22, y = 22;

There ae two things wrong. The vaiable n is not declared, and cou t is being used without including

the <iostream.h> headerfile.

1.10 a. 37/ (5*2) evaluatesto 37/10 = 3

b. 37/5/2 evaluatesto (37/5) /2= 7/2 =3

c. Thisis not vdid because there isno operator between37 and (5/2)
Theintended operationwas3 7% (5 /2), which evdustes to 37/2 = 18

d 37%(5%2) evaluatesto 37%1 = O
e 37%5%2 evaluatesto (37%5)%2 = 2%2 = 0
f 37 -5 =2 evaluatesto (37 = 5) ~ 2 = 32 - 2 = 30

g. Thisis not vaid becaise there is no operator between(37-5) and 2
The intended operation was (37-5)* 2, which evaluatesto 32+2 = 64

1.1 am=~-8-n evaluatesto (24 - 8) - 7 =16 - 7 = 9

b. m=n = 3 evaluates to 3

c. nn evdudesto 2 4 %7 = 3

d. mn++ evaluates to 24% (7++)= 24%7 = 3

e. nPer+n evaluatesto 24% (++7)=24%8 = O

S +tm - n-- evaluatesto (++24) = (7--) = 25 7 =28

g m+=n -= 2 evaduatesto += (7 = 2) = 24 += 5 = 29

1.12 a. r2 d2 is a vdid identifier

b. H20 is avalid identifier

C. secondCousinOnceRemoved isavaididentifier

d 2ndBir thday is not a vaid identifier because its firs character is a digit
the_United_States_of_America isavalididentifier

_TIVE _is a valid identifier

12345 isavadididentifier

= wm o0

x(3) isnotavalididentifier becauseit containsthe characters' (' and*)’

cost_in_$ isnotavalididentifier becauseit containsthe character ‘s’

Chapter 2

Conditional Statements and Integer Types

The programs in Chapter 1 dl have sequential execution: each statement in the program
executes once, in the order that they are listed. Conditional statements alow for more flexible
programs where the execution of some statements depends upon conditions that change while
the program is running.

This chapter describes the it dtatement, the if . . . el se datement, and the switch
Satement also shows how to include smple input into your programs.

2.1 INPUT

In C++, input is andogous to output. But instead of data flowing out to the output stream
cout, We have data flowing in from the input sream cin (pronounced “see-in”). The name
stands for “console input.”

EXAMPLE 21 Integer Input
Here is a smple program that reads integer input:

main ()
L

int age;

cout << "How old are you: ";

cin >> age;

cout << "In 10 years, you will be " << age + 10 << ".\n";
}

How old are you: 19
In 10 years, you will be 29.
The type shown in boldface in the shaded sample run is the input that is typed by the user.

The symbol >~ isthe extraction operator, aso called the input operator. It is usualy used
with the cin input stream, which is usualy the user’s keyboard. Thus, when the statement
cin >> age;
executes, the system pauses, waiting for input. As soon as an integer is input, it is assgned to
age and the program continues.

Notice that the preprocessor directive:
#include <iostream.h>
Is missing from Example 2.1. It is required in any program that uses either cin Or cout. But
since nearly every program in this book does use ether cin or cout, we will assume that you
know to incude this line a the beginning of your source code file. Omitting it from these

31

32 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

examples smply saves some print space. We will dso omit the ret urn statement at the end of
the mai n () function in dl future examples.
The input object cin is analogous to the output object cout. Each is a C++ stream object

that acts as a conduit through which bytes flow. The bytes flow into the running program through
the cin obiect. and thev flow out through the cout object. This can be visudized like this:

-[1TeTs]a]s]e]7 e [o 0] - [=[ewom=
w JQwle[R[T]YJuli{ofp] 1]\
v JATSTOJF[GIHTUIRIL]:f" | e
oo |ZX|CIVIBINIM], | . J/] ==
[

o] =]] =

\
{include <iostream.h>
nain ()

r

int age;

cout << "How old are you: *;

cin >> age;

cout << "In 10 years, you will be ' << age + 10 << ".\n";

=)
2=

o] are u:
! Bl‘c’yl* ar's, Y’%bu \}w%l be 29.

EXAMPLE 2.2 Character Input

main ()

{
char first, last;
cout << "Enter your initials:\n";
cout << "\tFirst nane initial: ";
cin >> first;
cout << "\tLast nane initial: ";

cin>>last;

cout << "Hello, " << first << ". << last << ".!\n";

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 33

This example illustrates a standard way to format input. The first output line aerts the user to what
general input is needed. Thisis followed by a sequence of specific input requests, called user prompts.
Each user prompt is indented with the tab character \ t, and by omitting the newline character \ n it
leaves the cursor on the same line for the user to enter a response there.

EXAMPLE 23 Multiple Input in the Same Stream

More than one variable may be read in the same input Statement:

main()

char first, |last;

cout << "Enter your first and last initials: ";

cin >> first ss | ast;

cout << "Hello, " << first << ". " << last << ".!\n";

Biiter wour fivet and last initigls: gH

Heilo, g, 0.) 4 . \ . v

This shows that the input stream cin reads the items from left to right; i.e, the left-most variable is read
first.

Since the char typeis an integer type, cin will ignore dl leading white space (i.e., blanks, tabs,

Notice that this prevents the input of blanks as characters using input operator <<. In later chapters, we
will see more specidized methods for character input.

2.2 THE if STATEMENT

The if gatement dlows conditiona execution. Its syntax is
if (condition) statenent;

where condi ti on isan integer expresson and s ta temen t is any executable statement. The
s ta temen t will be executed only if the condi ti on hasa nonzero value. (Whenever an integer
expresson is being evauated as a condition, a nonzero value is interpreted to mean “true’ and a
zero vaue to mean “false) Notice the required parentheses around the condi t i on.

EXAMPLE 24 Teding for Divisbility

main ()
{
int n, d;
cout << "Enter two integers: ";
cin >> n >> d;
if (n%d == 0) cout << N << "is divisible by " << d << endl;

Eriter two integers: 24 6
24 is divisible by 6

34 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

This program reads two integers and then checks the value of the remainder n % d. In thisrun, the
value of 24 % 6 is 0, which means that 24 is divishle by 6.

The trouble with this last example isthat it doesn’t do anything when n isnot divisble by d:
Enter two integers: 24 5

To execute an dternative satement when the condition is zero, we need the if...el se
statement.

2.3 THE if... else STATEMENT

The if.. . else Saement executes one of two dternative statements, according to the
vaue of the specified condition. It has the syntax

if (condition) statenentl;
el se statenent2;

where condi t ion isaninteger expression, axds tat ement 1 ands tat ement 2 are any State-
ments. The st at enent 1 iSexecutedif the condi ti on has a nonzero value, and st at ement 2 is
executed if the condition has a zero value.

EXAMPLE 2.5

This is the same program as in Example 2.4, except that an el se clause has been added:

main()
{
int n, d;
cout << "Enter two integers: ";
cin >> n >> d;
if (n%d == 0) cout << n << is divisible by "<«< d << endl;
else cout cc n cc " is not divisible by " << d << endl;
}

Enter two integers: 24 5
24 is not divisible by 5

Since 24 % 5 ==4, the condition (n%l ==0) is false and the e 1 s e clause executes.
A condition like (nvd == o) isan expresson whose vaue is interpreted as being ether

“fdsg’ or “true” In C++ those two vaues are integers: 0 means “fase” and any nonzero integer
means “true.” Because of that correspondence, conditions can be ordinary integer expressions. In
paticular, the integer expresson (n3d) itsef can be used as a condition. It is nonzero (i.e,
“true’) precisdy when n isnot divisbleby d, we should reverse the two print Satementsin the
previous example to make sense:

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 35

EXAMPLE 2.6

main()

{
int n, d;
cout << "Enter two integers: ";
cin >> n >> d;
if (n%d) cout << n << " is notdivisible by " << d << endl;
el se cout << n << " is not divisible by "<< d << endl;

}

Enter two integeres 245
s not divisible by

2.4 RELATIONAL OPERATORS

The next example has a condition in a more intuitive form.
EXAMPLE 2.7 Finding the Maximum of Two Integers

This program prints the larger of the two numbers input:

main ()

int m n;

cout << "Enter two integers: ";
cin >> m >> n;

if (m> n)cout << m << endl;

el se cout << N << endl;

In this program, the condition ié (m > n) FIf m is”greaﬁer t'hahv n, thue cohdition is “true” and evalu- v‘
ates to 1; otherwise, the condition is “false” and evaluates to 0. So m is printed precisely when it is
greater than n.

The symbol ~ isone of therelational operators. It iscaled “reationd” because it evduates
how the two expressons on either side of it relate; for example, the rdation 22 > 5 5 is fdse
The symbal is caled an “operator” because when it is combined with expressons it produces a
vaue. For example, when > is combined with 2 2 and 5 5 in the foom 2 2 > 5 5, it produces
the integer vaue 0, meaning “fase”

There are six relationd operators.

c is less than

c= isless than or equd to
an isequd to

> IS grester than

v

is grester than or equa to
is not equd to

36 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

Note the double equals sign = = must be used to test for equality. A common error among new
C++ programmers is to use the single equals sign =. This mistake is difficult to uncover because it
does not violate the syntax rules of C++.

EXAMPLE 2.8 Finding the Maximum of Three Integers

This program prints the largest of the three numbers input:

main ()
{
int nl, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;
int max = nl;
if (n2 > max) mx = n2;
if (n3 > max) max = n3;
cout << "The maximum is " << max << endl;

Enter three integers: 22 44 66
The maximum is 66 .
Enter three | Nt egers: 773355
The maximim | S 77
On the first run, nl is22, n2 is44, and n3 is 66. First max is assigned 22. Then, since 44 is

greater than 22, max isassigned 44. Finally, since 66 is greater than 44, max is assigned 66, and that
value is printed.

On the second run, nl is77,n2 is33, andn3 is55. First max isassigned 77. Then, since 33 is
not greater than 77, max is unchanged. Finaly, since 55 is aso not greater than 77, max is again
unchanged, and so the vaue 77 is printed.

2.5 COMPOUND STATEMENTS

A compound statement is a sequence of statements that is treated as a Sngle satement. C++
identifies a compound statement by enclosing its sequence of statements in curly braces.

The next example contains the following compound statement:

The braces that enclose the three statements form a block. As a compound statement, it itself
qudifies as a statement and can be used wherever any other statement could be used. (Note that
an entire C++ program-everything that follows mai n () -forms a compound statement.)

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 37

EXAMPLE 2.9 Sorting
This progam reeds two integes and then outpuis them in increesng order:

main()
{
int x, v,
cout << "Enter two integers: *;
cin >> X >> VY,
if (x > vy){
int tenmp = x;
X =Y
Y tenmp;

}
cout << X << " << Y << endl;
}

Enter two integers: 66 $4
4 4 66
The efet of putting the compound datemet in the i f statement this way is that al three statements
indde the block will be executed if the condition is true
These particular three statements form a swap; that is, they interchange the values of x and y. This
condruct is frequently usad in programs that sot dda Such an intechange requires there three sparate
deps dong with the temporay dorage locgtion named tenp hee
Notice that the variable t enp isdeclared inside the block. That makesit local to the block; i.e., it
only exists during the execution of the block. If the condition isfalseand x <y, thentenp will never

exist. This is a good example of the practice of localizing objects so that they are created only when
needed.

This Example 2.9 is not the most efficient way to solve the problem. If al we want to do is
print the two numbers in increasing order, we could do it directly without the temp variable:

if (X <y) cout << X << " " <<y << endl;
el se cout <<y << " " << X << endl;

The purpose of the example is to illustrate compound statements and local variable declarations.
2.6 KEYWORDS

A keyword in aprogramming language is aword that is aready defined and isreserved for a
single speciad purpose. C++ has 48 keywords. They are:

asm continue f1 oat new si gned try

aut o defaul t for oper at or sizeof typedef
break del ete friend private static uni on
case do got 0 protected struct unsi gned
catch doubl e if public switch virtual
char el se inline register tenpl ate void
class enum i nt return this vol atile
const extern | ong short t hrow whi | e

We have dready seen the keywords char, else, if, int, long, short, signed, axd
unsi gned. The remaining 40 keywords will be described subsequently.

38 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

Keywords like i £ and el se are found in nearly every programming language. Other
keywords such ascat ch andfri end areuniqueto C++. The 48 keywords of C++ include al
32 of the keywords of the C language.

There are two kinds of keywords: thoselikei £ ande1 se which serve as structure markers
used to define the syntax of the language, and those like char and i nt which are actual names
of things in the language. In some languages, the structure markers are called resewed words and
the predefined names are called standard identifiers.

2.7 COMPOUND CONDITIONS

Conditionssuchas n ¢ d and x > y can be combined to form compound conditions. The
three logical operators that are used for this purpose are ss (and), 1 1 (or), and | (not). They
are defined by

&& p && g evaduates to 1 only when both p and q evauate to 1
Il p |1 gevauatesto 1 when ether p or g or both evdluate to 1
! I p evaluates to 1 when ether p evduatesto O

For example, (n ¢ d 1 1 x > y) willbetrueifeither n % d iSnonzero or if x is greater than
y (or both), and 1(x >y)isequivdentto x <= v.
The definitions of the three logica operators are usudly given by the truth tables below.

Pp| alp && q plalpllaq p 'p
1|1 1 1| 1 1 1]0
1 ® (0] 1 0 1 0 1
0 n (0] 0 n 1

0 ® (0] 0 1)) 0

These show for example, that if p has the value 1 (for “true’) and g has the vaue O (for
“fasg’), then the expression p & g will have the vaue 0 and the expresson p 11 g will have
thevaue 1.

The next example solves the same problem that Example 2.8 solved, except that it uses
compound conditionas.

EXAMPLE 2.10 The Maximum of Three Again

This program uses compound conditions to find the maximum of three integars

main()

{
int a, b, c
cout << "Enter three integers: ";
cin >> a >> b >> c;
if (a >>b && a >=c) cout << a << endl;
if (b>=a & b >=¢) cout << b << endl;
if (¢ >> @ & C >= b) cout << C << endl;

}

Enter three integers: 66 88 55
Be .

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 39

This smply checks each of the three numbers to see which is greater than or equa to the other two.

Note that Example 2.10 is no improvement over Example 2.8. Its purpose was smply to illustrate
the use of compound conditionals.

Here is another example using a compound conditiond:
EXAMPLE 2.11 User-Friendly Input

This program allows the user to input either ay or ay for “yes’:

main ()
{
char ans;
cout << "Are you enrolled (y/n): ";
cin >> ans;
if (ans =='Y' | | ans == 'y') cout << "You are enrolled.\n";
el se cout << "You are not enrolled.\n";
}

Are you enrolled: N
You are not enrolled

It prompts the user for an answer, suggesting aresponse of ether y or n. But then it accepts any
character and concludes that the user meant “no” unless either a v or ay is input.

Compound conditionals that use &«& and 1 1 will not even evauate the second part of the
conditiona unless necessary. Thisis cdled short-circuiting. Asthetruth tablesshow, (p && g)
will befdseif pisfase Soin that case there is no need to evauate q if p is fdse Smilaly
if p is true then there is no need to evduate g to determine that (p 1 1 q) is true

The vaue of short circuiting can be seen from the following example:
EXAMPLE 2.12 Short-Circuiting in a Condition

This program tests integer divisibility:

main ()
{
int n, d;
cout << "Enter two positive integers: ";
cin >> n s> d;
if (d>0 & n% == 0) cout << d << " divides " << n << endl;
el se cout << d << ' does not divide " << n << endl;

Enter two posltlve mtegers 3_0?0; 6
6 dlvxdes 3@0 . .

Enter two p051t1ve i
1 éoes Jaot dwxde 308

i .,-3:030_

Enter two ‘,pﬁ)SlthE anie ers-”'
G does’ ot élVlé{e 300 ';f -»

40 CONDI TI ONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

In the fird run, d is pogtive ad n% is zao, 20 the compound condition is true In the sscond run,
d is pogtive but n% is not zao, 0 the compound ocondition is fdse

In the third run, d iszero, sothe compound conditionisimmediately determined to be false without eval-
uating the second component “n%d == 0". This short-circuiting prevents the program from crashing because
when d is zero the expressionn%d cannot be evaluated.

2.8 BOOLEAN EXPRESSIONS

A boolean expression is a condition that is ether true or fdse. In the previous example the
expressonsd >0, nvd ==0, and(d > 0 s&& n%d == o) aeboolean expressons. Aswe
have seen, boolean expressions evaluate to integer vaues. The vaue 0 means “fdse’ and every
nonzero value means “true”

Since dl nonzero integer vaues are interpreted as meaning “true,” boolean expressons are
often disguised. For example, the statement

if (n) cout << "n is not zero";

will print n is not zero precisely when n is not zero because that is when the boolean
expression (n) is interpreted as “true’. Here is a more redigtic example:
if (n%) cout << "mis not a multiple of d";
The output statement will execute precisely when nog is not zero, and that happens precisdy
when d does not divide n evenly, because n% is the remainder from the integer divison.
The fact that boolean expressions have integer vaues can lead to some surprisng anomalies
in C++. For example, the following line might be written by a novice C++ programmer:

if (X >=y >=2z) cout << "max = x"; // ERROR!
Obvioudy, the programmer intended to write
if (X >=y & Y >= Z) cout << "max = X"; // K

The problem is that the erroneous line is syntacticaly correct, so the compiler will not catch the
error. In fact, the program could run without any gpparent error at dl. Thisis a run-time error of
the worst kind because there is no clear indication that anything is wrong.

The source of the difficulty described here is the fact that boolean expressons have numeric
vaues. Suppose that x and y both have the. value 0 and that : has the value 1. The expresson
(x >=v>=2z)Iisevduaed from left to right. The fird pat x >- y evaduates to “true’ which
isthe numeric vaue 1. Then that iscompared to ; and since they are equa the complete expres-
son evauaes to “true’ even though it is redly fasel

The mord here is to remember that boolean expressons have numeric values, and that
compound conditionas can be tricky.

Another error that novice C++ programmers are prone to make is usng a single equals sgn
= when the double equds sign == should be. For example,

if (x = 0) cout << "x = 0"; // ERROR!
Obvioudy, the programmer intended to write
if (x == 0) cout << "x = 0"; /] OK

The erroneous statement will first assign 0 to x. That assgnment then has the value 0 which
means “fasg’ 30 the cout tatement will not be executed. So evenif x origindly was zero, it
will not be printed. Worsg, if x origindly was not zero, it will inadvertently be changed to zero!

Like the previous bug, this is another run time error of the worgt kind. It is very difficult to
detect.

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 41

29 NESTED CONDITIONALS

Like compound statements, conditional statements can be used wherever any other statement
can be used. So a conditiond statement can be used within another conditional statement. Thisis
cdled nesting conditional statements. For example, the condition in the last example could be
restated equivaently as

if (d > 0)
if (nvd == 0)
cout << d << "divides " << n << endl;
el se

cout << d << " does not divide " << n << endl;
el se
cout << d << " does not divide " << n << endl;

Here extra indentation is used to help clarify the complex logic. Of course, the compiler ignores
dl indentation and white space. To parse the statement, it uses the following “e 1 se matching”
rue

Match each el se with the last unmatched i £.

Using this rule, the compiler can easily decipher code as inscrutable as this:

if (a>0) if (bs>0) ++a; else if (c > 0)
if (a < 4) ++b; else if (b < 4) ++c; else --a;
else if (¢ < 4) --b;, else --c; else a = 0;

To make it readable for humans, that code should be written ether like this

if (a > 0)
if (b > 0) ++a;
el se
if (¢ > 0)
if (a < 4) ++b;
el se
if (b < 4) ++c;
else --a;
el se
if (¢ < 4) --b;
else --c;
el se
a=0;

or like this

if (a > 0)
if (b > 0) ++a;
else if (¢ > 0)
if (a < 4) ++b;
else if (b < 4) ++c;
else --a;
else if (c < 4) --b;
else --c;
el se
a = 0;

42 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

EXAMPLE 2.13 The Maximum of Three Again

Here is yet another way to do what was done in Example 2.8 and Example 2.10:

main()

{
int a b, c, nmax;
cout << "Enter three integers: ":
cin >> a >> b >> ¢;

if (a > b
if (a >c¢) mx = g //a>Dband a >c
else mx = c; // C >=a>Db

el se
if (b >c) mx = b //b>=aand b >c
else max = c; // ¢ >=b >= a

cout << 'The mafxi mm is " << max << endl;
}
Pty thvee dvitegerer 22 3sae 0 1
The maximum is 44 ' ...

Eriter three integers: 66 55 44 . -

The maximum is 66 ’ . \ \ , .
In the first run, thetest (@ > b) fails, so the second el se executesthetest (b >c)which also fails,
thus executing the third el se which assigns ¢ to max. In the second run, thetest (a > b) succeeds,
and then the test (a > c) also succeeds, so a is assigned to max.

This program is more efficient than the one in Example 2.10 because it evauates only two
smple conditions ingtead of three compound conditions. Nevertheless, it should be considered in-
ferior because its logic is more complicated. The in-line comments are redlly needed to darify the
logic. In the trade-off between efficiency and smplicity, the one should opt for smplicity.

Nested conditionas are by their very nature complicated. So it is usualy better to avoid them
whenever possible. An exception to this rule is a specid form of nested conditiona where al
except posshbly the last el se isimmediately followed by another i £. This is a popular logica
dructure because it delineates in a Imple way a sequence of digoint aternatives. To clarify the
logic, programmers usudly lineupthee 1se i £ phrases, as shown in the next example.

EXAMPLE 214

This program converts a test score into its equivalent letter grade:

main()
e
int score;
cout << "Enter the test score: ";
cin >> score;
if (score > 100) cout << "Error: score is out of range.";
else if (score >= 90)cout << 'A';
else if (score >= 80) cout << 'B';
else if (score >= 70) cout << 'C';
else if (score >= 60) cout << 'D;
else if (score >= 0) cout << 'F';
else cout << "Error: score is out of range.";

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 43

Enter the test score: 83
B

Enter the test score: 47
E

Enter the test score: -9 '

Error: score | S out Of range: c
The variable score istested through a cascade of conditionals, continuing until one of the conditionsis
found to be true or until the last el se is reeched as in the third run.

2.10 THE switch STATEMENT

The sequence of mutudly exclusve-dterndives ddinested by the multiple el se i £ con-
struct can also be coded using aswi t ch Statement. Its syntax is

switch (expression) {
case constantl: statementListl;
case constan t2: statementLis t2;

case constantN: statementListN;
default: statementList;

The swi t ch statement evauates the expr essi on and then looks for its vaue among the case
constants. If the value is found among the cons tan ts listed, then the statements in that s ta te-
men tri St areexecuted. Otherwiseif thereisa def qul t (which is optional), then the program
branchestothat s ta temen tLis t. Note tha the expression mus evduae to an integer type and
that the constants mud be inleger codats (Which indude chars).

EXAMPLE 2.15

The program hes the same dfedt as the progam in Example 214

main()
int score
cout << "Enter the test score: "; cin >> score;
switch (score/10) {
case 10:
case 9! cout << 'A << endl; break;
case 8: cout << 'B' << endl; break:
case 7: cout << 'C' << endl; br eak;
case 6: cout << 'D'<< endl; br eak;
case b5:
case 4.
case 3:
case 2:
case 1:
case 0: cout << 'F' << endl; break;
default: cout << "Error: score is out of range.\n';

44 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

First the program divides the score by 10. In the second run -where the input is 47, the expression

score / 10 evduaes to 4. Then tha vdue is located in the case lig, and evay daement from thee to
the next break isexecuted That oans dl the casss down to case O to reach the next break dSaement.

This phenomenon is celled a fall through.

211 THE CONDITIONAL EXPRESSION OPERATOR

C++ provides an abbreviated form of a special case of the i f . .. el se statement. It is cdled
the conditional expression operator and uses the » and the : symbals in a specid ternary
format:

condition ? expressionl : expression2

Like any operator, this combines the given expressions to produce a value. The value produced is
either the value of expr essi onl or that of expressi on2, according to whether the condi ti on
is true or false. For example, the assignment statement

mn=x<y ? X :V;
will assign the value of x to mi n if x <y, otherwise it assigns the value of y to mi n.

The conditional expression operator is generally used only when the condition and both
expressions are very simple.

2.12 SCOPE

The scope of an identifier is that part of the program where it can be used. For example
variables cannot be used before they are declared, so their scopes begin where they are declared.
This is illudrated by the next example.

EXAMPLE 2.16 Scope of Variables

main()
{
x = 11; // ERROR this is not in the scope of X
int x;
{
X = 22; // OK: this is in the scope of x
y = 33; // ERROR this is not in the scope of y

X =44, // OK this is in the scope of x
y = 55; // OK: this is in the scope of y

66; // OK: this is in the scope of x
77; // ERROR this is not in the scope of y

The scope of x extends from the point where it is declared to the end of mai n () . The scope of y
edtends from the pant where it is dedared to the end of the intend blodk within which it is dedared.

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 45

A program may have severd objects with the same name as long as their scopes are nested or
digoint. This is illugtrated by the next example:

EXAMPLE 217 Nested and Paralled Scopes

int x = 11; // this x is gl obal
main ()
{ // begin scope of main()
int x = 22;
{ // begin scope of internal block
int x = 33;
cout << "In block inside main(): X = " << X << endl;
} // end scope of internal block
cout << "In main(): X = " << X << endl;
cout << "In main(): ::x = " << ::X << endl;
} // end scope of main()

u

I8 block ingide main(): x
nmpainl): z - 729
mmednl): gix = 11

There are three different objects named x in this program. The x that isinitialized with the value 11
is a globd variable, s0 its scope extends throughout the file. The x that is initidized with the value 22 has
scope limited to mai n (). Since this is nested within the scope of the first x, it hides the first x within
main ().The x that is initialized with the value 33 has scope limited to the internal block within
main (), so it hides both the first and the second x within that block.

The last line in the program uses the scope resolution operator . to access the global x that is oth-
gwise hiddenin main () .

2.13 ENUMERATION TYPES

In addition to the predefined types such asi nt and char, C++ dlows you to define your
own specid data types. This can be done in severd ways, the most powerful of which use classes
as described in Chapters 8-14. We consider here amuch ssimpler kind of user-defined type.

An enumeration type is an integra type that is defined by the user with the syntax

enum typename { enumeratorlist };
Here enum is a C++ keyword, typename gSands for an identifier that names the type being
defined, and enunera torl is t stands for a list of identifiers that define integer constants. For
example the following defines the enumerdtion type Senest er, Specifying three possble vaues
that a variable of that type can have

enum Semester {fall, spring, sunmmer};
We can then declare variables of this type:

Senmester sl, s2;
and we can use those variables and those type va ues as we would with predefined types:

sl = spring;

s2 = fall;

if (S1 ==8s2) cout << "Same semester.\n";

46 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

The actud vaues defined in the enumera torl is t ae caled enumerators. In fact, they are
ordinary integer vaues. The vdues fall, spring, and sumver defined for the Senest er
type above could have been defined like this:

const int fall = O
const int winter = 1;
const int sumer = 2;

Thevaues 0, 1, . . . are asagned automatically when the type is defined. These default vaues can
be overridden in the enunera torlis t:

enum Coin {penny = 1, nickel =5 dine = 10, quarter = 25);
If integer values are assgned to only some of the enumerators, then the ones that follow are
given consecutive values. For example,

enum Month {jan = 1, feb, mar, apr, my, jun, jul, aug, sep,

oct, nov, dec};
will assgn the numbers 1 through 12 to the twelve months.
Since enumerators are Smply integer condtants, it is legd to have severd different enumera:

tors with the same vaue:

enum Answer {no = 0, false = 0, yes =1, true =1, ok = 1};
This would alow the code

Answer ans;

if (ans == yes) cout << "You said it was o.k.\n";
to work as expected. If the vaue of the variable ans isyes, true, orok (dl of which equd
1), then the condition will be true and the output will occur. Note that since the integer vaue 1
aways means “true’ in a condition, this conditional statement could also be written

if (ans) cout << "You said it was o.k.\n";

Enumeration types are usually defined to make code more self-documenting; i.e., easier to

understand. Here are afew more typical examples:

enum Boolean {false, true};

enum Sex {fenale, nale};

enum Day {sun, non, tue, wed, thu, fri, sat};

enum Base {binary = 2, octal = 8, decimal = 10, hexadecimal = 16);

enum Color {red, orange, vyellow, green, blue, violet};

enum Rank {two, three, four, five, six, seven, eight, nine, ten,

jack, queen, king, ace};
enum Suit {clubs, dianmonds, hearts, spades};
enum Roman {I =1, V=5 X =10, L =50, C = 100, D = 500,
M= 1000);
Definitions like these can help make your code more readable. But enumerations should not be
overused. Each enumerator in an enumerator list defines a new identifier. For example, the
definition of Ronan above defines the seven identifiers 1, v, x, L, ¢, b, andwm as specific
integer congtants, S0 these letters could not be used for any other purpose within the scope of
their definition. '
Note that enumerators must be vaid identifiers. So for example, the following would not be

valid:

enum Gade {F, Db G, C Gt, BB B+ A, A; // ERRR

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 47

because the characters “,* and ‘-> cannot be used in identifiers. Also, the following would not be
vdid:
enum Mnth {jan = 1, feb, mr, apr, my, jun, jul, aug, sep,

oct, nov, dec};
enum Base {bin = 2, oct = 8, dec = 10, hex = 16); // ERROR!

because the constant oct is being redefined.

2.14 INTEGER TYPE CONVERS ONS

In many cases, C++ alows objects of one type to be used where another type is expected.
This is cdled type conversion. The most common examples of type converson are from one
integer type to another, which we consider here, and conversion from an integer type to afloating
point type, which we consider in Chapter 3.

The generd ideais that one integer type may be used where another integer type is expected
if the expected type has a higher “rank”. For example, a char can be used where an int is
expected because i nt has higher rank than char .

EXAMPLE 218 Integer Promotion

main ()
{
char ¢ = "A';
short m = 22;
int n=c¢c +m
cout << '"n = " << n << endl;

The char variable cisinitidized with the integer value 65 (the ASCII for the character A) and
theshort variablem isinitialized with the integer value 22. In the assignmentn = ¢ + m the oper-
ands ¢ and m have different integral types, so their values 65 and 22 are both promoted to type i nt
before the resulting value of 87 is assigned to n.

Integral promotion like this is quite common and usually occurs unnoticed. The general rule is
that any integral type will be promoted to i nt whenever an integer conversion like this is necessary.
An exception to that rule applies on compilers whose implementation of i nt does not cover al the
values of the type being promoted. In this case the integral type will be promoted to uns igned int
instead. For example, in Borland C++, the range of type unsi gned short is 0 to 65,536 (see Ex-
ample 1.14) which extends beyond the range of i nt (-32,768 to 32,767), so on that compiler un-
si gned short getspromotedto unsi gned i nt insteadofto i nt.

Since enumeration types are integrd types, integrd promotion gpplies to them too, as the
next example illustrates.

48

CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

EXAMPLE 219 Integer Promotion

enum Color {red, orange, vyellow, green, blue, violet};

main()

Color x = blue;

cout << '"x = " << X << endl;
x = 4

In the last line, the value of x is promoted from the enumeration type co | or to thetype i nt

before it is inserted into the output stream.

2.1
2.2
2.3
24

25
26

27

2.8

29

2.10

211

Review Quegtions

Write a single C++ statement that prints ' Too many ' if the variable count exceeds 100.
What is the difference between a reserved word and a standard identifier?.
What is “short-circuiting” and how is it helpful?

How is the following expression evaluated?
X<y ?-1: (x==y?20: 1));

What is a “fal through”?

State whether each of the following is true or false. If false, tell why.

a!(p q) isthesameas !p 'q
h. !t Ip isthesameas !p
C.p & gl r istesameas p && (g r)

What is wrong with the following code:

enum Senester {fall, spring, summer};
enum Season {spring, summer, fall, wnter};

What is wrong with the following code:
enum Friends {"Tont, "Dick", "Harry", 1};

What is wrong with the following code:
if (x = 0) cout << X << "= 0\n";
el se cout << x << " := 0\n";

What is wrong with the following code:
if (x <y <z) cout << X << ' . <<y << "<« "< Z << endl;

What is wrong with the following code:
a.cin << count;
b. if x < y min = x

else mn = vy;

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 49

212 What is wrong with the following code:

cout << "Enter n: r;

cin >> n;
if (n <0)
cout << "That is negative. Try again.\n";
cin >> n;
el se
cout << "0.k. n = " <« n << endl;
Solved Problems

2.13 Construct a logical expression to represent each of the following conditions: a. score is
greater than or equal to 80 but less than 90; b. answer isether N or n ; c n iseven
but not 8; d.ch isacapita letter.

a. (score >= 80 && score < 90);

b. (answer == ‘N answer == 'n');
b. (n%2 == 0 && n != 8);

b. (ch >= '"A && ch <= 'z2');

2.14 What is wrong with the following code:

if (x == 0)
if (y == 0) cout << 'x and y are both zero.\n";
el se cout << '"x i S not zero.\n";

The programmer clearly intended for thesecond output " x i sno t zero.\n" tobeprintedif
the first condition (x = = () isfalse, regardlessof the second condition (y == 0). Tha is, the
el se wasintended to be matched with thefirst i f .Butthe“else matching” rule causesit to be
matched it with the second condition, which means that the output "xi snot zero.\n' will be
printed only when x is zero and y is not zero.

The“e 1 se matching” rule can be overridden with braces:

if (x == 0) {

if (y == 0) cout << '"x and y are both zero.\n";
}
el se cout << "x is not zero.\n";

Now the e 1 se will be matched with thefirst i £, the way the programmer had intended it to be

2.15 What is the difference between the following two statements:
if (n >2) {if (n < 6) cout << "OK"; } else cout << "NG";

if (n>2) {if (n < 6) cout << "OK"; else cout << "NG"; }

50

2.16

2.17

CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

In the fird datement, the el se is matched with the first i f . In the second statement, the el se
ismatched withthesecond i f. |If n < 2 the fird datement will print NG while the second Statement
will do nothing. If 2 <n < 6, both statements will print OK. If n 2> 6, the first statement will do nothing
while the second statement will print NG.

Note that this code is difficult to read because it does not follow standard i ndentation conventions.
The first statement should be written

if (n > 2) {
if (n < 6) cout << "OK";

el se cout << "NG";

The braces are needed here to override the “else matching” rule. This el se is intended to match
the firg i f.

The second statement should be written

if (n > 2)
if (n < 6) cout << "CK";
el se cout << "NG";

Here the braces are not needed because the el s is intended to be matched with the second i f.

Solved Programming Problems

Write and run a program that reads the user's age and then prints “You are a child.” if the
age < 18, “You are an adult.” if 18 < age < 65, and “You are a senior citizen.” if age = 65.

Here weusedthe el se i f construct because the three outcomes depend upon age beingin one
of threedisjoint intervals:

main ()

{

int age;

cout << "Enter your age: ";

cin >> age;

if (age < 18) cout << "You are a child.\n";

else if (age < 65) cout << "You are an adult.\n";
el se cout << "you are a senior citizen.\n';

If control reaches the second condition (age < 65),thenthefirst condition must befalse soin fact
18< age < 65. Similarly, if control reachesthe second el s then both conditions must be fdse so in
fact age > 65.

Write and run a program that reads two integers and then uses the conditional expression oper-
aor to print either “multiple” or “not” according to whether one of the integers is a multiple of
the other.

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 51

An integer m is amultiple of an integer n if the remainder from the integer division of m by n is
0. So the compound conditionm%n == 01 | n % m == 0 testswhether either isamultiple of
the other:

main ()

{

int m n;
cin >> m >> n; _
cout << (m %n ==011 n%m==07? "multiple" : "not") << endl;

The value of the conditional expression will be either "mlt ipl e or " not ", acording to
whether the compound condition is true. So sending the complete conditional expression to the output
stream produces the desired result.

218 Write and run a program that simulates a simple calculator. It reads two integers and a charac-
ter. If the character is a +, the sum is printed; if it isa -, the difference is printed; if it isa *,
the product is printed; if it isa /, the quotient is printed; and if it isa %, the remainder is
printed. Useaswi tch statement.

The character representing the operation should be the control variable for the swi tch daement:
main ()

int X, v;

char op;

cout << "Enter two integers: ;
cin >> X >> VY,

cout << "Enter an operator: ";
cin >> op;

switch (op) {

case '+': cout << X + Y << endl; br eak;
case '-': cout << X y << endl; break;
case '*': cout << X *y << endl; break;
case '/': cout << X /Yy << endl; break;
case '%': cout << X %y << endl; break;

}

Enter two integers: 30 13 -
Enter an operator: %
4 ‘ ,

In each of the five cases, we simply print the value of the corresponding arithmetic operation and then
break.

52 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

219 Write and run a program that plays the game of “Rock, paper, scissors.” In this game, two
players simultaneously say (or display a hand symbol representing) either “rock,” “paper,” or
“scissors.” The winner is the one whose choice dominates the other. The rules are: paper dom-
inates (wraps) rock, rock dominates (breaks) scissors, and scissors dominate (cut) paper. Use
enumerated types for the choices and for the results.

First define the two enum types Choi ce and Resul t. Then declare variableschoi cel ,

choice2, ad result of these types and ue an integer n to get the required input and assign it to
them:

enum Choice {rock, paper, SCissors};
enum Result {playerl, player2, tie};

main()
{ .
int n;
Choi ce choicel, choice2;
Result result;
cout << "Choose rock (0), paper (1), or scissors (2):\n";
cout << "Player #1: ";

cin >> n;

choicel = Choice(n);

cout << "Player #2: ";

cin >> n;

choice2 = Choice(n);

if (choicel == choice2) result = tie;

else if (choicel == rock)
if (choice2 == paper) result = player2;
else result = playerl;

else if (choicel == paper)
if (choice2 == rock) result = playerl;
else result = player2;

else // (choicel == scissors)
if (choice2 == rock) result = player2;
else result = playerl;

if (result == tie) cout << "\tYou tied.\n";

else if (result == playerl) cout << "\tPlayer #1 wins.\n";

el se cout << "\tPlayer #2 wins.\n";
}

Choose rock (O), paper (1), or scissors (2):
Player #1: 1 « -

«

Choose rock (0), paper (1), or scissors (2}):

Player #1: 2 : .

Player s ,
Player #l wins.

Choose rock (0), paper (l), or scissors (2):
Pl ayer #1: 2
Pl ayer #2: 0

Player #2 wins.

Through a series of nested if datements we ae ablle to cover dl the posshilities.

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 53

2.20

Write and test a program that solves quadratic equations.

A quadratic equation is an equation of theform ax’* +bx+c = 0, where a, b, and c are given coeffi-
cdents and x is the unknown. The coefficients are red number inputs O they dhoud be dedaed of type
fl oat ordoubl e. Sincequadratic equationstypically have two solutions, we'll use x| and x2
for the solutions to be output. These should be declared of type doubl e to avoid inaccuracies from
round-off error.

The solution(s) to the quadratic equation is given by the quadratic formula:
_ —bi'«/bz——4ac
B 2a

But thiswill not apply if ais zero, so that condition must be checked separately. Theformulaalsofalls
to work (for real numbers) if the expression under the square root is negative. That expressmnb ~4ac
is cdled the discriminant of the quadratic. We ddfine that as the sepaate vaisble d and check its sign:

#include <iostream.h>

#include <math.h> // needed for the sqrt() function
// This solves the equation a*x*x + b*x + == 0:
main()

{

float a, b, ¢;
cout << "Enter coefficients of quadratic equation: ";
cin >> a >> b >> c;

if (a == 0) {
cout << "This is not a quadratic equation: a == Q0\n";
return O;

}

cout << "The equation is: "<< a << "x"2 + " << b
<< "X+ " << C << " =0\n";

double d, xI, x2;
d = b*b - 4*a*cy // the discrimnant

if (d < 0) {
cout << 'This equation has no real solutions: d < 0\n";
return O;

xI' = (-b + sqrt(d))/(2*a);

X2 = (-b - sqrt(d))/(2*a);

cout << "The solutions are: " << x|l << ", " << X2 << endl;

}
Enter co fflCleﬂtSwOf quadratlc equatlon~12 1 —6

Note how we use the r et ur n statement inside the conditionals to terminate the program if either a
is zero or d is negative The dternative would have be to use e 1 < dasses dter ech i f.

54

2.21

222

2.23

2.24

2.25

2.26

2.21

2.28

229

2.30

2.31

CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

Supplementary Problems

Write a single assignment statement that uses the conditional expression operator to assign the
absolute value of x to absx.

Construct a logical expression to represent each of the following conditions:
a. wei ght isgreater than or equal to 115 but less than 125.

b. ch iseither Q or g

C. x IS even but not 26.

d. donat i on isin the range 1000-2000 or guest is 1.

e. ch isalowercase or an uppercase letter.

Construct a truth table for each of the following boolean expressions, showing its truth
value (0 or 1) for al 4 combinations of truth values of its operands p and q.

a !'p Il g

b.p && q I'p && !q

c. (pll q) && ! (p && q)

Use truth tables to determine whether the two boolean expressions in each of the following are
equivaent.

a ! (p & ag),and !p && !q

b. I''p,and p

c. !'p I gand p 1 !g

d.p & (g &&r), and(p &&) && r
ep li(g & r), and(p Il q) && r

Write a single C++ statement that prints “too many” if the variable count exceeds 100, using
a anif statement;
b. the conditiona expression operator.

Supplementary Programming Problems

Rewrite the “Hello World” program so that it reads the user’s three initials as input and prints
them instead of “World!” For example, if the user enters R, w and D, the output would be
Hello, R W D

Write and run a program that reads four integers and prints them in the opposite order.

Write and run a program that reads four integers and prints the minimum and maximum. Use
the conditional statements as in Example 2.8.

Write and run a program that reads a grade, A, B, C, D, or F and then prints “excellent,”
“good,” “far” “poor,” o “falue” Us the e 1 se if structure.

Write and run a program that prints the truth tables for each of the boolean expressions in
Problem 2.23.

Write and run a program that prints the truth tables to verify your answers to Problem 2.24.

CHAP. 2] CONDITIONAL STATEMENTS AND INTEGER TYPES 55

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

The 1993 U.S. Tax Rate Schedule for taxpayers with single status reads:

Table 21 Schedule X

If the amount of the
on Form 1040, But not Entee on Form

line 37, is: over— 1040, line 38 amount

Over— over—

$0 $22,100 15% $0
22,100 53,500 $3,315.00 + 28% 22,100
53,500 115,000 12,107.00 + 31% 53,500
115,000 250,000 31,172.00 + 36% 115,000
250,000 - 79,772.00 + 39.6% 250,000

Write and run a program that reads a dollar amount and prints the correct tax.

Write and run a program that reads a grade, A, B, C, D, or F and then prints “excellent,”
“good,” “fair,” “poor,” or “failure” Use a swi t ch statement.

Write and run a program that reads a character and then uses a swi t ch statement to print
“do” if the character isaC, “re’ ifitisaD, “me’ if itisan E, “fa” if itisanF, “sol” if itisa G,
“la” if itisan A, “ti” if itisaB, and “error” if it is any other character.

Write and run a program that reads a character and then prints. “It is a vowel” if it is a vowel,
“It is an operator” if it is one of the five arithmetic operators, and “It is something else” if it is
anything else. Use a swi t ch statement.

Write and run a program that reads a single char digit and then prints the number as a litera
string. For example, if the input is 7, then the output should be the word “seven’. Use a
switch statement.

Write and run a program that reads two characters and two integers. If the first character or the
two characters together form one of the six relational operators, then the two integers are com-
pared using that operator and a message describing the result is printed. For example, a run
could look like this:

1=3377
33 is not equal to 77

Modify the program in Example 2.10 by replacing the secondi fwithane 1se i f andthe
third i £ with an el se. How does this improve the efficiency of the program? On the aver-
age, how many conditions will be tested per run?

Write and run a program that reads three integers and prints the minimum and maximum. Use
the conditional expression operator.

Modify Problem 2.18 so that it is more user-friendly. Use a char instead of an i nt for
input, allowing the user to type in either “r”, “p”, or “g” for “rock,” “paper,” or “scissors.”

56

21
22

2.3

24
25

2.6

27
2.8
29

CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

Answersto Review Questions

if (count > 100) cout << "Too many";

A resaved word is a keyword in a programming language that seves to mak the dructure of a datement.
For example, the keywords i f andel se arereserved words. A standard identifier is akeyword that
defines a type. Among the 48 keywords in C++, 1if, else ad while arereserved words, and
char, int, and float arestandard identifiers.

The term “short-circuiting” is used to dexribe the way C++ evauates compound logicd expressions like
(x>211y >5)and (x >2 &&Y >5) . If x is greater than 2 in the first expression, then

v will not even be evaluated. If x is less than or equal to 2 in the second expression, then y will not
even be evduaed. In thee cases only the fird pat of the compound expresson is evauated because that
value alone determines the truth value of the compound expression.

This expresson evaduaes to ~1if x <y, it evaluatesto O if x = = y, and it evaluatesto 1 if X > .

A “fall through” in aswitch statement is a case that does not include a break statement, thereby
causng control to continue right on to the next case Statement.

a!(p Il g) isnotthesameas'!p 11 !q; forexample if p istrue and g isfalse, the first
expression will be false but the second expression will be true. The correct equivalent to the expres-
sion! (p 11 g) istheexpression! p && | q.

b. 1 I I pistesmea !p.

C.p & g !l r isnotthesameasp &&(q 11 r);for example if p isfalse and r is true,
the first expression will be true, but the second expression will befalse:p && g 11 r is the same
as (p && q) I

The secondenum definition attempts to redefine the constantsspring, summer, andf al 1.
Enumerators must be valid identifiers. String literals like '"Tom " and "Dick" are not identifiers.

The programmer probably intended to test the condition (x ==) . But by using assignment operator
“ » instead of the equality operator “= =" the result will be radically different from what was intended.
For example, if x has the value 22 prior tothe 1 f statement, thenthe i f statement will change the
value of x to 0. Moreover, the assignment expression (x = 0) will be evaluated to 0 which means
“false,” sotheel se part of the conditional will execute, reporting that x is not zero!

2.10 The programmer probably intended to test the condition (X < v && v <z) . The code as written

2.11

212

will compile and run, but not as intended. For example, if the prior values of X, vy, and z are 44, 66,
and 22, respectively, then the algebraic condition“x < y < 7” isfalse. But as written, the code will be eval-
uated from left to right, as (x <Y) < z. First the condition x < y will be evaluated as “true.” But
this has the numeric value 1, so the expression (x <y)isevaluated to 1. Then the combined expression

(x<y) < zisevaluated as (1) <66 which isalso true. So the output statement will execute, errone-

ously reporting that 44 < 66< 22.

a. Either cou t should be used in place of ¢ in, or the extraction operator >> should be used in
place of the insertion operator <<,

b. Parentheses are required around the condition x < vy, and asemicolon isrequired at the end of the
i f dase before the e 1 se.

There is more than one statement between the if clause andtheel seclause. They need to be made
into a compound statement by enclosing them in braces { }.

Chapter 3

lteration and Floating Types

Iteration is the repetition of a statement or block of statements in a program. C++ has three
iteration statements: the whi | e statement, the do . . . while Statement, and the for statement.
Iteration Statements are aso caled loops because of their cydlic nature.

3.1 THE while STATEMENT

The whi | e Statement has the syntax
while (condition) statenent;

Firg the condi t ion isevauated. If it is nonzero (i.e, true), the sta t emen t isexecuted and
the condi tion is evauated again. These two steps are repeated until the condi tion evaluaes
to zero (i.e., isfalse). Note that parentheses are required around the condi t 1 on.

EXAMPLE 3.1 Printing Cubes

This program usssa whi | e loop to print cubes:

main ()
{
int n;
cout << "Enter positive integers. Terminate with O\n\t: ";
cin >> n;
while (n > 0) {
cout << n << " cubed is " << n*n*n << "\n\t: ";
cin >> n;

}

Enter positive integers.. Terminate with 0.
t 2
2 cubed is 8
_— : 5
5 cubed is 125
H
7 cubed is 343
: 0
The first value input for n is 2. The while statement tests the condition (n > 0). Since the condition
is true, the two statements inside the loop are executed. The second statement reads 5 into n. At the end of
the loop, control returns to the conditon (n > 0) . Since it is il true, the two statements inside the loop
are executed again. Each time control reaches the end of the loop, the condition is tested again. After the
third iteration, n is 0, and the condition is false. That terminates the loop.

57

58 ITERATION AND FLOATING TYPES [CHAP. 3

Most C++ programmers indent al the satements thet lie ingde a loop. This makes it esser
to see the logic of the program.

EXAMPLE 32 Sum of Sguares

This program uses @ whi 1 e loop to find the sum of the squares of the integers from 1 to n:
n
i2 = 124224374 - +n2

main()
{
int i =1, n, sum= 0
cout << "Enter a positive integer: '; cin >> n;
while (i <= n) {
sum += i*i;
i ++;
}
cout << "The sum of the first " << n << ' squares is "
<< sum << endl ;

}

Enter a posgitive integer: 4 -
The sum of the first 4 sguares is 30

Enter a positive integer: 6 :
The sum of the first 6 sguares is 91

The first run computes the sum of the first 4 squares: 1 + 4 + 9 + 16 = 30. The second run computes the
sum of the first 6squares: | +4+9+ 16+ 25+ 36= 91

When you want several statements to execute within a loop, you need to use braces{ } to
combine them into a compound statement. Example 3.2 illugtrates the standard way to format a
compound statement in aloop. The left brace ends the loop's header line. The right brace stands
on aline by itsdf directly below the “w” of the whi | e keyword. And the Statements within the
compound statement are dl indented.

Of course, the compiler doesn't care how the code is formatted. It would accept this format:

while (i <=n) { sum+= i*i; i++; }
But most C++ programmers find the displayed format easier to read. Some C programmers aso
like to put the left brace on aline by itsdf, directly below the “w” of the whi | e keyword.

3.2 THE do. . ,while STATEMENT

Thedo.. . while Satementisamod thesameasthewhi | e Statement. Its syntax is
do statenent while (condition);
The only difference is that the do. . . whil e Statement executes the st at ement _first and then
evauatesthe condi ti on. Thesetwo steps are repeated until the condi ti on evaluates to zero
(i.e,isfdse). A do. . .wi 1e loopwill dwaysiterate at least once, regardless of the value of the
condi t ion, because the statement executes before the condi t ion isevaluated the first time.

CHAP. 3] ITERATION AND FLOATING TYPES 59

EXAMPLE 3.3 The Factorial Function
This program computes the factorial function: »! = (n) (n=1)...(3) (2) (1).

main()
{
int n, f =1;
cout << 'Enter a positive integer: "; «cin >> n;
cout << n << " factorial is ";
do {
f *= n;
n--;
}while (n > 1);
cout << f << endl;
}
Enter a positive integer: s -
5 factorial IS 120

Enter a positive integer: 8

8 factorialis 40320 .
The program initidlizesf to 1 and then multipliesit by the input number n and al the positive integers
tha aelesthen n. 5! = Q@A) = 120, and 8! = B)(7)(6)(5)(4)(3)(2)(1) = 40,320.

33 THE for STATEMENT

A loop is controlled by three separate parts. an initialization, a continuation condition, and
an update. For example, in the program in Example 3.3, the loop control varidbleisn; itsinitid-
izdionisc in >>n, itscontinuaion conditionis n > 1, and its update is n- -. When these
three parts are smple, the loop can be set up as a for loop, which is usudly smpler than its
equivalent while loop and do. . . while loop.

The syntax for the f or Statement is

for (initialization; continuation condition; update) statenent;
Theinitialization, the continuation condition,or the update maybeempty.

EXAMPLE 34 Sum of Squares Again

This program hes the same dfet as the one in BExample 32

main ()

int n, sum = 0;

cout << "Enter a positive integer: ";

cin >> n;

for (int i =1; i <=n; i++)
sum += i*i;

cout << "The sum of the first " << n << " squares is "
<< sum << endl ;

}
Here the initidizetion isint i =1, the continugtion condition isi <= n, adthe upddeisi + -,

60 ITERATION AND FLOATING TYPES [CHAP. 3

It is customary to locdize the declaration of the control varigble in the initidization part of a
for loop. For example, the control variable i in the program above is declared to be an i nt
within the initidizationpatin t i = 1. Thisisanicefesature of C++. However, once the con-
trol variable is declared this way, it should not be redeclared in alater f or loop. For example,

for (int i = 0; i < 100; i++)
sum += j*j;
for (int i =0; i < 100; i++) // ERROR i has already been declared
cout << i*i*i;
The same control variable can be used again; it just cannot be redeclared:
for (i = 0; i < 100; i++) // OK
cout << 1*i*i;

If you have the choice between af or loop and awhil e or do. . while loop, you should
probably use the for loop. As the next example illudtrates, a for loop is usudly essier to
understand.

EXAMPLE 35 The Factorial Function Again

Compare this program with the one in Example 3.3:

main()

{
int n, f = 1;
cout << "Enter a positive integer: '"; cin >> n;
for (int i =2, i <= n; i+4)

f *= i;
cout << n << " factorial is " << f << endl;
}
This computes the factoria by multiplying 1 by the factors 2,3, ..., n-1 n. It won't run any faster than the
version done with the whi 1 e loop, but the code is more succinct.

EXAMPLE 3.6 The Extreme Values in a Sequence

This program reads a sequence of positive integers, terminated by the integer O. It then prints the
sndles and larges numbers in the sequence.

main()

{
int n, mn, nax;
cout << "Enter positive integers. Terminate input with 0:\n";

cin >> n;

for (min = max = n; n > 0;) {
if (n <mn) nmn = n // mn and max are the smal | est
else if (n > max) mx = n; // and largest of the n that
cin >> n; // have been read so far

}
cout << 'min = ' << MN << "and max = " << max << endl;

CHAP. 3] ITERATION AND FLOATING TYPES 61

Efiter positive irtasarg.
29
88
66

| Termindate dinplt with 0:

mln ,) andmax:% -
Notice that the initidization part of the f or loop min = max = nisthe equivalent of two assgn-
ments, and the update part is empty. Also notice the use of the in-line comment that spans three lines. It
desxibes a loop invariant, a condition on the vaiddes tha should be true on evay itadion of the loop.

A sentinel is aspecid value of an input variable that is used to terminate the input loop. In
the example above, the vaue 0 is used as a sentindl.

EXAMPLE 3.7 More than One Control Variable

This progam goas how a for logp may use more then one contrd vaigdle

main()
{
for (int m=1, n =8, m< n, m+ n--)
cout << '"m = "<<mM<< ", h = "< n << endl;

}

m = 2, o=z 8

me2, 07

m = 3, n = 6

m=4 n-=2>5

The initidization part of the f or loop declares the two control variablesm and n, initidizing m to 1
ad n to 8 The updde pat uss the comma opeardor to indude two updde exqressons m+ + ad n- -,
The loop continues aslong asm < n. (Note that the commain the initialization part of the f or loopis
not the comma opeadar; it is used there as pat of an initidization lig)

3.4 THE break STATEMENT

We have dready seenthe br eak Statement used inthe swi t ch statement. It isaso used in
loops. When it executes, it terminates the loop, “bresking out” of the iteration at that point.

EXAMPLE 3.8 Breaking Out of an Infinite Loop

Thiswhi 1e loopisequivaentto the one in Example 32

while (1) |
if (i > n) break; // 1 oop stops here when i > n
sum += 1*31;
1++;

}

Aslong as (i <= n), theloop will continue, just asin Example 3.2. Butassoonas (i > n),the
break daemat executes immediady teminging the loop.

62 ITERATION AND FLOATING TYPES [CHAP. 3

EXAMPLE 3.9 Controlling Input with a Sentinel

This program reads a sequence of positive integers, terminated by 0, and prints ther average
main()
{
int n, count = 0, sum = O0;
cout << "Enter positive integers. Terminate input with 0:\n";
for (; ;) A

cout << "\t" << count + 1 << ":";
cin >> n;

if (n == 0) break;

++count;

sum += n;

}
cout << "The average of the " << count << ' numbers is
<< float (sum)/count << endl;

Eiiter pocitive integers.

‘Terminate fmput with 0

Theaverage of the 4 numberSlsé 5

When 0 is input, the break executes, which immediately terminating the for loop and causes the fina
output statement to execute. Without the use of the break here, the ++ count statement would have to be
put in a conditional or count would have to be decremented outside the loop or initialized to -1.

Notice that al three control parts of thisf or loop areempty: for | ; ;). This construct is pro-
nounced “forever.” Without the presence of the break, this would be an infinite loop.

35THE conti nue STATEMENT

The br eak Statement jumps over dl the rest of the statements in the loop’s block and goes
to the next statement after the loop. The cont i nue Statement does the same thing except that,

ingtead of terminating the loop, it goes back to the beginning of the loop’s block to begin the next
iteration.

CHAP. 3] ITERATION AND FLOATING TYPES 63

EXAMPLE3.10 Using conti nue and break Statements -----

This little program illustrates the cont i nue and br eak statements:
main()

{
int n;
for (;;){
cout << "Enter int: "; cin >> n;
if (n%2 == 0) continue;
if (n%3 == 0) break;
cout << "\tBottom of loop.\n";
}
cout << "\tOutside of loop.\n";
}
Enter int: 7
Bottom Of loop.
Enter int: 4
Enter int: 9
Qut si de of loop.

When n has the value 7, both of the i f conditions fail and control reaches the bottom of the loop.
When n hes the vdue 4, the firg i f condtion is true (4 is a multiple of 2), 0 contrd skips over the regt
of the datements in the loop and jumps immediady to the top of the loop again to continue with the next

iteration. When n hes the vdue 9, the firg if oondtion is fdse (9 is not a multiple of 2) but the ssoond

i f condition istrue (9 isamultiple of 3), so control br eaks out of the loop and jumps immediately to
the fird saement that falows the loop.

3.6 THE goto STATEMENT

The br eak dtatement, the cont i nue Statement, and the swi t ch Statement cause the con-
trol of the program to branch to a location other than where it normaly would go. The destina-
tion of the branch is determined by the context: break goes to the next statement outside the
loop continue goesto theloop’'s continue condition, and swi t ch goes to the correct case
congtant. All three of these statements are caled jump statements because they cause the control
of the program to “jump over” other statements.

The goto Statement is another kind of jump statement. Its detination is specified by a label
within the statement.

A labd is amply an identifier followed by a colon, ether a the beginning of a Satemen.

Labels work like the case datementsingde a swi t ch Statement: they specify the destination
of thejump.

64 ITERATION AND FLOATING TYPES [CHAP. 3

EXAMPLE 3.11 Breaking Out of Nested Loops

This program illustrates the correct way to break out of nested loops.

main ()
{
int a, b, c;
cin >> a >> b >> c;
for (int i =0; i < a; i++) {

for (int j =0; j <b; j++)
for (int k = 0; k < c; k++)
if (i*j*k > 100) goto esc;
el se cout << i*j*k << " ";
esc: cout << endl;

}
}

When the goto is reached inside the innermost loop, program control jumps out to the output statement
at the bottom of the outermost loop

There are other ways to achieve this nested loop exit. Oneway would be to reset the loop control vari-
ables by replacing the i £ statement inside the k-loop with

if (i*j*k > 100) j = k = b + ¢
el se cout << i*j*k << " ";

This will cause both the j -loop and the k-loop to terminate because their continue conditions,j < b

and k < ¢, will be fdse. This is a “hacker's method” because it atificidly sets the vaues of the control
variablesj and k to achieve the desired outcome as a side effect.

Another approach is to use a “done flag” within the continue conditions of the for loops
like this

int done = O;

for (int i = 0; i < a && !done; i++) {

for (int j =0; j < b && !done; j++)

for (int k = 0; k < c && !done; k++)

if (i*j*k > 100) done = 1;

el se cout << i*j*k << " ";

But this too is somewhat artificid and cumbersome. The goto is redly the best way to terminate nested
loops.

It is easy to overuse the goto Statement, as the next example illudtrates.

CHAP. 3] ITERATION AND FLOATING TYPES 65

EXAMPLE 312 Overusing got o Statements

This nonsense program shows how the use of got o Statements can lead to “spaghetti code’

main()

{
int n;
cout << "Enter n: ";
cin >> n;

sl: cout << “Now at step 1 with n ="' << n << endl;
TTw
if (n < 2) return O;

s2: cout << "Now at step 2 with n =" << n << endl;
if (n < 7) got0 s4;

s3: cout << "Now at step 3 with n =" << n << endl;
if (n %2 == 0) got0 sl;

s4: cout << "Now at step 4 with n =" << n << endl;
n -= 2;

if (n > 4) got0 sl;
else got0 s3;

ntrol back and forth among fhe four
output statements labelled s 1, s 2 s3 ads 4

The imprudent use of go tos leads to unstructured spaghetti code which is difficult to debug.

66 ITERATION AND FLOATING TYPES [CHAP. 3
3.7 REAL NUMBER TYPES

C++ supports three red number types. float, double, andiong double. On most
systems, doubl e usestwice asmany bytesasfl oat. Typicdly,fl oat uses4 bytes, doubl e
uses 8 bytes, and |ong double uses 8, 10, 12, or 16 bytes.

Types that are used for real numbers are caled “floating-point” types because of the way they
are gored interndly in the computer. On most systems, a number like 123.45 isfirst converted to
binary form:

123.45 = 1111011.01110011~

Then the point is “floated” o that dl the bits are on its right. In this example, the floating-point
form is obtained by floating the point 7 bits to the left, producing a mantissa 27 times smdler. So
the origind number is

123.45 = 0.111101101110011,x 27

This number would be represented interndly by storing the mantissao.1111011011100 11 and
the exponent 7 separately. For a 32-bit f 1 oat type, the mantissa is stored in a 23-bit segment
and the exponent in an 8-bit segment, leaving 1 bit for the sign of the number. For a 64-bit
doubl e type, the mantissais stored in a 52-bit segment and the exponent in an 1 I-bit ssgment.

The next example can be used on any computer to determine how many bytesit uses for each
type. The program usesthe sizeof oOperator which returns the Size in bytes of the type speci-
fied.

EXAMPLE 313 Usingthes i z eo f Operator

This program tells you how much space each of the 12 fundamenta types uses:

main () {

cout << 'Nunber of bytes used:\n";

cout << "\t char: "' << si zeof (char) << endl;
cout << "\t short: " << sizeof (short) << endl;
cout << "\t int: " << sizeof (int) << endl;
cout << "\t long: " << sizeof(long) << endl;
cout << "\t unsigned char: " << sizeof(unsigned char) << endl;
cout << "\tunsigned short: " << sizeof(unsigned short) << endl;
cout << "\t unsigned int: ' << si zeof (unsi gned int) << endl;
cout << "\t unsigned long: " << sizeof(unsigned long) << endl;
cout << "\t signed char: " << si zeof (si gned char) << endl;
cout << "\t float: " << sizeof (float) << endl;
cout << "\t double: " << sizeof (double) << endl;
cout << "\t | ong double: " << sizeof (long double) << endl;

}

The output below shows the sizes for a typicd UNIX workstation. On this machine, int and | ong' are
equivalent, unsi gned int and unsi gned | ong are equivalent, and doubl e and | ong doubl e
ae equivaent. In other words, ‘long’ is no different from ‘regular’ on this computer.

CHAP. 3] | TERATI ONANDFLOATI NG TYPES 67

Number of bytes used:

char:

~ short:

int:

long:

unsigned char:
unsigned short:
unsigned int:
unsigned long:
~ signed char:
float:

double:

long double:

Th.e next program can be used to investigate floating-point types on any computer system It
reads t:he vaues of various congants from the f1 oat . h header file. To access it, the program
must include the preprocessor directive:

OO\OO‘JNHLP)&[\)HH—B)&I\)H

#include <float.h>

Thisislikethe#i ncl ude <ios tream h> directive that we dwaysincludein order to use the
cin and cout oObjects.

EXAMPLE 3.14 Reading from the f 1 oat . h Fie

This program tells you the precison and magnitude range that the f 1 oat type has on your system:

main () {
int fbits = 8*sizeof(float); // each byte contains 8 bits
cout << "float uses:\t" << fbits << " bits:\n\t\t"
<< FLT_MANT_DIG 1 << " bits for its mantissa\n\t\t '
<< fbits FLT_MANT_DIG << " bits for its exponent\n\t\t
<< 1 << bit for its sign\n"
<< ! to obtain: " << FLT_DIG << " sig. digits\n"
<< ©wi th mninmmvalue: ' << FLT_MIN << endl
<< v and maximm value: ' << FLT MAX << endl;
}
float uses: 32 bits:

23 bits for ItS mantissa
8 bits for its exponent
1 bit for its sign
_to obtain: 6 sig. digits
‘with minimum yalue: 1.17549e-38
and maximum value: 3.40282e+38

Theconstants FLT _ mwr_big, FLT_DIG, FT MmN and rT MAX are definedinthe float.h
header file.

This output is from a UNIX workstation. It shows that the 32 bits it uses to store a float are parti-
tioned into 3 parts. 23 hits for the mantissa, 8 hits for the exponent, and 1 bit for the sign. The 23-bit man-
tissa produces a floating-point value with 6 significant digits, and the 8-bit exponent yields a range in
magnitude from about 1037 to about 3 x 103%.

68 ITERATION AND FLOATING TYPES [CHAP. 3

All floating-point arithmetic is done in doubl e precison. So the only time you should use
float indead of doubl e iswhen you are storing large quantities of real numbers and are con-
cerned about storage space or access time.

3.8 TYPE CONVERSIONS

We saw in Chapter 2 how one integer type can be converted automatically to another. C++
aso convertsintegra types into floating point types when they are expected. For example,

int n = 22;
float x = 3.14159;
X += n; // the value 22 is automatically converted to 22.0

cout << X 2 << endl; //value 2 is automatically converted to 2.0

Converting from integer to float like this is what one would expect and is usudly teken for
granted. But converting from a floating point type to an integrd type is not autométic.

Ingenerd, if T isonetype and v is avaue of another type, then the expression
T (V)

converts v totype . Thisis cdled type casting. For example, if expr is a floaing-point
expresson and n isavaiableof typei nt, then

n=int (expr);

converts the value of expr totypeint and assgnsitto n. The effect is to remove the red
number’s fractiond part, leaving only its whole number part to be assigned to n. For example,
2.71828 would be converted to 2. Note that this is truncating, not rounding.

EXAMPLE 315 Simple Type Casting

This program converts a double to an int:

main ()
{
double v = 1234.56789;
int n = int(v);
cout << "v = " <<V << ', N = " << n << endl;

}
¥ = 123a 57 5= 23

The doubl e vaue1234.56789 is converted to the i nt value 1234.
When one type is to be converted to a “higher” type, the type case operator is not needed. We

saw this kind of type promotion among integrd types in Chapter 2. Hereé's a Smple example of
promotion fromchar all theway up to doubl e:

CHAP. 3] ITERATION AND FLOATING TYPES 69

EXAMPLE 3.16 Promoation of Types

This program promotes a char to ashort tO0 anint to afloat to a double:

main()

{
char ¢ = "A; cout << " char ¢ = " << ¢ << endl;
short k = ¢; cout << " short k = " << k << endl;
int m= k; cout << " int m= " << m<< endl;
long n = m cout << " long n = " << N << endl;
float x = n; cout << " float x = " << X << endl;
double y = x; cout << "double y = " <<y << endl;

tm = 65

n - 55
float x - 65
dotble v - 85

The integer velle of the ada A isits ASCII code 65. Thisinteger isstored asachar inc,asa
short ink, asaint inm adaean long inn. Ths vdue is then converted to the flogting paint
vdue 65.0 adgoedassa f 1 oat inxadasa double iny. Noticethat cou t prints the integer ¢
& a dhaade, ad tha it prints the red numbers X ad y as integers because ther fradiond pats ae O.

Because it is S0 easy to convert between integer types and red typesin C++, it iseasy to for-
get the didtinction between them. In generd, integers are used for counting discrete things, while
reds are used for measuring on a continuous scale. This means that integer values are exact,
while red vaues are approximate.

In the C programming language, the syntax for casting v astype T is (1) v C++ inherits
thisform aso, so we could havedonen = int (v)asn = (int) v,

3.9 ROUNDOFF ERROR

In a computer, even the smplest floating-point vaues tend to be imprecise. This imprecison
is called roundoff error.

EXAMPLE 317 Roundoff Error

This progjan does some dmple aithmetic to illustrate roundoff eror:

main ()

{
double x = 1000/3.0; cout << '"x = " << X << endl;
double y = x - 333.0; cout << 'y = " << Yy << endl;
double z = 3*y = 1.0; cout << "z = " << z << endl;
if (z == 0) cout << "z == 0.\n";

el se cout << "z does not equal 0.\n";

70 ITERATION AND FLOATING TYPES [CHAP. 3

genssssaeyT TR

0

In exadt vaitr"ma]‘ (; 7 \'/éﬁébleskwajd ha/e the vdUes ‘x‘:"K{S 1///3,k y = 1/3 ‘ard z =0 Bl:[vl/‘3‘camﬂ ot be

represrted exadly as a flodingpoint vaue The ineccurary is refledted in the reddue vdue for z.
This example dso illustrates an inherent problem with usng floating-point types within con-

ditiond tests of equdity. Thetet (z == o) will fal evenis . is very nealy zero, which is

likely to happen when - should &gebraically be zero. So it is better to avanid tests for equality
with floating-point types.

310 THE E-FORMAT FOR FLOATING-POINT VALUES

When input or output, floating-point values may be specified in ether of two formats: fixed-
point and scientific. The output in Example 3.16 illudtrates both: 333.333 has fixed-point
format, and 5.68434e- 14 has sdentific format.

In scientific format, the letter e stands for “exponent on 10.” SO ~5.68434e- 14 means
-5.68434 x 10", which eguals -0.0000000000000568434. Obvioudy, the scientific format is
more efficient for very smdl or very large numbers.

Floating-point values with magnitude in the range 0.1 to 999,999 will normally be printed in
fixed-point format; dl others will be printed in scientific format.

EXAMPLE 3.18 Scientific Format

This progjan shows how flogingpoint vdues may be input in dentific format:

#include <iostream.h>

main ())
{

double x;

cout << "Enter float: "; cin >> X;

cout << "lts reciprocal is: " << |/X << endl;

Enter float: 234.567e89 \
Its reciprocal is: 4.26317e-92

You can use @ther e or e in the scientific formet.
311 CONSTANTS, VARIABLES, AND OBJECTS

An object is a contiguous region of memory that has an address, a Sze, atype, and avaue.
The address of an object is the memory address of its first byte. The size of an object is Smply
the number of bytes that it occupiesin memory. The value of an object is the constant determined
by the actud bits stored in its memory location and by the object’s type which prescribes how
those hits are to be interpreted.

CHAP. 3] ITERATION AND FLOATING TYPES 71

For example, with GNU C++ on a UNIX workstation, the object n defined by
int n = 22;
has the memory address 0x3 1t f f cd6, the Size 4, the type int, and the vaue 22. (The memory
address is a hexadecimal number. See Appendix G.)

The type of an object is determined by the programmer. The vaue of an object may dso be
determined by the programmer a compile time, or it may be determined at run-time. The size of
an object is determined by the compiler. For example, in GNU C++ an i nt has sze 4, while in
Borland C++ its Sze is 2. The address of an object is determined by the computer’s operating
system at run-time,

Some objects do not have names. We will see examples of such anonymous objects in
Chapters 4 and 5. A variable is an object that has a name. The object defined above isavariable
with name ‘ n' .

The word “variable’ is used to suggest that the object’s vaue can be changed. An object
whose vaue cannot be changed is called a constant. Congtants are declared by preceding its type
specifier with the keyword cons t, like this:

const int n = 22;
Congants mugt be initialized when they are declared.

EXAMPLE 319 The cons t Specifier

This program illustrates constant definitions.

main ()
{
const char BEEP = '\b';
const int MAXINT = 2147483647;
int n = MAXINT/2;
const float KM PER M = 1.60934;
const double PI = 5.14159265358979323846;

Congants are usudly defined for values like r that will be used more than once in a program
but not changed.

It is cusomary to use dl capitd letters in condant identifiers to digtinguish them from other
kinds of identifiers. A good compiler will replace each congtant symbol with its numeric vaue.

3.12 GENERATING PSEUDO-RANDOM NUMBERS

One of the most important applications of computersis the simulation of red-world systems.
Mog high-tech research and development is heavily dependent upon this technique for studying
how systems work without actudly having to interact with them directly.

Smulation requires the computer generation of random numbers to modd the uncertainty of
the real world. Of course, computers cannot actualy generate truly random numbers because
computers are deterministic: given the same input, the same computer will always produce the
same output. But it is possible to generate numbers that appear to be randomly generated; i.e.,

72 ITERATION AND FLOATING TYPES [CHAP. 3

numbers that are uniformly digtributed within a given interva and for which there is no discern-
ible pattern. Such numbers are called pseudo-random numbers.

The Standard C header file <stdl ib . h> definesthefunctionrand () which generates
pseudo-random integers in the range O to rAno_MAX, Which is a condant that is dso defined in
<stdl ib . ns. Eachtimetherand () function is cdled, it generates another unsi gned integer

in this range.

EXAMPLE 320 Generating Pseudo-Random Numbers

#include <iostream.hs>
#include <stdlib.h>

main()
{
for (int i =0; i < 8 i+4)
cout << rand() << endl
cout << "RAND_MAX = " << RAND- MAX << endl;
}

1103527590

377401575

662824084

1147902781

2035015474

368800899

1508029952 : R
4862561. 85 . S
RAND.MAX = 2147483647 '

1103527590

377401575 e
662824084 ey
1147902781 T
2035015474
368800899
1508029952

486256485

RAND MEX = 2147483687

On each run, the computer generates 8 unsi gned integers that are uniformly distributed in the
interval 0 t0 rano- max, which is2,147,483,647 on this computer. Unfortunately each run produces the
same sequence of numbers. This is because they are generated from the same “seed.”

Each pseudo-random number is generated from the previoudy generated pseudo-random
number by goplying a specid “number crunching” function thet is defined interndly. The firgt
pseudo-random number is generated from an internally defined varigble, caled the seed for the
sequence. By default, this seed is initidized by the computer to be the same vaue every time the
program is run. To overcome this violation of pseudo-randomness, we can use the srand ()
function to select our own seed.

CHAP. 3] ITERATION AND FLOATING TYPES 73

EXAMPLE 321 Generating Pseudo-Random Numbers

#include <iostream.h>
#include <stdlib.h>

main ()
{
unsi gned seed;
cout << "Enter seed: ";
cin >> seed;
srand(seed); // initializes the seed
for (int i = 0; i < 8; i++4)
cout << rand() << endl
}

Enter seed: 0
12345
1406932606
654583775
1449466924
2259283513
ireg2gs1is

1051550459
1293799192

BEiter secdt 2

a0
662824§§4vaﬂjj‘;ru;“\'\"“
1147500781

2035015474
368800899
1508029952
486256185

Enter seed:' 12345

1406932606

654583775

1449466924

229283573

1109335178 k
1051550459

1293799192

794471793

Theline s r and (seed) asigns the vaue of the vaiable se ed to the interna “seed” used by the
rand () function to initidize the sequence of pseudo-random numbers that it generates. Difference seeds
produce difference reults.

Note that the seed vaue 12345 used in the third run of the program is the first number generated by
rand () in the first run. Consequently the first through seventh numbers generated in the third run are the
same as the second through eighth numbers generated in the first run. Also note that the sequence gener-
aed in the second run is the same as the one produced in Example 3.20. This suggests that, on this com-
puter, the default seed value is 1.

74 ITERATION AND FLOATING TYPES

[CHAP. 3

The problem of having to enter a seed vaue interactively can be overcome by using the
computer’s system clock. The system dock keeps track of the current time in seconds. The
time () function defined in the heeder file <time. hs> returnsthe current timeasan unsi gned
integer. This then can be used as the seed for the rand () function.

EXAMPLE 322 Generating Pseudo-Random Numbers

<lostream.h>
<stdlib.h>
<time.h>

#incl ude
#i ncl ude
#i ncl ude

main()
{
unsi gned seed = time (NULL) ;
cout << "seed = " << seed << endl;
srand (seed) ;
for (int i =0; i < 8 i+4)
cout << rand() << endl;

Il

seed = 808148157
1877361330
352899587
1443923328
185742 3:28 9
200398846
1379699551
1622702508
715548277

Seege BORIABYED
892939?69 .
1556093750
1468644255

952730860

1320627253
1305580360

84465715

440402904

// uses the system cl ock

// initializes the seed

On the fird run, the time () function returns the integer 808,148,157 which is used to “seed” the

random numbe gengaar. The ssoond run is done 3 ssoonds lder, <0 the tine ()

function reumns the

ineger 808,148,160 which ganades a compledy dfferet ssguence

In many smulation programs, one needs to generate random integers that are uniformly dis-
tributed in a given range. The next example illustrates how to do that.

CHAP. 3] ITERATION AND FLOATING TYPES 75

EXAMPLE 323 Generating Pseudo-Random Numbers

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

main()
{
unsigned seed = time(NULL);
cout << "seed = " << seed << endl;
srand(seed);
int mn, max;
cout << "Enter m nimum and maxi mum ";

cin >> mn >> nax; // 1 owest and hi ghest nunbers
int range = max - mn + 1; // nunber of nunbers in range
for (int i =0; i < 20; i++) {

int r = rand()/100%range + mn;
cout << r << " ",

}
cout << endl;

}

seed = 808237677
Enter mnimum and maximum 1 100 V
85 57 1 10 5 73 81 43 46 42 17 4 48 9 3 74 414 30 68

seed = 808238101
Enter m ni mum and maxi noum 22 66
63 29 56 22 53 57 39 56 43 3662 30 41 57 26.61 59 26 28

The first run generates 20 integers uniformly distributed between 1 and 100. The second run generates
20 integers uniformly didributed befween 22 and 66.

Inthe f or loop, wedividerand () by 100 first to strip way the two right-most digits of the ran-
dom number. Thisis to compensate for the problem that this particular random number generator has of
producing numbers that adternate odd and even. Then rand () / 10 0 $range produces random numbers
intherange O to range-1, adrand () / 10 0 %range + mn produces random numbers in the range
mn to max.

A much better approach to generating pseudo-random numbersis described in Problem 8.20.

Review Questions

31 What is the minimum number of iterations that

a. awhile loop could make?
b. ado.. .vwi le loop could make?

32 What is wrong with the following loop:
while (n <= 100)
sum += n*n;

76 ITERATION AND FLOATING TYPES [CHAP. 3

33 If sis a compound statement, and e1, e2, ande3 are expressions, then what is the differ-
ence between the program fragment:

for (el; e2; e3)

S
and the fragment:
el ;
while (e2) {
S
el ;
}

34 What is wrong with the following program:

main ()
{
const double pi;
int n;
pi = 3.14159265358979;
n = 22;

35 What is an “infinite loop,” and how can it be useful?
3.6 How can aloop be structured so that it terminates with a statement in the middle of its block?

37 What why should tests for equality with floating-point variables be avoided?

Solved Problems

38 Trace the following code fragment, showing the value of each variable each time it changes:

int x, v, z;
X =Yy =2 = 6;
X *= vy 4=z -= 4,

First, 6 is assigned to z, y, and x. Then z is decremented by 4, obtaining the value 2. Theny is
incremented by 2, obtaining the value 8. Then x is multiplied by 8, obtaining the value 48.

39 Assuming that e is an expression and s is a statement, convert each of the following f or
loops into an equivalent whi | e loop:

a. for (; e)s
b. for (; ; e) s
a. while (e) s;

b. while (1) { s; e;},
assuming that s contains no conti nue statement. (See Exercise 3.3.)

CHAP. 3] | TERATION AND FLOATING TYPES

3.10

31

3.12

3.13

Convert the following f or loopintoawhi | e loop:

for (int i =1; i <= n; i++)
cout << i *i;

int i = 1;
while (i <=n) {
cout << i*i;

i+4+;

Describe the output from the following program:

main ()
for (int i = 0; i < 8 i++)
if (i%2 == 0) cout << i + 1 << endl;
else if (1%3 == 0) cout << 1*1 << endl;
else if (i%5 == 0) cout << 2*i 1 << endl;
el se cout << i << endl
}
1 2 e 5 g 7

Describe the output from the following program:

main()
{
for (int i =0; i <8; i++) {
if (i%2 == 0) cout << i + 1 << endl
else if (i%3 == 0) continue;

else if (i%5 == 0) break;
cout << "End of program.\n";

cout << "End of program.\n";

End Of pr ogr'am,
End of program.

End __ 'of _ program.
End of program. .

77

In a 32-bit float type, 23 bits are used to store the mantissa and.8 bits are used to store the

exponent.

a. How many significant digits of precision does the 32-bit f | oat
b. What is the range of magnitude for the 32-bit float type?

78

3.14

315

ITERATION AND FLOATING TYPES [CHAP. 3

a. The 23 bits hold the 2nd through 24th bit of the mantissa The firg bit must be a 1, so it is not Stored.
Thus 24 bits are represented. These 24 bits can hold 2% numbers. And 22* = 16777,216, which has 7
digitswith full range, so 7 complete digits can be represented. But the last digit isin doubt because
of rounding. Thus, the 32-bit float type yidds 6 dgnificat digits of precison.

b. The 8 bitsthat the 32-bit | oat type uses for its exponent can hold 28 = 256 different numbers.
Two of these are reserved for indicating underflow and overflow, leaving 254 numbers for exponents.
So an exponent can range from -126 to+127, yielding a magnitude range of 27126 = 1.175494 x 10~¢
to 2'27 = 170141 x 10%.

Solved Programming Problems

Write a program that converts inches to centimeters. For example, if the user enters 16.9 for a
length in inches, the output would be 42 .926 cm (One inch equds 254 oaimees)

We ue two variables of type f 1 oat:

main ()

8

float inches, cm

cout << "Enter length in inches: ";

cin >> inches;

cm = 2.54*inches;

cout << inches << "inches = " << cm << " centimeters.\n";
}

Enter length in inches: 16.9
16.9 inches = 42.926 centimeters.

Simply read theinputinto i nches, convert it to cenimetes in c¢cm and output it.

Write a program to find the integer square root of a given number. That isthe largest integer whose
square is less than or equal to the given number.

We use an “exhaustive” algorithm here: find all the positive integers whose square is less than or
equa to the given number; then the largest of those is the integer square root:

main ()

{
float x;
cout << "Enter a positive nunber: ;

cin >> X;
for (int n = 1, n*n <= X; n+t)
i // the null statemnment

cout << "The integer square root of " << X << "is ¢
<< n-1 << endl;
}

Buter a positive number: 1234.56
The integer square root of 1234.56 is 35

We start withn =1 and continue to increment n until n*n > x. When the f or loop terminates,
n isthe smallest integer whose squareis greater than x, son- 1 istheinteger square root of x.

Notice the use of the mull <atement in the for loop. Everything that needs to be done in the loop is
done within the control pats of the loop. But the semicolon is dill necessaty a the end of the loop.

CHAP. 3] ITERATION AND FLOATING TYPES 79

3.16

317

Write and run a program that directly implements the quotient operator / and the remainder
operator % for the division of positive integers.

The algorithm used here, applied to the fractionn/ d, repeatedly subtractsthed fromthen until
n islessthand. Atthat point, thevalueof n will betheremainder, and the number g of iterations
required to reach it will be the quotient:

main ()
{
int n, d, q, r;
cout << "Enter numerator: *;

cin >> n;

cout << "Enter denom nator: ";

cin >> d;

for (g =0, r =n; r >d; g++) r -=d;

cout << N << "/ " << d << "= "<< (g << endl;

cout << N << "M« d <Kk« "= "<k r << endl;

cout << "(" << 0 << ") (" << d << ")+ ("< r << ") =1

<< N << endl;

}

Enter numerator: 30
Enter denominator: 7 =
SRt =2 - -
) =y =30

Thisruniterated 4times: 30-7=23,23-7= 16 16~7=9 and9 7 =2 Sothe quotient is4, and the
remainder is 2. Note that the following relationship must always be true for integer division:

(quotient) (denominator) + (remminder) = numerator

Write and run a program that reverses the digits of a given positive integer.

Thetrick hereisto strip off the digits one at a time from the given integer and “accumulate” themin
reverse in another integer:
main()
{
long m d, n = 0;
cout << "Enter a positive integer: “;

cin >> m

while (m > 0) {
d = m % 10; // d will be the right-nost digit of m
m /= 10; // then renove that digit fromm
n = 10*n + d; // and append that digit to n

cout << "The reverse is " << n << endl;

Enter a positive integer: 123456
The reverse is 654321

In this run, m begins with the value 123,456. In the first iteration of the loop, d is assigned the
digit 6, m isreduced to 12,345, and n isincreased to 6. On the second iteration, d is assigned the
digit 5, m isreduced to 1,234, andn isincreased to 65. On thethird iteration, d isassigned the digit
4, m isreduced to 123, and n isincreased to 654. This continues until, on the sixth iteration, d is
assigned the digit [, m isreduced to O, and n isincreased to 654,321.

80

3.18

3.19

ITERATION AND FLOATING TYPES [CHAP. 3

Rewrite the for loop in Example 3.6, using the conditional expression operator in place of
the if statements.

The conditional expression(N < mMn 2 n : nn) eduwaeston ifn < nin, aditevd-
uates to m n otherwise. So assigning that value to m n is equivalent to the first line of the f or
loop in the example. Similarly, the assignmentmax = (n > max ? n @ mn)isequivaentto

the second linein the other f or loop.

for (mn=max=n; n > 0;) {
mn = (n <mn ? n: nn; // mn and max are the small est
mx = (n > max ? n : nn); // and | argest of the n that
cin >> n; // have been read so far

}

Note that in this verson we did not use an equivdent to the el se if.

Implement the Euclidean Algor\ithm for finding the greatest common divisor of two given pos-
itive integers.

The Euclidean Algorithm transforms a pair of positive integers (m, n) into apair (d, O) by repeatedly
dividing the larger integer by the smaller integer and replacing the larger with the remainder. When the
remainder is 0, the other integer in the pair will be the greatest common divisor of the original pair (and
of al the intermediate pairs).

For example, if m is532 andp is 112, then the Euclidean Algorithm reduces the pair (532,112) to
(28,0) by

(532,112) — (112,84) — (84,28) — (28,0)

So 28 isthe greatest common divisor of 532 and 112. This result can be verified from the facts that 532
= 2819 and 112 = 28.8.

The reason that the Euclidean Algorithm worksisthat each pair in the sequence has the same set of
divisors, which are precisely the factors of the greatest common divisor. In the example above, that
common set of divisorsis{1, 2, 4, 7, 14, 28). The reason that this set of divisorsisinvariant under the
reduction process is tha when m = n-g +r,anumberisacommon divisor of m and nif and only if itis
acommon divisor of p andr.

main()
{ // begin scope of main()
int m n, r;
cout << "Enter two positive integers: ";
cin >> M>> N,
if (m<n) {int tenp =m m=n;, n =tenp; }// make Mms>=n

cout << "The g.c.d. of "<« m<<c"and " << N << "is ";
while (n > 0) {

r =mo%n;

m=n,

n=r,

}
cout << Mm«< endl;

}

Enter two positive integers: 532 112
THé g.c.d. of 532 and 1121 s 28

CHAP. 3] ITERATION AND FLOATING TYPES 81

3.20 Write and test a program that reads a given number of pairs(x, y) of real numbers and then
computes the least-squares regression line for the data set. Use the equation y = mx + b where

- ORIESTOI)
Q) -x (Y0
b= y-mx
and z is the mean (average) of the x’s and j is the mean of the y's.

We use doubl e precision floatsto minimize roundoff error:

main()

{

int n; // number of data points
double x, y, sumX = 0.0, sumY = 0.0, sumXX = 0.0, sumXY = 0 O;
cout << "How many points: ';

cin >> n;

cout << "Enter " << n << " pairs, one pair per line:\n";

for (int i =1 1 <=n; i++) {
cout << '"\t' << i << ": ";
cin >> X >> VY,
sumX += X; // accumul ate the sumof the x's in sumX
sumy += vy, // accurrul ate the sumof the y's in gumy
SUMXX += Xx*X; // accurul ate the sum of x*x in sumXX
sumXyY += x*y; // accunul ate the sum of x*y in sumXy

}

doubl e meanX = sumX/n;

doubl e meanYy = sun¥/n;

double m = (sumXy meanY* sunX) / (sumXX meanX* sunX) ;

double b = meanY meanX*m;
cout << "The equation of the regression line is:\n"
"\ty = " << M << "x + " << b << endl;

T e
.

Each of the four sumy, sunXX] T and sumXY 1S accumufated within the input foop:
Then the averagesmeanX and meany are computed. Then they are used in the formulato-compute
the slope m and the y-intercept b of the regression line.

The output from this program is very useful. The regression lineisthe straight line that best fits the
given data That is, among al possble draight lines, the one given by the equation

y=1111.01x + 4444.03

is the bes fitting line, in the sense that the sum of the squares of the y-distances from the data pointsto
thelineis minima. The value of thisresult isthat it can be used for interpolation (and extrapolation).
For example, to guess at the probable y-value corresponding to the x-value 3.2, simply substitute that
into the following equation: y = 111 1.01(3.2) + 4444.03 = 3555.03 + 4444.03 = 7999.26.

82

3.21

322

ITERATION AND FLOATING TYPES [CHAP. 3

Use the Monte Carlo simulation method to compute .

The Monte Carlo simulation method is named after the casino in Monaco. It consists of picking
points a random and counting those that satify certain Criteria It can be used to compute nt by simulat-
ing the tosing of dats a a circular dat boad mounted ON @ SquArE:

=

If the darts are equally likely to hit any point in the square, then the proportion that hit inside the circle
will approximate the ratio of the area of the circleto that of the square. If the square has sides of length
2.0, then that ratio is (1t 7)/(s?) = (1 1.0%)/(2.0%) = 1t/4, S0 4 times that ratio will approximate 7.

It is easier to use the quarter circle of radius 1.0 that liesin the first quadrant. ~ This way, the ran-

domly selected coordinates will dl be in the range 0.0 to 1 .O. The aea of the square is 1.0 = 1 .0 and the
area of the quarter circleis(r 1.0%)/4 = n/4, so theratio is still wt/4.

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

main ()

{
const long int tosses = 1000; // toss 1000 darts
long int hits = 0
float x, v;

unsi gned seed = time (NULL);

srand(seed);

for(long int i = 0; 1 < tosses; i++) {
x = float(rand())/RAND _MAX;
Y = float(rand())/RAND_MAX;
if (x*x + y*y < 1) ++hits;

}

cout << 4.0*hits/tosses << endl;

BELAR
3.. 13504

Both runs produce an estimate of 7 that is correct to 3 significant digits. This accuracy can be
improved by tossing more darts, but at the expense of more running time.

Simulate the Monty Hall game.

The Monte Hall game is named after the host of atelevision game show in which a contestant could
win a new car by guessing the right door that the car was behind. It became a popular puzzle in the
1990s because the best playing strategy is counterintuitive. The contestant chooses one door. Then
Monty opens one of the other doors that does not have the car behind it. At that point in the game, the
contestant has the option of changing his choice to the third door. Most people ae surprised to lean that
the contestant is twice as likely to win the car if he does change his choice. This fact can be demon-
drated using conditiona probabilities But for most people, a computer Smulation is more convincing.

CHAP. 3] ITERATION AND FLOATING TYPES 83
#include <iostream.h>
#i ncl ude <stdlib.h>
#i ncl ude <time.h>
main()
{
cout << "This is the Mnty Hall Gane.\nYou see three doors
<< ' before you. One of them has a new car behind it.\n"
<< "You will choose one of the doors. Then, before you '
<< "get to see which\ndoor has the car behind it, Mnty
<< "will give you the chance to change\nyour choice after
<< "showing you that one of the other doors has\nnothing v
<< "behind it.\n";
unsi gned seed = time(NULL) ;
srand(seed);
int car, choice, open, option
car = rand()%3 + 1; // randominteger from1 to 3

cout << "Which door do you choose (11213): ";
cin >> choi ce;

if (car == 1 && choice == 1) { open = 3; option = 2; }
if (car == 1 && choice == 2) { open = 3; option = 1; }
if (car == 1 && choice == 3) { open = 2; option = 1; }
if (car == 2 && choice == 1) { open = 3; option = 2; }
if (car == 2 && choice == 2) { open = 1; option = 3; }
if (car == 2 && choice == 3) { open = 1; option = 2; }
if (car == 3 && choice == 1) { open = 2; option = 3; }
if (car == 3 && choice == 2) { open = 1; option = 3; }
if (car == 3 && choice == 3) { open = 2; option = 1; }

cout << "Monty shows that there is no car behind door nunber

<< open << ".\nDo you want to change your choice to door

<< "nunber " << option << "? (yln): ";

char answer;

cin >> answer;

if (answer == 'y' Il answer == 'Yy') choice = option;

cout << "Door number " << car << ' has the car behind it. \n"
<< "Since your final choice was door nunber " << choice;

if (choice == car) cout << ", you won the car!\n";

el se cout << ", you did not win.\n";

ig is the Monty Hall Game.

door

ee three doors before you. One ffthem has - new ooy behlnd 1t.
will choose one af the doors Then, before you get to See Whlch
has the car behind it Monty w1ll give you the chance to change

your choice after showing you that one of the other doors has
nothing behind it. ,

Which door do you choose (11213): 3

Monty shows that there is no car behind door number 1.

Do you want to change your choice to deor number 2? (yfn) n
Door number 2 has the car behind it. . » -
Since your final choice was door number 3, you dld not wln.,, *

84 ITERATION AND FLOATING TYPES [CHAP. 3

323 Apply the Babylonian Algorithm to compute the square root of 2.

The Babylonian Algorithm (so called because it was used by the ancient Babylonians) com-

putes V2 by repeated replacing one estimate x with the closer estimate (x + 2/x)/2. Note that
this is smply the average of x and 2/x.

#i ncl ude <iostream.h>
#include <math.h> // needed for the fabs() function

main ()
{
const double tol erance = 5e-8;
double x = 2.0;
while (fabs(x*x - 2.0) > tolerance) {
cout << x << endl;
X = (x +2.0/x)/2.0; // average of x and 2/x
}
cout << "X = " << X << ", X*X = ' << X*X << endl;

41667
41422
x = 1.42421, x*X = 2

}

2
15
&
1.

We ue a“tdeancd’ of 5e- 8 (= 000000005 to ensre aocuracy to 7 dedimd places The foabs ()
fundion (for “floating-paint ebsdlute vaue’), ddfined in the <math. h> header file reumns the abso-

lute velue of the expression passed to it. So the logn continues until x*x is within the given tderance
of2.

Supplementary Problems

324 Convert the following for loop into a whil e loop:
for (int i = 20; i > 10; i--)
cout << 1i*i;

325 Run the program in Example 3.13 to find the sizes of the 12 fundamental C++ types on your
system.

326 Run the program in Example 3.14 to find the precision and magnitude rangeforf 1 oats on
your system.

327 Describe the output from the following fragment:

int f0 = fl = f2 = 1,
for (int i = 0; i < 10; i++) {
f0 fl;
fl f2;
f2 fo + fl;
cout << f2 << endl;

CHAP. 3] ITERATION AND FLOATING TYPES 85

3.28 Describe the output from the following fragment:

for (int i = 0; i < 8 i++)
if (1%2 == 0) cout << i + 3 << endl;
else if (i%3 == 0) cout << 2*1 =~ 1 << endl;
else if (1%5 == 0) cout << i*i << endl;

el se cout << i << endl;

329 Describe the output from the following fragment:

int i =0;
while (++i <= 9) {
if (1 == 5) continue;

cout << i << endl;

3.30 Describe the output from the following fragment:

int i =0;
while (i < 5) ¢{
if (i <2) {
i += 2;
conti nue;

}
el se cout << ++i << endl;
cout << "Bottom of loop.\n";

3.31 In a64-bit doubl e type, 52 bits are used to store the mantissa and 11 bits are used to store
the exponent.

a. How many significant digits of precision does the 64-bit doubl e type yield?
b. What is the range of magnitude for the 64-bit doubl e type?

Supplementary Programming Problems

3.32 Write a program that reads a temperature in Celsius degrees and prints the equivalent in Fahr-
enheit degrees. For example, if the user enters 75.4 for a temperature in Celsius, the output
would be 135.72 degrees Fahrenheit.

3.33 Write a program that converts centimeters to inches. For example, if the user enters 52.7 for a
length in centimeters, the output wouldbe 20 .748 in.

3.34 Write a program that converts pounds to kilograms. For example, if the user enters 160 for a
weight in pounds, the output would be 72 .5748 kg. (One pound equals 0.453592 kilo-
grams .)

335 Write aprogram that reads the radius of a sphere and prints its surface area and volume.

86

3.36

3.37

3.38

3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

3.50

ITERATION AND FLOATING TYPES [CHAP. 3

Modify and run the program in Example 3.1 so that it also prints the square of n- 1 and the
quare of n.

Modify the program in Example 31 so that it usessa do . . . whi 1 e loop.

Modify the program in Example 3.1 so that it uses a for loop.

Write and run a program like the one in Example 3.2 that prints the sum of the first n cubes.
Modify the program in Example 3.3 so that it usesawhi | e loop to compute factorials.
Modify the program in Example 3.3 so that it uses a for loop to compute factorials

Modify the program in Example 3.3 so that it usesa whi 1 e loop to compute factorials with a
control variable inside the loop that increments instead of decrementing n.

Modify the program in Example 3.3 so that it usesado. . . whi le loop to compute factorials
with a control variable inside the loop that increments instead of decrementing n.

Modify the program in Example 3.3 so that it uses a for loop with a control variable inside
the loop that increments instead of n decrementing.

Write and run a program that reads a positive integer n and then reads n more integers and
prints their sum. Usea do. . . whi 1le loop.

Write and run a program that reads a positive integer n and then reads n more integers and
prints their sum. Use a f or loop.

Write and run a program that reads a sequence of integers until a negative integer is input, and
then prints the sum of the positive integers.

Modify the program in Example 3.14 so that it prints the precision and magnitude range of the
| ong doubl e type. Simply replace f | oat with | ong doubl e, and rr with Lo

Write and run a program that reads a positive integer n and then prints a triangle of asterisks
in that number of rows. Use a f or loop. For example, if n is 4, then the output would be

Write and run a program that reads a positive integer n and then prints a diamond of asterisks
in 2n—-1rows. Use a f or loop. For example, if n is 4, then the output would be

*
*kk
kkkkx
kR kKK
Kk ok
*kk

CHAP. 3] ITERATION AND FLOATING TYPES 87

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

. 3.60

3.61

Write and run a program that directly implements the quotient operator / and the remainder
operator % for the division of a negative integer by a positive integer. See Problem 3.16 and
Example 1.16.

Redo Padlem 319 wiing ado . . . whi 1le loop indeed of the whi 1e loop.

Write and run a program that directly implements the quotient operator / and the remainder
operator % for the division of any integer (positive, negative, or zero) by any nonzero integer.
See Problem 3.16 and Problem 3.5 1.

Modify the Integer Square Root program in Problem 3.15 so that it runs more efficiently. Use
the Binary Search Algorithm in place of the Linear Search Algorithm. First see if the given
positive integer x is less than 9; if it isn’t, output either O (if x < 1) or 1 (if x < 4) or 2, and
return. If x > 9, then its integer square root is between 2 and x/2. Split that interval, and then
compare x with n*n where n is the midpoint of that interval. Use the comparison to deter-
mine in which half of the interval the solution lies. Repeat the process on that subinterval. Use
only integers for the endpoints and midpoints of the intervals. When the midpoint is 1 more
than its left endpoint, it will be the solution.

Modify the program in Example 3.14 so that it prints the precision and magnitude range of the
double type

Modify the Quadratic Equation program in Problem 2.20 so that it prints the equation in a
form more like that used in mathematics. For example, if a is1, b is0, and ¢ is -3, then it
would print x»2 3 =0 insteadof 1x+2 + Ox + -3 = 0.

Modify the Quadratic Equation program in Problem 2.20 so that it correctly handles the spe-
cial cases where a = 0, b= 0, and/or c = 0. For example, it would report that the 1.25 is the
solution to 4x — 5 =0, that O is the solution to 4x = 0, that there is no solutionsto 5 = 0, and that
al reals are solutions to 0 = 0.

Write and test a program that inputs 3 positive integers day, nonth, and year, and then
prints the date that they represent, the number of days in that month, and a statement about
whether that year is a leap year. For example, if the 3 inputs are 6, 4, and 1997, then the pro-
gam woud pint Apri 1 6, 1997 (for4/6/97), April has 30 days, ad1997 is not

a leap year.

Write and test a program that inputs 4 positive integersday, nont h, year, anddays, and
then prints two daes the dae rgresrted by the gven day, nonth, ad year, ad the dde
that occurs days later. For example, if the 4 inputs are 6, 4, 1997, and 100, then the two dates
printed would be Apri 1 6, 1997 (for 4/6/97), and July 15, 19 97 (for 4/6/97 + 100
days).

Modify the Linear Regression program (Problem 3.20) so that, after computing the equation of
the regression line, it alows the user to interpolate by inputting x-values and outputting the
corresponding y-values computed from the equation.

Modify the Monte Hall game (Problem 3.22) so that the user can play the game repeatedly in a
single run of the program. Count the number of times the player wins, and print the percentage
of wins at the end of the program.

83 ITERATION AND FLOATING TYPES [CHAP. 3

362 Moaodify the Babylonian Algorithm program (Problem 3.23) so that it computes the square root
of a positive number + that is input interactively. Average the iterate x with (x +t/x)/ 2,

Answersto Review Questions

31 The minimum number of iterations that
a awhi 1le loop could makeisO;
b. ado.. .vwhi 1e loopcouldmakeisl.

3.2 Itisaninfiniteloop: the control variablen does not change.

3.3 Thereisno difference between these two fragments, unless s contains a cont i nue statement. For
example, the following for statement will iterate 4 times and then terminate normally, but the
whi 1 e statement will be an infinite loop:

for (i = 0; i < 4; i+4)

if (i == 2) continue;
i =0
while (i < 4) {
if (i == 2) continue;
i ++;

34 Theconstantpi is not initidized. All condants must be given vaues when they ae declared.

35 An“infinite loop” is one that never terminates. Such aloop is generally considered bad programming
because the program containing it will terminate normally. However, an apparent infinite loop like the
following can be useful:

while (1) ¢
cin >> n;
if (n == 0) break;
process(n);

}

The break daement will terminate the loop as soon as 0 is input. This is useful because it dlows the
code to be a little more brief than if the condition (n == 0) wereuseddirectly withthewhi |e
clause.

3.6 The break statement can be usedtoterminate aloop from within the middle of its block. The exam-
ple above illusrates this technique.

3.7 Due to roundoff error, the exact valueof a f loat or doubl e isnot likely to be what you would
expect. So a conditiond like
if (z = ¢
should be avoided.

Chapter 4

Functions

Most useful programs are much larger than the programs that we have considered so far. To
make large programs managesble, programmers modularize them into subprograms. These
subprograms are cdled functions. They can be compiled and tested separately and reused in
different programs. This modularization is characteristic of successful object-oriented software.

41 STANDARD C LIBRARY FUNCTIONS

The Sandard C Library isa collection of pre-defined functions and other program elements
which are accessed through header files. We have used some of these dready: the INT MAX
constant definedin< 1 im t s.n> (Examplel.14),therand () functiondefinedin<stdl ib . h>
(Example3.21), and the tine () function defined in <time. h> (Example 3.22). The common
mathematical functions are defined in the <mat h. h> header file. Our firs example illugtrates
the use of one of these mathematica functions.

EXAMPLE 4.1 The Square Root Functionsqgrt ()

The square root of a given positive number is the number whose square is the given number. The
square root of 9 is 3 because the square of 3 is 9. We can think of the square root function as a “black box.”
When you put in a 9, out comes a 3. When the number 2 is input, the number 141421 is output. This func-
tion has the same input-process-output nature that complete programs have. However, the processing step
is hidden: we do not need to know what the function does to 2 to produce 1.41421. All we need to know is
that the output 1.41421 does have the square root property: its square is the input 2.

Here is a smple progran that uses the predefined square root function:

#i ncl ude <iostream.h>
#i ncl ude <math.h>
// Test-driver for the sqrt function:
main ()
{
for (int i =0;1 <6; i++)
cout << "\t' << | << "\t" << sqgrt(i) << endl;

nv s
. ...
. A

3 1,73205

4 2

5 2.23607

89

90 FUNCTIONS [CHAP. 4

This program prints the square roots of the numbers O through 5. Each time the expresson sqr t (i)
isevaluated inthe f or loop, the sqr t function is executed. Its actual code is hidden away within the
Standard C Library. In using it, we may confidently assume that the expression sgrt (i) will be
replaced by the actud square root of whatever value i has at that moment.

Notice the directive # inc lude <math . hs on the second line. This is necessary for the compiler to
find the definition of the sqr t function. It tells the compiler that the function is declared in the
<math. hs header file

A function like sqr t () isexecuted by using its name as a variable in a Statement, like this
y = sqrt(x);
This is caled invoking or calling the function. Thus in Example 4.1, the code sqrt (i) callsthe
sqrt function. The expression i in the parentheses is cdled the argument or actual parameter
of the function call, and we say thet it is passed by value to the function. So when i is 3, the
value 3ispassedtothesqr t functionbythecalsgr t (i) .
This process is illugtrated by the following diagram:

main () 3 sqrt ()
TN

. 1.73205

The variable i isdeclared in mai n (') . During the fourth iteration of the f or loop, its vaue is
3. That value is passed to the sgrt () function which then returns the vaue 1.73205.

EXAMPLE 4.2 Tegting an Identity from Trigonometry

Here is another program that uses the <mat h . h> header file. Its purpose is to allow an empirical
verification of the standard trigonometric identity sin2x = 2 sinxcosx :

#i ncl ude <iostream.h>
#include <math.h>
// Programto test trigononetric identity sin 2x = 2 sin x cos X:
main()
{
for (float x = 0; x < 2; x += 0.2)
cout << "\t" << X << "\t\t" << sin(2*x) << "\t"
<< 2*sin(x)*cos(x) << endl;

0 00
0.2 0.389418 0.389418
0.4 0.717356 0.717356

0.6 0.9'32039 0.932039,
0.8 0.999574 0.999574
1 0.909297 0.909297
B2 0.675463 0.675463
1.4 ‘0.334988 0.334988
1.6 . - =0.0583744 =0.0583744
18 -0.442521 -0.442521

The program prints x in the fird cdumn, sn 2x in the ssoond cdumn, and 2 SN x aos x in the third coumn.

For each value of x tested, sin 2x = 2 sin x cos x. Of course, this does not prove the identity. It merely pro-
vides convindng empiricd evidence of its truth

CHAP. 4] FUNCTIONS 91

Function values may be usad like ordinary variables in an expresson. Thus we can write
y = sqrt(2);
cout << 2*sin(x)*cos(x);
We can even “net” function cdls like this:
y = sgrt(l + 2*sqgrt(3 + 4*sqgrt(5)))
Mos of the mathematica functions that you find on a pocket caculator are declared in the
<math . h> header file, including al those shown in Table 4.1.

Table 4.1 Some <math. h> Functions

Function Description Example

acos (x) inverse cosine of x (in radians) acos(0.2) retuns1l.36944
asin(x) inverse sine of x (in radians) asi n(0.2) retuns0.201358
atan (x) inverse tangent of x (in radians) atan(0.2) returns0. 197396
ceil (x) celling of x (rounds up) ceil(3.141593) returns 4.0
cos (X) cosne of x (in radians) cos (2) returns-0.416147
exp (x) exponential of x (base €) exp(2) returns7. 38906
fabs (x) absolute value of x fabs (-2) reuns 2.0
floor(x) floor of x (rounds down) floor(3.141593) returns3.0
log (x) natural logarithm of x (base €) l og(2) returns0. 693147
logl0(x) common logarithm of x (base 10) logl0(2) returns 0. 30103
pow (x,p) X to the power p pow(2,3) retuns 8.0

si n(x) sne of x (in radians) sin(2) returns0. 909297
sqrt (x) square root of x sqrt(2) returnsl. 41421
tan(x) tangent of x (in radians) tan(2) returns-2.18504

Notice that every mathematica function returns a doubl e type. If it is passed an integer, the
i nt ispromoted to adoubl e beforeit isprocessed by the function.
Table 4.2 ligts some of the more useful header filesin the Standard C Library.

Table 42 Some of the Header Files in the Standard C Library

Header File Description

<assert.h> Dedaesteas ser t () function
<ctype.h> Declares functions to test characters
<float.h> Declares constants relevant to floats

<limits.h> Defines the integer limits on your local system
<math.h> Declares mathematical functions

<stdio.h> Declares functions for standard input and output
<stdlib.h> Declares utility functions

<string.h> Declares functions for processing strings
<time.h> Declares time and date functions

These are Standard C header files. They are used the same way that Standard C++ header files
suchas < ios t ream h> are used. For example, if you want to use the random number function

92 FUNCTIONS [CHAP. 4

rand () fromthe<s tdlib . h> header file include the following preprocessor directive at the
beginning of your main program file

#i ncl ude <stdlib.h>
The Standard C Library is described in greater detail in Chapter 14.

4.2 USER-DEFINED FUNCTIONS

The great variety of functions provided by the C and C++ libraries is gill not sufficient for
maost programming tasks. Programmers aso need to be able to define their own functions.

EXAMPLE 4.3 A cube () Function

Here is a smple example of a user-defined function:

// Returns the cube of the given integer:
int cube(int x)

{

return X*x*x;

}

The function returns the cube of the integer passed to it. Thus cube (2) would retun 8.

A user-defined function has two parts: its header and its body. The header of afunction spec-
ifiesits return type, name, and parameter ligt. In Example 4.3, the return typeis int, thenameis
cube, andthe parameter ligtisi nt « Thusthe header for the cube functionis

int cube(int x)
The body of a function is the block of code that follows its header. It contains the code that
performs the function’s action, including the ret urn Statement that specifies the vadue that the
function sends back to the place where it was called. The body of the cube function is

return Xx*x*x%*
)
Thisis about as Smple a body as afunction could have. Usudly the body is much larger. But the
function’'s heeder typicdly fits on a sngle line.
A function’sreturn statement serves two purposes. it terminates the function, and it returns a
vaue to the cdling program. Its syntax is
return expression;
where expr essi on isany expression whose vaue could be assgned to a variable whose typeis
the same as the function’s return type.

4.3 TEST DRIVERS

Whenever you create your own function, you should immediaidy test it with a smple
program. Such a program is cdled a test driver for the function. Its only purpose is to test the
function. It is a temporary, ad hoc program that should be “quick and dirty.” That means that

CHAP. 4] FUNCTIONS e

you need not include al the usud niceties such as user prompts, output labels, and documenta
tion. Once you have used it to test your function thoroughly you can discard it.

EXAMPLE 44 A Tes Driver for the cube () Function

Hee is a compee program, condding of owr cube fundion fdlowved by a tet diver:

// Returns the cube of the given integer:
int cube(int x)
{

return X*x*x;

// Test driver for the cube function:

main ()
{
int n =1
while (n !'= 0) {
cin >> n;
cout << cube(n) << endl;
}
}
e
.
s

This reads integers and prints their cubes until the user inputs the sentinel value 0. Each integer read is
passed to the cube function by the call cube (n) . The value returned by the function replaces the
eqression cube (n) and then is passed to the output object cout.

Note that we omitted the # include < ios tream . h> dredive This dredive of course is required
for evary program thet uses cin or cout. It is omitted from futher examples only to sve gece

We can visudize the relationship between the mei n () function and the cube () function
like this

5 cube (int)

—

— e 125

The mai n () function passes the value 5 to the cube () function, and the cube () function
returnsthe value 125 tothemai n () function. The actud parameter n is passed by vaue to the
forma parameter x This amply means that x is assigned the vaue of n when the function is
caled.

Notethat thecube () function is defined above the mai n () function in the example. This
is because the C++ compiler must know about the cube () functionbeforeitisusedinmain () .

The next example shows a user-defined function named max () which returns the larger of
the two ints passed to it. This function has two arguments.

94 FUNCTIONS [CHAP. 4

EXAMPLE 45 A Test Driver for the max () Function

Here is a function with two parameters. It returns the larger of the two values passed to it:

// Returns the larger of the two given integers:
int max(int x, int vy)
{
if (x <y) return vy;
el se return x;
}

main()
{
int m n;
do {
cin >> m >> n;
cout << max(mn) << endl;
} while (m!= 0);
}

Notice that the function has more than one return statement. The first one that is reached terminates
the function and returnsthe indicated valueto the calling program.

A return statementis like abreak statement. Itisa jump statement that jumps out of the
function that contains it. Although usualy found at the end of the function, ar et urn Statement
may be put anywhere that any other statement could appear within a function.

44 FUNCTION DECLARATIONS AND DEFINITIONS

The lagt two examples illusrate one method of defining a function in a program: the
complete definition of the function is liged above the man program. This is the smplest
arrangement and is good for test drivers.

Anacther, more common arrangement is to list only the function's header above the main
program, and then lig the function's complete definition (header and body) below the main
program. This is illudrated in the next example.

In this arrangement, the function’s declaration is separated from its definition. A function
declaration is amply the function’'s header, followed by a semicolon. A function definition isthe
complete function: header and body. A function declaration is aso cdled afunction prototype.

A function declaration is like a varigble declaration; its purpose is Smply to provide the
compiler with dl the information it needs to compile the rest of the file. The compiler does not
need to know how the function works (its body). It only needs to know the function’s name, the
number and types of its parameters, and its return type. This is precisdy the information
contained in the function's header.

Also like a variable declaration, a function declaration must gppear above any use of the
function's name. But the function definition, when lised separaidy from the declaration, may
appear anywhere outsde the mai n () function and is usudly listed after it or in a separate file.

The variables that are listed in the function’s parameter list are called formal parameters or
formal arguments. They are locd variables that exist only during the execution of the function.

CHAP. 4] FUNCTIONS 9%

Their liging in the parameter list conditutes their declaration. In the example above, the formd
parameters are x and .

The varigbles that are ligted in the function’s cdls are cdled the actual parameters or actual
arguments. Like any other variable in the main program, they must be declared before they are
used in the cdl. In the example above, the actud parametersarem and n.

In these examples, the actud parameters arepassed by value. This means that their vaues are
assigned to the function’s corresponding forma parameters. So in the previous example, the
vadue of m isassgned to x and thevadue of n isassgned to y. When passed by vaue, actud
parameters may be constants or genera expressions. For example, themax () function could be
cdled by max (44,5*mn). Thiswould assign the vaue 44 to x and the vaue of the expression
5*m-n tO y.

EXAMPLE 4.6 The nax () Function with Declaration Separate from Definition

This program is the same test driver for the same max () function as above. But here the function's
declaration appears above themain program and the function's definition follows it:

int max(int, int);

// Test driver for the max function:
main()
{
int m n;
do {
cin >> M >> n;
cout << max(mn) << endl;
} while (m != 0);
}

// Returns the larger of the two given integers:
int max(int x, int vy)

{
if (x < y) return vy,
else return x;

Notice that the formal parameters, x and vy, are listed in the header in the definition (as usual) but not in
the declaration.

Note that there is redly not much difference between a function declaration and a varigble
declaration, especidly if the function has no parameters. For example, in a program that pro-
cesses grings, you might need avariable named | engt h to store the length of astring. But area
sonable dternative would be to have a function that computes the length of the string wherever it
is needed, ingtead of storing and updating the vaue. The function would be declared as

int length();
wheress the variable would be declared as

int |ength;
The only difference is tha the function declaration includes the parentheses () . In redity, the
two dternatives are quite different, but syntacticaly they are nearly the same when they are used.

96 FUNCTIONS [CHAP. 4

In cases like this, one can regard a function as a kind of an “active variable” i.e., a varigble that
can do things.

4.5 SEPARATE COMPILATION

Function definitions are often compiled independently in separate files. For example, dl the
functions declared in the Standard C Library are compiled separately. One reason for separate
compilation is “information hiding”—that is, information that is necessary for the complete
compilation of the program but not essentid to the programmer’s understanding of the program
is hidden. Experience shows tha information hiding faclitates the undersanding and thus
success of large software projects.

EXAMPLE 4.7 The max () Function Compiled Separately
This shows one way that the max function and its test driver could be compiled separately. The test

driver is in a file named t est_max. ¢ and the function is in a separate file named max. c.

test_max.c

int max(int, int);

// Test driver for the max function:
main ()

int m n
do {

cin >> m>> n;

cout << max(mn) << endl;
} while (m!= 0);

max. ¢

// Returns the larger of the two given integers:
int max(int X, int y)
{

if (x <vy) return v;

else return x;

The actua commands that you would use to compile these files together depend upon your
loca system. In UNIX you could use these commands:
$ ct+ -c max_c
$ c++ -c test-nmax.c
$ c++ -0 test_max test_max.o nax.0
$ test-nmax

(Here the dollar Sgn is the system prompt.) The first command compiles the max function, the
second command compiles the test driver separately, the third command links them together to
produce the executable module t es t_max, which isthen run by the command on the fourth line.

CHAP. 4] FUNCTIONS 97

One advantage of compiling functions separatdly is that they can be tested separately before
the program(s) that cal them are written. Once you know that the max function works properly,
you can forget about how it works and save it as a “black box” ready to be used whenever it is
needed. This is how theunctions in the math library are used. It is the “off-the-shelf software’
point of view.

Another advantage of separate compilation is the ease with which one module can be
replaced by another equivalent module. For example, if you happen to discover a better way to
compute the maximum of two integers, you can compile and test that function, and then link that
module with whatever programs were using the previous version of the max () function.

4.6 LOCAL VARIABLESAND FUNCTIONS

A local variable issmply avariable that is declared insde a block. It is accessible only from
within that block. Since the body of a function itsdf is a block, variables declared within a
function are locd to that function; they exig only while the function is executing. A function’s
forma parameters (arguments) are aso regarded as being locd to the function.

The next two examples show functions with loca varidbles.

EXAMPLE 4.8 The factoria () Function

The factorid of a positive integer n is the number n! obtained by multiplying n by dl the postive inte-
gers less than n:
nt=mn -1) ... Q)
For example, 5! = (5)@)(3)(2)() = 120.
Here is an implementation of the factoria function:

int factorial(int n)
{
if (n <0) return O;
int f = 1;
while (n > 1)
f *= n--;
return f;

This function has two local variables. n and f. The parameter n isloca becauseit is declared in the
function's parameter list. The varisble f is locd because it is declared within the body of the function.

Here is a test driver for the factorial function:
int factorial (int);

main ()
{
for (int i = -1; i < 6, i+4)
cout << " " << factorial (i);
cout << endl;

01126 24120

938 FUNCTIONS [CHAP. 4

This program could be compiled separately, or it could be placed in the same file with the function and
compiled together.

EXAMPLE 49 The Permutation Function

A permutation is an arangement of dements taken from a finite s&t. The pemutdion function P(n,k)

gves the numba of differat pamutations of any items teaken from a st of » items Ore way to compute
this fundion is by the fomua

|
Pndo ="

For exanpe
B oSt _ 120 _ L
PG.2) = G-2)! 3 6

So there are 20 diffarent pamutdions of 2 items taken from a st of 5.
The code bdow implements this fomua for the pemutaion funcion:

// Returns P(n,k), the nunmber of pernutations of k from n:
int perm(int n, int k)
{
if (n<0ll k<OlIl k>n) return O;
return factorial (n)/factorial (n-k);
}

Notice that the condition (n <0 k <011k >n) isused to handle the cases where either
paareter is out of range In thee cases the fundion relurns an “impossble’ vdue, O, to indicate thet its
input was eroneous That vdue woud then be recognized by the cdling progiam as an “aror flag”

Here is a test driver for the perm (1) function:
i nt perm(int,int);

main ()
{
for (int i = -1; i < 8; i++) {
for (int j = -1, j <= i+1;] ++)
cout << " " << perm(i,j);

cout << endl ;

15 20 60 120 120 o6
16 30 120 360 720 720 0 .
17 42 210 840 2520 5040 5040 0

= é\ -

CHAP. 4] FUNCTIONS 0
4.7 void FUNCTIONS

A function need not return a vaue. In other programming languages, such a function is
cdled a procedure or a subroutine. In C++, such a function is identified smply by placing the
keyword voi d where the function’s return type would be.

A type specifies a set of vaues. For example, the type short gpecifies the set of integers
from -32,768 to 32,767. The voi d type specifies the empty set. Consequently, no variable can
be declared with voi d type. A voi d function is Smply one that returns no vaue.

EXAMPLE 410 A printDate () Function

This fundion prints the dete in literd form, given its month, day, and year in numaic form:
void printDate(int, int, int);
main ()

int nonth, day, year;

do {
cin >> nonth >> day >> year;
print Dat e(nont h, day, year) ;

} while (rmonth > 0);

void printDate(int m int d, int y)
{

if (m<1 Il m>12 1l d <1 ud > 3111y <0){
cout << 'Error: paranmeter out of range.\n';
return;

switch (m) {

case 1: cout << "January "; br eak;
case 2: cout << "February "; break;
case 3: cout << "March *; br eak;
case 4: cout << "April ; br eak;
case 5: cout << "My "; br eak;
case 6: cout << "June "; br eak;
case 7: cout << "July "; break;
case 8: cout << "August '; break;
case 9: cout << "Septenber »; break;
case 10: cout << "Cctober "; br eak;
case 11: cout << "November *; break;
case 12: cout << "Decenber "; break;

}

cout << d << ' <<y << endl;

TheprintDat e () funcion reuns no vaue Its only purpose is to print the date So its retun type is
void. The fundion usss a swi tch statement to print the month as aliteral, and it prints the day and
yer a5 integEs

100 FUNCTIONS [CHAP. 4

Note that the function returns without printing anything if the parameters are obviously out of range
(eg., m>12 ory<o). Butimpossible values such asFebruary 19 , 19 9 6 would be printed.
Corrections for these anomalies are left as exercises.

Since avoi d function does not return avaue, it need not include ar et ur n Satement. If it
doeshave areturn Saement, then it should appear smply as
return;

with no expresson following the keyword return. In this case, the purpose of the return
datement is amply to terminate the function.

A function with no return value is an action. Accordingly, it is usudly best to use a verb phrase for its
name. For example, the above function is named printDat e instead of some noun phrase like date.

4.8 BOOLEAN FUNCTIONS

In some gStuations it is helpful to use a function to evauate a condition, typicaly within an
i £ Statement or a whi | e Statement. Such functions are cdled boolean functions, after the
British logician George Boole (18 15- 1864).

EXAMPLE 4.11 Classifying Characters

The following program classfies the 128 ASCIl characters:

#include <iostream.h>
#i ncl ude <ctype.h>

// Prints the category to which the given character bel ongs:
void printCharCategory(char ¢)
\

L
cout << "The character [" << c << "] is a ";
i f (isdigit(cout << "digit.\n";
else if (islower(cout << "lower-case letter.\n";
else if (isupper()cout << "capital letter.\n";
else if (isspace() cout << "white space character.\n";
else if (iscntrl(c)) cout << "control character.\n";
else if (ispunct(c)) cout << "punctuation mark.\n";
el se cout << "Error.\n";

}

main()

{
for (int ¢ = 0; ¢ < 128; c++)
printCharCategory(c) ;

CHAP. 4] FUNCTIONS 101

The void function printCharCategory() cals the six boolean functions isdigit(),
islower (), isupper (), isspace(), i scntrl (),ad i spunct ().Eachodf thesefundionsis
predefined inthe <c type. h> header file Thee fundions ae usd to ted objeds daradter type (ie,
“c type").

Here is pat of the output:

'l‘;lt;‘ ‘Ul‘}d;dk_}lf-ﬁL tl 45 d UULLLLU% Cllaldiier .
The character [] is a control character.
The character [] is a white space character.
The character [!] is a punctuation mark.
The character ['] is a punctuation mark.
Phe character [l de 3 miinckEnation mark.

The complete output contains 128 lines

This example illustrates several new ideas. The main idea is the use of the boolean functions
isdigit(), islower (), isupper(), isspace(), iscntrl (),and i spunct ().Forexample,
thecdl i sspace (c) teststhe character c to determine whether it is a white space character. (There
are six white space characters: the horizontal tab character \ t, the newline character \ n, the vertical
tab character \v, the form feed character \ £, the carriage return character \ r, and the space charac-
ter.) If c is any of these characters, then the function returns 1 for “true”; otherwise it returns O for
“false.” Placing the call asthe conditioninthe i f daemat cawses the coreponding output Saemant
to execute if and only if ¢ is one of these characters.

Each darade is teted within the printCharCategory () fundion Although the program could
have been written without this separate function, its use modularizes the program making it more struc-
tued. We ae ocoforming hee to the generd programming prindple thet recommends thet evary task be
rdegded to a sgparate function.

EXAMPLE 4.12 A Function to Test Primality

Hee is a bodean fundion to tex whether a gven integer is a prime number.

// Returns 1 if nis prine, 0 otherw se:
int isPrine(int n)
{
float sqgrtp = sqrt(p);
if (p < 2) return O; // 2 is the first prine
if (p == 2) return 1,
if (p %2 == 0) return 0, // 2 is the only even prinme
for (int d = 3; d <= sqgrtp; d += 2)
if (p % d == 0) return O;
return 1;
}

It woks by lodking for a divisor d of the gven number n. It teds divighility by the vaue of the condi-
tion(n % d == 0). Thswill be true predsdly when d isadvisor of n. Inthat cass n cannot be a
pime numbe, © the fundion immedady reums 0 for “fdse” If the f or loop finishes without find-
ing ay dvisr of n, then the fundtion retums 1 for “true”

We can dop ssaching for dvisors once we get pest the square root of n becaue if n is a product
d*a, then one of thexe factors mugt be less than or equd to the square roat of n. We ddiine tha to be a
condart <0 thet it only hes to be evduated once if we hed usad the condiion d < = sqrt (n) to contrd
the for loop, it woud reevdude that square root a the end of each iteration.

102 FUNCTIONS [CHAP. 4

It is ds0 more effidet to check for even numbas (n = = 2) fird This way, once we et to the for
loop, we need only dhek for odd dvisos This is done by inoemeting the dvider d by 2 on exch ita-
aion.

Here is a tet driver and a test run for the isPrime () fundion:

int isPrime(int);

main()

{
for (int n = 1; n < 50; n++)
if (isPrime(cout << n << " ";
cout << endl;

}

2 35 7 11 53 17 19 23 29 31 37 41 43 47 ,

Natce the, like the “ctype’ fundtions in the previous example a vab phrae is usad for the name of this
fudion. The name “i s Prime" makes the fudion's uee more reeddde for humans For exaple the
code

if (isPrim(
is dmogt the same as the ardinay Endlish phrese “if n is prime”

It shoud be dex tha this fundion is nat optimd. In searching for divisors we need only check prime
numbers, because every composite (non-prime) number is a unique product of primes. But how can we
ue oy prime vdues for d? The aswe is to dore the pimes as we find them. But thet requires usng an
aray, 0 well have to wat until Chapter 5 to do thet.

EXAMPLE 4.13 A Leap Year Function

A lesp yex is a year in which one exra day (February 29) is added to the reglar cdendar. Mogt of us
know thet the legp years ae the years that ae divishle by 4. For exanple 1992 and 1996 ae legp yeas
Most people, however, do not know that there is an exception to this rule: centennial years are not leap
yeas For example 1800 and 1900 wee nat legp yeas Futhemore thare is an exogion to the exogp-
ion: centenid years which are divishle by 400 ae legp yeas Thus the year 2000 will be a legp yenr.

Here is a boolean function that implements this definition:

// Returns 1 if y is a leap year, 0 otherw se:
int isLeapYear(int)
{
return 'y % 4 == 0 &&y % 100 != 0 Il 'y % 400 == 0,
}

The compound condition y % 4 ==0 && vy % 100 !=0 vy % 400 == 0 will be true pre-
cisely wheny is dvisble by 4 but not by 100 wless it is d=0 divisble by 400. In thee cases the fundion
redumns 1; in dl other casss it reums O.

CHAP. 4] FUNCTIONS 103

Here is a teg diiver ad tet run for the function:
i nt isLeapYear (int);

// Test driver for the isLeapYear function:

main ()
{
int n;
do {
cin >> n;
if (isLeapYear(n)) cout << nh << "is a leap year.\n";
el se cout << N << " is not a leap year.\n";

}while (n > 1);

1995 - ,
199 is not & leap vear,
i99¢ -
1996 15 o leap year. ,f
e
1990 is not a leap year.
2000 \
2000 is 5 leap veor.

5 A

0 is a leap year.

49 1/0 FUNCTIONS

Functions are particularly useful for encepsulating tasks tha require messy detalls that are
not very germane to the primary task of the program. For example, in processing personne
records, you might have a program that requires interactive input of a user’s age. By relegating
this task to a separate function, you can encapsulate the details needed to ensure correct data
entry without ditracting the main program.

We have dready seen examples of output functions. The only purpose the printDate
function in Example 4.10 was to print the date represented by its input parameters. Instead of
sending information back to the caling function, it sends its information to the standard output
(i.e,, the computer screen). An input function like the one described above is andogous. Instead
of recaving its information through its parameters, it reads it from sandard input (Le, the
keyboard).

Example 4.14 illustrates an input function. The whi l e (1) control of the loop in this example
makes it look like an infinite loop: the condition (1) is dways “true” But the loop is actualy controlled
by the return daement which nat only teminates the loop but dso teminaes the function.

104 FUNCTIONS [CHAP. 4

EXAMPLE 4.14 A Function for Reading the User’s Age

Hee is a dmple fundtion that prompts the user for hisher age and then reums it. It is “robug” in the
e thet it rgeds ay unressongble integer input. It repedtedy requests input until it receves an integer
in the range 1 to 120;

int age()
{
int n;
while (1) {
cout << "How old are you: ";
cin >> N;
if (n < 0) cout << "\a\tYour age could not be negative.';
else if (n > 120) cout << "\a\tYou could not be over 120.";
else return n;
cout << "\n\tTry again.\n";

As soon as the input received from cin is acceptable, the function terminates with a ret urn state-
ment, sending the input back to the cdling function. If the input is not acoepteble (n < 0 orn > 120),
then the system begp is sounded by pinting the daader \a ad a commet printed. Then the use is
aked to “Try agan”

Note that this is an example of a fundion whose return daement is nat a the end of the function.

Hee is a ted diver and output from a sample run:

// Pronpts the user to input her/her age, and returns that value:'
int age();

// Test driver for the age() function:
main ()
{
int a = age();
cout << "\nYou are " << a << ' years old.\n";

How old are you: -10

S Your age could” not
Try again.

How old are you: 200
You could not be over 120.
Try again.

How old are you: 19

You are 19 years old.

Natice that the function's parameer lig is empty. But even though it has no input paraneters the pearent
thesed () mud be induded both in the fundion's heeder ad in evary cdl to the function.

CHAP. 4] FUNCTIONS 105

410 PASSING BY REFERENCE

Until now, dl the parameters that we have seen in functions have been passed by value. That
means that the expresson used in the function call is evauated first and then the resulting vaue
is assgned to the corresponding parameter in the function’s parameter list before the function
begins executing. For example, in the cdl cube (x) ,if x has the vaue 4, then the vdue 4 is
passed to the loca variable n before the function begins to execute its satements. Since the
vaue 4 is usad only locdly indde the function, the varigble x is unaffected by the function.
Thus the variable x isaread-only parameter.

The pass-by-value mechanism dlows for more genera expressions to be used in place of an
actud parameter in the function cal. For example the cube function could dso be cdled as
cube(3), Or & cube(2*x-3), OF /€N & cube (2*sqrt (x)-cube(3)). In each cassthe
expresson within the parentheses is evauated to a Sngle vaue and then that vaue is passed to
the function.

The read-only, pass-by-vaue method of communicetion is usudly what we want for
functions. It makes the function more sdf-contained, protecting againgt accidentd side effects.
However, there are some Stuations where a function needs to change the value of the parameter
passed to it. That can be done by passing it by reference.

To pass a parameter by reference instead of by vaue, smply append an ampersand & to the
type specifier in the functions parameter list. This makes the locd variable a reference to the
actual parameter passed to it. So the actua parameter is read-write instead of read-only. Then any
change to the local variable inside the function will cause the same change to the actud parame-
ter that was passed to it.

EXAMPLE 4.15 The swap () Function

This little function is widely used in sorting data:

// Swaps x and y so that each ends up with the other's val ue:
void swap(float& x, float& vy)
{

float temp = x;

X =y,

y = tenp;

Its sole purpose is to interchange the two objects that are passed to it. This is accomplished by declaring
the forma parameters x and vy as reference variables. f loa t & x , f 1 oat& vy. The reference opera
tor & makes x and y synonyms for the actual parameters passed to the function.

106 FUNCTIONS [CHAP. 4

Here is a tet diver and ouput from a ssmple run:
voi d swap(float&, floaté&);

// Test driver for the swap function:
main ()

float a = 27, b = -5.041;

cout << a << " " << b << endl
swap(a,b);
cout << a << " " << b << endl
}
29 5041
-5.04]1 2]

Whenthecdl swap (a, b) executes, the function creates its local references x and vy, so that x is the
fudion's locd name far a, ad y is the fundion's locd name far b. Then the locd vaigdle tenp is
declared and initialized with the value of a, a isassigned the value of b, and b is assigned the value
of tenp. Consquatly, a exs up with the vdue -5041, add b eaxds up with the vdue 270.

Note tha the function dedaaion:
voi d swap(float&, float&);

includes the reference operator & for each reference parameter, even though the parameters themselves
ae omitted

Some CH proganmeas white the rdfaence opadar & as a prefix to the parameter, like this:
void swap(float &x, float gy)
ineed of as a affix to its type as we do. The compiler will acogat float& X, float &x, float & X, or even

float&x. It's modly a mater of tagte
EXAMPLE 4.16 Passing By Value and Passing By Reference

Ths exarpe dons the dfferae bawean pessng by vdue ad pessing by rdeae

void f(int x, int& y) { x = 88; y = 99; }

main()
{
int a =22 b =33
cout << "a = "<< @ << ", b =" <«<b << endl;
f(a,b);
cout << "a = " << a << ", b ="«<<b << endl;
}
a=2 b =33
azE 22, B=9 9

Thecal f (a, b)passesa by vauetox andb by referencetoy. So x isaloca variable which is
assigned a s value of 22, while y is an dias for the variable b whose value is 33. The function assigns
88 to X, but that has no effect ona. But when it assigns 99 to y, it isreally assigning 99tob. Thus,
when the function terminates, a still hasits origina value 22, while b has the new value 99. The actual
parameter a is read-only, while the actual parameter b is read-write.

CHAP. 4] FUNCTIONS 107

This table summarizes the differences between passing by value and passing by reference:

Table 4.3 Passing By Value Versus Passing By Reference

Pasing By Vaue Pesing By Rdeaence
int x; int &x;
Formal parameter x is a local variable. Formal parameter x is a local reference.
Itisaduplicate of the actual parameter. Itisasvnonvm for the actual parameter.
It cannot change the actual parameter. It can change the actual parameter.
Actual parameter may be a constant, Actual parameter must be avariable.
avariable, or an expression.
Actual parameter isread-only. Actual paraneter is read-wite.

A common gituation where reference parameters are needed is where the function has to
return more than one vaue. It can only return one value directly with ar et urn Statement. So if
more than one vaue must be returned, reference parameters can do the job.

EXAMPLE 4.17 Computing the Area and Circumference of a Circle

This function returns through its two reference parameters the ar ea and the ci r cunf erence of
a circle whose radius has the given length r :

void computeCircle(double& area, double& circunference, double r)

{
const double pi = 3.141592653589793;

area = pi*r*r;
circunference = 2*pi*r;

Hee is a tet dhiver and ouput from a sample run:

voi d computeCircle(double&, doubl e& double);

main ()
{
double r, a, c;
cout << "Enter radius: ";

cin >> r;
computeCircle(a, c, r);
cout << "area = " << a << ", circunference = " << ¢ << endl;

}

Bhter #adives 1000
area = 31415.9, circumference

Note that the output parametersar ea and ci r cunf er ence arelisted first in the parameter list, to
the left of the input parameter r. Thisstandard C styleis consistent with the format of assignment state-
mats g = p, whae the infomdion (the velue) flows from the reed-only vaigdle p on the right to the
read-write variable g on the l€ft.

108 FUNCTIONS [CHAP. 4

411 PASSING BY CONSTANT REFERENCE

There are two good reasons for passing a parameter by reference. If the function has to
change the value of the actual parameter, astheswap () function did, then it must be passed by
reference. Also, if the actua parameter that is passed to a function takes up alot of storage space
(for example, a one-megabyte graphics image), then it is more efficient to pass it by reference to
prevent it from being duplicated. However, this dso dlows the function to change the vadue (Le,
contents) of the actua parameter. If you don't want the function to change its contents (for
example, if the purpose of the function is to print the object), then passing by reference can be
risky. Fortunately, C++ provides a third dternaive: passing by constant reference. It works the
same way as passing by reference, except that the function is prevented from changing the vaue
of the parameter. The effect is that the function has access to the actua parameter by means of its
forma parameter dias, but the vaue of that forma parameter may not be changed during the
execution of the function. A parameter that is passed by vaue is cdled “read-only” because it
cannot write (Le., change) the contents of that parameter.

EXAMPLE 4.18 Passing By Constant Reference

This illudrates the three ways to pess a parander to a function:

void f(int X, int& y, const int& 2z)

X += Zz;
y += z;
cout << "X =z " <« X << ", y.="<<Y << ", Z =" << Z << endl;

}

The first parameter a is passed by value, the second parameter b is passed by reference, and the
third parameter c is passed by constant reference:

main()

{

int a =22, b = 33, c¢ = 44

cout << "a = "<<a<< "', b="<<b <«<", =" << C << endl;
f(a,b,c);
cout << "a = "<<a<< ", b =" <« b <<, c="<<cC << endl;

The function changes the formal parameters x and vy, but it would not be. able to change - The func-
tion's denge of X has no dfett upon the adud paranger a becaue it wes pessd by vdue The fuc
tion's dhenge of y hes the same dfet upon the acud pararder b because it wes pessd by rdfaae

Pasing paranders by congant reference is used modly in fundions thet process lage objets such
& argys ad das indaces thd ae dexxibed in lde digoies Objeds of fundamentd types (integers
floats eic) ae usdly pesssd dther by vdue (if you don't want the fundion to change them) or by refa-
ence (if you do wat the fundion to change them).

CHAP. 4] FUNCTIONS 109

4.12 INLINE FUNCTIONS

A function involves substantia overhead. Extratime and space have to be used to invoke the
function, pass parameters to it, alocate storage for its locd variables, store the current variables
and the location of execution in the main program, etc. In some cases, it is better to avoid dl this
by specifying the function to be inline. This tells the compiler to replace each cdl to the
function with explicit code for the function. To the programmer, an inline function appears the
same as an ordinary function, except for the use of the inline Specifier.

EXAMPLE 4.19 An inline Cube Function

This is the same cube () function tha we had in EXAMPLE 4.1

inline int cube(int n)
{

return n*n*n;

The only difference is the inl ine designation in the function's header. The compiler is told to replace
the expression cube (n) in the main progran with the actud code n*n*n. So the following program is
compiled

main()

{

cout << cube(4) << endl;
int x, vy,

cin >> X;

Y = cube(2*x-3);

the result will be as though the program itsdf had redly been

main ()
{
cout << (4)*(4)*(4) << endl;
int x, vy,
cin >> X;
Y = (2*%x-3)*(2*x-3)*(2*x-3);

When the compiler replaces the in1ine function cal with the function’s actud code, we
say thet it expands the inline function.

Note that the C++ Standard does not actualy require the compiler to expand inline
functions. It only “advises’ the compiler to do so. One that doesn't follow this “advice’ could
il be validated as a Standard C++ compiler. On the other hand, some Standard C++ compilers
may expand some Smple functions even if they are not declaredtobe inline.

110

FUNCTIONS [CHAP. 4

4.13 SCOPE

The scope of a name conddts of that part of the program where it can be used. It begins
where the name is declared. If that declaration is ingde a function (including the main ()
function), then the scope extends to the end of the innermost block that contains the declaration.

A program may have severd objects with the same name as long as their scopes are nested or
digoint. Thisis illustrated by the next example which is an daboration of Example 2.17.

EXAMPLE 4.20 Nested and Parallel Scopes

In thisexample, £ () and g() are globa functions, and the first x is a global variable. So their
scope includes the entire file. This is called file scope. The second x is declared insde main () so it has
local scope; i.e, it is accessible only from within mai n (). The third x is declared inside an internal

void f(); // £() is gl obal
void g(); // g() is global
int x = 11; // this x is gl obal
main()
{ // begin scope of main()
int x = 22;
{ // begin scope of internal block
int x = 33;
cout << "In block inside main(): X = " << X << endl;
} // end scope of internal block
cout << "IN main(): X = " << X << endl;
cout << "In main(): ::x = " << ::x << endl; // accesses global x
£0);
So;

}

// end scope of main()

block, so its scope is restricted to that internal block. Each x scope overrides the scope of the previousy
declared x so there is no ambiguity when the identifier x is referenced. The scope resolution operator: :
is used to access the last x whose scope was overridden; in this case, the global x whose valueis 11:

void f()

{ // begin scope of f()
int x = 44;
cout << "In f(): x = " << x << endl;

} // end scope of f()

void g()

{ // begin scope of g{()
cout << "In g(): X = " << x << endl;

}

// end scope of g{()

In bl ock inside main(): x = 33
Inmain():x=2 2

mafn(): sex = 11

In £(): x = 44
In g(): x = 11

CHAP. 4] FUNCTIONS 111

The x initialized with 44 has scope limited to the function f () whichisparald tomai n (); but its
scope is also nested within the global scope of the first X, so its scope overrides that of both the first x
within £ (). In this example, the only place where the scope of the first x is not overridden is within the
functiong ().

4.14 OVERLOADING

C++ dlows you to use the same name for different functions. As long as they have different
parameter type ligts, the compiler will regard them as different functions. To be distinguished, the
parameter lists must either contain a different number of parameters, or there must be at least one
position in their parameter lists where the types are different.

EXAMPLE 4.21 Overloading the max () Function

An earlier example defined a max () function for two integers. Here we define two other max ()
functions in the same program:

int max(int, int);
int max(int, int, int);
doubl e nax(double, double);

main()
{
cout << max(99,77) << " ' << max(55,66,33) << "
<< max(3.4,7.2) << endl;
}

int max(int x, int y)

return (x >y ?2 x @ y);

}

// Returns the maxi mum of the three given integers:
int mx(int x, int y, int 2z)

int m=(x >y ? x : Yy);
return (z>m? z : m;
}

// Returns the maximum of the two given real nunbers:
doubl e nex(double x, double Yy)

return (x >y ? x : V)

99 66 1.2

Three different functions, al named max, are defined here. The compiler checks their parameter lists to
determine which one to use on each cal. For example, the first cal passes two ints, sothe verson that

112 FUNCTIONS [CHAP. 4

hes WO ints in its paameer lig is cdled. (if
moate the two ints 9 and 77 to the doubles 990
doudes in its paande i)

hed ben omitted, then the sygem woud pro-

thet verson
and 770 and then pess them to the vardon that hes two

Overloaded functions are widdy used in C++. Their vaue will become more gpparent with
the use of classes in Chapter 8.

415 THE main() AND e&xit () FUNCTIONS

Every C++ program requires a function named main () . In fact, we can think of the
complete program itself asbeing madeup of themain () function together with al the other
functions that are cdled dther directly or indirectly from it. The program darts by caling

main().

Although not required, most C++ compilers expect the main() function to have return type
int , Since thisis the default return type for any function, it need not be specified. So we usudly
just write

main ()
instead of
int main()

In ether case, most compilers will dlow the return satement to be omitted, athough some
may give awarning if it is omitted. If it is included, it mugt return an integer.

Some C++ programmers prefer to declare main () avoid function like this
void main()

This is acceptable to most compilers, athough some will issue a warning and then automaticaly
changemain ()toin t type. If thecompiler doesaccept mai n () asavoid function, then of
courseany return satement should appear Smply as

return;
gnceinthiscase mai n () hasno return type.

If you want to terminate the program from within a function other than the min ()
function, you cannot Smply use a return dsatement. The ret urn atement will only termi-
nate the current function and return control to the invoking function. Fortunately, there is another
way to terminate the program and it can be used ‘anywhere within any function. That is the
exit () function thet is defined in the <std ib . h> header file.

CHAP. 4] FUNCTIONS 113

EXAMPLE 4.22 Using the exit () Function to Terminate a Program

#i ncl ude <iostream.hs>
#i ncl ude <stdlib.h>

doubl e reciprocal (double x)
{
if (x == 0) exit(l);
return 1.0/x;

}

main ()

{
double x;
cin >> X;
cout << reciprocal (x);

If the user enters O for X, the program will terminate from within the r ec iproca 1 () function
without atempting to dvide by it

416 DEFAULT ARGUMENTS

C++ dlows a function to have a variable number of arguments. This is done by providing
default vaues for the optiona arguments.

EXAMPLE 4.23 Default Parameters

This function evaluates the third degree polynomia a, + a;x + a,x* + a;x*. The actual evauation is
done usng Home's Algoitm, grouping the cdadaions & ay + (a; + (a, + ax)x)x for greder dfidency:

doubl e p(double, double, double =0, double =0, double =0;

main ()
{
double x = 2.0003;
cout << "p(x, 7) = " << p(x, 7) << endl;
cout << "p(x, 7, 6) = " << p(x, 7, 6) << endl
cout << 'p(x, 7, 6, 5 = " << p(x,7, 6 5 << end;
cout << 'p(x, 7, 6, 5 4) = " << p(x, 7, 6, 5 4) << endl;

doubl e p(doubl e x, double a0, double al, double a2, double a3)

return a0 + (al + (a2 + a3*x)*x)*x;
}

Thecall p(x, a0, al, a2, a3) evauates the third-degree polynomia a, + a;x + a,x* + a;x3. But
dnea 1, & ad a3 dl have the dffalt vdue O, the fudion candso becdled by p (al) to

114 FUNCTIONS [CHAP. 4

evaluate the constant polynomid g, orby p (x , a0, a) to evduate the first-degree polynomid a, +
a;x,orby p(x, a0, al, a2) toevauate the second-degree polynomia g, + a.x + a,x’.

Note how the default values are given in the function prototype.
Here is the output from the test run:
plx, 7) = 7

plk, 7. 6) = 19,0018
pix, 7, 6, 5) = 39.0078
pix, 7,6, 5, 4} = 71 0222

For examplethecdl p (x, 7. 6, 5), whichisequivdenttothecdl p (» 7, 6, 5, 0),evauaes
the second degree polynomid 7 + 6 x + 5 x%

In the example above, the function may be caled with 2, 3, 4, or 5 arguments. So the effect of
dlowing default parameter vaues is redly to dlow a varidble number of actud parameters
passed to the function.

If a function has default parameter vaues, then the function’s parameter li must show al
the parameters with default values to the rignt of al the parameters that have no default vaues,
like this

void f(int a, int b, int c=4,int d=7,int e=3); // K
void g(int a, int b=2, int c=4, int d, int e=3); // ERROR
The “optiond” parameters must al be liged lagt.

Review Questions

4.1 What are the advantages of using functions to modularize a program?

4.2 What is the difference between a function’s declaration and its definition?

4.3 Where can the declaration of a function be placed?

4.4 When does a function need an i ncl ude directive?

4.5 What is the advantage of putting a function’s definition in a separate file?

4.6 What is the advantage of compiling a function separately?

4.7 What are the differences between passing a parameter by value and by reference?

48 What are the differences between passing a parameter by reference and by constant reference?

49 Why is a parameter that is passed by value referred to as “read-only”? Why is a parameter that
is passed by reference referred to as “read-write”?

4. 10 What iswrong with the following declaration:
int f(int a, int b=0 int c);

CHAP. 4] FUNCTIONS 115

Solved Problems

4.11 In Example 4.13, the following expression was used to test whether v is a leap year:
Y %4 == 0 && Y %100 =01 | y %400 == 0

This expression is not the most efficient form. If y is not divisible by 4, it will ill test the con-
dition y $ 40 0 == 0 which would have to be false. C++ implements “short circuiting,”
which means that subsequent parts of a compound condition are tested only when necessary.
Find an equivalent compound condition that is more efficient due to short circuiting.

The compound condition
y%¥4 == 0 && (y % 100 != 0 |1y % 400 == 0)
is equivalent and more efficient. The two can be seen to be equivalent by checking their valuesin the

four possibilities, represented by the four y values 1995, 1996, 1900, and 2000. This condition is more
efficient because if y isnot divisible by 4 (the most likely case), then it will not testy further.

4.12 Describe how a voi d function with one reference parameter can be converted into an equiva-
lent non-void function with one value parameter.

Convert the reference parameter into areturn value. For example, the function
void f(int& n)
{

n *= 2;

is equivdent to the function
int g(int n)

{
return 2*n;

}

These two functions are invoked differently:

int x =22, y = 33
£(x);
Y = g(y);

But in bhoth cases, the effect is to double the vedue of the parameter.

Solved Programming Problems

4.13 Write a simple program like the one in Example 4.2 to check the identity: cos2x = 2cos’x = 1.

116

4.14

FUNCTIONS [CHAP. 4

This is smilar to Example 4.2:

#include <iostream.h>
#include <math.h>

main ()

for (float x = 0; x < 1; x += 0.1)

cout << Ccos(2*xX) << '\t' << 2*cos(x)*cos(x) = 1 << endl;
}
1 1 i
0.980067 ‘ 0.980067
0921061 0.921061
0825336 0.825336 I
0.696707 0,696707
bisa0302 0.540302
0.362358 0.362358
0.169967 0.169967
-0.0291997 £0.0291997
-0 1227202 -0.227202

Each valuein the first column matches the corresponding value in the second column, showing that
the identity is true for the 10 values of x tested.
A more efficient way to compute the permutations function P(n,k) is by the formula
P(nk) = (n) (n-1) (n=2)...(n—k+2) (n-k+I)
This means the product of the k integers from n down to n- k + 1. Use this formula to rewrite
and test the perm () function from Example 4.9.

To compute a product of k integers, we use a for loop that iterates k times. Each time, pis
multiplied by n which is then decremented. The result is that 1 ismultipliedby n, n- 1, n 2 eic.,
downton- k+l :

int permiint, int);

main ()
{
for (int i =-1; i < 8; i++) {
for (int j = -1, | <= i+l; j+4)
cout << " " << perm(i,j);
cout << endl;
}
}

// Returns P(n,k), the nunber of permutations of k from n:
int pernm(int n, int k)

1

if (n <0 ||k <01l k >n)return O;
int p =1,
for (int i =1; i <=k; i++, n--)

p ‘= on;

return p;

CHAP. 4] FUNCTIONS 117

The resulting output is the same asin Example 4.9.

415 The combination function C(n.k) gives the number of different (unordered) k-element subsets
that can be found in a given set of n elements. The function can be computed from the formula
n!

Cn = rmi

Implement this formula

Thisis a straightforward implementation of the formula:

int comb(int, int);

main ()
{
for (int i = -1; i < 8i++) {
for (int j = -1;] <=0 +1; J++)
cout << ' " << conb(i,]);

cout << endl;
)
int factorial (int);
// Returns C(n,k), the nunber of conmbinations of k from n:

int comb(int n, int k)
{

if m<O0Ill k<O1ll k>n) return O;
return factorial (n)/(factorial (k)*factorial (n-k)):;

Notethatthe factorial O function must be declared above the comb () function because it
isused by that function. But it does not need to be declared abovethermai n () function because it is
not used there

118 FUNCTIONS [CHAP. 4

4,16 Writeand testthe dig i t () function:

int digit(int n, int k)
This function returns the kth digit of the postive integer n. For example, if n is the integer
29,415, thenthecall digit (n, 0) would return the digit 5, adthecdl dig i t (n , 2)
would return the digit 4. Note that the digits are numbered from right to left beginning with the
“zeroth digit.”

This removes the right-most digit of n k times. This reduces n to an integer whose right-most
digit is the same as the kth digit of the original integer. That digit isthen obtained as the remainder from
division by 10:

int digit(int, int);

main()
{
int n, k;
cout << "lInteger: ';
cin >> n;
do {
cout << "Digit: ';
cin >> k;
cout << "The " << K << "th digit of "<<n << "is '
<< digit(n, k) << endl;
}while (k > 0);

// Returns the kth digit of the integer n:
int digit(int n, int k)

{
for (int i =0; i <k; i++)
n /= 10; // remove right-nost digit
return n % 10;
)3
Liteger: 123456789
Dlglt~”8
The 8th dlglt of 123456789 1s 1
Digit: 4
The 4th digit of 123456789 1s 5
Dlglt 1
e 1th dlglt of 123456789 is 8
Dlglt.vo

The Oth dlglt of 123456789 is 9
This run was on a computer whose in ts can hald 9-digit integers.

4.17 The ancient Greeks classified numbers geometrically. For example, a number was called “trian-
gular” if that number of pebbles could be arranged in asymmetric triangle. The first eight trian-
gular numbers are 1, 3, 6, 10, 15, 21, 28, and 36:

T,=1 T,=3 T,=6 T,=10 T,=15

CHAP. 4] FUNCTIONS 119

Write and test the boolean function:
int isTriangular (int n)
This function returns 1 if the given integer n is a triangular number, and O otherwise.

The argument n istriangular if and only if it isasum of consecutiveintegers1+2+ 3 +.... Sowe
jus have to compute these sums until we find one that is greter than or equd to n. If that sum is equd to
n, then n is a triangular number; otherwise, it isn't:

int isTriangular (int);

main ()
{
int n;
do {
cin >> n;
if (isTriangular(cout << n << " is triangular.\n";
el se cout << n << " is not triangular.\n";

}while (n > 0);

// Returns 1 if n is a triangular number (1 3, 6, 10, 15, etc.):
int isTriangular (int n)

{
int i =0, sum= O0;
while (sum < n)
sum += ++i
if (sum == n) return 1,
else return O;
}

2

e e
418 Write a maximum function for three integers that uses the maximum for two integers.

We asume that the max (int , int) functionisaready available:

int max(int, int);

int max(int x, int y, int z)
{
int mx(int,int);
return max(max(x,y),z);

120 FUNCTIONS [CHAP. 4

4.19 Write afunction that converts rectangular coordinates to polar coordinates.

Every point in the coordinate plane has aunique pair (X, y) of rectangular coordinates and a unique
pair (r, 0) of polar coordinateswithr >0 and o <6<2xn. Thefollowing function converts from rectangu-
lar to polar coordinates. Since the output consists of more than one variable, the two output variables 1
and t are passed by reference:

voi d rectangularToPolar (double& r, double& t, double x, double y)
{
const double pi = 3.1415926535897932385;
r = sqgrt(x*x + v*y);
if (x > 0)
if (y>=0)t =atan(y/x);
else t = atan(y/x) + 2*pi;
else if (x == 0)
if (y >0 t = pi/2;
else if (y =0 t =0;.
else t = 3*pi/2;
else t = atan(y/x) + pi;

4.20 Simulate the game of craps.

The game of craps is played with two dice. Each time the pair of dice is tossed, the sum of the two
numbers that come up isused. That sum will be an integer in the range 2 to 12 since the faces of each die
are numbers 1 to 6. The player winsimmediately if hetossesa7 or an 11, and he losesimmediately if he
tossesa 2, 3, or 12. If hetossesa 4, 5, 6, 8, 9, or 10, then that number becomes his “point.” He then
repeats tossing the dice until he wins by making his point or he loses by tossng a 7.

#include <iostream.h>
#include <stdlib.hs>
#include <time.h>

void initializeSeed();
int toss();
void win();
void lose();

main()
{
initializeSeed() ;
int point = toss();
if (point == 2 Il point == 3 Il point == 12) lose();
if (point == 7 Il point == 11) win();
int t;

for(;;) |
t = toss();
if (t == 7) lose();
if (t == point) win();

CHAP. 4] 12l

void initializeSeed()
unsi gned seed = time (NULL);
srand (seed) ;

int toss{()

int diel = rand()/10%6 + 1,

int die2 = rand()/10%6 + 1,

int t = diel + die2;

cout << "\tYou tossed a " <<t << endl;
return t;

voi d win ()

{
cout << "\tYou won.\n";
exit(0);

}

voi d lose()

{
cout << "\tYou lost.\n';
exit(0);

}

u tossed a 4

tossed a 6 =
You tossed a 7

You Just.

. tossed a8
won

122 FUNCTIONS [CHAP. 4

Supplementary Programming Problems

STANDARD C LIBRARY FUNCTIONS

421 Write a Smple program like the one in Example 4.2 to check the identity: cos*x + sin’x = 1.

4.22 Write a smple program like the one in Example 4.2 to check the identity:
tan 2x = 2tan x /(1 - tan%x).

4.23 Write a simple program like the one in Example 4.2 to check the identity: cosh?x - sinh%x = 1.

4.24 Write a smple program like the one in Example 4.2 to check the identity: asinx + acos x = m/2.

4.25 Write a simple program like the one in Example 4.2 to check the identity: log x* = 2 log X.
4.26 Write a simple program like the one in Example 4.2 to check the identity: b* = e logd),

427 Write atest driver to test the functions listed in Table 4.1.

USER-DEFINED FUNCTIONS

4.28 Write and test the following area () function that returns the area of a circle with given
radius:

float area(float r).

4.29 Write and test the following mi n () function that returns the smallest of two given integers:
int mn(int x, int vy)

4.30 Write and test the following i n () function that returns the smallest of three given integers:
int mn(int x, int y, int z)

4.31 Write and test the following mi n function that returns the smallest of four given integers:
int min(int x, int y, int z, int w

4.32 Write and test the following min () funcionthet usssthe nin (int , int) function to find
and return the smallest of three given integers:

int mn(int x, int y, int 2z)
4.33 Write and test the following min () fundionthat usssthe nin (int , int) function to find
and return the smallest of four given integers:
int mn(int x, int y, int z, int w)

4.34 Write and test the following mi n () function that usesthenmin (int , int , int)function
to find and return the smallest of four given integers:

int min(int x, int y, int z, int w

4.35 Write and test the following power () function that returns x raised to the power p, where p
can be any nonnegative integer:

float power(float x, unsigned p).

CHAP. 4] FUNCTIONS 123

436 Implement the f ac tori al () function with a for loop. Determine which vaues of n will
cause factorial (n) to overflow.

4.37 The combinations function C(n,k) can be computed from the formula

C(nk) = P(l’;’k)
Use this formula to rewrite and test the conb () function implemented in Problem 4.15.

4.38 A more efficient way to compute C(n,k) is shown by the formula
C(n,k) = (n/1) ((n- 1)/2) ((n=2)/3)...((n—k+2)/(k-1)) ((n-k+1)/k)

This alternates divisions and multiplications. Use this formula to rewrite and test the aomb ()
function implemented in Problem 4.15. Hint: Use a for loop like the one in Problem 4.14.

4.39 Pascal’s Triangle is a triangular arrav of numbers that begins like this:

1
11
12 1
13 3 1
14 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

Each number in Pascal’s Triangle is one of the combinations C(n.k). (See Problem 4.15 and
Problem 4.38.) If we count the rows and the diagonal columns starting with 0, then the number
in row n and column k is C(n,k). For example, the number in row number 6 and column number
2 is C(6,2) = 15. Write a program that uses the conb () function to print Pascal’s Triangle
down to row number 12.

4.40 Write and test a function that implements the Euclidean Algorithm to return the greatest com-
mon divisor of two given positive integers. See Example 3.19.

4.41 Write and test a function that uses the greatest common divisor function (Problem 4.40) to
return the least common multiple of two given positive integers.

BOOLEAN FUNCTIONS

4.42 Write and test the followingi sSquare () function that determines whether the given integer
is a square number:

int isSquare(int n)
The firg ten square numbers arel, 4,9, 16, 25, 36, 49, 64, 81, and 100.
4.43 Write and test the following i sPentagonal () function that determines whether the given
integer is a pentagonal number:
int isPentagonal (int n)

The first ten pentagonal numbers are 1, 5, 12, 22, 35, 51, 70, 92, 117, and 145.

124 FUNCTIONS

OVERLOADING

4.44 Write and test the following drawSquare () function that prints a combination of asterisks
and blanks so that the asterisks form the boundary of a square of width w:

void drawSquare(int w).

445 Write and test the following drawRec tangl e () function that prints a combination of aster-
isks and blanks so that the asterisks form the boundary of a rectangle of width w and height h:

void drawSquare(int w, int h).

4.46 Write and test the following aver age () function that returns the average of four numbers:
float average(float xI, float x2, float x3, float x4)

4.47 Write and test the following aver age () function that returns the average of up to four posi-
tive numbers:

float average(float xl, float x2=0, float x3=0, float x4=0)

PASSING BY REFERENCE

4.48 Write and test the following compu t eC i rc 1 e () function that returns the area a and the cir-
cumference ¢ of a circle with given radius r

void computeCircle(float& a, float& c, float r).

4.49 Write and test the following conpu t eRec tangl e () function that returns the area a and the
perimeter p of a rectangle with given side width w and height h:

void computeRectangle(float& a, float& p, float w, float h).

4.50 Write and test the following conpu t eTr iangl e () function that returns the area a and the
perimeter p of a triangle with given side lengths a, b, and c:

voi d computeTriangle(float& a, float& p,
float a, float b, float c).

4,51 Write and test the following ¢ onpu t eSphere () function that returns the volume v and the
surface area s of a sphere with given radius r:

void computeSphere(float& v, float& s, float r).

4.52 Write and test the following computeCyl i nder () function that returns the volume v and
the surface area s of a cylinder with given radius r and height h:

void computeCylinder(float& v, float& s, float r, float h).

4.53 Write and test the following frequency () function that returns the equal temperament fre-
quency of the given pitch p above middie C. For example, if p has the value F , then fre-
guency would return 589 which is the nearest integer to 440(12th root of 2)A5.

int frequency(char p)

4.54 Write and test the following conpu t eMeans () function that returns the arithmetic mean a,
the geometric mean ¢, and the harmonic mean h of up to three positive numbers:

void computeMeans (float& a, float& g, float& h, float xl,
float x2=0, float x3=0)

CHAP. 43 FUNCTIONS 125

FUNCTIONS WITH DEFAULT ARGUMENTS

4.55 Wirite and tes a pol ynonial () function like the one in Example 4.23 that will evauate poly-
nomials up to degree 6 (i.e., the highest power of x is x°).

4.56 Write ad tet a function named content (| that returns either the length of an interval [x,,x,]
or the area of arectangle [x,,x,]x[y,,y,] or the volume of a parallelepiped [x;,x,]X[y;,y,1X[z;,2,],
according to whether the function is passed 2, 4, or 6 parameters. For example, the 4-parameter
cdl content (3.0, 8.0, -4.0, 6.0) would return (8.0 -3.0)(6.0 - (-4.0)) = 50.0.

4.57 Wiite ad tet a fundtion named dot Produc t () that returns either the product of two num-
bers x; and y, or the dot product of a pair of two-dimensional vectors (x;, y;) and (x,, y,) or the
dot product of a pair of three-dimensional vectors (x;, ¥, z;) and (x,, ¥, 2,), according to
whether the function is passed 2, 4, or 6 parameters. For example, with four arguments, the call
dot Product (3. 0, 8.0, -4.0, 6 0) wouldreturn (3.0)(-4.0) +(8.0)(6.0) = 36.0.

FUNCTIONS CALLING OTHER FUNCTIONS

458 Write ad tes the fdlowing max function that uses the max (int , int) function to find and
return the largest of four given integers:

int max(int x, int y, int z, int w)

459 Write and teg the fdlowing nin fundtion thet usssthe min (int , int , int)functionto
find and return the smallest of four given integers:

int min(int x, int y, int z, int w)

MODULARIZATION

4.60 Modularize the Monte Carlo program (Problem 3.23) for computing 7.

4.61 Modularize the Monty Hall program (see Problem 3.22 and Problem 3.61) sothat mein () is
simply a sequence of function calls:

main ()

{
printintroduction();
initializeSeed();
int car, choice, open, option;

cal = randomInteger (1, 3);

get (choice);

set (open, option, car, choice);

i f change(open, option)) choice = option

printResults(car, choice);

4.62 Modify the Monte Hall program (Problem 4.60) so that it plays the game 6000 times. Use the
“no switch” strategy on the first 3000 games and the “switch” strategy on the second 3000
games. Keep track of what fraction the player wins with each strategy, and print the results.

126

4.63

41

42

43

44

45

4.6

47

48

49

4.10

FUNCTIONS [CHAP. 4

Modify the craps program (Problem 3.22) so that it plays the game 3600 times. Print the num-
ber and percentage of wins.

Answersto Review Questions

A separately compiled function can be regarded as independent “black box” which performs a specific
task. Once the function has been thoroughly tested, the programmer need not be concerned about how it
works. This frees the programmer to concentrate on the development of the main program. Moreover, if a
better way of implementing the function isfound later, it can replace the previous version without affect-
ing the main program.

A function’s declaration (also called it prototype) is essentially only the function’s header. A function’s
definiion is the completle function: header and body block. The declaration provides only the information
needed to call the function: its name, its parameter types, and itsreturn type; it isthe interface between
the function and its caller. The definition gives al the information about the function, including the
detals of how it works it is the function's implementation.

A function may be dedared anywhere as long as its declaation is above al references to the function. So
the declaration must come before any cdls to it, and if its definition is separate then it too must come after
its declaration.

An include diective is used to include other files. Typicdly, function declarations andlor definitions
arelisted in aseparate “header” file (with. h file extenson). If only the declarations ae in the header filg
then the definiions would be compiled separately in other files.

The advantage of putting a function’s definition in a separate header file is that it doesn’t have to be
brought into the editor when changes ae made to the functions that cdlit.

The advantage of compiling a function separately is that it does not need to be recompiled when the func-
tions that call it are recompiled.

A parameter passed by value is duplicated by its corresponding actual parameter. A parameter passed
by reference is simply renamed by its corresponding actual parameter.

A paanger passed by condant reference canot be changed by the function to which it is passed.
A paameer that is passed by vadue canot be changed (rewritten).

The function hes a defaut vdue for a paameer (b) that precedes a paameter (C) with no defailt vaue
Thisviolates the requirement that all default parameters be listed last in the functions parameter list.

Chapter 5

Arrays

5.1INTRODUCTION

An array is asequence of objects dl of which have the same type. The objects are cdled the
elements of the array and are numbered consecutively 0, 1, 2, 3, These numbers are called
index values or subscripts of the array. The term “subscript” is used because as a mathematical
sequence, an array would be written with subscripts: a, ay, a5, These numbers locate the
element’s pogition within the array, thereby giving direct access into the array.

If the name of thearray isa, thena [0 1 isthe name of the dement that is in pogtion O,

a [1] isthe name of the dement that isin postion 1, etc. In generd, the ith dement isin position
i—1. So if the array has n elements, their names are a[0],a[1],a[2],. . . . a[n-1].

Here is how you should imagine an aray:

a |11.11 (33.33 |55.55 | 77.77 [99.99
0 1 2 3 4

This shows an aray named a with 5 elements. a [0] contains11.11,a [1] contans33.33, a[2]
contains 55.55, a (3] contains 77.77,and a [41 contains 99.99. The diagram actudly repre-

sents aregion of the computer’s memory because an array is dways stored this way with its ele-
ments in a contiguous sequence.

The method of numbering the ith dement with index i-l is caled zero-based indexing. Its
use has the effect that the index of an array dement is dways the same as the number of “steps’
from the initid dement a [o | to that dement. For example, dement a [3] is 3 steps from

eement a [0 1. The advantage of this method will become more apparent in Chapter 6 when we
see the relationship between arrays and pointers.

52 PROCESSING ARRAYS

Virtudly al useful programs use arays. One reason that arrays are so useful is that they
dlow a sngle name with a varidble index to be used in place of many different names. This
makes it easy to do many things that would be far more difficult without arrays.

127

128 ARRAYS [CHAP. 5

EXAMPLE 5.1 Printing a Sequence in Order

This program reads 4 numbers and then prints them in reverse order:

main ()

{
double al4];
cout << "Enter 4 real numbers:\n";
for (int i =1; i <=4; i++) {

cout << i << ": ";
cin >> ali-17;

}

cout << "Here they are in reverse order:\n";

for (i =3; i >=0; i--)
cout << "\ta[" << i << "] = " << a[i] << endl;

The declaration double a [4] declares a to bean array of 4 elements of type doubl e. The first

for loop then alows the user to enter rea numbers into these 4 components. Then the second for loop
prints these stored numbers in reverse order.

Here is a sample run:

The array looks like this:

a |1.618 [2.718 [3.142 | 4. 444

The next example works the same way. Bt it uses a symbolic congant for the size of the
array. This makes the code easer to modify.

CHAP. 5] ARRAYS 129

EXAMPLE 5.2 Using a Symbolic Constant to Declare and Process an Array

main()
{
const int size = 4;
double a[size];
cout << "Enter " << size << " real numbers:\n";
for (int i =1; i <= size; i++) {
cout << i << "y
cin >> af[i-1];
}
cout << "Here they are in reverse order:\n";
for (i = size-l; i >= 0; i--)
cout << "\ta[" << 1 << "] = " << afi] << endl;

The constant integer s i ze s initidized with the value 4. It is then used to declare the array a, to prompt
the user, and to control both for loops. The progran works the same as the previous version.
The format for an array declaration is

type array-name[array-si ze];
where type is the aray’s dement type and array-si ze is the number of dements The
declaration in Example 5.2

double a[size];
declares a to be an array of 4 ements, each of type doubl e. Standard C++ requires array-
si ze t0 be apogtive integer condtant. As we did in Example 5.2, it is cusomary to define the
array-size asS a Separate constant:

const int size = 4;

53 INITIALIZING AN ARRAY

In C++, an arrays can be initidized with a sngle initializer list, likethis
float al[4] = (22.2, 44.4, 66.6, 88.8);
The vaduesin the list are assgned to the dements of the array in the order that they are listed.

EXAMPLE 5.3 Initializing an Array
This shows how to initidize an array explicitly:
main ()

{
double afl4] = (22.2, 44.4, 66.6, 88.8),

for (int i =0; i < 4; i++)
cout << "a[" << 1 << "] = " << g[i] << endl;
}
af0] = 22.2
afl] =44.4
a[2] = 66.6

al3] =88.8

130 ARRAYS [CHAP. 5

The array’s initiaizer list contains 4 values, the same number as the size of the array specified in the
aray’s declaration.

If the array has more dements than values lised in its initidizer lig, then the remaining de-
ments are initidized to zero.

EXAMPLE 54

Here the array has 4 elements, but itsinitidizer list has only 2 values:

main()
{
doubl e a[4] = (22.2, 44.4);
for (int i = 0; i < 4; i++)
cout << "a[" << i << "] = " << ali] << endl;

The last 2 elements, which are not given vaues from the initidizer list, are assigned the default vaue O.

If an array dedlaraion does not include an initidizer lig, then its dements may contain unex-
pected “ garbage’ vaues.

EXAMPLE 5.5

Here the array has no initidizer:

main ()
{
double af4];
for (int i = 0; i < 4, i++4)
cout << "a[" << i << "] = " << a[i] << endl;

4[3 1= 7 . 48088e-309 - ' -

The contents of the uninitidlized array are unpredictable.
When an array has an explicit initidization, its Sze specifier may be omitted from its decla-
ration. For example, in the program in Example 5.6, the declaration
float a[4] = (22.2, 44.4, 66.6, 88.8);
is equivaent to the declaration
float a[] = (22.2, 44.4, 66.6, 88.8);

The 9ze is daermined to be the number of vdues in the initidizer li.

CHAP. 5] ARRAYS 131

5.4 PASSING AN ARRAY TO A FUNCTION

Thecode float a[] that is used to declare an aray with an initidizer lig tdls the
compiler two things the name of the aray is a, and the array’s eements will have type float.
The symbol a stores the array’s memory address. So the code 1 oat a [] provides dl the
information that the compiler needs to declare the array. The size of the array (i. e, the number of
elements in the array) does not need to be conveyed to the compiler.

The code that is used to pass an array to a function includes the array’ s dement type and its
name. This is illugrated in the next example. It includes two functions that process arrays. In
both parameter ligts, the array 4] is declared in the parameter list as

double a[]

The actual number of eements has to be passed by means of a separate integer variable.

When a function is passed an array this way, it is actualy passed only the address of the
memory cdl where the array starts. This value is represented by the array’s name a. The
function can then change the contents of the array by directly accessng the memory cdls where
the array’s dements are stored. So, dthough the name of the array is passed by vaue, its
elements can be changed just asif they had been passed by reference.

EXAMPLE 56 Array |/O Functions

This program illustrates how arrays are passed to functions:

const int size = 100;

void getArray(double [], int&);

void printArray(const double [], const int);
main()

{
double a[size];
int n;
getArray(a,n);
cout << "The array has " << n << " elenments.\nThey are:\n";
printArray(a,n);
}

voi d getArray(double a[], int& n)

n = 0;
cout << "Enter data. Term nate with 0:\n";
for (n = 0; n < size;, n++) {

cout << n << "

cin >> alnl;

if (a[n] == 0) break;

132 ARRAYS [CHAP. 5

voi d printArray(const double a[], const int n)
{
for (int i =0; i <n; i++)
cout << '"\t' << i << ": " << a[i] << endl;
}

Enter data. Terminate with 0:

0: 22.22
1: 55 55
2: 88.88
w0 .
The array has 3 elements.
They are:
. e
. 1 B5 &85
. 5. a8 28 ‘ . ‘ .
Note how the functions are called getArray(a,n); printArray(a,n); they are passed the

aray’s name a and an integer variable n. Also note that the for loop in the input function prevents the
user from entering more than si ze numbers into the array.

The input function getArray () changes the forma parameter size, so it is passed by reference.
The formal parameter a is passed the address of the first element in the array, and this address is not
changed, s0 a is passed by vaue. Since a is the name of an aray (indicated by a [1), the function can
gill change the values of the aray's eements.

The output function printArray () makes no changes to its parameters, so they are designated in
the parameter list as cons t.

EXAMPLE 5.7 The sum Functions

This little function is quite useful:

// Returns the sumof the first n elenents of the specified array:
doubl e sun{const double a[], const int n)

{
double s = 0.0;
for (int i = 0; i < n; i++)
s += a[i];
return s;
}

Likethe printArray () function in Example 5.10, this function does not change the values of its
parameters, S0 each is passed as a cons t.

5.5 C++ DOES NOT CHECK THE RANGE OF AN ARRAY INDEX

In some programming languages, an index variable will not be dlowed to go beyond the
bounds set by the array’s definition. For example, in Pascdl, if an aray a is defined to be
indexed from O to 4, then the reference a [51 will cause the program to crash. This security
mechanism is not present in C++ (or C). As the next example shows, the index variable may run
far beyond its defined range without any error being detected by the computer.

CHAP. 5] ARRAYS 133

EXAMPLE 5.8 Index Out of Range

This run of the previous test driver tries to sum the first 30 dements of a 5-element array:

Sum how many elements: 30 ’ -
The sum of the array's first 30 elements is 8. 60012e+257 .

The array only has 5 elements. Once the index variable i exceeds the value 4 in the function’s f or
loop, the reference a[i] isaccessing memory cells that are not part of the array. Their contents are

unpredictable. In this run, the function adds the 5 elements to get a sum of 27575, and then continues to

add another 25 “garbage values” The 30 numbers add up to 810012 x 10%7, without any indication from
the computer that anything is wrong.

It is the programmer’s responsibility to ensure that index values are kept in range. In some
cases, the computer will let you know if the index is out of range. The next example shows what
could happen on a UNIX workstation if the index gets too far out of range,

EXAMPLE 5.9 Segmentation Fault

On this run, the index is so far out of range that it goes beyond that part of memory allocated to the
running program:

Sum how many elements 300
Segmentation fault

This run-time error message means that the system has tried to access part of memory that lies outside the
“segment” allocated to the process that is currently running.

The next example shows one way that the programmer can protect againgt range errors.

EXAMPLE 5.10 Protecting against Range Errors

// Returns the sumof the first n elenents of the specified array:
doubl e sum(const double a[], const int n)

{
if (n*sizeof (double) > sizeof(a))
return O;
double s = 0.0
for (int i =0; i < n; i+4)
s += alil;
return s;

This function first checks the size of the parameter n. Snce si zeof (double) returns the size of the
aray's eements, n will be out of range precisdly when n* s i zeo f (double) > si zeof (a).Inthis
case, the function returns 0, signalling that it cannot compute the requested sum.

5.6 THE LINEAR SEARCH ALGORITHM

Computers are probably used more for the storage and retrieva of information than for any
other purpose. Data is often stored in a sequential Structure such as an array. The smplest way

134 ARRAYS [CHAP. 5

to find an object in an array is Sart at the beginning and inspect each element, one after the other,
until the object is found. This method is cdled the Linear Search Algorithm.

EXAMPLE 5.11 The Linear Search

This program tests a function that implements the Linear Search Algorithm:
void search(int& found, int& location, int a[], int n, int target);

main ()
{
int af] = (55 22, 99, 66, 44, 88, 33, 77}, target, found, loc;
do ¢{
cout << "Target: ";
cin >> target;
search(found, loc, a, 8, target) ;

if (found) cout << target << "is at a[" << loc << "].\n";
el se cout << target << " was not found.\n";
} while (target != 0);

}

// Linear Search:
voi d search(int& found, int& location, int a[], int n, int target)
{

found = location = O

while (!found && | ocation < n)

found = (a[location++] == target);

--location;

}

Target: 33

33 is at 4a[6].

Target: 44

44 is at af4].

Target: 50

50 was riot found.

Target: 0

0 was not found.
In each iteration of the search loop, the current element a [| ocation] is compaed with target. The
loop continues until a match is found or al the elements have been checked. Each iteration increments the
index |ocation, dfter it is accessed. So if the loop terminates because a match was found, | ocat or
must be decremented to the index where target was found.

Note that the search () function has three “input parameters’ (a, n, and target) and two “out-

put parameters’ (f ound and location). We follow the conventional practice of listing the “output
parameters’ in front of the “input parameters.”

5.7 THE BUBBLE SORT ALGORITHM

The Linear Search Algorithm is not very efficient. It obvioudy would not be a good way to
find a name in the telephone book. We can do this common task more efficiently because the

CHAP. 5] ARRAYS 135

names are sorted in dphabeticd order. To use an efficient searching dgorithm on a sequentia
data structure such as an array, we must first sort the structure to put its eement in order.

There are many dgorithms for sorting an array. Although not as efficient as most others, the
Bubble Sort is one of the smplest sorting algorithms. It proceeds through a sequence of itera-
tions, each time moving the next largest item into its correct pogtion. On each iteration, it
compares each pair of consecutive dements, moving the larger eement up.

EXAMPLE 5.12 The Bubble Sort

This program tests a function that implements the Bubble Sort Algorithm. It is compiled with the
swap function shown in Example 4.15:

void print(float []1, const int);
void sort(float [], const int);

main ()

1
float a[8] = (55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7);

print(a, 8);
sort(a, 8);
print(a, 8);

}

void print(float a[], const int n)
{

for (int i =0; i <n-l; i++) {
cout << a[i] << ", ";
if ((1+1)%16 == 0) cout << endl;

}

cout << a[n-1] << endl;
}

voi d swap(float& X, floaté& y)

// Bubble Sort:
void sort(float a[], const int n)
{

for (int i =n-1; i > 0; i--)
for (int j = 0;] < i; j+4)
i f (aljl>alj+l])swap(aljl,alj+1]1);

}

55 22 99 66 44 88 33 77
22 33 44 55 66 77 88 99

Thesort () fudion usss two nesed loops The indde for loop compares pars of adjacat demets
ad svges tham whaever they ae in revae oda. This way, eech damat “bubbes U’ ped dl the de
ments that are less then it.

136 ARRAYS [CHAP. 5

58 THE BINARY SEARCH ALGORITHM

The binary search uses the “divide and conquer” strategy. It repeatedly divides the array into
two pieces and refocuses on the piece that could contain the target value.

EXAMPLE 513 The Binary Search Algorithm

This progran tests a function that implements the Binary Search Algorithm:

// Binary Search:
voi d search(int& found, int& location, int a[], int n, int target);

main ()
{
int a[]] = (22, 33, 44, 55, 66, 77, 88, 99}, target, found, loc;
do {
cout << "Target: ;
cin >> target;
search(found, loc, a, 8, target) ;
if (found) cout << target << '"is at al" << loc << "].\n";
el se cout << target << " was not found.\n";

} while (target !'= 0);
}
void search(int& found, int& location, int a[], int n, int target)
{
int left =0, right = n-I;
found = 0;
while (!found && left <= right) {
location = (left + right)/2; // the mdpoint
found = (a[location] == target);
if (a[location] < target) left = location + 1;
else right = location - 1,
}
}
Target : 3 3 '
33 isatal1]! . |
Target : 99 ; © oo B

99 is at a [7] 7

0 was not found.
On each iteration of the whi 1 e loop, the middle element a[locat i on] of the sub-array (from
a[left] to a [right])ischeckedforthe target. If it is not found there, then either the left half is
discarded by resetting | eft = location +1, ortheright half isdiscarded by resettingri ght =
location 1, accordingtowhether (a[location] < target).

CHAP. 5] ARRAYS 137

The Binary Search is far more efficient than the Linear Search because each iteration reduces the
search by afactor of two. For example, if the array has 1,000 elements, the Linear search could require
1,000 iterations, while the Binary search would not require more than 10.

59 USING ARRAYS WITH ENUMERATION TYPES

Enumeration types were described in Chapter 2. They are naturally processed with arrays.
EXAMPLE 5.14 Days of the Week

This program defines an array hi gh of seven f loa ts, representing the high temperatures for the
seven days of a week:

#include <iostream.h>
main ()
{
enum Day {sun, non, tue, wed, thu, fri, sat};
float high[sat+l] = (88.3, 95.0, 91.2, 89.9, 91.4, 92.5 86.7);
for (Day day = sun; day <= sat; day++)
cout << "The high tenperature for day " << day << " was '
<< high[day] << endl;

}

The high temperature for day 0 was 88.3
The high temperature for day 1 was 95.0
The high temperature for day 2 was 91.2
The high temperature for day 3 was 89.9
The high temperature for day 4 was 91.4
The high temperature for day 5 was 92.5
The high temperature for day 6 was 86.7

This progran defines the type Day so that any variable declared to have this type may be assigned
any of the 7 veues sun, rmon, tue, wed, thu, fri, or sat. Thistype can then be usedthe same
way that int or any other type is used.

The array sizeis sat+1 because sat = 6 and the aray needs 7 eements.

The variable day, declared as an index in the for loop, takes the values sun, nmon, tue, wed,
thu, f ri, or sat. Remember that they are redly just like the integers 0, 1,2, 3,4, 5, and 6.

Note that it is not possible to print the names of the symbolic constants. Thus the vaues of the vari-
dle day printed by cout are 0, 1, 2, etc,, not sun, non, tue, eic.

The advantage of using enumeration condtants this way is that they render your code “self-
documenting.” For example, the f or loop control

for (Day day = sun;, day <= sat; day++)
spesks for itsef.

An enumerdtion type is redly like the short and char types. Buit it is different in that the
vaues for the enumeration type have been given symbolic names, and the vaues need not be
consecutive. It is redly just another way of declaring a list of integer congants.

Appendix D shows how enumeration types fit into the hierarchy of dl C++ types.

138 ARRAYS [CHAP. 5

EXAMPLE 5.15 Boolean Type

This shows how to implemat a “bodeai’ type
enum Bool ean {false, true};

// Pronpts user for personnel information:
voi d get | nfo(Bool ean& isMarried, Bool ean& spouseIsEmployed);

main()

Bool ean isMarried, spouseIsEmployed;

getInfo(isMarried, spouseIsEmployed);

if (isMarried) {
cout << "You are married.\n";
if (spouseIsEmployed) cout << "Your spouse is employed.\n";
el se cout << "Your spouse is not employed.\n";

} el se cout << "You are not married.\n";

}

voi d getInfo(Boolean& isMarried, Bool ean& spouseIsEmployed)

char ans;

cout << "Are you nmarried? "; cin >> ans;

isMarried = (ans == "'y' |l ans =='Y');

if (isMarried) {
cout << "IS your spouse enployed? "; cin >> ans;
spouseIsEmployed = (ans == 'y' Il ans == "Y');

} el se spouselIsEmployed = fal se;

Are you married?
¥ou sre not mavried,

Here the symbolic constant f al se has the numeric value 0, and the symbolic constant t r ue hasthe
numeric value 1. That makes these artificial boolean values consistent with standard C++ which recog-
nizes the zero value as meaning “false’ and non-zero values as meaning “true” when used in conditions

suchasif (isMarried)

CHAP. 5] ARRAYS 139

5.10 TYPE DEFINITIONS

Enumeration types are one way for programmers to define their own types. For example,
enum Color {red, orange, yellow, green, blue, violet};

defines the type Col or which can then be used to declare variables like this.

Color shirt = blue;
Color car[] = {green, red, blue, red};
float wavelength[violet+l] = (420, 480, 530, 570, 600, 620);

Here, shirt isavariable whose vaue can be any one of the 6 vaues of thetype Col or andis
initidized to have the vdue bl ue, car isan aray of 4 such Col or type vaiables indexed
from 0 to 3, andwavel engt h isanaray of 6fl oat type variablesindexed from red to violet.

C++ dso provides a way to rename existing types. The keyword t ypedef declares a new
name (Le., an dias) for a gpecified type. The syntax is

typedef type alias;

where type isthe giventype and alias isthe new name For example, if you are used to
programming in Pasca, you might want to use these type diases

typedef long Integer;
typedef double Real;

You could then use the names | nt eger and Real to declare variables of type | ong int and
doubl e, like this:

Integer n = 22;
const Real pi = 3.141592653589793;
I nt eger frequency[64];

Note the syntax for the typedef Of an aray type:
typedef element-type aliasl[];

It shows that the number of dementsin an array is not part of its type.

A typedef datement does not define a new type; it only provides a synonym for an exis-
ing type. For example, the cels ius function defined above could be caled by

cout << celsius(x);
where x is declared by

double x = 100;

There is no conflict in the parameter because Real and doubl e name the same type. This is
different from an enum statement which does define a new integer type.

The next example shows another use for typedefs.

140 ARRAYS [CHAP. 5

EXAMPLE 5.16 The Bubble Sort Again

This is the same program as in Example 5.12.-The only change is the t ypedef of Sequence
which is then used in the parameter lists and the declaration of a inmain () :

typedef float Sequencell;
voi d sort(Sequence, const int);
voi d print(const Sequence, const int);

main()
{

Sequence = (55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7);

print(a,8
sort(a,8)
print(a,8

’

a
) ;
)

voi d swap (float&, float&);

// Bubble Sort:
void sort(Sequence a, const int n)

void print(const Sequence a, const int n)
{
for (int i =0; i <n;i++)
cout << " " << a[i];
cout << endl;
}

Note the typedef:

typedef float Sequencel];

The brackets [] appear dfter the dias type name Sequence. Then this dias is used without brackets to
declarearray variables and formal parameters.

5.11 MULTIDIMENSIONAL ARRAYS

The arrays we have consdered previoudy have al been one-dimensional. This means thet
they are linear; i.e., sequentia. But the eement type of an array can be amogt any type, includ-
ing an aray type. An array of arraysis caled amultidimensional array. A one-dimensond array
of one-dimensond arrays is cdled a two-dimensond aray; a one-dimensiona array of two-
dimensona araysis cdled a three-dimensond aray; etc.

The smplest way to declare a multidimensond array is like this

doubl e a[32][10][4];
This is a three-dimensond array with dimensons 32, 10, and 4. The satement
al25]118]1[3] = 99.99

CHAP. 5] ARRAYS 141

would assign the vaue 99.99 to the dement identified by the multi-index (25,8,3).
EXAMPLE 517 Reading and Printing a Two-Dimensional Array

This progran shows how a two-dimensond array can be processed:
void read(int a[][5]);

void print(const int a[][5]);

main ()

{
int a[3](5];
read(a);
print(a);

void read(int a[][5])
{
cout << "Enter 15 integers, 5 per row:\n”;
for (int i =0; i < 3; i++) {
cout << "Row " << 1 << ": ";
for (int j =0;] <5 j+4)
cin >> ali][j];

}

voi d print(const int al]([5])
{

for (int i =0; i <3; i++) {
for (int j =0,] <5 j+¥
cout << " " << alill3il;

cout << endl;

60 50 30 90 70
Bs U5 25 45 35

Notice that in the functions' parameter lists, the f|rst dlmenson is left unspeuﬂed while the second d|men
sion (5) is specified. Thisis because a is stored as a one-dimensional array of 3 5-element arrays. The
compiler does not need to know how many (3) of these 5-element arays are to be stored, but it does need
to know that they are 5-dlement arrays.

When a multi-dimensiond aray is passed to a function, the first dimension is not specified,
while dl the remaining dimensions are specified.

142 ARRAYS [CHAP. 5

EXAMPLE 5.18 Reading and Printing a Two-Dimensional Array

const nunstudents = 3;

const nunQui zzes = 5;

typedef int Score[numStudents] [numQuizzes];
voi d read(Score) ;

void printQuizAverages(const Score);

void printdassAverages(const Score);

main ()
{
Score score;
cout << "Enter ' << numuizzes << " scores for each student:\n";
read (score) ; ‘
cout << "The quiz averages are:\n";
printQuizAverages (score) ;
cout << "The class averages are:\n";
print d assAver ages(score);

}

void read(Score score)

{
for (int s = 0; s < nunstudents; s++) {
cout << "Student " << S << ": ";
for (int g = 0; g < numQuizzes; g++)
cin >> scorels] [q];

}

void printQuizAverages(const Score score)
{
for (int s =0; s < nunstudents; s++) {
float sum = 0.0;
for (int g =0, q < nunQuizzes; q++)
sum += score(s][ql;
cout << "\tStudent " << S << ": " << sum nunmQui zzes << endl;

}

void printdassAverages(const Score score)
{
for (int g = 0; q < numQui zzes; q++) {
float sum = 0.0;
for (int s = 0; s < nunstudents; s++)
sum += scorel[s] [ql;
cout << "\tQuiz ' << g << ": " << sunminunBtudents << endl;

Thisusesa typede f to definethe dias Scor e for the two-dimensiona array type. This makes the
function headers more readable.

CHAP. 5] ARRAYS 143

The printQuizAverages () function prints the average of each of the 3 rows of scores, while the
printClassAverages () function prints the average of each of the 5 columns of scores.

Here is an interactiverun of the program:

EXAMPLE 519 Processing a ThreeDimensional Array

This program simply counts the number of zeros in a three-dimensiona array:

int nunZeros(int af[][4][3], int nl, int n2, int n3);

main ()
{
int af21[(41(3] = { { {5,0,2}, {0,0,9}, {4,1,0}, {7.7,7} },
{ {3,0,0}, {8,5,0}, {0,0,0}, {2,0,9} } };
cout << "This array has ' << numZeros(a,2,4,3) << " zeros:\n";

int nunZeros(int afll[4]([3], int nl, int n2, int n3)

int count = O;
for (int i =0; i < nl; i+
for (int j =0; j < n2; j+4)
for (int k = 0; k < n3; k++)
if (a[i][jl[k] == 0) ++count;
return count;

Notice how the array isinitialized: it is a 2-element array of 4-element arrays of 3 elements each. That
makes a total of 24 elements. It could have been initiaized like this:
int a[(21[41(3] = {5,0,2,0,0,9,4,1,0,7,7,7,3,0,0,8,5,0,0,0,0,2,0,9};
or like this:
int a[2][4]1([3] = { {5,0,2,0,0,9,4,1,0,7,7,7}, {3,0,0,8,5,0,0,0,0,2,0,9} };
But these are more difficult to read and understand than the three-dimensiona initializer list.

Also notice the three nested for loops. In generd, processing a d-dimensond aray is done with d
for loops, one for each dimension.

144 ARRAYS [CHAP. 5

Review Questions

51 How many different types can the elements of an array have?
52 What type and range must an array’s subscript have?

5.3 What vaues will the elements of an array have when it is declared if it does not include an ini-
tializer?

54 What values will the elements of an array have when it is declared if it has an initializer with
fewer values than the number of elements in the array?

55 What happens if an array’s initializer has more values than the size of the array?
56 How does an enum statement differ from a t ypedef statement?

5.7 When a multi-dimensional array is passed to a function, why does C++ require all but the first
dimension to be specified in the parameter list?

Solved Programming Problems

5.8 Write and run a program that reads an unspecified number of numbers and then prints them
together with their deviations from their mean.
We can accumulate the numbers as they are read in and then compute the mean (average) just by
dividing ther sum by ther count:

const int size = 100;
main()

cout << "Enter data. Terminate with 0:\n";
doubl e a[size], x, sum = 0.0;

for (int n = 0; ; n++) {
cin >> X,
if (x == 0) break;
a[n] = x;
sum += X;
b
double nean = sumn;
cout << "mean = ' << nean << endl;
for (int i = 0;1i <n; i++)
cout <<\t << alil] << "\t << a[i] mean << endl;

CHAP. 5] ARRAYS 145

5.9

Write and test the function
void insert(int a[], int& n, int x)

Thisfunction insatsthe item x into the sorted array a of n dementsand incrementsn. The
new item isinserted at the location that maintains the sorted order of the array. This requires
shifting elements forward to make room for the new x

Our test driver defines an array of size 100 and initializes it with 10 elements in increasing order:

void print(int [], int);
void insert(int [], int&, int);

main()
{

int a[100] = { 261, 288, 289, 301, 329, 333, 345, 346, 346, 350);
int n = 10, x;

print(a, n);

cout << "ltem to be inserted: ;
cin >> X,

insert(a, n, X);

print(a, n);

void print(int a[], int n)

{
for (int i =0; i <n-l; i++) {
cout << a[i] << ", ";
if ((i+1)%16 == 0) cout << endl;
}
cout << a[n-1] << endl;
}
void insert(int a[], int& n, int Xx)
{
for (int i =n; i >0 && ali-1] > x; i--)
al[i] = ali-1];
afi]l = X
+N;
}

o .

The insert () functionworksfrom the high end of the array, searching backward for the correct

location to put X. Asit searches, it shifts the elements that are larger than x one place to the right to
make way for x. On the first run, 300 isinserted by shifting 7 elements to the right.

146 ARRAYS [CHAP.5

The second and third runs test “boundary values;” i.e., the extreme situations. One extreme is where
the new item is larger than dl the eements in the aray. This is tested in the second run by inserting 400.
The other extreme is where the new item is smaller than all the elements in the array. Thisis tested in
the third run by inserting 200.

5.10 Write and test the function

int frequency(float a[], int n, int x)

This function counts the number of times the item x appears among the first n elements of the
array a and returns that count as the frequency of x in a.

Here weinitidizethe array a with 40 randomly aranged integers to test the function

int frequency(float [], int, int);
main ()
{
float a[] = (561, 508, 400, 301, 329, 599, 455, 400, 346, 346,

329, 375, 561, 390, 399, 400, 401, 561, 405, 405,
455, 508, 473, 329, 561, 505, 329, 455, 561, 599,
561, 455, 346, 301, 455, 561, 399, 599, 508, 508);

int n = 40, x;

cout << "ltem *;

cin >> X;

cout << "The frequency of item " << X << "is "

<< frequency(a, n, x) << endl;

}
int frequency(float a[], int n, int x)
int count = O;
for (int i =0; i < n; i+4)
if (a[i] == x) ++count;
return count;
}

The fundion usss a counter count . It Imply compares each dematt of the aray with the item x
and incements the counter eech time a metch is found.

CHAP. 5] ARRAYS 147

5.11 Implement the Insertion Sort. In this dgorithm, the main loop runsfrom 1 ton- 1. Onthe ith
iteration, the dlement a [i] is“insarted” into its correct position among the sub-array from
alo] to a [i].Thisisdone by shifting al the elements in the sub-array that are greater than
a[i] one position to theright. Then a [i] is copied into the gap between the elements less
thana [i] and those greater. (See Problem 59.)

Out test driver initidizes the aray a with 8 numbers in random oder:

void print(float [], const int);
void sort(float [], const int);

main ()
{
float a[8] = (88.8, 44.4, 77.7, 11.1, 33.3, 99.9, 66.6, 22.2);
print(a, 8);
sort(a, 8);
print(a, 8);
}
void print(float a[], const int n)
{
for (int i =0; i <n-l; i++) {
cout << a[i] << ", ";
if ((1+1)%16 == 0) cout << endl;
}
cout << al[n-1] << endl;
}

// Insertion Sort:
void sort(float a[], const int n)

float tenp;
for (int i =1; i <n; i++) { // sort {a[C],...,a[i]}:
temp = a[i];
for (int j =1i; j >0 && a[j-1]> tenp; j--)
aljl = alj-11;
alj] = tenp;
}

1, 222, 5 5 A4 ; ,66;-6,'« '773":7"‘, 88.8, 99, 9

On the ith iteration of the main loop of the Insertion Sort inserts, elementa [1] IS “inserted” o
that thesub-array {a[0], . . ., a [i 1} will beininceedng order. Thisisdone by doing a[i] tem-
poraily in tenp and then usng the inner loop to hift the larger dements to the right with a [j 1 =
a[j-1]. Then temp can be copied into the element a[j].Notethat a[k] < a[j] forall kK < j,
and a[j] < a[k] forj < k <£ i.This ensures that the sub-array {a[0],...,a[i]} is sorted.

When the lagt iteration of the main loop is finished, i == n=~1,s0{al0], .. .,aln 17} issorted

148 ARRAYS [CHAP. 5

5.12 Rewrite and test the Bubble Sort function presented in Example 5.12, as an indirect sort. Instead
of moving the actual elements of the array, sort an index array instead.

Thetest driver requires atest array a initialized with some random numbersand ani ndex array.

initialized with index [i] == i. Thisensuestha a [index [i 1] will bethesameas a[i]
initially:

void print(const float a[], const int n);

voi d sort(float a[], int index[], int n);

void print(const float a[], int index[], const int n);

main ()

{

float a[8] = (55, 22, 99, 66, 44, 88, 33, 77);
int index[8] = (0, 1, 2, 3, 4 5 6 7};
print(a, 8);

sort(a, index, 8);

print(a, index, 8);

print(a, 8);

voi d swap(int&, inté&);

// Indirect Bubble Sort:

void sort(float a[], int index[], int n)
{
for (int i =1, i < n, i+4)
for (int j =0; j <n-i; J++)

if (alindex([j]] > a[index[j+l]])
swap (index[j],index[j+1]);

}
void print(const float a[], const int n)
{
for (int i = 0; i < n; i++)
cout << " ' << alil;

cout << endl;

void print(const float a[], int index[], const int n)

{
for (int i =0; i <n; i++)
cout << " ' << alindex[i]];
cout << endl ;
}

The only modification needed to the Bubble Sort is to enclose each index withindex [. . . 1. S0j
isreplaced with index [j], ad j+1 isreplacedwith index [| +1] . The effect is to leave the
array a unchanged while moving the elements of thei ndex array instead.

Note that we have two overdoaded print () function: one to print the aray directly, and the other

CHAP. 5] ARRAYS 149

to print it indirectly using an i ndex array. This allow us to check that the original array a is left
unchanged by the indirect sort.

513 Implement the Seve of Eratosthenes to find prime numbers. Setup anarray prime [n] of
ints, set O] =g 1]=0(0and 1 are not primes), and seta [2] througha [n-1] to 1. Then
foreachi from3ton-1, seta [i] =0 ifi isdividbleby 2 (i.e, i32 ==0). Then for
each i from4ton-1,set a[i] = 0 ifi isdivisible by 3. Repeat this process for each pos-
sble divisor from 2'to n / 2. When finished, dl the is forwhicha [i] dill equas1aethe
prime numbers. They are the numbers that have fallen through the sieve.

The test driver initializes the pri me array with 1000 zeros. Then after invoking the sieve ()
function, it prints those index numbersi for which prime[i] == L

const int size = 500;
voi d sieve(int prime[], const int n);

main ()

int prime[size] = {0};
si eve(prime,size);
for (int i =0; i < size;, i++) {
if (prinme[i]) cout << i << '";
if ((i+l) % 50 == 0) cout << endl;
}
cout << endl;

// Sets prime[i]l] = 1 if and only if i is prime:
void sieve(int prime[], const int n)
{
for (int i =2, 1 < n; i++)
prime[i] = 1; // assune all i > 1 are prine

for (int p=2; p<=n/2;, p+tt) {
for (int m= 2%p; m< n; m+= p)

prime[nf = O // no multiple of pis prine
while (!primelp])
++D; // advance p to next prime

! . 87 289 20
901 208 307 811 213 3 19 373 31 338 347 341 445
353 355 359 361 365 367 371 373 3797 399 383 385 389 391 305
401 403 407 409 413 415 419 421 425 427 431 433 437 439 443 4
451 455 457 461 463 467 469 473 475 479 481 485 487 491 493 497 46

The sieve () function initialy ssts prinme [i] tolforechi >2 Thenitressts prine [i |
to 0 again for every multiple m of a prime p.

150 ARRAYS [CHAP. 5

5.14 Write and test the function
void reverse(float a[], int n)

This function reverses the array, so that its last element becomes its firdt, its second-to-last ele-
ment becomes its second, etc. Note that this is different from Example 5.1 which does not
require the movement of any elements in the array.

This solution simply swaps each of the firstn/ 2 elements with the corresponding element in the
second half of the array:

void print(const float [], const int);
void reverse(float [], const int);

main ()
{
float a[8] = { 88.8, 44.4, 777, 11.1, 33.3, 99.9, 66.6, 22.2);
print(a, 8);
reverse(a, 8);
print(a, 8);
}

void reverse(float a[], const int n)

float tenp;

for (int i =0; i <n/2; i++){
temp = alil;
a[i]l = a[n-i-1];
afn-i-1] = tenp;

}

S R i S e o s T
597 666, 999 1.3, 11.1, 7177, 444 888

5.15 Write and test a function that implements the Perfect Shuffle of a one-dimensional array with an
even number of elements. For example, it would replace {11,22,33,44,55,66,77,88}
with {11,55,22,66,33,77,44,88}:

0 1 2 3 4 5 6 7

11|22 (33|44 |55|66|77 |88

1115512216633 [77]44 |88

CHAP. 5] ARRAYS 151

This function interleaves the first half of the array with the second half. It iseasier to do thisusing a
temporary array tenmp. Then copy tenp bak into a:

// The Perfect Shuffle for an even nunber of el enents:
void shuffle(float a[], int n)
{
float tenp[n];
for (int i =0; i
temp[2*i] = a[i
temp[2*1 + 1] =n/2 + i;

n/2; i++) {

l;

for (i =0; i < n i+4)
i] = tenp[i];

For thecase n == 8, thefirstf or loopcopiesa [O]intot enp [0] anda [4]into
temp[1l] wheni == 0;thenitcopies a[l] into temp([2] and a[5] into temp[3] when
i == 1;thenitcopies al[2] into temp[4] and a[6] into temp[5] when i == 2;thenit
copies a[3] into temp[6] and a[7] into temp[7] when i ==

5.16 Write and test the function that “rotates” 90° clockwise a two-dimensional square array of
ints. For example, it would transform the array

11 22 33
44 55 66
77 88 99

into the array

77 44 11
88 55 22
99 66 33

This solution assumes that the type Matrix has ben defined by a typede f .

void rotate(Matrix m const int n)
{
Matrix tenp;
for (int i = 0; i < size; i+4)
for (int j =0,] < size, j++)
temp[i] [j] = nisize-j-I][i];
for (i = 0; i < size; i++)
for (3 =0, | < size; j+4)
m[i] (31 = temp[i][j];

We use a temporary array tenp to hold the resulting rotated matrix, and then copy it back intom
For the cae n = = 3thefirst f or loopcopiesm([2] [0] intotemp(0] [0], nfl] [O] into
temp[0] [1],and f Q[into temp[0][2] when i == O;thenitcopies m[2] [1] into
temp[1] (0], nfI][I] intotemp[1] [1],and m[0][1] into temp[1l]([2] when i ==
1;thenitcopies m([2] [2] into temp[2] [0], m[1][2] into temp[2] [1],and m[0] [2]
into temp[2] [2] wheni ==

152 ARRAYS [CHAP. 5

Supplementary Programming Problems

5.17 Write and run a program like the one in Example 5.2, but fills the array in reverse and then
prints them in the order that they are stored. For example, the first number read is stored in the
last position and is printed last.

5.18 Write and run a program like that in Problem 5.8 but computes and prints both the mean and the
standard deviation of the input data. The standard deviation of the n numbers a,, ..., g, is

defined by the formula
n-1
z (a,"l’«)z
i=0

0 =
n-|

where U is the mean of the data. This means. square each deviationa [i] - nean; am thoe
squares; take the square root of that sum; divide that square root by n-1 .

5.19 Extend the program from Problem 5.18 so that it also computes and prints the Z-scores of the
input data. The Z-scores of the n numbers ay, . . ., a,.; are defined by the formula z; = (a; - p)/o.
They normalize the given data so that it is centered about O and has standard deviation 1.

5.20 Inthe “good old days’ when a grade of “C" was considered “average,” teachers of large classes
would often “curve’ their grades according to the following distribution:

A 15<z

B. 0.5<7<1.5
C. -05<7<05
D .15<7<-05
F. 7<-15

If the grades were normally distributed (i.e., their density curve is bell-shaped), then this algo-
rithm would produce about 7% A’s, 24% B'’s, 38% C's, 24% D’s, and 7% F's. Here the z values
are the Z scores described in Problem 5.19. Extend the program from Problem 5.18 so that it
prints the “curved” grade for each of the test scores read.

5.21 Write and test a function that replaces all the negative numbers in an array of integers with their
absolute values.

5.22 Write and test a function that returns the minimum value stored in an aray.
5.23 Write and test a function that returns the index of the minimum value stored in an aray.

5.24 Write and test the following function that returns through it reference parameters both the max-
imum and the minimum values stored in an array.
void extrenes(int& mn, int& max, int a[], int n)
5.25 Write and test the following function that returns through it reference parameters both the larg-
est and the second largest values (possibly equal) stored in an array.

voi d largest(int& maxl, int& max2, int a[], int n)

CHAP. 5] ARRAYS 153

5.26

5.27

5.28

5.29

530

Write and test the following function that attempts to remove an item from an array:

int remove(int a[], int& n, int x)
The function searches the first n elements of the array a for the item x. If x is found, it is
removed, al the dements above that position are shifted down, n is decremented, and 1 is
returned to indicate a successful removal. If x is not found, the array is left unchanged and O is
returned to indicate “failure.” (See Problem 5.9.)
Write and test the following function:

void rotate(int al], int n, int k)
The function “rotates’ the first n elements of the array a, k positions to the right (or -k
positions to the left if k is negative). The last k elements are “rotated” around to the begin-
ning of the array. For example, if a is the array shown below:

22 | 33 |44 |55 (66 (77 [88 (99
thenthecall rotate(a, 8, 3) would transform a into
77 |88 [99 |22 | 33 |44 |55 |66

Note thet the call rotate (a, 8, ~-5) would have the same effect.
Write and test the following function:

void append(int a[], int m, int b[], int n)
The function appends the first n elements of the array b onto the end of the first m elements
of the array a. It assumes that 3 has room for at least m + n €elements. For example, if a
and b look like this:
0 1 2 3 4 5 [} 1 8 9 10 11 12 13 b 0 1 2 3 4 5 (]
22 |27 |33 |34 (39 |44 |50 |55]| 0 0 0 0 0 0 66|72|77 88|90|0|0 0
thenthecal append (a, 8, b, 5) would transform a into

22 |27 | 33 |34 (39 |44 |50 [55 |66 (72|77 |88 (90 | 0O

Note that b is left unchanged, and only 5 elements of a are changed.
Write and test the following function:

int isPalindrome (int a[], int n)
The function returns 1 or 0, according to whether the first n elements of the arrav aform a palin-
drome. Apalindrome is an aray like {22,33,44,55,44,33,22} that remains unchanged
when reversed. Warning: The function should leave the array unchanged.
Write and test a function that adds element-wise 2 one-dimensional int arrays of the same

size. For example, if the two given arrays are

22 33 44 55 and 7 4 1 -2
then the third array would be assigned

29 37 45 53

154 ARRAYS [CHAP. 5

5.31 Write and test a function that subtracts element-wise 2 one-dimensional i nt arrays of the
same size. For example, if the two given arrays are

22 33 44 55 and 7 4 1 -2
then the third array would be assigned:
15 29 43 57

5.32 Write and test a function that multiplies element-wise 2 one-dimensional i nt arrays of the
same size. For example, if the two given arrays are

2 4 6 8§ and 7 4 1 -2
then the third array would be assigned
14 16 6 -16

5.33 One reason that the version of the Bubble Sort presented in Example 5.12 is inefficient is that it
will perform the same number of comparisons on an array of n elements regardiess of how
ordered its elements are initidly. Even if the array is already completely sorted, this version of
the Bubble Sort will still make about n%/2 comparisons. Modify this version so that the main
whi le loop stops as soon as it has a complete iteration with no swaps. Use aflag (i.e., ani nt
variable that stops the loop when its value is 1) named sort ed that is set to O at the beginning
of each iteration of the main loop and then is set to 1 if a swap is made.

5.34 Rewrite and test the sort () function presented in Example 5.12, using the Selection Sort
instead of the Bubble Sort. The Selection Sort of an array of n elements goes through n- |
iterations, each time selecting out the next largest elementa [j 1 and swapping it with the ele-
ment that isin the position where a [§]1 should be. So on the first iteration it selects the largest
of all the elements and swaps it with a [n- 1], and on the second iteration it selects the largest
from the remaining unsorted elements 4(0], ..., a[n-2] andswapsitwith a[n-21, etc. On
its ith iteration it selects the largest from the remaining unsorted elements a[0],..., a[n i]
and swaps it with a [n-i 1.

5.35 Implement the [ndirect Selection Sort. (See Problem 5.12.)
5.36 Implement the Indirect Insertion Sort. (See Problem 5.11.)

5.37 Write and test a function that computes the median value stored in a sorted array. The median is
the middle number.

5.38 Write and test a function that computes the kth percentile of a sorted array. The kth percentile is
the number that is k% of the way from the beginning of the sorted array. For example, the 75th
percentile is the number x in the array for which 75% of the elements y have y < x. The median
is the 50th percentile.

5.39 Write a program to determine how many repeated perfect shuffles it takes to restore an array to
its original order. (See Problem 5.15.)

540 Implement the perfect shuffle for an array of any size, even or odd.
5.41 Write and test the following function:

void prepend(int a[], int m int b[], int n)

The function prepends the first n elements of the array b ahead of the first m elements of the
array a. It assumesthat a has room for at least m + n elements.

CHAP. 5] ARRAYS 155

5.42 Write and test a function that “transposes’ a two-dimensional sgquare array of ints. For exam-
ple, it would transform the array

11 22 33
44 55 66
77 88 99

into the array

11 44 77
22 55 88
33 66 99

5.43 Write and test a function that “zeros out” the diagonas of atwo-dimensional square array of
ints. For example, it would transform the array
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

into the array

0 12 13 14 O
21 0 23 0 25
31 32 0 34 35
41 0 43 0 45

0 52 53 54 0

5.44 Write and test a function that returns the trace (i.e., the sum of the main diagonal elements) of a
two-dimensiona square array of ints. For example, it would return 46 for the array
11 22 33
40 20 60
35 25 15

5.45 Write and test a function that compares 2 two-dimensional i nt arrays of the same size and
assigns -1, 0, or 1 to each element of athird array of the same size according to whether the cor-
responding element of the first array is less than, equal to, or greater than the corresponding ele-
ment of the second array. For example, if the two given arrays are

22 44 66 33 44 55
50 50 50 50 50 80
then the third array would be assigned
-1 0 1
0 0 -1

5.46 Write and test a function that computes the “outer product” of 2 one-dimensiona i nt arrays.
The (i, j) element of the resulting two-dimensional array will be the product of the ith element
of the first array with the jth element of the second array. For example, if the two given arrays

are

20 30 40 3 -2
then the third array would be assigned

60 90 120

-40 -60 -80

156

ARRAYS [CHAP.5

547 A minimax or saddle point in atwo-dimensiona array is an element that is the minimum of its

row and the maximum of its column, or vice verse. For example, in the following array

11 22 33 33

99 55 66 77

77 44 99 22
the element 33 is a minimax because it is the maximum of row 0 and the minimum of column 2.
The element 55 is another minimax because it is the minimum of row 1 and the maximum of
column 1. Write and test a program that reads the integers m and n, and then reads an m-by-n
matrix, and then prints the location and value of each minimax in the matrix. For example, it
would print

al0,2] = 33 is a minimax

all,1] = 55 is a minimax
for the matrix shown above.

5.48 Write and test a function that creates Pascal’s Triangle in the sguare matrix passed to it. For

51
5.2
53
54

55

5.6

5.7

example, if it is passed the two-dimensional array a and the integer 4, then it would load the
following into a:

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

Answersto Review Questions

Only one: al of an array’ s elements must be the same type.
An array’ s subscript must be an integer type with range from 0 to n-I, wheren isthe array’ s size.
In the absence of an initializer, the elements of an array will have unpredictableinitial values.

If the array’ sinitializer has fewer values than the array size, then the specified values will be assigned to
the lowest numbered elements and the remaining elements will automatically be initialized to zero.

It isan error to have moreinitial values than the size of the array.

An enum statement defines an enumeration type which is a new unsigned integer type. At ypedef
merely defines a synonym for an existing type.

When amulti-dimensional array is passed to afunction, all dimensions except the first must be specified
o that the compiler will be able to compute the location of each element of the array.

Chapter 6

Pointers and References

6.1 INTRODUCTION

When a variable is declared, three fundamenta attributes are associated with it: its name, its
type, and its address in memory. For example, the declaration
int n;
asociates the name n, thetypeint, and the address of some location in memory where the
vaueof n isto be stored. Suppose that addressis 0x3 f f f di4. (Thisis hexadecimal notation; it
is explaned in Appendix G.) Then we can visudize n like this

0x3fffdld
s

int

The box represents the variable' s storage location in memory. The variable's name is on the left
of the box, the variable s address is above the box, and the variable stype is below the box.

If the vdue of the variable is known, then it is shown indde the box:

03FFFALL

n

The vaue of avariable is accessed by means of itsname For example, we can print the value
of n with the atement

cout << n;

The address of avariable is accessed by means of the addtess operator . ror example, we
can print the address of n with the satement

cout << &n;
The address operator s “operates’ on the variable's name to produce its address. It has
precedence level 15 (see Appendix C) which is the same level as the logical NOT operator !

and pre-increment operator + +.
EXAMPLE 6.1 Printing Pointer Values

This shows how both the value and the address of a variable can be printed:

main ()

{
int n = 33
cout << 'm = " << N << endl; // print the value of n
cout << "&n = " << &n << endl; // print the address of n

157

158 POINTERS AND REFERENCES [CHAP. 6

The output looks like this

n = 33
&n = 0x3fffdi4

You can tell that the second output 0x3f £ di4 IS an address by the “ox prefix for hexadecima
format. This address is equd to the decima number 67,108,1 16. (See Appendix G.)

Displaying the address of a variable this way is not very useful. The address operator & has

other more important uses. We saw one use in Chapter 4. desgnating reference parametersin a
function declaration. That use is closdy tied to another: declaring reference variables.

6.2 REFERENCES

A reference is an dias, a synonym for another variable. It is declared by using the reference
operator « appended to the reference’ s type.

EXAMPLE 6.2 Using References

Hee r is dedaed to be a rdaexe for n:

main()
{
int n = 33
int& r = n; // r is a reference for n
cout << 'n = " << N << ", I = " << r << endl;
W
cout << 'm = " << h << ", r = " << r << endl;
r *= 2t
cout << 'm = " << N << ", I = " << I << endl;

=
i
:.;_J
B
i

The two idetifies n ad r ae dffaent names for the same vaidde they dways have the same vdue
Decrementing n changes bothn andr to 32. Doubling r increases both n andr to 64.

EXAMPLE 6.3 References Are Aliases

This dons thet 1 ad n have the same mamoy address

main ()
int n = 33
int& r = n
cout << "&n = " << &N << ", &Y = " << &r << endl;

&n - Ox3fffdl4, &r = Ox3Bfffdld

CHAP. 6] POINTERS AND REFERENCES 10

The following diagram illugtrates how references work:

0x3ff£ffdild

int

The vadue 33 is stored only once. Theidentifier'sn and r are both symbolic names for the same
memorylocation 0x3fffdl4.

Likea cons t, areference mus beinitidized when it is declared. That requirement should
seem reasonable: a synonym must have a something for which it isan dias. In other words, every
reference must have a referent.

Reference parameters were defined for functions in Chapter 4. We see now that they work the
same way as reference variables. they are merely synonyms for other variables. Indeed, a refer-
ence parameter for a function is redly just a reference variable whose scope is limited to the
function.

We have seen that the ampersand character & has severd usesin C++: when used as a prefix
to a varidble name, it returns the address of that variable; when used as a suffix to atypein a
variable declaration, it declares the variable to be a synonym for the variable to which it isinitid-
ized; and when used as a suffix to a type in a function’s parameter declaration, it declares the
parameter to be a reference parameter for the variable that is passed to it. All of these uses are
variations on the same theme: the ampersand refers to the address at which the value is stored.

6.3 POINTERS

The reference operator & returns the memory address of the variable to which it is gpplied. We
used this in Example 6.1 to print the address. We can dso store the address in another variable.
The type of the variable that stores an address is caled a pointer. If the variable has type int,
then the pointer variable must have type “pointer to in t ,” denoted by int *:

EXAMPLE 6.4 Pointer Values Are Addresses

main ()
int n = 33;
int* p==&n; // p holds the address of n
cout << '"m = "<< N << ", &N = " << &N << ", P = " << p << endl;
cout << "&p = " << &p << endl

}

n = 33, &n = 0x3fffdld, p = 0x3fffdid
&p - DxBifrdiQ

The pointer variable p and the expression sn have the same type (pointer to i nt) and the same value
(0x3 f f f di4). Thet vaue is sored & memory location 0x3 f f f A10:

0x3fffdld
.

int

160 POINTERS AND REFERENCES [CHAP. 6

The varidble p is cdled a “pointer” because its value “points’ to the location of another
vaue Itisanint pointer because the value to which it pointsisan i nt .

The value of a pointer is an address. That address depends upon the state of the individua
computer on which the program is running. In most cases, the actud vaue of that address (e.g.,
0x3f£f d14) isnotrelevant to the issuestha concern the programmer. So diagrams like the one
above are usudly drawn something like this:

This captures the essentid features of p and n: p isapointer to n, and n has the value 33. A
pointer can be thought of asa*“locator”: it tells where to locate another value.

Often we will need to use the pointer p done to obtain the value to which it points. Thisis
cdled “dereferencing” the pointer, and is accomplished smply by applying the gar * (the aster-
isk) symbol as an operator to the pointer:

EXAMPLE 6.5 Dereferencing a Pointer

Here p pointsto the integer named n, so *p and n are the same value:

main()
int n = 33;
int* p = &n; // p points to n
cout << "*p = ' << *p << endl;

}

o= 33

This shows that *p isan aiasfor n.

The address operator s and the dereference operator * areinversesof each other: n = = #p
whenever p == gn. Thiscan aso be expressed asn = = *gn and p == &*p.

EXAMPLE 6.6 Referencing Is the Opposite of Dereferencing

Here p points to the integer named n and r is areference that is initialized to the value to which
p points. Sop referencesn andr dereferencesp. Thereforer isandiasforn; i.e, they are dif-
ferent names for the same vaue 33:

main()
int n = 33
int* p=&n; // p points to n
int& r = *p; // r is a reference for n
cout << "r = " << I << endl;
T =33

This shows that r is a reference for n.

CHAP. 6] POINTERS AND REFERENCES 161

6.4 DERIVED TYPES

In Example 6.6, p has type pointer to int, and r has type reference to int. These types are
derived from thei nt type. Like arrays, congtants, and functions, these are derived types. Here
are some declarations of derived types.

int& r = n; // r has type reference to int
int* p = &n; // p has type pointer to int

int a[] = (33, 66); // a has type array of int

const int ¢ = 33; // ¢ has type const int

int £() = {return 33; }; // f has type function returns int

C++ types are classfied as either fundamenta or derived. (See Appendix D.) The fundamen-
tal types include enumeration types and al the number types. Each derived type is based upon
some other type(s). A variable declared to have any of the derived types illustrated above
(congtant, array, pointer, reference, and function) is based upon a single fundamenta type. A
derived type thet is based upon more than one fundamenta type is caled a structure type. These
include gtructures, unions, and classes, which will be studied in later chapters.

6.5 OBJECTS AND LVALUES

The Annotated C++ Reference Manual [Ellig dates: “An object is a region of storage, An
Ivalue is an expression referring to an object or function.” Origindly, the terms “Ivalue’ and
“rvaue’ referred to things that gppeared on the left and right Sdes of assgnments. But now
“lvdue’ is more generd.

The smplest examples of Ivalues are names of objects, i.e, variables:

int n;
n = 44; // nis an |val ue
The smplest examples of things that are not Ivalues are literds
44 = n; // ERROR: 44 is not an lvalue
But symbolic congants are Ivaues:
const int max = 65535; // max is an |val ue
even though they cannot appear on the left Sde of an assgnment:
max = 21024; // ERROR: max is constant

Lvaues that can gppear on the left Sde of an assgnment are caled mutable Ivalues; those
that cannot are called immutable lvalues. A varigble isamutable Ivalue; a congant is an immuta
ble Ivdue. Other examples of mutable Ivaues include subscripted variables and dereferenced

pointers:
int al8];
al[5] = 22; // al5] is a mutable |val ue
int* p = &n;
*p = 77, // *p is a nutable |value

Other examples of immutable Ivaues include arrays, functions, and references.

In generd, an lvaue is anything whose address is accessble. Since an address is what a
reference variable needs when it is declared, the C++ syntax requirement for such a declaration
gpecifies an Ivaue

type& refnane = |val ue;

162 POINTERS AND REFERENCES [CHAP. 6

For example, thisis alega declaration of a reference:

int& r = n; // OKi n is an lvalue

but these are illegd:
int& r = 44; // ERROR: 44 is not an lvalue
int& I = n++ ERROR: n++ is not an lvalue
int& r = cube(n); // ERROR cube(n) is not an Ival ue

6.6 RETURNING A REFERENCE

A function’s return type may be a reference provided tha the vaue returned is an lvaue
which is not loca to the function. This redriction means that the returned vaue is actudly a
reference to an Ivaue that exigs after the function terminates. Consequently that returned Ivalue
may be used like any other Ivalue, for example, on the left Sde of an assgnment:

EXAMPLE 6.7 Returning a Reference
int& max(int& M int& n) // return type is reference to int

return (m>n ? m: n); // mand n are non-local references
}

main()

int m= 44, n = 22;

cout <« M<< ", "<< N << ", "<< mx(mn) << endl;
max(mn) = 55; // changes the value of mfrom44 to 55
cout << M<< ", " << N << ", " << max(mn) << endl;

44, 22, a4

The max () function returns a reference to the larger of the two variables passed to it. Since the return
vaue is a reference, the expression max (m, n) acts like a reference to m (since m is larger than n). So
assigning 55 to the expresson max (m n) isequivalent to assigning it to m itself.

EXAMPLE 6.8 Using a Function as an Array Subscript
float& component(float* v, int k)

return vik-11;

main ()
{
float vI[4];
for (int k = 1; k <= 4; k++)
conponent (v, k) = 1.0/k;
for (int i =0; i < 4 i++4)
i

cout << "v[" << << "] = << V[i] << endl:

CHAP. 6] POINTERS AND REFERENCES 163

The output looks like this:
s

(el

The “co‘m\)dlnén\t (7) function aIIowé vectors to be accmd using the scientific “I-based indexi ng
indeed of the defadt “Odesd indedng” SO assgmat conponent (v, k) = 1.0 /kisredly the
adggmat v [k+#l] = 1. 0 /k. WEIl see a better way to do this in Chepter 9.

6.7 ARRAYS AND POINTERS

Although pointer types are not integer types, some integer arithmetic operators can be
gpplied to pointers. The affect of this arithmetic is to cause the pointer to point to another mem-
ory location. The actua change in address depends upon the size of the fundamenta type to
which the pointer points.

Pointers can be incremented and decremented like integers. However, the increase or
decrease in the pointer’ s value is equa to the Size of the object to which it points:

EXAMPLE 6.9 Traversing an Array with a Pointer
This exanpde dhows how a ponter can be usd to travere an aray.

main ()
{
const int size = 3;

short af[size] = (22, 33, 44);

cout << "a = " << a << endl;

cout << "sizeof (short) = ' << sizeof(short) << endl;
short* end = a + size; // converts size to offset 6

short sum = O0;
for (short* p = a; p < end; p++) {

sum += *p;

cout << "\t p = " << p;

cout << "\t *p = " << *p;

cout << "\t sSum = " << SUM << endl;
}
cout << "end = " << end << endl;

s ax3fffd20 / 4 Donam e s e
The second line of output shows that on thls machl ne Short integers occupy 2 bytes. Since p isa
pointer to short, eech time it is incremented it advances 2 bytes to the next short integer in the aray.
That way, sum += *p accumulates their sum of the integers. If p were a pointer to doubl e and
sizeof (double) weae 8 hytes then each time p is incemated it woud advance 8 hytes

164 POINTERS AND REFERENCES [CHAP. 6

Example 6.9 shows that when a pointer is incremented, its value is increased by the number
sze (in bytes) of the object to which it points. For example,

float a[8];
float* p = a; // P points to al0]
+4p; // increases the value of p by sizeof(float)

If f1 oats occupy 4 bytes, then ++p; increases the vaue of p by 4, and p += 5 ; increases
the vdue of p by 20. Thisis how an array can be traversed: by initidizing a pointer to the first
edement of the array and then repeetedly incrementing the pointer. Each increment moves the
pointer to the next eement of the array.
We can aso use a pointer for direct aocess into the aray. For exanple wecan aocess a [5] by initidl-
izingthepointerto a [0] and then adding 5 to it
float* p = a; // p points to afo0]
p += b5; // now p points to al5]
So once the pointer isinitidized to the sarting address of the array, it works like an index.
WARNING. In C+ it is possble to aoess ad even modfy udlocatled mamary locations This is
ridy ad shoud geedly be acided For exanple

float a[8];

float* p = al7]; // p points to last elenent in the array
+4P; // now p points to nmenory past last elenent!
*p = 22.2; // TROUBLE!

The next example shows an even tighter connection between arrays and pointers: the name of
an aray itdf isacons t pointer to the first dement of the array. It dso shows that pointers can
be compared.

EXAMPLE 6.10 Examining the Addresses of Array Elements

main()
short a[] = (22, 33, 44, 55, 66);
cout << "a = "<< a << ", *a = " << *a << endl;
for (short* p = a; p<a + 5; p++)
cout << "p = " << P << ", *p = ' << *p << endl;
}
B elmaaslns s S
p - Ox3fffd08, *p = 22
p = 0x3fffdla, *p = 33
D = 0x3fffd0c, *p = 44
p = Ox3fffd0e, *p = 55
D = Ox3fffdl0, *p = 66
Initidly, a and p are the same: they are both pointersto short and they have the same value
(0x3f f f A0 8). Snce a isaconstant pointer, it cannot be increment to traverse the array. Instead, we
increment p and use the exit condition p < a + 5 to terminate the loop. This computes a + 5 to
be the hexadecimal address 0x3fffd08 + 5*sizeof(short) = O0x3fffd08 + 5*2 =

0x3fffd08 + Oxa = 0x3 f f £312, otheloopcotinuesaslogasp < 0x3f f fd12.

The array subscript operator [] is equivaent to the dereference operator *. They provide
direct accessinto the array the same way:

al0] == *a

CHAP. 6] POINTERS AND REFERENCES 165

al[l] == *(a + 1)
al2] == *(a + 2), etc.
So the array acould be traversed like this:
for (int i = 0; i < 8 1i++)
cout << *(a + i) << endl;

The next example illustrates how pointers can be combined with integers to move both forward and
backward in memory.

EXAMPLE 6.1 Pattern Matching

In this example, the 1oc function searches through the first nl elements of array al looking for
the string of integers stored in the first n2 elements of array a2 inside it. If found, it returns a pointer to
the location within al where a2 begins; otherwise it returns the NULL pointer.

short* loc(short* al, short* a2, int nl, int n2)

{

short* endl = al + nl;

for (short* pl = al; pl < endl; pl++)
if (*pl == *a2) {
for (int j =0; j <n2; j++)
if (pl[j] '= a2[j]) break;
if (i == n2) return pl;
}
return O;

main ()

{
short 3l1[9] (11, 11, 11, 11, 11, 22, 33, 44, 55);
short a2[5] = (11, 11, 11, 22, 33);
cout << "Array al begins at location\t" << al << endl;
cout << "Array a2 begins at location\t" << a2 << endl;
short* p = loc(al, a2, 9, 5);

if (o) {
cout << "Array a2 found at location\t" << p << endl;
for (int i = 0; i < 5; i+4)
cout << "\t" << &p[i] << ": " << p[i]
<< "A\t" << &a2[i] << ": " << a2[i] << endl;
}
el se cout << "Not found.\n";
}
Brray al begins &t location 0x3£££d12
Brray a2 begins dt location 0x3£££408
Array a2 found at location Ox3fffdie

ORBEEEATe T 0%x3£££d08: 11
Ox3fffdi8: 11 Ox3fffd0a: 11
Ox3fffdla: 11 Ox3fffdoc: 11
Ox3fffdlc: 22 0Ox3fffdle: 22

Ox3fffdle: 33 0Ox3fffd10: 33

166 POINTERS AND REFERENCES [CHAP. 6

The pattern matching algorithm uses two loops. The outer loop is controlled by the pointer p1 which
points to elements in array a1 whae the inne loop will begin dhecking for a mach with aray a2. The
inner loop is controlled by the integer | which is usd to compare corepondng demats of the two
arays If a mignach is found, the inng loop aborts and the outer loop continues by incremanting p1 0
look for a mach dating with the next demet of al. If the inner loop is dlowed to finish, then the con-
dition (3 == n2) will be true ad the curet location pointed to by pl is reumed

In the tegt driver, we vaify that the match hes indesd bemn found by checking the acud addressss

6.8 THE new OPERATOR

When a pointer is declared like this.
float* p; // p is a pointer to a float
it only alocates memory for the pointer itself. The vaue of the pointer will be some memory
address, but the memory a that address is not yet dlocated. This means that storage could
aready be in use by some other variable. In this case, p is uninitidized: it is not pointing to any
alocated memory. Any attempt to access the memory to which it points will be an error:
*p = 3.14159; // ERROR. no storage has been allocated for *P
A good way to avoid this problem isto initidize pointers when they are declared:
float x = 3.14159; // x contains the value 3.14159
float* p = &x; // p contains the address of x
cout << *p; // OK: *p has been all ocat ed
In this case, accessing *p is no problem because the memory needed to store the float 3.14159
was automaticaly alocated when x was declared; p points to the same dlocated memoary.
Ancther way to avoid the problem of a dangling pointer is to alocate memory explicitly for
the pointer itsdf. This is done with the new operator:

float* q;
g = new float; // allocates storage for 1 float
*q = 3.14159; // OK *gq has been allocated

The new operator returns the address of ablock of s undlocated bytes in memory, where s isthe
sze of afloat. (Typicaly, si zeof (float) iS4 bytes) Assgning that address to g guarantees
that *q is not currently in use by any other variables.
The firg two of these lines can be combined, thereby initidizing g as it is declared:
float* g = new float;
Note that usng the new operator to initidize g only initidizes the pointer itsdf, not the
memory to which it points. It is possble to do both in the same statement that declares the
pointer:
float* q = new float(3.14159);
cout << *Q; // ok: both g and *q have been initialized
In the unlikely event that there is not enough free memory to alocate a block of the required
gze, the new operator will return o (the nue pointer):
doubl e* p = new double;
if (p == 0) abort(); // allocator failed: insufficient nmenory
el se *p = 3.141592658979324;
This prudent code cdlsan abort () function to prevent dereferencing the NnuLL pointer.

CHAP. 6] POINTERS AND REFERENCES 167

Consder again the two dternatives to dlocating memory:
float x = 3.14159; // allocates naned nmenory
float* p = new float(3.14159); // all ocates unnamed nenory
In the first case, memory is alocated a compile time to the named variable x. In the second
case, memory is dlocated a run time to an unnamed object that is accessble through *p.

6.9 THE delete OPERATOR

The del et e operator reverses the action of the new operator, returning alocated memory
to the free store. It should only be gpplied to pointers that have been dlocated explicitly by the
new oOperaior:

float* g = new float(3.14159);

delete q; // deal | ocates q

*q = 2.71828; // ERROR: q has been deal | ocated
Dedllocating g returnsthe block of s 1z eo f(floa t) bhytesto the free sore, making it available
for dlocation to other objects. Once g has been dedlocated, it should not be used again until
after it has been redlocated. A dedllocated pointer, also caled a dangling pointer, is like an
uninitidized pointer: it does't point to anything.

A pointer to a constant cannot be del eted:

const int * p = new int;
delete p; // ERROR: cannot del ete pointer to const
This redtriction is consstent with the genera principle that constants cannot be changed.
Usngthedel et e operator for fundamenta types(char, int, float, double, €tc.)is
generdly not recommended because little is gained at the risk of a potentidly disastrous error:
float x = 3.14159; // X contains the value 3.14159
float* p = &x; // p contains the address of x
delete p; // RISKY: p was not allocated by new
Thiswould dedllocate the varigble x, amigtake that can be very difficult to debug.

6.10 DYNAMIC ARRAYS

An aray name is redly just a congtant pointer thet is alocated at compile time:
float al20]; // ais a const pointer to a block of 20 floats
float* const p = new float[20]; // SO is p
Here, both a and p are congtant pointers to blocks of 20 floats. The declaration of a is cdled
static binding because it is dlocated a compile time; the symboal is bound to the alocated
memory even if the array is never used while the program is running.
In contrast, we can use a non-constant pointer to postpone the alocation of memory until the program
iS runnning. This is generdly caled run-time binding or dynamic binding:
float* p = new float[20];
An array that is declared thisway is cdled adynamic array.
Compare the two ways of defining an array:
float af[20]; // static array
float* p = new float[20]; // dynamic array

168 POINTERS AND REFERENCES [CHAP. 6

The datic aray a is crested a compile time; its memory remains dlocated thoughout the
run of the program. The dynamic array p is cregted at run time; its memory alocated only when
its declaration executes. Furthermore, the memory dlocated to the array p is dedlocated as
soon asthedel et e operator isinvoked on it:

delete [] p; // deal | ocates the array p

Note that the subscript operator [1 must be included this way, because p is an aray.
EXAMPLE 6.12 Using Dynamic Arrays

The get () function here creates a dynamic array

voi d get(double*& &, int& n)
{
cout << "Enter nunber of items: "; cin >> n;
a = new double[n}];
cout << "Enter " << n << " jitens, one per line:\n";
for (int i =0;i <n; i++) {
cout << "\t" << i+l << ": ";
cin >> afi];

}

void print(double* a, int n)
{
for (int i = 0; 1 < n; i++)
cout << a[i] << " ";
cout << endl;
}

main ()
{
doubl e* a; // ais sinply an unallocated pointer
int n;
get(a, n) ; // now a is an array of n doubles
print(a, n);
delete [] a; // now a is sinply an unallocated pointer again
get(a, n); // now a is an array of n doubles

print(a, n);

477 7 222838
En er‘number of 1t:ems 2
Enter f1tems, one per 11ne-
1: 333
2: 9. 99
3. 33 9 99

CHAP. 6] POINTERS AND REFERENCES 169

Inside the get () function, the new operator alocates storage for n doubl es dfter the value of n s
obtained interactively. So the aray is created “on the fly” while the program is running.

Before get () is used to create another array for a, the current array has to be deallocated with the
de lete operator. Note that the subscript operator [] must be specified when deleting an aray.

Note that the array parameter a is a pointer that is passed by reference:

void get(double*& a, int& n)

This is necessary because the new operator will change the value of a which is the address of the first
element of the newly dlocated array.

6.11 USING const WITH POINTERS

A pointer to a condant is different from a congtant pointer. This digtinction is illugtrated in
the following example.

EXAMPLE 6.13 Constant Pointers, Pointer Constants, and Constant Pointer Constants

This fragment declares four variables. a pointer p, a constant pointer cp, a pointer pc to a constant,
and a constant pointer cpc to a constant:

int * p; // a pointer to an int

++(*D) ; // ok: increments int *p

++D; // ok: increnments pointer p

int * const cp; // a constant pointer to an int

++ (*cp) ; // ok: increments int *cp

++Cp; // illegal: pointer cp is constant
const int * pc; // a pointer to a constant int

++ (*pc) ; // illegal: int *pc is constant
++pc; // OK: increments pointer pc

const int * const cpc; // a constant pointer to a constant int
++(*cpe) ; // illegal: int *cpc is constant
++cpc; // illegal: pointer cpc is constant

Note that the reference operator * may be used in a declaration with or without a space on
ather Sde. Thus, the following three declarations are equivalent:

int* p; // indicates that p has type int* (pointer to int)
int * p; // style sonetinmes used for clarity
int *p; // old C style

6.12 ARRAYS OF POINTERS AND POINTERS TO ARRAYS

The elements of an array may be pointers. Here is an array of 4 pointers to type doubl e:
doubl e* p[4];

Its elements can alocated like any other pointer:
pl2] = new doubl e(3.141592653589793) ;

We can visudize this array like this

[CHAP. 6

POINTERS AND REFERENCES

170

The next example illustrates a useful application of pointer arrays. It shows how to sort a list
indirectly by changing the pointers to the eements instead of moving the dements themselves.

Thisis equivaent to the Indirect Bubble Sort shown in Problem 5.12.

EXAMPLE 6.14 Indirect Bubble Sort
the pointer array:

// The Indirect Bubble Sort sorts
void sort(float* p[], int n
float* tenp;
for (int i =1; i <n; i+4)
for (int j =0;] < n-i; j+4)
if (*pl3] > *p[j+1]) {
temp = pljl;
pli]l = plj+1];

plj+1] = tenp;

Oneach iteration of the inner loop, if the floats of adjecent pointes ae out of order, then the pointers
are swapped.

6.13 POINTERS TO POINTERS

A pointer may point to another pointer. For example,
char ¢ = 't';
char* pc = &c;
char** ppc = &pc;

char*** pppc = &ppc;
// changes the value of ¢ to 'w

FrEpppe = 'w';
We can visudize these variables like this;

B

CHAP. 6] POINTERS AND REFERENCES 171

The assgnment * **pppc = w refersto the contents of the address pc thet is pointed to
by the address ppc that is pointed to by the address pppc.

6.14 POINTERS TO FUNCTIONS

Like an array name, a function name is actudly a congtant pointer. We can think of its vaue
as the address of the code that implements the function.

A pointer to a function is Smply a pointer whose vaue is the address of the function name.
Since that name is itsdf a pointer, a pointer to a function is just a pointer to a constant pointer.
For example,

int f(int); // decl ares the function f
int (*pf) (int); // decl ares the function pointer pf
pf = &f; // assigns the address of f to pf

We can visudize the function pointer like this:

The vaue of function pointers is thet they dlow us to define functions of functions. This is
done by passing a function pointer as a parameter to another function.

EXAMPLE 6.15 The Sum of a Function

The sum() function hastwo parameters: the function pointer pf and the integer n:

int sum(int (*)(int), int);
int square(int);
int cube(int);

main ()

{
cout << sum(square,4) << endl; // 1 +4 +9 + 16
cout << sum(cube,4) << endl; // 1 + 8 + 27 + 64

}

The call sum(square,4) computes and returnsthe sum square(l) + square(2) +

square(3) + square (4). Since square (k) computes and retums k*k, the sum () function
retcuns1 + 4 + 9 + 16 = 30.

172 POINTERS AND REFERENCES [CHAP. 6

Hee ae the fundion ddintions and the output:

// Returns the sumf(0) + f(1) + f(2) +. . . + f(n-1):
int sunm(int (*pf)(int k), int n)
{
int s = 0;
for (int i =1; i <= n; i++)
s t= (*pf) (i);
return s;

int square(int k)

return k*k;

i nt cube(int k)

return k*kxk;

=0
Thesum () function evaluates the function to which pf points, at each of the integers 1 through n,
ad raums the aum of thee n vdues
Note that the declaration of the function pointer parameter pf inthesum () fundions parameter

lig requires the dummy vaicde k.

6.15 NuUL, NuLL, AND void

The congtant o (zero) has type i nt. Neverthdess, this symbol can be assgned to dl the

fundamenta types.
char ¢ = 0; // initializes ¢ to the char '\0'
short d = 0; // initializes d to the short int O
int n=0; // initializes nto the int 0O
unsigned u = O0; // initializes u to the unsigned int O
float x = 0; // initializes x to the float 0.0
double z = 0; // initializes z to the double 0.0

In each case, the object isinitidized to the number zero. In the case of type char, the character ¢
becomes the null character; denoted by \o or nu, itis the character whose ASCII code is 0.

The values of pointers are memory addresses. These addresses must remain within that part
of memory alocated to the executing process, with the exception of the address 0x0. This is
cdled the nuL pointer. The same constant gpplies to pointers derived from any type:

char* pc = 0; // initializes pc to NULL

short* pd = O; // initializes pd to NULL

int* pn = O; // initializes pn to NULL

unsi gned* pu = O0; // initializes pu to NULL

float* px = 0; // initializes px to NULL
i

double* pz = 0; // initializes pz to NULL

CHAP. 6] POINTERS AND REFERENCES 173

The nuLL pointer cannot be dereferenced. This is a common but fatal error:
int* p = 0;
*p = 22; // ERROR cannot dereference the NULL pointer
A reasonable precaution is to test a pointer before attempting to dereferenceit:
if (p) *p =22, // ok
This tests the condition (p | = NuLL) because that condition is true precisdy when p is
nonzero.
The name voi d denotes a gpecid fundamentd type. Unlike dl the other fundamenta types,
voi d can only be used in aderived type:
void X; // ERROR no object can have type void
voi d* p; // K
The most common use of the type voi d isto specify that afunction does not return a vaue:
voi d swap (double&, doubl e&);
Another, different use of voi d isto declare a pointer to an object of unknown type:
void* p = q;
This use is most common in low-level C programs designed to manipulate hardware resources.

Review Questions

61 How do you access the memory address of a variable?

62 How do you access the contents of the memory location whose address is stored in a pointer
variable?

63 Explain the difference between the following two uses of the reference operator &:
int& r = n;
p = &n;

64 Explain the difference between the following two uses of the indirection operator *:
int* a = p;
n = "*p;

65 What is a “dangling pointer”?
66 What dire consequences could result from dereferencing a dangling pointer?
6,7 How can these dire consequences be avoided?

68 What is wrong with the following code:
int& r = 22

69 What is wrong with the following code:
int* p = &44;

6.10 What is wrong with the following code:
char c
char o

le;
&C;

174

6.11

6.12

6.13

6.14

6.15

6.16

POINTERS AND REFERENCES [CHAP. 6

Wheat is the difference between “static binding” and “dynamic binding”?

What is wrong with the following code:
char ¢ = 'w';
char* p = c;

What is wrong with the following code:
short a[32];
for (int i =0; i < 32; i+
*att = i*i;
Determine the value of each of the indicated variables after the following code executes.

Assume that integers occupy 4 bytes and that m is stored in memory starting at byte
0x3£££d400.

int m= 44,
int* p = &m;
inte r = m
int n = (*p)++;
int* g =p 1;
r=*(--p) + 1,
1,

a.m

b n

c. &m

d. *p

e.r

J *q

Classify each of the following as a mutable Ivalue, an immutable Ivalue, or a non-lvalue:

double x = 1.23;
4.56*x + 7.89
const doubley = 1.23;
. double a[8] = (0.0);
a[5]
double f() { return 1.23; }
. f(1.23)
. double& r = x;
double* p = &x;
*p
. const double* p = &x;
double* const p = &x;

— S Shoe o0 T

~ x <.

What is wrong with the following code:
float x = 3.14159;
float* p = &x;
short d = 44
short* q = &d;
P =aq;

CHAP. 6] POINTERS AND REFERENCES 175

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

What is wrong with the following code:

int* p = new int;
int* g = new int;
cout << '"p = "<k P<", pPtQqg="<p+tq<<end,;

What is the only thing that you should ever do with the NULL pointer?

In the following declaration, explain what type p is, and describe how it might be used:
doubl e**** p;

If x hasthe address 0x3f f f dic, then what will values of p and g be for each of the fol-
lowing:

double x = 1.01,

double* p = &x;

double* g = p + 5;

If p andq arepointerstoint andn isanint, whichof thefolowing arelegd:
ap+q

b.p-q

C. p+tn

d. p-n

e np

f n-q

What does it mean to say that an array is really a constant pointer?

How is it possible that a function can access every element of an array when it is passed only
the address of the first element?

Explain why the following three conditions are true for an array a and anint i :

al[i] == *(a + i);
(a + i) ==i[a];
ali] == 1ilal;

Explain the difference between the following two declarations:
double * f();
double (* f)();

Write a declaration for each of the following:

a. an array of 8 floas;

b. an array of 8 pointersto float;

C. apointer to an array of 8 floats;

d. a pointer to an array of 8 pointersto float;

e. afunction that returns a flodt;

f- a function that returns a pointer to a float;

g. a pointer to a function that returns a float;

h. a pointer to afunction that returns a pointer to afloat;

176

6.27

6.28

POINTERS AND REFERENCES [CHAP. 6

Solved Programming Problems

Write a fundion that uses pointers to copy an aray of doubl e.

The copy () function uses the new opedor to dlocae an aray of n doubl es. The pointer p
contains the address of the firg dement of that new aray, 0 it can be used for the name of the aray, &
inp [i].Then after copying the elementsof a into the new array, p isreturned by the function

doubl e* copy(double a[], int n)

{
doubl e* p = new double[n];
for (int i =0; i <n; i++)
pli]l = a[i];
return p;
}

void print (double [], int);

main()

{
double af8] = (22.2, 33.3, 44.4, 55.5 66.6, 77.7, 88.8, 99.9);
print(a, 8);

double* b = copy(a, 8);
al2] = al4] = 11.1;
print(a, 8);

print(b, 8);

e

In this run we initidize @ a an ary of 8 doubles. Weus aprint () functiontoexaminethe
contents of a. The the copy () functionis called and its return value is assigned to the pointer b

which then seves as the name of the new aray. Before prining b, we change the vadues of two of @' s
dements in order to check that b is not the same aray as a, as the lagt two print () calsconfirm.

Write a function that uses pointers to search for the address of a given integer in a given array.
If the given integer is found, the function returns its address; otherwise it returns NULL.

Weuse afor looptotraversethe array. If thetarget isfoundata [i], thenits address
& [i] isreturned. Otherwise, NULL is returned:

int* location(int a[], int n, int target)
{
for (int i =0; i < n; i+4)
if (ali] == target) return &al[i];
return NULL;

The test driver calls the function and storesitsreturn addressin the pointer p. |If tha is nonzero (i.e,
not NULL), then it and the int to which it points are printed.

CHAP. 6] POINTERS AND REFERENCES 177

main ()
{

int a[8] = (22, 33, 44, 55, 66, 77, 88, 99}, * p, n;

do {
cin >> n;
if (p = location(a, 8, n)) cout << p << ", " << *p << endl;
el se cout ccn << " was not found.\n";

}while (n > 0);

629 Write a function that is passed an array of n pointers to floats and returns a newly created
array that contains those n float values.

Weuse af or looptotraversethearray until p pointstothet ar get :

float* duplicate(float* p[], int n)
{
float* const b = new float[n];
for (int i =0; i <n; i++, g++)
bl[i]l = *plil;
return b;
!

void print(float [1, int);
void print(float* [1, int);

main () (

{
float a[8] = (44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5);

print(a, 8);
float* pl[8];
for (int i =0; i <8; i++)
pli]l = &alil; // p[i] points to a[i]
print(p, 8);

float* const b = duplicate(p, 8);
print (b, 8);

178

6.30

POINTERS AND REFERENCES [CHAP. 6

Implement a function for integrating a function by means of Riemann sums. Use the formula

J"’ fx)dx = (2 fa+ih))h

=1

This function, named ri emann (), issimilar tothe sum () function in Example 6.15. Its first
agumat is a pointer to a function that has one doubl e agumat ad rdunsa doubl e. In this tet
run, we passit (apointer to) the cube () function. The other three arguments are the boundariesa
and b of theinterval [a, b] over which the integration is being performed and the number n of sub-
intervals to be used in the sum. The actual Riemann sum isthe sum of the areas of the n rectangles
bassed on thee aubintevals whose heights are given by the function being integrated:

doubl e ri emann(doubl e (*) (doubl e), double, double, int);
doubl e cube (double) ;

main()

{
cout << riemann(cube,0,2,10) << endl;
cout << riemann(cube,0,2,100) << endl;
cout << riemann (cube,0,2,1000) << endl;
cout << riemann (cube,0,2,10000) << endl;

}

// Returns [f(a)*h + f(a+h)*h + f(a+2h)*h + . . . + f£(b-h)*h],
// where h = (b-a)//h:
doubl e ri emann(double (*pf) (double t), double a, double b, int n)
{

double s = 0, h = (b-a)/n, x;

int i;

for (x = a i =0;, i< n x += h, i++)

s += (*pf) (x)
return s*h;

!

}
doubl e cube(double t)

return t*t*t;

In this tet run, we ae integrating the function y = x> over theinterval [0, 2]. By elementary calculus,
the value of this integral is 4.0. The call riemann (cube, 0 , 2 , 10) approximates this integral
usng 10 subintervals, obtaining 3.24. The cal r iemann (cube, 0 ,2, 10 0) approximatestheinte-
gral using 100 subintervals, obtaining 3.9204. These sums get closer to their limit 4.0 asn increases.
With 10,000 subintervals, the Riemann sum is 3.9992.

Note that the only sgnificant difference between this ri emann () function and the sum () func-
tion in Example 6.15 isthat the sum is multiplied by the subinterval widthh before being returned.

CHAP. 6] POINTERS AND REFERENCES 179

631 Write a function that returns the numerical derivative of a given function f at a given point X,
using a given tolerance h. Use the formula

NN ()

f 2h

Thisderivative () functionissimilartothesum () function in Example 6.15, except that it
implements the formula for the numerical derivative instead. It has three arguments:. a pointer to the

function f, the x value, and the tolerance h. In thistest run, we passit (pointersto) the cube () func-
tionandthe sqr t () function.

#include <iostream.h>
#include <math.h>

double derivative(double (*) (double), double, double);
doubl e cube (double) ;

main ()

{
cout << derivative(cube,
cout << derivative(cube,
cout << derivative(cube,
cout << derivative((sqrt,
cout << derivative(sqgrt,
cout << derivative(sqgrt,

, 0.1) << endl;
0.01) << endl;
0.001) << endl;
0.1) << endl;
0.01) << endl;
0.001) << endl;

PRrRPRPRPRPR

}

// Returns an approximation to the derivative f'(x):
double derivative(double (*pf) (double t), double x, double h)
{
return ((*pf) (x+h) = (*pf) (x-h))/ (2*h);
}

doubl e cube(doubl e t)

{
return t*t*t;

}

The derivative of the cube () function x*is3x?, anditsvalueat x = 1is 3, so the numerical deriv-
ative should be close to 3.0 for large h. Similarly, the derivative of the sqrt () function Vx is1/(2Vx),
and itsvalue at x = 1is1/2, so its numerical derivative should be closeto 0.5 for large h.

180

6.32

6.33

6.34

POINTERS AND REFERENCES [CHAP. 6

Write a function that is passed an array of n pointers to floats and returns a pointer to the
maximum o the n floats.

The pointer pmax isused to locate the maximum f 1 oat. It is initidized to have the same vaue as
p [0] which points to the firt float. Then insde the for loop, the f 1 oat towhichp [i]
pointsis compared to thef | oat to whichpnax points, and pnax isupdated to point to the larger

f loat whenitisdetected. So when theloop terminates, pmax points to the largest f 1 oat .
float* max(float* p[], int n)

{
float* pmax = p[0];
for (int i =1; i <n; i++)
if (*p[i] > *pmax) pmax = p[i];
return pnax;
}

void print(float [], int);
void print(float* [], int);

main ()

float a[8] = (44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5);

print(a, 8);
float* pl[8];
for (int i =0; i < 8 i++)
plil = &alil; // p[i] points to afi]
print(p, 8);
float* m = max(p, 8);
cout << M << ", " << *m << endl;

Here we have two (overloaded) pri nt () functions: oneto print the array of pointers, and one to
print the f 1 oats to which they point. After initidizing and printing the aray a, we define the aray p
and initialize its elements to point to the elements of a. The call print(p, 8) verifiesthat p provides
indirect access to a. Findly the pointer m is declaed and initidized with the address returned by the
max () function. The last output verifies that m does indeed point to the largest f 1 oat among those
accessed by p.

Supplementary Problems

Write the following function that is passed an array of n pointers to floats and returns a
neMv ceded arav that contans those n f 1 oat vdues in revese oda.

float* mrror(float* p[], int n)
Write the following function that returns the number of bytes that s has to be in cremented
before it points to the null character \0

unsigned len(const char* s)

CHAP. 6] POINTERS AND REFERENCES 181

6.35

6.36

6.37

6.38

6.39

6.41

6.42

6.43

6.44

6.45

6.46

Write the following function that copies the firgt n bytes beginning with *s2 into the bytes
beginning with + s 1, where n is the number of bytes that s2 has to be incremented before it
points to the null character \0 :

voi d cpy(char* sl, const char* s2)

Write the following function thet copies the first n bytes beginning with +s2 into the bytes
beginning at the location of the first occurrence of the null character '\ 0 ' after »s 1, wheen
ils th|e number of bytes that s2 hasto be incremented before it points to the null character
\O "
voi d cat(char* sl, const char* s2)

Write the following function that compares a most n bytes beginning with s2 with the corre-
sponding bytes beginning with s 1, where n is the number of bytesthat s 2 has to be incre-
mented before it pointsto the null character \ 0 . If dl n bytes maich, the function should
return O; otherwisg, it should return either -1 or 1 according to whether the bytefrom s 1 is
less than or greeter than the bytefrom s2 a the first mismatch:

int cnp(char* sl, char* g2)

Write the following function that seaerches the n bytes beginning with s for the character
where n is the number of bytes that s has to be incremented before it points to the null char-
acter '\0'. If thecharacter isfound, a pointer to it is returned; otherwise return nu.:

char* chr(char* s, char c)

Write the following function thet returns the sum of the £ 1oats pointed to by thefirst n
pointers in the array p:
float sum(float* p[], int n)

Write the following function that changes the Sign of each of the negative floats pointed to
by thefird n pointersinthe array p:

void abs(float* p[]l, int n)

Write the following function that indirectly sorts the floats pointed to by the firsg n point-
ersinthe aray p by rearranging the pointers.
void sort(float* p(1, int n)

Implement the Indirect Selection Sort using an array of pointers. (See Problem 5.35.)
Implement the Indirect Insertion Sort. (See Problem 5.36.)
Implement the Indirect Random Shuffle. (See Problem 5.15)

Rewritethe sum () function (Example 6.15) so that it gpplies to functions with return type
doubl e instead of int. Then test it onthe sqrt () function (definedin <math. h>) and
the reciprocal function.

Apply the riemann() function (Problem 6.30) to the following functions defined in
<math.hs>:

a.sqgrt (),ontheintervd [1, 4];

b. s (),ontheinterva [0, w/2];

c. exp (),ontheintervd [0, 1];

d. log (),ontheintervd [1, €.

182 POINTERS AND REFERENCES [CHAP. 6

6. 47 Apply the derivative0 function (Problem 6.31) to the following functions defined in
<math.hs>:
a. sqrt (), at the point x = 4;
b. sin(), at the point x = T/6;
c. exp(), at the point x = 0;
d. log(), at the point x = 1.

6.48 Write the following function that returns the product of the n vdues f(1),f(),....ad fin).
(See Example 6.15.)
int product(int (*pf)(int k), int n)

6.49 Implement the Bisection Method for solving equations. Use the following function:
doubl e root (doubl e (*pf) (double x), double a, double b, int n)

Here, p f points to a function f that defines the equation f(x) = O that is to be solved, a and
b bracket the unknown root x (i.e,, a < x < b), and n is the number of iterations to use. For
example, the cal root(square,1,2,100) would return 1.414213562373095 (= \/2),
thereby solving the equation x? = 2. The Bisection Method works by repeatedly bisecting the
interval and replacing it with the half that contains the root. It checks the sign of the product
fla) fib) to determine whether the root is in the interval [a, b].

6.50 Implement the Trapezoidal Rule for integrating a function. Use the following function:
doubl e trap(double (*pf) (double x), double a, double b, int n)
Here, pf points to the function £ that is to be integrated, a and b bracket the interval [a, b]
over which f is to be integrated, and n is the number of subintervals to use. For example, the
cal trap (square, 1,2 ,10 0) would return 1.41421. The Trapezoidal Rule returns the sum
of the areas of the n trapezoids that would approximate the area under the graph off. For exam-
ple, if n =5, then it would return the following, where h = (b-a)/5, the width of each trapezoid.

g [f(a) +2f(a+ h) + 2f (a + 2h) + 2f (a + 3h) + 2f (a + 4h) +f (b)]

Answersto Review Questions

61 Apply the address operator & to the variable &x.
6.2 Apply the dereference operator * to the variable * p.

6.3 Thededadionin t & r = n ; declaresr tobeareference(alias) forthei n t variablen. The
assignment p = &n; asSgns the address of n to the pointer p.

6.4 Thedeclarationi nt * q = p ; declaresq tobeapointer (memory address) pointing to the same
i nt towhichn points. Theassignmentn = *p ; assignston theint towhichp points.

6.5 A ‘“dangling pointe” is a pointer that has not been initidized. It is dangerous because it could be pointing
to unallocated memory, or inaccessible memory.

6.6 If apointer pointing to unallocated memory is dereferenced, it could change the value of some unidenti-
fied variable. If a pointer pointing to inaccessible memory is dereferenced, the program will probably
cash (. e, terminate abruptly).

6.7 Initialize pointers when they are declared.

CHAP. 6] POINTERS AND REFERENCES 183

6,8 You canot have a reference to a condant; it's address is not accessble
6.9 Thereference operator & cannot be applied to a constant.

6.10 Thevariablep hastypechar, whilethe expression&c hastype pointer tochar. Toinitidizep to
& ¢, p would have to be dedared as type char * .

6.11 Static binding iswhen memory is allocated at compile time, as with the array declaration:
doubl e a[400];
Dynamic binding is when memory is allocated at run time, by means of the new operator:
doubl e* p;
P = new double[400];

6.12 The variable p hastype char *, while the expression ¢ hastype char. Toinitidizep toc, p
would have the same type as c: either bothchar or bothchar *,

6.13 Theonly problem isthat the array name ais a constant pointer, so it cannot be incremented. The follow-
ing modified code would be okay:
short af32];
short* p = a;
for (int i =0; i < 32, i+
*pHt o= i*i;

1

6.14

m =46

n =4

&m = 0x3£££400
-kp = 46

*r=46

*q = 46

v o0 T

6.15

mutable lvalue;

not an Ivaug

immutable Ivalue;

immutable Ivalue;

mutable Ivalue;

immutable Ivalue;

mutable lvalue if return typeis anon-local reference; otherwise not an lvalue;
mutable Ivalue;

mutable Ivalue;

mutable lvalue, unlessp pointsto a constant, in which case *p isanimmutable Ivalue;
mutable lvalue;

immutable lvalue;

~xS oo Sho o0 T

6.16 The pointersp and q havedifferent types: p ispointer tof loa t whileq ispointertoshort.
It is an eror to assign the address in one pointer type to a different pointer type.

6.17 It is an eror to add two pointers.
6.18 Testittoseeif itisNULL. In particular, you should never try to dereference it.

6.19 p isapointer to apointer to apointer to apointer toa doubl e. It could be used to represent afour-
dimensional array.

184

6.20

6.21

6.22

6.23

6.24

6.25

POINTERS AND REFERENCES [CHAP. 6

The value of p isthe same as the addressof a: O0x3 f f f d c The vdue of g depends upon
s i zeof (double) . If objects of type doubl e occupy 8 bytes then an offst of 8(5) = 40 is added to
p, to give g the hexadecimd vdue 0x3 f f f 04 4

The only expressions among these six that areillegal arep +q andn - q.

The name of an aray is a vaialle tha contans the address of the fird edement of the aray. This address
canot be changed, so the aray name is actudly a condant pointer.

In the following code that adds all the elements of thearray a, eah increment of the pointer p locates
the next element:

const size = 3;
short a[size] = (22, 33, 44);
short* end = a + size; // adds size*sizeof(short) = 6 to a
for (short* p = a; p < end; p++)
sum += *p;

Thevdue a [i] returned by the subscripting operator [] is the vaue dored a the address computed
from the expresion a + i. In that expresson, a isapointer toitshasetype T andi isanin t, so

the offst i*sizeof (T) is alded to the address a. The same evaluation would be made from the

expression i+ a which is what would be usd for i [a]

The dedardtion double * f () ; declares f to be a function that retums a pointer to double The

declartion double (* f) () ; dedaes *f to be a pointer to a function that retuns a double.

. float (* £) ();

a
b
c
d
e. float f£
[
g
h. float* (* f)();

Chapter 7

Strings

7.1 INTRODUCTION

A string (also called a character string) is a sequence of contiguous characters in memory
terminated by the wu character \ 0 . Strings are accessed by variables of type char*
(pointer to char) . For example, if s hastype char *, then

cout << S << endl;
will print dl the characters stored in memory beginning at the address s and ending with the
first occurrence of the nu character.

The C header file < string . h> provides a wedth of gpecid functions for manipulating
grings. For example, thecal s txr1 en (s) will return the number of characters in the gtring s,
not counting its terminating nu character. These functions al declare their string parameters as
pointers to char. So before we study these string operations, we need to review pointers.

7.2 REVIEW OF POINTERS

A pointer is a memory address. For example, the following declarations define x to be a
float containing the vaue 44.44 and p to be a pointer containing the address of x
float x = 44. 44,
float* p = &x;

If we imagine memory to be a sequence of bytes with hexadecimal addresses, then we can
picture x and p like this

3f££f408

3fffdoc

3fffdl

3£££A18|

Thisshows x stored at the address3f f f di14 andp stored at the address3£ £ f d10. The
vaiable x contains the float vaue 44.44 and the varidble p contains the address vaue

185

186 STRINGS [CHAP. 7

3f f f d14. Thevaueof pistheaddressof « 3fff di14. Thisrelaionship is usualy represented
by a diagram like this

D | @

x [44.44]

This shows two rectangles, one labeled p and one labeled x. The rectangles represent Storage
locations in memory. The variable p points to the variable x. We can access x through the
pointer o by means of the dereference operator *. The Satement

*p = 77.77,
changes the vaue of x to 77.77:

P |®

X |77.77

We can have more than one pointer pointing to the same object:
float* q = &x;

3£££408

3fffd0c

d
2]
3£££410
x177.771 3fffdl4
3£££d418

3fffdlc

Now *p, *q, and x are al names for the same object whose address is shown to be 3ff£d14
and whose current vaue is 77.77. This shows g at address 3f f f doc. The vaue stored in g is
theaddress 3fffd14 of x

The example below traces these definitions on a UNIX workstation. Notice that, as these
figuresindicate, memory is alocated in descending order. The first object, x, is stored at address
3f f f d14, occupyingbytes 3fff d14-3 ££f d17. Thesecondobject, p, is stored at address
3f££410.

CHAP. 7] STRINGS 187

EXAMPLE 7.1 Tracing Pointers

This program defines a float x and two float pointers p and g. It prints their values and their
addresses. It aso prints the values of the objects that the pointer point to:

main()

{
float x = 44.44;

cout << "X = ' << X << endl;

cout << "\t&x = " << &x << endl; // prints address of x
float* p = &x; // p points to X

cout << "\np = " << p << endl;

cout << "\t&p = " << &p << endl; // prints address of p

cout << "\t*p = " << *p << endl; // prints object p points to
*p = 77.77;

cout << '"\np = " << p << endl;

" << &p << endl;
" << *p << endl;

cout << "\t&p
cout << "\t*p

cout << "X = " << X << endl;

cout << "\t&x = " << &x << endl;

float* q = &x; // q points to X
cout << "\ng = " << g << endl;

cout << "\t&qg
cout << "\t*q

" << &q << endl;
" << *q << endl;

cout << "x = " << X << endl;

cout << "\t&x = " << &x << endl;
}
xo= 44.44, &x = Ox3fffdis
p= Ox3fffdl4 & = Ox3££ffd10 *p = 44044
p = OX3EFEGI4 . p = 0%3 FEFAID. 7*p - 97 177
xer TRETT §x = Ox3fffdia '
g = Ox3fffdid &g = Ox3fffdlc *ge 77.71
xem 77 9T . &% = Ox3fffdi4 ' :

Notice how address vaues are output: 0x3f f f d14 isthe hexadecimal numeral 3 f f f dl4. The prefix
Ox is the standard notation used to indicate that the numeral is hexadecima. Although there is no need to
do so, one can compute the corresponding decima value, remembering that “a' is “hex” for 10, ‘b’ is 11,
‘c’is12, d' is13 ‘e isld4,and ‘£’ is15:

0x3f££d14 =3x16° +15x16° +15x16* + 15x16 + 13x16? + 1x16! + 4x16° = 67,108,116

So in this run, x is actualy stored in the 4 bytes numbered 67,108,116-67,108,119. These are virtua
addresses on a UNIX workstation with 20 megabytes of memory. On a DOS PC with 4 megabytes of
memory, X, p, and q were stored at addresses 0x23e6, 0x23dc, and 0x23be.

If pis apointer, thenthecdl cout << *p will dways print the value of the object to which
p points, and the cal cou t << p will usudly print the vaue of the address that is sored in p.
The important exception to this second rule is when p is declared to have type char *.

188 STRINGS [CHAP. 7

7.3 STRINGS

In C++, a string is an array of characters with the following exceptiond features:

. An extra component is gppended to the end of the array, and its value is set to the NUL
character \ o . Thismeansthat the total number of charactersin the array isalways 1
more than the dring length.

« The sring may be initidized with a gring literd, like this

char str[] = "Bjarne";

Note that this array has 7 elements: ' B', 'j', 'a', 'r', 'n', 'e',and '\0".
. The entire string may be output as a single object, like this.

cout << str;

The system will copy characters from s tr to cout until the nw character \ o is
encountered.

. The entire string may be input as a sngle object, like this:
cin >> buffer;

The system will copy characters from cin into buf f er until a white space character
IS encountered. The user must ensure that buffer is defined to be a character string long
enough to hold the input.

«The functions dedared in the <string.h> header file may be used to manipulate
grings. Thee indude the dring length function s trilen (), the string copying
functionss trcpy () and s trncpy (), thestring concatenating functionss trca t ()
and st rncat (), the string comparing functionsstrcnp () andstrncnp (), and the
token extracting function s trtok () . These functions are described in Section 7.8.

EXAMPLE 7.2 Strings Are Terminated with the NUL Character

This little demo program shows that the nu. character \ o is gopended to the dring:

main()

{

char gs[] = "ABCD";
for (int i =0; i < 5 |i+4)
cout << ||s[|| <<i << n] = 10 e S[l] << uu\nn’,

When the NUL charadter is sent to cou t, nothing is printed— not even a blak. This is seen by printing
one goodrophe immediady before the dharadter and ancther gpodrophe immediatdy dter the character.

CHAP. 7] STRINGS 189

7.4 STRING 1/0

Input and output of dtrings is done in severd ways in C++ programs. The best way is by
means of string class operators as described in Chapter 10. More draightforward methods are
described here.

EXAMPLE 7.3 Ordinary Input and Output of Strings
This program reads words into a79-character buffer:

main ()

{

char word([80];
do {

cin >> word;

if (*word) cout << "\t\"" << word << "\"\n';
} while (*word);

In thisun, the whi P rd [(g
stopped the loop). Each word in the input stream ¢ i n is echoed to the output stream cou t. Note that the
output stream is not “flushed” until the input stream encounters the end of the line.

Each string is printed with a double quotation mark on exh dde. This character must be desig-
nated by the character pair * inside astring literal.

The expression *word controlsthe loop. It istheinitial character in the string. It will be nonzero
(i.e, “trug’) as long as the string word contains a string of length greater than 0. The string of length O,
called the empty string, contains the NUL character \ 0 in its first element. Pressing Control-D on a
UNIX or Macintosh computer (Control-Z on a DOS PC or in VAX/VMS) sends the end-of-file character
in from cin. This loads the empty string into word, setting *word (whichisthesameasword [0 1)
to '\0 and stopping the loop. The last line of output shows only the Control-D echo.

Note that punctuation marks (apostrophes, commas, periods, etc.) are included in the strings, but
whitespace characters (blanks, tabs, newlines, etc) are not.

The do loop in Example 7.3 could be replaced with:

cin >> word

while (*word) {
cout << "\t\"" << word << "\"\n";
cin >> word;

}
When Control-D is pressed, the call cin >>wor d assigns the empty string to wor d.

190 STRINGS [CHAP. 7

Example 7.3 and Example 7.1 illustrate an important distinction: the output operator <<
behaves differently with pointers of type char* than with other pointer types. With a char *
pointer, the operator outputs the entire character string to which the pointer points. But with any
other pointer type, the operator will smply output the address of the pointer.

7.5 SOME cin MEMBER FUNCTIONS

The input stream object cin includes the input functions. cin.getline(), cin. get (),
cin.ignore (), cin .putback (), and cin. peek (). Each of these function names includes the
prefix “cin .” because they are “member functions’ of the cin object. This object-oriented
principle is explained in Chapters 8 and 12.

Thecal ¢ in get line (s tr , n) readsupton charactersintos tr andignorestheres.
EXAMPLE 7.4 The c in. get 1ine () Function with Two Parameters

This program echoes the input, line by line

main ()
{
char 1ine[80];
do {
cin.getline(line, 80);
if (*line) cout << "\t[" << line << "]\n";
} while (*line);
}
Onr:e upon a m:.dm.ght dreary, while I pondered, weak and wea::y, -
 [Once upon a mldmght dreary, whlle 1 pondered weak and wea '
0ver many a qua:.nt and curieus volume of forgctten lore,
{Over many a qualnt and curmus volume of forgotten 10re }

Note that the condition (*1ine) will evauate to “true” precisely when1i ne contains a non-empty
dring, because only then will 1ine [0] be dffeet from the NUL darade (Whose ASCI vdue is Q).

Thecdl cin. getline(str, n ch) readsdl input up to the first occurrence of the delimit-
ing character ch intos tr. If the specified character ch is the newline character \n , then
this is equivalent to ¢ in. get line (str , n).Thisisillustrated in the next example where the
delimiting character is the comma , .

CHAP. 7] STRINGS 191

EXAMPLE 7.5 The cin. getline () Function

This program echoes the input, dause by dause

main ()
{
char clause[20];
do {
cin.getline(clause, 20, ',"');
if (*clause) cout << "\t[" << clause << "]J\n";
} while (*clause);

Once upon a midnight dreary, while I pondered, weak and weary, .

Gver many a qua:.nt and curicms volume af fcrgotten lore,

[Once upon a mldmght dreary] . '

[while 1 pondered] '

. weak and weary}

Over ,man‘y' a qua:;.nt, and /curmu\\s‘.;

Natice thet the invisble endline charadter that fdllows “weary, ” is dored as the fird charadter of the next

input line. Since the comma is being used as the delimiting character, the endline character is processed
jug like an odnay charade.

olune of forgotten lore]l

The cin.get() function is used for reading input character-by-character. The cdl
cin. get (ch) copies the next character from the input dream cin into the variable ch and
returns 1, unlessthe end of file is detected in which case it returns 0.

EXAWPLE 7.6 Thecin . get () Function

This program ocounts the number of occurrences of the letter ‘€ in the input Sream. The loop contin-
uesaslongasthe ci n. get (ch) fundion is uccessul & readng chaades into ch:

main ()
char ch;
int count = O;
while (cin.get(ch))

if (ch == 'e'") ++count;
cout << count << " e's were counted.\n";

y; while T pondered; weak and weaty,

The opposite of get isput. The cou t . put () function is used for writing to the output
stream cout character-by-character. Thisis illusirated in the next example.

192 STRINGS [CHAP. 7

EXAMPLE 7.7 The cout . put () Function

This program echoes the input stream, capitaizing each word:

#include <ctype.h>
main ()

{
char ch, pre = '"\0';

while (cin.get(ch)) {

if (pre == Il pre == "\n') cout. put (char (toupper(ch)));
el se cout.put(ch);
pre = ch;

The output looks like this:

The variable pr e holds the previoudly read character. The ideais that if pre isablank or the newline
character, then the next character ch would be the first character of the next word. In that case, ch is
replaced by its equivdent uppercase character ch + A a .

The header file <ctype .h> declares the function toupper (ch) which returns the uppercase
equivadent of ch if ch isalowercase letter.

Thecin . putback () function restoresthe last character reed by acin.get () back to the
input stream cin. Thecin. i gnore () function reads past one or more characters in the input
stream cin without processng them. Example 7.8 illugtrates these functions.

Thecin . peek () function can be used in place of the combination cin . get () and
ci n. put back () functions. The cdl

ch = cin.peek()

copies the next character of the input stream cin into the char variable ch without removing
that character from the input stream. Example 7.9 shows how the peek () function can be used
in place of the get () and putback () functions.

CHAP. 7] STRINGS 193

EXAMPLE 7.8 The cin. putback () and cin. ignore () Functions

This tests a function that extracts the integers from the input stream:

int nextInt();

main ()

{

int m= nextInt(), n = nextInt();

cin.ignore (80, '\n'); // ignore rest of input Iline
cout <« m << "+ " << N << " = ' << MmN << endl;
}
int nextInt()
{
char ch;
int n;

while (cin.get(ch))
if (ch>s= '0" &&ch <= "9") { // next character is a digit

ci n. put back(ch); // put it back so it can be
cin >> n; // read as a conplete int
br eak;
}
return n;

!

What is 305 plus 9416?
305 o 9416 9721 -

The next In t () function scans past the characters incin untrI it encounters the frrst drgrt In thrs run,
that digit is 3. Since this digit will be part of the first integer 305, it is put back into Cin so that the com-
plete integer 305 can be read into n and returned.

EXAMPLE 7.9 The cin . peek () Function

This version of the next Int () function is equivdent to the one in the previous example:

int nextInt()

{
char ch;
int n;
while (ch = cin.peek())
if (ch>= "0 && ch <="9") {
cin >> n;
break;
}
el se cin.get(ch);
return n;
}
The expresson ch = cin . peek () copies the next character into ch, and retuns 1 if successful. Then
if ch isadigit, the complete integer is read into n and returned. Otherwise, the character is removed
from ¢ in and the loop continues. If the end-of-file is encountered, the expresson ch = ¢ in. peek ()

returns 0, stopping the loop.

194

STRINGS [CHAP. 7

7.6 CHARACTER FUNCTIONS DEFINED IN <ctype. h>

Example 7.7 illudrates the toupper () function. Thisis one of a series of character manip-
ulation function defined inthe cc t ype. h> header file. These are summarized in Table 7.1.

Table7.1 <ctype.hs> Functions

isalnum()
isalpha()
iscntrl()
isdigit ()
isgraph()
islower ()
isprint ()

ispunct ()

isspace()

isupper ()

isxdigit ()

tolower ()

toupper ()

int isalnumiint c¢);

Returns nonzero if ¢ is an aphabetic or numeric character; otherwise returns 0.
int isalpha(int c);

Returns nonzero if c is an aphabetic character; otherwise returns 0.

int iscntrl(int c¢);

Returns nonzero if ¢ is a control character; otherwise returns O.

int isdigit(int c¢);

Returns nonzero if ¢ is adigit character; otherwise returns 0.

int isgraph(int c);

Returns nonzero if c is any non-blank printing character; otherwise returns 0.
int islower (int c);

Returns nonzero if ¢ is alowercase a phabetic character; otherwise returns 0.
int isprint(int c¢);

Returns nonzero if c is any printing character; otherwise returns 0.

int ispunct(int c);

Returns nonzero if ¢ is any printing character, except the a phabetic characters,

the numaic daades ad the blank; ohewie reguns O

int isspace(int c);

Returns nonzero if ¢ is any white-space character, including the blank , the

fomfesd \f ,the newline \n ,thecariagerdum \r , the horizontd tab
\'t ,adthevaticd teb \v ; ohewise reums 0.

int isupper(int c);

Returns nonzero if ¢ is an uppercase a phabetic character; otherwise returns 0.
int isxdigit(int c¢);

Reums ponzero if ¢ is one of the 10 digit characters or one of the 12 hexadedmd
digitletters: *a', 'b', 'c', 'd', 'e', '£ ', A, 'B','C','D','E,
or 'r'; ohawie reuns O

int tolower (int c);

Returns the lowercase version of c if ¢ is an uppercase alphabetic character;
otherwise returns c.

int toupper(int c);

Returns the uppercase version of c if c is alowercase alphabetic character; oth-
erwise returns c.

Note that these functions receive an i nt parameter ¢ and they return an i nt. This works
because char is an integer type. Normaly, a char is passed to the function and the return
vaueisassgnedtoachar, s0we regard these as character-modifying functions.

CHAP. 7] STRINGS 195

Hereis adiagram that summarizes most of the cc t ype. h> functions

isprint

i sal num - <f or nf eed>

. <newline>
 coloh i spunct <carriage return>
isalpha L e # e g <horizontal tab>
i isdigit $ % <vertical tab>

islower isupper () o+ - =1\ <bell>
{1} : i
[a2 J { A7 J []« /o <backspace>

NS

It shows, for example, that if ch isthe character $',thenisprint (ch) , isgraph (ch) ,and
ispunct (ch) will reun nonzero (i.e, “true’), while isalnum(ch), isalpha (ch), and
i slower (ch) will return zero (i.e, “fdsg’)

7.7 ARRAYSOF STRINGS

Recal that a two-dimensona aray is redly a one-dimensond aray whose components
themselves are one-dimensiona arays. When those component arrays are strings, we have an

array of srings.
Example 7.10 declares the two-dimensiond array nane as

char name[4][20];

This declaration dlocates 80 bytes, arranged like this:

0123456 7 89 10 11 12 13 14 15 16 17 18 19

Each of the 4 rows is a one-dimensiond array of 20 characters and therefore can be regarded as a
character string. These strings are accessed as nane [0], name([1], name[2], and name[3].In
the sample run shown in Example 7.10, the data would be stored like this:

012 3 4 5 6 7 910 11 12 13 14 15 16 17 18 19
y

'|Gleloirigle|] Was h ngt ph@
WJohn| Adans @
:[Thiomials| Jef T er sph@

Here, the symbol ¢ represents the nu character \ o

196 STRINGS [CHAP. 7
EXAMPLE 7.10 An Array of Strings

This program reeds in a ssuence of drings garing them in an aray, and then prints them:

main()
{

char name[8][24];

int count = O;
cout << "Enter at nost 8 names with at nost 23 characters:\n";
whil e (cin.getline(name[count ++], 24))
--count;
cout << "The nanes are:\n";
for (int i = 0; i < count; i++)
cout << "\t" << i << ". [" << name[i] << "]" << endl;

Note thet dl the adtivity in the whi 1 e loop is done within its contrd condition:
cin.getline (name[count++],20)

Thiscdltothecin. get line () fuxtion resds thenext lineinto name [count | and thenincrements
count . The fundion reums nonzero (i.e, “trug’) if it was successful in reading a character string into
name [count]. When the endoffile is dgndled (with <Control-D> or <Control-Z>), the cin.get-
line 0 function fals =0 it reums O which dopsthe whi 1 e loop. The body of this loop isempty, indi-
cated by the line that contains nothing but a samicdlon.

A more efficient way to Sore stringsis to declare an array of pointers:

char* name[4];

Here, each of the 4 components has type char* which means that each name [i] isa
sring. This declaration does not initidly alocate any storage for string data. Instead, we need to
gtore dl the data in a buffer string. Then we can set each name [i] equa to the address of the
first character of the corresponding name in the buffer. This is done in Example 7.11. This
method is more efficient because each component of name [1] Uusesonly as many bytes as are
needed to store the string (plus storage for one pointer). The trade-off is that the input routine
needs a sentind to Sgnad when the input is finished.

CHAP. 7] STRINGS 197

EXAMPLE 7.11 A String Array

This program illustrates the use of the get 1ine () function with the sentind character $. Itis
nearly equivalent to that in Example 7.10. It reads a sequence of names, one per line, terminated by the
sentinel $. Then it prints the names which are stored in the array nane:

main()

{
char buffer[80];
cin.getline(buffer, 80, 'S"');
char* namel4];
name[0] = buffer;

int count = O;
for (char* p = buffer; *p = '"\0'; p++)
if (fp == "\n') {
P =o' // end name[count]

name[++count] = p+1l; // begin next nanme
}
cout << 'The names are:\n";
for (int i = 0; i < count; i+4)
cout << "\t" << i << ". [" << nane[i] << "]" << endl;

George Washington f -

{Thomas Jefferson] .

The entlre mput is stored in buf f er asthe smgle strlng contammg “ Geor ge V\ash| ngt on\ nJohn
Adans \nThomas Jeff erson\n". The for loop then scans through buffer using the pointer p. Each
time p findsthe \n character, it terminates the string in name [count] by appending the NUL
character \ 0 toit. Then it increments the counter count and dores the address p+ 1 of the next
characterin nane[count] .

The resulting array name looks like this:

Gepr

\1%4
(’A
=
-}
Q
—r
o
=]
Q

Note that the extra bytes that padded the ends of the names in Example 7.10 are not required here.

If the strings being stored are known at compile time, then the string array described above is
quite a bit smpler to handle. Example 7.12 illustrates how to initidize a gring array.

198 STRINGS [CHAP. T

EXAMPLE 7.12 Initializing a String Array

This program is negly equivdat to those in the previous two examples It initidizes the dring aray
name and then prints its contents

main ()

{

char* name[] = { 'George Washington",
"John Adams",
"Thomas Jefferson”
};
cout << "The names are:\n";
for (int i =0; i < 3; i++)
cout << "\t" << i << ".[" << name[i] << "1" << endl;

The storag
78 THE C-STRING HANDLING LIBRARY

The C heeder file < string . n>, dsocdledtheC-Sring Library, includes a family of
functions that are very ussful for manipulating strings. Example 7.13 illugtrates the smplest of
these functions, the string length function, which returns the length of the string passed to it.

EXAMPLE 7.13 The String Length Function s tr len ()

This program is a simple test driver for the str 1en () function. Thecal st r len(s) smply
reuns the number of dharadtas in s tha precsde the fird occurence of the NUL chaader \ 0 ..

#include <string.hs

main()
{
char s[] = "ABCDEFG";
cout << '"gtrlen(" << S << ") = " << strlen(s) << endl;
cout << '"strlen(\"\") = ' << strlen(" ") << endl;
char buffer[80];
cout << "Enter string: "; cin >> buffer;
cout << '"strlen(' << buffer << ") = " << strlen(buffer) << endl;

In some ways, strings behave like fundamenta objects (i.e., integers and reds). For example,
they can be output to cout in the same way. But strings are structured objects, composed of

CHAP. 7] STRINGS 199

smaler pieces (characters). So many of the operations that are provided for fundamental objects,
such as the assgnment operator (=), the comparison operators (<, >, = =, < =, >=, and | =), and
the arithmetic operators (+, etc.) are not avalable for strings. Some of the functions in the C
String Library smulate these operations. In Chapter 8 we will learn how to write our own ver-
sions of these operations.

The next example illugtrates three other string functions. These are used to |locate characters
and subdgirings within a given gring.

EXAMPLE 7.14 The strchr (), strrchr (), and strstr () Functions
#include <string.h>

main ()
char gs[] = "The Mssissippi is a long river.";
cout << "s = \"" << S << "\"\n";
char* p = strchr(s, ")
cout << "strchr(s, ') points to s[" << p =S <<"].\n";

p = strchr(s, 's');
cout << '"strchr(s, 'S') points to s["<<pP =S << "].\n";

p = strrchr(s, 's');
cout << "strrchr(s, 'S') points to g[" << P =S << "].\n";
p = strstr(s, "is");

cout << "strstr(s, \"is\") points to s[" << p S << "l.\n";
p = strstr(s, "isi");
if (P == NULL) cout << "strstr(s, \"isi\") returns NULL\n";

Here is the output:

8- 'The Miceiegippl i & 1ong 1T Ser.-‘f .
strchr(s, | pointe tosid]. .
Btichele, g) points to s[6]
strychrls, s) pointe to. g1
strstr(s, "‘18“} points to s[5 .
Strstris, ‘isddgveburame NUEE 0 .

The call strchr (s,) returns a pointer to theflrst occurrence of the blank character within

the string s. The expression p - s computes the index (offset) 3 of this character within the string.

(Remember that arays used zero-based indexing, so the initid character T has index 0.) Similaly, the

character s first appears at index 6 ins.

The call strrchr(s,) returns a pointer to the last occurrence of the character s within
the string s; thisiss[17].

Thecall strstr(s, "is") retuns a pointer to the first occurrence of the substring i s" within
the string s, thisis at s [5]. Thecal strstr (s, "isi") returnsthe NULL pointer because

"igi* does not occur anywhere within the string s.

There are two functions that Smulate the assgnment operator for strings. strcpy () and
strncpy (). The cdl strcpy(sl,s2) copies dring s2 into gring s1. The cdl
strncpy (s1,s2,n) copiesthefirg n characters of string s2 into ring s 1. Both functions
return s1. These are illudrated in the next two examples.

200 STRINGS [CHAP. 7

EXAMPLE 7.15 The String Copy Function s trcpy ()

This program traces cal st repy (51 s2):

#include <iostream.h>
#include <string.h>

main ()

{
char sl []= "ABCDEFG ';
char g2[] = "xyz";

cout << 'Before strcpy(sl,s2):\n";
cout << "\tsl [" << sl << "], length =
cout << "\ts2 [" << 82 << "], length = '
strcpy(sl,s2);

cout << "After strcpy(sl,s2):\n";
cout << "\tsl [" << sl << "], length
cout << "\ts2

<< strlen(sl) << endl;
<< strlen(s2) << endl;

" << strlen(sl) << endl;

[" << 82 << "], length =— << strlen(s2) << endl;

After s 2 is copied into s 1, they are indistinguishable: both consist of the 3 characters xvz. The
effect of s trepy (s1, s2) canbevisudized like this:

sl@——)

sl

(SRR E [L= Alel- 1} 2

Q| |H

strcpy(sl,s2)

sZ@—b

Q [[|4

Since s2 haslength 3, s trcpy (s1, s2) copies4 bytes (including the nuL character, shown as g),
overwriting the first 4 characters of s 1. This changes the length of s 1 to 3.

Notethat st rcpy (s1,s2) creates a duplicate of gring s2. The resulting two copies are distinct
strings. Changing one of these drings later would have no effect upon the other string.

CHAP. 7] STRINGS 201

EXAMPLE 7.16 The Second String Copy Function s t rncpy ()

This program traces cals st repy (s 1 s2,1n):

#include <iostream.h>

#include <string.h>

// Test-driver for the strncpy() function:
main()

{

char s1[] "ABCDEFG";
char s2[] = "xyz";
cout << "Before strncpy(sl,s2,2) :\n";

cout << "\tsl = [" << sl << "], length << strlen(sl) << endl;

cout << "\ts2 = [" << s2 << "], length = ' << strlen(s2) << endl:!
strncpy(sl,s2,2);

cout << "After strncpy(sl,s2,2) :\n";
[" << sl << "], length
[" << 82 << "], length

cout << "\tsl
cout << "\ts2

<< strlen(sl) << endl;
<< strlen(s2) << endl:l

. = Eeel lemmtr - 20
Thecdl s trncpy (s1, s2 ,2) replaces the firt 2 characters of s 1 with xv, leaving therest o
unchanged. The effect of s trncpy (s 1, g2,2) canbevisudized like this:

sl [@}— A sl
B

c c

D D

E E

F F

G G

0 [}
strncpy(si,s2,2)

—

82 82 X

Y

7 z

o /]

Since s2has length 3,strncpy (s 1, s2 ,2) copies?2 bytes (excluding the NUL character ¢), over-
writing the first 2 charactersof s 1. This has no effect upon the length of s 1 which is 7.

If n < strlen (s2),asitisinthe above example, thens trncpy (s1,s2,n) Smply copies
the firs n characters of s2 into the beginning of s1. However,if n > s trien (s2), then

202 STRINGS [CHAP. 7

strncpy (s1,s2,n) hasthesameeffectas strcpy(si,s2):it makes s1 aduplicateof s2
with the same length.

The strcat() and strncat() functions work the same asthe s trcpy () and
s trncpy () functions except that the characters from the second string are copied onto the end
of thefirg gring. Theterm “ cat " comes from the word “catenate’ meaning “ string together.”

EXAMPLE 7.17 The Siring Concatenation Function strcat ()

Thisprogan tracescdl st rcat (s1, s2) which gopeds the sring s2 onto the end of dring s L.

#include <iostream.h>

#include <string.h>

// Test-driver for the strcat() function:

main ()

{
char sl[] = "ABCDEFG";
char g2[] = "XYzZ";
cout << "Before strcat(sl,s2):\n";
cout << "\tsl = [" << sl << "], length = " << strlen sl) << endl;
cout << "\ts2 = [" << s2<< "1, length = " << strlen (s2) << endl;
strcat(sl,s2);
cout << "After strcat(sl,s2):\n";
cout << "\tsl [" << sl << "], length
cout << "\ts2 [" << s2 << "], length

" << strlen sl) << endl;
" << strlen (s2) << endl;

}
Here is the output:

Before strcat(sl 827 .

. = [ABCDEFG], length /'

. (XYZ}, 1ength 3
After strcat(sl 52): -
sl [ABCDEFGXYZ} .
. [XYZ], length - .
The cdl st reat (sl, s2) gpads xv z oo the end of s 1. It can be viadized like this

‘u

ll'-‘

s1 [@}—>]

s1@—~>

oW (g(Q|w |

ol |mMmM|O|O|w| >

strcat (a1,82)

82 [@}—>

QN [|

CHAP. 7] STRINGS

Snces2 haslength 3, s trca t (s1, s2) copies4 bytes (including the nuL character, shown as ¢),
overwriting the NUL characters of s1 and its following 3 bytes. The length of s 1 isincreased to 10.

If any of the extra bytes following s 1 that are needed to copy s2 are in use by any other
object, then al of s 1 and its appended s 2 will be copied to some other free section of memory.

EXAMPLE 7.18 The Second String Concatenation Function s trnca t ()

This program traces cdls strncat (s 1, s2, n):

#include <iostream.h>
#include <string.h>
// Test-driver for the strncat() function:
main ()
{
char sl1[] = "ABCDEFG';
char s2[] = "Xyz";
cout << 'Before strncat(sl,s2,2):\n";
cout << "\tsl = [" << sl << "], length

strncat(sl,s2,2);
cout << "After strncat(sl,s2,2):\n";

cout << "\tsl = [" << sl << "], length = ' << strlen(sl) << endl;
= [" << 82 << "], length = " << strlen(s2) << endl;

cout << "\ts2
}

The output looks like this.
Before strncat(sl 82,2):
’ . [ABCDEFG], le
» sz [XYz], leng
After strncat(sl s2,2): -
= {ABCDEFGXY} . 1ength
32 = [xvz), length 3

Thecal st rncat (sl 52,2) aopends xv onfo the end of s 1. The effect can be visudlized like this

" << strlen(sl) << endl;
cout << "\ts2 = [" << 82 << "], length = " << strlen(s2) << endl;

s [®}— 2 si[ef}—{ a
B B
C [o]
D D
E E
F F
G G
2 -
strncat(sl,s2,2)
82 - = 82 g—* X
:« = z - Y
Z Z
[} [

204 STRINGS [CHAP. 7

Anes? heslength3s trnca t (s1, s2 ,2) copies 2 bytes overwriting the NUL character of s 1
and the byte that follows it. Then it puts the NUL character in the next byte to complete the string s L.
This increeses its length to 9. (If ether of the extra 2 bytes had been in ue by some other objet, then the
etire 10 characters ABCDEFGXY(® woud have been wiitten in some other free pat of memory)

The next example illustrates the string tokenize function. Its purpose is to identify “tokens’
within a given gring: eg., words in a sentence.

EXAMPLE 7.19 The String Tokenize Function str tok ()

This progam shows how strtok () is usd to exdrad the indvidud words from a satence

#include <iostream.h>
#include <string.h>
// Test-driver for the strtok() function:

main ()
char g[] = "Today's date is March 12, 1995.";
char* p;
cout << "The string is: [" << S << "]\nIts tokens are:\n";
p= strtok(s, " ");
while (p) {
cout << "\t[" << p << "]I\n";
p = strtok(NULL, " ");
}
cout << "Now the string is: [" << S << "]J\n";

THe gtring is: [Today & date is Mapch 12, 1985.1
Its tokens are:

[Today 'l

[date]

[is]

[March]

... ... =

[1995.1
Now the string is : [Today ! s}

Thecal p = strtok(s, " ") setsthe pointer p to point to the first token in the string s and
dhanges the blank that fdlows » Today s' to the NUL dharader \ 0 (deoed by @ in the fdlowing
diagram). This has the effect of making both sand p the string " Today s'. Then eech uocessve
cll p = strtok(NULL, " ") alvawes the panter p to the next nonblak chaader that fdlows
the new NUL character, changing each blank that it passes into a NUL character, and changing the first
bak thet fdlons *p into a NUL charadter. This has the efet of meking p the next subdring theat was
delimited by blanks and is now delimited by NUL characters. This continues until p reaches the NUL
character that terminated the original string s. That makesp NUL (i.e., 0), which stopsthe whi 1 e
loop. The combined effect upon the original string s of adl thecallsto strtok () is tochenge evay
bak into a NUL. This “tokenizes’ the dring s changng it into a ssquence of didinct token drings only
the fird of which is identfied by s.

Note that the s tr tok () function changes the gring thet it tokenizes. Therefore, if you want
to use the origind dtring after you tokenize it, you should duplicate it with s trepy ().

CHAP. 7] STRINGS 205

T ' T T T
P §> o (o] o o]
a d 4 d
a a a a
3,/ strtok(s, ' ") y strtok (NULL, ' ") y strtok(NULL, ' ") 4
. -
s - S g s
a a
a a
t t
e e
T T
i i
s S

Also note that the second parameter of thestrt ok () function is a string. This function uses

al the characters in this diring as ddlimiters in the firgt sring. For example, to identify words in
s, you might use strtok(s, ', :;.").

Thestrpbrk () function dso uses a string of characters as a collection of characters. It
genadizes the strchr () function, looking for the first occurrence in the firgt string of any of
the characters in the second gtring.

EXAMPLE 7.20 The s trpbrk () Function

#include <iostream.h>
#include <string.h>

main()
char s[] = "The Mssissippi is a long river.";
cout << "s = \"" << S << "\"\n";

char* p = strpbrk(s, '"nopgr");

cout << "strpbrk(s, \'"nopgr\") points to s[" << p -S << "].\n";
P = strpbrk(s, "NOPQR");

if (p == NULL) cout << "strpbrk(s, \"NOPQR\") returns NULL.\n";

The cal strpbrk(s, " nopgr ') returns the first occurrence in s of any of the five characters n
‘o', 'p', 'q',or 'r'.The first of these found isthe p as[12].

The cdl strpbrk(s, "nNopr ") refurns the NULL pointer because none of these five characters
occursin s.

Table 7.2 summarizes some of the most useful functions declared in < st r ing . h>. Note tha
size_t isaspecia integer type that is defined inthe < string . hs file

206

STRINGS [CHAP. 7

Table 7.2 <string. h> Functions

memcpy ()
s.trcat ()

strchr()

strenp ()

strecpy ()

strespn 0

strlen()

strncat ()

strncmp ()

strncpy 0

strpbrk 0

strrchr ()

strspn()

strstr()

strtok()

voi d* mencpy(voi d* sl, const void* s2, size-t n);

Replaces the first n bytesof * s 1 withthefirst n bytes of *s2. Returns s.
char* strcat(char* sl, const char* s2);

Appends s2 to s 1. Reuns s 1.

char* strchr(const char* s, int c);

Returns a pointer to the first occurrence of c in s. Returns NULL if cisnotins.

int strcnp(const char* sl, const char* s2);
Compares s 1 with subgtring s2. Returns a negative integer, zero, or a positive integer,
according to whether s 1 is lexicographicaly less than, equal to, or greater than s2.

char* strcpy(char* sl1, const char* s2);
Replacess1 withs2. Returnss 1.

size-t strcspn(char* sl, const char* s2);
Returns the length of the longest substring of s 1 that beginswiths 1 [0] and contains
gone of the charackrs found in

size-t strlen(const char* s);

Returns the length of s, which is the number of characters beginning with s [0] that
precede the first occurrence of the NUL character.

char* strncat(char* sl, const char* s2, size-t n);
Appends the first n charactersof s2tos 1. Reunss 1. Ifn =2 s trlen (s2), then
strncat(sl,s2,n) hasthesameeffectas strcat(sl,s2)

int strncnp(const char* sl, const char* s2, size-t n);
Comparess1 with the substring s of the first n characters of s 2. Returns a negative
integer, zero, or a pogtive integer, according to whether s 1 islexicographicaly less
than, equal to, or greater thans. If n 2 strlen(s2),then strncmp(sl,s2,n)
and s trcmp (sl , s2) havethe same effect.

char* strncpy(char* sl, const char* s2, size-t n);
Replaces the first n characters of s 1 with the first n characters of s2. Returns s 1.
If n £ strlen(sl), thenthelengthof sl isnotaffected. If n > strlen(s2),
then strncpy(sl,s2,n) and strcpy(sl,s2) havethesameeffect

char* strpbrk(const char* sl, const char* s2);
Returns the address of the first occurrence in s 1 o0s2.v B theehardctersin 1 n s
NULL if none of the characters in s 2 appears in s 1.

char* strrchr(const char* s, int c¢);
Returns a pointer to- the last occurrence of ¢ in s. Returns NULL if ¢ isnotins.

size-t strspn(char* sl, const char* s2);
Returns the length of the longest substring of s 1 that begins with s2[0] and contains
ooly characters found in

char* strstr(const char* sl, const char* g2);
Returns the address of the first occurrence of s2 a a subgring of s 1. Reurns NULL
if ch isnotin sl .

char* strtok(char* sl, const char* s2);

Tokenizes the string s 1 into tokens delimited by the characters found in string s 2.
After theinitial call st r t ok (s 1, s2),eachsuccessivecal strtok (NuL, s2)
returns a pointer to next token found in s 1. These calls change the string s 1, replacing
each delimiter with the NUL character \0

CHAP. 7] STRINGS 207

71

7.2

73

74

75

Review Questions

Consider the following declarations for s:

char s[6];

char s(6] = {'"H, 'e", '1', '1l', '0'};
char s[6] = "Hello0";

char s[1;

char s[] = new char[6];

char s[] = {('H','€e, '1', '1', '0'};
char s[] = "Hello";

char s[] = new("Hello");

char* s;

char* s = new char[6];

char* s = (g, 'e, '1','1", '0'};

char* s = "Hello";
char* s = new "Hello");

a. Which of these is a valid declaration of a C++ character string?

b. Which of these is a valid declaration of a C++ character string of length 5, initialized to the
string "Hell 0" and alocated at compile time?

c. Which of these is a valid declaration of a C++ character string of length 5, initialized to the
string "Hell 0" and alocated at run time?

d. Which of these is a valid declaration of a C++ character string as a formal parameter for a
function?

What is wrong with using the statement
cin >> S;
toreed theinput " Hel lo, Wr 14 ! ' into adring s?

What does the following code print:
char s[] = "123 W 42nd St., NY, NY 10020-1095" ;
int count = O
for (char* p = 's; *p; p++)
i f (i supper(++count;
cout << count << endl;

What does the following code print:

char s[] = "123 W 42nd St., NY, NY 10020-1095";
for (char* p =s; *p; p++)
if (isupper(*p = tolower(*p);

cout << S << endl;

What does the following code print:
char s[] = "123 W 42nd St., NY, NY 10020-1095";
for (char* p = s; *p; p++)
if (isupper((*p)++;
cout << S << endl;

208

7.6

7.7

7.8

7.9

7.10

7.11

7.12

STRINGS [CHAP. 7

What does the following code print:
char s[] = "123 W 42nd St., NY, NY 10020-1095";
int count = O;
for (char* p =s; *p; p++)
if (ispunct(*p)) ++count;
cout << count << endl;

What does the following code print:
char g[] = "123 W 42nd St., NY, NY 10020-1095";
for (char* p = s; *p; p++)
i f (ispunct(*p)) *(p-1) = tolower(*p);
cout << S << endl;

What is the difference between the following two statements, if s 1 and s2 have type
char*:

sl = s2;

strcpy (sl,s2);

If first contains the string "Rut herford" and | ast containsthestring "Hayes", then
what will be the effect of each of the following calls:

aint n = strlen(first);

b. char* sl = strchr(first, 'r');

¢ char* sl = strrchr(first, 'r');

d char* sl = strpbrk(first, '"rstuv');
e strcpy(first, last);

[strncpy(first, last, 3);
g. strcat(first, last);
h. strncat(first, last, 3);

What do each of the following assign to n:
aint n
b.int n = strspn('beefeater", "abcdef");
n
n

(
(
¢ int = strspn("baccalaureate", "abc");
d. int n("baccalaureate", "rstuv") ;

= strspn("abecedarian", "abcde") ;

= strcsp

What does the following code print:
char* sl = "ABCDE";
char* s2 = "ABC';
if (stremp(sl,s2) < 0) cout << sl cc " < ' << 52 << endl;
el se cout << Sl << " >= " << 82 << endl;

What does the following code print:
char* sl = "ABCDE";
char* s2 = "ABCE";
if (strcmp(sl,s2) < 0) cout << sl << " < " << s2 << endl;
el se cout << sl << ' - - " << 82 << endl;

CHAP. 7] STRINGS 209

7.13 What does the following code print:

char* sl ="ABCDE';

char* g2 = "";

if (strcmp(sl,s2) < 0) cout << sl << " <" << 82 << endl;
el se cout << sl << ' >= " << 82 << endl;

7.14 What does the following code print:

char* sl = v,

char* s2 = "";

if (strcmp(sl,s2) == 0) cout << sl << " == " << s2 << endl;
el se cout << sl << "!= " «< 82 << endl;

Solved Problems

7.15 Explain why the following aternative to Example 7.12 does not work:

main()
{
char name[10] [20], buffer[20];
int count = O;
while (cin.getline(buffer,20))
nane[count] = buffer;
--count;
cout << "The nanes are:\n'";
for (int i =0; i < count; i++)
cout << "\t" << i << ", [" << name[i] << "1" << endl;

This does not work because the assignment
name [count] = buffer;

assgns the same pointer to each of the drings name [0], name [1], ec Amays canot be asigned
this way. To copy one aray into another, use S trepy (), ors trnepy ().

Solved Programming Problems

7.16 Writethes trcpy ()function.
This copies the dring s 2 into the gring s 1:

char* strcpy(char* sl, const char* g2)

{
for (char* p = sl; *s2;)
*P++ = *S2+4+;
o= '\0';

return sl;

210

7.17

7.18

STRINGS [CHAP. 7

The pointer p isinitialized at the beginning of s1. On each iteration of the for loop, the character
*s) iscopiedintothe character *p, andthen boths?2 andp areincremented. The loop continues
until *s2 is 0 (i.e, the null character \0). Then the null character is appended to the string s1 by
assgning it to *p. (Thepointerp wes left pointing to the byte after the last byte copied when the loop
terminated.)

Note that this function does not allocate any new storage. So itsfirst argument s1 should already
have been defined to be a character gring with the same length as S2.

Writethe s trncat () function.

This function appends up to n characters from s2 onto the end of s1. It isthe same as the
st r ca t () function except that itsthird argument n limits the number of characters copied:

char* strncat(char* sl, const char* s2, size_t n)
{

for (char* end = sl; *end; end++) ; // £ind end of sl
for (char* p = s2; *p & p - 82 < N;)
*end++ = *p++;

*end = '\0';
return sil;

The first for loop finds the end of string s1. That is where the characters from strings2 ae to be
appended. The second for loop copies charactersfroms2 to the locations that follow s 1. Notice how
the extra condition g = s2 <n limits the number of characters copied to n: the expression g

s2 equalsthe number of characters copied because it is the difference betweenqg (which pointsto the
next character to be copied) and s2 (which points to the beginmning of the string).

Note that this function does not allocate any new storage. It requiresthat string s1 haveat leastk
more bytes allocated, where k isthe smaller of n and the length of string s2.

Write and test a function that returns the plural form of the singular English word passed to it.

This requires tedting the last letter and the second from last letter of the word to be plurdized. We use
pointersp and g to access these letters.

void pluralize(char* s)
{

int len = strlen(s);

char* p = s + len - 1; // last letter

char* g = s + len - 2; // last 2 letters

if (*p == 'h' && (*q == 'c¢' Il *g == 's')) strcat(p, "es");
else if (*p == 's') strcat(p, '"es"):

else if (*p == 'y')

if (isvowel(*q)) strcat(p, "s"):
else strcpy(p, "ies");

else if (*p == 'z')
if (isvowel (*q)) strcat(p, "zes");
else strcat(p, "es");

else strcat(p, "s");

A

CHAP. 7] STRINGS 211

Two of the tests depend upon whether the second from last letter is a vowel, so we define a little
boolean functioni svowel () for tesing that condition:

int isvowel(char ¢c)
{

return (¢ == "'a || ¢ == 'e" |l ¢ == 'i' || ¢ == 'O’
C

The tet driver repeatedly reads a word, prints it, pluraizes it, and prints it again. The loop terminates
when the user enters asingle blank for aword:

#include <iostream.h>
#include <string.h>

void pluralize(char*);
main ()

{
char word[80];

for (;;) A
cin.getline (word, 80);
if (*word == ') break;

cout << "\tThe singular is [" << word << "].\n";
pluralize (word) ;
cout << "\t The plural is [" << word << "].\n"; ,

212

7.19

STRINGS [CHAP. 7

Write a program that reads a sequence of names, one per line, and then sorts and prints them.

We assume that names have no more than 25 characters and that there will be no more than 25

names. We'll read all theinput in at once and storeit al inasingle buffer. Snce exh name will be
terminated with aNUL character, thebuf f er needsto be large enough to hold 25%(20 + 1) + 1 char-
acters (25 21-character strings plus one last NUL character).

The program is modularized into five function calls. The call input (bu f f er) reads everything

into the buf fer. The call t okeni ze(name, numNames, buffer) “tokenizes” the buffer,
storing pointers to its names in the name array and returning the number of names in numNames.
Thecal print(name, numNames) prints dl the names tha ae dored in buf f er. The cl

sort(nane, numNames) does an indirect sort on the names dored in buf f er by rearanging the
pointers stored inthe nane array.

#include <iostream.h>
#include <string.h>

const int nameLength = 20;

const int maxNumNames = 25;

const int bufferLength = maxNunNames*(nameLength + 1);
void input(char* buffer);

voi d tokeni ze(char** name, int& numNames, char* buffer);
void print(char** nane, int numNames);

voi d sort(char** nane, int numNames) ;

main()
{
char* name[maxNumNanes] ;
char buffer[bufferLength+1];
int numNames;
input (buffer) ;
tokeni ze(nane, numNames, buffer)
print (name, numNames) ;
sort(nane, numNames) ;
print (name, numNames) ;

The entire input is done by thesinglecall cin.getline (buffer, buf ferLength, '$"')
This reads characters until the “$” character isread, storing all the characters in buffer.

// Reads up to 25 strings into buffer:
void input(char* buffer)

{
cout << "Enter up to ' << maxNumNames << " names, one per line.'
<< " Terminate with \'$\'.\nNanes are |limted to !
<< namelLength << " characters.\n";
cin.getline(buffer, bufferlength, '$');
}

The t okeni z e () function uses the st r t ok () function to scan through the bu f f er, “token-
izing” each substring that ends with the newline character \ n and storing its address in the nanme
array. Thef or loop continuesuntil p pointsto the sentinel $. Notice that the function’s nane
parameter is declared asa char* % becaie it is an aray of pointers to chars. Al note that the
counter n isdeclaredasan int & (pased by reference) s that its new veue is refurned to main ()

CHAP. 7] STRINGS 213

// Copi es address of each string in buffer into name array:
void tokenize(char** name, int& n, char* buffer)
{

char* p = strtok (buffer, "\n"); // p points to each token
for (n =0, p & *p != '$'; n++) {
nane[n] = p;

p = strtok(NULL, "\n");

The print () and sort () functionsaresimilar to those seen before, except that both operate
here indirectly. Both functions operate on the nane aray, usng to acess the names tha ae dored in
bu f f er. Noticethat the sort () function changesonly thenanme array;thebu f f er isleft
unchanged.

// Prints the n nanes stored in buffer:
void print(char** name, int n)

cout << "The nanes are:\n";
for (int i = 0; i < n, i+
cout << "\t" << i+ << "." << name[i] << endl;
}

// Sorts the n nanes stored in buffer:
void sort(char** name, int n)

{
char* tenp;
for (int i =1, i < n; i+ // Bubbl e Sort
for (int | =0;] < n-i; j++)

if (strcmp(name[j], name[j+1]) > 0) {
tenmp = namelj];
nane[j] = name[j+1];
name[j+] = tenp;

214 STRINGS [CHAP. 7

On this sample run the user entered 7 names and then the sentinel “$”. The names were then printed,
sorted, and printed again.

7.20 Write and test a function to reverse a string in place, without any duplication of characters.

Thefunction fird locaes the end of the dring. Thenit swapsthefirst character with the last charac-
ter, the second character with the second from lastcharacter, etc.:

voi d reverse(char* g)
{
for (char* end = s; *end; end++); // find end of s
char tenp;
while (s < end 1) {
temp = *--end,

*end = *s;
*s++ = tenp;
}
}
The tet driver uses the get 1 ine () functionto readthestring. Thenit printsit, reversesit, and
prints it again:

void reverse(char*); ‘

main()
{

char string[80];

cin.getline(string, 80);

cout << "The string is [" << string << "].\n";
reverse(string);

cout << "The string is [" << string << "].\n";

Supplementary Programming Problems

7.21 Write and run the variation of the program in Example 7.3 that uses whil e (cin >> word)
insteadof do..while (*word).

7.22 Writethes trchr ()function.

CHAP. 7] STRINGS 215

7.23

124
7.25
7.26
727
7.28
729
7.30
7.31

732
733
734
735
7.36
737

7.38

739

7.40

Write a function that returns the number of occurrences of a given character within a given
string.

Writeandtesthes t rr 1en () function.
Write and test the s trrchr () function.
Write and test the s trs tr () function.
Writeand test the s trncpy () function.
Writtandtet thest rca t () function.
Write and test the s trcmp () function.
Write and tet the s trncnp () function.
Writeand test thes trchr () function.
Writeandtestthes trrchr () function.
Write ad tet the strs tr () function.
Write and tes the s trspn () function.
Write and test the s trcspn () function.
Writeandtest thes trpbrk ()function.

Write a function that returns the number of words that contain a given character within a given
sring. (See Example 7.19.)

Write a (nonrecursive) function that determines whether a given string is a palindrome. (See
Problem 5.29.)

Firg, try to predic whet the following program will do to the sing s (See Bxample 7. 19.) Then
run the program to chedk your prediction.

#include <iostream.h>
#include <string.h>
// Test-driver for the strtok() function:

main()
{
char s[] = "###ABCDH#EFGHH#HITK#LHAMN###H#H#OHPHEHHH";
char* p;
cout << "The string is: [" << s << "]\nIts tokens are:\n";
p = strtok(s, "#");
while (p) {
cout << "\t[" << p << "]\n";
p= strtok(NULL, "#");
} '
cout << "Now the string is: [" << s << "]\n";

Write a program that reads one line of text and then prints it with all its letters capitalized.

216

7.41
7.42

7.43

7.44

7.45

7.46

1417

7.48

7.49

STRINGS [CHAP. 7

Write a program that reads one line of text and then prints it with al its blanks removed.

Write a program that reads one line of text and then prints the number of vowels that were
read.

Write a program that reads one line of text and then prints the number of words that were read.

Write a program that reads one line of text and then prints the number of four-letter words that
were read.

Write a program that reads one line of text and then prints the same words in reverse order. For
example, the input

today is Tuesday
would produce the output
Tuesday is today

Write a program that reads one line of text and then prints it with each word reversed. For
example, the input

Today is Tuesday
would produce the output
yadoT si yadseuT

Write a program that reads one line of text and then prints it with the following changes. to
every occurrence of “he” is added “or she”; to every occurrence of “him” is added “or her”; to
every occurrence of “his’ is added “or hers’.

Write a program that reads up to 50 lines of text, each line containing up to 80 characters, and
then prints al the lines in reverse order. For example, the input

Al in the golden afternoon
Full Tleisurely we glide;

For both our oars, wth little skill,
By little arns are plied.

would produce the output

By little arms are plied.

For both our oars, wth little skill,
Full leisurely we glide;

Al in the golden afternoon

Write a program that reads up to 50 lines of text, each line containing up to 80 characters, and
then prints all the words on each line in reverse order. For example, the input

Al in the golden afternoon

Full | ei surely we glide;

For both our oars, wth little skill,
By little arnms are plied.

would produce the output

afternoon golden the in Al

skill, little with oars, our both For
glide; we leisurely Full

plied. are arns little By

CHAP. 7] STRINGS 217

7.50

7.51

7.52

7.53

7.54

7.55

Write a program that reads up to 50 lines of text, each line containing up to 80 characters, and
then prints al the words on each line in alphabetical order. For example, the input

Al in the golden afternoon

Full leisurely we glide:

For both our oars, wth little skill,
By little arms are plied.

would produce the output

afternoon Al golden in the

Full glide; leisurely we

both For little oars, our skill, with
are arns By little plied.

Write a program that reads up to 50 lines of text, each line containing up to 80 characters, and
then reformats text so that no line has more than 40 characters. For example, the input

"The first thing 1've got.to do," said Alice to herself, as she wan-
dered about in the wood, "is to grow to ny right size again; and the
second thing is to find ny way into that |ovely garden.

would produce the output

"The first thing I've got to do," said
Alice to herself, as she wandered about
in the wood, "is to grow to ny right size
again, and the second thing is to find ny
way into that |ovely garden.

Write a program that encodes and then decodes a line of text. The program should first input

the shift key k to the encoding; this will be an integer in the range 1 to 25. Then the program
will read a line of text, print it, encode it, print the resulting cyphertext, decode it, and then
print the resulting plaintext to show that it is the same as the original text. The encoding and

decoding should be done by separate functions. A letter is encoded simply by adding k to it,

and it is decoded by subtracting k from it. Both operations must “wrap around” the' end of the

aphabet, so for example W would be encoded to B and a' would be decoded to 'y

if K were 6.

Write a program that plays the game of Hangman.

Write a function that prints a random sentence. Use the following arrays.

char* article([5] = {"a", "sone", "that", "this", "the"}
char* noun[5] = ("boy", "dog*, "girl", "man", "wonan"};
char* verb[5] = {"barked at", "bit", "kissed", "spoke to"};

Write and test the following function that tallies the frequencies of each of the 26 letters
(regardless of case) in the given string:

voi d tally(int frequencyl[], const char* s)

So after returning, frequency [0] will be the number of occurrences of either A or a
ins, frequency [1 !will bethe number of occurrences of either B or b ins etc

218

7.56

7.57

71

7.2
7.3
74

7.5

7.6

STRINGS [CHAP. 7

Write and test the following function that deletes all duplicate characters in the given string:
voi d del Dups(char* s)

For example, if s is the string ' ABrRacaDiBRA ", then dfter the cdl de 1Dups (s) the string
would be reduced to * ARD ' .

Write and test the following function that deletes all occurrences in s 1 of characters in s2:
voi d del (char* sl, const char* s2)

For example, if g1 isthe string " ABRACADABRA ', ands listhestring " a8 ", and then dter
the call del (s1, s2) thestring s 1 would be reduced to' RCDR ".

Answersto Review Questions

Among the 13 declarations:

a. Thefollowing are valid declarations for a C++ character string:
char s[6];
char s{6] = {"H, '€, '1', '1l', '0'};
char s[6] = "Hel |l 0";
char s(] = {'H, 'e, '1', 'l', '0'};
char s[] = "Hel | o";

char* s;
char* s = new char[6];
char* s = "Hello";

b. The following are valid declarations for a C++ character string of length 5, initialized to the string
"Hel | 0" and allocated at compile time:

char s[6] = {'H, 'e, '1', '1', '0'};
char s[6] = "Hell 0o";
char g(1={H, 'e, '1+,'1", "0},
char g[] = "Hello";
char* s = "Hello";
c. Itisnot possibletoinitialize astring like this at run time.
The following are valid declarations for a C++ character string as a formal parameter for a func-
tion:
char s[];
char* s;

Thiswill read only asfar asthe first whitespace. For the given input, it would assign "Hel lo, " to s.
This counts the number of uppercase leiters in the dring s SO the output is 6.

This changes dl uppercae letters to lowercase in the dring S:
123 w. 42nd st., ny, ny 10020-1095

Note that to change the case of a chaacter *p, it must be asigned the retun vaue of the function:
*p = tolower (*p);

Thisincrements all uppercase letters, changing thew to anX,theS toaT, etc.:
123 X 42nd Tt., o0z, o0z 10020-1095

This counts the number of punctugtion characters in the dring s, so the output is 5.

CHAP. 7] STRINGS 219

7.7 This changes each character that is followed by a punctuation character to that following character:
123 . . 42nd S.,, N,, NY 1002--1095

78 Theassignmentsl =s2 simply makessl asynonymfors2 ;i.e., they both point to the same char-
acter. Thecall s trepy (s1, s2) actually copiesthe charactersof s2 into the dring s 1, thereby
duplicating the string.

7.9 a. Thisassignstheinteger 10 ton.
b. This assigns the substring*r f ord ' tos 1.
c. Thisassignsthe substring'rd " tos1.
d. This assigns the substring " ut her f ord" to sl .
e. Thiscopieslas t tof i r st, sothaf i rst willdsobethedring Hyes " .
J. This copies the subsring " Hay * into thefirstpartof first, makingit"Hayherford".
g. Thisappends | ast ontotheendof fi rst, maki ngit "RutherfordHayes".
h. This appends the substring " Hy " onto the end of firs t, maing it "Ruther fordHay".

7.10 a. 7.

2o s
N oo

7.11 1t prints. ABCDE >= ABC
7.12 It prints. ABCDE < ABCE
7.13 It prints. ABCDE >=

7.14 1t prints. ! =

Chapter 8

Classes

8.1 INTRODUCTION

A classislike an aray: it is a derived type whose eements have other types. But unlike an
aray, the dements of a class may have different types. Furthermore, some eements of a class
may be functions, including operators.

Although any region of storage may generdly be regarded as an “object”, the word is usudly
used to describe variables whose type is a class. Thus “object-oriented programming” involves
programs that use classes. We think of an object as a sdf-contained entity that stores its own data
and owns its own functions. The functiondity of an object gives it life in the sense that it
“knows’ how to do things on its own.

There is much more to object-oriented programming than smply including classes in your
programs. However, thet is the first step. An adequate treatment of the discipline lies far beyond
an introductory outline such as this.

8.2 CLASS DECLARATIONS

Hereisaisdeclaration for a class whose objects represent rational numbers (i. €, fractions):

cl ass Rational {
public:
void assign(int, int);
doubl e convert();
void invert();
void print();
private:
int num den;
bi
The declaration begins with the keyword class followed by the name of the class and ends
with the required semicolon. The name of this classis Rat ional.

The functions assign(), convert(), invert (),and print () are cdled member
functions because they are members of the class. Smilarly, the varidbles num and den are
caled member data. Member functions are aso called methods and services.

In this class, dl the member functions are designated as publ i ¢, and dl the member data
aredesgnated aspri vate. Thedifferenceisthat publ ic members are accessible from outside
the class, while pri vat e members are accessible only from within the class. Preventing access
from outdde the dass is cdled “information hiding.” It dlows the programmer to compartmen-
talize the software which makes it easer to understand, to debug, and to maintain.

The following example shows how this class could be implemented and used.

220

CHAP. 8] CLASSES

EXAMPLE 81 Implementing the Rat iomal Class

class Rational

public:
voi d assign(int,
doubl e convert();
voi d invert();

voi d print();

int);

private:
int num den;
i
main ()
{
Rational x;
X.assign(22,7);
cout << 'x = '; x.print();
cout << ' = 1 << x,convert() <<
x.invert();
cout << "l/x ="; x.print();
}
void Rational: :assign(int nunerator,
{
num = nunerator;
den = denom nator;
doubl e Rational ::convert()
{
return doubl e(nunj / den;
voi d Rational::invert()
int tenp = num
num = den;
den = tenp;
}
voi d Rational::print()
cout << num << << den;
}
x = 2277 = 3714286
Ui = w2

221

endl ;

cout << endl;

int denom nator)

Here x is declared to be an object of the Rat ional class. Consequently, it hasits own interna data

members num and den,
convert (),
prefixing its name with the name of its owner: X .
called this way. We say that the object x “owns’ the call.

and it has the ability to cal the four class member functions as s
invert (),andprint ().Notethat amember functionlike invert ()
i nvert

ign ()
is caled by
() . Indeed, a member function can only be

222 CLASSES [CHAP. 8

An object like x is declared just like an ordinary variable. Itstypeis Rat i onal . We can think of
this type as a “user-defined type” C++ dlows us to extend the definition of the programming language by
adding the new Rational type to the collection of predefined numeric types int, f 1 oat, ec We can
envision the object x like this:

num
X
den
Notice the use of the specifier Rational : as a prefix to each function name. This is necessary for

each member function definition that is given outside of its class definition. The scope resolution operator

is used to tie the function definition to the Rational class. Without this specifier, the compiler
wouldnot know that the function being defined is a member function of the Rat ional cdass This can
be avoided by including the function definitions within declaration, as shown below in Example 8.2

When an object like the Rat ional object x in Example 8.1 is declared, we say that the
class has been instantiated, and we cdl the object an instance of the class. And just as we may
have many variables of the same type, we may dso have may instances of the same class.

Rational x, vy, z;
EXAMPLE 82 A Sdf-Contained Implementation of the Rat ional Class

Here's the same Rat ional classwith the definitions of its member functions included within the
class declaration:

cl ass Rational {
public:
void assign(int n, int d) { num= n; den = d; }
doubl e convert() { return doubl e(num/den; }
void invert() { int temp = num num = den; den = tenp; }
void print() { cout << num << ‘/’' << den; }
private:
int num den;
i

In most cases, the preferred style is to define the member functions outside of the class decla
ration, using the scope resolution operator as shown in Example 8.1. That format physicaly sep-
arates the function declarations from their definitions, consgtent with the generd principle of
information hiding. In fact, the definitions are often put in a separae file and compiled sepa
rately. The point is that application programs that use the class need only know what _the objects
can do; they do not need to know how the objects do it. The function declarations tell what they
do; the function definitions tell how they do it. This of course is how the predefined types (i nt ,
doubl e, etc.) work: we know what the result should be when we divide one float by another, but
we don't redly know how the divison is done (i.e., what dgorithm is implemented). More
importantly, we don’'t want to know. Having to think about those details would distract us from
the task a hand. This point of view is often called information hiding and is an important princi-
ple in object-oriented programming.

CHAP. 8] CLASSES 223

When the member function definitions are separated from the declardtions, as in Example
8.1, the declaration section is cdled the class interface, and the section containing the member
function definitions is cdled the implementation. The interface is the part of the class that the
programmer needs to see in order to use the class. The implementation would normdly be
conceded in a separate file, thereby “hiding” tha information that the user (i.e., the programmer)
does not need to know about. These class implementations are typically done by implementors
who work independently of the programmers who will use the classes that they have imple-
mented.

8.3 CONSTRUCTORS

The Rat ional classdefined in Example 8.1 usesthe assign () function to initidize its
objects. It would be more naturd to have this initidization occur when the objects are declared.
That's how ordinary (predefined) types work:

int n = 22;
char* s = "Hello";

C++ dlows this smpler style of initidization to be done for class objects usng constructor
functions.

A constructor is a member function that is caled autometicaly when an object is declared.
A condructor function must have the same name as the class itsdf, and it is declared without
return type. The following example illustrates how we can replacetheass ign () function with
a constructor.

EXAMPLE 83 A Constructor Function for the Rat i onal Class

class Rational {
public:
Rational(int n, int d) { num = n; den = d; }
void print() { cout << num << '/’ << den; }
private:
int num den;
Y

main()

{
Rational x(-1,3), y(22,7);
cout << "x = ";
x.print();
cout << "and y = ";
y.print();

x= =1/3and y = 22/7

The constructor function has the same effect as the ass ign () function had in Example 8.1: it initidizes
the object by assigning the specified values to its member data When the declaration of x executes, the
constructor is called automatically and the integers -1 and 3 are passed to its parametersn andd. The

224 CLASSES [CHAP. 8

function then assigns these vaues to X s num and den data members. So the declarations
Rational x(-1,3), y(22,7);
are equivalent to the three lines
Rational x, v;
x.assign(-1,3);
y.assign(22,7);

A dass's condructor “congructs’ the class objects by alocating and initidizing storage for
the objects and by performing any other tasks that are programmed into the function. It literdly
cregtes alive object from a pile of unused bits.

We can visudize the rdationships between the Rational dass itsdf and its indtantiated
objects like this.

Rational () x| "™
Rat i onal print () denc3|
\)
Y

The dass itdf is represented by a rounded box containing its member functions. Each function
maintains a pointer, named “t hi s", which points to the object that is cdling it. The snapshot
here represents the status during the execution of the last line of the program, when the object v
iscalingthe print () function: y . print (). At tha moment, the “this" pointer for the
constructor points to no object because it is not being called.

A class may have severa congructors. Like any other overloaded function, these are digtin-
guished by ther distinct parameter ligts.

EXAMPLE 84 Adding More Constructors to the Rati onal Class

cl ass Rational {
publ i c:
Rational0 { num = 0; den = 1; }
Rational(int n) { num = n; den = 1; }
Rational (int n, int d) { num= n; den = d; }
void print() { cout << num << '/’ << den; }
private:
int num den;

}i

main ()
{
Rational x, y(4), z(22,7);
cout << "x =";
X.print (),
cout << "\ny = ",
y.print (),
cout << "\nz = ",
z.print ();

CHAP. 8] CLASSES 225

The output looks like this:

¥=0/1
¥y =4/1
=277

Z

This version of the Rat ional class has three congtructors. The first has no parameters and initial-
izes the declared object with the default values 0 and 1. The second constructor has one integer parameter
and initidizes the object to be the fractiona equivalent to that integer. The third constructor is the same as
in Example 8.2

Among the various congructors that a class may have, the smplest is the one with no param-
eters. It is caled the default constructor. If this congtructor is not explicitly declared in the class
definition, then the system will automaticaly creete it for the dass. That is what happens in
Example 8.1.

8.4 CONSTRUCTOR INITIALIZATION LISTS

Most condtructors do nothing more than initidize the object’s member data. Consequently,
C++ provides a specid syntactica device for congtructors that smplifies this code. The device is
an initialization list.

Here is the third condructor in Example 8.2, rewritten using an initidization list:
Rational (int n, int d) : num(n), den(d) {}

The assgnment statements in the function’s body that assgned n to num and d to den are
removed. Ther action is handled by the initidization list shown in boldface. Note that the list
begins with a colon and precedes the function body which is now empty.

Hereisthe Rat ional dlass with its three congtructors rewritten using initidizer ligs.

EXAMPLE 85 Using Initializer Listsin the Rat i onal Class

cl ass Rational {

publiic:
Rational 0 : num(0), den(l) { }
Rational(int n) : num(n), den(l) { }
Rational(int n, int d) : num(n), den(d) {1}
private:

int num den;
i

Of course, these three separate constructors are not necessary. They can be combined into a
sngle condructor, usng default parameter vaues.

226 CLASSES [CHAP. 8

EXAMPLE 86 Using Default Parameter Valuesin the Rat i onal Class Constructor

cl ass Rational {

public:
Rational (int n=0, int d=l) : num(n), den(d) {}
private:

int num den;
b

main()
{

Rational x, y(4), z(22,7);
}

Here, x will represent O/l, vy will represent 4/1, and z will represent 22/7.

Recdl that the default values are used when actud parameters are not passed. So in the declaration of
the Rat 1ional object X where no values are passed, the formal parameter n is given the default value
0 which is then assigned to x . num and the forma parameter d is given the default value 1 which is then
assgnedto x . den. In the declaration of the object y where only the value 4 is passed, the formal
parameter n is given that value 4 which is then assigned to y . num and the forma parameter d is given
the default value 1 which is then assigned to v . den. No default vaues are used in the declaration of z

8.5 ACCESS FUNCTIONS

Although a class's member data are usudly declared to be pri vat e to limit accessto them, it is
aso common to include publ i ¢ member functions that provide read-only access to the data.
Such functions are caled access functions.

EXAMPLE 87 Access Functions in the Rat i onal Class

cl ass Rational {
public:
Rational (int n=0, int d=l) : num(n), den(d) {}
int numerator0 const { return num }
int denom natorO0 const { return den; }
private:
int num den;
}i

main()
{

Rat i onal x(22,7);

cout << X.numerator() << '/' << X.denom nator() << endl;
}

2277

The functions nuner at or () and denoni nat or () return the values of the pri vat e member data.

CHAP. §] CLASSES 227

Nate the use of the const keyword in the dedaaions of the two aoess fundions This dlows the
functions to be goplied to condat ojeds (See Sadion 89)

8.6 PRIVATE MEMBER FUNCTIONS

Class member data are usually declared to be private and member functions are usualy
declared to be publ i c. But this dichotomy is not required. In some cases, it is useful to declare
one or more member functionsto bepri vate. Assuch, these functions can only be used within
the dlassitsdf; i.e, they arelocd utility functions.

EXAMPLE 88 Using private Member Functions gcd () and reduce ()

cl ass Rational {

public:
Rational (int n=0, int d=l) : num(n), den(d) { reduce(); }
voi d print() { cout << num << '/' << den << endl; }
private:
int num den;
int ged(int j, int k) {if (k==O return j; return gcd(k,j%); }

void reduce() { int g = gcd{(num den); num /= g; den /= g; }
}i /

main ()

{
Rat i onal ~(100, 360);
X.print();

/1B

This vedon indudes two private fundions The gcd () fundion reums the grestet common divi-
o of the two integers passad to it. The reduce () function usesthe gcd () to reduce the fraction
num/den to lowes tems Thus the fraction 100/360 is dored as the ojet 5/18.

Indeed of having a spaate reduce () function, we could have done the actual reduction within
the constructor. But there are two good reasons for doing it this way. Combining the construction with
the reduction woud vidae the software prindple that sparate tasks dhoud be hended by sgpaae func
tions Moreover, the reduce () funcion will be nexded laer to reduce the reslits of aithmeic opaa
tions performed on Rat i onal objects.

Note that the keywords publ i ¢ and private arecaled access specifiers; they secify
whether the members are accessible outside the class definition. The keyword pr ot ect ed isthe
third access specifier. It will be described in Chapter 11.

87 THE COPY CONSTRUCTOR

Every class has at least two constructors. These are identified by their unique declarations:.

X();: // default constructor
X(const X&) ; // copy constructor

228 CLASSES [CHAP. 8

where X is the class identifier. For example, these two Specia congtructors for a W dget class
would be declared:

Widget () ; // default constructor
Widget (const Wdget&); // COpy constructor

The first of these two specid congructors is caled the defaulr constructor; it is caled automaticaly
whenever an object is declared in the smplest form, like this

Wdget x;

The second of these two specia congructors is caled the copy constructor;, it is cdled
automatically whenever an object is copied (i.e,, duplicated), like this

Wdget y(x);

If either of these two condructors is not defined explicitly, then it is automaicaly defined
impliatly by the system.

Note that the copy constructor takes one parameter: the object that it is going to copy. That
object is passed by constant reference because it should not be changed.

When the copy congtructor is caled, it copies the complete state of an existing object into a
new object of the same class. If the class definition does not explicitly include a copy congtructor
(as dl the previous examples have nat), then the system automaticaly creates one by defaullt.
The ability to write your own copy constructor gives you more control over your software.

EXAMPLE 89 Adding a Copy Constructor tothe Rat ional Class

class Rational ¢

public:
Rational (int n=0 int d=l) : num(n), den(d) { reduce(); }
Rational (const Rational & r) : num(r.num), den(r.den) { }
void print() { cout << num << '/' << den; }

private:
int num den;
int ged(int m int n) {if (n==0 return m return gcd(n, n¥&); }
void reduce() { int g = gcd(num den); num /= g; den /= g; }

}i

main ()
Rat i onal ~(100, 360) ;
Rational y(x);
cout << "x = '"; x.print(); cout << ",y = "'; y.print();

}
X =5/18, y = 5/18

The copy constructor copies the num and den fields of the parameter r into the object being con-
structed. When vy is declared, it cals the copy constructor which copies x into y.

Note the required syntax for the copy congtructor: it must have one parameter, which hasthe
same class as that being declared, and it must be passed by congtant reference: cons t X&.

CHAP. 8] CLASSES 229

The copy congructor is caled automaticaly whenever
. an object is copied by means of a declaration initidization;
. an object is passed by vaue to afunction;
. an object isreturned by vaue from a function.

EXAMPLE 810 Tracing Calls to the Copy Constructor

class Rational {

public:
Rational (int n, int d) : num(n), den(d) {}
Rational (const Rational& r) : num(r.num, den(r.den)
{ cout << "COPY CONSTRUCTOR CALLED\n"; }
private:

int num den;

}i

Rational f(Rational r) // calls the copy constructor, copying ? to r
{
Rational s = r; // calls the copy constructor, copying r to s
return s; // calls the copy constructor, copying s to ?
}

main ()

{
Rat i onal x(22,7);
Rational y(x); // calls the copy constructor, copying X toy
fly);

}

COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED

COPY CONSTRUCTOR CALLED

In this example, the copy constructor is called four times. It is called when v is declared, copying x to

y; it is called when y is passed by value to the function £, copying v to r; it is caled when s is
declared, copying r tos; and it is called when the function f returns by value, even though nothing is
copied there. Note that the initialization of s looks like an assignment. But as pat of a declaration it cals
the copy constructor just as the declaration of y does.

If you do not include a copy condructor in your class definition, then the compiler generates
one autometically. This “default” copy congructor will smply copy objects bit-by-bit. In many
casss, this is exactly what you would want. So in these cases, there is no need for an explicitly
defined copy constructor.

However, in some important cases, a bit-by-bit copy will not be’ adequate. The String
class, defined in Chapter 10, is a prime example. In objects of that class, the relevant data
member holds only a pointer to the actua string, so a bit-by-bit copy would only duplicate the
pointer, not the gring itsdf. In cases like this, it is essentid that you define your own copy
constructor.

230 CLASSES [CHAP. 8

88 THE CLASS DESTRUCTOR

When an object is created, a condructor is cdled automaticaly to manage its birth.
Similarly, when an object comes to the end of its life, another speciad member function is called
automaticaly to manage its death. This function is caled adestructor.

Each dass has exactly one dedtructor. If it is not defined explicitly in the dass definition,
then like the default constructor, the copy constructor, and the assgnment operator, the destruc-
tor is created automaticaly.

EXAMPLE 8.11 Including a Destructor in the Rat ional Class

class Rational {
public:
Rational () { cout << "OBJECT |S BORN.\n"; }
~Rational() { cout cc "OBJECT DIES.\n"; }
private:
int num den;

}i
main()
{
{
Rational x; // begi nning of scope for x
cout << "Now X is alive.\n";
} // end of scope for x
cout << "Now between blocks.\n";
{
Rational vy;
cout << "Now y is alive.\n";
}
}

Now x is alive. , .
OBJECT DIES.
Now between blocks.
OBJECT IS BORN.
Now y i= alive.
OBJECT DIES.

The ouput hae shows when the condrudor and the desrudor ae cdled.

The class destructor is called for an object when it reaches the end of its scope. For a loca
object, thiswill be a the end of the block within which itisdeclared. For as tat ic object, it
will be & then end of themai n () function.

Although the sysem will provide them automaticdly, it is conddered good programming
practice dways to define the copy congtructor, the assgnment operator, and the destructor within
each class definition.

CHAP. 8] CLASSES 231

8.9 CONSTANT OBJECTS

It is good programming practice to make an object congtant if it should not be changed. This
is done with the const keyword:
const char blank = ';

!

const int mexint = 2147483647;

const double pi = 3.141592653589793;
void init(float a[], const int size);

Like variables and function parameters, objects may aso be declared to be constant:
const Rational pi(22,7);
However, when this is done, the C++ compiler restricts access to the object’ s member functions.
For example, withthe Rat ional classdefined previoudy, theprint () function could not be
cdled for this object:
pi.print(); // error: call not allowed
In fact, unless we modify our class definition, the only member functions that could be called for
const objects would be the constructors and the destructor. To overcome this restriction, we
must declare as congtant those member functions that we want to be able to use with const
objects.
A function is declared congtant by inserting the cons t keyword between its parameter list
and its body:
void print() const { cout << num << '/' << den << endl; }
This modification of the function definition will dlow it to be cdled for congant objects:
const Rational pi(22,7);
pi.print(); // 0.K. now

8.10 STRUCTURES

The C++ ¢ lass isagenerdization of theC s truc t (for “structure”) which is a class with
only publ i ¢ members and no functions. One normdly thinks of a class as a sructure that is
given life by means of its member functions and which enjoys information hiding by means of
private data members.

To remain compatible with the older C language, C++ retainsthe s truc t keyword which
dlows s truc tsto be defined. However, a C++ s truc t isessentidly the sameasaC++
class. The only significant difference between a C++ s truc t andaC++ class iswiththe
default access specifier assigned to members. Although not recommended, C++ classes can be
defined without explicitly specifying its member access specifier. For example,

cl ass Rational {
int num den;

isavdid definition of a Rat ional class. Since the access specifier for its data members num
and den isnot pecified, itisset by default tobeprivate. If wemakeitas truc t instead of
a class
struct Rational {
int num den;

}i

232 CLASSES [CHAP. 8

then the data members are set by default to be publ i c. But this could be corrected Smply by
Specifying the access pecifier explicitly:

struct Rational ({
private:
int num den;

Jo

So the difference between aclass and aC++ s truc t isredly just cosmetic.
8.11 POINTERS TO OBJECTS

In many applications, it is advantageous to use pointers to objects (and structs). Hereisa
smple example

EXAMPLE 8.12 Using Pointers to Objects

class X {
public:

int data;
}i

main()

{
X* p = new x;
(*p) .data = 22; // equivalent to p->data = 22
cout << "(*p).data = " << (*p).data << " = " << p->data << endl';
p->data = 44;
cout << " p->data

" << (*p).data << " = " << p->data << endl;

o
a4

(*p)-data
Ll

e

o

i

Since p isapointer to an x object, *p isan x object,and (*p) . data accessesits (publ i c) data
member dat a. Note that parentheses are required in the expression (*p) . data because the dirett
member sdedion opador “ ” has higher precsdence than the derdferendng oparator “*”. (See Appandix
C)

The two notations
(*p) .data

p->data

have the same meaning. When working with pointers objects, the “arow” symbol “->” is
preferred because it is Smpler and it suggests “the thing to which p points.”

Here is a more important example:

CHAP. 8] CLASSES 233

EXAMPLE 813 A Node Class for Linked Lists

This definesa Node class each of whose objects contain an i nt data member and a next pointer.

The program alows the user to create a linked list in reverse. Then it traverses the list, printing each
data vaue

cl ass Node {

public:
Node(int d, Node* p=0) : data(d), next(p) {1}
int data;
Node* next;
i
main ()
{
int n;
Node* p;
Node* qg=0;
while (cin >> n) {
p = new Node(n, q);
g = p;
}
for (; p->next; p = p->next)
cout << p->data << " -> ";

cout << "*\n';
}

88 77 66 55 44 33 22D .‘
22 => 33 > 44 > 55 > 66 >]I > *

First note that the definition of the Node class includes two references to the class itsdlf. This is alowed

because each reference is actualy a pointer to the class. Also note that the constructor initidizes both data
members.

The whi 1 e loop continues reading int sinto n until the user enters the end-of-file character
(Control-D on Mac and UNIX systems, and Control-Z on DOS and VAX sysems). Within the loop, it
gets a new node, inserts the int into its data member, and connects the new node to the previous node
‘(pointed to by q) . Findly, the f or loop traverses the list, beginning with the node pointed to by p
(which is the last node constructed) and continuing until p- >next iSNUL (inwhich case, p will be
pointing to the last node in the list).

The list condructed in this example can be visudized like this:

d p

[22 f@F—>{ 33 [@—>] 44 [@F—>{ 55 [@F—>{ 66 [@]—>{ 77 |

234 CLASSES [CHAP. 8

812 STATIC DATA MEMBERS

Sometimes a single value for a data member gpplies to al members of the class. In this case,
it would be inefficient to store the same vaue in every object of the class. That can be avoided by
declaring the datamember to be st ati c. Thisisdone by induding thest ati ¢ keyword at the
beginning of the variable's declaration. It dso requires that the varidble be defined globdly. So

the syntax looks like this

class X {
public:
static int n; // declaration of n as a static data nenber
b
int XX:n = o; // definition of n

Sdic vaiadles ae automaticdly initidized to O, so the explicit initidization in the definition is
unnecessary unless you want it to have a non-zero initid value.

EXAMPLE 814 A static Data Member

The W dget class maintains a s tat i ¢ daa member count which keeps track of the number of
W dget abjectsin existence globally. Each time a widget is created (by the constructor) the counter is
incremented, and each time a widget is destroyed (by the destructor) the counter is decremented.

class Wdget {

public:
Widget () { ++count; }
~Widget () { --count; }
static int count;

i

int Widget::count = O;

main()
{
Wdget w, Xx;
cout << "Now there are " << w.count << ' widgets.\n";
{
Wdget w, x, vy, z
cout << "Now there are ' << w.count << " widgets.\n";

}
cout << "Now there are " << w.count << " widgets.\n";

W dget v;
cout << "Now there are " << w.count << " widgets.\n";
}

Now there are 2 widgets

Now there are 6 w '

Now there are 2

Now there are 3 widg .
Notice how four widgets are created inside the inner block, and then they are destroyed when program
control |eaves that block, reducing the global number of widgets from 6 to 2.

CHAP. §] CLASSES 235

A datic data member is like an ordinary globa variable: only one copy of the varidble exists

no matter how many instances of the class exist. The main difference is tha it is a data member
of the class, and so may be private.

EXAMPLE 815 A static Data Member that is private
cl ass Wdget {
public:
Widget () { ++count; }
~Widget () { --count; '}
i nt numWidgets() { return count; }
private:
static int count;
}i

int Widget::count = O0;

main ()
{
Wdget w, Xx;
cout << "Now there are " << w.numWidgets() << " widgets.\n";
{
Wdget w, x, vy, z
cout << "Now there are " << w.numWidgets() << " widgets.\n";

cout << "Now there are " << w.numWidgets() << " widgets.\n";
W dget v;

cout << "Now there are " << w.numWidgets() << " widgets.\n";

This works the same way as Example 8.14. But now that the st ati ¢ variablecount isprivate, we
need the access function numiWwidget s () toread count inmain().

The relationships among the class, its members, and its objects can be visudized like this.

N\

widget () @ 4 w
Widgot ~Widget ()

numWidgets () @ \/ x D
K count yl':]

The rounded box represents the class itsdf which contains the three member functions and the
data member count. Thepubl i ¢ members are above the line and the pri vat e member(s)
are below it. Each member function maintains a pointer (named “t hi s") which poaints to the
object that owns the current function cal. This sngpshot shows the status during the execution of
the lagt line in the program: three widgets w. x. and vy) exis, and w is cdling the
numWidgets () function which returns the vaue of the private data member count . Note that
this data member resdes within the class itsdf; the class objects have no data.

236 CLASSES [CHAP. 8
8.13 static FUNCTION MEMBERS

Like any ordinary member function, the numwidge t s () function in Example 8.15 requires
that it be owned by some instance of the dlass. But sinceit returnsthe value of the s tat ic data
member count which is independent of the individua objects themsdves, it doesn't matter
which object cdls it. We had w cdl it each time, but we could just as well have had x or y or
. cdl it when they exist.. Moreover, we couldn’'t cal it a dl until after some object had been
created. This is raher arbitrary. Since the action of the function is independent of the actud
function objects, it would be better to make the cals independent of them too. This can be done
amply by declaring the function to be s tat ic.

EXAMPLE 816 A static Function Member

The W dget class maintains a s tat ic data member count which keeps track of the number of
W dget objectsin existence globally. Each time a widget is created (by the constructor) the counter is
incremented, and each time a widget is destroyed (by the destructor) the counter is decremented.

class Wdget { ,
public:
Widget () { ++count; }
~Widget () { --count; }
static int num() { return count; }
private:
static int count;
b

int Wdget::count = 0;

main()
{
cout << "Now there are " << Widget::num(Q << " widgets.\n";
Wdget w, x;
cout << "Now there are " << Widget::num(0 << " widgets.\n";
{
Wdget w, x, vy, z;
cout << "Now there are " << widget::num() << " widgets.\n";

}

cout << "Now there are " << Widget::num() << " widgets.\n";
W dget v;

cout << "Now there are " << Widget::num() << " widgets.\n";

Declaring the nu"r“n ()
invoked simply as a member of the W dget cass using the scope resolution operator “ : : . This dlows
the function to be caled before any objects have been ingtantiated.

CHAP. §] CLASSES 237

The previous figure showing relationships among the class, its members, and should now
looks like this:

Widget () wl:l

numWidgets () X l:l
K coun J v D

The difference is that now the member function num() hasno “this" pointer. Asa static
member function, it is associated with the class itsdf, not with its ingances.
Static member functions can access only s tat ic¢ datafrom their own class.

Review Questions

8.1 Explain the difference between a publ i ¢ member and a pri vat e member of a class.
8.2 Explain the difference between the interface and the implementation of a class.

8.3 Explain the difference between a class member function and an application function.
8.4 Explain the difference between a constructor and a destructor.

8.5 Explain the difference between the default constructor and other constructors.

8.6 Explain the difference between the copy constructor and the assignment operator.
87 Explain the difference between an access function and a utility function.

8.8 Explain the difference between aclass andas truc t in C++.

89 What name must a constructor have?

8.10 What name must a destructor have?

8.11 Howmany constructors can aclass have?

8.12 How may dednudos can a das have?

8.13 How and why is the scope resolution operator :: used in class definitions?

814 Which member functions are created automatically by the compiler if they are not included (by
the programmer) in the class definition?

8.15 How many times is the copy constructor called in the following code:

W dget f(Widget u)
{
W dget v(u);
Wdget w = v;
return w

238 CLASSES [CHAP. 8

main()
{
W dget x;
Wdget v = £(£(x));
}
8.16 Why are the parentheses needed in the expression (*p) . data?

Solved Programming Problems

8.17 Implement a Poi nt class for three-dimensional points (x,y,z). Include a default constructor, a
copy constructor, a negat e () function to transform the point into its negative, anorm ()
function to reun the point's digance from the origin (O00), axd a print () function.

#include <iostream.h>
#include <math.h>

class Point {

public:
Poi nt (float x=0, float y=0, float z=0) : x-(x), y_(y), z_(z) {}
Point (const Point& p) : x_(p.x_), v_(p.v_), z_(p.z_) {}

void negate() { x_ *= -1, y_ *= -1; =z_ *= -1; }
doubl e norm() { return sqrt(x_*x_+ y _*y_ + z_*z]); }
voi d print()
{ cout << ' (' << X_<K< ", "< y_ << ", " << z_ << "))
private: \
float x_, y_, z_;

b

In this implementation, we have used the common device of ending the name of each data member
with an underscore (_). This has the advantage of making it easy to match up the names of constructor
parameters (X, y, and z) with their corresponding data members (x_, y_, and z_)without conflict.

8.18 Implement a St ack class for stacks of ints. Include a default constructor, a destructor, and
the usual stack operations: push (), m(), isEmpty(), and isFull(). use an array
implementation.

class Stack {

public:
Stack(int s=10) : size(s), top(-1) { a = new int[size]; }
~Stack() { delete [] a; }
voi d push(const int& item) { a[++top] = item }
int pop() { return al[top--1; }
int isEmpty() const { return top == -1; }
int isFull() const { return top == (size-1); }
private:
int size; // size of array
int top; // top of stack
int* a; // array to hold stack itens

};

CHAP. g] CLASSES 239

In thisimplementation, top isawaystheindex of the top element on the stack. The data member
si ze isthesizeof thearray that holds the stack items. So the stack is full when it contains that number
of items. The congructor sets si ze to 10 as the default.

8.19 Implement a Ti me class. Each object of this class will represent a specific time of day, storing
the hours, minutes, and seconds as integers. Include a constructor, access functions, a function
advance(int h, int m int s) to advance the current time of an existing object, a func-
tionreset(int h, int m int s) to reset the current time of an existing object, and a
print () function.

class Tinme {
public:

Time (int h=0, int nFQ, int s=0)

: hr(h), min(m), sec(s) { normalize(); }

int hours() { return hr; }

int minutes() { return mn; }

int seconds() { return gsec; }

void advance(int, int, int);

void reset(int, int, int);

void print() { cout << hr << ":" << mn <<
private:

int hr, mn, sec;

voi d normalize();

<< sec; }

}i

void Tinme: :normalize()
{
mn += sec/60;
hr += min/60;
hr = hr % 24;
mn = mn % 60;
sec sec % 60;

void Tinme: :advance(int h=0, int neQ int s=1)
hr += h;
mn += m
sec += s;
normalize();

}

void Time: :reset(int h=0, int mO int s=0)
L

hr = h;

mn = m

sec = s;

normalize () ;

Here we have used a utility function normal i ze () which normalizesthe Ti me object so that
its three deta members are in the correct range 0< sec < 60,0 < min <60, ad0 < hr < 24.

240 CLASSES [CHAP. 8

8. 20 Implement a Random class for generating pseudo-random numbers.

This class uses the utility function randomi ze () which implements the Linear Congruential
Algorithm introduced by D. H. Lehmer in 1949. It updates the seed using the multiplier constant
mult_ and the modulus constant nod-. Their values are consistent with those recommended by
Donald E. Knuth in his seminal work The Art of Computer Programming.

#include <iostream.h>
#include <limits.h>
#include <time.h>

const unsigned long mult_ = 234567821,
const unsigned long nod- = ULONG_MAX; // = 4,294,967,295
const int max_ = INT_MAX; // = 2,147,483,647 or 32,767
cl ass Random {
publiic:

Random() { seed- = time(NULL); }

Randon{unsigned long seed) : seed-(seed) { randomize(); }

int integer(int max=max_) { randomize(); return seed- % max_; }
int integer(int mn, int nax)
{ randomize(); return mn + seed- % (max - mn + 1); }
doubl e real() { randomize(); return doubl e(seed_) /double (mod_) ;
}

private:

unsigned long seed-;

void randonmi ze0 { seed- = (mult_*seed_ + 1) % nod-; }
bi
main()

{
Random random

for (int i =1; i <= 10; i++) {
int m = randominteger();
int n = randominteger(!l, 99);

double x = randomreal ();
cout << "\t" << m << "\t" << N << "\t" << X << endl;

. 1078943744 71 0.0791259
1253709367 94 , 0.252766
~705325754 31 0.698051 '
67134329 37 0.805397
1908776228 10 . 0.81263
1076073003 11 0.949527 .
1849257406 82 0.158744 !
902847182 22 0.872112 :

, 772227400 11 0.603844

460755423 . 1 0.879149

Our test driver makes 10 calls to each of the three random number functions, generating 10 pseudo-
random integersin the range 0 t02,147,483,647, 10 pseudo-random integersin the range 1 to 99, and 10
pseudo-random real numbersin the range 0.0 to 1.0.

CHAP. 8] CLASSES

8.21

8.22

241

Implement a Per son class. Each object of this class will represent a human being. Data mem-
bers should include the person’s name, year of birth, and year of death. Include a default con-

dructor, a dedrudtor, access fundions and a print fundion.

#include <iostream.h>
#include <string.h>

cl ass Person {

public:
Person(const char*, int, int);
~Person() { delete [] nane-; }
char* name() { return nane-; }

int born() { return yob_; }
int died() { return yod_; }
voi d print();

private:
int len_;
char* name-;
int yob_, yod_;

}i

Person: : Person(const char* name=0, int yob=0O int yod=0)
. len_(strlen(name)),
name_(new char[len_+1]),
yob_ (yob) ,
yod_ (yod)
{
memcpy (name_, nane, len_+1);
}

voi d Person: : print()
{
cout << "\tName: " << nane_<< endl;
if (yob_) cout << "\tBorn: " << yob_ << endl;
if (yod_) cout << "\tDied: " << yod_ << endl;
}

To keep the object self-contained, name _ isstored as a separate string. To facilitate this separate
storage, we save its length in the data member len_ andusethenmencpy () function (definedin
string . h) to copy the dring name into the string name-. Then the destructor uses the delete oper-

dor to dedlocate this storege.

Implement a String class. Each object of this class will represent a character string. Data
members are the length of the string and the actual character string. In addition to constructors,

destructor, access functions, and a print function, include a “subscript” function.

class String {

public:
String(short =0); // default constructor
String(const char*); // constructor
String(const Stringd&); // copy constructor
~String() { delete [] data; } // destructor

int length() const { return len; } // access function

242 CLASSES [CHAP. 8

char* convert() { return data; } // access function
char character(short i) { char ¢ = data[i]; return c; }
void print() { cout << data; }

private:
short len; // nunmber of (non-null) characters in string
char* data; // the string

b

String: :String(short size) : len(size)

{
data = new char[len+l];

for (int i=0 i < len; i++) data[i] = "'";
data[len] = '\0';

}

String: :String(const char* str) : len(strlen(str))

{
data = new char[len+l];
mencpy(data, str, len+l);
}

String: :String(const String& str) : len(str.len)
{

data = new char[len+l];

mencpy(data, str.data, len+l);

This implementation includes three constructors: the default constructor with optional parameter
size, a constructor that allows an object to be initialized with an ordinary C string, and the copy con-
structor. The second access function is named convert () because it actually converts from type
String to char * type The “subscript” function is named character () because it returns one
character in the string-the one indexed by the parameter i .

8.23 Implement a Matri x class for 2-by-2 matrices:

¥

Include a default constructor, a copy constructor, an i nverse () function that returns the
inverse of the matrix, a det () function that returns the determinant of the matrix, a Boolean
functioni sS ingular () that returns 1 or O according to whether the determinant is zero, and
aprint ()function.

class Matrix {
public:
Matrix(double a=0, double b=0, double c=0, double d=0)
a_(a) , b_(b) , c_(c), d_(d) {1}
Matrix(const Matrix& m
a_(m.a_), b_(m.b_), ¢ (m.c_), d_(m.d_) { }
double det() { return a_*d_ b_*c_; }
int isSingular() { return det() == 0; }
Matri x inverse();
voi d print();

CHAP. 8] CLASSES 243

8.24

8.25

8.26

8.27

8.28

8.29

8.30

8.31

class Matrix {
public:
Matrix(double a=0, double b=0O double c=0, double d=0)
va_(a), b_(b), c_(c), d(d) {}
Matrix(const Matrix& m

a_(m.a_), b_(m.b_), c_(m.c—), d_(m.d-) {1}
double det() { return a_*d_ - b_*c_; }
int isSingular() { return det() == 0; }

Matri x inverse();
void print();

private:
double a_, b_, c_, d_;

— g

b

Matrix Matrix::inverse ()

{
double k = 1/det();
Matri x temp(k*d_,-k*b_,-k*c_,k*a);
return tenp;

}

voi d Matrix::print()

cout << a_ << " << b_ << '\n' << c_ << << d_ << "\n";

Supplementary Programming Problems

Implement a Poi nt class for two-dimensional points (x, y). Include a default constructor, a
copy constructor, a negat e () function to transform the point into its negative, anorm ()
function to return the point’s distance from the origin (0,0), and a pri nt () function.

Implement a Ci rcl e class. Each object of this class will represent a circle, storing its radius
and the x and y coordinates of its center as floats. Include a default constructor, access func-
tions, an area () function, and a circunference () function.

Modify the circle class (Problem 8.25) so that its data members are the f1 oat radi us
and the two-dimensional Poi nt center.

Implement a Spher e class. Each object of this class will represent a sphere with data mem-
bers f1 oat radi us and the three-dimensional Poi nt center. Include a default construc-
tor, access functions, an surfacearea () function, and a vol une () function.

Modify the S t ack class (Problem 8.17) adding the member function count () which returns
the number of items on the stack.

Modify the St ack class (Problem 8.17) adding the member function print () which prints
the contents of the dack.

Modify the St ack class (Problem 8.17) so that it holds items of type float instead of i nt.
Modify the St ack class (Problem 8.17) so that it holds items of type Rat ional.

244 CLASSES [CHAP. 8

8.32 Write a program that tests the application function
voi d reverse(Stack);
which reverses the items on the stack passed to it. This function should use two local stacks to
doits job.

833 Implement a Queue class for holding ints. A queueis like a stack (see Problem 8.17) except
that items are inserted at one end (called the rear) ad ramoved from the oher end (cdled the

front). Include a default constructor, a destructor, and the usual queue operations:
insert (), remove(), i sEBpty (),ad i sFu 11() . Use an aray implementation.

834 Modify the Queue class (Problem 8.33) adding the member functions count () Which
returns the number of items on the queue, and print () which printsits contents.

8.35 Modify the Queue class (Problem 8.33) so that it holds items of type Rat ional.

8.36 Write a program that tests the application function
void reverse(Queue);

which reverses the items on the queue passed to it. This function should use a local stacks to do
its job.

8.37 Modify the Ti me class (Problem 8.19) using the number of seconds elapsed since midnight as
the only data membe. Indude a fundion advance (int s) to advance the existing time by s
seconds,andafunction secondsEl apsedSince(int h, int m int) thatretumsthe
number of seconds that have elapsed from the given time to the time stored.

8.38 Implement a Dat e class with member data for the month, day, and year. Each object of this
class will represent a specific A.D. date, storing the month, day, and year as integers. Include a
Odfault condructor, a copy ocondrudor, aocess fundions a fundion reset (int 'y, int m
int d) toresetthe date for an existing object, afunction advance (int y, int m int
d) to advance an existing date by y years, m months, and d days, and a pri nt () function.
Useanormal iz e () utility function to ensure that the data members are in the correct range:
1<year, 1< nmonth £12,1 < day < daysIn(month), whaedaysIn(int nonth) is
another utility function that returns the number of daysin nont h. Ignore leap years.

8.39 Modify the Dat e class (Problem 8.38) to accommodate leap years. A year is aleap year if it is
divisible by 400, or if it is divisible by 4 but not by 100. For example, the years 1996 and 2000
are leap years, but the years 1995 and 1900 are not.

840 Modify the Dat e class (Problem 8.39) using the number of days elapsed since the date Janu-
ary 1, 1 A.D. as the only data member. Include afunction advance (i nt d) to advance the
existingdateby d days,andafunction daysEl apsedSi nce(int y, int m int d) tha
returns the number of days that have elapsed from the given date passed-to the date stored.

841 Modify the Dat e class (Problem 8.40) adding the function weekDay () that returns an inte-
ger in the range 0 to 6 for Sunday through Saturday. Use Zeller's Algorithm:
if (mnth < 3){np = 0; yp = year - 1; }
else { mp = int(0.4*month + 2.3); yp = year; }
t = int(yp/4) int (yp/100) + int(yp/400);
return (365*year + 31* (month - 1) + day +t - np) % 7,
Modfythe print () function so that it aso prints the name of the day of the week.

CHAP. 8] CLASSES 245

8.42

8.43

8.44

8.48

8.49

8.50

Modify the Person class (Problem 8.21) to include the following member functions.
int isLiving();
int age(int year);
The isLiving () function returns O or 1 according to whether yod_ iszero. Theage ()

function returns the persons current age based upon the current year passed to it, or it returns
the person’s age at death if yod_ is not zero.

Implement an Enpl oyee dass by modifying the Per son class (Problem 8.21). Include data
members for Socid Security Number number, monthly saary, and tax rate. Include a member
functiont ax () tha returns the amount of tax paid.

Implement a St udent class by modifying the Per son class (Problem 8.21). Include data
members for student identification number, mgor program, grade point average, and credits
earned. Include a member function update (in t credit, char grade) that processes the
given information (credit and grade) for one course, using it to update the student’s grade
point average, and credits earned.

Implement an Addres s class for storing a residential address.

Modify the Per son class (Problem 8.21) by adding an addres s data member with type
Address class (Problen 8.45).

Modify the Person class (Problem 8.21) replacing the declarations int yob_, yod_ with:
Date dob_, dod_;

for “date of hirth” and “date of death” (see Problem 8.38).

Implement a Conputer class with data members for the computer type (eg., 'rc'), the CPU
(eg., " Intel Pentium"), the operating system (e.g., ' DOS '), the number of megabytes of
memory (eg., 8), the number of gigabytes of disk space (e.g., 1.2), thetype of printer that it
has, whether it has a CD-ROM, whether it has Internet access, its purchase price, and year of
purchase. Include a default constructor, a destructor, access functions, and a print () func-
tion.

Implement theRat ional dasswithits den member declared to be unsi gned instead of
int. This alows for more than twice as many objects because unsi gned alows more than
twice as many possible positive integer values as does int.

Implement the following additional member functions for the Rat ional class:
Rational plus(Rational);
Rational minus(Rational);
Rational' times(Rational);
Rati onal dividedBy(Rational);

So, for example, the call x. minus (y) would subtract the Rat ional object y from the
Rat ional object x. Note that this simulates the operator - = for the Rat ional class.

246 CLASSES [CHAP. 8

8.51 Implement the following additional member functions for the Rat ional class:
i nt isEqualTo(Rational);
i nt isGreaterThan(Rational);
int isLessThan(Rational);

So, for example, the call x isGreaterThan (y) would return 1 or 0 according to whether the
Rati onal object x is greater than the Rati onal object y. Note that this simulates the
operator > for the Rat ional class.

8.52 Implement the following additional constructor for the Rat ional class:
Rational (Float) ;

So, for example, the declaration Rati onal x (3.14) would construct the Rati onal object
x that represents the fraction 157/50.

8.53 Implement a Conpl ex class for complex numbers. Each object of this class will represent a
complex number x + y i, storing the real part x and the imaginary part y as real numbers of type
doubl e. Include a default constructor, a copy constructor, access functions, a nor m () func-
tion that returns the norm (magnitude) of the complex number, an i sEqualTo (conplex)
function,andarithmeticfunctions plus (Complex), minus(Complex), times (Complex),
and dividedBy (Complex).

8.54 Implement the following additional constructor for the Conpl ex class (Problem 8.25):
Complex(Rational) ;
So, for example, the declarations
Rational x(22,7);
Conpl ex z(X);

would construct the Rat ional object x that represents the fraction 22/7 and the Conpl ex
object : that represents the real number 3.14159.

8.55 Implement the following additional functions for the Poi nt class (Problem 8.17):
float dot(Point);
Poi nt cross(Point);

The dot () function returns the dot product (scalar product), and the cros s () function
reuns the aoss product (vector product).

8.56 Modify the String class (Problem 8.21) by adding a constructor that allows an object to be
initialized with a single character, constructing a string of length 1 containing that character.

8.57 Modify the String class (Problem 8.21) by adding the function
String substr(short start, short [length);

This function returns the St ri ng object that contains the substring of the owner indexed from
startto start + length - 1. For example, if s represents the string ' ABCDEFGH JK ", then
s . subs tr (2,5) would return the object that represents the string "CDEFG ",ads . sub-
str (8,7) would return the object that represents the string "1 Jk '. Note that the value of
start is the length of the omitted prefix.

8.58 Modify the Mat ri x class (Problem 8.23) so that it represents 3-by-3 matrices.

CHAP. 8] CLASSES 247

8.59 Implement a Quat erni on class for hypercomplex numbers (aso called “hamiltonians’).

8.60

8.1

82

8.3

84

85

8,6

8.7

8.8

8.9
8.10

8.11

Each object of this class will represent a hypercomplex number ¢ + x i +y j + z k, where each of
the components ¢, x, y, and z hastype doubl e. Include a default constructor, a copy constructor,
access functions, anor m () function that returns the norm (magnitude) of the hypercomplex
number, an isEqualTo (Quaternion) function, and arithmetic functionspl us (Quater-
nion), m nus(Quaternion) ,aNdtimes (Quaternion) , where multiplication is defined
by the following rules: ¥ =j?=k*=-1,ij=k=-ji,jk=i=-k}j,andki=j=-ik.

Write a program like the one in Example 8.2, except insert the new nodes at the end of the list so
that the data values can be input in the same order as they are output.

Answers to Review Questions

A publ i c¢memberisaccessiblefrom outsidetheclass; apri vat e memberisnot.

The class interface consists of the member data and the member function prototypes (i.e. justthe function
declarations). The class implementation contains the definitions of the member functions.

A dass member function is pat of the dlass so it has access to the dasss private parts. Anapplica-
tion function is declared outside the class, and so it does not have access to the cdlasss private pats

A constructor is a class member function that executes automatically whenever an object of that classis
instantiated (i.e., constructed). A destructor is a class member function that executes automatically
whenever the scope of that object terminates (e, is destructed).

The default constructor is the unique constructor that has no parameters (or the one whose parameters all
have default values).

A class's copy constructor executes whenever an object of that classis copied by any mechanism except
direct assignment. This includesinitialization, passing aparameter by value, and returning by value.

An access function is @ publ i ¢ dass member function that refums the vdue of one of the dasss dda
members. A utility functionisa pri vat e class member function that is used only within the class to
perform “technical” tasks.

A clas s and a st ruct inC++ areessentially the same. The only significant difference isthat the
default access levd for a dass of private, while tha for a struct is public.

Every class constructor must havethe same name & theclass itself.
Every class destructor must have the same name as the classitself, prefixed with atilde (~).

Thereisno limit to the number of constructors that a class may have. But since multiple constructors are
function overloads, they dl must be digtinguishable by their parameter ligts.

8.12 A class can only one destructor.

8.13 The scope resolution operator : : used in general “to resolve external references.” Itisused in aclass

definiion whenever the definition of a member function is given outdde the scope of the class definition.

8.14 There are four class member functions that are created automatically by the compiler if they are not

included (by the programmer) in the class definition: the default constructor, the copy constructor, the
destructor, and the overloaded assignment operator.

248 CLASSES [CHAP. 8

8.15 The copy constructor is called 7 times in this code. Each call to the function f requires 3 callsto the
copy constructor: when the parameter is passed by value to u, when v is initialized, and when w is

returned by value. The seventh call isfor theinitializationy.

8.16 The parentheses are needed in the expression (*p).data because the direct member selection
opeador “. ” hes highe precedence than the dadfaendng opaaor “+”. (See Appadx C)

Chapter 9

Overloading Operators

9.1 INTRODUCTION

C++ includes arich store of 45 operators. They are summarized in Appendix C. These
operators are defined automaticaly for the fundamenta types (int, float, etc.). When you
define a class, you are actudly creating a new type. Most of the C++ operators can be
overloaded to apply to your new class type. This chapter describes how to do that.

9.2 OVERLOADING THE ASSIGNMENT OPERATOR

Of dl the operators, the assgnment operator = is probably used the mogt. Its purpose is to
copy one object to another. Like the default constructor, the copy constructor, and the destructor,
the assgnment operator is created automaticaly for every class tha is defined. But dso like
those other three member functions, it can be defined explicitly in the class definition.

EXAMPLE 91 Adding an Assignment Operator to the Rat ional Class

Here is a class interface for the Rat ional class, showing the default constructor, the copy consiruc-
tor, and the assignment operator:

class Rational {

public:
Rational (int =0, int =1); // default constructor
Rational (const Rational &); // copy constructor
void operator=(const Rational &) ; // assi gnment operator
// other declarations go here

private:
int num
int den;

}i
Note the required syntax for the assignment operator. The name of this member function is operator = .
Its argument list is the same as that of the copy constructor: it contains a single argument of the same
class, passed by constant reference.
, Here is the implementation of the overloaded assignment operator:

void Rational: :operator=(const Rational& r)
{
num
den

r.num
r.den;

It simply copies the member data from the object r to the object that owns the call.

249

250 OVERLOADING OPERATORS [CHAP. 9

9.3 THE this POINTER

C++ dlows assgnments to be chained together, like this.

X =y =1z = 3.14;
This is executed firg by assigning 3.14 to z, thento y, and findly to x. But, as Example 9.1
shows, the assgnment operator is redly a function named opera tor=. In this chan, the
function is cdled three times. On itsfirgt cdl, it assgns 3.14to z, 0 the input to the function is
3.14. On its second cdl, it assigns 3.14 to y, S0 its input again must be 3.14. So tha vaue
should be the output (Le, return vaue) of the firgt cal. Smilarly, the output of the second cal
should again be 3.14 to serve as the input to the third cal. The three cals to this function are
nested, like this:

f(x, fly, f(z, 3.14)))
The point is that the assgnment operator is a function that should return the vadue it assgns.
Therefore, instead of the return typevoi d, the assgnment operator should return a reference to
the same type as the object being assigned

Rational & operator=(Rational& r)
This dlows assgnments to be chained together.

EXAMPLE 92 The Preferred Function Prototype for an Overloaded Assignment Operator

class Rational {

public:
Rational (int =0, int =1); // default constructor
Rati onal (const Rational &) ; // copy constructor
Rational & operator=(const Rational &); // assi gnment oper at or
// other declarations go here

private:
int num
int den;

// other declarations go here

The preferred syntax for the prototype of an overloaded assgnment operator in aclass t is
T& operator=(const T&);

The return type is a reference to an object of the same class 1. But then this means that the
function should return the object that is being assgned, in order for the assgnment chain to
work. So when the assgnment operator is being overloaded as a class member function, it
should return the object that ownsthe call. Since there is no other name available for this owner
object, C++ defines a specia pointer, named this, which points to the owner object.

We can envison the t hi s pointer like this

. num
this

den

Now we can give the correct implementation of the overloaded assgnment operator:

CHAP. 9] OVERLOADING OPERATORS 251

EXAMPLE 9.3 Implementation of the Assignment Operator for the Rationa Class

Rational & Rational: :operator=(const Rational & 1)

{
num = r.num
den = r.den;
return *this;

. Now asgigmats for the Rat ional das can be denad togeher:

Rational x, y, z(22,7);
X =y =z

The correct implementation for an overloaded assgnment operator in aclass t is
T& T: :operator=(const T& t)
{
// assign each menber datumof t to the
// correspondi ng menber datum of the owner
return *this;
}
Findly, note that an assgnment is different from an initidization, even though they both use

the equas sgn:
Rational x(22,7); // this is an initialization
Rational y(x); // this is an initialization
Rational z = x; // this is an initialization
Rational w;
W = X // this is an assignnent

An initidization cals the copy congructor. An assgnment calls the assgnment operator.
9.4 OVERLOADING ARITHMETIC OPERATORS

All programming languages provide the standard arithmetic operators +, -, *, and / for
numeric types. So it is only natura to define these for user-defined numeric types like the
Rat ional class. In older programming languages like C and Pascd, this is done by defining
functions like this

Rational product(Rational x, Rational V)

{
Rat i onal z(Xx.nunty.num x.den*y.den) ;
return z;

This works. But the function has to be cdled in the conventiona way:
z = product(x,y);
C++ dlows such functions to be defined using the standard arithmetic operator symbols, so
that they can be caled more naturaly:

zZ = X*y;

252 OVERLOADING OPERATORS [CHAP. 9

Like mogt operators in C++, the multiplication operator has a function name that uses the
reserved word operator: its name is “operator*". Usngthisin place of “product” inthe
code above, we would expect the overloaded function to look something like this:

Rational operator* (Rational x, Rational)
{
Rational z(x.num*y.num, X.den*y. den);
return z;
}

But this is not a member function. If it were, we would have to set it up as in Problem 8.50,
with only one argument. The operator * function requires two arguments.

Since the overloaded arithmetic operators cannot be member functions, they cannot access
the pri vat e member datanum and den. Fortunately, C++ dlows an exception to thisrule so
that we can complete our definitions of the overloaded arithmetic functions. The solution is to
declare the function as a friend of the Rationa class.

A friend function isanonmember function that is given access to dl members of the dlass
within which it is declared. So it has dl the privileges of a member function without actudly
being a member of the class. This attribute is used mostly with overloaded operators.

EXAMPLE 9.4 Declaring the Multiplication Operator as a friend Function

Hereisthe Rat ional class declaration with the overloaded multiplication operator declared as a
friend function:

class Rational {
friend Rational operator*(const Rational& const Rational&);

public:
Rational (int =0, int =1);
Rati onal (const Rational &) ;

Rational & operator=(const Rational &) ;

// other declarations go here
private:

int num

int den;

// other declarations go here

3

Note that the function prototype is inserted inside the class declaration, above the publ ic section. Also
note that the two arguments to the function are both passed by constant reference.
Now we can implement this nonmember just as we had expected:

Rational operator*(const Rational& x, const Rational&)
{

Rational z(x.num * y.num x.den * y.den);

return z;
}
Note that the keyword friend is not used in the function implementation. Also note that the scope res
olution prefix Rat 1 onal : : is not used because this is not a member function.

Here is a little program that uses our improved Rati onal class:

CHAP. 9] OVERLOADING OPERATORS 23

EXAMPLE 95 The Rat ional Class with Assignment and Multiplication Operators
#include 'Rational.h"
main()

Rational x(22,7), yv(-3,8), z

z = X // assignment operator is called
z.print(); cout << endl;
X = y*z; // multiplication operator is called
x.print(); cout << endl;

}

2271

=33/28

Note that the reduce () function was caled from within the overloaded multiplication operator to
reduce -66/56 to -33/58. (S Exarnple 82)

9.5 OVERLOADING THE ARITHMETIC ASSIGNMENT OPERATORS

C++ dlows your to combine arithmetic operations with the assgnment operator; for exam-
ple usng x * = y in place of x = x *y. These combination operators can al be overloaded

for usein your own classes.

EXAMPLE 96 The Rat ional Class with an Overloaded * = Operator

cl ass Rational {

public:
Rational (int =0, int =1);
Rational & operator=(const Rational &) ;
Rational & operator*=(const Rational &) ;
// other declarations go here

private:
int num den;
// other declarations go here

i
Rati onal & Rational: :operator*=(const Rati onal & r)

num = num*r.num;
den = den*r.den;
return *this;

Theoperator oper at or *= hes the same gyntax and nealy the same implementation as the besc asdg
ment opador operator=. By reuming * thi s the operator can be dhaned, like this

*

X Ty *= z;

254 OVERLOADI NG OPERATORS [CHAP. 9

It is also important to ensure that overloaded operators perform consistently with each other. For
example, the following two lines should have the same effect, even though they cal different operators.
X = X*y;
X *= Yy

96 OVERLOADING THE RELATIONAL OPERATORS

The sx reldiond operators <, >, < =, >=, ==, and ! = can be overloaded the same way that
the arithmetic operators are overloaded: as fri end functions.

EXAMPLE 9.7 Overloading the Equality Operator = = in the Rat ional Class

Like other friend functions, the equality operator is declared above the publ i ¢ section of the class.

cl ass Rational {
friend int operator==(const Rationalg& const Rational&);
friend Rational operator*(const Rational& const Rational&);
// other declarations go here

public:
Rational (int =0, int =1);
Rati onal (const Rational &) ;

Rational & operator=(const Rational &) ;
// other declarations go here
private:
int num
int den;
// other declarations go here
b

int operator==(const Rational& x, const Rational& Yy)

{
return (x.numz* y.den == y.num * X.den);

}

The test for equality of two fractions ab and od is equivaent to the test a*d == b*c. So we end up using
the equality operator for in ts to define the equality operator for Rat i onals.
Note that the relational operators return an int type, representing either “true” (1) or “fase” (0).

9.7 OVERLOADING THE STREAM OPERATORS

C++ dlows you to overload the stream insertion operator >> for cusomizing input and the
stream deletion operator << for customizing output. Like the arithmetic and relaiona opera
tors, these should also be declared as f ri end functions.

For aclasst with datamember d, the syntax for the output operator is

friend ostream& operator<<(ostream& ostr, const T& t)
{ return ostr << t.d; }
Here, ostream is aandard class defined (indirectly) in the i ostream h header file. Note
that dl the parameters and the return value are passed by reference.

CHAP. 9] OVERLOADING OPERATORS 255

This function can then be cdled using the same syntax that we used for fundamentd types:

cout << "X =T " << X << ", ¥y = " <<y << endl;
Here is an example of how custom output can be written:

EXAMPLE 9.8 Overloading the Output Operator << the Rat ional Class

#include <iostream.h>

cl ass Rational {

friend ostream& operator<<(ostreamé&, const Rational &) ;
public:

Rational (int n=0, int d=l) : num(n), den(d) {}

// other declarations go here
private:

int num den;

// other declarations go here

}i

main ()
{
Rational x(22,7), v(-3,8);
cout << '"x = LK X << Y = <Ky << endl ;

ostream& operator<<(ostream& ostr, const Rational& r)

return ostr << r.num << << r.den;

J

wE DOUTE Y = L3008

When the second line of mai n () executes, the expression cou t <<'x =" executes first. This
calls the standard output operator <<, passing the standard output stream cout andthestring"x =
to it. As usud, this inserts the string into the output stream and then returns a reference to cou t. This
return value is then passed with the object x to the overloaded << operator. This call to oper at or <<
executes with cou t inplaceof os t r and with x in place of r. The result is the execution of the line

return ostr << r.num«<< '/' << r.den;
which inserts 22/7 into the output stream and returns a reference to cou t. Then another call to the
standard output operator << and another call to the overloaded operator are made, with the output (a ref-
erence to cout) of each cal cascading into the next call as input. Finaly the last cal to the standard out-
put operator << is made, pasing cou t and endl. This flushes the stream, causing the complete line
X =22/7,y = -3/8
to be printed.

The syntax for overloading the input operator for a class v with data member d is
friend istream& operator>>(istream& istr, T& t)
{return istr >>t.d; }

Here, s tream is another standard class defined (indirectly) in the ios tream . h header file.
Here is an example of how custom input can be written:

256 OVERLOADING OPERATORS [CHAP. 9

EXAMPLE 9.9 Overloading the Input Operator >> inthe Rat ional Class
#include <iostream.h>

cl ass Rational {
friend istream& operators>(istream&, Rational &)
friend ostream& operator<<(ostream&, const Rational&);

public:
Rational (int n=0, int d=l) : num(n), den(d) {}
// other declarations go here

private:

int num den;
int gcd(int, int);
voi d reduce();

}i

main ()

Rational x, vy
cin >> X >> V;
cout << "X T " << X << ", Y = " << Yy << endl;

}

istream& operators>>(istream& istr, Rational& r)
{

cout << "\t Numerator: "; istr >> r.num
cout << "\tDenominator: "; istr >> r.den;
r.reduce();

return istr

This version of the input operator includes user prompts to facilitate input. It also includes a call to
the utility function reduce () . Note tha, as a friend, the operaior can access this private function.

9.8 CONVERSION OPERATORS

In our origind implementation of the Rat ional class (Example 8.1) we defined the
member function convert () to convert from type Rati onal totype doubl e:
doubl e convert() { return double(num)/den; }
This requires the member function to be caled as
X.convert();
In kegping with our goa to make objects of the Rat ional class behave like objects of
fundamentd types (i.e, like ordinary variables), we would like to have a converson function that

CHAP. 9] OVERLOADING OPERATORS 257

could be caled with a syntax that conforms to ordinary type conversons.
n= int(t);
Y = doubl e(x);
This can be done with a conversion operator.
Our Rat jonal classdready hasthefacility to convert anobject fromin t toRat ional:
Rational x(22);
This is handled by the default congtructor, which assigns 22 to x. num and 1to x. den. This
congtructor aso handles direct type conversons from typei nt totypeRat ional:
X = Rational (22);
Congtructors of agiven class are used to convert from another type to that class type.

To convert from the given class type to another type requires a different kind of member
function. It is cdled a conversion operator, and it has a different syntax. If t ype isthe typeto
which the object is to be converted, then the conversion operator is declared as

operator type();
For example, a member function of the Rat ional dass that returns an equivaent float
would be declared as

operator float();
Or, if we want it to convert to type doubl e, then we would declare it as

oper at or double() ;
And, if wewant it to be usable for congant rationals (likepi), thenwewould declareit as

operator double() const;
Recdl that, in our origind implementation of the Rat ional class (Example 8.1) we defined the
member function convert () for this purpose.

EXAMPLE 910 Adding a Converson Operator to the Rat ional Class

#include <iostream.h>

cl ass Rational {
friend istream& operator>>(istream&, Rati onal &);
friend ostream& operator<<(ostream&, const Rational &);
public:
Rational (int n=0, int d=l) : num(n), den(d) {}
oper ator double() const;
// other declarations go here
private:
int num den;
// other declarations go here
Vi

main ()

Rat i onal X(-5,8);

cout << "X = " << X << ", double(x) = " << double(x) << endl;
const Rational p(22,7);

const double pi = double(p);

cout << "p = "<< P << ", pi = " << pi << endl;

258 OVERLOADING OPERATORS [CHAP. 9

Rational: :operator double() const
{

return double (num) /den;
}

X
R

£5/8, double(x) = -0.625
22/7, 1 = 3 14288

oH

First we use the conversion operator doubl e () to convert the Rat ional object x into the
doubl e -0.625. Then we use it again to convert the constant Rat ional object p into the constant
double pi.

9.9 OVERLOADING THE INCREMENT AND DECREMENT OPERATORS

The increment operator + + and the decrement operator - - each have two forms: prefix and
postfix. Each of these four forms can be overloaded. We |l examine the overloading of the incre-
ment operator here. Overloading the decrement operator works the same way.

When applied to integer types, the pre-increment operator Smply adds 1 to the vaue of the
object being incremented. This is a unary operator: its single argument is the object being incre-
mented. The syntax for overloading it for a class named 1 is Smply

T operator++();
So forour Rat ional class, it is declared as

Rat i onal operat or ++();
EXAMPLE 9.11 Adding a Pre-Increment Operator to the Rat ional Class

This exarple adds an ovaloaded preincreamat ogpgdor + + to or Rat ional das Although we
can meke this fundtion do whetever we wat, it shoud be condgert with the adion thet the standad pre-
increment operator performs on integer types. That adds 1 to the current value of the object before that
vdue is usd in the eqresson. This is equivdent to adding its denomingior to its numerdor:

22 22+7 _ 29
—+1 = —
7 7 7

So, we simply add den to num and then return * this, which is the objet itsdf:

cl ass Rational {
friend ostream& operator<<(ostream&, const Rational &);
public:
Rational (int n=0, int d=l) : num(n), den(d) {}
Rati onal operator++();
// other declarations go here
private:
int num den;
// other declarations go here
i

CHAP. 9] OVERLOADING OPERATORS 259

main ()

{
Rational x(22,7), y = ++x;
cout << 'Y = " <<y << ", X = ' << X << endl;

Rat i onal Rati onal :: operator++()
{

num += den;
return *this;

ysipnE s gy

Pogtfix operators have the same function name as the prefix operators. For example, both the
pre-increment operator and the post-increment operator are named oper at or + +, To didinguish
them, C++ specifies that the prefix operator has one argument and the postfix operator has two
arguments. (When used, they both appear to have one argument.) So the correct syntax for the
prototype for an overloaded post-increment operator is

T operator++ (int);

The required argument must have type i nt. This appears a bit strange because no integer is
passed to the function when it is invoked. The integer argument is thus a dummy argument,
required only so that the postfix operator can be distinguished from the corresponding prefix
operator.

EXAMPLE 9.12 Adding a Post-Increment Operator to the Rat ional Class

To be consstent with the ordinary post-increment operator for integer types, this overloaded version
should not change the value of x until after it has been assigned to y. To do that, we need a temporary
object to hold the contents of the object that owns the cal. This is done by assigning * this to tenp.
Then this object can be returned after adding den to num

cl ass Rational {
friend ostream& operator<<(ostream&, const Rational &);

public:
Rational (int n=0, int d=l) : num(n), den(d) {}
Rat i onal operat or ++(); // pre-increnment
Rat i onal operator++(int); // post-increnent
// other declarations go here

private:

int num den;
// other declarations go here
bi

main ()

{
Rational x(22,7), y = x++;
cout << "y = " <<y << ", X = " << X << endl;

260 OVERLOADING OPERATORS [CHAP. 9

Rational Rational::operator++(int)
{

Rational tenp = *this;

num += den;

return tenp;

veE 2207 = = 2904

Note that the dummy argument in the operator+ + function is an unnamed int. It need not be named

because it is not used. But it must be declared to distinguish the post-increment from the pre-increment
operator.

910 OVERLOADING THE SUBSCRIPT OPERATOR

Recdl that, if a isan aray, thentheexpresson a [i | redly means nothing more than
*(a+1). Thisisbecause a is actudly the address of the initid eement in the array, s0 a+i is
the address of the ith eement, since the number of bytes added to a isi times the Sze of each
array eement.

The symbol [1 denotes the subscript operator. Its name derives from the origind use of
arays, wherea [i] represented the mathematica symbol ¢, . Whenusedas a i], it hastwo
operands. a and i. Theexpressona [i] isequivdenttooperator [](a, i).Andasan
operator, [] can be overloaded.

EXAMPLE 9.13 Adding a Subscript Operator to the Rat ional Class

#include <iostream.h>
#include <stdlib.hs> // defines the exit() function

cl ass Rational {
friend ostream& operator<<(ostream&, const Rational &) ;
public:
Rational (int n=0, int d=l) : num(n), den(d) {
int& operator([] (int);
// other declarations go here
private:
int num den;
// other declarations go here
}i

main ()
{
Rat i onal x(22,7);
cout << "X = " << X << endl;
cout << "x[1] = " << x[1] << x[2] = ' << x[2] << endl;

CHAP. 9] OVERLOADING OPERATORS 261

int& Rational: :operator[] (int i)
{

if (i == 1) return num
if (1 == 2)return den;
cerr << "ERROR index out of range\n";
exit(0;
o

x1] - 22, 2[2] - | ,
Theexqpreson x [1] ddlis the subsipt operator, pessng 1 to i, which reums x . num Smilaly, X [2]
reuns X . den. If i hesawy vdue aohe then 1 or 2, then an etor messsge is st 0 cerr, the dandad
aror dream, and then the exi t () fundion is caled.

This example is artificial. There is no advantage to accessing the fields of the Rat ional object x
withx [1] andx [2] indeedof x . num adx . den. Howeve, thae ae may impotat dasses
whee the sbsipt is vay usfu. (See Pdblem 914)

Note that the subscript operator is an access function, since it provides publ ic access to
private member data.

Review Questions

9.1 How isthe operat or keyword used?

9.2 Whatdoes * this dways rdea to?

93 Why can’t the t hi s pointer be used in nonmember functions?
9.4 Why should the overloaded assignment operator return * t hi s?

95 What is the difference between the effects of the following two declarations:

Rational y(x);
Rational y = x;

9.6 What is the difference between the effects of the following two lines:
Rational y = x;
Rational y; y = x;

9.7 Why can't * * be overloaded as an exponentiation operator?
98 Why should the stream operators << and >> be overloaded as fri end functions?
99 Why should the arithmetic operators +, -, *, and / be overloaded as fri end functions?

9.10 How is the overloaded pre-increment operator distinguished from the overloaded post-
increment operator?

9.11 Why isthe i nt argument in the implementation of the post-increment operator left unnamed?

9.12 What mechanism allows the overloaded subscript operator [] to be used on the left side of an
assignment statement, like this; v 2] =227

262 OVERLOADING OPERATORS [CHAP. 9

Solved Programming Problems

9.13 Implement the binary subtraction operator, the unary negation operator, and the less-than opera-
tor < forthe Rati onal class (see Example 9.1).

All three of these operatorsareimplementedas friend functions to gve them access to the num
and den data members of their owner objects:

class Rational {
friend Rational operator-(const Rational& const Rational&);
friend Rational operator-(const Rational &;
friend int operator<(const Rational& const Rationalé&);
public:
Rational (int =0, int =1);
Rat i onal (const Rational &) ;
Rational & operator=(const Rational &) ;
// other declarations go here
private:
int num den;
int gcd(int, int)
int reduce();
i

The binary subtraction operator simply constructs and returns a Rat i onal object z that repre-
sents the difference x v:

Rat i onal Rational : :operator-(const Rational & x, const Rational & y)

Rat i onal z(x.nunty.den - y.nun¥x.den, X.den*y.den);
z.reduce();
return z;

Algebraically, the subtraction a/b = c/d is performed using the common denominator bd:

a ¢ ad-bc

b d= bd
So the numerator of x - y should be Xx.nunfy.den - y. num*x. den andthedenominator
should be x . den*y . den. The function condructs the Rational object z with tha numerator and
denominator.

This algebraic formula can produce a fraction that is not in reduced form, even if x and y are. For

example, 1/2 =1/6 = (16 = 2:1)/(2:6) = 4/12. So we call the reduce () utility function before returning
the resulting object z.

The unary negation operator overloads the symbol “~”. It is distinguished from the binary subtrac-
tion operator by its parameter list; it has only one parameter:

Rat i onal Rational : :operator-(const Rational & x)
{

Rational y(-x.num x.den);

return vy;

To negate afraction a/b we simply negate its numerator: (-a)/b. So the newly constructed Rat i onal
object y has the same denominator as x but its numerator is - X.num

CHAP. 9] OVERLOADING OPERATORS 263

9.14

The lessthean operdor is eeder to do if we fird modify our default condructor to endure thet every
djet's den vdue is podtive Then we can ue the dandard equivdence for the lessthan operator:

a c
E<a@ad<bc

int operator<(const Rational& x, const Rational& V)
{

return (x.nunfy.den < y.nuntx.den);
}

Rational: :Rational(int n=Q int d=l) : num(n), den(d)
{

if (d == 0)n = 0

else if (d <0) {n *=-1; d *= -1; }

reduce() ;

}

The modification ensuring that den >0 could instead be doneinther educe () function, since that
utility should be cdled by every member function that dlows den to be changed. However, none of our
other member functions allows the sign of den to change, so by requiring it to be positive when the
object is condructed we don't need to check the condition again.

Implement a Vector class, with a default constructor, a copy constructor, a destructor, and

overloaded assignment operator, subscript operator, equality operator, stream insertion operator,
and stream extraction operator.

Here is the class declaration:

#include <iostream.h>

cl ass Vector {

friend int operator==(const Vector& const Vectorg&);
friend ostream& operator<<(ostream&, const Vector&);
friend istream& operators>(istream&, Vector &) ;

public:
Vector (int =1, double =0.0); // default constructor
Vect or (const Vector &) ; // copy constructor
~Vector () ; // destructor
const Vector& operator=(const Vectorg&); // assi gnment operator
doubl e& operator([] (int) const; // subscript operator
private:
int size;

doubl e* data;
b

Here is the implementation of the overloaded equality operator:

int operator==(const Vector& v, const Vector& w)

{
if (v.size !'= w.size) return 0
for (int i = 0i < v.size;, i++)
if (v.data[i] !'= w.data[i]) return 0
return 1;

264

OVERLOADING OPERATORS [CHAP. 9

It is a nonmember function which returns 1 or 0 according to whether the two vectors v and w are
egual. If their sizes are not equal, then it returns O immediately. Otherwise it checks the corresponding
elements of the two vectors, one at atime. If thereis any mismatch, then again it returns 0 immediately.

Only if the entire loop finishes without finding any mismatches can we conclude that the two vectors are
equd and retun 1

Here is the implementation of the overloaded stream extraction operator:
ostream& operator<< (ostream& OStr, const Vector& v)

{
ostr << '(';

for (int i = 0; i <v.size-1; i++) {
ostr << Vv[i] <<, ";
if ((1i+1)%8 == 0) cout << "\n ";

}
return ostr << v[i] << ")\n";
}

Thisprintsthevectorlikethis: (1. 11111, 2.22222, 3.33333, 4.44444, 5.55556). The
conditional inside the loop allows the output to “wrap” around several lines neatly if the vector has more
than 8 elements.

The output is sent to os tr whichisjust alocal name for the output stream that is passed to the
function. That would be cou t if the function is caled like this cou t << v ;

In thelast line of the function, theexpressionostr << V[i] << ")\n" makestwo cdls to the
(standard) stream extraction operator. Those two calls return ost r a the vdueof this expression, and
so that object os tr is then returned by this function.

Hereisthe overloaded stream insertion operator:

istream& operator>>(istream& istr, Vector& v)

{
for (int i =0; i <v.size; i++) {
cout << i << ":";
istr >> v[i];
}
return istr;
}

This implementation prompts the user for each element of the vector v. It could also be implemented
without user prompts, simply reading the elements one at atime.

Notice that the elements are read from theinput stream i s tr, which is the firg parameter passed in
to the function. When the functioniscalled likethis: ¢in > > v ; thestandard input stream cin will
be passed to the parameter is tr, s the vettor dements ae actudly read from ¢ in. The agument
i st r issimply aloca name for the actual input stream which probably will be ¢ in. Notice tha this
agument is dso retuned, dlowing a cascade of cdls like this cin > > U > >V > > W ; .

Hereisthe implementation of the default constructor:

Vector: :Vector(int sz=1, double t=00 : size(sz)
{

data = new doubl e[size];

for (int i = 0; i < size;, i+t

data[i] = t;

CHAP. 9] OVERLOADING OPERATORS 265

The declartion Vec tor u ; would construct the vector u having 1 element with the value 0.0; the
declaration Vec t or v (4) ; would construct the vector v with 4 elements all with the value 0.0; and
the declaration Vector w(8, 3.14159) ; would construct the vector w with 8 elements all with
the value 3.14159.

This constructor uses the initialization list si ze (sz) to assign the argument s z to the data
member si ze. Thenit usesthe new operator to allocate that number of elements to the array dat a.
Finaly, it initializes each element with the value t.

The copy congructor is dmogt the same as the default condructor:

Vector: :Vector(const Vector& v) : size(v.size)
{
data = new double[v.size];
for (int i = 0; i < size;, i++)
data[i] = wv.datali];

It uses the data members of the vector argument v to initialize the object being constructed. So it
asigns v . s iz e to the new objects si zemember, additassignsv . data [i] tothe elements of
the new object’s dat a member.

The destructor simply restores the storage allocated to the dat a array and then sets dat a to
NULL and si ze toO:

Vector:: ~Vector ()
{

dat a NULL;

del ete [] data;
size = 0;

The overloaded assignment operator creates a new object that duplicates the vector v:

const Vector& Vector: :operator=(const Vector& v)
{
if (&v = this) {
delete [] data;
size = v.size;
data = new double[v.sizel;
for (int i = 0; i < size;, i++)
data[i] = wv.datali];
}
return *this;

The condition (&v | = thi s) determineswhether the object that ownsthe call is different from
the vector v. If the address of v isthe same ast hi s (which isthe address of the current object), then
they ae the same object and nothing needs to be done This check is a sdfely precastion to guard againd
the possibility that an object might, directly or indirectly, be assigned to itself, like this: w = v =w; .

Before creating a new object, the function restores the allocated data array. Then it copies the vector
v the same way that the copy constructor did.

266

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

9.23

9.24

9.25

9.26

9.27

9.28

OVERLOADING OPERATORS [CHAP. 9

The overloaded subscript operator simply returns the i th component of the object's data aray:
doubl e& Vector: :operator[] (int i) const

return data[i];

Supplementary Programming Problems

Implement the addition and division operators for the Rat i onal class (see Example 9.1).
Implement the operators + =, -=,and /= for the Rati onal class (see Example 9.1).

Implement the other five relationa operators (<, >, < =, >=, and ! =) forthe Rational das
(see Example 9.1).

Rewrite the overloaded input operator for the Rat ional class (Example 9.9) so that, instead
of prompting for the numerator and denominator, it reads a fraction typeas“22/ 7”.

Implement a conversion operator in the Rat ional classto convert to fl oat type.
Implement a conversion operator in the Rati onal classtoroundtoin t type
Implement pre-decrement and post-decrement operator in the Rat ional class.

Implement an exponentiation operator for the Rat ional class with prototype:
Rational operator&&(const Rational& const unsigned&);

For example, if x represents the fraction 2/5, then x&&4 would return the Rat ional that
represents the fraction 16/625.

Implement an exponentiation operator for the Rat i onal class with prototype:
Rat i onal operator&&(const Rational & const inté&);

For example, if x represents the fraction 2/5, then xss - 4 would return the Rat ional that
represents the fraction 625/16. (See Problem 9.22.)

Implement addition for the vec t or class (Problem 9.14) by overloading the + operator.
Implement subtraction for the vec tor class (Problem 9.14) by overloading the operaor.

Implement scalar multiplication for the Vect or class (Problem 9.14) by overloading the *
operator. If t isadouble and v is a vector, then + *v would return the Vec tor obtained by
multiplying eachelement of v by t.

Implement an inner product (i.e., the “dot product”) for the Vec tor class (Problem 9.14) by
overloading the * operator. If v and w are vectors, then v*w would return the doubl e
obtained by summing the,products of the corresponding elements of v and w

n-1
vew = N v = vowo v Wy,
i=0

Implement a norm function for the Vector class (Problem 9.14). If v is a vector, then
v.norm() would return the square root of v*v (see Problem 9.27).

CHAP. 9] OVERLOADING OPERATORS 267

9.29

9.30

9.31

9.32

9.33

9.34

9.35

9.36

9.37

9.38

9.39

9.40

9.41

9.42

9.43

9.44

9.45

9.46

9.47

Modify the Vect or class (Problem 9.14) so that its objects are al three-dimensiona (physi-
cal) vectors with subscripts ranging from 1 to 3. Include vector addition (Problem 9.24), vector
subtraction (Problem 9,25), scalar multiplication (Problem 9,26), the inner product (Problem
9.27), the norm function (Problem 9.28), and a cross-product function:

VXW = (vywy=VaWy, V3w = V Wy, VW) =)

Implement an overloaded assignment operator = for the Ti me class (see Problem 8.19).

Implement overloaded stream insertion operator < < and stream extraction operator >> for
the Ti me class (see Problem 8.19).

Implement overloaded pre-increment operator ++ and pre-decrement operator - - for the
Ti me class (see Problem 8.19), where “increment” means to add one second.

Implement an overloaded operator + = for the Ti me class (see Problem 8.19) that adds one
time to another.

Implement an overloaded assignment operator = for the poi nt class (see Problem 8.17).

Implement overloaded stream insertion operator < < and stream extraction operator >> for
the poi nt class (see Problem 8.17).

Implement overloaded comparison operators = = and | = for the Point class (see Problem

8.17).

Implement overloaded addition operator + and subtraction operator - for the poi nt class
(see Problem 8.17).

Implement an overloaded multiplication operator * to return the dot product of two Point
objects (see Problem 8.55).

Implement an overloaded bitwise AND operator & to return the cross product of two poi nt
objects (see Problem 8.55).

Implement a conversion operator that converts a poi nt object (see Problem 8.17) into a
Vec tor abet (sse Poblem 914).

Implement a conversion operator that converts a vec tor object (see Problem 9.14) into a
poi nt object (see Problem 8.17).

Implement an overloaded assignment operator = for the per son class (see Problem 8.21).

Implement overloaded stream insertion operator < < and stream extraction operator > for
the per son class (see Problem 8.21).

Implement overloaded comparison operators == and ! = for the person class (see Problem
821).

Implement an overloaded assignment operator = for the Matrix class (see Problem 8.23).

Implement overloaded stream insertion operator < < and stream extraction operator >> for
the Mat ri x class (see Problem 8.23).

Implement overloaded comparison operators = = and ! = for the Matri x class (see Problem
8.23).

268 OVERLOADING OPERATORS [CHAP. 9

9.48 |Implement overloaded addition operator + and subtraction operator - for the Matri x class
(see Problem 8.23).

9.49 Implement a conversion operator that converts a Matri x object (see Problem 8.23) into a
Vec tor obedt (sse Poblem 9.14).

9.50 Implement a conversion operator that converts a vec tor object (see Problem 9.14) into a
Mat ri x object (see Problem 8.23).

9.51 Implement an overloaded assignment operator = for the Dat e class (see Problem 8.38).

9.52 Implement overloaded stream insertion operator << and stream extraction operator >> for
the Dat e class (see Problem 8.38).

9.53 Implement overloaded pre-increment operator ++ and pre-decrement operator -- for the
Dat e class (see Problem 8.38), where “increment” means to add one day.

9.54 ‘Implement an overloaded operator += for the Dat e class (see Problem 8.38) that adds one
date to another.

9.55 Implement overloaded stream insertion operator << and stream extraction operator >> for
the Addr ess class (see Problem 8.45). Include user prompts for the input.

9.56 Implement overloaded stream insertion operator < < and stream extraction operator >> for
the Conput er class (see Problem 8.48). Include user prompts for the input.

9.57 Implement an overloaded assignment operator = for the Conpl ex class (see Problem 8.53).

9.58 Implement overloaded stream insertion operator << and stream extraction operator >> for
the Conpl ex class (see Problem 8.53).

9.59 Implement overloaded comparison operators = = and ! = for the compl ex class (see Prob-
lem 8.53).

9.60 Implement overloaded addition operator + and subtraction operator -~ for the Conpl ex
class (see Problem 8.54).

9.61 Implement overloaded multiplication operator * and divison operator ; for the Conpl ex
class (see Problem 8.54).

9.62 Overload the NOT operator | to return the norm for the Conpl ex class (see Problem 8.53).
The norm of a complex number is the square root of the sum of the squares of its real and imag-
inary parts. So if z represents the complex number 3 - 4i, then ! z would return 5. Note that
thisis a unary operator.

9.63 Overload the bitwise NOT operator ~ to return the conjugate for the compl ex class (see
Problem 8.53). The conjugate of a complex number is the same complex number except with
the sign of its imaginary part reversed. So if z represents the complex number 3 - 4i, then ~z
would return the Conpl ex object that represents 3 + 4i. Note that this is a unary operator.

9.64 Implement a conversion operator that converts a Poi nt object (see Problem 8.17) into a
Compl ex oObet (s= Prodem 859).

CHAP. 9] OVERLOADING OPERATORS 269

9.65

9.66

9.67

9.68

9.69

9.70

9.71

9.72

9.73

9.74

9.75

9.76

9.77

Implement a conversion operator that converts a Conpl ex object (see Problem 8.53) into a
Poi nt object (see Problem 8.17).

Implement the overloaded division operator / for the Conpl ex class (see Problem 8.54)
using the norm operator | (see Problem 9.62) and the conjugate operator ~ (see Problem 9.62).
The quotient of two complex numbers is computed by the formula

Uu_u-v

V VI
where v is the conjugate of v and v is the norm of v.

Implement an overloaded assignment operator = for the Quat erni on class (see Problem
859).

Implement overloaded stream insertion operator < < and stream extraction operator > for
the Quat er ni on class (see Problem 8.59).

Implement overloaded comparison operators = = and ! = for the Quat er ni on class (see
Problem 8.59).

Implement overloaded addition operator + and subtraction operator for the Quat er ni on
class (see Problem 8.59).

Overload the NOT operator ! to return the norm for the Quat er ni on class (see Problem
8.59). The norm of a quaternion is the square root of the sum of the sauares of its real and imaa-,
inary parts. So if zrepresents the quatemion 3 - 4i +12k, then | - would return 13. Note that
thisis a unary operator.

Overload the bitwise NOT operator ~ to return the conjugate for the Quat er ni on class (see
Problem 8.59). The conjugate of a quatemion is the same quatemion except with the sign of its
imaginary parts reversea. So if z represents ' mé complex number 3 - 4i + 12k, then ~ z would
return the Quaternion object that represents 3 + 4i -12k. Note that this is a unary operator.

Implement the overloaded division operator / for the Quat er ni on class (see Problem 8.59)
using the norm operator ! (see Problem 9.62) and the conjugate operator ~ (see Problem 9.72).
The quotient of two quatemions is computed by the formula

<| =

VI

where y is the conjugate of v and v is the norm of v.

Implement a conversion operator that converts a Poi nt object (see Problem 8.17) into a
Quaternion obet (sse Podem 859).

Implement a conversion operator that converts a Quat er ni on object (see Problem 8.59) into a
Poi nt object (see Problem 8.17).

Implement a conversion operator that converts a Conpl ex object (see Problem 8.53) into a
Quaternion obet (sse Podem 859).

Implement a constructor that converts a Conpl ex object (see Problem 8.53) into a Quater-
nion ooget (sse Poblem 859).

270 OVERLOADING OPERATORS [CHAP. 9

Answers to Review Questions

9.1 Theoperator keywordisusedtoform the name of afunction that overloads an operator. For exam-
ple, the name of the function that overloads the assignment operator = is “operator =".

92 Thekeyword thi s isa pointer tothe object that owns the call of the member function in which the
expression appears.

9.3 The expression * thi s awaysrefersto the object that ownsthe call of the member function in which
the expression appears. Therefore, it can only be used within member function.

94 The overloaded assignment operator should return * this so that the operstor can be used in a cascade
of cdls, likethis w=x=y =12z;

95 The dedaation Rt ional y (x) ; cdls the defalt congructor; the declaation Rational y = x
calls the copy constructor.

9.6 The declaation Rational y = x ; «cdls the copy condructor. The code Rati onal y
calls the default constructor and then the assignment operator.

Y = X

9,7 Thesymbol ** canot be oveloaded as an operator because it is not a C++ operdor.

9.8 The stream operators < < and > > should be overloaded as f ri end functions because their left oper-
ands should be stream objects. If an overloaded operator is a member function, then its left operand is
* this, which is an object of the class to which the function is a member.

9.9 The arithmetic operators +, -, *, and / should be overloaded asfri end functions so that their left
operands can be declared as cons t. This allows, for example, the use of an expression like22 + X

If an overloaded operator is amember function, then itsleft operandis * thi s which isnot cons t .

9.10 The overloaded pre-increment operator has no arguments. The overloaded post-increment operator has
one (dummy) argument, of typei nt .

9.11 The int argument in the implementation of the post-increment operator is left unnamed
becauseit isnot used. It is adummy argument.

9.12 By returning a reference, the overloaded subscript operator [] can be used on the left Sde of an assgn-
ment statement, likethis: v[2] = 22. Thisisbecause, asareference, v[2] is an Ivaue.

Chapter 10

A String Class

10.1 INTRODUCTION

Chapter 7 described the way that character sirings are handled using C-style programming:
each dring is implemented as a pointer p to achar in memory. The actud gtring of characters
that p represents are held in a contiguous block beginning with byte *p and terminated with
the NUL character \ o . To disinguish this representation from that which will be defined in
this chapter, we will refer to the former as “C-gtrings.”

Chapter 7 also described thestring . h header file. It defines many functions that operate
on C-grings. The string class defined in this chapter will include functions that perform
equivaent operationson String objects. Indeed, many of these new operations will be imple-
mented usng functionsfromthe string . h header file

The character string abstract data type is an ided candidate for implementation as a C++
class, encapaulating the data and functiondity in individudized objects. This chapter shows one
way to do that. Such an implementation alows us to use strings as objects of a St ri ng class.

102 THE string CLASS INTERFACE

There are generdly two methods for ddimiting an un-indexed sequence of objects. One
method is to use atraller or terminating object to signa the end of the sequence. C-gtrings are
implemented this way, usng the NUL character \o asthe traler. It is dso the method by
which the DOS and UNIX operating systems store records in afile, using the end-of-line charac-
ter '\n' as the traler. The other method is to store the length of the sequence with the
sequence. Thisis how the VAX/VMS operating system stores records in afile. It is dso how we
will implement our String class

unsi gned len; // the nunber of (non-NUL) characters stored

char* buf; // the actual character string
Here, 1en will be the length of the sequence of characters and buf will be the “buffer” thet
holds them. Actudly, buf isa C-gring, o it redly is just a pointer to a byte in memory.

For example, suppose that name and s tat e ae string objects representing the C-strings
'7. Jefferson" and Virginia". Then we can visudize them like this

name

memory:

271

272 A String CLASS [CHAP. 10

This implementation will improve the efficiency of some gtring operations. For example, to
determine that " ABCDEFGHI JKLMNOPQRSTUVVIKY" and " ABCDEFGHI JKLMNOPQRSTUVWKYZ"
are not equa requires examining al 51 characters. But since we are goring the strings lengths
inour String class, the comparison operator need only compare the integers 25 and 26 to
determine that these two strings are not equdl.

Here isthe cdlassinterface for astring class.

#include <iostream.h>

class String {
friend int operator==(const String& const String&);
friend int operator!=(const String& const String&);
friend int operator<(const String& const String&);
friend int operator<=(const String& const Stringd);
friend int operator>(const String& const String&);
friend int operator>=(const String& const String&);
friend ostream& operator<<(ostream&, const String&);
friend istream& operator>>(istream&, String&);
friend String operator+(const String& const String&);

public:
String(unsigned =0; // default constructor
String(char, unsi gned) ; // constructor
String(const char*); // constructor
String(const String&); // copy constructor
~String(); // destructor
String& operator=(const String&); // assignment operator
String& operator+=(const String&); // append oper at or
operator char*() const; // conversion operator
char& operator[] (unsigned) const; // subscript operator
unsi gned length() const; // access function
private:
unsi gned len; // the nunber of (non-NUL) characters stored
char* buf; // the actual character string

}i
Note that this interface is very Smilar to that of the vec t or class (Problem 9.14).

10.3 THE CONSTRUCTORS AND DESTRUCTOR

Here is the implementation of the default constructor:

String: :String(unsigned n) : len(n)
{
buf = new char([len+1];
for (int i = 0; i1 <len; i++)
buf[i] = ' ";

buf[len] = '\0';

It congtructs a St ri ng object containing n blanks. If no parameter is passed, then n takes the
default vaue 0 and the empty dring is constructed.

CHAP. 10] A String CLASS 273

EXAMPLE 10.1 Testing the Default Constructor

This test driver invokes the default congtructor twice: once with no parameter and once passing 4:

#include '"String.h"

main ()
String sl;
cout << "sl = [" << sl << "], length = " << sl.length() << endl;
String s2(4);
cout << " s 2 =" << S2 << "], length = " << s2.length() << endl;
s1 [1, length = 0

e

s2 [1, length - 4

The first object congtructed, s 1, is the empty string. The second object, s 2, is a gtring of 4 blanks.

The second congtructor creates a string of identicd characters:

String: :String(char ¢, unsigned n) : len(n)
{
buf = new char[len+l];
for (int i =0; i <len; i++)
buf[i] = c;

buf[len] = '"\0';

Hra it uses an initidization lig to assgn n to the object’s length fidd 1 en. Then it uses the
new operator to alocate n+1 characters to the object’ s buffer array buf . Thef or loop assgns
the same character ¢ to each of the fird n édements of the buf array. As dways, the nuL
character \ o isassgned to the last dement of the object’s buffer.

EXAMPLE 10.2 Testing the Second Constructor

This test driver invokes the constructor twice: once with one parameter and once with two:
#include "String.h"
main()

String s1('B',1);

cout << "sl = [" << sl << "], length = " << sl.length() << endl;
String s2('B',4);
cout << "s2 = [" << 82 << "], length = " << s2.length() << endl;

g1 = [B], length = 1
s2 - [BBBB], length - 4

First it condructs the string s 1 containing a single character B . Then it constructs the string s2 con-
taining four B s.

274 A String CLASS [CHAP. 10

The third congtructor converts a C-gring into a string object:
String: :String(const char* s)

| en = strlen(s);
buf = new char[len+1l];

for (int i =0; i <len; i++)
buf[i] = s[i];
buflen] = '\0';

}

It usesthe s trien definedinthe string . h header file to set the object’s length field 1en to
the length of the C-string s. Then it does the same things that the second constructor did, except

that it copies the individua characters of s into the object’s buffer.

EXAMPLE 10.3 Tegting the Third Constructor

This credtes the sring ogett s 1 that represants the Catring " Hel lo, Wrld @' :
#include 'String.h"
main()
String sl("Hello, World!");
cout << '"sl = [" << sl << "], length = " << sl.length() << endl;

sl = [Hello, World!]l, length - 13

The dring hes 13 chaadas induding the comma the blak, ad the exdamaion point (but not counting

the NUL character \ 0).
Hee is how we migt viadize the ogjedt sl

memory:
As usual, we use the symbol @ to represent the NUL character.

The degtructor for our String dassis typica:

String: :~String()

{
delete [] buf;

}
It amply usesthe del et e Operator to restore the memory that was allocated to the object. Note
that the subscript operator [] must be specified because buf is an aray.

CHAP.10] A string CLASS 215
10. 4 THECOPYCONSTRUCTCR

In many class definitions, insead of defining a copy congructor explicitly, the one that is
automatically provided by the compiler can be used. It smply does a direct copy of each corre-
sponding data member. This, however, will not work properly for our Stri ng class. The prob-
lem is that a direct memory copy would duplicate the buf pointer but not the string to which it
points. This would result in having two different objects with the same member data Conse-
quently, we need to define our own copy constructor:

String: :String(const String& s) : len(s.len)
{

buf = new char[len+l];

for (int i =0; i < s.len; i++)
. hufli] = s.buf[i];

buf(len] = '\0';

}

This works the same way as the third congtructor, except that the string s that it duplicates is an
exiging String object ingead of a C-dring. Also, we can use an initidization lig to assgn
s .l en tothenew object’s| en fidd. That was not possible in the third constructor because we
had to invoke afunction (s trl en ())to obtain thelength of s.

EXAMPLE 104 Tegting the Copy Congtructor

This test driver invokes the copy constructor twice: once when it initidizes the object creator, and
once when it initidizes the object inventor:

#include "String.h"

main ()

{

String name("Bjarne Stroustrup");
cout << "name = [" << hame << "]\n";

String creator = naneg; // calls the copy constructor
cout << "creator = [" << creator << "]\n";

String inventor = "Charles Babbage"; // calls two constructors
cout << "inventor = [" << inventor << "]\n';

First it uses the third constructor to construct the St ri ng object nane which duplicates the constant
C-string "Bjarne Stroustrup". Then it uses the copy constructor to create the St ri ng object
creat or whichduplicatesthe Stri ng object name by being initidized by it.

The last declaration uses both constructors to construct the String object i nventor. Frst it uses
the third constructor to create a temporary String object that duplicates the constant C-string
"Charles Babbage". Then it uses the copy constructor to create the String object i nventor to
duplicate the temporary object.

276 A String CLASS [CHAP. 10

10.5 THE ASSIGNMENT OPERATOR

The assignment operator is used whenever one object is assgned to another object that has
aready been declared of the same class. Like the copy congtructor, the assgnment operator is
autometicaly provided by the compiler if we don’'t write our own verson. But it is unwiseto rely
upon the automaticaly generated assignment operator for classes whose objects contain pointers,
because duplicating pointers does not duplicate the data to which they point.

EXAMPLE 10.5 Using the Assignment Operator Generated by the Compiler

This example shows what can go wrong when you rely upon the automatically generated assgn-
ment operador for the String das

#include "String.h"

main ()
{

String myCar = "Infiniti G20";
String yourCar = "Lexus ES300";

cout << "\t myCar = [" << myCar << "l\n";

cout << "\tyourCar = [" << yourCar << "l\n";

myCar = yourCar; // menberw se assi gnnent
cout << "After: myCar = yourCar\n";

cout << "\t myCar = [" << myCar << "]J\n";

cout << "\tyourCar = [" << yourCar << "]\n";

yourCar[6] = 'L';

cout << "After: yourCar[6] = 'L'\n";

cout << "\t myCar = [" << myCar << "I\n";

cout << "\tyourCar = [' << yourCar << "lI\n";

[Lexus LS300

 yourcar

The assignment operator that is generated automatically by the compiler smply uses *member-wise
asgmat” For or String dass that means that in the fifth saement in main () , yourCar. len
isassigned to myCar. len and yourCar. buf isassigned tomyCar. buf. Butthe buf members
are pointers, so the result is that both yourCar. buf andmycar. buf pointto the same C-stringin
memary: the one that contains “Lexus ES3 0 0". Sowhenyau by anawv Leas LS300, it beoomes my
ca tool In other words the assgnmet myCar = yourCar in this program means thet | become a co-
ovng o your newv Lexus LS300 (and thet | logt my Lexus ES300).

The following diagram illustrates the problem:

CHAP. 10] 277

yourCar myCar

yourCar

memory:

— m— 1 . ——
merory: | TLle RIGIS TS [T[]

T—T 1

Both objects, yourCar and myCar, point to the same character string in memory. The assignment
myCar = yourCar simply duplicated the integer 1en and the pointer buf, without duplicating the
character string. So when the “E" is changed to an “L", it gets changed in both objects.

To overcome problems indicated by Example 10.5, we need to define our own assgnment
operator so that an assgnment y = x replaces the object y with a duplicate of the object x.

Here is our own assgnment operator, defined explicitly:

String& String: :operator=(const String& s)
{

if (&s == this) return *this;

len = s.len;

del ete [] buf;

buf = new char[s.len + 1];

strcpy(buf, s. buf);

return *this;
}

Firg it checks whether the object s is different from the object to which it is to be assgned. If
they are dready the same object, then nothing more needs to be done. The conditiond tests
whether the address of s isthe same asthe address (t hi s) of the current object.

If the two objects are not the same, then we recreate the current object so that it becomes a
duplicate of s. After seiting 1en t0s . 1en, We dedlocate the memory currently assgned to

278 A String CLASS [CHAP. 10

buf and then dlocate anew string of bytes of the correct length (s . 1en + 1). Then we usethe
strcpy () function (defined instring. h) tocopy s. buf into buf andreturn *t hi s.

EXAMPLE 10.6 Using the User-Defined Assignment Operator

Here is the output from the same program that we ran in Example 10.5, but which now uses our
explicitly defined assgnment operator:

a {Inflnltl G20]
r = [Lexus ES300]
yourCar \
, {Lexus‘
_ {Lexus
,_curf:ar{G} -
_ myCar = [Lexus E . .
. vourCcsr = llemys 1300 0 .
Thlstlme ‘When the assrgnment myCar = yourCar executes, it actualy replacesthe myCar object
with a duplicate of the yourCar object. And since thisis a distinct duplicate, changing yourCar [6]
to the letter “L” has no effect on the myCar object. In other words, when you sdll me your Lexus ES300
and then buy a new Lexus LS300 for yoursef, | ill have my ES300 and you have your LS300.

The effect of our own user-defined assignment operator can be seen in the following diagram:

Hﬂ‘

len

buf@

yourCar myCar

len

yourCar myCar

len len}
yourCar g% nyCar %

memory:

Here the new operator aIIocates storage for a newstnng in memory for the myCar object So when the
“g” is changed to an “L" inthe yourCar object, it has no effect upon the myCar object.

CHAP. 10] A String CLASS 279

EXAMPLE 10.7 Another Test of the Assignment Operator
#include "String.h"

main ()
{

String name("Babbage"), creator ("Stroustrup");

cout << "name = [" << hame << "]\n";

cout << "creator = [" << creator << "]\n";

name = creator; // calls the assignment operator
cout << "nanme = [" << hanme << "]\n";

The output looks like this:

Hemne' s IRRDLRGRL . &
creator = [Stroustrup]
name = [Stroustrup]

First it uses the third constructor to construct the two String objects name and cr eat or, representing
the Cdrings "Babbage" and "Stroustrup". Then it uses the assignment operator to assign the

String object creator tothe String object nanme. Notice how the length of nanme is
adjusted.

The diagram on the next page illustrates the action of the assignment name = creat or. When the
function oper at or = isinvoked, it createsthelocal variablest hi sands. Thet hi s pointer pointsto
the object nane which owns the call, and sis a reference to the object cr eat or. The function changes
thi s=>1 en tolOandresets thi s->buf toanewly allocated string of 11 bytesintowhich s . buf is
copied using the st rcpy () function.

10.6 THE ADDITION OPERATOR

The addition operator + is a naurd choice for the concatenation function in a String
class. After dl, concatenaion means adding two strings together to form a new string.

Here is the concatenation function for our String class

String operator+(const String& sl, const String& s2)
{

String s(sl.len + s2.len);

strcpy(s.buf, sl.buf);

strcat(s. buf, s2.buf);

return s;

Firg it congtructsanew String objects of length s1 . len +s2.len. Thenit uses the
strepy ()and strcat () functionsdefined inthe string. h header fileto copy s1. buf to
s.buf and appends2. buf toit.

280 A String CLASS

len name len

buf buf[‘\]

[s[t[rfofuls[t]x]u]p]e]

creator

memory: I I | I I

[CHAP. 10

[8la|b[blalgle[o[[T

oper at or =
this@
s \
creator len[10 | name len
bufl—!;l buf@
memory: | | | | 1 [sltleloulsltlr[ulp[e[T T [B[a[b[b[aglele] T
oper at or =
this@—
&5@4\
creator len name len
buf@ buf [@—
memory: | | | | | [Slt]rjofufs|t|rjulp[e] | | |Bla[b[blajgle[@] | [S|tir[ofu]s|t]rfulp]a]

EXAMPLE 10.8 Tedgting the Addition Operator

#include "String.h"

main ()

{

String first("Bjarne"), last("Stroustrup"),
| ast =

cout << "first = [" << first << "],
String nanme = first + " " + |ast;
cout << "name = [" << nane << "]\n";

}

fikst =
nane =

[Bjarne], last = [Stroustrup]
[Bjarne Stroustrup]

[" << | ast

blank(" ");

<< "]J\n";

CHAP. 10] A String CLASS 281

In this example, we first construct the St ri ng objectsfirst andl ast. Then we concatenate
first, blank, andlast, andassigntheresulttothe String object name.

We can visudize the execution of this test driver like this:

| ast len first lenE
buf@ buf@
memory: | | | I [[| | | [|| |sitirjofuls[tir|ulp|o|B[ilalr|n|e|o]
name Ien | ast Ien first IenE]

buf E] buf EI buf EI

/ Y
memory: —IBlJ'Ialrlnle]_lsItIrIOIUIsltlrluIpIGI_fA—ISItIrIOIulsltlrlquTﬁﬁ%WW

Thelengthofthenew String object nane iSfirst.len + temp.len +last.len = 10+1+
6= 17, wheretenp isthetemporary String object that represents the C-string» .

10. 7 ANAPPENDCOPERATCR

The += operator is one of a series of arithmetic assgnment operators that combine the arith-
metic operators (+, -, *, €fc.) with the assgnment operator. Like most operators, the arithmetic
assgnment operators can be overloaded to perform whatever operations you want. However, it
is unwise to define an overloaded operator to do anything that is not smilar to the action of the
original operator.

The += operator is defined for integer types to be equivalent to the addition operator
followed by the assgnment operator. For example, the following two blocks have the same
effect:

{int n +=m }
{int temp = m+ n; int n = temp; }

The only difference is that the second block uses an extra int. Inour String class, we
overloaded the += operaor to preserve this meaning, so that the following two blocks will have
the same effect:

{ String s2 += sl; }

{ String temp = sl + s2; int s2 = temp; }

282 A String CLASS [CHAP. 10

Here is the overloaded += operator for our String class

String& String::operator+=(const String& s)
{

len += s.len;
char* tenmpbuf = new char[len+l];
strcpy(tembuf, buf);
strcat (t enpbuf, s.buf);
delete [] buf;
buf = tenpbuf;
return *this;
}

Firg it increments its 1en fidd by the length of the String object passed to it. Then it
dlocates the totd number of bytes needed for the new string and holds this space in the
temporary C-string t enpbuf . Then, just as it does with the addition operator (page 280), it uses
the strcpy ()and strcat () functions defined inthe st ri ng. h header file to copy its buf
tot enpbuf andthen gppend s . buf toit. Now it can release the memory dlocated to its
origind buffer and then asagnthet enpbuf pointer to it.

EXAMPLE 109 Tedting the += Operator

This test driver invokes the + = operator to gppend the dtring * (1792 -1871) » onto the String
obet name:

#include "String.h"

main()

{
String name("Charles Babbage");

cout << "Name = [" << name << "J\n";
name += v (1792-1871)";
cout << "Name = [" << hame << "]\n";

}

name = [Charles Babbage]
name = [Charl es Babbage (1792-1871)]
Note that the third constructor will be invoked to convert the C-string » (1792-1871) "into a

String object before it is passed to the += operator.
10.8 ACCESS FUNCTIONS

The operator

operator char*() const;
IS a conversion operator that converts a St ri ng object into a C-string. It has the reverse effect
of the constructor

String (const char*);
which converts a C-gtring into a St ri ng object.

CHAP. 10] A String CLASS

This converson operator has a very smple implementation:

String: :operator char*() const

{
return buf;

}

Its buf data member is the C-string that we want.

283

Note that this converson operator is an access function: it smply provides public access to

the private data member buf. It is not redly an “inverse’ of the String (const char*

)

congtructor because it does not create a new C-string. As an access function, it merely provides

public access to the buf C-gring that aready exigts within the St ri ng object.

EXAMPLE 10.10 Testing the Conversion to C-String Oper ator

#include vString.h"

main()
{
String name("John von Neumann"); // name is a String object
cout << "name = [" << nane << "]\n";
char* s = nang; // s is a Cstring
cout << "s = ["<< s << "] \n";

name = [John von Neumann]
s = [John won Neunmann]

Here is the overloaded subscript operator for our String class.
char& String: :operator[] (unsigned i) const

return buf[i];
}

It Smply returns the ith eement of the object’s buf buffer.

EXAMPLE 10.11 Testing the Subscript Operator

#include "sString.h"

main ()

{
String name("Charles Babbage") ;

cout << "nane = [" << hanme << "]\n";

cout << "name[8] = [" << name[8] << "]\n";
name[8] = 'C';

cout << "name[8] = [" << name[8] << "]\n";

cout << "nane = [" << nane << "]\n";

284 A String CLASS [CHAP. 10

The output looks like this

name = [Charles Babbagel]
name[8] = [B]

name([8] = [ci

name 2 [Charles Cabbage]

The only suprisng readt here is thet the expresson nane [8], which invokes the fundion, can be ussd
on the ldt dde of an asignmet! This works because the expression is an Ivalue. (See Sedion 65)

The other accessfunctionsinour Stri ng cdassisthel ength () function:

unsigned String::length() const
{

return len;
}

We have aready tested the 1 eng th () function. (See Example 10.1.)
10.9 THE COMPARISON OPERATORS

We have overloads for dl six of the comparison operators. ==, ! -, <, < =, >, and >=, Fortu-
nately, dl of these are already defined for C-strings in the string . h header file. So their imple-
mentation for our String dassis trivid:

#include <string.h>

int operator==(const String& sl, const String& g2)

return (strcmp(sl.buf, s2.buf) == 0);

int operator!=(const String& sl, const String& s2)

return (strcmp(sl.buf, s2.buf) !'= 0);

i nt operator<(const String& sl, const String& s2)

return (strcmp(sl.buf, g2.buf) < 0);

i nt operator<=(const String& sl, const String& g2)

return (strcmp(sl.buf, g2.buf) <= 0);

All sx of these Smply cdl thes tremp () function defined in the string .h header file.
(See Table 7.2 on page 206.) It returns an integer whose sign indicates how the two C-strings
compare: negative means that the firg C-gtring lexicographically precedes the second; zero
means that the two are equd; and postive means that the first lexicographicaly follows the
second.

CHAP. 10] A String CLASS 285

EXAMPLE 10.12 Testing the Comparison Operators

main ()

{
String X, v;
cout << "Enter two strings: "; cin >> X >>V,;
if (x == y) cout << "\t ["<<x << "] == "<<y << "] \n";
T (x 1= y) cout << "\t[" << X << "]!= [" <<y << "]\n";
if (x < y) cout << "\t[" << X << "] < [" << ¥ << "]\n";
if (x <= y) cout << "\t[" << X << "] <= [" <<y << "] \n";
if (x > y) cout << "\t[" << X << "] > [" << Y << "L\ar,
if (x >= y) cout << "\t[" << X << "] >= [" << Yy << "]\n";

10.10 STREAM OPERATORS

The stream operators overloaded for our gtring class are the stream insertion operator <<
and the stream extraction operator >>. We have aready used these in severd test drivers. Here
are ther implementations.

ostream& operator<<(ostream& ostr, const String& Ss)

{
return ostr << s.buf;

}

istream& operator>>(istream& istr, String& s)

{
char buffer([256];
istr >> buffer;
s = buffer;
return istr;

The overloaded stream insertion operator << smply inserts the object’s buf into the output
sream ost r and then returns that reference. The overloaded stream extraction operator >> uses
atemporary buf f er dring to read the input, assgns it to the reference s, and then returns the
istream reference istr.

Note that both of these overloaded stream operators return the stream object that is passed to
them. This makes these functions consstent with the corresponding predefined stream operators,
alowing them to be invoked in cascades like this:

286 A String CLASS [CHAP. 10

EXAMPLE 10.13 Testing the Stream Operators

#include "String.h"

main()
{
String sl, s2;
cin >> sl >> s2;
cout << Sl << "FFFF o 5D << endl;

Haleewmedey.
gello ~edpopidl

This little program makes two calls to the overloaded insertion operator, two calls to the overloaded
edtrattion operador, and two cdls to the dandard (predefined) edraction operator. The firg cdl is oper -
ator>> (cin, sl) which peses adaexe 0 the istream djed cin to theparameter istr and
areference to the string object s1 to the parameter s. Then " Hel lo, "is read into the C-string
temp. Thisis adgnad to the Sring dgedt s, and then a rfeence to ¢ in s reumed. Thet reium vaue
is then usd in the ssoond cdl opera tor>> (Cin, s2) whdh woks the sme wey, leaving the objedt
S 2 representing " Wor 1d ! "

The output line intermingles the two calls to the overloaded << operator with the two calls to the

standard << operator in the cascade:
f(f(f(f(cout, sl), "*x*xv) g2), endl);

!

where f isoper at or <<.

Review Questions

10.1 Why couldn’t the second constructor for our Stri ng class have a default value for its first
argument, like this:

String(char c='"', unsigned n=0

10.2 What is wrong with using the copy constructor that is automatically provided by the compiler
instead of writing our own copy constructor explicitly?

10.3 What is wrong with using the assignment operator that is automatically provided by the com-
piler instead of writing our own assignment operator explicitly?

104 Inwhat waysis our String class more efficient than smply using C-strings? In what ways is it
less efficient.

Solved Programming Problems

10.5 Implement the String comparison operator = = directly, without using functions from the
dadads tr ing . h hedafile

CHAP. 10] A String CLASS 287

10.6

We have the same funcion header. But now we have to check the object's daa members directly:

int operator==(const String& sl, const String& s2)

{
if (sl.len != s2.len) return O;
for (int i =0; i < sl.len; i++)
if (sl ,buf[i] !'= s2.bufli]) return O;
return 1,

Since we are storing the string lengths, we can determine immediately that the two strings are not equal if
their | en fields are not the same. Otherwise, we scan through the two strings in parallel, comparing
corresponding characters. If a single mismatch is found, we can return O immediately. Only if all the
corresponding characters match can we conclude that the two strings are equal and return 1.

Implement and test the following member function for the stri ng class:
istream& getline(istream& istr, char c='\n');

This function reads a line of characters from the input stream object i st 1 until it encounters
the character c. These characters are stored in the object’s buffer, and the input stream object
is returned.

We have the same funcion header. But now we have to check the object's daa members directly:

istream& String: :getline(istream& istr, char c='\n")
{

char temp[256];

istr.getline(temp, 256, <c);

len = strlen(tenmp);

del ete [] buf;

buf = new char[len + 1];

st rcpy(buf, tem);
return istr;

As with the overloaded extraction operator >>, this function uses a temporary C-string buffer of 256
charecters. It invokes the get 1 ine () functions defined in< ios tream . h> to read the line. Then it
peforms the same deps that ae used in the third condructor to trandform the C-dring buffer tenp into
the dtring object.

Here is a tet driver for this function:

#include "String.h"

main ()
{
String s;
s.getline(cin);
cout << "\t[" << s << "]J\n";

s. getline(cin, L)
cout << "\t[" << s << "]\n';
s.getline(cin, L)

cout << "\t[" << S << "]I\n";

288 A String CLASS [CHAP. 10

The firg cdl uss the defalt vdue \n for the delimiter argument c, so it reads the entire line. The
following two calls use the character 1 for the delimiter, each reads only up to the next occurrence of
that chaacter. The effect is to be ale to use the deimiter as a sepador between input fidds.

10.7 Implement and test the following member function for the Stri ng class:
int firstLocation(const String& s, unsigned k=0);

This ssardhes the dbjed’s buffe, begming with chaade buf [k] for the string s. If s is
found to be a substring, then the index of its first occurrence is returned; otherwise -1 is
returned.

In this solution, we implement a “brute force” searching method. Improvements could be made by
using more efficient pattern-matching algorithms, such as the Knuth-Morris-Pratt Algorithm, the Boyer-
Moore Algorithm, or the Rabin-Karp Algorithm. (See Chapter 19 in [Savitch].)

int String: :firstLocation(const String& s, unsigned k=0

for (int i =k, j =0; i <len && | < s.len; i++, j++)
if (buff[i] !'= s.buf[j]) A
1 -=i;
o= -1;
}
if (j == s.len) return i - s.len; // substring found
else return -1;
}
In this implementetion, the for loop compares buf [i] withs . buf []],incrementing i and]
simultaneously, and resettingi andj whenever a mismatch is found. For example, consider the call:
x.firstLocation(z). Wheni =5andj =0, buf [i] matches s. buf [j];theyareboth

'F'. Soi andj bothincrementtoi =6andj =1,andagain buf [i] machess.buf [j];
this time they are both G . Soi andj bothincrementtoi =7andj = 2.But thistimethey do not
match: buf [i] = 'H' ands.buf[i] = 'Zz'. Soi isresetto5,andj isresetto-1.Butthen
they both increment again before the next comparison ismade, sonext bu f [6] is compared with
s. buf [0]. They don't maich, so next buf [7] is compaed with s buf [0].

The loop terminates when either i =len o j =s. 1 en. If(j ==s. 1 en) ,thenthe sub-
dring was found, because buf [i] macheds . buf [j]] foreachj fromOtos. 1 enl. In this
case, i ispointing to the character immediately after the last character in the match, soi - s . len

will point to the first character in the match and that isthe locationin buf that should be returned.

CHAP. 10] A String CLASS 289

10.8

10.9

10.10

10.11

Hereisatest driver for thisfunction:

#include 'String.h"

main()

{
String x("ABCDEFGHIJKLABCDEFGHIJKL') ;
String y("FGH");
cout << X.firstLocation(y) << endl;
cout << Xx.firstLocation(y, 8) << endl;
cout << x.firstLocation(y, 20) << endl;
String z("FGz");
cout << X.firstLocation(z) << endl;

5
1
-1
=1
Supplementary Programming Problems
Implement and test the other five comparison operators ! =, <, < =, >, and >= for the

St ring class directly, without using functions from the standard str ing .h hesde file

Implement and test the following constructor for the string class:
String(const char* s, unsigned n, unsigned k=0;

This has the same effect as our third constructor, except that it uses n characters from the C-
string s, beginning with character s [k 1. For example, the declarations

String x("ABCDEFGHIJKL", 3);
String y("ABCDEFGHIJKL", 3, 5);
would construct the object x representing the substring " ABC ' and the object y represent-
ing the substring " FH .
Implement and test the following modification of the copy constructor for the string das
String(const String& s, wunsigned n, unsigned k=0);
This usss n chaedeas from the dojet 5§ begming with chaadter s . bu f [k] . Fo ean
ple, if x is a String object representing ' ABDEFAH J ", then
String y(x, 3);
String z(x, 3, 5);

would construct the object y representing the substring " ABC " and the object - represent-
ing the substring " FGH ". (See Problem 10.9.)

Implement and test the following member function for the string class:
int frequency(char c);

This returns the number of occurrences of the character ¢ in the string For example, is x is the
string "M ssissippi ", thenthecal frequency (i) would return 4.

290 A String CLASS [CHAP. 10

10. 12 Implement and test the following member function for the st ri ng class:
voi d renmove(unsi gned n, unsigned k=0);
This removes n characters from the object, beginning with character buf [k] . For example,
String x("ABCDEFGHIJKL") ;
x.remove (3, 5);
would remove the substring " FGH ' from the object x, changingitto ' ABmE JKL .

10.13 Implement and test the following member function for the String class:
void insert(const String& s, unsigned k=0);
This inserts the string s into the current object, beginning with character buf [k] . For
example,
String x("ABCDEFGHIJKL");
String y("XYZ");
X.insert(y, 5);
would insert "xyz ' into the object x, changing it to " ABCDEXYZFGHI JKL ". Note that the
third constructor would be invoked automatically to produce the same effect from the call:
X.insert ("Xyz", 5);
Also note that x. insert (y)prependsy to X, andthat x. insert (y,X.n ())isequiv-
dent to x + = y, appending y to x

10. 14 Implement and test the following member function for the St ri ng class:
voi d replace(const String& s, unsigned n, unsigned k=0);
This replaces n characters from the object, beginning with character buf [K] with string s:
String x("ABCDEFGHIJKL");
String y('"XYZ");
x.replace(y, 6, 5);
would replace the substring " FH K " in the object x with the string s, changing x to
"ABCDEXYZL". Note that the third constructor would be invoked automatically to produce the
same effect from the call:
x.replace("XYyz", 6, 5);
Aloonotethetx . replace (y, m n);isequivaent to
x.remove (6, 5);
X.insert ("Xyz", 5);

10. 15 Implement and test the following member function for the St ri ng class:
int lastLocation(const String& s, unsigned k=0;
This searches the object’s buffer, beginning with character buf [k] for the string s. If s is
found to be a substring, then the index of its last occurrence is returned; otherwise -1 is
returned. For example,
String x("ABCDEFGHIJKLABCDEFGHIJKL");
String y("FGH");
cout << X.lastLocation(y) << endl;
cout << X.lastLocation(y, 20) << endl;
String z("FGZ");
cout << x.lastLocation(z) << endl;
would print 17, -1, and -1. (See Problem 10.7.)

CHAP. 10] A String CLASS 291

10.16

10.17

10.18

10.19

10. 20

Implement and test the following member function for the String class:
int location(const String& s, unsigned n=0 unsigned k=0);
This searches the object’s buffer, beginning with character buf [k] for the strings. If s is
found to be a substring, then the index of its (n+1)st occurrence is returned (in other words, the
first n occurrences of the string s are ignored); otherwise -1 is returned. For example,
String x("ABCDEFGHIJKLABCDEFGHIJKLABCDEFGHIJKLABCDEFGHIJKL") ;
String y("FGH");
cout << X.location(y) << endl;
cout << X.location(y, 0, 20) << endl;
cout << X.location(y, 2) << endl;
cout << X.location(y, 2, 20) << endl;
cout << X.location(y, 4) << endl;

would print 5, 29, 29, -1, and -1. (See Problem 10.7.)

Implement and test the following member function for the stri ng class:
int location(char ¢, unsigned n=0);

This searches the object’s buffer, for the character < If ¢ is found, then the index of its
(n+)st occurrence is returned (in other words, the first n occurrences of the character ¢ are
ignored); otherwise -1 is returned. For example, if x represents the string * ABBCCCBBA" |
thenthecall x.location('C') would return 3, the call x.location('Cc', 3) would
return 11, the call x.location('C', 5 would return -1, and the call
X. location (D) would return -1. (See Problem 10.16.)

Implement and test the following member function for the Stri ng class:
int firstOf(const String& s, unsigned k=0;

This searches the object’ s buffer, beginning with character buf [k] , for any character ¢ that

isin the string s. If any ¢ is found, then the index of its first occurrence is returned; other-

wise -1 is returned. For example, if x represents the string ' ABBCCCBBA" ' then the call
x.firstOf ("CDE") would return 3, the call x.firstOf ("BCD", 4) would return 6, and
thecall x.firstOf("XYz") wouldreturn-1.

Implement and test the following member function for the Stri ng class:

int lastCOf(const String& s);
This searches the object’s buffer for any character ¢ that is in the string s. If any ¢ is
found, then the index of its last occurrence is returned; otherwise -1 is returned. For example,

if x represents the string "ABBCCCBBA", thenthecall x.lastOf ("BCD") wouldreturn?,
and the call x.1lastOof ("Xyz") wouldreturn-1.

Implement and test the following member function for the Stri ng class:
int firstNotOf(const String& s, unsigned k=0;

This searches the object’ s buffer, beginning with character buf [k] , for any character ¢ that
isnot in the string s. If any ¢ is found, then the index of its first occurrence is returned; oth-
erwise -1 is returned. For example, if x represents the string ' ABBCCCBBA" | then the cdl
x.firstNotOf ("ABD") would return 3, and x.firstNotOf ("ABC") wouldreturn-1.

292 A String CLASS [CHAP. 10

10.21 Implement and test the following member function for the Stri ng class:
int lastNotOf(const String& s);

This searches the object’s buffer, beginning with character buf [K] , for any character ¢ that
isnot in the string s. If any ¢ is found, then the index of its last occurrence is returned; oth-
erwise -1 is returned. For example, if x represents the string "ABBCCCBBA", then the cdll
x.lastNotOf ("ABD") would return 7, and x.lastNotOf ("ABC") would return-1.

10.22 Implement and test the following member function for the String class:
int isPrefix(const String& s);
This returns 1 or 0 according to whether s is. a prefix substring of the object. For example, if
X = "ABCDEFGHIJKL" then isPrefix("ABC") wouldreturn 1, and isPrefix ("FGH")
would return 0.

10. 23 Implement and test the following member function for the String class:
int isSufix(const String& s);
This returns 1 or 0 according to whether s is a suffix substring of the object. For example, if

X = "ABCDEFGHIJKL" then isSuffix("JKL") wouldreturnl,and isPrefix("FGH")
would return 0.

10. 24 Implement and test the following member function for the String class:
int capitalize();
This capitalizes all the words in the string. For this exercise, a “word” is defined as a maximal
substring that contains no white space. Usethe i sspace () fundionddfinedinthec type . h
header file. (See Table 7.1 on page 194.)

10.25 Implement and test the following member function for the String class:

int numWords () ;
This returns the number of words in the string. For this exercise, a “word” is defined as a max-
imal substring that contains no white space. Use the i sspace () function defined in the
ctype . h hesda file (See Tade 7.1 on page 194)

10. 26 Implement and test the following member function for the String class:
int numSentences();

This returns the number of sentences in the string. For this exercise, a “sentence” is defined as
a maximal substring that ends with a period and contains no other periods.

10. 27 Implement and test the following member function for the stri ng class:

voi d toUpper () ;
This function changes every lowercase character in the string to uppercase. For example, it

would transform the string " Honey, I'm hone! " into"HONEY, 1'M HOME! ". Use the
charadter function toupper () defined inthe ctype . h header file. (See Table 7.1 on
page 194.)

10.28 Implement and test the following member function for the String class:

voi d toLower () ;
This function changes every uppercase character in the string to lowercase. For example, it
would transform the string "New York, NY "into " new york, ny " . Use the character
function tolower () ddined in the ctype . h heada file (See Tade 7.1 on pege 194)

CHAP. 10] A String CLASS 293

10.29 Implement and test the following member function for the stri ng class:

voi d reverse();

This function reverses the string. For example, it would transform the string asco into pcea.

10.30 Implement and test the following member function for the String class:

10.31

int isPalindrome () ;

This returns 1 or 0 according to whether the string is a palindrome (i.e., it remains the same
string when reversed). For example, isPalindrome ("WASITELI OTSTO LETI SAW)
would return 1 (for “true”).

The String class implemented in this chapter would be inefficient for writing a text file or
for any purpose that involved many instances of the same word (like " the " or " New
York), Thisinefficiency can be reduced significantly by allowing many objects to share the
same buf space in memory. However, using several pointers to point to the same data can
cause problems. (See Questions Example 10.1 and Example 10.2.) These potential problems
can be overcome by making the initial byte in buf a counter that keeps track of how many
objects are using that buffer. For example, the declarations

String sl('France"), s2('"Spain"), s3("France"), s4("France");

would be represented as:

sd

memory:

Note that each string occupies len + 2 bytes in memory. Also note that the initia byte is
storing an nonnegative integer asa char, so it must remain in the range 0 to 127. Modify the
String implementation in this chapter to represent strings this way. The main changes have
to be made to the constructors, the destructor, and the assignment operator.

10.32 Modify the String class so that the user can set or clear a case-sensitive switch. When the

switch is off, comparisons are made without regard to case, so that "NeXT * and 'next
would be regarded as equal strings. One way to implement this feature is to add the stat i ¢
data member

static int sensitivity;

adthe s tat i ¢ fuxdion mambe

static int setSensitivity();

294 A String CLASS [CHAP. 10 .

Answersto Review Questions

10.1 If the second congructor had defalt vdues for both of its aguments then a declaation like this
String s;
would be ambiguous. Any constructor which has default values for al of its argumentsis a default con-
dgructor, and a class may have only one defallt congructor.

10.2 The copy constructor that is automatically provided by the compiler merely duplicates the member data.
This would reult in different objects having their own (different) buf pointers, but they would point to the
same C-string. That could be disastrous, for example, if one were changed or deleted.

10.3 See the answer to Question 10.2.

10.4 Our string class is more efficient when making comparisons. Itisless efficient with its overloaded
stream extraction operator >> which uses a 256-byte buffer. It would also be inefficient in a text-
processing environment because of the overhead of its constructors. (See Problem 10.3 1)

Chapter 11

Composition and Inheritance

11.1 INTRODUCTION

We often need to use exiging classes to define new classes. The two ways to do this are
cdled composition and the inheritance. This chapter describes both methods and shows how to
decide when to use them.

11.2 COMPOSITION

Composition (also cdled containment or aggregation) of classes refers to the use of one or
more classes within the definition of another class. When a data member of the new dassis an
object of another class, we say that the new class is a composite of the other objects.

EXAMPLE 11.1 A Peason Class

Here is a simple definition for a class to represent people.

#include "String.h"

cl ass Person {
public:
Person(char* n="", char* nat="U.S.A.", int s=1)
nanme(n), nationality(nat), sex(s) {}
void printName() { cout << nane; }
void printNationality() { cout << nationality; }

private:
String nane, nationality;
int sex;
bi
main()
{
Person creator("Bjarne Stroustrup', "Denmark")

cout << 'The creator of C++ was ";
creator. printName();

cout << " who was born in ';
creator.printNationality();

cout << ".\n";

THe Eveator Of Cii was Bijdrne strolistrup who wes born inl Denmark.

295

296 COMPOSITION AND INHERITANCE [CHAP. 11

We have usd the string dass thd was ddined in Chaper 10 to dedare the dda membas name ad
nationality forthe Person class. Notice that we used the String class's overloaded insertion
operator << inthe Person class's printName () function.

Example 11.1 illustrates the composition of the Stri ng dasswithinthePer son class. The
next example defines another class that we can compose with the Per son class to improve it:

EXAMPLE 112 A Date Class

class Date {
friend istream& operators>>(istream&, Dateg&);
friend ostream& operator<<(ostream&, const Dateg&);
public:
Date(int meQ, int d=0O, int y=0): nonth(m, day(d), year(y) {}
void setDate(int m int d, int y) { nonth = m day = d;, year = vy;
b
private:
int rmonth, day, year;
b

istream& operators>>(istream& in, Date& x)

{
in >> x.nmonth >> x.day >> X.year
return in;
b
ostream& operator<<(ostream& out, const Date& x)
{
static char* monthName[13] = {"", "January", "February",

“March", “April", "May", "June", "July", "August"”

" Sept enber ", "Oct ober", "Novenber", "Decenber"};
out << nont hName[x. nont h] << << X.day << ", " << X.year
return out;

}
main ()

{
Date peace(11,11,1918);

cout << "World War | ended on ' << peace << ".\n";
peace.setDate(8,14,1945);

cout << "World War Il ended on " << peace << ", \n';
cout << "Enter nonth, day, and vyear: ';

Date date;

cin >> date;
cout << "The date is " << date << ".\n";

}

World War I ended on November 11, 1918
World War II ended on August 14, 1945.
Enter month day, and year 7 4 1’776
The date is July 4, 1776 . '

CHAP. 11] COMPOSITION AND “INHERITANCE 297

The ted driver teds the default condructor, the setDat e () function, the oveloeded insation operator
< <, ad the oveloaded extrattion opgaor >>.

Now we can use the Dat e classingde the Per son class to store a person’s date of birth
and date of death:

EXAMPLE 11.3 Composing the Dat e Class with the Person Class

#include "String.h"
#i ncl ude "Date.h"

cl ass Person {
public:
Person(char* n="", int s=0, char* nat="U.S.A.")
name(n), sex(s), nationality(nat) { }
void setDOB(int m int d, int y){ dob.setDate(m d, y); }
void setDOD(int m int d, int y) { dod.setDate(m d, vy);}
void printName() { cout << nane; }
void printNationality() { cout << nationality; }
void printDOB() { cout << dob; }
void printDOD() { cout << dod; }

private:
String name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = femle, 1 = nale
bi
main ()
{
Person author ("Thomas Jefferson", 1);

author.setDOB(4,13,1743);

author.setDOD(7,4,1826) ;

cout << "The author of the Declaration of Independence was ";
aut hor. print Nane();

cout << ".\nHe was born on ";

author.printDOB() ;

cout << " and died on ';

aut hor. print DOD() ;

cout << ".\n";

}

The author of the Dec]aratlon of Independence was Thomas Jefferson
He was born on April 13, 1743 and dled on July 4, 1826.

Natice agan that we have usad a marmbe fundion of one dass to ddine membe fundions of the com-
posddass the se tha t e () fundion is usd to ddfine the se tDOB () and se tDOD () fundions

Composition is often referred to asa“has-a’ relationship because the objects of the compos-
ite class “have’ objects of the composed class as members. Each object of the Person class
“hasd’ name and a nationality which are String objects. Composition is one way of
reusng exising software to creste new software.

298 COMPOSITION AND INHERITANCE [CHAP. 11

11.3 INHERITANCE

Another way to reuse exiging software to create new software is by means of inheritance
(dso caled specialization or derivation). This is often referred to as an “isd’ reationship
because every object of the class being defined “is’ aso an object of the inherited class.

The common syntax for deriving acdlass v from a dass x is

class Y : public X {

//
Here X is called the base class (or superclass) and v is cadled the derived class (or subclass).
The keyword pub1 i c after the colon specifies public inheritance, which meansthat publ ic
members of the base class -become publ ic members of the derived class.

EXAMPLE 114 Deriving a Student Class from the Person Class

Students are people. So it is natural to use the Peopl e classto derive a St udent class:

#include "Person.h"

class Student : public Person {
public:
Student(char* n, int s=0, char* i="")
Person(n, s), id(i), credits(O { }
void setDOM(int m int d, int y) { dom.setDate(m, d, v); }
void printDOM) { cout << dom } \

private:
String id; // student identification nunber
Date dom // date of matricul ation
int credits; // course credits
float gpa; // grade-point average

b

The Student class inherits al the publ ic functionality of the Person class, including the
Person () constructor which it usesin its constructor to initialize nanme inthe Per son class. Note
that this is a private mambe of the Person dass 0 it coud not be acoessed diredtly.

Here is a test driver for the Student class:
#include "Student.h"

main ()

{

Student x("Ann Jones", "219360061");

x.setDOB(5, 13, 1977);

x.setDOM(8, 29, 1995);

X.printNanme() ;

cout << "\n\t Born: "; Xx.printDOB();

cout << "\n\tMatriculated: "; X.printDOM(); cout << endl;

CHAP. 1 1] COMPOSITION AND INHERITANCE 299

11.4 protected CLASS MEMBERS

The st udent class in Section 11.3 has a dgnificant problem: it cannot directly access the
private datamembersof its Person superclass nanme, nationality, b, b, and sex.
The lack of access on the firgt four of theseis not serious because these can be written and read
through the Per son class's congtructor and public access functions. However, there is no way
to write or read a student's sex. One way to overcome this problem would be to make sex a
data member of the St udent dass But that is unnaturd: sex is an dtribute that dl Per son
objects have, not just St udents. A better solution isto changethepri vat e access specifier to
protected inthe Person class. That will dlow access to these data members from derived
classes.

EXAMPLE 115 The Person Class with protected Data Members

These are the same class definitions that were given in Example 11.3 and Example 11.4 except that
the pri vat e access specifier has been changed to pro tec ted, and we have added the access function
printSex() to the Student dass

#include 'String.h'
#i ncl ude "Date.h"

cl ass Person {
publii¢:
Person(char* n="", int g=0, char* nat="U.S.A.")
name(n), sex(s), nationality(nat) { }
void setDOB(int m int d, int y) { dob.setDate(m d, y); }
void setDOD(int m int d, int y) { dod.setDate(m d, vy);}
void printName() { cout << nane; }
voi d printNationality() { cout << nationality; }
void printDOB() { cout << dob; }
void printDOD() { cout << dod; '}

protected:
String name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male

i

class Student : public Person {

public:

Student (char* n, int s=0, char* i="")

Person(n, s), id(i), credits(O {}
void setbOMint m int d, int y){ domsetDate(m d, y); }
void printDOM() { cout << donmi }

voi d printSex() { cout << (sex ? "male" : “female”); }
pr ot ect ed:
String id; // student identification nunber
Date dom // date of matriculation
int credits; // course credits

float gpa; // grade-poi nt average
}i

300 COMPOSITION AND INHERITANCE [CHAP. 11

Now dl five dta mambas ddined in the Person dass ae aocessble from its Student sbdas
& sEn by the fdlowing tet drive:

main ()

{
Student x("Ann Jones", 0, "219360061");

X.setDOB(5, 13, 1977);
X.setDOM(8, 29, 1995);
X.setDOD(7,4,1826) ;

X. printName();

cout << "\n\t Born: "; x.printDOBOQ ;
cout << "\n\t Sex: "; X.printSexQ ;
cout << "\n\tMatriculated: ":; X.printDOMQ ;

cout << endl

}

Ann Jones
Born: May 13 1977
Sex: female
Matriculated: August 29, 1995

Thepro tec ted accesscategory isabalance between private andpublic categories:
private members are accessble only from within the class itsdlf and its friend classes,
prot ect ed members are accessble from within the class itsdlf, its fri end classes, its derived
classes, and their fri end classes; publ i ¢ members are accessible from anywhere within the
file Ingenerd, pro tec ted isusedinsead of privat e whenever it isanticipated that a sub-
class might be defined for the class.

A subdassinheritsdl thepubl i ¢ andpro tec ted membersof itsbase class. This means
thet, from the point of view of the subclass, thepubl ic andpro tec ted membersof itsbase
class appear as though they actudly were declared in the subclass. For example, suppose that
class x and subclass v are defined as

class X {
public:
int a;
protected
int b;
private:
int c;
b

class Y : public X {
public:

int d;
}i

and x and y are declared as
X X;
Y Vi
Then we can visudize objects x and y as shown below.

CHAP. 11] COMPOSITION AND INHERITANCE 01

The publ ic member a of cass x is inherited as a publ ic member of v, and the
protected member b of dass x is inherited as a protected member of y. But the
private member ¢ of dass x is not inherited by y. (The horizonta lines in esch object
indicate the separate the public, protected, and private regions of the object.)

115 OVERRIDING AND DOMINATING INHERITED MEMBERS

If v isasaubdass of x, then v objects inherit dl the public and protected member
data and member functions of x. For example, the nane data and printName () function in
the Per son class are dso members of the St udent class.

In some cases, you might want to define alocal verson of an inherited member. For example,
if a isadatamember of x and if v isasubclassof x, then you could aso define a separate
data member named a for v. In this case, we say that the a defined in v dominates the a
defined in X. Then a reference v. a for an object v of class v will accessthe a definedin v
indtead of thea defined in x. To accessthea defined in x, onewouldusey . x :: a.

The same rule applies to member functions. If a function named £ () is defined in X and
another function named £ () with the same Sgnature is defined in v, theny.tf() invokesthe
latter function, and v . X ;: £ () invokes the former. In this case, the locd function y.f()
overrides ther () function defined in X unlessitisinvoked asy . X :: £ ().

These diginctions are illudrated in the following example,
EXAMPLE 11.6 Dominating a Data Member and Overriding a Member Function

Here are two classes, x and v, with v inheriting from x.

class X {

public:
void f£() { cout << "X::f() executing\n"; }
int a

}i

class Y : public X {
public:
void f() { cout << "Y::f() executing\n"'; } // overrides X :f()
int a; // domi nates X :a
}i

But the membas of v have the same dgnaures ss those in . S v's mambe fudion f () overrides
thef ()definedinx, andy s datamember a dominatesthe a definedin x.

302 COMPOSITION AND INHERITANCE [CHAP. 11

Hee is a teg diiver for the two dases

main ()
{
X X;
X.a = 22;
x.£():
cout << "x.a = " << X.a << endl;
Y vi
y.a = 44; // assigns 44 to the a defined in Y
y.X: :a = 66; // assigns 22 to the a defined in X
v.£(); // invokes the f() defined in Y
y. X f(); // invokes the f() defined in X
cout << "Y. a=" << y.a << endl;
cout << "y.X::a = " << y.X::a << endl;
X Z =Y,
cout << "z.a = << Z.a << endl;

.

Here, y has access to two different data members named a and two different functionsf () . The
Odalts ae the ones ddfined in the daived dass v. The soope resdlution opardor :: is usad in the fom
X:: to overide the defalts to acess the coresponding mambas ddined in the paret dass x. When
the x object z and initidized with v, its x members are used: z . a is assigned the value vy.X::a.

This diagram illustrates the three objects x, v, and z:

Example 11.6 and most of the remaining examples in this chapter are designed to illudrate
the intricacies of inheritance. They are not intended to exemplify common programming prac-
tice. Ingtead, they focus on specific aspects of C++ which can then be applied to more genera
and practicd Studions. In particular, the method of dominating data members as illudrated in
Example 11.6 is rather unusud. Although it is not uncommon to override function members,
dominating data members of the same typeis rare. More common would be the reuse of the same
data name with a different type, like this:

class Y : public X {
public:
doubl e a; the data nember a in class X had type int

CHAP. 1 1] COMPOSITION AND INHERITANCE 303

In an inheritance hierarchy, default congtructors and destructors behave differently from
other member functions. As the following example illugtrates, each congructor invokes its
parent congtructor before executing itsalf, and each destructor invokes its parent destructor after
executing itsdf:

EXAMPLE 11.7 Parent Constructors and Destructors

class X {
public:
X() { cout << "X::X() constructor executing\n"; }
~X() { cout << "X::X() destructor executing\n"; }
i

class Y : public X {
public:
Y() { cout << "Y::Y() constructor executing\n"; }
~Y () { cout << "Y::Y() destructor executing\n"; }
bi

class Z : public Y {

public:
Z(int n) { cout << "Z::Z(int) constructor executing\n"; }
~7Z() { cout << "Z::Z() destructor executing\n"; }

i

main ()
{
z z2(44);

Y() constructor executing
7::7{int) constructor executing
Z::721] destructor executing
Y::Y() destructor executing
X::X() destructor executing

¥ i) cons

When z is declared, the z ::z (int) constructor is caled. Before executing, it calsthe v :: v ()
congructor which immediately calls the x : : x () constructor. After the x :: x () constructor has fin-
ished executing, control returnstothe y: ;v () constructor which finishes executing. Then finally the
z::z () constructor finishes executing. The effect is that all the parent default constructors execute in
top-down order.

The same thing happens with the destructors, except that each destructor executes its own code _before
cdling its parent destructor. So al the parent destructors execute in bottom-up order.

Here isamore redidic example:

304 COMPOSITION AND INHERITANCE [CHAP. 11

EXAMPLE 11.8 Parent Constructors and Destructors

Hee is a damo progan thet usss a bese dass Person ad a daived dass St udent :

cl ass Person {
public:
Person(const char* s)
{ name = new char([strlen(s)+1]; strcpy(nane, s); }
~Person() { delete [] name; }
pr ot ect ed:
char* nane;

}i

class Student : public Person {
public:
Student (const char* s, const char* n) : Person(s)
{ major = new char[strlen(m+l]; strcpy(mjor, m; }
~Student () { delete [] mpjor; }
private:

char* major;
}i

main()

{
Person x("Bob");

{
Student vy ("Sarah", "Biology"):

}

When x is indantiated, it cdls the Per son oondructor which dlocates 4 bytes of memory to dore the
dring “Bob". Then y indantiges fird cdling the Person condructor which dlocates 6 bytes to dore
thedring “ Sar ah" and then dlocating 8 more bytes of memory to dorethedtring “B 1 o 1 ogy". The siope
of y terminates before z is instantiated because it is declared within an internal block. At that moment,
y's desructor dedlocates the 8 bytes used for “Biol ogy" and then cdls the Per son dedrucor which
Oedlocates the 6 bytes used for “Sarah”. Finadly the Per son destructor is called to destroy x, deallo-

cding the 4 bytes usd for “Bob".

11.6 private ACCESSVERSES protected ACCESS

The difference between private andpro tec ted class membersis that subclasses can
access prot ect ed members of a parent class but not pri vate members. Since pr ot ect ed
is more flexible, when would you want to make memberspri vat e. ? The answer lies a the heart
of the principle of information hiding: restrict access now to facilitate changes later. If you think
you may want to modify the implementation of a data member in the future, then dedaring it
private will obviate the need to make any corollary changes in subclasses. Subclasses are
independent of private data members.

CHAP. 1 1] COMPOSITION AND INHERITANCE 305

EXAMPLE 119 The per son Classwith prot ected and pri vate Data Members

Suppose that we need to know whether people (i.e, Person objects) are high school greduates. We
could just add a pro tec ted data member like sex that stores either O or 1. But we might decide later
to replace it with data member(s) that contain more detailed information about the person’s education. So,
for now, we st up a private data member hs to prevent derived classes from accessing it directly:

cl ass Person {
public:
Person(char* n="", int s=0, char* nat="U.S.A.")
name(n), sex(s), nationality(nat) { }

I
protected:
String name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = femle, 1 = male

voi d set HSgraduate(int g) { hs = g; }

int isHSgraduate() { return hs; }
private:

int hs; // = 1 if high school graduate
b

We include pro tec ted access functions to alow subclasses to access the information. If we do later
replace the hs data member with something else, we need only modify the implementations of these two
access functions without affecting any subclasses.

11.7 virtual FUNCTIONS AND POLYMORPHISM

One of the most powerful festures of C++ is that it dlows objects of different types to
respond differently to the same function cdl. Thisis cdled polymorphism and it is achieved by
means of vi rtual functions. Polymorphism is rendered possible by the fact that a pointer to a
base class ingtance may dso point to any subclass ingance:

class X {
//

class Y : public X { // Y is a subclass if X
/1!

main ()

{
X* p; // pis a pointer to objects of base class X
Yy
p = &y; // p can also point to objects of subclass Y

Soif p has type x* (“pointer to type X”), then p can also point to any object whose type is a
subclass of x. However, even when p is pointing to an ingance of a subclass v, its type is ill
x* . S0 an expression likep->f () would invoke the function £ () defined in the base class,

306 COMPOSITION AND INHERITANCE [CHAP. 11

Recal that p- >f () isan aternate notationfor *p . f (). This invokes the member function f ()
of the object to which p points. But what if p is actually pointing to an object y of a subclass of the
class to which p points, and what if that subclass v has its own overriding version of £ () ? Which f ()
getsexecuted: X::F ()or v::f ()?Theansweristha p- >f () will executex::f () because p
had type X*. The fact that p happens to be pointing at that moment to an instance of subclass v isirrel-
evant; it's the daticaly defined type x* of p that normally determines its behavior.

EXAMPLE 11.10 Using virtual Functions

This demo program declares p to be a pointer to objects of the base class x. First it assigns p to
point to an instance x of classx. Thenit assignsp to pointto aninstancey of the derived classy.

class X {
public:

void f() { cout << "X::f() executing\n'"; }
b

class Y : public X {
public:

void f() { cout << "Y::f() executing\n"; }
b

main ()
{
X X3
Yy;
X* p o= &x;
p->f(); // invokes X. :f() because p has type X*
P = &Y
p->f(); // invokes X :f() because p has type X*

Xiif() executing
Two function cals p- > f () are made. Both cals invoke the same version of £ () that is defined in the
base class x because p is declared to be a pointer to x objects. Having p point to y has no effect on
the second call p- > f ().
Transform X:: () into a virtual function by adding the keyword “virtual " to its declaration:
class X {

public:
virtual void f() { cout << '"X::f() executing\n"; }

}i

With the rest of the code left unchanged, the output now becomes
Xerpll eweciting '
¥Y::f() executing . ,

Now the second cdl p- > f () invokes vy : :f () insteadof x: :f ().

This example illugtrates polymorphism: the same cdl p- >f () invokes different functions
The function is selected according to which class of object p points to. This is caled dynamic
binding because the association (i.e., binding) of the cdl to the actua code to be executed is

CHAP. 11] COMPOSITION AND INHERITANCE 307

deferred until run time. The rule that the pointer’s saticdly defined type determines which mem-
ber function gets invoked is overruled by declaring the member function vi r t ual .
Here is a more redigtic example:

EXAMPLE 11.11 Polymorphism through virtud Functions

HereisaPer son classwith a St udent Subclassand aPr of essor subclass:

cl ass Person {

public:
Person(char* s) { name = new char[strlen(s+1)]; strcpy(nanme, s);
void print() { cout << "My nane is " << nane << ".\n"; }

pr ot ect ed:
char* nane;

bi

class Student : public Person {
public:
Student (char* s, float g) : Person(s), gpal(g) {}
void print() { cout << "My name is ' << nane
<< "and ny GP.A is " << gpa << ".\n"; }
private:
float gpa;
i

class Professor : public Person {
publ-ic:
Prof essor(char* s, int n) : Person(s), publs(n) {}
void print() { cout << "My name is ' << nane
<< " and | have " << publs << ' publications.\n"; }
private:
int publs;
i

main()
{
Person* p;
Person x("Bob") ;
p = &x;
p->print();
Student vy ('"Tom", 3.47);

P = &y;

p->print();

Prof essor z("Ann", 7);
p = &z;

p->print();

308 COMPOSITION AND INHERITANCE [CHAP. 11

The print () fundtion defined in the bese dass is nat virtual. So the cdl p->print () dways
invokes thet same bae dass fundion Person : :print () beame p hes type Person*. The pointer
p is datically bound to that bese dass function & compile time
Nov denge the bese dass fundion Person : :print ()intoavirtual function, and run the
{are pogam
cl ass Person {
public:
Person(char* s) { name = new char[strlen(s+1)]; strcpy(name, s);
}
virtual void print() { cout << "My nhame is " << hame << ".\n"; }
protected
char* name

}i

My,%game ie Bob. . .
My name is Tom and my G P A is 3 47
My name is Ann and I have 7 publications -

Now the pointer p isdynamically boundtothe print () funcion of whaever objedt it ponts to. So
the first call p->print() invokes the base class function Person : : print (), thessond cl
invokes the daived dass fudion student : ; print (), ad the third cdl invokes the daived dass
function Professor: :print (). We say that the call p->print () is polymorphic because its
meaing dianges aooding to droumdance

In generd, a member function should be declared as virtua whenever it is anticipated that a
least some of its subclasses will define their own loca version of the function.

11.8 VIRTUAL DESTRUCTORS

Virtud functions are overridden by functions that have the same signature and are defined in
subclasses. Since the names of constructors and destructors involve the names of thar different
classss, it would seem that constructors and destructors could not be declared virtud. That is
indeed true for congtructors. However, an exception is made for destructors.

Every cdass has a unique dedtructor, ether defined explicitly within the class definition or
implicitly by the compiler. An explicit destructor may be defined to be virtud. The following
example illugtrates the vadue in defining a virtud destructor:

EXAMPLE 11.12 Memory Leak

This program is amilar to Exanple 116

class X {
public:
X() { p = new int[2]; cout << "X(). "; }
~X() { delete [] p; cout << "~X().\n"; }
private:

int* p;
Hi

CHAP. 1 1] COMPOSITION AND INHERITANCE 309

class Y : public X {

public:
Y() { g = new int[1023]; cout << "Y(): Yi:iq = " << g << ". ";}
~Y() { delete [] q; <cout<<"~Y (). ")
private:
int* Q;
i
main ()
{
for (int i =0; i < 8 i+
X r = new Y,
delete r;
}
XO). Y0: oxEs2IE; XD

X, -¥l)= Y q - 0x5921c. ~ ~X() »

X0 . ¥(): ¥Yiig = 0x5a2lc. =X() .

¥, v ()1 v::qg=0xbllc. =x().

X(O. Y(O: ¥:i:ig = 0x5¢2lc.=X (]

XO, Y () .:¥:i:qg-=0xbd2lc, ~X()")

0 . ¥ () v :\q = O0x5e2lc. X () .

Z() ¥O: ¥:i:g = 0%5f21c. © ~X() - v : LI
Each iteration of the for Ioop creates a new dynamic object. As in Example 11. 6 the cons&c&&&e
invoked in top-down sequence: firstx () adthen v (), dlocating 4100 bytes of dorage (using 4 bytes
for each int). But since r is declared to be a pointer to x objects, only the x destructor is invoked,
deallocating only 8 hytes. So on each iteration, 3992 bytes are logt! This loss is indicated by the actud val-
ues of the pointer v ::q.

®onou

To plug this lesk, change the desrudor ~X () intoavirtual function:

class X {
public:
X() { p = new-int[2]; cout << "X(). "; }
virtual ~x() { delete [] p; cout << "~X().\n"; }
private:
int* p;

0x5a220}
 0x5a220. v oax.
0x5a220. .,;'Y,{)J, . vy

\n ‘ ux"u

With the bese dass detructor dedared virtual, eech iteaion of the for loogp cdls both desructors
thereby retoring dl memary thet wes dlocated by the new opaaor. This dlows the same memory to be
reussd for the pointer r.

310 COMPOSITION AND INHERITANCE [CHAP. 11

This example illustrates what is known as a memory leak. In alarge-scde software system,
this could lead to a catastrophe. Moreover, it is a bug that is not easly located. The mord is:
declare the base class destructor vi rt ual whenever your class hierarchy uses dynamic binding.

As noted earlier, these examples are contrived to illustrate specific features of C++ and are
not meant to exemplify typicad programming practice.

11.9 ABSTRACT BASE CLASSES

A wdl-designed object-oriented program will include a hierarchy of classes whose interrela-
tionships can be described by atree diagram like the one below. The classes at the leaves of this

Vertebrate

Pengui n Bat Carnivore Hephant Primate Rodent

/N, LN

Bear Cat Dog Mnkey Hunan Beaver Muse

tree (eg, OmM, Fish, Dog) would include specific functions that implement the behavior of
their respective classes (eg., Fish. swm (), owl.fly(), Dog. dig ()). However, some of
these functions may be common to dl the subclasses of a class (eg., Vertebrate.eat(),
Mammal . suckle(), Primate.peel ()). Such functions are likdly to be declared vi rtual in
these base classes, and then overridden in their subclasses for specific implementations.

If & virtual function is certain to be overridden in al of its subclasses, then there is no
need to implement it a dl in its base dass. This is done by making the virtual function
“pure” A pure virtual member function is a virtud function that has no implementation in its
dass. The syntax for specifying a pure virtud member function is to insart the initidizer “= o ;”
in place of the functions body, like this

virtual int f() =0;

For example, inthe Vert ebrat e class above, we might decide that the eat () function
would be overridden in every one of its subclasses, and thus declare it as a pure virtua member
function within its Vert ebrate base class:

class Vertebrate {
public:

virtual void eat() =0 // pure virtual function
}i

class Fish : public Vertebrate {
public:

void eat(); // inplenmented specifically for Fish class el sewhere
bi

CHAP. 1 1] COMPOSITION AND INHERITANCE 311

The individua classes in a class hierarchy are designated as either “abgtract” or “concrete”
according to whether they have any pure virtua member functions. An abstract base class is a
class that has one or more pure virtud member functions. An concrete derived class is a class
that does not have any pure virtud member functions. In the example above, the Ver t ebr at e
class is an abstract base class, and the Fi sh class is a concrete derived class. Abstract base
classes cannot be instantiated.

The exigence of a pure virtud member function in a class requires that every one of its
concrete derived subclasses implement the function. In the example above, if the methods
Vertebrate.eat (), Mammal. suckle (),and Primate.peel() were the only pure virtud
functions, then the abstract base classes (“ABCs”) would be Vertebrate, Manmal, and
Primate, and the other 15 classes would be concrete derived classes (“CDCs”). Each of these 15
CDCs would have its own implementation of the eat () function, the 11 CDCs of the Mammal
class would have their own implementation of the suckl e () function, and the 2 CDCs of the
Pri mate dasswould have their own implementation of the peel () function.

An ABC is typicaly defined during the first stages of the process of developing a class hier-
archy. It lays out the framework from which the details are derived in the ABC's subclasses. Its
pure virtud functions prescribe a certain uniformity within the hierarchy.

EXAMPLE 1113 A Hierarchy of Media Classes

Here is a hierarchy of classes to represent various media objects:

Medi a
Audi o Book Peri odi cal

AN AN

CD Tape Record Magazi ne Newspaper Journal Newsl et t er

The primary ABC isthe Medi a class:
class Media {

publ i c:
virtual void print() =0;
virtual char* 1id() =o;

pr ot ect ed:

String title;
b

It has two pure virtuad functionsand one datamember.
Here is the concrete Book subclass:

class Book : Media {
public:
Book(String a=" ", String t="", String p="", String i="")
aut hor (a), publisher(p), isbn(i) {title =1t; }
void print() { cout << title << " by " << author << endl; }
char* id() { return isbn; };
private:
String author, publisher, isbn;
}i

312 COMPOSITION AND INHERITANCE [CHAP. 11

It implements the two virtud fundions wing its omn mamber dda

Here is the concrete CD subclass:
class CD : Media {

public:
CD(String t="", String c="", String m="", String n="")
composer(c), mke(m, nunmber(n) {title =1; }
void print() { cout << title << ", " << conposer << endl; }
char* id() { return make + * " + nunber; };
private:

String conposer, meke, nunber;
Vi

The Cp classwill also be a CDC of the Audi o class, which will be another ABC. So when the Audi o
dass is ddined, its pure virtud fundions will d0 have to be implemated in ths CD das

Heae is the conade Magazine dhbdas

cl ass Magazine : Media {
public:
Magazi ne(String t="", String i="", int v=0, int n=0
issn(i), volume(v), nunber(n) {title =1; }
voi d print()
{ cout << title << " Magazine, Vol.
<< volume << ", No." << nunber << endl; }
char* id() { return issn; };
private:
String issn, publisher;
int volunme, nunber;
+i

The Magazi ne classwill aso be aCDC of the Peri odi cal class, which will be another ABC. So
when the Peri odi cal classisdefined, its pure virtual functions will aso have to be implemented in
this Magazi ne class.

Here is a teg dive for the foor dassess ddined above

main()

Book book("Bjarne Stroustrup", "The C++ Programming Language",
" Addi son- Wesl ey", "0-201-53992-6");

Magazi ne magazine("TIME"', "0040-781X", 145, 23);

CD cd("BACH CANTATAS', *"Johann Sebastian Bach",
"ARCHIV", "D120541");

book. print();

cout << "\tid: " << book.id() << endl;

magazi ne. print();

cout << "\tid: " << magazine.id() << endl;

cd.print();

cout << "\tid: " << cd.id() << endl;

CHAP. 1 1] COMPOSITION AND INHERITANCE 313

Here is the output:

The C++ Programming Language by Bjarne Stroustrup
' id: 0-201-53992-6 -
TIME Magazine, Vol. 145, No.23
id: 0040-7181X /
BACH CANTATAS, Johann Sebastian Bach
id: ARCHIV Dl 20541 .

Note that al the callsto the print () adid () functions ae independent of their class implementa-
tions. So the implementations of these functions could be changed without making any changes to the pro-
gram. For example, we could change the Book : : print () function to
voi d print()
{ cout << title << " by " << author
<< ".\nPublished by " << publisher << ".\n"; }

and obtain the output

The C++ Programming Language by Bjarne Stroustrup.
Published by Addison-Wesley.

without any changes to the program.
11.10 OBJECT-ORIENTED PROGRAMMING

Object-oriented programming refers to the use of derived classes and virtud functions. A
thorough treatment of object-oriented programming is beyond the scope of this book. See the
books [Bergin], [Perry], and [Wang] listed in Appendix E for a more thorough treatmen.

Suppose that you have three televisions, each equipped with its own video cassette recorder.
Like most VCRs, yours are loaded with festures and have confusing user manuas. Your three
VCRs are dl different, requiring different and complex operations to use them. Then one day
you see on the shelf of your loca eectronics store a Smple remote controller that can operate all
kinds of VCRs. For example, it has a Sngle “RECORD” button that causes whatever VCR it is
pointed at to record the current TV program on the current tape. This marvelous device repre-
sents the essence of object-oriented programming (“OOP”): conceptud smplification of diverse
implementations by means of a Sngle interface. In this example, the interface is the remote
controller, and the implementations are the (hidden) operations within the controller and the
individua VCRs that carry out the requested functions (“RECORD”, “STOP’, “PLAY”, etc.).
The interface is the abstract base class below:

class VCR {

public:
virtual void on() =0;
virtual void off() =Q

virtual void record() =0
virtual void stop() =0
virtual void play() =0Q

314

COMPOSITION AND INHERITANCE

and the implementation s are the concrete derived classes below:

cl ass Panasonic : public VCR {

public:
voi d
voi d
voi d
voi d
voi d

on();

off ();
record () ;
stop();
play();

class Sony : public VCR {

public:
voi d
voi d
voi d
voi d
voi d

on();

off ();
record() ;
stop();
play():

class Mtsubishi : public VCR {

publ-ic:
voi d
voi d
voi d

on();
off ();
record() ;

[CHAP. 11

void stop();
voi d play();
ri

One important advantage of object-oriented systems is extensibility. This refers to the ease
with which the sysem can be extended. In the example above, the VCR controller would be
cdled “extengble’ if it austomaticaly works the same way on new VCRs that we might add in
the future. The controller should not have to be modified when we extend our collection of
VCRs, adding a Toshiba or replacing the Sony with an RCA.

In the object-oriented programming, we imagine two distinct points of view of the system:
the view of the consumer (i.e., the client or user) that shows whét is to be done, and the view of
the manufacturer (Le., the server or implementor) that shows how it is to be done. The consumer
sees only the abstract base class, while the manufacturer sees the concrete derived classes. The
customer’ s ections are generaly cdled operations, as opposed to the manufacturer’ s implemen-
tations of these actions which are cdled generadly methods. In C++, the actions are the pure
virtua functions, and the methods are their implementations in the concrete derived classes. In
this context, the abstract base class (the user's view) is cdled the system interface, and the
concrete derived classes (the implementor's view) are caled the system implementation:

This dichotomy is most effective when we use pointers to objects, asin Example 11.13. Then
we can exploit dynamic binding make the system interface even more independent from the
system implementation. Extenghility is facilitated by the fact that only the newly added methods
need to be compiled.

CHAP. 1 1] COMPOSITION AND INHERITANCE 315
The Two Views in an Object-Oriented Program
The System Interface The System Implementation
(user’s view) (implementor’s view)
shows what is done shows how it is done
abstract base class concrete derived classes
operations methods
pure virtual functions functions
Review Questions
11.1 What is the difference between composition and inheritance?
11.2 What is the difference between prot ected and private members?
11.3 How do the default constructors and destructors behave in an inheritance hierarchy?
114 What isa virtual member function?
115 What isapure virtual member function?
11.6 What is a memory leak?
11.7 How can virtua destructors plug a memory leak?
118 What is an abstract base class?

11.9 What is a concrete derived class?

11.10 What is the difference between static binding and dynamic binding?

11.11 What is polymorphism?

11.12 How does polymorphism promote extensibility?

11.13 What is wrong with the following definitions:

class X {
protect ed:

int a;
}i

class Y
public:
void set (X X,

public X {

i nt

c)
bi

{x.a =c¢ !

Solved Programming Problems

11.14 Implementa Car d class, acomposite Hand class, and a composite Deck class for play-

ing poker.

316 COMPOSITION AND INHERITANCE [CHAP. 11

First we implement a Card class:

enum Rank {two, three, four, five, six, seven, eight,
nine, ten, jack, queen, king, ace};
enum Suit {clubs, diamonds, hearts, spades};

class Card ¢
friend class Hand;
friend class Deck;
friend ostream& operator<<(ostream&, const Card&);
public:
char rank() { return rank-; }
char suit() { return suit-; }
private:
Card() { };
Card(Rank rank, Suit suit) : rank_(rank), suit_(suit) {};
Card(const Card& c) : rank-(c.rank_), suit _(c.suit _) { };
~Card() { };
Rank rank-;
Suit suit-;

7

}i

This class uses enumeration types for a cad's 13 posshle ranks and 4 posshle suits Anticipating the
implementation of Hand and Deck classes, we declare them here to be fri end classes to the
Card class. Thiswill allow them to access the pri vat e members of the Car d class. Notice that
dl three condructors and the destructor are declaed to be private. This will prevent any cads to be
created or deroyed except by the Card's two friend classes

Here is the implementation of the overloaded insertion operator << for cards:
ostream& operator<<(ostream& ostr, const Card& card)

{
switch (card.rank_) {
case two © ostr << "two of ; break:
case three : ostr << "three of '; break;
case four . ostr << "four of "; break:
case five : ostr << "five of "; break:
case Six :ostr << "six of »; break:

case seven : ostr << "seven of '; Dreak;
case eight : ostr << "eight of '; break;

case nine : OStr << "nine of "; br eak;
case ten : ostr << "ten of '; br eak;
case jack : ostr << "jack of "; br eak;
case queen : ostr << "queen of "; break;
case king : ostr << "king of '; br eak;
case ace . ostr << "ace of '; br eak;

}

switch (card.suit_) {

case clubs : ostr << "clubs”; break;
case dianmonds : ostr << "dianmonds"; break;
case hearts . ostr << "hearts"; br eak;
case spades . ostr << "spades"; br eak;

}
return ostr;

CHAP. 11] COMPOSITION AND INHERITANCE 317

Here is the implementation of the Hand class:

#i ncl ude "Card.h"'

cl ass Hand {
friend class Deck;

public:
Hand(unsi gned n=5) : size(n) { cards = new Card[n]; }
~Hand() { delete [] cards; }
voi d display();
int isPair();

int isTwoPair();

i nt isThreeOfKind{);

int isStraight();

int isFlush();

int isFullHouse();

i nt isFourOfKind();

int isStraightFlush();
private:

unsi gned size;

Card* cards;

voi d sort();

bi

It uses an aray to tore the cads in the hand. The sort () functionisaprivate utility that iscalled
by the Deck class after dealing the hand. It can be implemented by any simple sort algorithm such as
the Bubble Sort. The di splay () functionisalso straightforward, using the insertion operator <<
that isoverloaded inthe Car d class.

The eight boolean functions that identify special poker hands are not so straightforward. Here isthe
implementation of the i sThreeO f Kind() function:

int Hand: :isThreeOfKind ()
{

if (cards[0].rank_ == cards[l].rank_

&& cards([l].rank_ == cards[2].rank_

&& cards[2].rank_ != cards[3].rank_

&& cards([3].rank_ !'= cards[4].rank_) return 1,
if (cards[0].rank_ != cards[l].rank_

&& cards[1l].rank_ == cards[2].rank_

&& cards[2].rank_ == cards[3].rank_

&& cards([3].rank_ != cards[4].rank_) return 1,
if (cards[0].rank_ != cards[l].rank_

&& cards[l].rank_ != cards[2].rank_

&& cards([2].rank_ == cards[3].rank_

&& cards([3].rank_ == cards[4].rank_) return 1;
return O;

Since the hand is sorted by r ank-, the only way there could be three cards of the same rank with the
other two cards of different rank would be one of the three forms: xxxyz, xyyyz, or xyzzz. If any of these
three formsisidentified, then the function returns 1. If not it returns 0.

The isPair () functionthe isTwoPair () functionthe isFullHouse () function, and
the isFourOfKind () function are similartothe 1sThreeOfKind () function.

318

COMPOSITION AND INHERITANCE [CHAP. 11

The isStraight () function, the isFlush () function,andthe isStraightFlush ()
function are also tricky. Hereisthe i sF lus h () function:

int Hand: :isFlush()
{
for (int i =1, i < size; i++)
if (cards([i].sult_ != cards[0].suit.) return O0;
return 1;

This compares the sui t _ of exh of the seoond through fifth cards (card [11 through card [41).
If any of these are not the same, then we know immediately that the hand is not a flush and can return O.
If the loop terminates naturally, then all four pairs match and 1 is returned.

Hereisthe Deck class:

#include "Random.h"
#i ncl ude "Hand.h"

cl ass Deck {
public:
Deck () ;
voi d shuffle();
voi d deal (Hand&, unsigned =5);
private:
unsi gned top;
Card cards[52];
Random random
bi

It usesthe Random classinits shu f f 1 e() function. Note that the r andom object is declared as
aprivate member sinceit isused only by another member function:

void Deck::deal (Hand& hand, unsigned size=5)
{
for (int i = 0; i < size; i++)
hand. cards[i] = cards[top++];
hand. sort ();

The top member adways locates the top of the deck; ie, the next card to be dedt. So the deal ()
function copies the top five cads off the deck into the hand's cards aray. Then it sorts the hand.

The Deck's condructor initidizes dl 52 cads in the deck, int the order two of clubs, three
of clubs, four of clubs,..., ace of spades:

Deck: : Deck()
{
for (int i = 0; i < 52; 1++
cards[i] .rank = Rank(i%13);
cards[i].suit_ = Suit(i/13);

1
-
—~

}
top = 0;

CHAP. 11] COMPOSITION AND INHERITANCE 319

So if hands are dealt without shuffling first, the first hand would be the straight flush of two through six
of clubs.

Findly, hereisthe shu f f le() function:

voi d Deck: :shuffle()

{
for (int i =0; i <52; 1++){ // do 52 random swaps
int j = random.integer(0, 51);
Card ¢ = cards[i];
cards[i] = cards[j];

cards[j] = c;
}
top = O;

It swaps the cardsin each of the 52 elements with the card in arandomly selected element of the deck’s
cards array

The implementations of the other functions are left as exercises. (See Problem 11.18.)

11.15 Inmplamat the following class hierarchy:

Shape

TwoDimensional ThreeDimensional

Triangle Rectangle Circle Box Cone Cylinder Sphere

Here are the abstract base classes:

class Shape ¢{
public:
virtual void print()
virtual float area()

o

b

cl ass TwoDimensional : public Shape {
public:

virtual float perimeter0 = O0;
Y

cl ass ThreeDimensional : public Shape {
publ i c:

virtual float volume() = O
s

Note that the print () funcion and the area () funcion prototypes ae the same for al dasses
in this hierarchy, so their interfaces (pure vi rt ual functions) are placed in the Shape base class,
But only two-dimensional shapes have perimeters, and only three-dimensional shapes have volumes, so
their interfaces are placed in the appropriate second-level ABCs.

320 COMPOSITION AND INHERITANCE [CHAP. 11

Hereisthe G rcl e class:

class Crcle : public TwoDimensional {
public:
Circle(float r) : radius(r) {}
void print() { cout << "Shape is a circle.\n"; }
float perimeterO { return 2*pi*radius; }
float area() { return pi*radius*radius; }
private:
float radius;
i

Here are two of the seven concrete derived classes:

class Cone : public ThreeDimensional {
public:
Cone(float r, float h) : radius(r), height(h) {}
voi d print();
float area();
float volume() { return pi*radius*radius*height/3; }
private:
float radius, height;
b

void Cone::print()
{
cout << "Cone: radius = " << radius << ", height ="
<< height << endl;
}

float Cone::area()

{
float s = sgrt(radi us*radi us + height*height);
return pi*radius*(radius + s);

The other five concrete derived classes are similar.

11.16 Define and test a Nae class whose objects looks like this:

Jame
Then modify the Person class so that nane hastype Nane instead of type String.

CHAP. 1 1]

COMPOSITION AND INHERITANCE

Here is the interface for the Name class

#inc

lude "String.h"

cl ass Nane {

publ

priv

b

friend ostream& operator<<(ostream&, const Naneg&);
friend istream& operator>>(istream&, Name&);

ic

Name(char*, char*, char*, char*, char*, char*);
String last() { return last-; }

String first() { return first-; }

String middle() { return mddle-; }

String title() { return title-;)

String suffix() { return suffix-; }

String nick() { return nick-; }
voi d last(String s) { last- =s; }

void first(String s) { first- =s; }
void mddle(String s) { mddle- =s; }
void title(String s) {title- = s; }
void suffix(String s) { suffix- =s; }

void nick(String s) { nick- =s; }

voi d dump () ;
ate:
String last-, first-, mddle-, title-, suffix-, nick-;

Here is an implementation for the Name class

Narre

voi d
{.

!

. :Nane(char* last=" =, char* first="", char* nidde="",
char* title="", char* suffix=" ', char* nick=" ")

!

last (last), first-(first), mddle-(niddle), title-(title),

suffix-(suffix), nick-(nick) {}

Nare: : dunp()
cout << "\t Last Nanme: " << |ast- << endl;
cout << "\t First Name: ' << first- << endl;
cout << "\tMiddle Names: " << mddle- << endl;
cout << "\t Title: " << title_ << endl;
cout << "\t Suffix: " << suffix- << endl;
cout << "\t N cknane: " << nick_ << endl;

ostream& operator<<(ostream& out, const Nane& x)

{

if (x.title_ != "") out << x.title_ << " ';
out << x.first_ << " ";

if (x.middle_ != "") out << x.mddle << " ";

out << x.last_;

i f (x.suffix_ !'= "") out << " " << x.suffix_;

if (x.nick_ != "') out << ', \"' << x.nick_ << "\"";
return out;

321

COMPOSITION AND INHERITANCE [CHAP. 11

istream& operator>>(istream& in, Nane& x)
{
char buffer[80];

in.getline(buffer, 80, [|');
x.last_ = buffer;
in.getline(buffer, 80,),
x.first_ = buffer;
in.getline (buffer, 80, [y,
x.middle_ = buffer;
in.getline(buffer, 80, [') ;
x.title_ = buffer;

in. getline(buffer, 80, L)
x.suffix_ = buffer;
in.getline(buffer, 80);
x.nick_ = buffer;

return in;

}
Findly, here is the modified Per son class

#include 'String.h"
#i ncl ude "Date.h"

#incl ude "Name.h"

cl ass Person {
public:
Person(char* n="", int gs=0, char* nat="U.S.A.")
name(n), sex(s), nationality(nat) { }
void setDOB(int m int d, int y) { dob.setDate(m d, y); }
void setDOD(int m int d, int y) { dod.setDate(m d, vy); }
voi d printName() { cout << nane; }
voi d printNationality() { cout << nationality; }
void printDOB() { cout << dob; }
void printDoD() { cout << dod; }

protect ed:
Nanme naneg;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male

String nationality;
}i

Hereis atest driver for the Name class, with test run:

#include <iostream.h>
#include "Name.h"

“main ()
{
Name x("Bach", "Johann", "Sebastian");
cout << X << endl;

x. dump();
X.last("Clinton");

CHAP. 11] COMPOSITION AND INHERITANCE 323

x.first("william");

x.middle("Jefferson");

x.title("President");

x.nick ("Bill") ;

cout << X << endl

x.dump () ;

cin >> X;

cout << X << endl

cout << "x.last = [" << X.last() << "T\n";
cout << '"x.first = ['" << X.first() << "]\n";
cout << "x.middle = [" << X.mddle() << "]\n";
cout << "x.title = [' << Xx.title() << "]\n";
cout << "x.suffix = [" << X.suffix() << "]I\n";
cout << "x.nick = [" << Xx.nick() << "]\n";

ohann
Sebastian

Nickname: il

o wary Tudos T, *Blooay

Supplementary Problems

11.17 Devise a system interface and a system implementation, similar to that for the VCR class in
Section 11.10, but for a network of printers. Assume that the network includes several differ-
ent kinds of printers. Your ABC should represent a generic printer.

Supplementary Programming Problems

11.18 Finish the implementation of the Card, Hand, and Deck classes defined in Problem 11.14,
and test them.

324 COMPOSITION AND INHERITANCE [CHAP. 11

11.19 Apply the Monte Carlo method (Problem 3.23 and Problem 4.60) to the Deck class (Prob-
lem 11.14) to estimate the odds of being dealt each of the eight special poker hands. Y our out-
put should look something like this:

How many hands: 2598960
1100606 pairs

123964 two pairs

56255 three gf a kind
8726 straights

5054 flushes

3745 full houses

405 four of a kind

68 straight flushes

The number 2598,960 is the actual number of different 5-card hands that could be dealt from
an ordinary deck of 52 playing cards. Here are the actual number of possible different hands:

Table 11.1 Possible Poker Hands

Hand Number of Hands
One Pair 1,098,240
Two Pairs 123,552
Three of aKind 54,912
Straight 10,200
Flush 5,108
Full House 3,744
Four of aKind 626
Straight Flush 40

11.20 The shuf £1e () function implemented in Problem 11.14 is not how most players shuffle
cards. The common method is to interleave two halves of the deck. Done precisely, this would
transform our initialized deck into the following order: two of clubs, two of hearts,
three of clubs, three of hearts,..., ace of dianonds, ace of spades. In
terms of the cards initial numbers, this would be O, 26, 1, 27, 2, 28, 3, 29, . . ., 24, 50, 25, 51.
This algorithm is known as the perfect shuffle.

a. Implement this method in place of the other, and test your resulting Deck class.
b. Determine empirically how many perfect shuffles it takes to restore the deck to its original
ordering.

11.21 Define and test an Addr ess class whose objects looks like this:

street
city/
‘X state

code

country

ddress

CHAP. 1 1] COMPOSITION AND INHERITANCE 325

Each data member should be a String object. Then modify the Per son class by adding
an addre s s data member with type Addre s s .

11.22 Defineand test a Tel ephone class whose objects looks like this:

country

code

exchange

number

el ephone

Each data member should be a st ri ng object. Then modify the Per son class by adding
at e 1 ephone data member with type Tel ephone. Write your overloaded insertion and
extraction operators so that they process the number in this format: (20 2) 456 -14 14,

11.23 Define and test a Money class whose objects represent dollar amounts. Use a cent s data
member of type unsi gned.

11.24 Define and test a Uni versity class whose objects represent universities. Include the fol-
lowing data members:

String nane;
Addr ess addr ess;
Date founded;

11.25 Define and test a Degr ee class whose objects represent college degrees. Include the follow-
ing data members:

String name, discipline;
Uni versity university;
Date awarded;

11.26 Define and test a Facul ty class whose objects represent universities. Include the following
data members:

int Rank;

Money sal ary;

String dept, office;
Degr ee highestDegree;

11.27 Modify and test the St udent class by adding the following data members:

Addr ess campusAddress;

Tel ephone campusTelephone;
String school, emailAddress
Faculty advisor, degreeSought;

326 COMPOSITION AND INHERITANCE [CHAP. 11

11.28 Define and test a subclass Under gr ad that inherits from the St udent class and includes
the following data members:

String school, major;
Person parent;

11.29 Define and test asubclass Grads t udent that inherits from the St udent class and includes
the following data members:

String department;
Degree lastDegree;

11.30 Implement the following class hierarchy, using your results of the previous problems:

Person
St udent Facul ty St af f

N\ PN

Uhdergrad GradStudent Administrator Secretary Mintenance

The Person, Student, and Staff classes should be abstract base classes; the other six
classes should be concrete derived classes.

11.31 Implement the following class hierarchy:

Account

[

Bank 7edi< Insurance
Checking Savings Mrtgage Mastercard MSA Life Auto Hone Health

The top four (internal node) classes should be abstract base classes, and the bottom nine (leaf
node) classes should be concrete derived classes.

Answers to Review Quegtions

11.1 Compostion of classes refers to using one class to declare members of another class. Inheritance refers
to deriving a subdass from a bae dass

112 A private member isinaccessible from anywhere outside its class definition. A pro tec ted
member is inaccessible from anywhere outside its class definition, with the exception that it is accessi-
ble from the definitions of derived classes.

CHAP. 11] COMPOSITION AND INHERITANCE 327

113

114

115

11.6

11.7

11.8

11.9

11.10

11.11

In an inheritance hierarchy, each default constructor invokes its parent’s default constructor before it
executes itself, and each destructor invokesits parent’s destructor after it executes itself. The effect is
that all the parent default constructors execute in top-down order, and all the parent destructors execute
in bottom-up order.

A vi r tuadl member function isamember function that can be overridden in a subclass.

A purevi rtual functionisavirtual member function that cannot be called directly; only its
overridden functions in derived classes can be called. A purevi rtual functionisidentified by the
initidizer = 0 at the end of its declaration.

An abstract base classis a base class which includes at least one purevi rt ual function. Abstract
base classes cannot be instantiated.

A concrete derived class is a subclass of an abstract base class that can be instantiated; i.e., one which
containsno purevi rt ual functions.

Static binding refers to the linking of a member function call to the function itself during compile time,
in contrast to dynamic binding which postpones that linking until run time. Dynamic is possiblein C++
by usng virtud functions and by pasing to pointers to objects.

Polymorphism refers to the runtime binding that occurs when pointers to objects ae used in classes that
hae virtual functions The expressons p- > f () will invokethe functionsf () that is defined
in the object to which p points. However, that object could belong to awy one of a series of subclasses,
and the selection of subclass could be made at run time. If the base-class functionis virtual, then
the selection (the “binding”) of which f () to invoke is made a run time. So the expresson p- > f ()
can take “many forms.”

Polymorphism promotes extensibility by allowing new subclasses and methods to be added to a class
hierarchy without having to modify application programs that already use the hierarchy’s interface.

The pr ot ect ed datamember a can be accessed from the derived Y only if it isthe member of the
curent object (i.e. only if itis this- >a). Y canotaces x . a for ay other object x.

Chapter 12

Stream /O

12.1 STREAM CLASSES

The C++ programming language itsdlf does not include any input/output (I/0) facilities. That
iswhy we have to use the directive
#include <iostream.h>
in every program that uses1/O. The ios tream . h header file includes the definitions for the I/0
library. This chapter describes the contents of those files and how they are used.
The /O library defines the following two class hierarchies of stream classes:

N

istream ostream streambuf

Aj&lm iostream ofszg fileb% %ﬂmhuf
i strstream istringstreanm/' Ystrstream ostringstream strstreambuf stringmbuf

fstream strstream

The classes that are derived from the ios base class are used for high-level stream processing,
while the classes that are derived from thes t r eanbuf base class are used for low-level stream
processing.

The ios t ream classisthe one that we usudly use for ordinary I/0O. Notice that isit a
subclass of both the i stream class and the os tream class, both of which are subclasses of the
ios base class. The three classes with “f s treant in their name are used for file processing. The
four classes with “s trs tr" in their name are used for in-memory string stream processing. The
s tdi obuf dassisusad for combining C++ stream 1/0O with the older C 1/0 functions.

122 THE ios CLASS

The ios class serves as the base class for the other streamclasses. Its primary purpose is to
control the buffer for whatever stream object has been ingtantiated. This means that the stream
controls how characters are inserted into or extracted from the buffer. To do that, the ios object
maintains a collection of data members that control properties such as the number base (octd,
decimd, hexadecimd) that is to be used, the width of the display fied, the number of digits

328

CHAP. 12] STREAM 1/0 329

disolayed for floating point numbers, etc. We shdl examinethe pro tec ted part of thei os
class here in order to gain a degper understanding of the functioning interface.
Hereis part of the i os class.

class ios {

public:
typedef unsigned long fntflags; // 32-bit bitstrings
typedef unsigned char iostate; // 8-bit bitstrings
// other menbers included here

pr ot ect ed:
streambuf* _strbuf; // points to buffer
ostream* _tie; // points to ostreamtied to istream
i nt _width; // width of output field
i nt _brec; // precision for floats
char _fill; // fill character for padding field
fmflags _flags; // holds all the format fl ags
iostate -state; // holds the current io state
ios(streambuf* _strbuf = 0, ostream* _tie = 0);
~ios () ;

b

The two defined types(f nt flags andios ta t e) areunsigned integer types; i.e., bits strings.
Each of the 32 bits of the data member _flags and each of the 8 bits of the data member
-state can be used to represent different Boolean parameters for the stream. The default
congtructor and the destructor for the i os class are declared protected 90 that the class
cannot be ingtantiated.

Note that thei os datamembersaredl pro tec ted. Thismeansthat they are accessble
only from within a sream’s member functions; they are not accessible from user programs.

A stream object is an instance of a subclass of the ios class. So every stream object must have
the seven data members declared in the i os class. Such an object x can be imagined like this

-width
_brecf
x| _fill

-f1 ags

_state

The object’s seven data members include a pointer toa s t reanbu f , a pointer to an os tream

two ints, @ char, and two bit strings whose values are represented in octd. The _width
parameter determines how wide the output fidd will be, the _prec parameter determines how

many digits will be displayed for f | oats and doubl es, andthe _fill parameter determines
which character will be used for padding a judtified fidd. If this object x is an output stream,

then output will use a 15-character field with 9-digit precison and the character # for fill. The
_flags and -state daa members are bit-grings that hold many boolean parameters. The
_s treanbuf pointer isused to connect the stream to its buffer, and the _ti e pointer isused to
“tie’ an input object (like cin) to an output object (like cout).

330 STREAM 1/O [CHAP. 12

The _flags member isa32-bit string, so it can hold 32 boolean “flags’. Only about haf of
theseareused by i os. Thaose vaues are given symbolic names by an enum declaration:

class ios {
public:

enum { // values for format flag

ski pws = 01, // skip white space

left = 02, // left justified in field

ri ght = 04, // right justified in field (default)
i nt ernal = 010, // left and right justified

dec = 020, // use number base 10 for integers
oct = 040, // use nunber base 8 for integers

hex N 0100, // use number base 16 for integers
showbase = 0200, // show nunber base for integers
showpoint = 0400, // print trailing zeros for floats
uppercase = 01000, // use 'E', 'x' instead of 'e', 'x'
showpos = 02000, // use '+' with positive integers
scientific = 04000, // use scientific notation for floats
fixed = 010000, // use fixed point notation for floats
uni t buf = 020000, // flush after each output operation
stdio = 040000 // flush after each character output

b
// other nmenbers included here
}i

Each of these 15 congtant values is a power of 2, and is represented in octd form. By adding
these vaues for the flags that are “set,” we obtain the complete flag setting for the stream object
in asingle octal number. For example, the x object shown above has the octal value o3240 for
its _format datamember. Thisocta number decomposes as
03240 = 02000 + 01000 + 0200 + 040

which indicates that four flags are s&t: the showpos flag (0 2 0 0 0) Sgnding thet the + Sgnisto
be included for pogtive integers, the upper case flag (0 1000) Sgndingthatthe e and «x
charactersaretobeusedinstead of the ¢ and x characters when digplaying numbers like
2.308E12 and 0x1204; the showbase flag (0200) Sgnding that the number base is to be
displayed for pogtive integers, and the oc + flag (0 4 0) Sgnding that integers will be input and
output in octal.

A dream’s data members are dl protected, s the ios class provides a set of access
functions for them. All seven of the data members have access functions thet return their values:

class ios {
public:
// nmore menbers included here
streambuf* rdbuf() const { return _strbuf; }

ostream* tie() const

{ return -tie;

}

int width() const

int precision0O const

char fill() const
I ong flags() const

{ return -width; }

{ return _fill; }
{ return -fl ags;

int rdstate() const { return -state;
// nmore nmenbers included here

}

{ return _prec; }

}

CHAP. 12] STREAM 1/0 331

EXAMPLE 12.1 Tegting Some of the i 0S Access Functions

main ()
{

cout << "cout.width()
cout << "cout.precision()
cout << "cout.fill()
cout << "cin.flags()
cout << "cout.flags()

" << cout.width() << endl

" << cout.precision() << endl

[" << cout.fill() << "]" << endl
" << oct << cin.flags() << endl
" << oct << cout.flags() << endl

}

cout.width () =0

cout.precision() = 6

COUEIFIITD =[]

cin. flags () = 20000000001 ,
cout.flags() = 20000000041

This shows thet for cout, the defat fidd width is O, the defalt predsion for floats is 6 digits ad the
default fill character istheblank ' . Theocta value 20000000001 meansthat only the ski pws
flag (0 1) is s for cin, which means that white space (blank, tab, newline, formfeed, and return) is
skipped by default. (The digit 2 in this octal value isirrlevant.) The octal value 20000000041 means
that the skipws flag(0 1) adthe oct flag (040) aesd for cout. Theoct flag wes =t by insating
the oc t manipulaor prior tothe cout . flags () cdl.

Each of the four data members _width, _prec, -fill, and -flags aso hasan access
function that can change its vaue:

class io0s {

public:
int width(int w) {int t = _width; -width = w return t; }
int precision(int p){int t = _prec; _prec = p;, return t; }
char fill(char ¢) { char t = -fill; -fill =c¢; returnt; }
long flags(long f) {long t = -flags; -flags = f; return t; }

// more menbers included here
Y

These dl work the same way: they return the current vaue after replacing it with the new vaue.

EXAMPLE 122 Changing the Fill and Width of cout

main()
{
cout.fil1l('#');
cout.width(40) ;
cout << "Hello, Wrld." << endl;
cout << "Hello, world.' << endl
}

S HE SRS R R4 #Hell0o, World.
Hello, world.

After changing the fill character and the field width, the next item output is right-justified in a field of 40
adumns with the ' # ! character padding on the left. Note that boththe _fill and _width parame-
ters revart back to ther defadt vdues (' ' ad 0) immediady dter the next output.

332 STREAM I/O [CHAP. 12

EXAMPLE 12.3 Changing the Precision of cout

main ()

{
double pi = 3.14159265358979323846
cout << "pi = " << pi << endl;
cout.precision(16);
cout << 'pi = ' << pi << endl;
cout << 'pi = " << pi << endl;
cout.precision(20);
cout << "pi = " << pi << endl;

pi = 3.14159

pl = 3.141592653589793

i = 8. 1415965358919

pi = 3.242592653589793116

The default value for the _prec data member is 6. This means that floats will be displayed using 6 dig-
its, as the first output of pi shows. Changing that to 16 causes cout to print 16 digits. That is the maxi-
mum number of digits that type double can store (on a 32-hit machine), so increasing it to 20 only results
in garbage digits after the 16th. Note that, unlike the _f i 11 and wi dt h parameters, the precision
parameter does not revert back to its default value after the next output.

123 ios FORMAT FLAGS

The width, precison, and fill parameters for a stream object are implemented with separate

data members because each parameter can have more than two values. For example, any letter of
the aphabet could be the fill character. But streams have many other atributes which are
Boolean; i.e, their value is either true or fse. These are the parameters that are listed in the
fird enum definition above, and are summarized in Table 12.1 below. All 15 of these flags are
packed into the single data member _flags.

The next example illustrates one way to change a stream’s formet flags.

EXAMPLE 124 Using cout . flags () to Set a Stream’'s Format Flags

main ()
{
int n = 234
Il ong oldf = cout.flags(ios::hex | io0s::uppercase);
cout << n << endl;
cout.flags(ios::hex | i 0s: :showbase);

cout << n << endl
cout.flags(ol df);
cout << n << endl;

EA
Oxea
234

CHAP. 12] STREAM J/O 333

Thefirst call to cout . flags () setsthe hex and uppercase flags, while saving al the previous
settingsin ol df . Notice that the hexadecimal form for the integer 234 is ea, which is printed ea
because the uppercase flag is set. (See Appendix H for more information on hexadecimal numeras) The
second cal to cout. flags () setsthe hex and showbase flags, causing all other flags to be
cleared, so that the second output prints the hexadecimal letters for n in lowercase and with the leading
Ox to show that the numeral is hexadecimal. The third call to cout .fl ags () restores the origina
(default) settings.

Table 12.1 Format Flags

Flag Effect When Set
i0s: :skipws Skip leading white space during formatted input. (default)
ios: :left Left-justify output, padding on right to make required width.
i0s: :right Right-justify output, padding on left to make required width. (default)

i0s: :internal Right-justify numeric output, left-justify any sign or radix, and pad the middle
to make required width.

ios: :dec Input and output integers base 10. (default for output)

io0s: oct Input and output integers base 8.

i0s: :hex Input and output integers base 16.

i 0s: :showbase Output integers with radix prefix; eg., 027 for (oct), 0x2cl for (hex). (default)

i 0s: :showpoi nt Output red numbers with decimal point and trailing zeros.

i 0S:: uppercase Use uppercase letters to output hex integers and reds in scientific.

i 0s: :showpos Prefix postive integers with '+,

ios: :scientific Output readl numbers in scientific notation; eg., 1.23456e-09

io0s: :fixed Output red numbers with » digits to right of decima point, where n is the pre-
cison (_prec)

ios: :unitbuf Flush the output stream after each insertion.

ios: :stdio Flush st di o and st derr after each insertion.

Theflags () function sets the stream’s flags to the new setting without retaining any of the
previous settings. So it has the effect of dearing dl the flags that are not named in the function’s
argument. In Example 12.4, the second call to cout . flags () cleared the three settings made
by the first call. To set one or more flags without clearing any others, usetheset £() function,
which is one of the three other member functions defined in i os for accessng the format flags:

class ios {

public:
// previous nmenbers included here
| ong setf(long £f)

{long t = -flags; -flags |=f; return,t; }
long setf(long f, long mask)
{ long t = -flags
_flags = [_flags & -mask) (f & mask); return t; }
long unsetf(long mask)
{long t = _flags & mask; _flags &= -mask; return t; }

// more menbers included here

};

334 STREAM 1/0 [CHAP. 12

The next example shows how to use the one-argument set £ () function to set flags without
clearing others.

EXAMPLE 125Using cou t . set f () to Set a Stream’s Format Flags

This example is the same as Example 12.4 except that set f () iscdledingeedof f lags () .

main ()
{
int n = 234,
long oldf = cout.setf(io0s::hex | io0s::uppercase);
cout << N << endl;
cout.setf(ios::hex | i 0S:: showbase):

cout << h << endl;
cout.flags (oldf) ;
cout << h << endl;

}

EA

OXEA

234

Thefirgcdltocou t .set f () setsthe hex and uppercase flags, while saving al the previous
stingsino 1 df ,0 n isprinted in uppacae hex. Thessoond cdl tooout st f () setsthe hex
and showbase flags, leaving the upper case flag set, so that the second output printsn isprinted in
uppercase hex with the leading Ox to show that the numeral is hexadecimal. The cal to
oout .flags () restoresthe original (default) settings, which are lowercase decimal without showing

the bee

, Three subgroups of format flags are defined to facilitate avoiding a conflict between contra-
dictory flags. Each group isidentified by its format mask, as shown in Table 12.2.

Table 122 Famat Hags

M ask Flags
i 0s:: basefield ios: :dec, ios::oct, ios::hex
ios:: adjustfield ios: :left, ios::right, ios::internal
ios: :floatfield io0s: :scientific, ios::fixed

These definitions are part of the ios class.

class ios {

public:
const long basefield = dec | oct | hex;
const long adjustfield = 1left | right 1internal;
const long floatfield = scientific | fixed;

// nmore nmenbers included here
}i

CHAP. 12] STREAM 1/0 335

These congtants are caled “masks’ because they are used to “mask out” al the flags except those
in its group. For example, in the implementation of theunset £() function

long unsetf (long mask)
{long t = _flags & mask; _flags &= -mask; return t; 1}

the expresson _flags &= ~mask deas dl the flags in the mask, leaving dl other flags
unchanged. The effect of this function is to clear dl the flags in the format mask and to return
their previous stings:

EXAMPLE 126 Usngunset f () to Clear a Stream’s Format Flags

main ()
{
char buffer[80];

cin.unsetf(ios::skipws); // clear default skipws flag
cin >> buffer; cout << " [" << buffer << "]\n";

cin >> buffer; cout << " [" << buffer << "]\n";

cin >> buffer; cout << " [" << buffer << "]\n";

int n = 234;

cout.setf(ios::hex ios::uppercase i0s: :showbase);
cout << n << endl;

cout.unsetf(ios::basefield); // clear all radix flags

cout << n << endl;

Hello, World.
[1 .
[Hello,]
[World.]
OXEA ‘
234:

The ski pws flag is st by deait, which meens thet odinaily white goace is sipped before reeding a
vdue into a vaigdle But the cdl t0 cin. unsetf deas this flag 0 that white goace will nat be ignored.
The first three characters input are two blanks and the H, <0 the fird reed into buf f er readsonly a
dnge hlank. That is because the ssoond blank dgnds an end to thet input. The second reed into buf f er
reeds the ssoond blank and the entire Sx-charadter dring “Hel 1o, . Agan, input is temingted by the fird
bak exounteed dtar the reedng begins

The cdl to cout . unset f deas dl the flags thet are in the base f i eld group. This indudes the
hex flgtha wassgt withthe cou t .sat f cdl

Waryingn dhiswse ik cout .unsetf older compilers (e.g., version 4.5 of
Micooft Tuto CH).

Theset f() function that takes two arguments uses a format mask in its second argument:

long setf(long f, long mask)
{long t = -flags; -flags = (_flags&~mask)| (f&mask); return t; }

The mask specifies which group of flags is to be changed. The function cdlears dl the flags in the
group specified by mask and then satstheflag £ if it isin that group.

336 STREAM /O [CHAP. 12

EXAMPLE 127 Using cout .set f () with a Format Mask to Set a Stream’s Format Flags
This example is the same as Exarple 124 exoept thet st f () iscdled indead of flags () .

main ()
{
int n = 234
cout.setf(ios::hex | ios::uppercase | i 0s. :showbase);

cout << n << endl;
cout.setf(ios::oct, ios::basefield);

cout << N << endl;

OXEA

6352
This is the coret way to chenge redix. To dienge from hexededmd to odd, bath the oc t flag hes to be
= ad the hex flag degred. The sscond cdl to cout . setf does that.

12.4i0s STATE VARIABLES

Every dreamhasa _s tat e datamember that isdefined inthei os class Like the -flags
member, the _state member is abit string that holds several boolean variables. These state
variables are specified in the enum ddfinition:

class ios {

public:
enum { // values for error state flag:
goodbit = O, // all ok
eof bi t = 01, // end of file
failbit = 02, // last operation failed
badbit = 04 // invalid operation
bi

// other members included here
ri

A dream’'s format flags can only be changed explicitly, and only by means of the ios
access functions described below. In contrast, a Stream’ s state variables are changed implicitly, as
a result of 1/0 operations. For example, when a user inputs Control-D (or Control-Z on DOS and
VAX computers) to indicate end-of-file, thecin’s eof flag is s&t, and we say that the stream isin
an eof dtate.

By adding the numeric vaues for the flags that are “set,” we obtain the complete io dtate
stting for the stream object in a single S-bit number. For example, the x object shown above
has the octal value o for its _state data member. This number decomposes as

03 = 02 + 01
which indicates that two flags are set: the fai 1bi t (02) signaling that the last operation failed
(because input was at the end-of-file), and the eof bi t (0 1). '

A stream’s four state variables (goodbit, eofbit, failbit, and badbit) can be accessed
individudly by ther access functions (good (), eof (),fal(),andbad ()). They can dso be
accessed collectively by the rds tat e () function, as demongrated by the next example.

CHAP. 12] STREAM 1/0 337

EXAMPLE 128 Testing therdst at e () Function

main() .
cout << "cin.rdstate() = " << cin.rdstate() << endl
int n;
cin >> n;
cout << "cin.rdstate() = " << cin.rdstate() << endl

0

cin.rdstate()
32
cin.rdstate() = (

0
¢in.rdstate() = 0
D
cin.rdstate() = 3

On the second run, the user pressed Control-D (or Control-Z on a PC or a VAX) to sgnal end-of-file
This sets cin’s eofbi t and f ailbi t, which have numeric values 1 and 2, making the (totdl) value of
the state variable 3.

The gtate variables can set be means of the set () function the same way tha the single-
agument set £ () function is used to set format flags. However, date variables are generdly
used only to read the current gate of the stream, o it is unlikely that you would want to change

them directly.

The falowing two access functions are used to test the state of the stream within a condi-
tiond expresson:

class ios {

public:
operator void*() const; // conversi on oper at or
i nt operator! () const;
// other menbers included here

}i

The first of these is a conversion operator. It returns a pointer that is wu (i.e., 0) if -state is
nonzero and -1 otherwise. So for example, if i n IS an input stream, then the expression (i n)
will evaluae to true if none of the flags are st (i.e, thereis till more input), and fase otherwise.

The second of these access functions overloads the negation operator. It Smply calls fail ()
and returns its return vaue, which will be nonzero unless both the ailbi t andthe badbi t
are clear. The advantage of this dternate form for determining whether the stream can be used
any more isthat, like the converson operator above, this form can be used conveniently in condi-
tiond expressions. For example, if out is an output stream, then the expresson (!out) Will
evauate to true if either the f ai Ibi t orthebadbi t isset (i.e, the out stream will not function
any more), and false otherwise.

338 STREAM 1/0 [CHAP. 12

EXAMPLE 129 Using the Conversion Operator operator voi d* () to Control a Loop

main()
{

int n, sum=0;

cin >> n;
while (cin) { // 1oop will continue as long as -state ==
sum += n;
cin >> n;
}
cout << "sum = " << sum << endl;
}
44 11 2 2
AD
sum = 77

Usng Control-D (or Control-Z) to terminate input is Smple and convenient. Pressing this key
sets the eof bi t intheinput stream. But then, if you want to use it again in the same program, it
has to be cleared first. This is done with the member function clear () , as shown below:

EXAMPLE 12.10 Using the cl ear () Function to Clear the eof bi t
main ()

int n, sum = O0;
while (cin >> n)
sum += n;
cout << "The partial sumis " << sum << endl;
cin.clear();
while (cin >> n)
sum += n;
cout << "The total sumis " << sum << endl;
}

40 90 20 4D

The partial sum is 150 ,
30 50 »p

The total sun is 230

When the endoffile is detetted a5 a result of the Control-D, cin’s eofbi t adf ailbi t ae s,
and the expression (cin >>n) returns 0. This stops the first loop and prints the partia sum. Then the
cdl toc in clear () reststreenf bi t toO(ie, deasit), otha thesscond whi 1 e loop can exe
cute properly.

Waryngnibis usv@ Icoutd N ckeame() older compilers (e.g., version 4.5 of
Micooft Tubo CH+).

The ios classs _tie memberisused to “ti€’ an input stream to an output stream. When
an input stream s tied to an output stream, the output stream is flushed automatically whenever
an operation is attempted on the input stream. This means that user prompts will work normaly:

CHAP. 12] STREAM 1/O . 339

EXAMPLE 12.11 Usng cin. tie () to Break and Reconnect the Tie of ¢in to cout

main ()
{
cout << "Press any key to continue:";

cin.get();

cout << "Thank you." << endl;

cin.tie(0); // this breaks the tie of cin to cout
cout << "Press any key to continue:";

cin.get();

cout << "Thank you." << endl;

cin.tie(&cout); // this reconnects the tie of cin to cout
cout << "Press any key to continue:"

cin.get();

cout << "Thank you." << endl;

Press any key to continue:x

Thank you.

Press any key to continue:Thank you:
Press any key. to continue:x '
Thank you.

In the first 1/0 exchange, cout is flushed to prompt the user for a response, even though no endl or
"\n ' is passed to it. But then the cdl cin. tie (0) breakscin’s tieto cout, so inthe next I/O
exchange the prompt does not wait for input before the next line is output. The cal ecin.tie(&cout)
findly restores the tie, so that the third 1/0 exchange works normaly again.

12.5 THE istream AND ostream CLASSES

The istream and ostream classes both inherit from the i os class.
class istream : virtual public ios {// . . . };
class ostream : wvirtual public ios {// . . . };

Making i os avirtual basedassfacilitates the multiple inheritance that thei os t ream class
has from boththei s tream and os tream classes by preventing multiple copies of the i os
classto be made for thei ost r eam class.

The is tream class defines the cin object and the stream extraction operator >> for
formatted input. The ost r eam class definesthe cout, cerr, and clog objects and the stream
insertion operator < < for formatted output. These objects and operators are inherited by the
seven subclasses shown in the diagram on page 328.

The familiar 1/0 operations that use the extraction and insertion operators are called for mat-
ted /0 because these operators recognize the types of the objects that are accessed and they
for-n-rat the data accordingly. For example, if n is an integer with vaue 22, then cout << n
prints the value 22 in integer format. Theis tream and ost ream classes aso define a set of
member functions for unformatted 770 that handles data Smply as a sequence of bytes. These
functions are described below and are summarized in Appendix F.

340 STREAM 1/0 [CHAP. 12

The is tream class defines the stream extraction operator >> which reads data from
istream objects, which are usudly the standard input device cin (Le., the keyboard). If
successful, this operator returns a reference to the object so that cals can be chained like this:

cin >> X >y >> z;
If cin isunsuccessful, it returns 0. Under normd operation, cin Skips white space characters
(blanks, tabs, newlines, etc.).

EXAMPLE 12.12 Simple Use of the Extraction Operator

main()
{
int m n;
float t;
cin > m>>t >> n;
cout << "m T " << m << ", t =" <<t << " n="<<n << endl;

The >> operator will return O when it encounters the end-of-file character, transmitted by
Control-D on UNIX workstations and Macintoshes and by Control-z on PCs and VAX/VMS
computers. This can be used to control an input loop:

EXAMPLE 12.13 Controlling an Input Loop

main()
{
int n, sum = O;
while (cin >> n)
sum += n;
cout << "The sum is " << sum << endl;

AP0 R0d0 0T

12.6 UNFORMATTED INPUT FUNCTIONS

The is t ream dassdefinesarich collection of unformatted input functions. Many of these
are summarized in Appendix F.

Severd versons of the get () function are defined by the i s tream dass In its Smplest
form, it has no arguments and smply returns the next character in the input stream. Its function
prototypeis

int get();
This verson of the function is typicdly used in an input loop:

CHAP. 12] ‘ STREAM 10 341

EXAMPLE 12.14 Reading Characters with the ¢in . get () Function

Compare this with Example 7.6:

main()
{
char c;
while ((c = cin.get()) != EOF)
cout << C;
cout << endl

}

What is in a name?

What is in a name? '

Would a rose by any other name smell as sweet",{ .
Would a rose by any other name smell as sweet?

Each cdl of thec in. get () function reads one more character from ¢ in and returns it to the variable
c¢. Then the statement inside the loop inserts c into the output stream. These characters accumulate in a
buffer until the end-of-line character is inserted. Then the buffer is flushed, and the complete line is printed

just as it had been read.

The expression (c = cin.get ()) returns the value that is returned by the function call
cin . get (). Tha vaue is compared with the integer constant eor, and as long as they are unequa the
loop continues. When the end-of-file character ~Disread, cin . get ()) retuns the value of ECF,
thereby terminating the loop.

On most computers, ec- has the vaue -1:

EXAVMPLE 1215 The Integer Constant EOF

main ()

cout << "EOF = " << EOF << endl;
}
EOE = 1

Another form of the get () function reads the next character from the input stream into its
char parameter that is passed by reference:

istream& get(char& c);

This verson returns fase when the end of file is detected, s0 it can conveniently be used to
control an input loop like this while (cin.get(ch))

342 STREAM 170 [CHAP. 12

EXAMPLE 12.16 Reading Characters with the cin . get () Function

This is the same as Example 12.14, except using this form of the get () function:

main()
{
char c;
while (cin.get(c))
cout << C;
cout << endl;

A third form of theget () function is Smilar to the get1ine () function. Its prototype is
istream& get(char* buffer, int n, char delim = '\n');

This reads characters into buf f er until @ther n-1 characters are read or the del im character
is encountered, whichever comes firdt. It does not extract delim from the input stream.

EXAMPLE 12.17 Reading Characters with the ¢in . get () Function

main()
{
char buffer(80];
cin. get (buffer, 8); // reads next 7 characters into buffer
cout << ' [" << buffer << "]1\n";
cin.get(buffer, si zeof (buffer));
cout << ' [" << buffer << "]\n";
cin.get(buffer, sizeof(buffer), ' I ");

cout << " [" << buffer << "]\n";
}

AacnmmnmlmotPQns'rmvwxvlz R
[ABCDEIF]
[GHIJ IKLMNO| PQRST VWY v
macm 1 FGHIJ t KLmo i PQRS’I‘ i t:rvwxw l z
ABDE] .

The first cdl cin . get (buffer , 8) readsthe7 characters "ABCDE |F "into buffer and t hen
terminates the sring with the null character '\ 0'. The second call cin. get (buffer, 80) reads
the rest of the characters on the Iine, uptobutnotincluding the end-of-line character \n . These 24
characters which appended with the null character \0 aereadinto bu f f er. Thethird cal
cin.get(buffer, 80, I) reads the end-of-line character from the first input line, followed by
the 5 characters " acoe ' that precede the character on the second line; these 5 characters,
appended with the null character \ 0 ,aereadinto buf f er.

CHAP. 12] STREAM 1/0 A3

The get line () functionisadmog the same as the third form of the get () function. The
only difference is that it does extract the delimiter character from the input stream but does not
store it in the buffer. Its prototype is

istream& getline(char* buffer, int n, char delim = '\n');

EXAMPLE 12.18 Reading Characterswith the cin . get 1line () Function
main()

char buffer[80];

cin.getline(buffer, 8);

cout << '"[" << buffer << "I\n";
cin.getline(buffer, si zeof (buffer));

cout << "[" << buffer << "I\n";
cin.getline(buffer, sizeof(buffer), '|"');
cout << "[" << buffer << "]\n";

mcnalmamlmclmnsmmmz
[ABCDEIF]

[GHIJIKLMNO PQRST!UVWXY Z} .
Aacnm:mﬂwmnmoimasmmxwz
[ABCDE] , \

Notethatthesecondcall cin. getline(buffer, sizeof (buffer)) readstotheendoftheinput
line, storing GHI JI KLMNO PQRSTI UWKYI Z in buffer. Unlike the get() function, the
get 1line () function then extradts the newline character from the input sream, 0 that the next character
to be read isthe A on the next input line.

The ignore() function is used to “eat” characters in the input stream. It Smply extracts
characters, without copying them into any variable. Its prototype is
istream& ignore(int n =1, int delim = EOF);
Cdledinitsamplest form, cin. i gnore () will Smply extract one character from cin. More

generdly, cin.ignore(n) will simply extract n character from cin, and
cin.ignore(n, ¢) would extract dl the characters up to the next occurrence of the ¢

character (or to the end of thefile).

EXAMPLE 12.19 Eating Characterswiththecin . ignore () Function

main()
{

int nonth, vyear;

cout << "Enter date (mm/dd/yy): ";

cin >> nonth;

cin.ignore(); // eats "/"

cin.ignore (80, '/'); // eats 'dd/ " or "d/ " or "/"
cin >> year;

cout << "Month = ' << nonth << ", Year = 19' << year << endl;

344 STREAM I/O [CHAP. 12

This little input routine asks the user for a date in the standard mm/ 94/ vy form and then reads from
it the month and the year, ignoring the day dd.

The peek () function iskind of an opposte of the i gnore () function: it reads the next
character in the input stream without extracting it. Its prototypeisi nt peek () ;

EXAMPLE 12.20 Looking Ahead with thec¢in . peek () Function

main()
{

char buffer[80], c;

cout << cin.peek << ", " << cin.peek() <<
C = cin.peek();

cout << C << ", "1}

g

cin.get(buffer, 5); // read the next 4 characters into buffer
C = cin.peek();
cout << € << ", " << cin.peek() << ", " << cin.peek() << endl

The first three cdllsto cin . peek () return the A in the input stream. Note that it is output directly
as the integer 65 (the ASCII code for A). Then after reading "ABCD" into buf f er, the next three
cdlsto cin . peek () return the E in the input stream, output directly as the integer 69. Note that the
calsto the peek () function have no effect upon the input stream.

Theputback () function reversesthe get () function by putting a character back into the
input stream. Its prototype is

istreamé& putback(char c¢);

EXAMPLE 1221 Using the cin. putback () Function

main ()

{
cin.putback('z');

cin.putback('Y"');

cin.putback('X"');

char buffer[80];

cin. get (buffer, 9); // read the next 8 characters into buffer

cout << " [" << buffer << "], ";

cin.putback('R');

cin.putback('Q"');

cin.putback('P');

cin.get(buffer, 9); // read the next 8 characters into buffer

cout << '"[" << buffer << "]\n";

1

}

ABCDEFGHIJKLMN :
[XYZABCDE], [PQREGHIJ]

CHAP. 12] ' STREAM 1/O 345

The first three cdllsto ¢ in. pu thac k () insat "Xz ' infront of the A in the input dreem. So
the input sreem adudly contains ' xv zooerad Jkwy' before the fird call tocin. get (). And
dter thessoond sariesof ¢ in. putback () cdls the input sreem cotans ' PoRraH JKeW .

Theis tream cassincudes severd versonsof theread () function. This is an unformat-
ted input function designed for the direct transfer of raw bytes. It works the same way as the
get () function except that it does not gppend the null character to the bytes read. It is typicaly
used with the gcount () function which smply returns the number of bytes read:

istream& read(char* buffer, int n);
istream& read(unsigned char* buffer, int n);
int gcount();

The second version of read () isused to transfer bit strings.

EXAMPLE 12.22 Transferring Byteswiththecin . read () Function

main ()

{
char buffer[] = . "?2222222°22?22222?222?22?"; // 20 '?'s
cin.read(buffer, 8); // transfer 8 bytes buffer
cout << "[" << buffer << "]; read: " << cin.gcount() << endl;
cin.read(buffer, 4); // transfer 4 bytes buffer
cout << " [" << buffer << "]; read: " << cin.gcount() << endl;

ABCDEFGHIJKLMN

|ABCDERGCH? 222792229222 : read: B
[IJKLEFGH??22272222222]; read: 4

Thisexampleillustrates use of the read () fundion ad the gcount () function. Firgt it initializes
buffer with20 '?2's. Then weusecin.read(buffer, 8) to trander the fird 8 bytes from c in
to buf f er. Theoutput then showsthet only thefirg 8 bytesof buf f er have ben dianged Noe thet
no nul chaede \0 hes ben gopended to thoe 8 bytes The ssoond read () repeats the process
with the next 4 bytes leaving the ather 16 bytes unchanged.

12.7 UNFORMATTED OUTPUT FUNCTIONS

The is t ream cassdefines functions for unformatted output that are anaogous to unfor-
maited input functions.

The two versgons of the put () function are the inverses of the corresponding get ()
functions.

int put(char c);
ostreamé& put(char c);

They both insert the character < into the output stream.

346 STREAM 170 [CHAP. 12

EXAMPLE 12.23Usingthecout . put () Function

This example shows the parallel nature of the put (¢) andget (c) functions:

#include <iostream.h>

main()
{
char c;
while (cin.get(c))
cout.put(c) ;
cout << endl;
}

The woods are lovely, dark and deep. =
The woods are lovel rk and deep,

But I have promises to keep,
But 1 have promises ep,

Example 7.7 is similar.
EXAMPLE 12.24 Chainingthecout . put () Function

This example shows how the second version of the put (¢) function can be concatenated into a chain of
cals:

#include <jiostream.h>
main ()

cout.put ('H').put('e").put('1l').put('1l").put('o').put('\n");

Hello

This works because cout . put () returns the cout object itsdf.
The write() function has versons tha are the inverses of the corresponding read ()
functions
ostream& wite(const char* buffer, int n);
ostream& wite(const unsigned char* buffer, int n);
They both transfer n bytesfrom buf f er to the output stream.

EXAMPLE 12.25Usngthecout . wite () Function

#include <iostream.h>

main()
{
cout.write ("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 8) ;
cout << endl;
cout.write("0123456789", 4);
cout << endl;

CHAP. 12] STREAM 1/0 347

Here is the output:

ABCDEFGH
0123

Like the corresponding r ead () function, the second version of the write() function is
U sed to transfer bit strings.

When bytes are sent to an output stream they are buffered. This means that they are first
accumulated in a region of memory caled a “buffer,” so that they can be sent later in “batch
mode’ to the output stream. The step that empties the output buffer and sends the string of bytes
to the output stream is cdled flushing the output buffer. The ostream function flush ()
performs this essentia task. It is usudly used indirectly by using the stream manipulator endl! .

12.8 STREAM MANIPULATORS

A stream manipulator isaspecid kind of stream class member function. When used with the
insertion and extraction operators, they ook like objects. But they redly are function cals. For
example, cout << endl; isactudly a cal to the stream manipulator function ena1 () . Her€'s
how it works.

Theos t ream dassincludes the following overloaded insertion operator:

ostream& operator<<(ostream& (*p) (ostream&))

{ return (*p)(*this); }
The parameter (*p) (ostream&) iSa pointer to a function (see Section 6.14) that has a single
s tream paameter. When the statement
cout << endl;

IS executed, operator<< iSinvoked, passingtheendl () function to is as the parameter. But
gnce this is a function parameter, the function pointer p is used to point to that function. So
when oper at or << isinvoked, p points to the end1 () function. This function is defined as

ostream& endl (ostream& 0Str)

ostr.put('\n');
ostr.flush();

So when the statement cout << endl; IS executed, oper at or << isinvoked with p pointing
tothecout . endl () function, so tha the satement

return (*p) (*this);
becomes
return cout. endl (*this);
which prints a newline, flushes cout, and then returns cout.
The next example shows how you can write your own stream manipulator.

348 STREAM 1/0 [CHAP. 12

EXAMPLE 1226 A Home-Grown Stream Manipulator

ostream& beep(ostream& ostr)

{ ‘
return ostr << "\a";

}

main ()
{
cout << beep;

}

When used as shown here, the stream manipulator sends the alert character '\a ' to the output stream,
which sounds the system beep.

All stream manipulators work this way. They are defined with prototypes like this.
ios& f(ios& ostr)
ostream& f(ostream& ostr)
istream& f (ostream& istr)

or, in the case of manipulators with parameters, like this

ios& f(ios& ostr, int n)
ostream& f(ostream& ostr, int n)
istream& f (ostream& istr, int n)

Table 12.3 ligs of some of the more common stream manipulators:

Table 123 Sream Manipulators

Manipulator Stream Action
bi nary i oS Set stream mode to binary
dec i 0S Read or write integers base 10 (default)
endl ostream End output line and flush output stream
ends ostream End output string
flush ostream Flush output sream
hex i 0S Read or write integers base 16 (i.e, in hexadecima)
oct i 0S Read or write integers base 8 (i.e, in octd)
resetiosflags(long u) io0s Clear format flags specified by u
setbase(int n) ostream Writeintegersbase n (default: 10)
setfill (int ch) ostream Set fill character to ch (default:' 1)
setiosflags(long u) i 0s Set format flags specified by u
setprecision(int n) i 0S Set floating-point precision to n digits (default: 6)
setw(int n) i 0S Set field width to n columns (default: 0)
t ext i 0s Set stream to text. (default)
WS istream Skip white space

We have dready seen how the endl manipulator works. It inserts the newline character
"\n ' into the output stream and then cdls the flush manipulator which “flushes’ the buffer.

CHAP. 12] STREAM I/O 349

The ends manipulator Smply inserts the null character '\ o' into the output stream. This
is illugrated in the next example.

EXAMPLE 1227 Using the ends Stream Manipulator to Terminate a String

main()

{

char buffer[] = "?22?222?22?2?22?2?22?2?2?2°?2?2?";
cin >> ws;

cin.read(buffer, 8);

cout << " [" << buffer << "]\n";

fABC =

The input begins with several newlines, tabs, and blanks. These are al skipped before the 8 characters
“ABC D" areinto buf f er. Notetha only the initial white space is eaten.

Theoct, dec, hex, andsetbase (n) manipulators are used to change the number base of
integers that are input or output.

EXAMPLE 12.28 Using the oct, dec, and hex Stream Manipulators

main()
{
int n = 510;
cout << " \tHexadecimal:\t " << hex << n << "\t " <<n
<< "\n\t Decimal:\t " << dec << n << "\t " << n
<< "\n\t Octal:\t " << oct << n << "\t " << n << endl;
cout << "Enter integer in octal: ";
cin >> oct >> n; // read integer base 8
cout << " \tHexadecimal:\t " << hex << n << "\t " << n
<< "\n\t Decimal:\t " << dec << n << "\t " << n
<< "\n\t Octal:\t " << oct << n << "\t " << n << endl;
cout << "Enter integer in hexadecimal: ";
cin >> hex >> n; // read integer base 16
cout << " \tHexadecimal:\t " << hex << n << "\t " << n
<< "\n\t Decimal:\t " << dec << n << "\t " << N
<< "\n\t Qctal:\t " << oct << n << "\t " << n << endl;

350 STREAM /O [CHAP. 12

Here is the output:

Printing each number twice shows that the manipulator resets the number base for al subsequent input or
output until another manipulator is used.

The ws manipulator Smply eets the next string of white space (blanks, tabs, newlines).

EXAMPLE 1229 Using the ws Stream Manipulator to Eat white space

main ()
{

char '_buffer[] = "P22277?27727?272272227272°2°?2".

cin >> Ws;
cin.read(buffer, 8);
cout << "[" << buffer << "]\n";

[ABC DE??2?2?2?222°?7?2?22?7

The input begins with several newlines, tabs, and blanks. These are all skipped before the 8 characters
“ABC DE” areinto buf f er. Note that only the initial white space is eaten.

Review Questions

12.1 Why is the default constructor for the i os class declared private?

12.2 Why aren't the width, fi 11,andprecision parametersof astream packed into abit
gring the way all the other parameters are?

123 If adrean’s _format data member is o 4o 35 what format flags are set?
124 If adrean's _format datamemberis o 4762 3, what format flags are set?

125 Whyisthe ios classmadetobeavirtual baseclasfortheistream and ostream
classes?

CHAP. 12] STREAM 1/0 351

12.6

12.7

12.8

12.9

Why is the use of the << and >> operators called “formatted” 1/O, and the use of the func-
tionsput (), get (), wi t e (), read (), ec, cdl “uformatted” 1/0?

What is the difference between the get () function and the get 1line () function?

What is the difference between the get () function and the r ead () function?

Solved Problems

What should the function prototype for the ws () manipulator look like?

Every stream manipulator should have the general prototype
ios& f(ios&);

where i 0s isthe stream classthat f manipulates. Since the ws manipulator is used with
i st reans its prototype should be

istream& ws(istream&) ;

12.10 Write code that formats cout so that integers are printed in octal in a right-justified field of

12 columns.

cout.setf(ios::oct | ios::io0s);
cout.width(12);

Solved Programming Problems

1211 Write a program thet ussstheset £ (), f i 11(0,adwidth () functionsto produce the fol-

lowing formatted output:

Chapter 10 A String CasS.........ouiriiiiiiii. 22 2

Chapter 11 TnheritancCe......uiieiiintinte et innenennnn. 244

Chapter 12 @ SErCaIMS . i vt ittt ittt ittt teteeetenenenenennn 273
Theideahereisto use left-justify thetitlesin afield width of 60 columns, with . & the fill cha-

acter padding the fidd on the right, so tha the page numbers dign a the end of the fied:
#include <iostream.h>

main ()
{
cout.setf(ios::left);
cout.fill('.");
const int w = 60;
cout. w dth(w);
cout << "\tChapter 10 A String C ass" << "222\n";
cout.w dth(w);
cout << "\tChapter 11 Inheritance" << "244\n";
cout.w dth(w);
cout << "\tChapter 12 Streams" << "273\n";

352 STREAM 1/O [CHAP. 12

12.12 Write a function to reverse a string in place (Le., without duplicating al the characters).

voi d reverse(char* g)

{
char tenp;
char* end = s + strlen(s) - 1;
while (s < end) {
tenp = *s;
*s++ = *end;
*end-- = tenp;
}
}

Supplementary Problems

12.13 What should the function prototype for the ends stream manipulator look like?

12.14 Write code that formats cou t S0 thet floats are printed in scientific notation with 12-digit
precision.

Supplementary Programming Problems

12.15 Write a program that usesthe set £ (), £i 11(),andwidth () functions to produce the fol-
lowing formatted output:

Chapter 4 FUNCEIOMS . ottt ittt ittt ettt enaaeee s 56
APt B 5 AT AV S .t e vttt it ettt ittt 85
Chapter 6 Pointers and References..........c.coeveiiunnnnnns 11 3

The trick here is to left-justify the titles, as done in Problem 12.11, and to right-justify the page
numbers in another fixed-length field.

12.16 Writeaprogram that usestheset f (), f i 11 (),adwidth () functions to produce the fol-
lowing formatted output:

Chapter 4 FUNCEIONS ..t vt e et e e enennenneneennnennennns 56
Chapt B 5 AT TAY S . et e e e e e e ettt ittt it ietnenennnaaaan 85
Chapter 6 Pointers and References...........oiiuiiuuunnnnnn 11 3

12.17 Write code for each of the following:
a. Print the integer 12345 in a left-judtified 12-digit field.
b. Print the integer 1000 in hexadecimad with the ox prefix.
c. Print 3.14159 in a 12-digit fild with preceding zeros.
d. Print in a40-column fidd, “Hello” left-judtified and “World” right-justified, padding
between them with the | character.
e. Read an integer in decima and print it in octal.
f. Read an integer in hexadecima and print it in decima.

CHAP. 12] STREAM 1/O 353

12.18 Write a program that usesthe set£ () , f i 11(),ardwi dth () functionsto produce the fol-
lowing formatted output:

Base system $3099.
Intel 120MHz Pentium processor
Intel Triton PCI chip set
16MB RAM
1280 EIDE hard drive (10ms)
3.5" 1.44MB floppy drive
4X CD-ROM drive
17" MAG nonitor
64-bit PCI graphics accelerator with 2MB VRAM
28,800-baud fax/nodem

Extra 16MB nenory: 640.
420MB tape backup system 149.
Panasonic KX-P6100 |aser printer: 399.
Subt ot al : $4287.
Shi ppi ng: 75.
Total : $4362.

12.19 Writeafunctionset _wi dth (in t w)that setsthe field width for cou t towcolumns.
12.20 Writeafundionset f i_ 11 (char c) that setsthefill character for cou t toc.

12.21 Writeafundionse t_prec i s ion (int d) that setsthe floating-point precision for cou t
to d digits.

12.22 Wiite a function eof () thatreturns1if cin isat the end-of-file and O otherwise.

12.23 Witeafundion ¢ lear_eo f () tha deas c in's eddfile flag without dhenging awy othe
apedt of its dae

12.24 Write a single function print _st atus () that prints al the information available (precision,
fill character, end-of-file status, etc.) about both cin and cout.

12.25 Thecall wite(buffer, 20) will transfer the first 20 bytes of the string buf f er to the
output stream, provided that buf £ er contains at least 20 characters. Find out what this call
does if buf f er contains fewer than 20 characters, and explain what happens.

Answers to Review Questions
12.1 The default constructor for the i os class is declared private so that no i 0S object can be
declared.

122 Thewidth, f i 11, ad preci sion parameters of astream cannot be packed into a bit string
because they are not boolean variables. Each of these three parameters can have more than two values.

12.3 The -format data value 04035 decomposesas (04035 = 04000 + 020 + 010 + 04 + 01, so fiv eflags
are st scientific, dec, internal, right, ad skipws.

354 STREAM 1/0 [CHAP. 12

124 The _format datavalue 0 4 7 6 2 3 decomposes as 047623 = 040000 + 04000 + 02000 + 01000 +
0400 + 0200 + 020 + 02 + 01, so nine flags are set: stdio, scientific, showpos, uppercase,
showpoint, showbase, dec, internal, left, and skipws.

125 The ios classmadeto bea virtual baseclassforthe istream and ostream classes so that
when the i os t r eam Cclas inherts from both the i st reamad o s t ream dases (and therefore
indirectly from the iog class), it will not get duplicate copies of the membersof the ios class.

12.6 Use of the << and >> operators is called “formatted” I/O because these operators recognize the type
of objects passed to them and use that information to format the input and output. For example, if n is
an int, thencin >>n will read the input 27 as the integer 27, whereasget () will only read its
fird digt & the chaacter 2 . Thefunctionsput (), get (), writ e (), read (), €c, procesal
input and output & character data, 0 use of thee functions is caled “unformatted” /0.

12.7 The only difference between the three-parameter version of the get () function and the get 1line ()
functionisthat theget () function does not extract the delimiter character from the input stream.

12.8 Theread () function does not agopend the null character to the bytes read.

Chapter 13

Templates and lIterators

13.1INTRODUCTION

A template is an abgtract recipe for producing concrete code. Templates can be used to
produce functions and classes. The compiler uses the template to generate the code for various
functions or classes, the way you would use a cookie cutter to generate cookies from various
types of dough. The actud functions or classes generated by the template are caled instances of
that template.

The same template can be used to generate many different instances. This is done by means
of template parameters which work much the same way for templates as ordinary parameters
work for ordinary functions. But whereas ordinary parameters are placeholders for objects,
template parameters are placeholders for types and classes.

The facility that C++ provides for ingantiating templates is one of its mgor features and one
that distinguishes it from mogt other programming languages. As a mechanism for autométic
code generation, it dlows for subgtantial improvements in programming efficiency.

13.2 FUNCTION TEMPLATES

In many sorting agorithms, we need to interchange a par of eements. This smpletask is
often done by a separate function. For example, the following function swaps integers

void swap(int& m int& n)
{

int tenp = m

m = n;

n = tenp;
}

If however, we were sorting St ri ng objects, then we would need a different function:
voi d swap(String& sl, String& s2)
String tenmp = s1;

sl s2;
s2 tenp;

}

These two functions do the same thing. Their only difference is the type of objects they swap.
We can avoid this redundancy by replacing both functions with a function templ ate:

355

356 TEMPLATES AND ITERATORS [CHAP. 13

EXAMPLE 131 The swap Function Template

template <class T>
void swap (T& X, T& Y)
{

< X -
nono—

enmp = X;
Y
te

m;

The symbol T iscaled atype parameter. It is simply a placeholder that is replaced by an actua type or
class when the function is invoked.

A function template is declared the same way as an ordinary function, except thet it is pre-
ceded by the specification

tenplate <class T>

and the type parameter T may be used in place of ordinary types within the function definition.
The use of the word cl ass here means “any type” More generdly, a template may have
severd type parameters, specified like this

tenmplate <class T, class U, class V>

Function templates are cdled the same way ordinary functions are caled:

int m= 22, n = 66;

swap (m, n) ;

String sl = "John Adams", g2 = "James Mudison";
swap(sl, s2);

Rational x(22/7), vy(-3);

swap (x, y) ;

For each cdl, the compiler generates the complete function, replacing the type parameter with
the type or class to which the alguments belong. Sothecal swap (m n) generates the integer
swap function shown above, and the call swap (s1, s2) generates the swap function for
String class.

Function templates are a direct generdization of function overloading. We could have
written severa overloaded versions of the swap function, one for each type that we thought we
might need. The angle swap function template serves the same purpose. But it is an improve-
ment in two ways. It only has to be written once to cover dl the different types that might be
used with it. And we don't have to decide in advance which types we will use with it; any type or
class can be substituted for the type parameter . Function templates share source code among
gructurdly smilar families of functions.

Here is another example of a function template;

CHAP. 13] TEMPLATES AND ITERATORS 357

EXAMPLE 132 The Bubble Sort Template

This is the Bubble Sort and a print function for vectors of any base type. (The String classis
defined in Chapter 10.)

#include "String.h"

template<class T>
void sort(T* v, int n)
{

T tenp;
for (int i = 1; i < n; i++)
for (int j = 0; j < n-i; j+4)
i f (v[3]> v[3+1]1) swap(v(3], v[J+1]);

}

template<class T>
void print(T* v, int n)
{
for (int i =0; i < n; i+4)
cout << " " << V[i];
cout << endl ;

main ()
{
short al9] = (55 33, 88, 11, 44, 99, 77, 22, 66};
print(a,9);
sort(a,9);
print(a,9);
String s(7] = {' Tom', "Hal", "Dan", "Bob", "Sue", "Ann", "Gus"};
print(s,7);
sort(s,7);
print(s,7);

}55 33 88 ll 44¢99 77 22 66

Here, both sort () and pri nt () are function templates. The type parameter T is replaced by the
type short inthefirst callsand by the class St ri ng in the second cals.

A function template works like a macro. The compiler uses the template to generate each
verson of the function that is needed. In the previous example, the compiler produces two
vasons of thesort () function and two versions of the print () function, one each for the
type short and one each for theclassstring. Theindividud versons are caled instances of
the function template, and the process of producing them is called instantiating the template. A
function that is an indance of a template is dso cdled a template function. Using templatesis a
form of automatic code generation; it alows the programmer to defer more of the work to the
compiler.

358 TEMPLATES AND ITERATORS [CHAP. 13

13.3 CLASS TEMPLATES

A class template works the same way as a function template except that it generates classes
ingead of functions. The generd syntax is

template<class T,...> class X {. . . };

As with function templates, a class template may have severa template parameters. Moreover,
some of them can be ordinary non-type parameters.

template<class T, int n, class U> class X {. . . };
Of course, since templates are ingtantiated a compile time, val ues passed to non-type parameters
must be congtants:

template<class T, int n>
class X {};

main ()
{
X<float,22> xI; // 0.k.
const int n = 44;
X<char, n> Xx2; // o.k.
int m = 66;
X<short, m> x3; // Error: m nmust be constant

}

Class templates are sometimes caled parameterized types.

The member functions of a class template are themsalves function templates with the same
template header as the class template. For example, the function £ () declared in the class tem-
plate

template<class T>
class X {

T square(T t) { return t*t; }
}i

is handled the same way that the following template function would be handled:
template<class T>

T square(T t) { return t*t; }

It is intantiated by the compiler, replacing the template parameter T with the type passed to it.
Thus, the declaration

X<short> X;

generates the class and object

class X-short {

short square(short t) { return t*t;}
b
X-short x

except that your compiler may use some name other than X- short for the class.

CHAP. 13] TEMPLATES AND ITERATORS 359

EXAMPLE 13.3 A Stack Class Template

A dack is a ample dda sructure thet dmulaes an ardinay dack of djedts of the same type (eg, a
stack of dishes) with the restrictions that an object can be inserted into the stack only at the top and an
objet can removed from the dadk only & the top. In othe words a dak is a liner data drudure with
acess & oy one end. A dak dass abdrads this nation by hiding the implementation of the data druc
ture, alowing access only by means of public functions that simulate the limited operations described
above.

Here is a class template for generating St ack classes:

template<class T>
class Stack {

public:

Stack(int s = 100) : size(s), top(-1) { data = new T[size]; }

~Stack() { delete [] data; }

voi d push(const T& x) { data[++top] = x; }

T pop() { return datal[top--]; }

int iseEnmpty() const { return top == -1; }

int isFull() const { return top == size 1; }
private:

int size

int top;

T* data;

Y

This ddfinition usss an aray data to implement a dack. The condructor initidizes the si z e of the
array, alocates that many elements of type T to the array, and initidlizes its t op pointer to -1. The
value of top is dways ore les then the number of dements on the dack, and exogt when the dack is
empty, t op istheindex in the array of the top element on the stack. The push () funtion insats an
object onto the sack, and the pop () fundion removes an object from the dack. A dack isEmpty ()
when itst op hasthevaue -1, anditisFull ()whenitstop pointer hasthevalue si ze - 1.

Hee is a program to teg the s tack templae

main()

{
Stack<int> intStackl (5);
Stack<int> intStack2(10);
Stack<char> char Stack(8);
intStackl.push(77);
charStack.push('A');
intStack2.push(22);
charStack.push('E");
charStack.push ('K"') ;
intStack2.push(44);
cout << intStack2.pop() << endl
cout << intStack2.pop() << endl;
if (intStack2.isEmpty()) cout << '"intStack2 is empty.\n";

'
1

}

44
22
intStack? i s empty.

360 TEMPLATES AND ITERATORS [CHAP. 13

The template has one parameter T which will be used to specify the type of the objects stored on the
stack. The first line declares intStackl to be a stack that can hold up to 5 ints. Smilaly,
intStack2 isadak that can hdd up to 10 ints, ad charStack is a dak tha can hdd up to 8
chars.

After pushing and popping objedts on and off the dacks the legt line cdls the isEmp ty () function
for int S tack2. At thd indat, the two Stack dasses and three Stack objects look like this

Stack<int> intSrackl .ntStack? Stack<char> tharStack.
Stack () \ size size Stack () \
Stack() @ top top Stack () .,-\

~ ac ~

-\ data dat a
push () @ 0 push() @
'\ : \
pop () Q——-\ 2 pop () Q—-\
3
i.sEmpty () .\ 4 isEmpty () .——\
isFull() ﬁ\‘_/—\) isFull() N

The call intStack2.isEmpty () returns 1 (i.e., “0u€’) becaue intS tack2 . top hes the vaue -1
a tha moment.

Note that there are two instances of the St ack classtemplate: Stack<int> and Stack<chars>.
These are distinct classes, each generated by the compiler. Each class has its own six distinct member
fudions For exanple the two fundions Stack<int>: :pop () @dStack<chars>::pop () ae
dffaent: one reuns an int and the ather reuns a char.

13.4 CONTAINER CLASSES

A container is Smply an object that contains other objects. Ordinary arrays and stacks are
containers. A container class is a class whose ingtances are containers. The s tack<int> and
S tack<chars> Classes in Example 13.3 are container classes. Class templaies are natural mecha
nisms for generating container classes because the contained objects type can be specified using
a template parameter.

A container is cdled homogeneous if dl of its objects have the same type; otherwise it is
cdled a heterogeneous container. Stacks, arrays, etc., are homogeneous containers.

A vector is an indexed sequence of objects of the same type. The word is borrowed from
mathemeatics where it origindly referred to a three-dimensond point X = (x,, x,, x;). Of course,
that is just an array of 3 real numbers. The subscripts on the components are the same as the
index values on the array, except that in C++ those values must begin with 0. Since subscripts
cannot be written in source code, we use the bracket notation [] instead. So x [o] represents
X, x [1]represents x,, and x [2] represents x;.

CHAP. 13] TEMPLATES AND ITERATORS 6l

EXAMPLE 134 A Vector Class Template

template<class T>
cl ass Vector {

public:
Vector (unsigned n=8) : sz(n), data(new T[sz]) {}
Vector (const Vector<T>& V) : sz(v.sz), data(new T[sz])
{ copy(v); }
~Vector() { delete [] data; }

Vector<T>& operator=(const Vector<T>&);
T& operator([] (unsigned i) const { return datal[i]; }
unsigned size() { return sz; }
protect ed:
T* data;
unsi gned sz;
voi d copy(const Vector<T>&);
}i '

template<class T>
Vector<T>& Vector<Ts>: :operator=(const Vector<T>& V)
{

Sz = V.SZ;

data = new T[sz];

copy (V) ;

return *this;

template<class T>
voi d Vector<T>::copy(const Vector<Ts& V)

s

unsigned min_size = (Sz < v.Sz ? Sz : V.SZ);
for (int i = 0; i < min_size;, i++)
data({i] = v.data[i];

Note that each implementationof a member function must be preceded by the same template designator
that precades the dess dedadion temlat e<class Ts.
This tarplae woud dlow the fdlowing code

Vector<shorts> V,

v[5] = 127;

Vector<short> W = Vv, X(3);

cout << W size();
Here v and w are both Vect or objects with 8 elements of type short, andxisa Vector object
with 3 demets of type short. The das ad its three djeds cen be visdized from the degram shown
bdow. It shows the situation at the moment when the member function w . size () is executing. The
class Vvec tor< short > hasbeen instantiated from the template, and three objects v, w, and x have
been instantiated from the class. Note that the copy () functionisa private utility function, so it
canat be invoked by ay of the dass indanoes

Note that the expresson v [5] is usad on the Idt sde of an assgmat, even though this expression

is a fudion cdl. This is possble because the subsxipt opador reums a redfeence 10 a Vec t or<Ts,
making it an lvalue.

362 TEMPLATES AND ITERATORS [CHAP. 13

Vector<short> w A% 2

Vector ()

Vector () .’-\‘

~Vector () k-\

operator=() @

\‘
operator[] () ."\
. size() ‘\\/7

\ copvo j

Class templates are a0 cdled parametrized types because they act like types to which
parameters can be passed. For example, the object b above hastype vector<doubles, so the
element type doubl e acts like a parameter to the template vector<Ts.

9o s w

13.5 SUBCLASS TEMPLATES

Inheritance works with class templates the same way as with ordinary class inheritance. To
illugtrate this technique, we will define a subclass template of the vec tor class template
defined in Example 13.4.

EXAMPLE 135 A Subclass Template for Vectors

One problem with the vect or class as implemented by the template in Example 13.4 is that it
requires zero-hased indexing; ie, dl Sbsxips mud begin with 0. This is a requiremat of the CH lan+
guege itdf. Some oher programming langueges dlow aray indexes to begin with 1 or any other integer.
We can add this usHfu fedure to or vec tor dass tanplae by dedaing a dubdass templae

tenpl ate <class T>

class Array : public Vector<Ts {

public:
Array(int i, int j) : 10(1), Vector<T>(j-i+1) { }
Array(const Array<T>& v) : 1i0(v.10), Vector<T>(v) { }

T& operator(] (int i) const { return Vector<T>::operator[] (i-i0);

int firstSubscript() const { return i0; }

int lastSubscript() const { return iOtsz-1; }
pr ot ect ed:

int 10;

}i

This Array class template inherits al the functionality of the Vec t or class template and also
allows subscripts to begin with any integer. The first member function listed is a new constructor that
dlows the usr to desgrete the fird and lagt vdues of the subsoipt when the dgedt is dedaed The sc
ond function is the copy constructor for this subclass, and the third function is the overloaded subscript
opador. The lag two funcions smply reun the fird ad lag vdues of the subsipt range

CHAP. 13]

Note how the two Arr av constructors invoke the corresponding Vect or

TEMPLATES

AND ITERATORS

the Array subscript operator invokes the Vect or subscript operator.

Arrayv<float>
Array ()
Array() @—
-Aray(') @

operator=() @
operator[] () @
size() @

Array () @
firstSubscript() @—

firstSubscript() @—

363

constructors, and how

D Y &/11

\ copy()/

Here is a test driver and a sample run:

#i ncl ude

main()

v

<iostream.h>
#i ncl ude "Array.h"

Array<float> x(1,3);

x[1]
x[2]
x[3]
cout
cout

for

X.sizel()

x.firstSubscript ()

3. 14159;
0. 08516;
5041. 92;

<< "x.size() = ' <<

<<
cout <<

3

H

x.lastSubscript () = 3

x[1]
b 2]
x[3]

1]

]

3.14159
0.08516

= 5041.92

"x.lastSubscript() =
(int i =1; i <= 3; i
cout << "x[" << i <<

X.size() << endl

++)

"] = << X[1] << endl;

"x.firstSubscript() = " << x.firstSubscript() << endl;
" << x.lastSubscript() << endl

364 TEMPLATES AND ITERATORS [CHAP. 13

13.6 PASSING TEMPLATE CLASSES TO TEMPLATE PARAMETERS

We have aready seen examples of passing a class to a template parameter:

Stack<Rationals s; // a stack of Rational objects
Vector<String> a; // a vector of String objects

Since template classes work like ordinary classes, we can also pass them to template parameters:
Stack<Vector<int>> s; // a stack of Vector objects

Array<Stack<Rational>> a; // an array of Stack objects
The next example shows how this “template nesting” can facilitate software reuse.

EXAMPLE 136 A Mat ri X Class Template

A matrix is essentialy a two-dimensional vector. For example, a “2-by-3 matrix” is a table with 2
rows and 3 columns
1
de f

We can think of this as a 2-élement vector, each of whose elements is a 3-element vector:

God [ed

The advantage of this point of view is that it alows us to reuse our Vec t or class template to define a
new Matrix class template.
To facilitate the dynamic alocation of memory, we define a matrix as a vector of pointers to vectors.
Vector<Vector<T>*>
We are passng a class template pointer to the template parameter indicated by the outside angle brackets.
This really means that when the Matri x class template is instantiated, the instances of the resulting
class will contain vectors of pointers to vectors.

template<class T>
class Matrix {

public:
Mat ri x(unsigned r=l, unsigned c=1) : row(r)

{ for (int i=0; i<r; i++) row[i] = new Vector<T>(c); }
~Matrix() { for (int i=0 i<row.size(); i++) delete row[i]; }
Vector<T>& operator[] (unsigned i) const { return *rowi]; }
unsigned rows() { return row.size(); }
unsigned columns() { return row[0]->size(); }

protected

Vector<Vector<T>*> 0w,
b
Here the only data member is row, a vector of pointers to vectors. As a vector, row can be used with the
subscript operator: row [i] which returns a pointer to the vector that represents the ith row of the
matrix.

The default constructor assigns to each row [i] anew vector containing ¢ elements of type T.
The destructor hasto de 1 et e each of these vectors separately. The rows () and columns () func-
tions return the number of rows and columns in the matrix. The number of rows is the vaue that the mem-
ber function size () returns for the Vec tor<Vec tor<Ts>*> object row. The number of columns is
the value that the member function si ze () returns for the Vec tor<T> object *row [0], which can
bereferencedeitherby (*row([0]).size() orby row[0]->size().

CHAP. 13] TEMPLATES AND ITERATORS 365

Hee is a tet diver and a sample un:

main()

Matrix<float> a(2,3);

a[d[d = 0.0; af[0][1]=0.1; a[0][2]

all][0] =1.0; all][l]=1.1; all][2] ;

cout << "The matrix a has ' << a.rows() << " rows and '
<< a.colums() << " columns:\n";

for (int i1=0; i<2; i++) {
for (int j=Q j<3; j++) cout << a[i][j] << " ";
cout << endl;

0. 2;
1.2;

The matrix a has 2 rows and 3 columns:
80 b2 . v
1 1.1 1.7

The matrix m can be visualized like this;

atrix<float> m /ector<float>
Vect or 0 A—\ Vect or 0
Vector () .’"\ Vector() @—
operator[] () @ ~Vector() @—
kg 4 P]
] — W«floab Vector<float> -
rows () k\‘ R Tons at>_~ operator=() @—
\ columns () 7\ operator([] () @]
size() .”\
copy ()

The diagan dows the studion duing one of the sbsipt aooess cdls af 11]2].

Natice tha the actud dda vaues 02, 1.1, etc, ae dored in two sgpade Vec tor< float > ojeds
The Matrix< f 1 oat > dgedt m only contans pointers to those objedts

Note that our Matri x class template used composition with the vec tor class template,
while our Array classtemplate used inheritance withthevec t or classtemplate.

13.7 A CLASSTEMPLATE FOR LINKED LISTS

Linked lists were introduced in Chapter 8. (See Example 8.2.) These data structures provide
an dternative to vectors, with the advantage of dynamic storage. That is, unlike vectors, linked

lists can grow and shrink dynamically according to how many data items are being stored. There
is no wasted space for unused eementsin the list.

366 TEMPLATES AND ITERATORS [CHAP. 13

EXAMPLE 137 A Ligt Class Template

A lig consgs of a linked ssquence of nodes Each node contains ore data item and a lirk to the next
nde So we begn by ddfinng aLi S tNode class template:

templ atecclass T>
cl ass ListNode ({
friend class List<T>;

public:

ListNode(T& t, ListNode<T>* p) : data(t), next(p) {}
pr ot ect ed:

T data; // data field

Li st Node* next; // points to next node in |ist

b

The condructor cregtes a new node, assigning the T value t to its dat a fiedd and the pointer p
toits next fidd:

IE——\/ data
String next

ListNode<String>

N

If T isaclass (instead of an ordinary type), its constructor will be called by the declaration of dat a.
Note that the class Li s t<T> isdeclared heretobea fri end of the Li stNode class. This will
dlov the mambe fundions of the Li st dass to acess the pratedted membas of the Node das

Hereisthe Li st class template interface:

tenpl ateccl ass T>
class List {
public:
List() : first(O {}
~List();
void insert(T t); // insert t at front of Iist
int remove (T& t); // remove first itemt in |list
int isEmpty() { return (first == 0); }
void print();
pr ot ect ed:
ListNode<T>* first;
ListNode<T>* newNode(T& t, ListNode<T>* p)
{ ListNode<T>* q = new ListNode<T>(t,p); return g; }
b

A Li st dget contans only the pointer first:

l'ist

first

List<int>

This points to a Li s tNode object. The default condructor initidizes the pointer to NULL. After items
have been insrted into the lid, the first pointer will point to the firg item in the lis.

CHAP. 13] TEMPLATES AND ITERATORS 367

ThenewNode function invokesthe new operator to obtain anew Li s tNode object by means of
theLi stNode () constructor. The new node will contain the T vaduet inits data field and the
pointer p in its next field. The function returns a pointer to the new node. It is declared pro tec ted
because it is a utility function that is used only by the other member functions.

The Li st destructor is responsible for deleting al the items in the ligt:

tenpl atecclass T>
List<T>::~List ()

{
ListNode<T>* tenp;
for (ListNode<T>* p = first; p;) { // traverses |ist
tenp = p;
p = p->next;
delete tenp;
}
}

This has to be done in a loop that traverses the list. Each node is deleted by invoking the de 1 et e oper-
ator on a pointer to the node.

Thei nsert () function creates a new node containing the T valuet and then inserts this new
node at the beginning of the list:

template<class T>

void List<Ts>::insert (T t)

{
ListNode<T>* p = newNode(t,first);
first = p;

}

Since the new node will be made the first node in the ligt, its next pointer should point to the node that
is currently first in the list. Passing the first pointer to the NewNode constructor does that. Then the
firs t pointer is reset to point to the new node.

The remove () function removes the first item from the list, returning its data vaue by reference
i n the parameter t. The function’s return value is 1 or 0 according to whether the operation succeeded:

tenpl atecclass T»>
int List<T>::remove (T& t)

{
if (isEmpty()) return 0; // flag to signal no renova
t = first->data; // data val ue returned by reference
ListNode<T>* p = first;
first = first-snext; // advance first pointer to renmpve node
delete p
return 1; // flag to signal successful renova

}

The print () function sSmply traverses the list, printing each node's data vaue

tenpl atecclass T>
voi d List<T>::print()
{
for (ListNode<Ts* p=first; p; p=p->next)
cout << p->data << " -> ";
cout << "*\n"';

368 TEMPLATES AND ITERATORS [CHAP. 13

Here is a test driver and a sample run:

#include <iostream.h>
#i ncl ude "List.h"
#include '"String.h"

main ()

{
List<String> friends;
friends.insert("Bowen, Van");
friends.insert('Dixon, Tom') ;

friends.insert ("Mason, Joe");
friends.insert("White, Ann");
friends.print();

String nane;

friends.renmve(nane);

cout << "Rempbved: ' << nane << endl;

friends.print();
}

White, . Mason, Joe = DlXOl‘l, Tom = Bowen, Van -
Removed: White, Ann . . ‘
Mason, Joe -> Dlxon, Tom -> Bowen, Van -» *

Notice that, since each item is inserted at the beginning of the list, they end up in the opposne order from

thelr insertion.

Thisfriends list can be visuaized like this:

List<String>
ListNode<String> List()
ListNode ()
':'LiSt ()
friends
insert() >
|

remove () ."\

isEmpty () @

print () .’\
newNode () @7

Le]

data

=
next next %—————1

This shows the situation at the moment that the insert () function has invoked the newNode () func-
tion which has invoked the L1 s tNode () constructor to create a new node for "White, Am'.

CHAP. 13] TEMPLATES AND ITERATORS 369

13.8 ITERATOR CLASSES

A common activity performed on a container object is the traversal of the object. For
example, to traverse a List object means to “trave” through the lig, “vidting” each eement.
Thiswas done by means of af or loop in both the destructor and the print () function in our
List class template (Example 13.7).

An iterator isan object that has the ability to traverse through a container object. It acts like
a pointer, locating one item in the container a atime. All iterators have the same basic function-
dity, regardiess of the type of container to which they are attached. The five fundamental opera-
tions are:

. initidize the iterator a some initid pogtion in the container;

. return the data value stored &t the current postion;

. change the data value stored at the current postion;

. determine whether there actudly is an item at the iterator’s current position;
. advance to the next posgition in the container.

Since these five operations should be implemented by every iterator, it makes sense to declare an
abstract base class with these functions. We actually need an absiract base class template
because the container classes will be template instances:

tenpl atecclass T
class lterator {

public:
virtual int reset() =0; // initialize the iterator
virtual T operator() () =0; // read current val ue
virtual void operator=(T t) =0; // wite current val ue
virtual int operator! () =0; // determ ne whet her item exists
virtual int operator++() =0; // advance to next item

Recdl that every pure virtud function prototype begins with the keyword “virtud” and ends with
thecode“ () =0". The parentheses are required because it is a function, and the initidizer «- 0
makes it a pure virtua function. Also recal that an abstract base class is any dlass that contains
at least one pure virtua function. (See Section 11.9.)

Now we can use this abstract base class template to derive iterator templates for various
container classes.

The List class template in Example 13.7 had an obvious shortcoming: it alowed insertions
and ddetions only a the front of the list. A ligt iterator will solve this problem:

370 TEMPLATES AND ITERATORS [CHAP. 13

EXAMPLE 1338 An lIterator Class Template for the Li s t Class Template

#i nclude "List.h"
#include ‘'"Iterator.h"

template<class T>
class ListIter : public Iterator<T> {

publiic:
ListIter (List<T>& 1) : list(l) { reset(); }
virtual void reset() { previous = NULL; current = list.first; }
virtual T operator() () { return current->data; }
virtual void operator=(T t) { current->data = t; }
virtual int operator! (); // determ ne whet her current exists
virtual int operator++(); // advance iterator to next item
void insert(T t); // insert t after current item
void prelnsert(T t); // insert t before current item
voi d remove(); // renove current item

protected:
ListNode<T>* current; // points to current node
ListNode<T>* previous; // points to previous node
List<T>& list; // this is the list being traversed

bi

In addiion to a condrudor and the five fundamentd opeaions we have added three ather fundions
thet will meke ligs much more usfu. They dlow the insation and ddeion of items awywhee in the lid.

The operator! () function servestwo purposes. First it resetsthe current pointer if neces-
sy, and then it reports back whether that pointer is NULL. The fird purpose is to “deen up’ dter a ddl
totheremove () fundion which ddetes the node to which current ponts

template<class T>
int ListIter<Ts>::operator! ()
{

if (current == NULL) // reset current pointer
if (previous == NULL) current = list.first;
else current = previous->next;

return (current = NULL); // returns TRUE if current exists

If the current ad previous pointas ae both NULL, then dther the lig is empty or it has only one
item. So setting current equd tothelist's first pointer will either make current NULL or leave it

pointing to the first item in the list. If current iSNULL but previ ous is pointing to a node, then
we sy regt current to point to the item tha follows that node Fndly, the funcion reums O or 1
aoocording to whether current is NULL. This dlows the function to be invoked in the form

if (lit)
whae i t is an itedor. The expresson (li t) is reed “a curat item edds” because the fundion will

reumn 1 (i.e, “true’) if current isnot NUL. We use this fundion to check the ddus of the current
pointer before invoking an insartion or ddetion fundtion thet requires usng the poirter.

CHAP. 13] TEMPLATES AND ITERATORS 371

The operator++ () “increments’ the iterator by advancing its current pointer to the next item
in the list after advancing its pr evi ous pointer. It precedes this action with the same resetting proce-
dure that the operator ! () function performed if it finds the current pointer NULL:

template<class T>
int ListIter<Ts::operator++()

if (current == NULL) // reset current pointer
if (previous == NULL) current = list.first;
el se current = previous->next;
el se { // advance current pointer
previous = current;
current = current-snext;
return (current != NULL); // returns TRUE if current exists

This operator adlows for easy traversa of the ligt:
for (it.reset(); lit; it++) . . .
just like an ordinary for loop traversing an array. It resets the iterator to locate the first item in the list.
Then after visiting that item, it increments the iterator to advance and visit the next item. The loop contin-
ues as long as !it returns “trug’, which means that there is dill an item to be visited.
The ins er t (t) function creates a new node for t and then inserts that node immediately after
the current node

template<class T>
void ListIter<Ts>::insert (T t)
{
ListNode<T>* p = list.newNode(t,0);
if (list.isEmpty())
list-first = p;
et se {
p->next = current->next;
current-s>next = p;

}
Theinsert operation can be visualized like this:

it
current .._

1 2
previous

list @ 1+ -«
friends ,” T ~~_ ListIter<String> /'

. N 4
flrst W __—//
H I

Before:

next @————

.

Note that the operation leaves the cur rent and pr evi ous pointers unchanged.

372

After:

, -
friends ¢

=~ ListIter<String>;

firstg—w ~e___-

TEMPLATES AND ITERATORS [CHAP. 13

it

current

previous

list @+~

dat

nex

dat

next E_

data

next

Thepr elns er t()

node in front of the cur rent node:

template<class T>
void ListIter<Ts>::preInsert(T t)

{

ListNode<T>* p = |ist.newNode(t,current);

1

function is similar tothe ins er t () function, except that it inserts the new

if (current == list.first) list.first = previous = p;

el se previous->next = p;

The pr e Ins er t operation can be visualized like this:

Before:

friends

-
/

it

current

previous

list @ T -«
ListIter<String>;

Notethat like i nsert,

The reove () function deletes the current node:

template<class T>
void ListIter<Ts>::remove ()

{

}

if (current == list.first) [list.first
el se previous->next = current-snext;
delete current;

current = 0;

1

this operation also leaves the cur rent and pr evi ous pointers unchanged.

= current->next;

It leaves the previous pointer unchanged and the current pointer NULL.

CHAP. 13] TEMPLATES AND ITERATORS 373

After: -

current

previou

list @-

. - ; : [
friends /‘ - T .chfpr<Str1ng>l

The r enpve operation can be visudized like this:

Before: it

rrent [g
current |

. &
previous ._

list @ ¢ ~

~
ListIter<String> ;

friends

first@—

¥ g data
— next next @c next @———

i

—/

After: it
(S
current i
previous
list @ ¢+~
ListIter<String> ’l
friends [/

-

Here is a test driver for the list iterator:

#include <iostream.h>
#include "ListIter.h"
#include "String.h"
main()

List<String> friends;
ListIter<String> it(friends);
it.insert ("Bowen, Van");

it++; // sets current to first item

374 TEMPLATES AND ITERATORS [CHAP. 13

it.insert("Dixon, Tom');

it++ // sets current to second item
it.insert("Mason, Joe");

it++; // sets current to third item
it.insert("White, Ann");

i t++ // sets current to fourth item

friends.print();

it.reset(); // sets current to first item

i t++ // sets current to second item
it = "Davis, Jinl; // replace with new nane

i t++ // sets current to third item
it.remove(); // removes third item

friends.print () ;

if (l'it) it.prelnsert("Mrse, Sant);

friends.print () ;

for (it.reset(); !lit; it++) // traverses entire |ist
it=rlr + e+ "1y

friends.print();

}

Bowen, Van -> Dixon, Tom -> Mason, Joe -> White, Ann .
Bowen, Van - Davis, Jim - Whlte, Ann = 7 - .
Bowen, Van -> _Davis, Jim -> Morse, Sam -> Whlte, on .
[Bowen,.van} -> [Davis, Jlm} - [Morse, Sam} -> [Whlte, -

The f or Ioop changes each data vaueinthelist by prepending a left bracket and appendlng arlght
bracket to each string. Note that the assignment it ="["+it ()+"]"calsthe operator () ()
and operator=() functions of the ListIter<String> class as well as the constructor
String(const char*) and operator+= () functiondefinedinthe String class.

Togive ListIter objects the access to the protected membersof Li st objects that they
nead to do their job, wenesdtodedaethe Li s t 1 t er dassa friend of the L i s t class:

template<class T>
class List {
friend class ListIter<Ts>;
public:
// ot her members
protected
ListNode<T>* first;
// other menbers

bi
List iterators aso need the access to the protected mambas Of Lis tNode Objects:

template<class T>

class ListNode {
friend class List<Ts:
friend class ListIter<Ts;

public:

ListNode (T& t, ListNode<T>* p) : data(t), next(p) {}
protect ed:

T data; // data field

ListNode* next; // points to next node in |ist

bi

CHAP. 13] TEMPLATES AND ITERATORS 375

An iterator acts like awindow, alowing access to one item at atime in the container. Iterators
are sometimes caled cursors because they locate a specific dement among the entire structure,
the same way that a cursor on your computer screen locates one character location.

A dructure may have more than one iterator. For example, one could declare three iterators
on alig like this

List<float> list;
ListIter<float> itl(list), 1t2(list), 1t3(list);
itl.insert(11.01);

Vit
itl.insert(22.02);
it ++;
itl.insert(33.03);
for (it2.reset(); !'it2; itZ++)
it2 = 10*1it2; // multiplies each stored nunber by 10
it3 = itl; // replaces 110.1 with 330.3 in first item

The iterators are independent of each other. While i t2 traversesthe ligt, i t 1 remains fixed on
the third item.

Review Questions

131 What is the difference between a function template and a template function?
132 What is the difference between a class template and a template class?

13.3 What are the advantages and disadvantages of using a linked list instead of a vector?

134 How isan iterator like an array subscript?

Solved Programming Problems

135 Write and test a program that instantiates a function template that returns the minimum of two
values.

A minimum function should compare two objects of the same type and reun the object whose veue
issmaller. The type should be the template parameter T:

tenpl ate <class T»>
T min(T X, T y)
{
return (x <y ? x 1y);
}

Thisimplementation uses the conditional expressionoperator: (x <y ? x : y).If xisless
than vy, the expression evaluates to x; otherwise it evaluates to y.

376

13.6

TEMPLATES AND ITERATORS [CHAP. 13

Here is the tes driver and a sample run:

#include <iostream.h>
#include "Rational.h"

main ()
{
cout << "min(22, 44) = " << mn(22, 44) << endl;
cout << "min(66.66, 33.33) = " << min(66.66, 33.33) << endl;
Rational x(22, 7), y(314, 100);
cout << "min(x, Y) = " << min(x, y) << endl;

}

min(22, 44) =22
min(66.66,33.33)=33.33
min(x, y) = 3147100

Write and test a program that instantiates a function template that implements a binary search
of a sorted array of objects.

A sach function should be passed the aray a, the object key to be found, and the bounds on the
array index that define the scope of the search. If the object is found, itsindex in the array should be
returned; othewise, the function should return -1 to signd that the object was not found:

template<class T>
int search(T a[], T key, int first, int [last)
{
while (first <= last) {
int md = (first + last)/2;
if (key < a[mid]) last = md - 1;
else if (key > a[mid]) first = md + 1;
else return md;

1

return -1; // not found

Within the whi | e loop, the subarray froma [f irs t] toal[last] is biscted by md. If key
< a [md] thenkey cannot beinthesecond half of thearray, so | ast isresettom d-1 to

reduce the scope of the search to the fird hdf. Othewise if key > a [mid] , then key cannot be in
the fird helf of the aray, so firs t isrestto mid+ 1 to reduce the scope of the seach to the second
haf. If both conditions are fdse then key = = a [mid] and we can return.

Here is the test driver and a sample run:

template<class T> int search(T [], T, int, int);

String names[] = {'Adams", "Black", "Cohen", "Davis", "Evans", "Frost",
"Green", "Healy", "Irwin", "Jones", "Kelly", "Lewis"};

main()
{
String nang;
while (cin >> nanme) {
int location = search(nanes, name, 0, 9);

CHAP. 13] TEMPLATES AND ITERATORS 377

137

if (location == -1) cout << name << 'is not in list.\n";
el se cout << nanme << "is in position " << location << endl;
}

}

Green - ,

Green is in position 6

Black .

Black is in position 1

White ...

White is not in list.

Adams . .

Adame is in position 0

Jones . ‘

Jones is in ,i:;osivtioné
Implement and test a template for generating Queue classes. A queue works like a stack,

except that insertions are made at one end of the linear structure and removed from the other
end. It smulates an ordinary waiting line.

Like the implementation of the Stack template, this implementation uses an array data of si ze
elements of type T. Thelocation in the array where the next object will be inserted is aways given by
the vdue of (front % si ze), and the location in the aray that holds the next object to be removed
isalwaysgivenbythevalueof (rear % size):

template<class T>
cl ass Queue {
public:
Queue(int s = 100) : size(stl), front(OQ, rear(O
{ data = new T[size]l; }
~Queue() { delete [] data; }

void insert(const T& x) { data[rear++ % size] = X; }

T remove() { return data[front++ % size]; }

int isEmpty() const { return front == rear; }

int isFull() const {return (rear + 1) % size == front; }
private:

int size, front, rear;

T* data;

bi
The tet driver uses a queue that can hold & most 3 chars:

#include <iostream.h>
#i ncl ude "Queue.h"

main ()
{
Queue<char> q(3);

g.insert('A")
g.insert('B');
g.insert('C")

if (g.isFull()) cout << "Queue is full.\n";
el se cout << 'Queue is not full.\n';

378 TEMPLATES AND ITERATORS [CHAP. 13

cout << (.remove() << endl;

cout << (.renove() << endl;

g.insert('D');

g.insert('E');

if (g.isFull()) cout << "Queue is full.\n";
el se cout << "Queue is not full.\n";

cout << g.remove() << endl;

cout << ¢.renove() << endl;

cout << g.remove() << endl;

if (g.isEmpty()) cout << "Queue is empty.\n";
el se cout << "Queue is not empty.\n";

Queue is full.
A
B
Queue is full.
C
D
E

Queue is enpty.

13.8 Modify the Vect or class template so that existing vectors can change their size.

We add two functions:

unsi gned resize(unsigned n);
unsi gned resize(unsigned n, T t);

Both function transform the vector into one of sizen. If n < sz, thenthelastsz - n elements are
simply discarded. If n == s z, then the vector is left unchanged. If n > sz, then thefirst sz ele-
ments of the transformed vector will be the same as those of the prior version; thelastn - sz are
assigned the vdue t by the second res @ ze () function and areleft uninitialized by thefirst. Both
functions return the new size:
template<class T>
unsigned Vector<T>::resize(unsigned n, T t)
{
T* newdata = new T[n];
copy(v);
for (i =sz; i <n
new-data[i] =
del ete [] data;
sz = n
data = new-data;
return sz,

;o)
t;

CHAP. 13] TEMPLATES AND ITERATORS 379

template<class T>
unsi gned Vector<T>::resize(unsigned n)
{

T* newdata = new T[n];

copy(v);

del ete [] data;

Sz = n;

data = newdata;

return sz;

}

13.9 Add a constructor to the Vec t or class template that replicates an ordinary array as a vector.
The new condructor converts an aray a whoe dements have type T:

template<class T>
cl ass Vector {
public:
Vector (T* a) : sz(sizeof(a)), data(new T[sz])
{for (int i =0; i <sz; i++) data[i] = a[i];}
// ot her nenbers
};

Hee is a tet diver for the new constructor:

main ()

int a[]] = { 22, 4, 66 88 };

Vector<int> v(a);

cout << v.size() << endl;

for (int i = 0; i < 4i++)
cout << V[i] << " ";

4
22 44 66 88

The advantage of this condructor is tha we can initidize a vector now without having to asign each
component separately.

13.10 Derive an Array<T, E> classtemplate from the vector<T> class template, where the sec-
ond template parameter E holds an enumeration type to be used for the array index.

The derived template has three member functions: two constructors and a new subscript operator:

tenpl ate <class T, class E>
class Array : public Vector<T> {

public:
Array(E last) @ Vector<T>(unsigned(last) + 1) {}
Array(const Array<T,E>& a) : Vector<T>(a) { }

T& operator[] (E index) const
{ return Vector<T>::operator[] (unsigned(index)); 1}

380 TEMPLATES AND ITERATORS [CHAP. 13

The fire condructor cdls the default condructor defined in the parent cdass Vec tor<Ts>, passing to it
the number of E vdues tha ae to be usd for the index. The new copy condructor and subscript oper-
dgor ds invoke their equivdent in the parent cdlass.

Here is a test driver for the Array<T , E > template

enum Days { SUN, MON, TUE, WED, THU, FRI, SAT };

main ()
{
Array<int,Days> custoners(SAT);

customers[MON] = 27; custoners[TUE] = 23;
customers [WED] = 20; customers[THU = 23;
customers[FRI] = 36; customers[SAT] = customers[SUN] = O;

for (Days day = SUN, day <= SAT; day++)
cout << customers[day] << " ";

8 27 23 o0 28 35 0

The enumeration type Days defines seven values for the type. Then the object cust oners is
deddaed to be an aray of in t s indexed by thee seven vaues The rest of the program applies the sub-
script operator to initialize and then print the array.

Supplementary Programming Problems

13.11 Write and test a program that instantiates a function template that returns the maximum of two
values.

13.12 Implement and test the following function template:

tenpl ate <class T>
voi d printArray(T* array, const int count);

13.13 Write and test a program that instantiates the following function template:

tenpl ate <class T>
T power (T base, int exp)

Tp=1;

for (int i = 1; i <= exp; i++)
p *= base;

for (int i =1; i <= -exp; i ++)
p *= base;

return p;

Ingantiate the function template for saveral numerical types, including theRat ional class
defined in Chapter 8.

13.14 Write and test a program that instantiates a function template that implements alinear search
of an array of objects.

13.15 Write and test a program that ingtantiates a function template that implements the Selection
Sort on an array of objects.

CHAP. 13] TEMPLATES AND ITERATORS 381

13.16

13.17

13.18

13.19

13.20

13.21

Write and test a program that instantiates a function template that implements the Insertion
Sort on an array of objects.

Write a program that dmuldes a wating line & a benk. Indantigte the Queue< shor t > das
to construct the waiting line, numbering the people who arrive 1, 2, 3, etc. Usea Random
class to generate times in the range 0.0 to 8.0 minutes to be used both for the time between
arrivals and for the service times. Compute and print the average waiting time and the average
length of the line.

Implement and test a template for generating Deque classes. A deque (pronounced “deck”)

generalizes both a stack and a queue by alowing insertions and deletions at both ends of the
linear structure. Use the following interface:

template<class T>
class Deque {
public:
Deque (int = 100);
~Deque () ;
void insertlLeft(const T&);
voi d insertRi ght (const T&);
T removelLeft();
T removeRight () ;
int isEnpty() const;
int isFull() const;

private:
int size, left, right;
T* dat a;

bi

Hint: Let1 e £t andright awayslocate the next items on the left and right to be removed,
0 tha they play the role of Queue : : front.

Add the following constructor to the Vec t or class template:

Vector(const T a[], int n);
This function will duplicste an ordinary aray as a vec t or. For exanpe the code
String names[] = { "Ann", "Bob", "Cal", "Dan", "Eve" }

Vector<Strings> V(hames);
would create the string vec tor v with the same values that the nanmes array has.

Add the following two member functions to the vec t or class template:
T min(); // returns the mninmumelenment in the vector
T max(); // returns the mnimmelenent in the vector

Use of these functions, of course, presume that the order operators <, >, €tc., are defined for
thetype T. For example, they would not work on an instance of Vector<Complexs.

Add the following member function to the vec t or class template:
int find(T t);

This function searches for the element t inthe vec tor. If found, it returns the index of the
element; otherwise, it returns -1. Use the sequential search agorithm.

382 TEMPLATES AND ITERATORS [CHAP. 13

13.22 Add the fdlowing two I/O fundions for the vec t or dass tarplae
friend ostream& operator<< (ostream&, COnst Vector<T>&);
friend istream& operator>> (istream&, Vector<T>&);

13.23 Add the following member function to the Vvec t or dass templae
voi d sort();

This fundtion rearanges the dements of the vec t or so that they are in increasing order. Use
your favorite sorting algorithm. Use of this function, of course, requires that the order opera-
tors <, >, etc., are defined for the type T.

13.24 Add the following member function to the vec t or class template:
int find(T t);

This function searches for the element t inthe vec tor. If found, it returns the index of the
element; otherwise, it returns - 1. Use the binary search algorithm, assuming that the vec t or
has already been sorted.

13.25 Add a constructor to the vec t or class template that replicates an ordinary array of elements
of type T. This will alow the following simpler way to initidlize a vector:

String a[] = { "Adams, Ned", "Blair, Tim', "Cooke, Sam' }
Vector<String> friends(a);

13.26 Replacethe Array subclass template (Example 13.5) with an independent class template
that replaces the sz data member with one that holds the last subscript value. Your new
Array class template should have the same member functions as the Array subclass tem-
plate.

13.27 Add a constructor to the Matri x class template that replicates an ordinary two-dimensional

array as a matrix. (See Problem 13.8.) This will allow the following smpler way to initialize a
matrix:

float a[] = { (22 44, 6.6}, (33, 55 77) }
Matrix<float> ma);

13.28 Add the following two 1/O functions for the Mat ri x class template:

friend ostream& operator<<(ostream&, const Matrix<T>&);
friend istream& operators>(istream&, Matrix<Ts>&) ;

13.29 Add the following member function to the Mat ri x class template:
Matrix<T> transpose();

The transpose of a matrix is the matrix with the same elements except that the rows and col-
umns have been interchanged. For example, the transpose of the 2-by-3 matrix on page 364 is
the following 3-by-2 matrix:

al

be
cf
13.30 Add the following member function to the Mat ri x class template:

Vector<T> column(int j);
This function returns the j th coumn of the marix.

CHAP. 13] TEMPLATES AND ITERATORS 383

13.31

13.32

13.33

13.34

13.35

13.36

13.37

13.38

13.39

13.40

Use the Vector<String> and Matrix<shorts> classes to process the following table of
quiz scores for a student group:

Name QL Q2 Q3 Q4 Q5
Adans, J. 78 91 88 83 80
Baker, P. 81 94 97 90 89
Cohen, A 85 86 87 88 89
Davis, M 82 56 75 81 88
Evans, C. 75 77 70 78 74
Flynn, R 83 79 88 90 81
Gross, W 86 87 88 89 90
Hayes, J. 91 94 99 87 92

Your program should do the following:

a. Declare the table and read in the test scores.

b. Print the scores in tabular form.

c¢. Compute and print each student’s quiz average.

d. Compute and print the group average for each quiz.

Add a constructor to the List class template. that replicates an ordinary array of elements of
type T. Thiswill allow the following smpler way to initidize a list:
String a[] = { "Adans, Ned", "Blair, Tint, "Cooke, Sani }
List<String> friends(a);

Add the following two 1/0 functions for the Li st class template:
friend ostream& operator<<(ostream&, const List<T>&);
friend istream& operator>>(istream&, List<T>&);

Use composition to implement the s t ack class template using the Li st class template.
The only data member you need is List <T> 1list.

Use composition to implement the Queue class template using the Li st class template with
the enhancements added in Problem 13.38.

Implement a copy constructor for the Li st class template:
List(const List<T>&);

Implement the assignment operator for the Li st class template:
List<T>& operator=(const List<T>&);

Add the following two member functions to the Li st class template:
void insertAtEnd(T t); // insert t at the end of the I|ist
i nt removeFromEnd (T& t); // remove last itemt fromthe |ist

Add the following member functionsto the Li st class template:
voi d append(const List<T>&);

This function appends the list passed to it to the list that owns the function call. It does not
create any new nodes.

Modify the Li s + class template by adding a dummy node to the end of each list. The dummy
node will act like a newline character in that it signals the end of the list. It is identified as the
only node whose next pointer points to itself. Its dat a field is not used.

384 TEMPLATES AND ITERATORS [CHAP. 13

13.41 Add the following member functions to the Li st class template:

voi d reverse();

This function reverses the list, like this:
voi d reverse();

Before:

Do it two ways. First, do it by moving the actual data, using a stack. Then do it “in place” by
changing pointers and not moving any data.

13.42 Add the following member functions to the Li st class template:

voi d nerge(const List<T>&);

This function merges the list passed to it with the list that owns the function call. It assumes
that both lists are sorted in increasing order, and thus requires that the order operators <, >,
etc., are defined for the type T. It does not create any new nodes.

13.43 Modify the i nsert () functionin the List classtemplate so that it maintains the list in

increasing order. This presupposes that only types and classes that have implemented an order
relation will be passed to the template parameter T

13.44 Implement the Li st class template by using circular [ists. This is done simply by having the
next pointer of the last node point to the first node instead of being NULL.

13.45 Use the circularly linked implementation of Problem 13.44 to solve the Josephus Problem.
This problem simulates the elimination of a group of n soldiers standing in a circle, using an
increment m, where 1 < m < n. The soldiers are eliminated one at a time by counting up to m.
For example, if there are n=8 soldiers and the increment is m=3, the order of elimination is 3,
6,1,5,2,8,4, 7. That should be the output from the program with input 8 and 3.

Answers to Review Questions

13.1 A function template is a templae thet is used to generate functions. A template function is a function that
is produced by atemplate. For example, swap (T& , T&) in Example 13.1is afunction template, but
the call swap(m n) genedtes the actud templae function that is invoked by the call.

132 A cdass template is a template that is used to generate classes. A template class is a class that is produced

by a template. For example, St ack in Example 13.3 is a class template, but the type Stack<int>
used in the declarations is an actud template class.

CHAP.13] TEMPLATES AND ITERATORS 385

13.3 Vectors have the advantage of direct access (dlso caled “random access’) to their components by means
of the subscript operator. So if the elements are kept in order, we can locate them very quickly using the
Binary Search Algorithm. Lists have the advantage of being dynamic, so that they never use more space
than is currently needed, and they aren't restricted to a predetermined size (except for the size of the com-
puter's memory). So vectors have a time advantage and lists have a space advantage.

13.4 Both iterators and array index act as locators into a data structure. The following code shows that they
work the same way:
float a[100]; // an array of 100 floats
int i=0; // an index for the array
ali] = 3.14159;
for (i = 0; i< 100; i++) cout << af[i];

List<float> |ist; // a list of floats
ListIter<float> it(list); // an iterator for the |ist
it = 3.14159;

for (it.reset(); lit; it++) cout << it();

Chapter 14

Libraries

14.1 INTRODUCTION

A software library for a programming language is a collection of software components that
can be used in any program written in that language. These components contain definitions of
congtants, classes, objects, and functions that can be used as if they were part of the definition of
the language itself. For example, the < ios tream . h> header fileis a component of the Standard
C++ Library. It definesthe cout object that we use for output in C++ programs.

Libraries are usudly included with C++ compilers. For example, Borland C++ provides
severd class libraries. These libraries typicdly include many 1/0 classes and container classes.
Libraries can also be obtained independently. For example, as of 1995, the Standard Template
Library is avallable by FTP and from some commercia vendors but has not yet been bundled
with any C++ compilers.

142 THE STANDARD C++ LIBRARY

At this writing, C++ is now in its find stages of standardization. The ANSI/ISO Committee
has approved a draft standard that will probably become the internationa standard definition of
the C++ programming language before the end of 1996. Part of that standard includes what we
shdl refer to here asthe Standard C+ + Library. Sincethis sandard is so new, it will be awhile
before most commercid compilers include dl of its features. So we will focus here on those
parts of the standard library that are dready implemented.

The ANSI/ISO C++ Standard specifies 86 header files for the Standard C++ Library. Of
these, 18 are the header files that comprise the Standard C Library, and the other 68 are the
header files that are specific to the C++ language. The latter are divided into two groups. 20
header files that were specified in an earlier “draft sandard,” and 48 header files that make up the
new Standard Template Library. To digtinguish these two groups, we will refer to them as the
“C++ Headers’ and the “ STL Headers.” All 86 of these header files are listed in the table below.

The C++ Standard specifies that the 20 C++ header files be named without the traditiona
“.h" auffix. For example, the familiar <iostream. h> header islised as <iostream>. Most
vendors ignore this advice and retain the “. n” suffix, as we shdl in this book. Moreover, to
digtinguish C headers from C++ headers, some vendors cepitaize the names of their C++
headers. For example GNU C++ USSS <String . h> for the Standard C++ <string> header to
diginguish it from the Standard C <string . h> header. In contrast, Borland C++, which runs
under case-insendgtive DOS, useS<cstring. h> for the Standard C++ <st ri ng> header.

Since the C++ Standard is so new, the complete set of dl 86 header filesis not widely imple-
mented yet. But mogt C++ compilers do come with a substantid subset, including dl the C
headers, the nine C++ sream headers (<fstreams, <iomanip>, <ios>, <iostreams,

386

CHAP. 14]

LIBRARIES

Table 141 Sandard C++ Library Header Files

C Headers C++ Headers STL Headers
<assert.h> <bits> <algo.h> <lbvector.h>
<ctype.h> <bitstrings> <algobase.h> <ldeque.h>
<errno.h> <conpl ex> <bool.h> <list.h>
<float.h> <def i nes> <bvector.h> <llist.h>
<iso646.h> <dynarray> <defalloc.h> <lmap.h>

<limits.h>

<exception>

<deque.h>

<lmultmap.h>

<locale.h> <fstream> <faralloc.h> <lmultset.h>
<math.h> <iomanip> <fdeque.h> <lngalloc.h>
<setjmp.h> <ios> <flist.h> <lset.h>
<signal.h> <iostreams> <fmap.h> <map.h>
<stdarg.h> <istream> <fmultmap.h> <multimap.h>
<stddef.h> <new> <fmultset.h> <multiset.h>
<stdio.h> <ostream> <fset.h>- <neralloc.h>
<stdlib.h> <ptrdynarray> <function.h> <nmap.h>
<string.h> <sstreams> <hdeque.h> <nmultmap.h>
<time.h> <streambuf> <heap.h> <nmultset.h>
<wchar.h> <string> <hlist.h> <nset.h>
<wctype.h> <strstream> <hmap.h> <pair.h>
<typeinfo> <hmultmap.h> <projectn.h>
<wstring> <hmultset.h> <set.h>

<hset.h>

<stack.h>

<hugalloc.g>

<tempbuf.h>

<hvector.h>

<tree.h>

<iterator.h>

<vector.h>

387

<istreams, <ostreams, <sstreams, <fstreambuf>, ad <strstreams), andsomeverson
of the C++ headers <bitstrings, <complex>, and <string> Some container classes such as
List and vec tor may aso beincluded, but these are not equivaent to those specified in the
STL. The latter include built-in iterators and a large number of dgorithms. Some of these header
files have dready been examined in earlier chapters. Chapter 10 describes most of the functions
defined in the C header <string . hs. Chapter 12 reviews much of the contents of the C++
stream headers.

Appendix E lists many books on programming in C++. Some of these contain more thorough
discussions of the Standard C++ Library. A complete treatment of the C headers is given in the
book [Plaugerl] (see Appendix E), while [Plauger2] smilarly covers the C++ headers. The
journd The C++ Report frequently includes information on the STL. Its contents are available
on-line from the Hewlett Packard Corporation and from severd independent vendors.

388

143 PROPRIETARY

LIBRARIES

LIBRARIES

[CHAP.

14

Typicdly, vendors of C++ compilers or more generd C++ development environments will
provide one or more libraries that include many of the Standard C++ headers as well as many
other headers for 1/0 classes, container classes, and mathematicad functions. For example,

Borland C++ provides its Stream Class Library, its BIDS Library (Borland Internationa Data

Structures), and its OWL Library (Object Windows Library). These libraries are distributed over
some 267 header files (in Borland C++ v.4.0), some of which are listed in Table 14.2.

Table 14.2 Some Borland C++ Header Files

C Headas

C+ Headers

BIDS Headas

OWL Heades

<assert.h>

<bcd.h>

<arrays.h>

<applicat.h>

<ctype.h>

<checks.h>

<assoc.h>

<button.h>

<errno.h>

<complex.h>

<bags.h>

<checkbox.h>

<float.h>

<constrea.h>

<binimp.h>

<clipboar.h>

<limits.h>

<cstring.h>

<date.h>

<control.h>

<locale.h> <except.h> <deques.h> <dialog.h>
<math.h> <fstream.h> <dict.h> <edit.h>
<setjmp.h> <iomanip.h> <dlistimp.h> <gadget.h>
<signal.h> <iostream.h> <hashimp.h> <menu.h>
<stdarg.h> <new.h> <heapsel.h> <preview.h>
<stddef.h> <ref.h> <listimp.h> <printer.h>

<stdio.h>

<regexp.h>

<queues.h>

<scroller.h>

<stdlib.h>

<stdiostr.h>

<seta.h>

<slider.h>

<string.h>

<strstrea.h>

<stacks.h>

<toolbox.h>

<time.h>

<typeinfo.h>

<vectimp.h>

<window.h>

Notice that Borland's BIDS Library includes some of the same container classes that are

gpecified in the STL: <deques .

h> defines a deque class template, <dict.h> defines a map class
template, <listimp.h> defines a list class template, <seta.h> defines a set class template, and

<vectimp.h> defines a vector class template. But these are not equivalent to those defined in the
STL. Aswe shdl see, the STL combines classes, iterators, and agorithms in a unique way.

Borland’'s OWL Library contains class definitions for writing graphical user interfaces using
windows, menus, panels, clipboards, scrollers, etc. Such class libraries are typicd of modern
development environments. But they are highly proprietary and are not part of the C++ Standard.

Many C++ compliers use Microsoft’s Foundation Class Library. Thislibrary definesalarge
number of classes, many of which are smilar to those defined in Borland's BIDS and OWL

libraries, including an gpplication class, an array class template, a list class template, a map class

template, various window classes, view classes, etc.

CHAP. 14] LIBRARIES 389

144 CONTENTS OF THE STANDARD C HEADERS

This section gives a brief summary of the contents of some of the Standard C header files.
Since these are part of the C programming language, they do not contain any class definitions.
The <assert .h> header defines the assert () function:
void assert(int expr);

This function is used to check a condition within a block of code. If the condition is fase, the
program aborts; otherwise it continues normally.

EXAMPLE 14.1 Using the <assert. h> Header File

The <assert. h> header file containsthe assert () function which is used to ensure that a
condition that is needed is satisfied

#include <iostream.h>
#include <assert.h>

main ()
{

float x;

cout << "Enter a non-zero number: ";

cin >> X;

assert(x 1= 0);

cout << "The reciprocal of " << Xx << mwis " << 1.0/x;
}

Enter a non-zero nunber: 3
The reciprocal. of 3 is 0333333

Enter a non-zero nunber: 0

test_assert.c:9: failed assertion *x != 0
The expression 1. 0 /x will cause the program to crash if x is zero. The call assert (x | = 0)
guarantees that that expression will not be evaluated if x is zero. As the second run shows, when X is
zero, the execution of the program terminates during the cal of the assert () function.

The<ctype . n> header defines severd utility functions for testing characters:

int isalnun(int c); // returns 1 if c is al phanumeric

int isalpha(int ¢c¢); // returns 1 if c is al phabetic

int iscntrl(int c¢); // returns 1 if c is control

int isdigit(int c); // returns 1 if cis a digit

int isgraph(int c); // returns 1 if c is graphic

int islower(int ¢c¢); // returns 1 if c is |owercase

int isprint(int c¢); // returns 1 if c is printable

int ispunct(int c); // returns 1 if c is punctuation

int isspace(int c); // returns 1 if c is whitespace

int isupper(int ¢c¢); // returns 1 if c is uppercase

int isxdigit(int c); // returns 1 if c is a hexadecinmal digit
It dso defines the character conversion functions:

int tolower(int c); // converts to | owercase

int toupper(int c); // converts to uppercase

390 LI BRARI ES [CHAP. 14

The <float. n> header file defines systlem dependent constants that describe the floating

point types Smilaly the <1imi ts.h> header defines system dependent characteristics for the
integer types. Example 14.4 shows how to print these congtants.

EXAMPLE 142Usingthe<f loat. h> and<limits . h> Header Files

By printing the constants defined in these two header files, we can see how red and integer types are
limited on this particular computer:

#include <iostream.h>

#include <limits.h>

#include <float.h>

main ()

{
cout << "\tBits used for one byte: ' << CHAR BIT << endl;
cout << "\t Smal lest char: " << CHAR-M N << endl;
cout << "\t Largest char: " << CHAR_MAX << endl;
cout << "\t Smallest short: " << SHRT_MIN << endl;
cout << "\t Largest short: " << SHRT_MAX << endl;
cout << "\t Smallest i nt: " << INT_MIN << endl
cout << "\t Largest int: " << INT_MAX << endl;
cout << "\t Smal | est float: << FLT_MIN << endl;
cout << "\t Largest float: " << FLT_MAX << endl;
cout << "\t Digits for float: " << FLT_DIG << endl
cout << "\t Smal lest double: " << DBLM N << endl;
cout << "\t Largest double: " << DBL_MAX << endl;
cout << "\t Digits for double: " << DBL_DIG << endl;

used for

Largest flcat
Dlglts for fleat:

Smallest‘dauble

. lorgest double:
 Digits for double:

}‘15

3.40282e438
: 2.22507e-308
1.79769e+308

This shows, for example, that on this machine the numerical range for a char is-128 to 127, and that

val ues of type doubl e contain 15 significant digits.

The < time. h> header defines functions that access the system clock.

how some of these work. Note that the caculation on x is only to kill time.

Example 144 shows

CHAP. 14] LIBRARIES

EXAMPLE 14.3 Using thec t ime . h> Header File

#include <iostream.h>
#include <time.h>

main()
{
clock-t c;
time-t t;
char* s;
double x = 3.14159265358979;
cout << "CLOKS-PER-SEC = ' << CLOCKS- PER SEC << endl;
for (long int i = 0; i < 1000000; i++)
X =1+ x/(1+x);
C = clock();

cout << "clock() = " << € << endl
cout << "seconds = ' << c/ CLOCKS- PER- SEC << endl ;
t = time(NULL);

cout << '"time(NULL) = " <<t << endl
S = ctime(&t);
cout << ‘"current tim = " << S << endl;

CLOCKS_PER_SEC = 1000000
clock() = 2956842

seconds - 2 ‘

time (NULL) = 805308632 .
current time = Sun Jul 9 12:50:32 1995

391

The first line of output shows that this system increments its clock once per microsecond (i.e.,
1,000,000 times per second). Next the for loop causes a delay of 2956842 seconds, as shown by the
second line of output. SO we see that the expression ¢/ CLOCKS- PER- SEC shows how many CPU sec-

onds have eapsed.

The cal time (NULL) shows that 805,308,632 seconds have elapsed since January 1, 1970. The
ct ime () function converts this integer into the character string s that shows the current date and time.

The <s tdl ib . h> header file defines a diverse collection of constants and functions, includ-

ing the following:
#define EXIT_SUCCESS 0 // for use with exit()
#define EXIT_FAILURE 1 // for use with exit()
#define NULL O // null pointer
#define RAND- MAX 2147483646 // = INT_MAX 1, for use with rand()
int rand(); // returns random i ntegers <= RAND_NMAX
void srand(unsigned seed); // seeds the random nunber generat or
int abs(int i); // absolute value for integers
int atoi(const char* s) // converts ASCI| string to int
doubl e atof(const char* s) // converts ASCI | string to double
voi d abort () // aborts program execution

void exit(int status) // end program execution nornally

392

The integers returned by

LIBRARIES

rand ()

[CHAP. 14

are uniformly digtributed in the range O to RAND _wax.

However, the sequence of integers generated will be the same for the same seed. Use srand ()
fird to initidize the seed. Thisis illudrated in the next example.

EXAMPLE 14.4 Using the < stdl ib . h> and <t ime. h> Header Files

This shows how

#i ncl ude
#i ncl ude
#i ncl ude

main ()

{

unsi gned

to use the system clock to set the seed for the random number generator:

<iostream.h>
<stdlib.h>
<time.h>

seed time(NULL);

srand(seed);

for

cout

225234 0l s s
6365212368 0g 0 waag

(int i =0; i < 32; i++)
cout << 1 + rand()%6 << " ";
<< endl

BUgs e Suass s

E2 A M3 73 B3R atiisn g d ey anisis g gm0
Thecal time (NULL) returns, the number of seconds that have elapsed in the twentieth century. By

passing this integer

to srand

(), we ensure that each time the program is run it begins with a different

seed. Thus each of the three runs produces a different sequence of 32 “random” numbers. The expression
1 + rand ()% 6 generates random integers in the range 1 to 6, Smulating the toss of a die.

Note that some

predefined rand

() functions do not give very satisfactory results. For serious simu-

lation, one should implement one's own random. See Problem 821

The <string. h> header file defines a large number of very useful functions for manipula-
ing null-terminated arrays of characters. These are described in Chapter 10.
h> header defines mathematica functions such as the following:

The <mat h.
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

The <s tddef
#define
t ypedef
t ypedef

/]
/!
//

/1

sin(double x);
atan (double X);
cosh(double x);

pow (double x, double vy);

si ne

ar ct angent
hyperbolic cosine
X to the power vy

exp (double X); // e to the power X
log(double Xx); // natural logarithm (base e)
logl0 (double X)) // comon |ogarithm (base 10)
sqgrt (double Xx);; // square root of x
ceil (double X);; // least integer >= Xx
floor (double X); // greatest integer <= X
fabs (double Xx); // absolute value for reals
h> header defines some special constants and types:

NULL ((void*) 0) // null pointer

char wchar_t; // wi de character type

unsi gned size-t; // size type

CHAP. 14] LIBRARIES 393

Note the use of the preprocessor directive #define. Thisistheway congants are defined in C.
Different compilers may have different definitions for the wide character and Sze types.
Wide characters are used to accommodate large character sets, such as the Chinese character set.
The s i z e_t typeisused with certain library functions, such asthestr 1en () function defined
inthe <string . h> header file.
The < s tdio . h> header file defines the non-stream 1/0 functions used by C programmers.
For example, the scanf () and printf () functions are used for formatted input and output.

14.5 STRING STREAMS

We have named the second group of header files that comprise the Standard C++ Library the
“C++ headers” These contain the C++ definitions that completed the “draft C++ Standard”
before the Standard Template Library was included. Nine of these twenty headers are devoted to
the stream processing that is described in Chapter 12. In this section we expand that study with a
brief survey of gring sreamsdefinedin<s trs tream>. The following section describes how file
processing is managed using the file streams defined in < f streams.

The < strs tream> header file defines three classes that dlow the use of dtring streamsin
C++. A dtring streamis a stream that exigts only during the execution of the program in which it
is defined. String streams are aso called an in-memory character sequences and internal files.
Stream buffers provide a convenient way to use a block of memory for formatting output and
buffering input.

Here isthe diagram shown on the first page of Chapter 12

ios
istream ostream st r eanbuf
%&:r:ar} iostream ofsk fileb% %iobmlf
istrstream istringstream ostrstream ostringstream strstreambuf stringmbuf

fstream strstream

The three classes istrstream ostrstream and strstreanmbuf ae defined in the
<strstream> header.

An is trs tream object isan input string stream that is attached to an ordinary char *
gring. The object works like an ordinary input stream (like cin) except that when the extraction
operator >> is gpplied to it, data is read from its attached char * gtring instead of the keyboard.
Smilaly, an ostrstream object is an output string stream that is adso attached to a char *
gring. It works like an ordinary output stream (like cout) except that when the insertion opera-
tor << is applied to it, data is sent to its atached string instead of the display screen. The next
example illudtrates these classes.

String streams are useful for buffering input and output. Input from cin can be piped into
an input dring stream, and then examined and validated before processing the data that it
receives. Similarly, output can be formatted in an output sting stream before it is sent to cout.
Thisis sometimes called incore formatting.

394 LIBRARIES [CHAP. 14

EXAMPLE 145 Using <strstream. h> to Process String Streams
The <strstream.h> headerfiledefinesthe i strstream andthe ostrstream classes;

#include <strstream.h>

main ()
{
const int size = 80;
char inbuf[size] = "Hello, world!' 3.14159 65535 Q";
char out buf [si ze];
istrstream istr(inbuf, size); // input strstream for inbuf
ostrstream ostr(outbuf, si ze); // output strstream for outbuf
char sl [size], s2[size];
float x;
long int n;
char ¢, p ="|";

istr > sl >> g2 >> X > n >> C;
cout << "\tsl = [" << gl << "] \n";
cout << "\ts2 = [" << s2<< "] \n" ;
cout << "\tx << X << endl;
cout << "\tn " << n << endl;
cout << "\tc " << € << endl;

OStr << sl << p << 82 << P << X << P << N << p<<cC << ends;
cout << " [" << outhbuf << "]I\n";

After declaring i nbuf and outbuf as sSmple 80-character strings, the input string stream is t r
and the output string stream ost r are declared. These are tied to inbu f adoutbu f , respectively.
Sois tr actslikeaninput stream (like cin), except that the “input” comes from the i nbuf string
instead of the keyboard. Similarly, os tr actslike an output stream (like cout), except that the “out-
put’ goes to the outbuf dring instead of the display screen.

The next example illustrates how string streams can be used asfilters. It uses an output string
stream to creste form letters.

EXAMPLE 146 Usinga String Streams as a Filter

This uses a function form () to create form letters.

#include <strstream.h>

char* form(char* nane, int nale)
{

const size = 128;

static char buffer[size];

CHAP. 14] LIBRARIES 395

static ostrstream ostr(buffer, size);
ostr.seekp(ios::beg);
ostr << 'Dear ";
if (male) ostr << "M. ";
el se ostr << "Ms. ';
ostr << name
<< ', \n\tI have an exclusive offer for you and your ";
if (male) ostr << "wife, Ms.";
el se ostr << "husband, M.";
ostr << name << '"...\n' << ends;
return buffer;

main ()

cout << form("Baker", 1);

cout << form("Green"', 1);

cout << form('North", 0);

cout << form("Smith", 1);
¥

Dear M. Baker,

I have an exclusive offer for you and your wife, Mrs.Baker...
Dear M. Geen,

I have an exclusive offer for you and your w fe, Mrs . Green...
Dear Ms. North;

I have an exclusive offer for you and your husband, Mr.North...
Dear M. Smth, , ‘ \
I have an exclusive offer for you and your wife, Mrs.Smith...

Thebu f f er and ostr sream ae declared to be stat i ¢ so that they are not recreated each time the
function is called. Since the stream is reused this way, we havetocadl ost r . seekp (ios : : beg) each
time to reset the write pointer at the beginning of the stream to overwrite the previous string.

The <sstream> headefiledefinesthethreeclasses i stringstream ostringstream
and stringbuf for processng string streams. These are analogoustotheis tr s t ream
os trs tream and s trs treanbuf Classes, except that they are atached to instances of the
string classthat isdefined inthe <string> header instead of to ordinary C strings (char*).

146 FILE PROCESSING

A dream is a manager of a flow of bytes. An input stream manages bytes flowing into the
program, and an output stream manages bytes flowing out of the program. Every dream is
attached to some kind of origin or destination which the stream represents in the program.
Instances of the is tream dass (like cin) represent the standard input device (Le., the
keyboard). Instances of theos trs tream classrepresent char * dringsthat are being written
to. Instances of thei s trings tream classrepresent string objectsthat are being read from.
The beauty of the stream 1/O class hierarchy is that it provides a Smple uniform programming
interface for dl types of input and outpuit.

39 LIBRARIES [CHAP. 14

The following diagram shows the relationships between streams and the things that they
manage. As a manager of a data source or destination, we can imagine a stream as a pipe

through which the data flows to or from the executing program:

programl.cpp
#include <iostream>

inbuf main () outbuf

C-Sirng) | ¢ G-sting
istrstream cout << "Hello, wWorld!\n"; ostrstream
} OUt e,
£
RS s
A0 oF;
testl.dat oo tl‘ee grades.dat
. igc‘ﬁ m
>
File File

This shows 3 input streams and 3 output streams, each represented by a gray box. For example,

i nbuf isaninput dreamof type is trs tream which manages the input of data from a C-string
into the program, and cout is an output stream of type os t r eam which manages the output of
data from the program to the display screen.

C++ uses sreams to manage data flow, including flow to and from externd files. A file isa
sequence of bits stored on some externa device such as a disk or magnetic tape. The bits are
interpreted according to the protocol of some software system. If the bits are grouped into 8-bit
bytes interpreted by the ASCII code, then the file is called atext file and can be processed by
standard editors. If the bits are grouped into 32-bit words representing color pixds, then the file
is a graphics file and is processed by specidized graphics software. If the file is an executable
program, then its bits are interpreted as ingtructions to the computer’ s processor.

In C++, afileis amply an externa stream: a sequence of bytes stored on disk. If the file is
open for output, then it is an output file sream. If the file is open for input, then it is an input file
dream. The < fs tream> header definesthe class o fs tream of output file streams and the class
i f s tream of input file streams. Instances of these classes behave like other internal streams: the
insertion and extraction operators apply the same way.

Example 14.4 shows how to write data to an externd file. This requires ingantiating the
ofs tream class which is defined inthe < £ s tream- header. Analogoudly, Example 14.4 shows
how to read data from externd file.

CHAP. 14] LIBRARIES 397

EXAMPLE 14.7 Writing to an External Data File

The <f st ream h> header file defines the of s t ream class which must be instantiated to write to
an externd file:

#include <iostream.h> // defines cout stream
#include <fstream.h> // defines ofstream cl ass

#include <stdlib.h> // defines exit() function
main ()
{

ofstream outfile("grades.dat", ios::out);

if (loutfile) {
cerr << "Error: output file could not be opened.\n";
exit(l);

}

char id[9], name[16];

int grade;
cout << "\tl: ";
int n =1,
while (cin >> id >> nane >> grade) {
outfile << name << " " << id << " ' << grade << endl;

cout << "\t" << ++n << "o
}
outfile.close();

. Adams 209134662 83
Baker 55281882977
Cohen 310051782 89'
Davis 846112103 85
: Evans 6526336670 92
AD:

o Ul B W o

The first line invokes the of s tream constructor which opens file grades . dat as an output file,
congtructs the stream out file, and attaches that stream to the file. The second line invokes the over-
loaded negation operator ! to ensure that the file is opened properly. If not, an error message is printed
and the program is terminated. Otherwise, the program uses an input loop to read names, identification
numbers, and grades from the standard input and writes them to the externd file.

The resulting externa file looks like this:

gr ades. dat

209134662 Adams 83
552818829 Baker 77
310051782 Colhem 39
446112103 Daviis 85
616336670 Evams 92

EXAMPLE 14.8 Reading from an External Data File

The <fstream.h> header file definesthe i f s tream class which must be instantiated to read
from an externd file:

398

LIBRARIES [CHAP.

#include <iostream.h> // defines cout stream
#include <fstream.h> // defines ofstream cl ass

#include <stdlib.h> // defines exit() function
main ()
{
ifstream infile("grades.dat", i0s::in);
if (linfile) {
cerr << "Error: input file could not be opened.\n";
exit(l);
b
char id[9], name[l6];
int grade, sum = 0, count = O;

while (infile >> id >> name >> grade) {
sum += grade;
++count ;
}
infile.close();
cout << "The grade average iS " << float(sum)/count << endl;

The grade average 12 82 2

loop the same way that the cin dream was used in the previous example.

14

This works like the previous example. Note how the inf i 1e stream is used to control the whi 1 e

A file can be opened for both input and output smultaneoudy in C++. Thisis illugtrated in

Example 14.9 which modifies an exidting text file by capitalizing dl of its lowercase characters.

EXAMPLE 14.9 Modifying a Text File

This program capitaizes al the characters in a text file. It gets the name of the text file from the com-

mand line argument argv [1] which passes it to the f s tream constructor to open the fileas iof il e:

#include <fstream.h> // defines ofstream cl ass
#include <gstdlib.h> // defines exit() function
#include <ctype.h> // defines islower(), toupper() functions

main(int argc, char** argv)

fstream iofile(argv[l], ios::in | ios::out);

if (liofile) {
cerr << "Error: file could not be opened.\n";
exit(l);

char c;

while ((c¢ = iofile.get()) != ECF)
if (islower(¢
iofile.seekp(-1, ios::cur);
i ofile.put(toupper(c));
}

iofile.close();

CHAP. 14] LIBRARIES 399

Note that the logical expression i o s : : in 1 i0s: :out is used to open iof i le for both input
and output. This dlows the file to be modified character-by-character.

The modification is done by applying the seekp () awd put () functionstoio f i le. Thecdll
iofile.seekp(-1, ios: :cur) uses the parameter -1 to backup over the character just read so tha
it could read or write it again. Thenthecall iof i 1e. put (toupper (c)) replaces that character with
the capitalized version of the character c.

Suppose that the following file named Gettysburg . tx t has been prepared:

Get tysburg. t xt

Fourscore and seven years ago our fathers brought forth
upon this continent a new nation, conceived in liberty,
and dedicated to the proposition that all nen are
created equal.

If the name of the executable program is capi tal i ze, thenthe command
capitalize Gettysburg. t xt

would transform that file into

Cett ysburg. t xt
FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH
UPON THI' S CONTI NENT A NEW NATI ON, CONCEl VED I N LI BERTY,

AND DEDI CATED TO THE PROPOSI TI ON THAT ALL MEN ARE
CREATED EQUAL.

In this case the command line parameter argc has the vaue 2, and the string array argv hes the vaues
"capitalize" for argv [0] and "Gettysburg.txt" for argv[l].

147 THE STANDARD TEMPLATE LIBRARY

Table 14.1 shows the Standard C++ Library as three groups of header files. The third group
is known as the Standard Template Library. Thisis a collection of 48 headers that define alarge
number of genera-purpose container class templates together with iterator classes and generic
dgorithms for manipulating them. The library is remarkable for its efficiency, consgstency, and
elegance. It was developed at Hewlett-Packard by Alexander Stepanov and Meng Lee.

Example 14.10 shows how to use the Standard Template Library to merge two lists. Some
implementations may reguire <st 1. h> tobeincludedinsteadof <1 is t . hs.

EXAMPLE 14.10 Merging Two STL Lists

The <1i st.h> header file defines the 1i st class template including its iterators and agorithms.
This uses the merge dgorithm to merge two integer lists:

400 LIBRARIES [CHAP. 14

#include <iostream.h> // defines cout stream
#include <list.h> // defines list and iterator cl asses

main()
{
int al[3] { 22, 44, 88 };
int a2[4] { 33, 55, 77, 99 };
list<int> 11l(al, al + 3);
list<int> 12 (a2, a2 + 4);
11.merge(12);
for (list-Ant> :iterator it = Il.begin(); it != Il.end(); it++)
cout << *it << ' ",
cout << endl;

22 33 44 55 77 88 99

We first set up thetwo arraysal and a2 to beused toinitializethelists11 and 12. Notice how
the name of the array is used as a pointer to locate the begining and ending of the array for the list con-
structor: al isthe address of the first element and al + 3 is the address of the memory location imme-
diady dter the third dement.

Natice how the for loop works the same way with an iterator as it would with an ordinary integer
index: the iterator is initidlized with it = 11. begin (), itisincemeted with i t ++, and it controls
the loop with the condition i t ! =11 end ().

The STL defines seven general container class templates: deque, vec tor, 1 is t, set,
map, mul tiset, andmul timap. A deque isasequentid structure that alows insertionsand
deletions a two ends. A vector is a direct generdization of an ordinary array, dlowing indexed
access. A list is a sequentid Sructure that dlows efficient insertions and deletions in the middle
of the sequence. A set is an ungtructured collection of unique dements. A multiset (lso called a
bag) is an unstructured collection of e ements that need not be unique. A map (dso cadled adic-
tionary or table) is a set whose e ements have two parts: the key and the data. A multimap isthe
same as a map, except that the keys need not be unique. An ordinary telephone directory is a
good example of a multimap, where the keys are the subscribers names and the data are their
addresses and telephone numbers. An “inverted directory” where the unique telephone numbers
are the keys would be an example of a map. Maps and multimaps can be regarded as sets and
multisets, respectively, except that the eements have two components. a key fidd and a data
field. The key type must have an ordering, so string and doubl e could be key types, but
conpl ex and set couldnot.

There are certain operations which one would like to apply to any container object: find the
first dement; find the last dement; determine how many dements are in the container; insert an
element; remove an dement. The STL defines these operations as member functions that work
the same way on dl contaners. They are summarized in Table 14.3. Here, a and b are
container objects, t is avalue of the container’s template type, n is a nonnegative integer, and
p, i,and jare iterators on the container.

The STL is a tightly woven system of classes, iterators, and adgorithms. Its designers have
been very successful in implementing the diverse behavior of container classes in a condgstent
and intuitive way. Thisisindicated by the functions listed in Table 14.3 and Table 14.4.

CHAP. 14]

LIBRARIES

Table 14.3 Operations for All Container Classes

a.insert(p, t) Inserts a copy of t beforep
a.insert(p, n, t) Inserts n copiesof t before p
a.insert(p, i, j) Copes a [i] . . .al[j-1]1 before p
a.erase(i) Removes a [i]

a.erase(i, j) Removes a[i]...a[j-1]

i = a.begin() Setsi sothata [i]isthefirst element

j = a.end() Setsj wotha a [j] =17 isthelast element
t = a.front() Assigns the first element of a tot

t = a.back() Assigns the last element of a tot

n = a.size() Assigns the number of element of a ton
n= a.empty() Assigns1ton if a isempty; O otherwise
a. swap(b) Swaps the contents of a and b

401

The STL is an dgorithm-oriented library like the numericd libraries tha FORTRAN
programmers have been using since the 1960s. The 62 generic algorithms in the STL are catego-
rized by the type of iterator they use. There are five types of iterators. Random Access, Bidirec-
tional, Forward, Input, and Output. These are illustrated by the diagram below. It shows that the
five iterator categories are nested. For example, every Input iterator is also a Forward iterator, and
every Forward iterator is dso a Bidirectiond iterator. It dso shows what kind of operations can
be performed on each type of iterator. For example, al iterators can be incremented (++1), but
only Bidirectiona and Random Access iterators can be decremented (- -1).

Random Access

/ Bidirectional \

i += 4
i 4
t =1i[4]; -=i; Input
if41 =t i--;
if (il <i2) . . .

N =)

Table 14.4 ligs some of the STL’s generic dgorithms. All seven of the container classes
support Bidirectiond iterators, so dl containers can goply any of the dgorithms in columns 2
through 5 of the table. But only vect or and deque classes support Random Access iterators,
so only instances of these classes can aso apply the agorithms in the first column.

Forward

Example 14.11 shows how to use an STL map to maintain a persona telephone book. The
elegance of the STL is apparent here. The code is sdf-documenting. The iterator i works like
an ordinary integer index. But so do the key drings with the syntax:

m["Jones, Jenny"] = "379-0512";

m.erase ("Baker, Sue");

402 LIBRARIES [CHAP. 14

Table 14.4 Algorithms Categorized by Iterator Type

Random Access Bidirectional Forward Input output
sort () copy_backward() search() find() gener at e- no
stable_sort() reverse () repl ace0 count () fill_n()
partial_sort() partitionO unique () copy () copy ()
nth_element () inplace_merge() rotateO equal ()
push_heap () gener at e0 i ncl udesO
pop_heap () remove () merge ()
make_heap () £111() max ()
sort_heap () min ()
random_shuffle() accurul at e0

EXAMPLE 14.11 Creating a Phone Book

This program uses a map to maintain a persona telephone directory. The class template takes three
template parameters. the key type, the data type, and the comparison type. Here the person’s name is the
key and the telephone number is the data, so we use the string class for both the key type and the data
type. The class 1es s<st r ing> provides for the ordinary lexicographica ordering on the keys:

#include <iostream.h>
#include <map.h>
#include <string.h>
int min ()

typedef map< string, string, less<string> > mapType;

mapType M // the tel ephone book
m["Jones, Jenny"] = '379-0512";
m["Baker, Sue"] = "794-7935";
m["Williams, Bill"] = "289-8085";
m["Thomas, Tonml'] = "379-1225";
for (mapType::iterator i = mbegin(); i != mend(); i++)
cout << (*i).first << ": " << (*i).second << endl;
m.erase ("Baker, Sue");
m.insert ("Roberts, Bob", "289-0491");

i = mfind("Thomas, Tont);
cout << "Tom\'s hunmber is " << (*i).second << endl
m.erase(i);
for (i = mbegin(); i '= mend(); i++)
cout << (*i).first << ": " << (*i).second << endl;

BAKEE) SHER T9MRTRas T
Jones, Jemny: 379-0512
Williams, EilT: 089.BOSS
Tom's mumber i= 3791205
Jones, Jevny: 290512
Roberts, Bob: 289-0491 @

WMilliame, Ril1. 280-8085

CHAP. 14] LIBRARIES 403

After inserting 4 records in our telephone book, we print the book and see that it is maintained in
dphabetical order. Then we remove the listing for Sue Baker, insert a listing for Bob Roberts, find the list-
ing for Tom Thomas, remove that listing, and then print the resulting updated book. Note that the
find () function returns the location to the iterator i .

Review Questions

141 What is a stream header?
142 What is the difference between the C header <string . h> and the C++ header <s tring>?

143 How aretheLi standvec t or classes defined in this book different from those defined in
the STL?

144 What is the difference between the Standard C++ Library and proprietary libraries?
14.5 What isthe purpose of the assert () function?

146 What is the purpose of the #defi ne directive?

14.7 What is wchar _t ?

148 What is a string stream?

149 What is incore formatting?

14.10 What is the difference between a set and a multiset?

14.11 What is the difference between a set and a map?

Supplementary Programming Problems

14.12 Write and test a program that counts the number of charactersin an external text file.

14.13 Write and test a program that picks a card at random from an ordinary deck of 52 playing
cards. Usethetinme (), srand (),andrand () functionsasin Example 14.4.

14.14 Write and test aprogram that creates form letters like this:

Dear Mr. Smith,

This is your lucky day! You have the unique opportunity to install
aluminum siding on the Smith house at 1234 Main Street at an incredibly
low price. This exclusive offer is available to you and the Smith family for
only a limited time. So don’t hesitate, Mr. Smith. Call today!

14.15 Write and test aprogram that counts the number of wordsin an externa text file.
14.16 Write and test aprogram that counts the number of lines in an external text file.

14.17 Write and test a program that encodes an external text file by replacing each of its characters
with the character that immediately follows it in the ASCII code.

404

14.1

LIBRARIES [CHAP. 14

Answersto Review Questions

A stream header is one of the nine header files that define stream classesin the Standard C++ Library:
<fstream>, <iomanip>, <ios>, <iostream>, <istream>, <ostream>, <sstreams>,
<fstreambuf>, and <strstreams.

142 The C header <string. hs> contains only functions for manipulating null-terminated arrays of

14.3

144

145

14.6

14.7

14.8

149

14.10

characters (i.e., C-strings). The C++ header <string> definesas tring classsimilartothatin
Chapter 12.

The1li st advec t or dases ddinad in the STL include huilt-in iterator classes and dgorithms
suchas i nsert ()and erase().

The Standard C++ Library is part of the ANSI/ISO standard specification of the C++ language. It spec-
ifies the 86 header files listed in Table 14.1. These define constants, functions, classes, and templates
that should work with any C++ compiler in any software environment. Proprietary libraries such as
those that Borland supplies with its C++ compiler work only with that compiler. They include many of

the features of the Standard C++ Library. They also define special classes for creating I/O objects such
as windows and menus.

The as ser t () function dlows you to check cetan conditions tha should preval a cetan points in
the program. The as ser t () function will terminate the program if the condition passed to it is not
true.

The #def i ne directive is used to define constants in the C programming language. (This is done
with cons t inC++.) Thedirectiveisused in the C header files.

The wchar J is a wide character type defined in the C header < s tdde f . h>, It is used for lage
alphabets, such as the Chinese and Japanese alphabets.

A string stream is an object that can access string of bytesin memory as if it were an externd file. It
works like an interna text file.

Incore formatting refers to the use of an output string stream for formatting the output before it is out-
put. The name derives from the term “core” which referred to main memory in the 1950s.

The elements of a set must be unique. A multiset can have several copies of the same element.

1411 A maxp can be regaded as a & whose edements have two components a key and a daa component.

Appendix A

The ASCII Code

Each character is stored as its ASCII' Code, which is an integer in the range 0 to 127. Note that
the first 32 characters are nonprinting characters, so their symbols in the first column are indicated
either with their control sequence or with their escape sequence. The control sequence of a nonprinting
character is the combination of Control key and another key that is pressed on the keyboard to enter
the character. For example, the end-of-file character (ASCIl code 4) is entered with the ¢ t rl -D se-
quence. The escape sequence of a nonprinting character is the combination of the backslash character
“\” (called the “control character”) and a letter that is typed in C++ source code to indicate the char-
acter. For example, the newline character (ASCII code 10) is written “\n” in a C++ program.

Character Description Decimal| Octal | Hex Binary
Ctrl-d@ Null, end of string 0 0 0x0 | 0000 0000
Ctrl-A Start of heading 1] 01 Ox1 | 0000 0001
Ctrl-B | Startof text 21 02 0x2 0000 0010 |

Ctrl-C Endoftext | 3] 03 O0x3 0000 0011
Ctrl-D End of transmission, end of file 4 04 0x4 0000 0100

| Ctrl-E Enquiry 5| 05 O0x5 | 0000 0101
Ctrl-F Acknowledge 6] 06 0x6 | 0000 0110
| \a Bell, dert, system beep 7] 07 ox7 0000 0111]
[\b [Backspace 8 | o010 [oxs | 0000 1000 |
\t Horizontal tab | 9| 011 | 0Ox9 10000 1001 |
\n | Line feed, new line 10] 012 oxa | 0000 1010
\v Vertical tab 11] 013 oxb | 0000 1011
\f Form feed, new page | 12| 014 oxc | 0000 1100
\r Carriage return | 13] 015 Oxd | 0000 1101
| ctri-n Shift out | 14| 016 oxe 0000 1110
Ctrl-0 Shiftin 15| o1 | oxf | coom 1111
Ctrl-P | Demliinik escape 16| o020 | oxam | oooL 0000
Qrl-@ |Deicecoma 1, resume scroll 17 || 021 | @san1 | coau ooon
ctrl-R | Devicecontrol 2 18] 022 | ox12 | o001 0010
| Ctri-S | Omwitecaanitadl 3, stop scroll 19| o028 | 0x13 | 0001 0011
Ctrll-7 | Desiisecontrol 4 | 20| o024 | ox14 | 0001 0100
| crl-U | Negative acioroodécggment | 21| 02% | ox15 | 0001 0101
Ctrl-V |Synchronous idtire | 22| 026 | oxl6 | 0001 ©110

1 ASCIl is an acronym for the American Standard Code for Information Interchange

405

THE ASCII CODE

[APP. A

Character Description Decimal| Octal| Hex Binary
Ctrl-W | Endtransmission block 23 027 | 0x17 | 0001 0111
crl-X Cancel 24 030 | 0x18 | 0001 1000
Ctrl-Y End of message, interrupt 25 031 [0x19 | 0001 1001
crl-z Substitute, exit 26 032 | Oxla | 0001 1010
Ctrl-[Escape 27 033 | OxIb | 0001 1011
Ctrl-/ File separator 28 034 | 0x1c | 0001 1100
Ctrl-] Group separator 29 035 [Oxld [0001 1101
Ctrl-» Record separator 30 036 | Oxle | 0001 1110
Ctrl-_ Unit separator 31 037 | Oxlf 0001 1111

Blank, space 32 040 [O0x20 | 0010 0000

Exclamation point 33 041 | 0x21 | 0010 0001

Quotation mark, double quote 34 042 | 0x22 | 0010 0010
Hash mark, number sign 35 043 | 0x23 | 0010 0011
$ Dollar sign 36 044 | 0x24 | 0010 0100
% Percent sign 37 045 | 0x25 | 0010 0101
& Ampersand 38 046 | Ox26 | 0010 0110
I Apostrophe, single quote 39 047 | 0x27 | 0010 0111
(Left parenthesis 40 050 | 0x28 | 0010 1000
) Right parenthesis 41 051 | 0x29 | 0010 1001
* Aderisk, dar, times 42 052 | Ox2a | 0010 1010
+ Plus 43 053 | 0x2b | 0010 1011
\ Comma 44 054 | O0x2c | 0010 1100
- Dash, minus 45 055 | ox2d4 | 0010 1101
. 0x2e | 0010 1110
; Dot, Sash period, decima point U %07 | 0x2f | 0010 1111
0 Digit zero 48 060 | 0x30 | 0011 0000
1 Digit one 49 061 | O0x31 | 0011 0001
2 Digit two 50 062 | 0x32 | 0011 0010
3 Digit three 51 063 | 0x33 | 0011 0011
4 Digit four 52 064 | 0x34 | 0011 0100
5 Digit five 53 065 | 0x35 | 0011 0101
6 Digit six 54 066 | 0x36 | 0011 0110
7 Digit seven 55 067 | O0x37 | 0011 0111
8 Digit eight 56 070 | 0x38 | 0011 1000
9 Digit nine 57 071 | 0x39 | 0011 1001
‘ Colon 58 072 | 0x3a | 0011 1010
i Semicolon 59 073 | 0x3s 0011 1011
< Less than 60 074 | Ox3c | 0011 1100
= Equal to 61 075 | 0x3d | 0011 1101
> Greater than 62 076 | Ox3e | 0011 1110

APP. A]

THE ASCII CODE

Character Description Decimal| Octal| Hex | Binary
? Question mark 63 077 [0x3£f | 0011 1111
e Commercial at sign 64 | 0100 [Ox40 | 0100 0000
A Letter capital A 65 0101 | 0x41 | 0100 0001
B Letter capital B 66 0102 | 0x42 | 0100 0010
C Letter capital C 67 0103 | 0x43 | 0100 0011
D Letter capital D 68 0104 | Ox44 | 0100 0100
E Letter capital E 69 | 0105 | Ox45 | 0100 0101
F Letter capital F 70 0106 | 0x46 | 0100 0110
G Letter capital G 71 0107 | 0x47 | 0100 0111
H Letter capital H 72 0110 | 0x48 | 0100 1000
I Letter capital | 73 0111 | 0x49 | 0100 1001
J Letter capital J 74 0112 | Ox4a | 0100 1010
K Letter capital K 75 0113 | 0x4b | 0100 1011
L Letter capital L 76 0114 | 04xc | 0100 1100
M Letter capital M 77 0115 | 0x4d | 0100 1101
N Letter capital N 78 0116 | Ox4e | 0100 1110
0 Letter capital 0 79 0117 | 0x4f | 0100 1111
P Letter capital P 80 0120 | 0x50 | 0101 0000
Q Letter capital Q 81 0121 | 0x51 | 0101 0001
R Letter capital R 82 1022 | 0x52 | 0101 0010
S Letter capital S 83 0123 | 0x53 | 0101 0011
T Letter capital T 84 0124 | 0x54 | 0101 0100
u Letter capital U 85 0125 | 0x55 | 0101 o0101
Vv Letter capital V 86 0126 | 0x56 | 0101 0110
w Letter capital W 87 0127 | 0x57 | 0101 0111
X Letter capital X 88 0130 | 0x58 | 0101 1000
Y Letter capital Y 89 0131 | 0x59 | 0101 1001
A Letter capital Z 90 0132 | 0x5a | 0101 1010
[Left bracket 91 0133 | 0x5b | 0101 1011
| Backslash 92 0134 | 0x5c | 0101 1100
1 Right bracket 93 0135 | 0x54 | 0101 1101
A Caret 94 0136 | O0x5e | 0101 1110
_ Underscore 95 0137 | 0x5f | 0101 1111
\ Accent grave 96 0140 | 0x60 | 0110 0000
a Letter lowercase A 97 0141 | Ox61 | 0110 0001
b Letter lowercase B 98 0142 | 0x62 | 0110 0010
c Letter lowercase C 99 0143 | 0x63 | 0110 0011
d Letter lowercase D 100 0144 | 0x64 | 0110 0100
e Letter lowercase E 101 0145 | Ox65 | 0110 0101
f Letter lowercase F 102 0146 | 0x66 | 0110 0110

407

THE ASCII CODE

[APP. A

Character Description Decimal| Octal| Hex Binary
g Letter lowercase G 103 | 0147 [ox67 [0110 0111
h L etter lowercase H | 104 0150 | 0x68 | 0110 1000
1 Letter lowercase | | 105 0151 | 0x69 | 0110 1001
j Letter lowercase J | 106 0152 0x6A | 0110 1010
k Letter lowercase K | 107 0153 0x6B | 0110 1011
1 Letter lowercase L | 108 0154 (x6C | 0110 1100
m Letter lowercase M 109 0155 0x6D | 0110 1101
n Letter lowercase N | 110 0156 Ox6 | 0110 1110 |
0 Letter lowercase 0 | 111 0157 (0x6F | 0110 1111 |
P Letter lowercase P | 112 0160 0x70 | 0111 0000 |
q Letter lowercase Q | 113 0161 | 0x71 | 0111 0001 |
r Letter lowercase R 114 0162 0x72 | 0111 0010
s Letter lowercase S 115 0163 0x73 | 0111 0011
t Letter lowercase T | 116 0164 0x74 | 0111 0100 |
U Letter lowercase U | 117 0165 0x75 | 0111 0101
v Letter lowercase V | 118 0166 | 0x76 | 0111 0110
w Letter lowercase W 119 0167 | 0x77 | 0111 0111
X Letter lowercase X 120 0170 | 0x78 | 0111 1000
Y Letter lowercase Y 121 0171 | 0x79 | 0111 1001 |
z Letter lowercase Z | 122 0172 | ox7a | 0111 1010
{ Left brace | 123 0173 | 0x7b | 0111 1011
| Pipe | 124 01'74 | 0x7c | 0111 1100
¥ Right brace | 125 0175 | 0x7d | 0111 1101
~ Tilde 126 0176 | 0x7e | 0111 1110
Del ete Delete, rub out 127 0177 | ox7f | 0111 1111

Appendix B

C++ Keywords

C++ has 48 keywords. These special words are used to define the syntax of the language.

Keyword Description Example
asm Allows information to be passed to the assembler directly asm ("check");
auto Storage class for objects that exist only within their own block au to int n ;
break Terminates a loop or a swi t ch daement | break;

case Usedinaswi tch statement to specify control expression switch (n/10)
catch Specifies actions to take when an exception occurs | catch(error)

char An integer type | char c;

cl ass Specifies a class declaration class x{ . . . };
const Specifies a constant definition | const int s = 32;
continue Jumps to beginning of next iteration in aloop continue;

def aul t The “otherwise” case in a swi t ch daement default: sum = O0;
del ete Deallocates memory allocated by a new statement delete a;

do Secifies a do. while loop |do {...} while .
doubl e A real number type | double x;

el se Specifies alternativeinani f statement else n = 0;

enum Used to declare an enumeration type enum bool { . };
extern Storage class for objects declared outside the local block extern int nax;

f1 oat A real number type float x;

for Specifiesaf or loop for (; ;).
friend Specifiesaf ri end functioninaclass friend int £();
gotO0 Causes execution to jump to alabeled statement got0 error;

if Specifies an i f datement if (n>0)

inline Declares a function whose text is to be subdituted for its cal inline int f£();

i nt An integer type int n;

| ong Usd to define integer and red types I ong double x;
new Allocates memory int* p = new intj
oper at or Used to declare an operator overload x oper at or ++() ;
private Specifiespri vat e declarationsin aclass private: int n;
protected | Spedifiess pro t ec ted declaaions in a class protected: int n;
public Spedifies publ i ¢ dedadions in a class public: int n;
register Sorage class gpecifier for objects ored in registers register int i;
return Statement that termintes a function and retuns a vaue return O;

410 C++ KEYWORDS [APP.B
Keyword Description Example

short An integer type short n;

si gned Used to define integer types signed char c; |
sizeof Operator that returns the number of bytes used to storeanobject N = sizeof (f 1oat);
static Storage class of objects that exist for the duration of the program static int n ; |
struct Specifies a structure definition | struct X (. }i
switch Specifies a switch statement | switch (n) { . i
tenpl ate Specifiesa t enpl at e class | tenpl ate <class T>
this Pointer that points to the current object | return *this;

t hrow Used to generate an exception throw X();

try Specifies ablock that contains exception handlers | try (. }

typedef Declares a synonym for an existing type typedef int Num
union Specifies a structure whose elements occupy the same storage union z {. |
unsi gned Used to define integer types unsigned int b;

vi rtual Declares amember function that is defined in a subclass virtual int f£();
voi d Designates the absence of atype void f(); |
vol atile Declares objects that can be modified outsde of program control int vola t i le n ;

whi | e Spedifies a whi 1 e loop while (n > 0) .

Appendix C

C++ Operators

This table lists al the operators in C++, grouping them by order of precedence. The higher-level
precedence operators are evaluated before the lower-level precedence operators. For example, in the
expresson(a b* ¢), the * operator will be evaluated first and the - operator second, because
* has precedence level 13 which is higher than the level 12 precedence of -. The column labeled
“Assoc.” tells whether an operator is right associative or left associative. For example, the expression
(@ b c)isevauatedas((a =b) =-c)because is left associative. The column labeled
“Arity” tells whether an operator operates on one, two, or three operands (unary, binary, or ternary).
The column labeled “Ovrldbl.” tells whether an operator is overloadable. (See Chapter 8.)

Op Description Prec. | Assoc. | Arity | Ovrldbl. Example
Global scope resolution 17 Right Unary No DX
- Class scope resolution 17 Left Binary No | X X
, Direct member selection | 16 Left Binary | No s.len
- Indirect member selection | 16 Left Binary Yes | p->len
[] Subscript | 16 Left Binary | Yes ali]
() | Function call | 16 Left n/a Yes Yes
| 0 Type construction | 16 Left n/a Yes int (ch)
++ Post-increment 16 Right Unary Yes n++
| -- | Post-decrement | 16 Right [Unary | Yes n--
)sizeof Sizeof object or type | 15 Right Unary No sizeof (a)
++ Pre-increment | 15 Right Unary | Yes ++n
Pre-decrement | 15 Right Unary | Yes --n
~ Bitwise NOT | 15 Right | Unary | Yes ~8
Logica NOT | 15 Right Unary Yes 1!p
+ Positive | 15 Right Unary Yes | +n
Negative 15 Right Unary Yes | -n
* Dereference 15 Right Unary Yes *D
& Address 15 Right Unary Yes &%
new Allocation 15 Right Unary Yes | new p
del ete | Dealocation 15 Right Unary | Yes delete p
0 Type conversion 15 Right Binary | Yes | (int)ch
L * Direct member selection 14 Left Binary | No | x.*q
->* Indirect member selection 14 Left Binary | Yes | pP->Q
Multiplication 13 L eft Binary | Yes m*n
/ Division 13 Left Binary | Yes m/n

411

412 PRECEDENCE OF OPERATORS IN C++ [APP.C
Op Description Prec. |Assoc. |Arity |Ovrldbl. | Example

b Remainder 13 Left Binary | Yes momn

+ Addition 12 Left Binary | Yes m+ n

- Subtraction 12 Left Binary | Yes m-n

<< Bit shift left 11 Left Binary | Yes cout << n

>> Bit shift right 11 Left Binary | Yes cin >> n
Less than 10 Left Binary | Yes X <y

= Less than or equd to 10 Left Binary | Yes X <=y
Greater than 10 Left Binary | Yes X >y

>= Greater than or equal to 10 L eft Binary | Yes X >= y

== Equal to 9 Left Binary | Yes X 7y

{= Not equal to 9 Left Binary Yes x =y

& Bitwise AND 8 Left Binary | Yes s &t

A Bitwise XOR 7 Left Binay | Yes st

I Bitwise OR 6 Left Binay | Yes st

&& Logical AND 5 Left Binary | Yes u && V

I Logica OR 4 Left Binary | Yes u ll v

?: Conditional expression 3 L eft Ternary| No uo? x y

= Assignment 2 Right Binary | Yes n =22

+= Addition assignment 2 Right Binary | Yes n +=

T Subtraction assignment 2 Right Binary Yes n -4

e Multiplication assignment | 2 Right Binary | Yes n *= -1

/= Division assignment 2 Right Binary | Yes n /= 10

%= Remainder assignment 2 Right Binary | Yes n % 10

&= Bitwise AND assignment 2 Right Binary | Yes S &= mask

A= Bitwise XOR assignment 2 Right Binary | Yes s *= mask

I= Bitwise OR assignment 2 Right Binary | Yes s |= mask

<<= Bit shift left assignment 2 Right Binary | Yes S «<=1

>>= Bit shift right assignment 2 Right Binay | Yes s >>= 1

t hrow Throw exception ! Right Unary | Yes t hr ow(22)

, Comma 0 Left Binary | Yes ++m--n

ely

fl oat

Fundamental

/N

voi d

Floating

doubl e

| ong doubl e

char

Arithmetic

unsi gned

short

i nt

Type

Derived

7.

Constant

Integral

Enumeration

'ong

Array Function Indirect
Reference Pointer
signed

/]

char short

W

Structure

class

struct

union

sadAl ++9

 Xipuadady

Appendix E

References

[Adamg]
C+ + An Introduction to Computing, by Joel Adams, Sanford Leestma, and Larry Nyhoff.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-02-369402-5.

[Barton]
Scientific and Engineering C+ +, by John J. Bartton and Lee R. Nackman.
Addison-Wedley Publishing Company, Reading, MA (1994) O-201-53393-6.

[Bergin]
Data Abstraction, the Object-Oriented Approach Using C+ +, by Joseph Bergin.
McGraw-Hill, Inc., New York, NY (1994) 0-07-91 1691-4.

[Bronson]
A First Book of C+ + by Gary J Bronson.
West Publishing Company, St. Paul, MN (1995) O-3 14-04236-9.

[Budd]
Classc Data Sructures in C+ +, by Timothy A. Budd.

Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-50889-3.

[Capper]
Introducing C+ + for Scientists, Engineers and Mathematicians, by D. M. Capper.
Springer-Verlag, London (1994) 3-540- 19847-4.

[Cargill]
C+ + Programming Syle, by Tom Cargill.
Addison-Wedley Publishing Company, Reading, MA (1992) 0-201-56365-7.

[Carrano]
Data Abdraction and Problem Solving with C+ +, by Frank M. Carrano.
Benjamin/Cummings Publishing Company, Redwood City, CA (1993) 0-8053-1226-9.

[Carrall]
Designing and Coding Reusable C+ +, by Matin D. Caroll and Margaret A. Ellis.
Addison-Wesley Publishing Company, Reading, MA (1995) O-20 I-5 1284-X.

[Cling]
C+ + FAQs, by Masndl P. Cline and Greg A. Lomow.
Addison-Wedley Publishing Company, Reading, MA (1995) 0-201-58958-3.

[Coplien]
Advanced C+ +, Programming Styles and Idioms, by James 0. Coplien.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-54855-O.

414

AP g REFERENCES 415

[Deitel]
C+ + How to Program, by H. M. Dete and P. J. Deitel.
Prentice Hall, Englewood Cliffs, NJ (1994) O-13-1 17334-0.

[Dewhurst]
Programming in C+ +, Second Edition, by Stephen C. Dewhurst and Kathy T. Stark.
Prentice Hall, Englewood Cliffs, NJ (1995) O- 13- 1827 18-9.

[Ellig]
The Annotated C+ + Reference Manual, by Margaret A. Ellis and Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-5 1459-1.

[Friedman]
Problem Solving, Abgtraction, and Design Using C+ +, by F. L. Friedman and E. B. Koffman.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-52649-2.

[Graham]
Learning C+ +, by Nell Graham.
McGraw-Hill, Inc, New York, NY (1991) 0-07-023983-5.

[Hansen]
The C+ + Answer Book, by Tony L. Hansen.
Addison-Wedley Publishing Company, Reading, MA (1990) 0-201-I 1497-6.

[Headington]
Data Abdraction and Sructures Usng C+ +, by Mak R. Headington and David D. Riley.
D. C. Heath and Company, Lexington, MA (1994) 0-669-29220-6.

[Horowitz]
Fundamentals of Data Sructures in C+ +, by Ellis Horowitz, Sartg Sahni, and Dinesh Mehta
W. H. Freeman and Company, New York, NY (1995) O-7167-8292-8.

[Johnsonbaugh]
Object-Oriented Programming in C+ +, by Richad Johnsonbaugh and Martin Kalin.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-02-360682-7.

[Knuthl]
The Art of Computer Programming, Volume 1. Fundamental Algorithms, Second Edition,
by Dondd E. Knuth.
Addison-Wedley Publishing Company, Reading, MA (1973) O-201-03809-9.

[Knuth2]
The Art of Computer Programming, Volume 2. Seminumerical Algorithms, Second Edition,
by Dondd E. Knuth.
Addison-Wedley Publishing Company, Reading, MA (1981) 0-201-03822-6.

[Knuth3]
The Art of Computer Programming, Volume 3. Sorting and Searching, by Donad E. Knuth.
Addison-Wedley Publishing Company, Reading, MA (1973) 0-201-03803-X.

[Ladd]
C+ + Templates and Tools, by Scott Robert Ladd.
M&T Books, New York, NY (1995) O-55851-437-6.

416 REFERENCES [APP. E

[Lippman]
The G+ + Primer, Seoond Edtion, by Saley B. Lippmen
Addison-Wedley Publishing Company, Reading, MA (1991) O-201-54848-8.

[Meyers]
Effective Ct+ +, by St Meyas
Addison-Wesley Publishing Company, Reading, MA (1992).

[Model]
Data Sructures, Data Abdraction: A Contemporary Introduction Using C+ +, by M. L. Maodd.
Prentice Hall, Englewood Cliffs, NJ (1994) 0-13-088782-X.

[Murray]
C+ + Srategies and Tactics, by Robat B. Muray.
Addison-Wesley Publishing Company, Reading, MA (1993) 0-201-56382-7.

[Nagler]
Learning G+ +, by Hic Nage.
West Publishing Company, St. Paul, MN (1993) 0-314-02464-6.

[Nelson]
C+ + Programmers Guide to the Sandard Template Library, by Mak Ndson
IDG Books Worldwide, Inc., Foster City, CA (1995) O-56884-3 14-3.

[Oualling]
Practical C+ + Programming, by See Oudlire
O’Reilly & Associates, Sebastopol, CA (1995) 1-56592- 139-9.

[Perry]
An Introduction to Object-Oriented Design in C+ + by Jo Hlen Pary ad Hadd D. Levin.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-201-76564-O.

[Plaugerl]
The Sandard C Library, by P. J Hauge.
Prentice Hall, Englewood Cliffs, NJ (1992) 0- 13- 13 1509-9.

[Plauger2]
The Draft Sandard C+ + Library, by P. J Paug.
Prentice Hall, Englewood Cliffs, NJ (1995) 0- 13-117003- 1.

[Pohl.I]
Object-Oriented Programming Using C+ +, by lra Pon.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1993) O-8053-5384-4.

[Pohl.2]
C+ + for Pascal Programmers, Ssoond Edition, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1994) 0-8053-3 158-1.

[Prata]

C+ + Primer Plus by Sehen Paa
Waite Group Press, Corte Madera, CS (1991) 0-878739-02-6.

[Ranade & Zamir]
C+ + Primerfor C Programmers, by Jy Raede ad Sda Zamir.
McGraw-Hill, Inc., New York, NY (1994) 0-07-051487-9.

APP. E] REFERENCES 417

[Rudd]
C+ + Complete, by Anthoy Rudd
John Wiley & Sons, Inc, New York, NY (1994) 0-471-06565-X.

[Satir]
C+ +: The Core Language, by Gegayy Sdir ad Daug Brown
0 Rellly & Associates, Sebastopol, CA (1995) 0-56592- 116-X.

[Savitch]
Problem Solving with G+ +, by Weter Savitch
Addison-Wedey Publishing Company, Reading, MA (1996) 0-8053-7440-X.

[Sedgewick]
Algorithms in C+ +, by Radbat Sxganick
Addison-Wedley Publishing Company, Reading, MA (1992) 0-201-5 1059-6.

[Sengupta]
C+ + Object-Oriented Data Sructures, by Saumyeda Sagupa ad Cal Phillip Korobkin
Fringe-Velag, New Yok, NY (1994) O3Br-HA 140

[Sessions]
Class Congruction in C and C+ +, by Roge Sesas
PTR Prentice Hall, Englewood Cliffs, NJ (1992) 0-13-630104-5.

[Shammas]
Advanced C+ +, by Namr Ceamat Semmes
SAMS Publishing, Carmel, IN (1992) 0-672-30158-X.

[Stepanov]
“The Sandard Template Library,” Technical Report HPL-94-34, by A. A. Sgeanov ad M. Le
Hewlett-Packard Laboratories, April 1994.

[Stroustrupl]
The C+ + Programming Language, Second Edtion, by Bjane Srousrnup.
Addison-Wedley Publishing Company, Reading, MA (1991) 0-201-53992-6.

[Stroustrup2]
The Design and Evolution of C+ +, by Bjane Srousrup.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-54330-3.

[Teal€]
C+ + IOStreams, by Seve Tede
Addison-Wesley Publishing Company, Reading, MA (1993) O-20 |-5964 I-5.

[Wang]
C+ + with Object-Oriented Programming, by Pal S Wayg
PWS Publishing Company, Boston, MA (1994) O-534-19644-6.

[Weiss]
Data Sructures and Algorithm Analyss in C+ + by Mak Allen Was
Benjamin/Cummings Publishing Company, Redwood City, CA (1994) 0-8053-5443-3.

[Winston]
On to C+ +, by Paridk Hery Windon.
Addison-Wedley Publishing Company, Reading, MA (1994) O-201-58043-8.

Appendix F

Pre-Defined Functions

This appendix describes the pre-defined functions provided in the C++ libraries. Each entry

ligts the function name, its prototype, a brief description of what it does, and the heeder file
whereit is declared.

Function Prototype and Description Header File
abort () voi d abort(); <stdlib.h>
Aborts the program.
abs () int abs(int n); <stdlib.h>
Reurns the ebsolute vdue of n.
acos () doubl e acos(double x);] <math.h>
Returns the inverse cogine (arccosing) of x
asin() double asin(double x); <math.h>
Returns the inverse sne (arcsine) of «
atan() doubl e atan(double x); <math.h>
Returns the inverse tangent (arctangent) of x
atof () doubl e atof (const char* g); <stdlib.h>
Returns the floating-point nunber represented
literally in the string s.
atoi () int atoi(const char* s); <stdlib.h>
Returns the integer represented literdly in the dring S.
atol () I ong atol (const char* s); <stdlib.h>
Reurns the integer represented literdly in the dring s.
bad () int ios::bad(); <lostream.h>
Returns nonzero if badbi t is s&t; retuns 0 othewise
bsearch () voi d* bsearch(const void* x, void* a, <stdlib.h>
size t n,
size-t s,
int (*cmp)
(const wvoid*, const void*));
I npl ements the Binary Search Algorithm to
search for x in the sorted array a of n ele-
ments each of size s using the function *cmp
to conpare any two such elements. I|f found, a
pointer to the elenent is returned; other-
wise, the NULL pointer is returned.
ceil() double ceil (double x); <math.h>
Returns x rounded up to the next whole number.

418

Clears the end-of-file and error flags for thefile *p.

APP. F] PRE-DEFINED FUNCTIONS 419
clear () void ios: :clear(int n=0); <iostream.h>
Changes dream dae to n.
clearerr() void clearerr(FILE* p); <stdio.h>

close()

voi d fstreambase: : cl ose();
Closes the file atached to the owner object.

<fstream.h>

cos ()

double cos(double x);
Returns the inverse cosne of «

<math.h>

cosh ()

doubl e cosh(double x);
Returns the hyperbolic cosine of x (e* + e*)/2.

<math.h>

difftime()

double difftime(tinme t tl, tinme-t t0);
Returnstime elapsed (in seconds) fromtimet O totimet 1.

<math.h>

eof ()

int ios::eof();

Rewurns nonzero ifeo f bi t is s reuns 0 othewise

<iostream.

h>

exit ()

void exit(int n);
Terminates the program and returnsn to the invoking process.

<stdlib.h>

exp ()

double exp(double x);
Returns the exponentid of x e,

<math.h>

fabs ()

doubl e fabs(double x);
Returns the absolute value of x .

<math.h>

fail()

int ios::fail();

Returns nonzeroif f ai Ibi t is st reurns 0 othewise

<iostream.

h>

fclose()

int fclose(FILE* p);
Closes the file *p and flushes dl

returns EoF otherwise.

buffers. Retuns 0 if sucoessful;

<stdio.h>

fgetc ()

int fgetc(FILE* p);
Reads and returns the next character fromthefile *p if possible;
returns eor otherwise.

<stdio.h>

fgets ()

char* fgets(char* s, int n, FILE* p);
Readsthe next linefromthefile *p and dores it in *s. The “next
line” means either the next n-l characters or all the characters up
to the next endline character, whichever comes first. The NUL
character is appended to the characters stored in s. Returnssif
successful; returns NULL otherwise.

<stdio.h>

fil11 ()

char ios::fill();

Returns the current fill character.

char ios: :fill(char c):

Changes the current fill character to ¢ and returns the previousfill
character.

<iostream.

h>

flags ()

| ong ios::flags();
Returns the current format flags.
long ios: :flags(long n);

Changesthe current format flagston; returns previous flags.

<liostream.

h>

flooxr ()

doubl e floor (double x);
Returns x rounded down to the next whole number.

<math.h>

flush()

ostream& ostream::flush();
Flushes the output buffer and retuns the updates stream.

<lostream.

h>

420

PRE-DEFINED FUNCTIONS

[APP.F

fopen ()

FILE* fopen(const char* p, const char* s);
Opens the file *p and reuns the address of the dructure that rep-
resents the fileif successful; returnsNULL otherwise. The string
s determines the file's mode: " r " for read, "w " for write,

va " for append, 'r +" forreading and writing an existing file,
"w+" for reading and writing an existing file,and " a+ * for
reading and appending an existing file.

<stdio.h>

fprintf ()

int fprintf(FILE* p, const char* s, . . .);

Writes formatted output to the file *p. Reums the number of cha-

aters printed if successful; othewise it refurns a negdive number.

<stdio.h>

fputc()

int fputc(int c, FILE* p);
Writes character ¢ to the file *p. Returns the character written or
ECF if unsuccessful.

<stdio.h>

fputs ()

int fputs(const char* s, FILE* p);
Writes string s to the file *p. Returns a nonnegative integer if
successful; otherwise it retums EOF.

<stdio.h>

fread()

size-t fread(void* s, size-t k, size-t n,
FILE* p);

Reads up to n items each of size k from the file *p and

stores them at location s in memory. Returns the number of

items read.

<stdio.h>

fscanf ()

int fscanf(FILE* p, const char* s, . . .);
Reads formated input from the file *p and dores them a location
s in memory. Returns EOF if end of file is reached; otherwise it
returns the number of items read into memory.

<stdio.h>

fseek()

int fseek(FILE* p, long k, int base);
Repositions the position marker of thefile *p k bytesfrom its
base, whee base chould be SEEK- SET. for the beginning of
the file seek- cur for the current position of the file marker, or
SEEK _END for the end of the file Retuns 0 if successful.

<stdio.h>

ftell()

long ftell (FILE* p);
Returnsthe location of the position marker infile *p or reuns - 1

<stdio.h>

fwrite()

size-t fwite(void* s, size-t k, size-t n,
FILE* p);

Writes n items each of size k to the file *p and returns the

number written.

<stdio.h>

gcount ()

i nt i stream:gcount();
Returns the number of characters most recently read.

<iostream.h>

get ()

int istream::get();
istream& istream: :get(signed char& c);
istream& istream::get(unsigned char& c);
istream& istream:get(signed char* b, int n,
char e="\n'");
istream& istream: :get(unsigned char* b, int
n,
char e='"\n");
Reads the next character ¢ from the i s tream The fird version
returnscor EOF. Thelast two versionsread upton characters
into b, stopping when eisencountered.

<liostream.h>

APP. F] PRE-DEFINED FUNCTIONS 421

getc () int getc(FILE* p); <stdio.h>
Same as f ge tc () exceptimplemented as amacro.

getchar () int getchar(); <stdio.h>
Returns the next character from standard input or returns EOF.

gets () char* gets(char* s); <stdio.h>
Reads next line from dandard input and sores it in s Reuns s or
NULL if no chaadters ae read

good () int ios::good(); <iostream.h>
Returns nonzero if stream s tat e is zeo, reums zero otherwise

ignore () istream& ignore(int n=l, int e=EOF); <iostream.h>
Extracts up to n characters from stream, or up to character e,
whichever comes first. Returns the stream.

isalnum() int isalnumiint c¢); <ctype.h>
Returns nonzero if ¢ is an alphabetic or numeric character; returns
0 otherwise.

isalpha() int isalpha(int c¢); <ctype.h>
Returns nonzero if ¢ is an alphabetic character; otherwise returns
0.

iscntrl () int iscntrl(int c¢); <ctype.h>
Returns nonzero if c is a control character; otherwise returns 0.

isdigit() int isdigit(int c¢); <ctype.h>
Returns nonzero ‘if ¢ is a digit character; otherwise returns 0.

isgraph () int isgraph(int c); <ctype.h>
Returns nonzero if c is any non-blank printing character; other-
wise reurns 0.

islower () int islower(int c¢); <ctype.h>
Returns nonzero if ¢ is a lowercase alphabetic character; other-
wise reurns 0.

isprint () int isprint(int c¢); <ctype.h>
Returns nonzero if ¢ is any printing character; otherwise returns
0.

ispunct () int ispunct(int c); <ctype.h>
Returns nonzero if ¢ is any punctuation mark, except the alpha-
betic characters, the numeric characters, and the blank; otherwise
returns 0.

isspace() int isspace(int c¢); <ctype.h>
Returns nonzero if ¢ is any white-space character, including the
blank ,theformfeed \ ¥ ,thenewline \n , the cariage
return \ r , the horizontd tab \ t , and the veticd t&h \v
otherwise returns 0.

isupper () int isupper(int c); <ctype.h>
Returns nonzero if ¢ is an uppercase alphabetic character; other-
wise reurns 0.

isxdigit() int isxdigit(int c); <ctype.h>

Returns nonzero if ¢ is one of the 10 digit characters or one of the
12hexadecimaldigitletters: *a', 'b', 'c', 'd', 'e', 'f ',
A, B, C, D, E,o F ;otherwise returnsO.

422

PRE-DEFINED FUNCTIONS

[APP. F

labs ()

| ong labs(long n);
Returns absolute vdue of n.

<stdlib.h>

log ()

doubl e log(double x);
Returns the natural logarithm (base €) of x.

<math.h>

logl10 ()

doubl e 1ogl0 (double x);
Returns the common logarithm (base 10) of x.

<math.h>

memchr ()

voi d* menchr(const void* s, int c¢, size-t k);
Searches the k bytes of memory beginning at s for character c.
If found, the address of its fird occurrence is returned. Returns
NULL otherwise.

<string.h>

memcmp ()

int mencnp(const void* sl, const
size-t k);

Conpar es the k bytes of nenmory beginning at

sl with the k bytes of menory beginning at s2

and returns a negative, zero, or a positive

integer according to whether the first string

is lexicographically less than, -equal to, or

greater than the second string.

voi d* s2,

<string.h>

memcpy ()

voi d* nencpy(const void* sl,

size-t Kk);
Copies the k bytes of
into menory

const void* s2,

menory beginning at s2
location sl and returns sl.

<string.h>

memmove ()

int memmove(const void* sl, const void* s2,

size-t Kk);

Sane as memcpy () except strings may overlap.

<string.h>

open ()

void fstream :open(const char* f, int m
i nt p=filebuf::openprot);

:open(const char* f,

int mrios::in,

i nt p=fil ebuf:: openprot);
:open(const char* f,

int nrios::out,

i nt p=fil ebuf:: openprot);
in mode m with protection p.

void ifstream

of stream

voi d

Opensthefile f

<fstream.h>

peek ()

int istream: peek();

Returns next character (or ecF) from stream without extracting it.

<iostream.h>

pow ()

doubl e pow(double x, double vy);
Returns x raised to the power y (x).

<math.h>

preci si on0

int ios: :precision();

int ios: :precision(int k);

Returns the current precision for the stream. The second version
changes the current predson to k and retums the dd precision.

<iostream.h>

tolower ()

int tolower(int ¢);
Returns the lowercase version of ¢ if ¢ is an uppercase alpha-
bdic chaede; ohewie reums c.

<ctype.h>

toupper ()

int toupper(int c);
Returns the uppercase version of c if c is alowercase alphabetic
character; otherwise returns c.

<ctype.h>

AppendixG

Hexadecimal Numbers

Humans normaly use the base 10 numbering sysem. This is called the decimal system for
the Greesk word deka for “ten.” Our ancient ancestors learned it by counting with their 10 fingers.

Computers have only 2 fingers (Le., there are only 2 possible vaues for each hit), so the
binary system works well for computers. But the trouble with binary numbers is that their repre-
sentations require long strings of bits. For example, 1996 is represented as 11111001100 in
binary. Most humans find long trings like that difficult to process.

Binary numbers are easy to convert to other bases if the base is a power of 2. For example,
conversion between binary and octa (base 8 = 2%) merdly requires grouping the binary bits into
groups of 3 and interpreting each triplet as an octa digit. For example, to convert the binary
numeral 11111001100 write 11,111,001,100 = 3714. Here, 11 converts to 3, 111
convertsto7,o0 o 1 convertsto1,and1o o convertsto 4. Converson from octa back to binary
isjust as ample. For example, 2650 converts to 101101010 00, whichis1448in decima. Note
that octd numerds use only the firgd 8 decimd digits 0, 1,2, 3,4, 5, 6, 7.

After 8, the next power of 2 is 16. Using that base makes the numerads even shorter. Thisis
cdled the hexadecimal system (from the Greek hex + deka for “sx” + “ten”). Converson
between binary and hexadecimd is just as Smple as it is between binary and octd. For example,
to convert the binary numeral 10111010100 to hexadecima, group the bits into groups of 4
(from right to left) and then trandate each group into the corresponding hexadecima digit:
101,1101,0100 = 5d4. Here, 1 o1 convertsto 5, 11 o1 convertsto 11, and o1 o o converts to
4. The hexadecima digits 1 0, 11,12,13,14, and 15 are denoted by the first ax letters of the
dphabet:a, b, c, d, e, f

The output manipulators dec, hex, andoct areused for converting different bases:
EXAMPLE G.1

This sows how bah the vdue ad the addess of a vaidde can be printedt

#include <iostream.h>
main ()
{
int n = 1492; // base 10
cout << "Base 8: n " << oCt << n << endl
cout << "Base 10: n " << N << endl
cout << "Base 16: n " << hex << n << endl

Base 8: n - 2724
Base 10: n - 1492
= 5dd

Base 16: n

424 HEXADECIMAL NUMBERS

[APP. G

Here the manipulator oc t isused to convert the next output to octal form. Note that the output reverts

back to decimal until the hex manipulator is used.

The next example shows how to input integers in octal and hexadecimd. Octdl numerds are
denoted with a 0 prefix, and hexadecima numeras are denoted with a ox prefix:

EXAMPLE 62

This shows how both the value and the address of a variable can be printed:

#include <iostream.h>
main()

{
int n;

cout << "Enter an octal numeral (use 0 prefix):

cin >> n;

cout << "Base 8: n I << oct << N << endl;
cout << "Base 10: n I << dec << n << endl;
cout << "Base 16: n " << hex << n << endl;
cout << "Enter a decimal nuneral: *;
cin >> n;

cout << "Base 8. n
cout << "Base 10: n
cout << "Base 16: n

" << oct << h << endl;
" << dec << n << endl;
" << hex << n << endl;

no,
1

cout << "Enter a hexadeci mal numeral (use Ox prefix): ";

cin >> n;

cout << "Base 8. n = " << oct << n << endl;
cout << "Base 10: n = " << dec << n << endl;
cout << "Base 161 n = ' << hex << n << endl;
b

Enter an octal numeral {use
Base B8: n = 771 ’
'Bétsé 10 n = 511
Bece 16: n = 07
Enter a dec1ma1 numeral 511
Base 8:n = 777 .
Base 10: n = Sll'jf ff**"
Base 16 n - lff

Base‘ 8 n - 777 .
Base 10:nm =810

Base 16: n = 1ff

Index

ABC, 311 , assert (), 389, 402, 404
abort (), 391,418 Assignment:
abs (), 181, 391, 418 operator, 7, 10, 14,249, 251,412
Absolute value, 84, 391, 392 statement, 11, 17
Abstract base class, 311, 369,423 Associativity, 17,411
Abstract base class template, 369 atan(), 392,418
Abstract data type, 423 atof (), 391,418
Access function, 226, 261, 336,423 atoi(), 418
Access functions, 336 atol(), 418
Access specifier: aut o, 37
private, 227, 299
protected, 227, 299 Babylonian Algorithm, 84
public, 227 back (), 400
accumulate (), 401 Backslash character, 4,405
acos (), 418 bad(), 418
Actual arguments, 95 Badbit, 336
Actual parameter, 90, 95 Base class, 298,423
Addition operator, 279,412 begin(), 400
Address, 70, 157,423 BIDS Library, 388
Address operator, 157,411 Binary, 423,425
ADT, 423 Binary operator, 17,411
Aggregation, 295 Binary Search Algorithm, 87, 137,418
Alert character, 4, 348 Bisection Method, 182
Algorithm, 423 Bit, 7
Alias, 158,423 Bit shift left operator, 412
Allocate, 423 Bit shift right operator, 412
Allocation operator, 411 Bit string, 329, 345
Alphabetic character, 9 Bitwise AND operator, 412
Alphanumeric character, 9 Bitwise NOT operator, 411
American Standard Code for Information Bitwise OR operator, 412
Interchange, 3 Bitwise XOR operator, 412
Ancestor, 423 Block, 36
Append operator, 28 1 Body, 94
append (), 153 Boole, George, 100
Arctangent, 392 Boolean, 329
Argument, 90,423 Boolean expression, 40
Arithmetic assignment operator, 28 1 Boolean function, 100
Arithmetic operators, 25 1 Borland C++, 14,47, 388
Arity, 17, 411 Class Library, 388
Array, 127 Dynamic Link Library, 388
ASCII, 3,423 Object Windows Library, 388
ASCII code, 29, 69, 405 Borland C++ Object Windows Library, 388
asin(), 418 Borland International Data Structures, 388
asm, 37 break, 37,61, 62, 63, 83
Assembler, 423 bsearch(), 418
Assembly language, 423 Bubble Sort, 135, 148, 154, 357

425

426

Buffered output, 347
Byte, 14

Calling a function, 90
Carriage return character, 10 1
case, 37
Case statements, 63
Case-sensitive switch, 293
Cast, 69
cat (), 181
catch, 37
CDC, 311
ceil (),392,418
Ceiling function, 392
Central processing unit, 423
Chained assignment statement, 11
char, 14, 21, 37
Character, 3
backslash, 405
control, 405
end-of-file, 405
newline, 405
Character constant, 4
chr(), 181
cin, 31, 32, 67
cin.bad (), 336
cin.clear(), 338
cin.eof (), 336
cin.fail(), 336
cin.good(), 336
cin.rdstate(), 336
Circular list, 384
class, 37, 220
Address, 245, 268, 324
Array, 365
Book, 311
Card, 323
@ 312
Circle, 243, 320
Complex, 246, 268
Computer, 245, 268
Cone, 320
Date, 244, 268, 296
Deck, 323, 324
Degree, 325
Deque, 381
Empl oyee, 245
Facul ty, 325

INDEX

class (cont):
Fi sh, 310
GradStudent, 326
Hand, 323
ios, 329
istream, 339
List, 366, 388
ListIterator, 370
ListNode, 366
Magazi ne, 312
Mp, 388
Matrix, 242,246,267, 364, 365
Media, 31 1
Money, 325
Name, 321
Node, 233
ostream 339

Person, 241,245, 267,295, 299, 305, 322,

325

Point, 238, 267, 268
Quat er ni on, 247,269

Queue, 244,377,383
Random 240

Rational, 220,223, 226,231,252

Set, 388
Sphere, 243
Stack, 238, 359, 383

streambuf, 328

String, 241,246,271, 296
string, 403

Student, 245, 298, 299, 325
Tel ephone, 325

Time, 239, 244, 267
Undergrad, 326

uni versity, 325

VR 313

Vector, 263, 266, 268, 361, 365, 388

Vertebrate, 310
Class hierarchy, 3 10, 3 11
Class implementation, 223
Classinterface, 223
Class template, 358
clear(), 338, 339, 419
clearerr(), 419
close(), 419
cmp (), 181
Combined assignment statement, 20
Comma operator, 6 1,4 12

Comment, 1, 5, 6, 23, 29
Compile, 423

Compiler, 423

Composite, 295

Composition, 295,296, 326, 365
Compound assignment statements, 11
Compound condition, 3 8
Compound declarations, 10
Compound statement, 36, 58
Concatenation, 279

Concrete derived class, 3 11
Conditional expression operator, 44, 4 12
Conjugate, 269

const, 37

Constant, 9, 71, 161, 167
Constant function, 23 1

Constant objects, 23 1
Constructor, 223, 227
Containment, 295

Continuation condition, 59
continue, 37

Continue condition, 59
Continue statement, 62, 63
Control character, 405
Control-D, 196, 338

Control sequence, 405
Control-Z, 196, 338

Conversion operator, 257, 269, 282, 337,411
copy (), 176,401

Copy constructor, 227, 229, 249
cos (), 181, 419

cosh(), 392,419
count (), 401

cout, 1, 31, 32, 67

CPU, 423

cpy (), 181

Creating an object, 8

C-string, 403

C-String Library, 198

cube (), 178

Cursor, 375

Dangling pointer, 167, 173
Deallocating memory, 168
Deallocation operator, 4 11
dec, 330425

Decimal, 423,425
Declaration, 7, 8, 9, 23

INDEX

Decrement, 20, 25

Decrement operator, 17,411

Default, 37

Default constructor, 225,227, 249, 264, 272
Default copy constructor, 229

Default parameter values, 113, 225

define, 402404

delete, 37,167, 169, 274

Dereference operator, 164, 411
Dereferencing, 160

Derivation, 298
derivative(),
Derived class, 298
Derived type, 161
Destructor, 230, 249

Deterministic computers, 7 1
Deviation, 144

difftime(), 419

Direct access, 127

Direct member selection operator, 411
Directive, 5,423

Division operator, 411

do.. .while statement, 37, 57, 58
Dominating member data, 301

Dot product, 125

double, 37, 66, 68, 85

Dummy argument, 259,270

Dummy node, 383

Dynamic array, 167,168

179,182

427

Dynamic binding, 167, 174, 183, 306, 308, 310

Dynamic storage, 365

else,37

empty (), 400

Empty program, 2

Empty string, 5

end (), 400

End-of-file character, 338, 423, 405
endl, 7

Endline character, 7

enum 37

Enumeration types, 45, 139, 161
Enumerator, 46, 56

eof (), 419

ecr flag, 336

EOF state, 336

EOF bit, 336, 338

equal (), 401

428

Equality operator, 263, 4 12
erase(), 400

Escape sequence, 405

Euclidean Algorithm, 80, 123
exit (), 391419

EXIT FAILURE, 391

EXI T- SUCCESS, 391

exp (), 181, 392, 419

Expanding an inline function, 109
Exponent, 66, 67, 78, 85
Exponential, 392

Expression, 24, 423

Extensibility, 3 14

extern, 37

Extraction operator, 3 1, 339, 340

extremes (), 152

fabs (), 84,392,419
factorial function, 59, 60, 86, 97
fail(), 419

Failbit, 336

Fal through, 44, 48, 56
fclose(), 419

fgetc(), 419

fgets (), 419

File processing, 328, 393
File scope, 110

Files, 396,423

fill (), 330,331,401, 419
fill _n(), 401

find(), 401

Fixed, 330

Fixed point, 70

flags (), 330,419
float, 37, 66, 68
float.h, 67

Floating-point types, 66, 67
Floating-point value, 67, 68, 69
floor(), 392,419

FLT DIG 67

FLT-MANT _DG 67
FLT-MAX, 67

FLT_MN, 67

flush(), 419

fopen (), 420

for daemett, 37, 57, 59
Forever loop, 62

Fom fesd chaacter, 10 1

INDEX

Formal arguments, 94
Formal parameter, 94,423
Format flags, 336
Format mask, 334
Formatted input, 339
Formatted output, 339
Foundation Class Library, 388
fprintf (), 420
fputc (), 420
fputs (), 420
fread(), 420
Free form language, 12
frequency (), 146
friend function, 252, 262
front (), 400
fscanf (), 420
fseek (), 420
ftell(), 420
Function:
abort (), 391, 418
abs (), 181, 391, 418
access, 226, 261, 423
accumulate(), 401
acos (), 418
append (), 153
asin(), 418
assert (), 389, 402, 404
atan(), 392,418
atof (), 391418
atoi (), 391418
atol (), 418
back (), 400
bad(), 418
begin (), 400
bsearch(), 418
cat(), 181
ceil(), 392,418
chr(), 181
clear (), 419
clearerr(), 419
close(), 419
cmp (), 181
combination, 117
copy () , 176,401
copy_backward (), 401
cos(), 419
cosh(), 392,419
count (), 401

Function (cont.):
cpy (), 181

cube (), 178
declaration, 94, 126
definition, 94, 126
derivative(), 179,182
difftime(), 419
empty (), 400
end(), 400
eof (), 419

equd (), 401

erase (), 400

exit (), 391,419
exp (), 392,419
extremes (), 152
fabs (), 84,392, 419
factorial(), 59

fail(), 419
fclose(), 419
fgetc(), 419
fgets(), 419
£il11¢(), 401, 419
fill _n(), 401
find (), 401
flags(), 419
floor(), 392,419
flush(), 419
fopen (), 420
fprintf (), 420
fputc (), 420
fputs (), 420
fread(), 420
frequency (), 146
front (), 400
fscanf (), 420
fseek(), 420
ftell(), 420
fwrite(), 420
gcd(), 227
gcount (), 420

generate (), 401

generate_n(), 401
get (), 168, 192, 285, 420

getc(), 421

getchar(), 421
getline(), 196, 197,209

gets(), 42
good (), 421

INDEX

429

ignore () R 192,421
includes (), 401

inplace_merge(),

insert (), 145400

1salnum() , 194, 389, 421

isalpha(),194,389,421

iscntrl (), 194, 389, 421

isdigit(), 194, 389, 421
)

isgraph (,194,389,421
islower (), 194, 389, 421
isPalindrome (), 153
isprint (), 194, 389, 421
ispunct (), 194, 208, 389, 421

(
isspace(), 194, 389, 421
isupper (), 194, 207, 389, 421
isvowel (), 211
isxdigit(),194,389,421
labs (), 42
largest (), 152
len(), 180

log (), 392,422
logl0(), 392,422
meke_heap (), 401
max (), 401

memchr (), 422
memcmp (), 422
memcpy (), 42
memmove (), 422
merge (), 401

min (), 401

mirror (), 180
nth_element (), 401
open(), 42
partial _sort (), 401
partition(), 401
peek (), 192, 422
pop_heap (), 401
pow (), 392,422
precision(), 422
prepend (), 154
print (), 180
printf(), 393
product (), 182
Prototype, 126
push_heap (), 401
putback (), 192
rand (), 72391
random_shuffle(), 401

430 INDEX

Function (cont.): gcount (), 345,420
reduce (), 227,253 generate& 401
remove (), 153,401 generate ni(). 401
replace (), 401 Generating pseudorandom nhumbers, 7 1
reverse (), 150,214, 401 Generic agorithms, 400
riemann(), 178,181 get (), 168, 192, 285, 340, 341, 342, 345, 420
root (), 182 getc(), 421
rotate (), 151, 153,401 getchar (), 421
scanf (), 393 getline (), 196, 197, 209, 343
search(), 401 gets(), 421
sin(), 392 good (), 421
size(), 400 Goodbit, 336
sort (), 181,401 goto statement, 37, 63
sort_heap (), 401 Greater than operator, 412
sgrt (), 181,392 Greatest common divisor, 123
srand(), 391 Greatest integer function, 392
stable _sort (), 401
strcat (), 188, 202, 206, 208 Has-a relationship, 297
strchr(),206, 208 Header, 92, 94
strenp (), 188,206, 209 Header file, 89,423
strepy (), 188, 200, 206, 208, 209 Heterogeneous container, 360
strcspn(), 206 hex, 330,425
strlen(), 4, 188, 198, 199, 206, 208,393 Hexadecima notation, 157, 330, 424, 425
strncat (), 188, 203, 206, 208, 210 Homogeneous container, 360
strncmp (), 188,206 Horizontal tab character, 4, 101
strncpy (), 188, 201, 206, 208, 209 Horner's Algorithm, 113
strpbrk (), 205, 206, 208 Hyperbolic cosine, 392
strrchr (), 206
strspn(),206 1/O library, 328
strstr(), 199,206 Identifier, 9, 24
strtok (), 188, 204, 206 i f statement, 33, 37
sum(), 171,178, 181 if.. . else satement, 34
swap (), 400 ignore (), 192, 343, 421
tokenize (), 212 Immutable lvalues, 16 1
tolower (), 194, 389, 422 Implementation, 126, 3 13, 3 14,424
toupper (), 194, 389, 422 Inaccuracy, 70
trace(), 195 i ncl ude directive, 1, 5, 3 1, 67, 90,424
transpose& 155 includes (), 401
trap(), 182 Incore formatting, 393,403
unique (), 401 Increment operator, 17, 20, 30,411
Function call operator, 4 11 Index vaue, 127
Function signature, 308 Indirect access, 180
Function template, 355 Indirect Insertion Sort, 154
Fundamenta types, 66 Indirect member selection operator, 411
fwrite(), 420 Indirect print, 2 13
Indirect Selection Sort, 154, 18 1
Game of craps, 120 Indirect sort, 212, 213

gcd (), 227 Infinite loop, 62, 76, 88

Information hiding, 96, 222, 304
Inheritance, 295, 326, 365,424
Initidization, 59
Initialization list, 225, 265
Intidize, 10, 7 1, 159
Initidizer list, 130
Inline commet, 6 1
inline fundions 37, 109
In-memory stream processiong, 328
inplace_merge(), 401
Input object, 32
Input operetor, 3 1
insert (), 145400
Insertion operator, 2, 3, 339
Insertion Sort, 147,381
Instance, 222, 357,424
Instantiate, 222, 357,424
int, 14,26,37, 66, 68
INT MAX, 391
Integer, 13, 69, 424
unsigned, 13
Integral promotion, 47
Interface, 126, 313, 314
Internal, 330
Interpolation, 8 1
Invoking a function, 90
i 0S:
badbit, 336
dec, 330
eofbit, 336
failbit, 336
fixed, 330
goodbit, 336
hex, 330
internal, 330
left, 330
oct, 330
right, 330
scientific, 330
showbase, 330
showpoint, 330
showpos, 330
skipws, 330
stdio, 330
unitbuf, 330
uppercase, 330
iostreamh, 1,67,328
Is-a relationship, 298

INDEX

i sal num (),194, 389, 421
isalpha (), 194, 389, 421
isentrl(), 194, 389, 421
isdigit (), 101, 194, 389, 421
isgraph (), 194, 389, 421
islower (), 101, 194, 389, 421
isPalindrome (), 153
isprint (), 194, 389, 421

i spunct (), 101, 194, 208, 389, 421

isspace (), 101, 194, 389, 421
istream, 328,339

isupper (), 101, 194, 207, 389, 421

isvowel (), 211
isxdigit (), 194,389, 421
Iteration, 57
Iterator, 369
bidirectional, 40 1
fowad, 40 1
input, 401
output, 401
random access, 400

Josephus Problem, 384
jump statement, 63

key, 404
keywords, 9, 56, 409
Knuth, Donald E., 240

label, 63

labs (), 422

largest (), 152

Least common multiple, 123
Least integer function, 392

Least squares, 81

Left associative, 411

Lehmer, D., 240

len(), 180

Length, 4

Less than operator, 412

Library, 386,424

Linear Congruential Algorithm, 240
Linear Search, 137

Linear Search Algorithm, 87, 134
Linked list, 365

Linker, 424

Literal, 16 1

Loca declaration, 37

431

432 INDEX

Local scope, 110 Negation operator, 262,411

Local variable, 97 Negative, 29

log (), 181, 392, 422 Nested conditionals, 42

logl0(), 392, 422 Nested loops, 64

Logaithm, 392 new, 37, 166, 176

Logcd AND opedor, 4 12 Newline character, 2, 4, 5, 33, 101, 212,405

Logica NOT operator, 411 Node, 233

Logical operators, 3 8 Nonprinting characters, 405

| ong, 37, 66 Normal distribution, 152

| ong double, 66 Not equal to operator, 412

Loop, 57 Not operator, 411

Loop invariant, 61 nt h_element (), 401

Lowercase, 424 NUL, 172

Lvalue, 161, 270,284, 361,424 NULL, 166, 172,391, 392
Null pointer, 391, 392

Machine language, 424 Null statement, 78

Macro, 357 Numerica derivative, 179

Magnitude range, 87

main(), 9, 112 Object, 8,70, 161,424

make_heap (), 401 Object-oriented programming, 220, 222, 3 13

Mantissa,66, 67, 78, 85 Object-oriented programming language, 7

mp, 403, 404 oct, 330,425

Mask, 335 open (), 422

mat h. h, 89,90, 91 Operation, 3 14

Mtrix, 383 Operator, 3,9, 14, 37,411

max (), 401 addition, 4 12

Median, 154 address, 411

Member data, 220,424 alocation, 411

Member function, 220,424 adggmat, 4 12

Member selection operator, 411 binary, 411

memchr (), 422 bit shift, 412

memcmp (), 422 bitwise, 4 12

memcpy (), 422 bitwise not, 411

memmove(), 422 comma, 61,412

Mamay lesk, 3 10, 3 15 conditional expression, 4 12

merge (), 401 conversion, 282,411

Method, 220, 314 dedllocation, 4 11

Microsoft Foundation Class Library, 3 88 decrement, 411

min (), 401 delete, 169, 274

minimax (), 156 dadgence 4 11

Monte Carlo method, 324 direct member selection, 411

Monte Carlo smulation, 82 division, 411

Multidimensional array, 140 equal to, 412

Multiplication operator, 4 11 function call, 411

mul tiset, 403,404 greater than, 412

Mudbe Ivdues 16 1 increment, 411

indirect member selection, 411
Name, 157 insertion, 3

Operator (cont.):
less than, 412
logical, 412
logical not, 411
member selection, 411
multiplication, 4 11
negative, 411
not, 411
not equal to, 412
output, 3
overloadable, 411
positive, 411
post-decrement, 4 11
post-increment, 4 11
pre-decrement, 4 11
pre-increment, 4 11
remainder, 4 12
scope resolution, 411
sizeof, 411
subscript, 169,411
Subtraction, 4 12
ternary, 411
throw, 412
type construction, 411
type conversion, 411
unary, 411
ostream 328
Outer product, 155
Output manipulator, 425
Output object, 32
Output operator, 2, 3, 14
Output stream, 3
Overflow, 20, 29, 78
Overload, 262
Overloadable operators, 4 11
Overloading relational operators, 253, 254
Overriding a function, 301
OWL Library, 388

Palindrome, 153

Parameter, 424

Parametrized types, 362
partial _sort (), 401
partition(), 401

Pascal, 139

Pascal’s Triangle, 156

Pass by constant reference, 108
Pass by reference, 105,212

INDEX 433

Pass by value, 90, 95

peek (),192, 344,422
Percentile, 154

Perfect shuffle, 150, 324
Permutation function, 98
Person class, 299

Plural, 210

Pointer, 159, 163,424

Pointers to objects, 232
Polymorphism, 305, 306, 308, 327
Polynomial, 113, 114

pop heap (), 401

Positive operator, 411
Post-decrement operator, 18,411
Postfix operator, 259
Post-increment operator, 18, 19,411
pow () $392,422

Power, 392

Precedence, 16,411

Precision, 78, 85, 87, 332,424
precision(), 330,422
Precompiler directive, 9
Pre-decrement operator, 18, 4 11
Prefix operator, 259
Pre-increment operator, 18, 19,411
prepend (), 154

Preprocessor, 424

Preprocessor directive, 3 1
print (), 180

printf (), 393

private, 37

Private access, 227, 299
Procedure, 99

Processor, 424

product (), 182

Program, 1

Promotion, 68, 91

protected, 37

Protected access, 227, 299
Pseudo-random integers, 72
public, 37

Public access, 227

Public inheritance, 298

Pure virtual function, 3 10
push_heap (), 401
putback (), 192,344

Quadratic equation, 53

434

Quadratic formula, 5 3
quat ernion, 269
Quote character, 4
Quotient operator, 79

rand () , 72,391

RAND max, 72,391

Random numbers, 7 1,391
random shuffle(), 401
Range ofmagnitude, 85
Rational, 223,226,231
rdstate(), 330
read (), 345

Read-only parameter, 105, 108
Rea number, 69

Rea number types, 66
reduce (), 227,253
Reference, 158

Reference operator, 105, 158
Referent, 159

register, 37

Regression ling, 8 1
Relational operator, 35, 254
Remainder operator, 79,412
remove (), 153,401
replace(), 401

Reserved word, 38, 48, 56
return statement, 2, 37,92, 94
reverse (), 150,214, 401
Riemann sums, 178
riemann(), 178,181
Right, 330

Right associative, 411
root (), 182

rotate (), 151, 153,401
Rounding, 68

Roundoff error, 69, 88
Run-time binding, 167
Rvalue, 161,424

Saddle point, 156

scanf (), 393

Scientific format, 70, 330
Scope, 110,230

Scope resolution operator, 110, 222,411

search (), 401
Seed, 72, 73, 392
Selection Sort, 154, 380

I NDEX

Self-documenting code, 12, 46
Semicolon, 2, 12

Sentinel, 6 1, 62, 2 12
Separately compiled function, 126
Sequential execution, 3 |
Service, 220

set, 403404

setf (), 333
short, 14, 37

Short circuiting, 39, 56
showbase, 330
showpoint, 330

showpos, 330

Shuffle, 150

Side effect, 64

Sieve of Eratosthenes, 149
Signature, 30 1

si gned, 37

Significant digits, 67, 78, 85
Simulation, 7 1, 120

sin (), 182,392

Sine, 392

Singular, 2 10

Size, 70

size(), 400

size_t, 205392

Size type, 392
sizeof (), 37, 66,411
skipws, 330

Software library, 386

sort (), 148, 181, 401
sort heap(), 401

Source code, 424

Space character, 10 1
Spaghetti code, 65
Specidization, 298

sqrt (), 181, 182,392
Square root function, 84, 89, 392
srand (), 391

stabl e sort(), 401
Stack, 283

Standard C comment, 5
Standard C Library, 89
Standard C++ comment, 5
Standard C++ Library, 386
Standard deviation, 152
Standard identifier, 38, 48, 56
Standard output stream, 1

INDEX

. Standard Template Library, 386, 399
Standardization, 386

State variables, 336, 337

static, 37, 424

Static binding, 167, 174, 182

Static data member, 234, 293

Static function member, 293

Static variable, 235

stdio, 330

stdlib.h, 72

strcat (), 188, 202, 206, 208

strchr(), 199, 206, 208

stremp (), 188, 206, 209

strepy (), 188, 200, 202, 206, 208, 209
(

strcspn (), 206
Stream, 3, 32, 328
output, 3
Stream classes, 328
Stream extraction operator, 264,285, 339, 340
Stream header, 402,403
Stream hierarchy, 328
Stream insertion operator, 264, 339
Stream manipulator, 347
Streams, 393
String class, 271-294
String length function, 198
String literal, 3, 5
String stream, 328, 393, 403, 404
string.h, 5
strlen(), 4,5, 188, 198, 206, 208, 393
strncat (), 188, 202, 203, 206, 208, 210
strncmp (), 188,206
strncpy (), 188, 201, 202, 206, 208, 209
strpbrk, 205
strpbrk (), 205, 206, 208
strrchr(), 206,208
strspn(), 206
strstr(), 199,206
strtok (), 188, 204, 206
struct, 37
Srucure type, 16 1
Student class, 299
Subclass template, 362
Subroutine, 99
Subscript, 127, 169
Subscript operator, 164,260, 274,411
Subtraction operator, 262, 4 12
sum(), 171,178, 181

Superclass, 298

swap () function, 37, 105,400

switch daement, 37,43, 56, 61, 63

System beep, 104,348
System clock, 74

Tab character, 33
Template, 37,424
Template class, 364, 375
Template function, 357
Ternary operator, 411
Test driver, 92

Text file, 396

this ponte, 37, 235

t hr ow exception operator, 37,412

tie, 338

Token, 9,424
tokenize (), 212

Tolerance, 84
tolower (), 194, 389, 422
toupper (), 194, 389, 422
trace (), 155

Transpose, 382

transpose& 155

trap(), 182

Trapezoidad Rule, 182
Traversal, 369

Tree diagram, 3 10

Truncating, 68

Truth tables, 38

try, 37

Type, 7, 157,424

Type casting, 68

Type construction operator, 411
Type converson operaor, 47,4 11
Type parameter, 356
typedef, 37, 139

Unalocated memory, 164
Unary negation, 262
Unary operator, 17,411
Underflow, 78,424
Unformatted /0O, 339
Uninitialized pointer, 166
Uninitidized variables, 29
uni on, 37,424
unique (), 401
unitbuf, 330

UNIX, 424

436 INDEX

UNIX workstation, 66 Virtud destructor, 3 10, 3 15
unsetf (), 3333%H Virtual function, 305, 306
unsi gned, 14, 37,424 void, 37, 172,424

char, 14, 28 void fundion, 37, 99

int, 14, 66 vol atile, 37

long, 66

short, 14 wchar_t. 392,403, 404
Update, 59 while statement, 37, 57, 58
Uppercase, 330,424 White gece characters, 33, 101, 330-331, 333,
User prompt, 33,264 335, 340, 348-350
Utility function, 227 Wide character type, 392

width (), 330, 331

Vaue, 7, 70 ws, 350
Vaiable, 7,71, 424
Vector, 378379 Zdler s Algorithm, 244
Vertical tab character, 101 Zero-based indexing, 127, 362

virtual, 37 Z-score, 152

	Preface
	Contents
	Introduction to Programming in C++
	Conditional Statements and Integer Types
	Iteration and Floating Types
	Functions
	Arrays
	Pointers and References
	Strings
	Classes
	Overloading Operators
	A String Class
	Composition and Inheritance
	Stream I/O
	Templates and Iterators
	Libraries
	A - The ASCII Code
	B - C++ Keywords
	C - C++ Operators
	D - C++ Types
	E - References
	F - Pre-Defined Functions
	G - Hexadecimal Numbers
	Index

