
c/ SCHAUM’S OUTLINE OF

THEORY AND PROBLEMS

of

PROGRAMMING
WITH
c++

JOHN R. HUBBARD, Ph.D.

Professor of Mathematics and Computer Science
University of Richmond

SCHAUM’S OUTLINE SERIES

M C GRAW-HILL

New York St. Louis San Francisco Auckla&. .l&go.,t$ carqpgs
Lisbon London Madrid Mexico City ’ ‘luri&n* Montreal ’
New Delhi San Juan Singapore Sydn& 1 ,?i?jkyo , TGroqc .&. L

JOHN R. HUBBARD is Professor of Mathematics and Computer
Science at the University of Richmond. He received his Ph.D. from The
University of Michigan (1973) and has been a member of the Richmond
faculty since 1983. His primary interests are in numerical algorithms and
database systems. Dr. Hubbard is the author of several other books,
including A Gentle Introduction to the VAX System and The VAX Book.

Schaum’s Outline of Theory and Problems of

PROGRAMMING WITH C++

Copyright 0 1996 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this publication

may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

234567891011121314151617181920 PRS PRS 9 0 1 0 9 8 7 6

ISBN o-07-030837-3

Sponsoring Editors: John Aliano and Arthur Biderman
Production Supervisor: Donald F. Schmidt
Editing Supervisor: Maureen Walker

Library of Congress Cataloging-in-Publication Data

Hubbard, J. R. (John Rast), date

Schaum’s outline of theory and problems of programming with C++ /
John Hubbard.

P* cm. - - (Schaum’s outline series)
Includes index.

ISBN o-07-030837-3
1. C++ (Computer program language) I. Title.

QA76.76.Cl5H835 1996
005.13’3 - - dc20 96-13964

CIP

McGraw-Hill
A Division of The McGrawHill Companies

Preface

Like all Schaum’s Outline Series books, this is intended to be used primarily for self study,
preferably in conjunction with a regular course in C++ Programming. The book covers nearly all
aspects of ANSI/IS0 Standard C++. It includes over 200 examples and solved problems. The
author firmly believes that programming is best learned by practice, following a well-constructed
collection of examples with complete explanations. This book is designed to provide that
support.

C++ was created by Bjarne Stroustrup in the 1980s. Based upon C and Simula, it has become
the most popular language for object-oriented programming. The final ANSI/IS0 Standard was
just recently completed, so some of the standard features described in this book may not yet be
available on all compilers. In particular, the powerful Standard Template Library is just now
becoming available from some vendors.

Although most people who undertake to learn C++ have already had some previous program-
ming experience, this book assumes none. It approaches C++ as one’s first programming
language. Therefore, those who have had previous experience may need only skim the first few
chapters.

C++ is a difficult language for at least two reasons. It inherits from the C language
economy of expression that novices often find cryptic. And as an object-oriented language,
widespread use of classes and templates presents a formidable challenge to those who have
thought in those terms before. It is the intent of this book to provide the assistance necessary
first-time programmers to overcome these obstacles.

an
its

not
for

Readers may download the source code for the examples and solved problems in this book
from the author’s World Wide Web home page: http : / /WWW. richmond. edu/-hubbard/

I wish to thank all my friends, colleagues, students, and McGraw-Hill staff who have helped
me with the critical review of this manuscript, including John Aliano, Arthur Biderman, Peter
Dailey, Chris Hanes, Walker Holt, John B. Hubbard, Arni Sigurjonsson, Andrew Somers,
Maureen Walker, and Nat Withers. Their debugging skills are gratefully appreciated.

Finally I wish to express my gratitude to my wife and colleague, Anita Hubbard, who
reviewed the complete manuscript and worked through most of the problems, including many
that she contributed herself. I am greatly in her debt.

JOHN R. HUBBARD
Richmond, Virginia

. . .
111

Dedicated to
Anita H. Hubbard

11.

1.2

13.

14.

15.

1.6

1.7

18.

19.

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

SIMPLE PROGRAMS .. 1

THE OUTPUT OPERATOR ... 3

CHARACTERS AND STRING LITERALS .. 3

STRING LENGTH .. 4

COMMENTS ... 5

VARIABLES, OBJECTS, AND THEIR DECLARATIONS 7

KEYWORDS AND IDENTIFIERS .. 9

INITIALIZING IN THE DECLARATION ... 10

CHAINED ASSIGNMENTS ... 1 1

THE SEMICOLON .. 12

PROGRAM STYLE ... 12

INTEGER TYPES ... 1 3

SIMPLE ARITHMETIC OPERATORS .. 14

OPERATOR PRECEDENCE AND ASSOCIATIVITY... 16

THE INCREMENT AND DECREMENT OPERATORS 1 7

COMPOUND ASSIGNMENT EXPRESSIONS ... 20

INTEGER OVERFLOW AND UNDERFLOW .. 20

THE char TYPE ... 21

2.1 INPUT . 31

2 2. THE if STATEMENT . 33

2 3. THE if.. . else STATEMENT . 34

2 4. RELATIONAL OPERATORS . 35

2 5. COMPOUND STATEMENTS . 36

2 6. KEYWORDS . 37

2 7. COMPOUND CONDITIONS . 38

2 8. BOOLEAN EXPRESSIONS . 40

2 9. NESTED CONDITIONALS*... 41

2.10 THE switch STATEMENT . 43

2.11 THE CONDITIONAL EXPRESSION OPERATOR . 44

2.12 SCOPE ... 44

2.13 ENUMERATION TYPES ... 45

2.14 INTEGER TYPE CONVERSIONS ... 47

V

vi CONTENTS

Chapter 3 Iteration and Floating Types oee 57

31.
32.
33.
34.
35.
36.
37.
38.
39
3’10
3’11
3’12.

THE while STATEMENT .. 57
THE do . . .while STATEMENT .. 58
THE for STATEMENT .. 59
THE break STATEMENT ... 61
THE cant inue STATEMENT ... 62
THE goto STATEMENT ... 63.
REAL NUMBER TYPES .. 66
TYPE CONVERSIONS ... 68
ROUNDOFF ERROR .. 69
THE E-FORMAT FOR FLOATING-POINT VALUES ... 70
CONSTANTS, VARIABLES, AND OBJECTS ... 70
GENERATING PSEUDO-RANDOM NUMBERS .. 71

Chapter 4 Functions eee 89

41.
4 2.
43.
4 4.
45.
4 6.
47.
48.
49
4’10
4’11
4’12
4’13
4’14
4’15
4’16.

STANDARD C LIBRARY FUNCTIONS . 89
USER-DEFINED FUNCTIONS . 92
TEST DRIVERS . 92
FUNCTION DECLARATIONS AND DEFINITIONS ’. 94
SEPARATE COMPILATION . 96
LOCAL VARIABLES AND FUNCTIONS . 97
void FUNCTIONS . 99
BOOLEAN FUNCTIONS ..*.. 100
I/O FUNCTIONS . 103
PASSING BY REFERENCE . 105
PASSING BY CONSTANT REFERENCE . 108
INLINE FUNCTIONS . 109
SCOPE . 110
OVERLOADING . 111
THE main() AND exit () FUNCTIONS . 112
DEFAULT ARGUMENTS . 113

Chapter 5 Arrays eeeoee 127

51.
52.
53.
54.
55.
56.
57.
58.
59
5’10
5’11.

INTRODUCTION ... 127
PROCESSING ARRAYS .. 127
INITIALIZING AN ARRAY .. 129
PASSING AN ARRAY TO A FUNCTION .. 131
C++ DOES NOT CHECK THE RANGE OF AN ARRAY INDEX.. 132
THE LINEAR SEARCH ALGORITHM... 133
THE BUBBLE SORT ALGORITHM ... 134
THE BINARY SEARCH ALGORITHM .. 136
USING ARRAYS WITH ENUMERATION TYPES ... 137
TYPE DEFINITIONS .. 139
MULTIDIMENSIONAL ARRAYS .. 140

CONTENTS vii

Chapter 6 Pointers and References eeeeeeeeeeeeeeeeeeeeeeoeeeoeeeeeeeeeeeeeee 157

61.
62.

63.
64.
65.
66.
6 7.
68.
69
6’10
6’11
6’12

6’13
6’14
6’15.

INTRODUCTION ... 157
REFERENCES ... 158
POINTERS ... 159
DERIVED TYPES ... 161
OBJECTS AND LVALUES .. 161
RETURNING A REFERENCE... 162
ARRAYS AND POINTERS .. 163
THE new OPERATOR .. 166
THE delete OPERATOR... 167
DYNAMIC ARRAYS ... 167
USING const WITH POINTERS .. 169
ARRAYS OF POINTERS AND POINTERS TO ARRAYS 169
POINTERS TO POINTERS .. 170
POINTERS TO FUNCTIONS ... 171
NUL, NULL,mD void ... 172

Chapter 7 Strings eee 185

71. INTRODUCTION . 185
72. REVIEW OF POINTERS*........*.............................*........................... 185
73
7:4

STRINGS . 188
STRING I/O . 189

75
7:6

SOME tin MEMBER FUNCTIONS*... 190
CHARACTER FUNCTIONS DEFINED IN ectype . h> . 194

7.7 ARRAYS OF STRINGS ..*... 195
78. THE C-STRING HANDLING LIBRARY . 198

Chapter 8 Classes eee 220

81.
82.
83.

84.

85.
86.
8 7.
88.
89
8’10
8’11
8’12

8’13.

INTRODUCTION ... 220
CLASS DECLARATIONS .. 220
CONSTRUCTORS .. 223
CONSTRUCTOR INITIALIZATION LISTS ... 225
ACCESS FUNCTIONS ... 226

PRIVATE MEMBER FUNCTIONS ... 227
THE COPY CONSTRUCTOR .. 227
THE CLASS DESTRUCTOR ... 230
CONSTANT OBJECTS... 231
STRUCTURES .. 231
POINTERS TO OBJECTS .. 232
STATIC DATA MEMBERS ... 234
static FUNCTIONMEMBERS ... 236

. . .
Vlll CONTENTS

Chapter 9 Overloading Operators bbbbbbebeobobbbbbob*bbbbob*bbbb*bb*obbbbbbbbbbbbbob**bbbbbbbbbbbbbbbbbbbb**bbbbbbbbbbb 249

91.
92.
93.
94.
95.
96.
97.
98.
99
9'10.

INTRODUCTION ... 249
OVERLOADING THE ASSIGNMENT OPERATOR ... 249
THE this POINTER .. 250
OVERLOADING ARITHMETIC OPERATORS ... 251
OVERLOADING THE ARITHMETIC ASSIGNMENT OPERATORS..253
OVERLOADING THE RELATIONAL OPERATORS 254
OVERLOADING THE STREAM OPERATORS .. 254
CONVERSION OPERATORS .. 256
OVERLOADING THE INCREMENT AND DECREMENT OPERATORS..258
OVERLOADING THE SUBSCRIPT OPERATOR ... 260

Chapter 10 A String Class bb*bb*b**bo*b**b*bbbbbbbbbbbbbb*bbbbbbbbbbb*bbbb*bbbbbbb*b*oob*obo*bb***bbbbbbbb*bbbbbbbbbbbbbb 271

10.1 INTRODUCTION ... 271
10.2 THE String CLASS INTERFACE .. 271
10.3 THE CONSTRUCTORS AND DESTRUCTOR... 272
10.4 THE COPY CONSTRUCTOR .. 275
10.5 THE ASSIGNMENT OPERATOR ... 276
10.6 THE ADDITION OPERATOR ... 279
10.7 AN APPEND OPERATOR ... 281
10.8 ACCESS FUNCTIONS ... 282
10.9 THE COMPARISON OPERATORS .. 284
10.10 STREAM OPERATORS ... 285

Chapter 11 Composition and Inheritance ***************..***********.****************.*********.******************** 295

11.1 INTRODUCTION ... 295
11.2 COMPOSITION .. 295
11.3 INHERITANCE ... 298
11.4 protected CLASS MEMBERS .. 299
11.5 OVERRIDING AND DOMINATING INHERITED MEMBERS30 1
11.6 private ACCESS VERSES protected ACCESS 304
11.7 virtual FUNCTIONS AND POLYMORPHISM ... 305
11.8 VIRTUAL DESTRUCTORS ... 308
11.9 ABSTRACT BASE CLASSES .. 310
11.10 OBJECT-ORIENTED PROGRAMMING .. 313

Chapter 12 Stream I/O ***.***********.************.******.*******************.*.**************************m********************* 328

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

STREAM CLASSES 328
THE ios CLASS ... 328
ios FORMAT FLAGS ... 332
ios STATE VARIABLES .. 336
THE istreamAND ostream CLASSES .. 339
UNFORMATTED INPUT FUNCTIONS ... 340

UNFORMATTED OUTPUT FUNCTIONS ... 345

STREAM MANIPULATORS ... 347

CONTENTS ix

Chapter 13 Templates and Iterators *b***bbbbbbbbbbbbbbbbbbbbbbbbbbo*bbbb*bbbbb*****bbb**bbb**b**bo****b***bb*bbbbo****b 355

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

INTRODUCTION . 355
FUNCTION TEMPLATES . 355
CLASS TEMPLATES . 358
CONTAINER CLASSES . ..*...*... 360
SUBCLASS TEMPLATES . 362
PASSING TEMPLATE CLASSES TO TEMPLATE PARAMETERS 364
A CLASS TEMPLATE FOR LINKED LISTS . 365
ITERATOR CLASSES . 369

Chapter 14 Libraries b**b**b***bbbbb*b****b******bbbb*********bbbbb*bbbo****bbb**bbbb*bb***b**b**bbb*bbb*****b**bbb*bbb**bb*****bb* 386

14.1 INTRODUCTION . 386
14.2 THE STANDARD C++ LIBRARY ..**...*..*....386
14.3 PROPRIETARY LIBRARIES . 388
14.4 CONTENTS OF THE STANDARD C HEADERS . 389
14.5 STRING STREAMS . 393
14.6 FILE PROCESSING . 395
14.7 THE STANDARD TEMPLATE LIBRARY ~~..~~~~~.~...........~~~~....~~......................... 399

Appendix A The ASCII Code b**ob*b*obbbboob*bboo*bbbbbbb*bb**o*bb***bb*bb***bbbbbbb**b*bbb**bb***bb***bb**bb**bbb*b*bbb*bbb* 405

Appendix B C++ Keywords bbbbbb****oo*obbo**bbbb***bbobo*bbb***bb*****b**bbbbb*bbb*o*bbbbbbbbb*bbb**b*b**bb*bbbbbbb****bbbb*b 409

Appendix C C++ Operators bobbbbbo*bbbo**bbbbbbbbbbbbbbob**bbbbbbbbbb*b**mo**bb**bbeb*b*bb*****b*bbb*b*beb*ee**ee**bbb*bb***b* 411

Appendix D C++ Types *e***e*bbbbe*bbebb***bebe*bb*b*eb**eee**bbb***beee**ee**beebbbbbb****eb*bbbb*bbbb*bbb**ee***b**b*****e** 413

Appendix E References *bbb******bbbe**b*bb****b*b*bbb****bbe**bbbb*bbbb*bb**ee****e*bbbbbb**ee***ee***e**bb***e********bbbb**ee** 414

Appendix F Pre-Defined Functions beebbbbbbbb**beeeee*bbbebbb*be****eee*ebebeeeeee*beebbbbbbb*bbbe**ee*e*e**bbbbbbb**bee* 41s

Appendix G Hexadecimal Numbers b**bbbb*bbb*b*bbbb****b*b****b***bbb***bbbbbbbbb***bbbb*bbb*bbbbbbb*****b**bb*b***e***b 423

Index ****bb**bbbb***b****b*b****eeb**bbeb*b*b*b*bbb*e**bbbbb*bb*bb********e**bbbb*b*b*e**bb***e****b*********b**be******* 425

Chapter 1

Introduction to Programming in C++

A program is a sequence of instructions for a computer to execute. Every program is written
in some programming language. The C++ (pronounced “see-plus-plus”) language is one of the
newest and most powerful programming languages available. It allows the programmer to write
efficient, structured, object-oriented programs.

This chapter introduces some of the basic features of C++. You should compile and run each
example in this chapter.

1.1 SIMPLE PROGRAMS

Our first example illustrates the main parts of a C++ program.

EXAMPLE 1.1 The Hello World Program

#include <iostream.h>
// This program prints "Hello, World."
main0
1

tout CC "Hello, World.\n";
return 0;

The #include directive on the first line is necessary for the program to have output. It refers to an
external file named i o s t ream. h where information about the cou t object is provided. Note that the
angle brackets < and > are not part of the file name; they are used to indicate that this is a Standard C++
Library file.

The second line is a comment, identified by the double slashes / /. Comments are included in pro-
grams to provide explanations for human readers. They are ignored by the compiler.

The third line contains the function header main () . This is required for every C++ program. It tells
the compiler where the program begins. The parentheses (> following main are also required.

The fourth and seventh lines contain only the braces { and }. These enclose the body of the
main (> function and are also required for every C++ program.

The fifth line contains the statement

tout << "Hello, World.\n";

This tells the system to send the message II He1 lo, War Id. \n " to the tout (“see-out”) object. That
object is the standard output stream which usually represents the computer display screen. The name
cou t stands for “console output.” The output should look like this:

1

2 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

The \n symbol is the newline symbol. Note that this single symbol is formed from the two characters ‘ \ ’
and ‘n'. Putting this symbol at the end of the quoted string tells the system to begin a new line after print-
ing the preceding characters, thus ending the current line.

The sixth line contains the statement return 0. That terminates the execution of the program and
returns control to the computer’s operating system. The number 0 is used to signal that the program has
ended successfully.

The output statement on the fifth line includes several common C++ symbols. The symbol <C is
called the output operator or the insertion operator. It inserts the message into the output stream. The
symbol \n included at the end of the message stands for the newline character. Whenever it appears in
an output message, it causes the current line of output to be terminated, thereby starting a new line. Note
that both of these symbols (< < and \n) require two characters, side-by-side, with no space between
them.

Note the semicolon ; at the ends of the fifth and sixth lines. C++ requires every statement to end
with a semicolon. It need not be at the end of a line. We may put several statements on the same line, and
we may have one statement extend over several lines. But no matter how it is positioned on one or more
lines, every statement must end with a semicolon.

We can imagine the relationship of the tout obiect to the program and the displav screen like this:

Hello, World.

I#include <iostream.h>
main0

.{
tout << "Hello, World.\n";

>

The output stream cou t acts as a conduit, piping the output from the program to the display screen (or
printer or other output device), byte by byte.

The program in Example 1.1 is not minimal. Only some of its parts are required for every
program. In fact, a C++ program need not have any statements. Of course, such an “empty pro-
gram” will not do anything. The next example shows the shortest possible C++ program.

EXAMPLE 1.2 The Shortest C++ Program

main0 0

This “empty program” does nothing. It simply reveals the required skeleton for every C++ program.

The return 0; statement is not required by most compilers. Some compilers will issue a
warning if it is omitted. We include it in each example in this first chapter.

It is also recommended that you include at the beginning of every program a brief comment
that describes what the program does.

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++

1.2 THE OUTPUT OPERATOR

The symbol C< is called the insertion operator or the output operator. It inserts objects into
the output stream named on its left. We usually use the tout output stream, which ordinarily
refers to the computer screen. So cou t -CC 6 6 would display the number 66 on the screen.

An operator is something that performs an action on one or more objects. The output opera-
tor C-C performs the action of sending the value of the expression listed on its right to the output
stream listed on its left. Since the direction of this action appears to be from right to left, the
symbol << was chosen to represent it. It should remind you of an arrow pointing to the left.

The reason tout is called a stream is that output sent to it flows like a stream. If several
things are sent to tout, they fall in line, one after the other as they are dropped into the stream.
Then they are displayed on the screen in that order.

EXAMPLE 1.3 The Hello World Program Again

This version of our Hello World program has the same output as the other:

#include <iostream.h>
// This program illustrates the sequential ouput of several strings.
main0

tout << "Hello, ' << "War" CC "ld.\n";
return 0;

Helko, TEJorZd: ,

Here the message has been split into three pieces. As the line is executed from left to right, each piece is
dropped into the output stream: first II He1 lo, “ , then II War", and finally II Id. \n". Since there are no
newline characters or other symbols added to the stream between these three pieces, they all come out
concatenated into a single line, just as before.

The output stream tout is usually used with the insertion operator << in this general form:
tout c-c expression cc expression -cc . . . << expression;

This syntax statement says that cou t is followed by one or more pairs, where each pair consists
of the insertion operator C< followed by some expressi on. In Example 1.3, there are three
such pairs.

1.3 CHARACTERS AND STRING LITERALS \

The symbol II He1 10, II is called a string literal. It consists of a sequence of characters
delimited by quotation marks.

A character is any member of a predefined character set or alphabet. Most computers these
days use the ASCII (American Standard Code for Information Interchange) character set. See
Appendix A for the complete code. This set includes the 52 uppercase and lowercase letters of
the alphabet, the 10 digits, all the punctuation symbols found on your keyboard, and some
nonprinting characters.

4

The newline character 1 \n ' is one of the nonprinting characters. It is formed using the
backslash \ and the letter n. There are several other characters formed this way, including the
horizontal tab character I \ t I that moves to the next tab stop on the line the alert character
I \a 1 that produces the system beep when printed. The backslash is also used to denote the two
printing characters that could not otherwise be used within a string literal: the quote character
\ II and the backslash character itself \ \.

Characters can be used in a program statement as part of a string literal, or as individual
objects. When used individually, they must appear as character constants. A character constant
is a character enclosed in single quotes. As individual objects, character constants can be output
the same way string literals are.

EXAMPLE 1.4 Another Version of the Hello World Program

This version of our Hello World program has the same output as the other versions:

#include ciostream.h>
// This program illustrates the ouput of strings and characters:
main0
1

tout CC "Hello, ' CC 'WI -CC lo' CC "rfl C-C "ld" C-C '.' << '\n';
return 0;

Hello, World.

The single statement in this program sends seven objects to tout: the 2 string literals II He 11 o and
1’ld1’,andthe5characterconstants 'w', IO’, 'r', I. l,and '\n'.

Of course, an individual character can also be used to form a string. The single statement
above could be replaced by

tout CC "Hello, " CC "W"

This statement sends 7 string literals to
separate objects, it is more efficient
differently and require some overhead.

<< ” 0

tout. But when
to use character:

I I
< < 1' r " << " Id"

dealing wi
constants.

<< ‘I. ” << 11 \nll ;

th individual characters as
String literals are stored

The string that contains zero characters is called the empty string and is denoted by II II. We
could print our message using the empty string, like this:

tout << "Hello, Wo" CC "" << '2-1" << "" << " -CC "d.\n";

But there’ ‘s not much point in using the empty string this way.

1.4 STRING LENGTH

The length of a string literal is the number of characters it contain. The string literal " ABCDE "
has length 5.

C++ provides a special predefined function named s trlen (> that you can use to obtain the
length of any string. This is illustrated by the next example.

C H A P . l] INTRODUCTION TO PROGRAMMING IN C++ 5

EXAMPLE 1.5

This program prints the lengths of several string literals:

#include <iostream.h>
#include <string.h>
// This program tests the strlen() function:
main0
1

tout << strlen("Hello, World.\n") << '\n';
tout cc strlen("Hello, World.") << '\n';
tout << strlen("Hello, ") << '\n';
tout << strlen("H") << '\n';
tout << strlen("") << '\n';
return 0;

>

2.4 ,. ,,
13 : !
7
I'.. Ij
o-.

The s t rl en () function simply counts the number of characters in the specified string. The first two
outputs, 14 and 13, reveal that the nedine character \n counts as a single character. The string
"Hello, II has length 7, the string II H II has length 1, and the empty string II II has length 0.

The s tr len (> function (pronounced “stir-1en”) is declared in the separate file s tring . h
which comes with the C++ programming environment. So when your program needs to use the
s trl en (> function it should include the # include directive

#include <string.h>

on a line somewhere above the main (> program block.

1.5 COMMENTS

You can include messages in your program that will be ignored by the compiler. Such a
message, intended only to be read by humans, is called a comment.

There are two kinds of comments in C++. The Standard C comment begins with the combi-
nation slash-star symbol / * and ends with the star-slash symbol * /. Anything written between
these two symbols will be ignored by the compiler. For example, this is a comment:

/* This is a C style comment */

The Standard C+ + comment begins with a double-slash / / and extends to the end of the line.
For example, this is a comment:

// This is a C++ style comment

Most C++ programmers prefer to use the double-slash form because it is easier to write and
easier to notice in a program. The C style comment is necessary if you need to imbed a comment
within an executable line of code, but that practice that is not recommended.

6 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

EXAMPLE 1.6 Using The Two Types of Comments

Here is our Hello World program with six comments added:

/**\
* Program to demonstrate comments *
* Written by J. R. Hubbard *
* June 10, 1996 *
* Version 1.5 *

**/

#include <iostream.h> // This directive is needed to use tout
// This prints message: "Hello, World.":
main0

tout << /* now printing */ "Hello, World.\n"; /* change? */
return 0; // Some compilers will complain if you omit this line

1 /* end of program */

This is a good example of an “overly documented” program. But it does illustrate some of the main uses
of comments.

The first comment is a 6-line header that identifies the program and programmer. Notice that the first
two characters (at the beginning of line 1) are the slash-star / * and the last two characters on line 6 are
the star-slash * /. The second comment begins with the double-slash on line 7. It illustrates a standard in-
line comment, positioned to the right of the statement that it describes. The third comment occupies all of
line 8. It precedes the main (> block and briefly describes what the program does. The fourth comment
is imbedded inside the output statement. This is not recommended. The fifth comment is at the end of the
output statement. It illustrates a common technique of software maintenance: the programmer leaves a
message to himself to suggest a possible modification at a later date. The sixth comment, at the end of the
program, has little value.

The next example shows our “Hello, World.” program with only C++-style comments:

EXAMPLE 1.7 Using Only Double-Slash Comments

This version shows how all the important comments are easily written using the double-slash:

//--

// Program to demonstrate comments
// Written by J. R. Hubbard
// June 11, 1996
// Version 1.6
// -----------_---_--

#include <iostream.h> // This directive is needed to use tout
// Prints message: "Hello, World.":
main0
1

tout << "Hello, World.\n"; // change?
return 0; // Some compilers will complain if you omit this line

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 7

Note that comments delimited by the double-slash extend only to the end of the line; they cannot span sev-
eral lines unless each line begins with another double-slash. .

1.6 VARIABLES, OBJECTS, AND THEIR DECLARATIONS

A variable is a symbol that represents a storage location in the computer’s memory. The
information that is stored in that location is called the value of the variable. The most common
way that a variable obtains a value is by means of an assignment. This has the syntax

variable = expression;

The expression is first evaluated, and then its resulting value is assigned to the variable.
The equals sign “=” is the assignment operator in C++.

EXAMPLE 1.8

Here is a simple C++ program with an integer variable named n:

#include <iostream.h>
// A simple example to illustrate assignment:
main0
{

int n;
n = 66;
tout << n << endl;
return 0;

66; r

The first line between the braces { } declares n to be a variable of type int . The statement in the sec-
ond line assigns the value 66 to n. The statement on the third line prints the value of n.

Note the use of the symbolic constant endl. This is a predefined iostream manipulator. Sending this
to cou t is equivalent to the endline character I \n I and then “flushing” the output buffer.

In the previous example, the variable n has the value 66. That value is actually stored in the
computer’s memory as a sequence of bits (OS and 1s). The computer interprets that sequence of
bits as an integer because the variable was declared to be an integer.

A declaration of a variable is a statement that gives information about the variable to the
C++ compiler. Its syntax is

type variable;

where type is the name of some C++ type. For example, the declaration
int n;

tells the compiler two things: (1) the name of the variable is n, and (2) the variable has type int.
Every variable must have a type. Its type tells the compiler how the variable’s values are to be
stored and used. We can characterize a type by the set of all possible values. that could be
assigned to a variable of that type. On some computers, the int type set consists of all the
integers in the range from -32,768 to 32,767.

C++ is an object-oriented programming language. Among other things, this means that the
language is good at simulating systems that consist of interacting objects such as an airport
control’ system. In such a simulation, the objects in the system (airplanes, people, luggage, etc.)

8 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

are represented by variables in the computer program. So variables are often referred to as
objects themselves and are visualized as self-contained entities endowed with certain capabili-
ties. In this context we say that the declaration creates the object. The variable being declared
then is the name of the object. 6

We can visualize the effect of the declaration int n like this:

n
I??
int

The declaration creates the object shown here. Its name is n and its type is int. The shaded box
represents that area of memory that has been allocated to the object to store its value. The
question marks indicate that no value has been given to the object yet.

An assignment is one way that an object’s value can be changed. For example,
n = 66;

changes the value of n to 66. We can visualize the effect of this assignment as

n 66I

.

In C++, a declaration may appear anywhere within the program, as the next example shows.

EXAMPLE 1.9

This example shows that a variable may be declared anywhere in a C++ program:

#include ciostream.h>
// This program illustrates variable declarations:
main0
t

int x, yl; // declares the variables x and yl
X = 77;
Yl = 88;
int y2 = 55; // declares the variable y2, initializing it to 55
tout << x << ", " << yl << II, 'I -C-C y2 -C-C endl;
return 0;

>

77, 88, 55

The variable y2 is declared and initialized after the assignment for yl. We can visualize these three
objects like this:

x 77I Yl188] Y2 155]
int int int

Note that a variable cannot be used before it is declared.

In this book, we use boldface in a program to emphasize the part(s) of the program that are
being illustrated by the example. When you copy the program to run it, ignore the boldface.

The last example also shows how more than one variable may be declared within the same
declaration statement. The statement

int x, yl;

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 9

declares both x and ~1 to be integer variables. In general, any number of variables may be
declared within the same declaration statement, if they are all declared to have the same type.
The more general syntax is

type varl, var2, varN;

The variables are simply listed after their type. Commas separate the variables in the list.

1.7 KEYWORDS AND IDENTIFIERS

In any programming language, a program is made up of individual syntactic elements, called
tokens. These include variable names, constants, keywords, operators, and punctuation marks.

EXAMPLE 1.10

#include -&ostream.h>
// A simple program to illustrate tokens:
main0

-t
int n = 66;
tout C-C n CC endl;
return 0;

66 t

This program shows 15 tokens: main, (,), {, int, n, =, 66, ;, tout, CC, endl, return, 0,
and } . The token n is a variable; the tokens 6 6, 0, and end1 are constants; the tokens int and
return are keywords; tokens = and CC are operators; the tokens (, > , { , ; , and } are punctuation
marks. The first two lines, containing a preprocesser directive and a comment, are not really part of the
program.

Keywords are also called reserved
guage for special purposes and cannot

words because they are words that are reserved by the lan-
be redefined for use as variables or for any other purpose.

An identifier is a string of alphanumeric characters that begins with an alphabetic character.
There are 53 alphabetic characters: the 52 letters and the underscore character . There are 63
alphanumeric characters: the 53 alphabetic characters and the 10 digits (0, ly2, . . . , 9). so
main(), int, n, count, and end1 are identifiers. So are Stack, xl, ~4, LastName, and
the-day-after-tomorrow. Note that C++ is case-sensitive: it distinguishes uppercase letters
from lowercase letters, so stack and stack are different identifiers.

Identifiers are used to name things, like variables and functions. In the program above, main
is the name of a function, int is the name of a type, n and tout are names of variables, and
end1 is the name of a constant. Some identifiers like int are called keywords because they are
an intrinsic part of the programming language itself. (The 48 keywords that define the C++
programming language are shown in Appendix B.) Other identifiers like n are defined in the
program itself.

10 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

1.8 INITIALIZING IN THE DECLARATION

A variable is initialized by assigning it a value when it is declared.

EXAMPLE 1.11 Initializing Variables

This simple program illustrates two ways that a variable can be initialized within its declaration:

#include <iostream.h>
// This shows how to initialize variable as they are declared:
main0

int george = 44;
int martha = 33;
int sum = george + martha;
tout C-C george -CC ' + ' CC martha C-C ' = ' -CC sum << endl;
return 0;

The variables george and martha are initialized to 44 and 33 within their declarations. Then within
the declaration of the variable sum, the expression george + martha is evaluated as 44 + 33, and the
resulting value 77 is assigned to sum.

An initialization is nearly the same
by an expression. The expression is first
the left of the assignment operator.

as an assignment. Both use the equal sign
evaluated, and then its value is assigned to

followed
object on

In general, it is better to initialize variables when they are declared.

Initialization may also be used in compound declarations, as the next example shows.

EXAMPLE 1.12 Initializing Variables

#include <iostream.h>
// This shows how to initialize variables as they are declared:
main0

-t
int nl, n2 = 55, n3, n4, n5 = 44, n6;
tout << n2 << ', N -CC n5 CC endl;
return 0;

>

The six variables nl through n6 are all declared to have type int, but only the two variables n2 and
n 5 are initialized.

Some compilers (Borland C++, for example) will issue a warning if any variables are not initialized.

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 11

1.9 CHAINED ASSIGNMENTS

An assignment itself is an expression with a value. The value of the expression

x = 22

is 22. And like any other value, the value of an assignment can be used in another assignment:

y = (x = 22) ;

This is a chained assignment. First it assigns 22 to X, and then it assigns 22 to y. Compound
assignments are usually written without the parentheses:

y = x = 22;

In general, the value of an assignment is the last value that it assigned.

EXAMPLE 1.13 Embedded Assignments

This shows how an assignment can be used within an expression:

#include <iostream.h>
// This shows that an assignment can be part of a larger expression:
main0

-i
int m, n;
m = (n = 66) + 9; // (n = 66) is an assignment expression
tout << m
return 0;

<< -cc n -CC endl;

75, 66

The compound assignment first assigns the value 66 to n. Then it evaluates the expression (n = 6 6) +
9 obtaining the value 75. Then it assigns that value to m.

Embedded assignments can usually be avoided. For example, the first two lines in the pro-
gram above would be better written as

int n = 66;

int m = n + 9;

This also illustrates the preferred practice of initializing variables as they are declared.

There are some situations in which embedded assignments do make a program more
readable. For example, this single statement is better than 8 separate statements:

nl = n2 = n3 = n4 = n5 = n6 = n7 = n8 = 65535;

We will see other common examples of embedded assignments in Chapter 3.

A chained assignment cannot be used as an initialization in a declaration: ,

int x = y = 22; // ERROR

The reason this is wrong is that initializations are not assignments. They are similar, but the
compiler handles them differently. The correct way to do what was attempted above is

int x = 22, y = 22; // OK

12 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

1.10 THE SEMICOLON

In C++, the semicolon is used as a statement terminator. Every statement must end with a
semicolon. This is different from other languages, notably Pascal, which use the semicolon as a
statement separator. Note that lines that begin with the pound symbol # such as

#include <iostream.h>

do not end with a semicolon because they are not statements; they are preprocessing directives.
We saw in the previous section that C++ statements can be interpreted as expressions. The

converse is also true: expressions can be used as stand-alone statements. For example, here are
two perfectly valid C++ statements:

x + y;
22;

These statements perform no actions, so they are completely useless. Nevertheless they are valid
statements in C++. We shall see some useful expression statements later.

The semicolon acts like an operator on an expression. It transforms an expression into a
statement. It is not a true operator because its result is a statement, not a value. But this transfor-
mational point of view helps explain the difference between an expression and a statement.

1.11 PROGRAM STYLE

The C++ programming language is a free form language: it has no requirements about where
program elements must be placed on the line or on the page. Consequently the programmer has
complete freedom of program style. But experienced programmers know that the tasks of
writing, debugging, and maintaining successful software are greatly facilitated by using a consis-
tent, readable programming style. Moreover, others will find your programs easier to read if you
conform to standard style conventions. Here are some simple rules that most C++ programmers
follow:

.Put all your #include directives at the beginning of your file.

l Put each statement on a new line.

l Indent all statements within a block.

l Leave a space on either side of an operator, like this: n = 4.

These rules are followed nearly everywhere in this book.
Another worthwhile convention to follow is to choose your variable names carefully. Use

short names to minimize the chances for typographical errors. But also pick names that describe
what the variable represents. This is called self-documenting code. Nearly all C++ programmers
follow the convention of using exclusively lowercase letters in variable names, except when a
name is composed of several words where the first letter of each appended word is capitalized.
For example:

char middleInitial;
unsigned maxUnsignedInt;

These names are easier to read than middleini tial and maxunsignedint. As an alterna-
tive, some programmers use a underscore to simulate blanks, like this:

char middle-initial;
unsigned max-unsigned-int;

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 1 3

1.12 INTEGER TYPES /

An integer is a whole number: 0 , 1, -1, 2 , -2, 3 , -3, etc. An unsigned integer is an integer
that is not negative: 0, 1, 2, 3, etc. C++ has the following nine integer types:

char
signed char
unsigned char

short int
int
long int

unsigned short int
unsigned int
unsigned long int

The differences between these nine types is the range of values that they allow. These ranges
depend, to some extent, upon the computer system being used. For example on most DOS PCs,
int ranges between the values -32,768 and 32,767, while on most UNIX workstations it ranges
between the values -2,147,483,648 and 2,147,483,647. The “int" part may be omitted from the
type names short int, long int, unsigned short int, unsigned int,and unsigned
long int.

The program in the example below prints the ranges of all the integer types on your machine.
These limits, named SCHAR MIN,- L O N G MAX,- etc., are constants stored in the header file
c 1 imi t s . h>, so the following preprocessor directive

#include climits.h>

is needed to read them.

EXAMPLE 1.14 Integer Type Ranges

This program prints the limits to the ranges of the various integer types:

#include <iostream.h>
#include <limits.h>

// Prints the constants stored in 1imits.h:
main0
1

tout << "minimum char = ' cc CHAR-MIN CC endl;
tout << "maximum char = ' << CHAR-MAX cc endl;
tout << "minimum short = ' << SHRT-MIN << endl;
tout << "maximum short = ' cc SHRTJAX << endl;
tout << "minimum int = ' cc INT-MIN << endl;
tout << "maximum int = ' << INTJLAX CC endl;
tout << "minimum long = ' cc LONG-MIN << endl;
tout -cc "maximum long = 'I << LONG-MAX << endl;
tout << "minimum signed char = ' cc SCHAR MIN << endl;-
tout << "maximum signed char = ' -cc SCHARJAX << endl;
tout << "maximum unsigned char = ' cc UCHARJAX << endl;
tout << "maximum unsigned short = ' c-c USHRTJAX << endl;
tout << "maximum unsigned = << UINT-MAX << endl;
tout << "maximum unsigned long = ' << ULONGJAX << endl;
return 0;

14 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

This output is from a UNIX workstation. It shows that, on this system, there are really only six distinct
integer types:

char
short
int
unsigned char
unsigned short
unsigned

range -128 to 127 (1 byte)
range -32,768 to 32,767 (2 bytes)
range -2,147,483,648 to 2,147,483,647 (4 bytes)
range 0 to 255 (1 byte)
range 0 to 65,535 (2 bytes)
range 0 to 4,294,967,295 (4 bytes)

You can tell, for example, that short integers occupy 2 bytes (16 bits) on this machine, because the
range 32,768 to 32,767 covers 65,536 = 216 possible values. (Recall that a byte is 8 bits, the standard stor-
age unit for characters.)

On a PC running Borland C++, this program produces the same ranges except for int and
unsigned which have

int
unsigned

range -32,768 to 32,767 (2 bytes)
range 0 to 65,535 (2 bytes)

1.13 SIMPLE ARITHMETIC OPERATORS

An operator is a symbol that “operates” on one or more expressions, producing a value that
can be assigned to a variable. We have already encountered the output operator << and the
assignment operator =.

Some of the simplest operators are the operators that do arithmetic: +, -, *, /, and %.
These operate on integer types to produce another integer type: m + n produces the sum m plus
n, m - n produces the difference m minus n, -n produces the negation of n, m*n produces
the product m times n, m/n produces the integer quotient when m is divided by n, and m%n
produces the integer remainder when m is divided by n. These six operators are summarized in
the following table and illustrated in the example below.

CHAP. I] INTRODUCTION TO PROGRAMMING IN C++ ,

Table 1.1 Integer Arithmetic Operators

1 5

Operator Description Example

+ Add m + n
- Subtract m - n
- Negate -n
* Multiply m*n

/ Divide m/n
90 Remainder m%n

EXAMPLE 1.15 Integer Operators

This program illustrates the use of the six arithmetic operators:

#include <iostream.h>
// Tests arithmetic operators:
main0
{

int m = 38, n = 5;
tout << m << ' + fl << n << 11 = ' << (m + n) << endl;
tout << m << ' - u << n CC fl = n CC (m - n) << endl;
tout << II - ” cc n << ' = 'I << (-n) << endl;
tout << m << ' * ' << n << ' = ' << (m * n) << endl;
tout << m << ' / ' << n << ' = ' << (m / n) << endl;
tout << m << ' % ' << n << ' = ' << (m % n) << endl;
return 0;

1

38 -I- 5 r 43
38’ - 5 = 3-3

- 5 z -5

38 * 5 = I$0

38 i” 5 = 7

38 % 5 =r 3 i

Note that 3 8 / 5 = 7 a n d 3 8 % 5 = 3. These two operations together provide complete information
about the ordinary division of 38 by 5: 38 + 5 = 7.6. The resulting integer part is 35+5 = 7, and the frac-
tional part is 3+5 = 0.6. The integer quotient 7 and the integer remainder 3 can be recombined with the
dividend 38 and the divisor 5 in the following relation: 7 x 5 + 3 = 3 8 .

The integer quotient and remainder operators are more complicated if the integers are not
positive. Of course, the divisor should never be zero. But if either m or n is negative, then m/n
and m%n may give different results on different machines. The only requirement is that

q*n + r == m

where q = m/n and r = m%n.
For example, -14 divided by 5 is -2.8. For the integer quotient, this could be rounded to -3

or to -2. If your computer rounds the quotient g to -3, then the integer remainder r will be 1.
But if your computer rounds g to -2, then r will be -4.

16 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

EXAMPLE 1.16 Division with Negative Integers

This program is used to determine how the computer handles the division of negative integers:

#include ciostream.h>
// Tests quotient and remainder operators:
main0

int m = -14, n = 5, q = m/n, r = m%n;
tout << "rn = ' C-C m CC endl;
tout << '92 = u -CC n C-C endl;
tout CC "q = " << q CC endl;
tout CC 'r = ' << r C-C endl;
tout << “q*n + r = ‘1 << ‘1 (” << q << ")*('I << n CC ") + '

<< r << " = ' << q*n + r CC ' = ' -CC m CC endl;
return 0;

m = -14 . .
n’a5 :

q s ‘-2 :.’
IT = -4 .’

cpn + r .= (-2]“(5) + -4 t= -24 == 44
: ‘.

This shows the same results both from a UNIX workstation using a Motorola 68040 processor and from a
DOS PC using an Intel Pentium processor.

1.14 OPERATOR PRECEDENCE AND ASSOCIATIVITY

C++ has a rich repertoire of operators. (Appendix C lists all 55 of them.) Since an expression
may include several operators, it is important to know in what order the evaluations of the opera-
tors occurs. We are already familiar with the precedence of ordinary arithmetic operators: the *,
/, and % operators have higher precedence than the + and - operators; i.e., they are evaluated
first. For example,

42 - 3*5

is evaluated as

42 - (3*5) = 42 - 15 = 27

Moreover, all the arithmetic operators have higher precedence than the assignment and output
operators. For example, the statement

n = 42 - 3*5;

will assign the value 27 to n. First the operator * is invoked to evaluate 3 * 5, then the operator
- is invoked to evaluate 4 2 - 15, and then the operator = is invoked to assign 2 7 to n.

Here is part of Table C.l in Appendix C.

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 1 7

Table 1.2 Some C++ Operators

Operator Description Precedence Associativity Arity Example ’
- Negate
*

/
9
0

+
-

< <
=

Multiply

Divide

Remainder, modulo

Add
Subtract

Bit shift left, output

Simple assignment

1 5

1 3

1 3

1 3

1 2

1 2

1 1

2

Right

Left

Left

Left

Left
Left

Left

Right

Unary

Binary

Binary

Binary

Binary

Binary

Binary

Binary

-n

m*n

m/n

m%n

m + n

m - n

tout << n

m = n

It lists 8 operators that apply to integer variables. They fall into five distinct precedence levels.
For example, the unary negate operator - has precedence level 15, and the binary multiply
operator * has precedence level 13, so negative is evaluated before multiply. Thus the
expression m* - n is evaluated as m* (-n) . Assignment operators have lower precedence than
nearly all other operators, so they are usually performed last.

The column labeled “Associativity” tells what happens when several different operators with
the same precedence level appear in the same expression. For example + and - both have
precedence level 12 and are left associative, so the operators are evaluated from left to right. For
example, in the expression

8 - 5 + 4

first 5 is subtracted from 8, and then 4 is added to that sum:

(8 -5)+4=3+4=7

The column labeled “A&y” lists whether the operator is unary or binary. Chary means that
the operator takes only one operand. For example, the post-increment operator + + is unary: n+ +

operates on the single variable n. Binary means that the operator takes two operands. For
example, the add operator + is binary: m + n operates on the two variables m and n.

1.15 THE INCREMENT AND DECREMENT OPERATORS

Of the many features C++ inherited from C, some of the most useful are the increment opera-
tor ++ and decrement operator - -. These operators transform a variable into a statement
expression that abbreviates a special form of assignment.

1 8 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

EXAMPLE 1.17 Increment and Decrement Operators

This shows how the increment and decrement operators work:

#include ciost ream.h>
// Tests the i ncremen
main0

t and decrement operators:

int m = 44, n = 66;
tout CC Nrn = ' CC m
++m;
IIw
tout CC "m = U CC m

I-n ;
tout << flrn = u CC m
return 0;

<<

<<

<<

endl;

endl;

endl;

Both the pre-increment operator + +m and the post-increment operator m+ + have the same effect here:
they add 1 to the value of m. Similarly, both the pre-decrement operator - -n and the post-decrement
operator n- - have the same effect here: they subtract 1 from the value of n.

When used as a stand-alone expression statement, ++m and m++ are both equivalent to the
assignment

m = m + 1;

they simply increase the value of m by 1. Similarly, the expression statements --n and n--
are both equivalent to the assignment

n = n - 1 ;

they simply decrease the value of n by 1. (The increment operator ++ was used in the name
“C++” because it “increments” the original C programming language; it has everything that C
has, and more.)

However, when used as subexpressions (i.e., expressions within expressions), the pre-incre-
ment operation ++m is different from the post-increment operation m+ +. The pre-increment
increases the variable first before using it in the larger expression, whereas the post-increment
increases the value of the variable only after using the prior value of the variable within the larger
expression.

Since the incrementing process is equivalent to a separate assignment, there are really two
statements to be executed when the increment operation is used as a subexpression: the incre-
menting assignment and the larger enclosing statement. The difference between the pre-incre-
ment and the post-increment is simply the difference between executing the assignment before or
after the enclosing statement.

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 1 9

EXAMPLE 1.18 Pre-Increment and Post-Increment Operators

This shows the difference between the pre-increment and the post-increment:

#include <iostream.h>
// Tests the increment and decrement operators:
main0

int m = 66, n;
n = ++m;
tout <<
n = m++;
tout <<
tout <<

I’m =

-x m << '1,

m

n =

n =

C-C n C-C endl;

cc n << endl;

m cc endl;
tout -x I'm = '1 C-K ++m << endl;
return 0;

In the first assignment, m is pre-incremented, increasing its value to 67, which is then assigned to n. In
the second assignment, m is post-incremented, so 67 is assigned to n and then m is increased to 68.

In the third output statement, m is post-incremented, so the current valueof m (68) is dropped into
the output stream and then m is increased to 69. In the last output statement, m is pre-incremented, so m
is increased to 70 firstandthen that value is dropped into the output stream.

Use of the increment and decrement operators as subexpressions can be tricky and should be
used with caution. For example, the order of evaluations of expressions that involve them is not
defined by the language and consequently can be unpredictable:

EXAMPLE 1.19 The Unpredictablilty of the Order of Evaluation of Subexpressions

#include <iostream.h>

main0

int n = 5, x;
x = ++n * --n;
tout << "n = ' << n <=c ', x = ' C-K x -CC endl;
tout << ++n << u '1 << ++n << 'I ' << ++n << endl;

In the assignment to x, n is first increment to 6 and then decremented back to 5 before the multiply
operator is evaluated, computing 5 * 5. In the last line, the three subexpressions are evaluated from right to

20 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

left. The left associativity of the output operator CC is irrelevant because there are no other operators
involved that have the same precedence level.

1.16 COMPOUND ASSIGNMENT EXPRESSIONS

Increment and decrement operators abbreviate certain kinds of assignments. C++ also allows
the assignment to be combined with other operators. The general syntax for these combined
assignments is

variable op= expression

where OP is a binary operator. The effect of the combined assignment is the same as
variable = variable op expression

For example, the combined assignment
n += 8;

has the same effect as the simple assignment
n=n+8;

It simply adds 8 to n.

EXAMPLE 1.20 Assignment Operators

This shows how to use some of the combined oDerators:

#include ciostream.h>
// Tests combined operators:
main0

-C
int n = 44;
n +=9;
tout C-C n CC endl;
n - 5 ;II

tout CC n CC endl;
n *= 2;
tout << n CC endl;
return 0;

1

53 1
&lj.-~,..s ‘, ‘. _
f-36 ,-

-

The statement n += 9 adds 9 to n, the statement n - =
n *= 2 multiplies n by 2.

1.17 INTEGER OVERFLOW AND UNDERFLOW

5 subtracts 5 from n, and the statement

Unlike the integers of pure mathematics, the integer objects in a computer are bounded. As
we saw above, each integer type has a maximum value and a minimum value. If the value of a
variable exceeds either of its bounds, we have what is called overflow.

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 2 1

EXAMPLE 1.21 Testing for Overflow

This program shows what happens when an object of type short overflows:

#include ciostream.h>
#include climits.h>
// Tests for overflow for type short:
main0

short n = SHRT MAX - 1;-
tout CC n++ CC endl;
tout CC n++ CC endl;
tout CC n++ CC endl;
tout CC n++ CC endl;
return 0;

The values “wrap around” the endpoints of 32,767 and -32,768. In other words, the value that results
when 1 is added to 32,767 is -32,768. This is obviously wrong!

Most computers handle overflow this way. The values wrap around, so that the number that
comes after the maximum value is the minimum value. This is the worst kind of error that can
occur on a computer because normally there is no outside evidence that anything has gone
wrong. As we shall see later, C++ fortunately provides mechanisms to help the programmer han-
dle this problem.

Overflow is one kind of a run-time error. Another common example is division by zero. But
this is not as great a problem because you will know when it happens: the program crashes!
Numeric overflow is like an internal hemorrhage: you may not be aware that you are in grave
danger.

1.18 THE char TYPE

In C++, the character type char is one of the integer types. This means that any variable of
type char may be used in integer expressions just like any other integer. For example, the
integer arithmetic operators apply to char variables:

char c = 54;
char d = 2*c - 7;
c += d%3;

The name “char” is short for “character.” The name char is used because when variables of this
type are input or output, they are interpreted as characters. Whenever a character is input, the
system automatically stores its ASCII code (see Appendix A) as the value of the integer type
char. And whenever a variable of type char is output, the system automatically sends the
corresponding character to the output stream. This illustrated in the example below.

22 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

C++ defines three &bit integer types: char, signed char, and unsigned char. Butonly
two of these are distinct. The type char will be either signed char or unsigned char,
depending upon the computer. Use type char for ordinary characters. Use the type unsigned
char for very short bit-string. The type signed char is not explicitly used very often; it
would be a good choice if you needed to store a large quantity of very short integers that would
not have to be output by means of the standard output operator <<.

EXAMPLE 1.22 Character Output

This shows how char variables are output:

#include <iostream.h>
// Tests output of type char:
main0

char c = 64;
tout << c++ << " ";
tout << c++ << " ";
tout << c++ << " ";
tout << c++ << endl;
c = 96;
tout << c++ << " ";
tout << c++ << " I';
tout << c++ << " ";
tout << c++ << endl;
return 0;

// prints Y' and increments c to 65
// prints 'A' and increments c to 66
// prints 'B' and increments c to 67
// prints 'Cl and increments c to 68

// prints "I and increments c to 97
// prints 'a' and increments c to 98
// prints 'b' and increments c to 99
// prints 'c' and increments c to 100

The first output statement inserts the character variable c into the output stream. Since it has the integer
value 64, it is output as the character ‘W”. (The ASCII code for the “at” symbol is 64.) Then c is imme-
diately incremented to 65 which causes the character “A” to be output next. (The ASCII code for the letter
A is 65.) The rest of the program continues in a similar way. (Note that on computers that use the
EBCDIC code, the output here will be different.)

The complete ASCII code is shown in Appendix A.

EXAMPLE 1.23 Obtaining the ASCII Code

#include <iostream.h>
// Tests output of type char:
main0

-t
char c = 'A';
tout << c++ << " " << int(c) c< endl; // prints 'A' and 65
tout << c++ << " " <C int(c) C< endl; // prints 'B' and 66/
tout << c++ << " ' << int(c) << endl; // prints 'C' and 67
return 0;

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 2 3

As this program executes, c takes the values 65, 66, 67, and 68. But since character variables are
printed as characters, the first thing printed on each line is the character whose ASCII code is stored in c .
Thus, A, B, and C are printed. We use int (c) to print the numeric value of the character c.

The expression int (c) is called a cast. It converts c from char type to int type. This
allows us to print the ASCII code of a character.

Review Questions

1 1.

1.2

Describe the two ways to include comments in a C+-t I program.

What is wrong with the following “comment”:

tout -CC "Hello, /* change? */ World.\n ,” .

1.3 What does a declaration do?

1.4 What is the purpose of the preprocessing directive:

#include <iostream>

1.5 Is this a valid C++ program? Explain:

main0 { 22; }

1.6 Where does the name of the language “C++” come from?

1.7 What’s wrong with these declarations:

int first = 22, last = 99, new = 44, old = 66;

1.8 What’s wrong with these declarations:

int x = y = 22;

1.9 What’s wrong with this program:

main0

n = 22;
tout C-C n << endl;

2 4 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

1.10 For each of the following expressions, either evaluate it or explain why it is not a valid
expression:

a. 37/ (5*2)
6. 37/5/2

c. 37(5/2)

d. 37%(5%2)

e. 37%5%2

$ 3 7 - 5 - 2

g, (37-5)2

1.11 Evaluate each of the following expressions, assuming in each case that m has the value 24
and n has the value 7:

a . m - 8 - n

b.m=n=3
c. m%n

d. m%n++
e. m%++n

f. ++m - n--

g. m += n -= 2

1.12 Determine which of the following is a valid identifier. If it is not valid, tell why:

a. r2d2
b. H20

C. secondCousinOnceRemoved

d. 2ndBirthday

e. the-United_States-of-America

f. -TIME-

g. 12345-

h. x(3)

i . cost-in-$

Solved Problems

1.13 What is the output from the following program:

#include <iostream.h>
main0

// tout << "Hello, World.\n";

This program has no output. The double-slash transforms the output statement into a comment.

CHAP. 1] INTRODUCTION TO PROGRAMMING IN C++ 2 5

1.14 What is wrong with the following program:

#include <iostream.h>
// This program prints "Hello, World.":
main0
{

tout << "Hello, World.\n"
return 0;

The required semicolon is missing from the end of the output statement.

1.15 Write four different C++ statements that each subtract 1 from the integer variable n.

n = n - 1 ;
n -1;- -
- -n;
n--;

1.16 Write a single C++ statement that subtracts the sum of x and Y from z and then
increments y.

- -z - (x + y++);

1.17 Write a single C++ statement that decrements the variable n and then adds it to total.

total += --n;

1.18 In each of the following, assume that m has the value 5 and n has the value 2 before the
statement executes. Tell what the values of m and n will be after the statement executes
the following:

a. m *= n++;

b . m += --n;

a. n will be 3 and m will be 10.

b. n will be 1 and m will be 6.

1.19 Identify and correct the error in each of the following:

a. tout >> count;
b. m = ++n += 2;

a. The output object cou t requires the output operator CC.
The statement should be cou t << count ;

b. The expression + +n cannot be on the left side of an assignment.

1.20 Trace the following code fragment, showing the value of each variable each time it
changes:

int x, y, z;
X = y = z = 6;
x *= y += z -= 4;

First, 6 is assigned to z, y, and x. Then z is decremented by 4, obtaining the value 2. Then y is
incremented by 2, obtaining the value 8. Then x is multiplied by 8, obtaining the value 48.

26 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

1.21 On most UNIX workstations, the int type ranges from -2,147,483,648 to 2,147,483,647.
How many bytes will an object of this type occupy in memory?

The range from -2,147,483,648 to 2,147,483,647 covers 4,294,967,296 values. This number is
exactly 232, so each int requires 32 bits which is 4 bytes of memory.

1.22 How do the following two statements differ:
char ch = 'A';
char ch = 65;

Both statements have the same effect: declare ch to be a char and initialize it with the value 65.
Since this is the ASCII code for I A I , that character constant can also be used to initialize ch to 65.

1.23 What code could you execute to find the character whose ASCII code is lOO?
char c = 100;
tout << c;

1.24 How could you determine
char on your computer?

Run a program like that in
and UCHARJWX:

whether char is the same as signed char or unsigned

Example 1.14 and compare the constants CHAR MAX,- SCHAR-MAX,

Solved Programming Problems

1.25 Write a program that prints the first sentence of the Gettysburg Address.

Essentially, all that we need to do here is use a sequence of output statements, sending pieces of the
sentence to the cou t object:

#include <iostream.h>

// Prints the first sentence of the Gettysburg Address:
main0
-t

tout << "\tFourscore and seven years ago our fathers\n";
tout << "brought forth upon this continent a new nation,\n";
tout << "conceived in liberty, and dedicated to the\n";
tout << "proposition that all men are created equal.\n";
return 0;

We could’also have done this by chaining the pieces with a single reference to cou t, like this:

tout CC "\tFourscore and seven years ago our fathers\n"
C-K "brought forth upon this continent a new nation,\n"
<< "conceived in liberty, and dedicated to the\n"
<< "proposition that all men are created equal.\n";

Note that this is a single statement, with a single semicolon.

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 2 7

If you want the output lines to be longer (or shorter) than
stream, simply adjust your placement of the endline characters

the individual pieces sent to the
6
\n ‘. .

#include <iostream.h>

// Prints the first sentence of the Gettysburg Address:
main0

output

tout << "\tFourscore and seven years ago our fathers ";
tout << "brought forth upon\nthis continent a new nation, ";
tout << "conceived in liberty, and dedicated\nto the ";
tout << "proposition that all men are created equal.\n";
return 0;

Don’t forget to put a blank after the last word on each line that doesn’t end with an endline character.

1.26 Write a program that prints the sum, difference, product, quotient, and remainder of two
integers. Initialize the integers with the values 60 and 7.

After declaring integers m and n andinitializing them with the values 60 and 7, we use
statement to print their values, and then one output statement for each of the five operations:

one ouput

#include <iostream.h>

// Prints sum, difference, product, and quotient of given integers:
main0
{

int m = 60, n = 7;
tout << "The integers are " -KC m CC ' and ' C-C n << endl;
tout << "Their sum is I I

< < (m + n) << endl;
tout << "Their difference is ' << (m - n) C-C endl;
tout << "Their product is II << (m * n) C-C endl;
tout << "Their quotient is ' << (m / n) << endl;
tout << "Their remainder is ' << (m % n) << endl;
return 0;

Note that the quotient 8 and remainder 4 fit the required relationship for the quotient and remainder
from integer division: 60 = (8)(7) + (4).

28 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

1.27 Write a program that prints the block letter “B” in a 7 x 6 grid of stars like this:

.*.**-k*
. .

*.:. - : *. 1’ ‘.

‘* ..: .*. ‘: 2

t _

* ik *&C
:_

*k: *
_ .:

*. ‘. .‘I+

***&*. -*

We use one output statement for each row in the block letter:
#include ciostream.h>

// Prints the block letter 'B' in a 7 x 6 grid:
main0

1
tout CC '*****' CC endl;
tout cc '* *' CC endl;
tout cc '* *I CC endl;
tout CC "*****' CC endl;
tout cc '* *' CC endl;
tout cc '* *' CC endl;
tout CC '*****' CC endl;
return 0;

Instead of adding the end1 object
endline character ‘\n' like this:

to each output, we could have quoted string with the

tout CC "*****\n';

Supplementary Problems

1.28 Trace the following code fragment, showing the value of each variable each time it
changes:

int x, y, z;
x=y=z=5;
x *= y += z -= 1;

1.29 On most systems, the unsigned char type ranges from 0 to 255. How many bytes will
an object of this type occupy in memory?

Supplementary Programming Problems

1.30 Write and run a program that prints your name and address.

1.31 Write and run a program that prints the first sentence of the Gettysburg Address, with no
more than 40 characters per line.

CHAP. l] INTRODUCTION TO PROGRAMMING IN C++ 2 9

1.32 Run the program in Example 1.11 on your system. Use the output to determine what dif-
ferent integer types are available and how many bytes each requires.

1.33 Modify the program shown in Example 1.16 to see how your computer handles the integer
division of 20 divided by -7. Try to predict what the quotient and remainder will be. Then
run your program to see if you were right:

1.34 Write and run a program that prints the first letter of your last name as a block letter in a
7 x 7 grid of stars.

1.35 Write and run a program that prints the first four lines of Shakespeare’s Sonnet 18:
Shall I compare thee to a summer's day?
Thou art more lovely and more temperate.

Rough winds do shake the darling buds of May,
And summer's lease hath all too short a date.

1.36 To find out what your system does about uninitialized variables, write and run a test pro-
gram that contains the following two lines:

int n;
tout -CC n C-C endl;

1.37 Write and run a program that causes negative overflow of an variable of type short int.

1.38 Write and run a program that causes overflow of an variable of type int.

1.39 Write and run a program like the one in Example 1.22 that prints the ASCII codes for only
the 10 digits and the last 5 lowercase letters. Use Appendix A to check your output.

1.40 Write and run a program like the one in Example 1.22 that prints the ASCII codes for only
the 10 uppercase and lowercase vowels. Use Appendix A to check your output.

Answers to Review Questions

1.1

1.2

1 3.

1.4

One way is to use the Standard C style comment:

/* like this */

The other way is to use the C++ style comment:

// like this

The first begins with a slash-star and ends with a star-slash. The second begins with a double-slash and
ends at the end of the line.

t

Everything between the double quotes will be printed, including the intended comment.

A declaration tells the compiler the name and type of the variable being declared. It also may be initial-
ized in the declaration.

It includes the header file i o s t r earn . h into the source code. This includes declarations needed for
input and output; e.g., the output operator <<.

1.5 This is a valid C++ program. It contains a single statement: 2 2 ; This is an expression statement
because any constant, like 22, is a valid expression. The program does nothing.

30 INTRODUCTION TO PROGRAMMING IN C++ [CHAP. 1

1.6 The name refers to the C language and it increment operator + +. The name suggests that C++ is an
advance over C.

1.7 The only thing wrong with these declarations is that new is a keyword. Keywords are reserved and can-
not be used for variable names.

1.8 This is an intended declaration. The only way that the equals sign can be used in a declaration is to initial-
ize a variable. The expression x = y = 2 2 is not a valid initialization because the variable y appears
on the right side of the first equals sign. The correct syntax would be

int x = 22, y = 22;

1.9 There are two things wrong. The variable n is not declared, and cou t is being used without including
the <iostream.h> headerfile.

1.10 a. 37/ (5*2) evaluatesto 37/10 = 3

b. 37/5/2 evaluates to (37/5) /2 = 7/2 = 3

c. This is not valid because there is no operator between 3 7 a n d (5 / 2) .
T h e intended operation was 3 7 * (5 / 2) , which evaluates to 3 7 / 2 = 18

d. 37%(5%2) evaluatesto 37%1 = 0

e. 37%5%2 evaluatesto (37%5)%2 = 2%2 = 0

$ 37 - 5 - 2 evaluatesto (37 - 5) - 2 = 32 - 2 = 30

g. This is not valid because there is no operator between (3 7 - 5 > a n d 2.
T h e intended operation was (3 7 - 5) * 2, which evaluates to 3 2 * 2 = 6 4

1.11 a. m - 8 - n evaluates to (2 4 -8)-7=16-7=9

b. m = n = 3 evaluates to 3

c. m%n evaluates to 2 4 %7 = 3

d. m%n++ evaluates to 24% (7++) = 24%7 = 3

e. m%++n evaluates to 24% (++7) = 24%8 = 0

f. ++m - n-- evaluatesto (++24) - (7--) = 25 - 7 = 8

g. m += n -= 2 evaluatesto += (7 -= 2) = 24 += 5 = 29

1.12 a. r2 d2 is a valid identifier

b. H20 is a valid identifier

C. secondCousinOnceRemoved isavalididentifier

d. 2ndBir thday is not a valid identifier because its first character is a digit

e. the-United-States-of-America isavalididentifier

J TIME is a valid identifier- -

g. -12 3 4 5 is a valid identifier

h. x (3) is not a valid identifier because it contains the characters ‘ (’ and ‘) ’

i . cos t-in-$ is not a valid identifier because it contains the character ‘ $’

Chapter 2

Conditional Statements and Integer Types

The programs in Chapter 1 all have sequential execution: each statement in the program
executes once, in the order that they are listed. Conditional statements allow for more flexible
programs where the execution of some statements depends upon conditions that change while
the program is running.

This chapter describes the if statement, the if . . . else statement, and the switch
statement also shows how to include simple input into your programs.

2.1 INPUT

In C++, input is analogous to output. But instead of data flowing out to the output stream
tout, we have data flowing in from the input stream tin (pronounced “see-in”). The name
stands for “console input.”

EXAMPLE 2.1 Integer Input

Here is a simple program that reads integer input:

main0
L

int age;
tout << "How old are you: ";
tin >> age;
tout << "In 10 years, you will be ' << age + 10 << ".\n";

>

How old are you: 19
'Jri 3.0 yct%u23, you wiU be 29. _

The type shown in boldface in the shaded sample run is the input that is typed by the user.

The symbol >> is the extraction operator, also called the input operator. It is usually used
with the tin input stream, which is usually the user’s keyboard. Thus, when the statement

tin >> age;

executes, the system pauses, waiting for input. As soon as an integer is input, it is assigned to
age and the program continues.

Notice that the preprocessor directive:
#include <iostream.h>

is missing from Example 2.1. It & required in any program that uses either tin or tout. But
since nearly every program in this book does use either tin or tout, we will assume that you
know to include this line at the beginning of your source code file. Omitting it from these

3 1

3 2 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

examples simply saves some print space. We will also omit the return statement at the end of
the main (> function in all future examples.

The input object tin is analogous to the output object tout. Each is a C++ stream object
that acts as a conduit through which bytes flow. The bytes flow into the running program through
the tin obiect. and thev flow out through the tout object. This can be visualized like this:

{include <iostream.h>
nain0
(

int age;
tout << "How old are you: ";
tin >> age;
tout << "In 10 years, you will be ' cc age + 10 -C-C ".\n";

How old are you: 1 9
In 10 years, you will be 29.

EXAMPLE 2.2 Character Input

main0
1

char first, last;
tout << "Enter your initials:\n";
tout CC "\tFirst name initial: ";
tin >> f i r s t ;
tout CC "\tLast name initial: ";
tin >> l a s t ;
tout CC "Hello, 'I cc first CC '. 'I CC last << ".!\n";

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 33

This example illustrates a standard way to format input. The first output line alerts the user to what
general input is needed. This is followed by a sequence of specific input requests, called user prompts.
Each user prompt is indented with the tab character \ t, and by omitting the newline character \ n it
leaves the cursor on the same line for the user to enter a response there.

EXAMPLE 2.3 Multiple Input in the Same Stream

More than one variable may be read in the same input statement:

main0

char first, last;
tout cc "Enter your first and last initials: ";
tin >> first >> last;
tout << "Hello, ' CC first << '. 'I CC last << ".!\n";

This shows that the input stream tin reads the items from left to right; i.e., the left-most variable is read
first.

Since the char type is an integer type, tin will ignore all leading white space (i.e., blanks, tabs,
and newlines) when it reads input. So the input in this example could have been entered as

Notice that this prevents the input of blanks as characters using input operator CC. In later chapters, we
will see more specialized methods for character input.

2.2 THE if STATEMENT

The if statement allows conditional execution. Its syntax is
if (condition) statement;

where condi ti on is an integer expression and s ta temen t is any executable statement. The
s ta temen t will be executed only if the condi ti on has a nonzero value. (Whenever an integer
expression is being evaluated as a condition, a nonzero value is interpreted to mean “true” and a
zero value to mean “false.“) Notice the required parentheses around the condi t ion.

EXAMPLE 2.4 Testing for Divisibility

main0
-t

int n, d;
tout cc "Enter two integers: ";
tin >> n >> d;
if (n%d == 0) tout CC n CC It is divisible by ' CC d CC endl;

Enter twu, integers: 24 6 ::.. . ; 3::..,
24 is divisible by-S . '. .., :. . .'._ : : : ',>: ,t. : ;'I. . . ,.: I ~ '. .i;-\.:.',.:,' ':. : ., ,., ;.;. (.. '::,., ,, _,(

3 4 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

This program reads two integers and then checks the value of the remainder n % d. In this run, the
value of 24 % 6 is 0, which means that 24 is divisible by 6.

The trouble with this last example is that it .doesn’t do anything when n is not divisible by d:

Enter two integers: 24 5

To execute an alternative statement when the condition is zero, we need the i f . . . el se
statement.

2 . 3 T H E i f . . . else STATEMENT

T h e i f . . . else statement executes one of two alternative statements, according to the
value of the specified condition. It has the syntax

if (condition) statementl;
else statement2;

where condi t ion is an integer expression, and s tat ement 1 and s tat ement 2 are any state-
ments. The statement1 is executedif the condition has anonzero value, and statement2 is
executed if the condition has a zero value.

EXAMPLE 2.5

This is the same program as in Example 2.4, except that an el se clause has been added:

main0
-i

int n, d;
tout << "Enter two
tin >> n >> d;
if (n%d == 0) tout
e l s e tout c c n c c w

integers: ";

-cc n << is divisible by ' -CC d -CC endl;
i s n o t d i v i s i b l e b y ’ CC d CC e n d l ;

Enter twu i n t e g e r s : 2 4 5
24h n o t d i v i s i b l e b y 5 ,..

Since 24 % 5 == 4, the condition (n%d = = 0) is false and the e 1 s e clause executes.

A condition like (n%d = = o > is an expression whose value is interpreted as being either
“false” or “true.” In C++ those two values are integers: 0 means “false,” and any nonzero integer
means “true.” Because of that correspondence, conditions can be ordinary integer expressions. In
particular, the integer expression (n%d > itself can be used as a condition. It is nonzero (i.e.,
“true”) precisely when n is not divisible by d, we should reverse the two print statements in the
previous example to make sense:

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 35

EXAMPLE 2.6

main0
-t

int n, d;
tout << "Enter two integers: ";
tin >> n x= d;
if (n%d) tout << n C-K 'I is not divisible by ' C-C d CC endl;
else tout << n << ' is not divisible by ' C-C d << endl;

2.4 RELATIONAL OPERATORS

The next example has a condition in a more intuitive form.

EXAMPLE 2.7 Finding the Maximum of Two Integers

This program prints the larger of the two numbers input:

main0

int m, n;
tout << "Enter two integers: ";
tin >> m >> n;
if (m > n) tout C-C m << endl;
else tout CC n -CC endl;

In this program, the condition is (m > n). If m is greater than n, the condition is “true” and evalu-
ates to 1; otherwise, the condition is “false” and evaluates to 0. So m is printed precisely when it is
greater than n.

The symbol > is one of the relational operators. It is called “relational” because it evaluates
how the two expressions on either side of it relate; for example, the relation 22 > 5 5 is false. I
The symbol is called an “operator” because when it is combined with expressions it produces a
value. For example, when > is combined with 2 2 and 5 5 in the form 2 2 > 5 5, it produces
the integer value 0, meaning “false.”

There are six relational operators:

C

c=
II--
>
>=
!=

is less than
is less than or equal to
is equal to
is greater than
is greater than or equal to
is not equal to

3 6 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

Note the double equals sign = = must be used to test for equality. A common error among new
C++ programmers is to use the single equals sign =. This mistake is difficult to uncover because it
does not violate the syntax rules of C++.

EXAMPLE 2.8 Finding the Maximum of Three Integers

This program prints the largest of the three numbers input:

main0

int nl, n2, n3;
tout cc "Enter three integers: ";
tin >> nl >> n2 >> n3;
int max = nl;
if (n2 > max) max = n2;
if (n3 > max) max = n3;
tout cc 'The maximum is H CC max cc endl;

‘Enter three integers: 77 33 55:
The.xrEiximum- i s -77. .

On the first run, nl is 22, n2 is 44, and n3 is 66. First max is assigned 22. Then, since 44 is
greater than 22, max is assigned 44. Finally, since 66 is greater than 44, max is assigned 66, and that
value is printed.

On the second run, nl is 77, n2 is 33, and n3 is 55. First max is assigned 77. Then, since 33 is
not greater than 77, max is unchanged. Finally, since 55 is also not greater than 77, max is again
unchanged, and so the value 77 is printed.

2.5 COMPOUND STATEMENTS

A compound statement is a sequence of statements that is treated as a single statement. C++
identifies a compound statement by enclosing its sequence of statements in curly braces.

The next example contains the following compound statement:

int temp = x;
x = y;
Y = temp;

The braces that enclose the three statements form a block. As a compound statement, it itself
qualifies as a statement and can be used wherever any other statement could be used. (Note that
an entire C++ program-everything that follows main (> -forms a compound statement.)

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 37

EXAMPLE 2.9 Sorting

This program reads two integers and then outputs them in increasing order:

main0

int x, y;
tout cc "Enter two integers: ";
tin >> x >> y;
if (x > Y> 1

int temp = x;
x = y;
Y = temp;

tout cc x cc u << y << endl;
1

Ent.er two integers: 6 6 $ 4
4 4 66.

The effect of putting the compound statement in the i f statement this way is that all three statements
inside the block will be executed if the condition is true.

These particular three statements form a swap; that is, they interchange the values of x and y. This
construct is frequently used in programs that sort data. Such an interchange requires there three separate
steps along with the temporary storage location named temp here.

Notice that the variable t emp is declared inside the block. That makes it local to the block; i.e., it
only exists during the execution of the block. If the condition is false and x 2 y, then temp will never
exist. This is a good example of the practice of localizing objects so that they are created only when
needed.

This Example 2.9 is not the most efficient way to solve the problem. If all we want to do is
print the two numbers in increasing order, we could do it directly without the temp variable:

if (x < y) tout CC x CC ' u << y cc endl;
else tout CC y CC ' H -CC x << endl;

The purpose of the example is to illustrate compound statements and local variable declarations.

2.6 KEYWORDS

A keyword in a programming language is a word that is already defined and is reserved for a
single special purpose. C++ has 48 keywords. They are:

asm
auto
break
case
catch
char
class
const

continue
default
delete
d0

double
else
enum
extern

float
for
friend
got0
i f
inline
int
long

new signed try
operator sizeof typedef
private static union
protected struct unsigned
public switch virtual
register template void
return this volatile
short throw while

We have already seen the keywords char, else, if, int, long, short, signed, and
unsigned. The remaining 40 keywords will be described subsequently.

38 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

Keywords like i f and else are found in nearly every programming language. Other
keywords such as catch and friend are unique to C++. The 48 keywords of C++ include all
32 of the keywords of the C language.

There are two kinds of keywords: those like i f and el se which serve as structure markers
used to define the syntax of the language, and those like char and int which are actual names
of things in the language. In some languages, the structure markers are called resewed words and
the predefined names are called standard identifiers.

2.7 COMPOUND CONDITIONS

Conditions such as n % d and x > Y can be combined to form compound conditions. The
three logical operators that are used for this purpose are SCGC (and), I I (or), and ! (not). They
are defined by

&SC p SCGC g evaluates to 1 only when both p and q evaluate to 1
I I p I I g evaluates to 1 when either p or q or both evaluate to 1
! ! p evaluates to 1 when either p evaluates to 0

For example, (n % d I I x > y) willbetrueifeither n % d is nonzero or if x is greater than
Y (or both), and ! (x > Y > is equivalent to x < = Y.

The definitions of the three logical operators are usually

P 9 P&&9

~

1 1 1
1 0 0
0 1 0
0 0 0

P q Plh

~

1 1 1
1 0 1
0 1 1
0 0 0

given by the truth tables below.

P !P

+
1 0
0 1

These show for example, that if p has the value 1 (for “true”) and g has the value 0 (for
“false”), then the expression p 6~6~ g will have the value 0 and the expression p I I q will have
the value 1.

The next example solves the same problem that Example 2.8 solved, except that it uses
compound conditionals:

EXAMPLE 2.10 The Maximum of Three Again

This program uses compound conditions to find the maximum of three integers:

main0

int a, b, c;
tout < < "Enter three integers: ";
tin >> a >> b >> c;
i f (a >= b && a >= c) tout << a CC endl;

tout << b << endl;
tout C-C c << endl;

if (b >= a ai b >= c)
i f (c >= a && c >= b)

. .
:

‘.-

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 3 9

This simply checks each of the three numbers to see which is greater than or equal to the other two.

Note that Example 2.10 is no improvement over Example 2.8. Its purpose was simply to illustrate
the use of compound conditionals.

Here is another example using a compound conditional:

EXAMPLE 2.11 User-Friendly Input

This program allows the user to input either a Y or a y for “yes”:

main0
-t

char ans;
tout << "Are you enrolled (y/n): ";
tin >> ans;
if (ans == 'Y' I I ans == 'y') tout << "You are enrolled.\n";
else tout << "You are not enrolled.\n";

>

It prompts the user for an answer, suggesting a response of either Y or n. But then it accepts any
character and concludes that the user meant “no” unless either a Y or a Y is input.

Compound conditionals that use scsc and I I will not even evaluate the second part of the
conditional unless necessary. This is called short-circuiting. As the truth tables show, (p GCSC q>
will be false if p is false. So in that case there is no need to evaluate g if p is false. Similarly
if p is true then there is no need to evaluate g to determine that (p I I q> is true.

The value of short circuiting can be seen from the following example:

EXAMPLE 2.12 Short-Circuiting in a Condition

This program tests integer divisibility:

main0
1

int n, d;
tout << "Enter two positive integers: ";
tin >> n >> d;
if (d > 0 && n%d == 0) tout << d -CC " divides ' C-C n << endl;
else tout << d << " does not divide ' C-C n CC endl;

4 0 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

In the first run, d is positive and n%d is zero, so the compound condition is true. In the second run,
d is positive but n%d is not zero, so the compound condition is false.

In the third run, d is zero, so the compound condition is immediately determined to be false without eval-
uating the second component “n%d = = 0". This short-circuiting prevents the program from crashing because
when d is zero the expression n%d cannot be evaluated.

2.8 BOOLEAN EXPRESSIONS

A boolean expression is a condition that is either true or false. In the previous example the
expressions d > 0, n%d == 0, and (d > 0 &SC n%d == o > are boolean expressions. As we
have seen, boolean expressions evaluate to integer values. The value 0 means “false” and every
nonzero value means “true.”

Since all nonzero integer values are interpreted .as meaning “true,” boolean expressions are
often disguised. For example, the statement

if (n) tout CC "n is not zero";

will print n is not zero precisely when n is not zero because that is when the boolean
expression (n > is interpreted as “true”. Here is a more realistic example:

if (n%d) tout CC "n is not a multiple of d”;

The output statement will execute precisely when n%d is not zero, and that happens precisely
when d does not divide n evenly, because n%d is the remainder from the integer division.

The fact that boolean expressions have integer values can lead to some surprising anomalies
in C++. For example, the following line might be written by a novice C++ programmer:

if (x >= y >= z) tout CC "max = x"; // E R R O R !

Obviously, the programmer intended to write
if (x >= y &SC y >= z) tout CC “max = xl’; // OK

The problem is that the erroneous line is syntactically correct, so the compiler will not catch the
error. In fact, the program could run without any apparent error at all. This is a run-time error of
the worst kind because there is no clear indication that anything is wrong.

The source of the difficulty described here is the fact that boolean expressions have numeric
values. Suppose that x and Y both have the. value 0 and that z has the value 1. The expression

(x > = Y >= z > is evaluated from left to right. The first part x >= Y evaluates to “true” which
is the numeric value 1. Then that is compared to Z, and since they are equal the complete expres-
sion evaluates to “true” even though it is really false!

The moral here is to remember that boolean expressions have numeric values, and that
compound conditionals can be tricky.

Another error that novice C++ programmers are prone to make is using a single equals sign
= when the double equals sign == should be. For example,

if (x = 0) tout << "X = 0"; // E R R O R !

Obviously, the programmer intended to write
if (x == 0) tout << "x = 0"; // OK

The erroneous statement will first assign 0 to x. That assignment then has the value 0 which
means “false” so the tout statement will not be executed. So even if x originally was zero, it
will not be printed. Worse, if x originally was not zero, it will inadvertently be changed to zero!

Like the previous bug, this is another run time error of the worst kind. It is very difficult to
detect.

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 41

2.9 NESTED CONDITIONALS

Like compound statements, conditional statements can be used wherever any other statement
can be used. So a conditional statement can be used within another conditional statement. This is
called nesting conditional statements. For example, the condition in the last example could be
restated equivalently as

if (d > 0)
if (n%d == 0)

tout << d << ' divides ' -CC n CC endl;
else

tout << d << ' does not divide ' << n << endl;
else

tout << d << ' does not divide ' << n << endl;

Here extra indentation is used to help clarify the complex logic. Of course, the compiler ignores
all indentation and white space. To parse the statement, it uses the following “e 1 se matching”
rule:

A4atch each else with the last unmatched i f.

Using this rule, the compiler can easily decipher code as inscrutable as this:

if (a > 0) if (b > 0) ++a; else if (c > 0)
if (a < 4) ++b; else if (b c 4) ++c; else --a
else if (c < 4) --b; else --c; else a = 0;

To make it readable for humans, that code should be written either

if (a > 0)
if (b > 0) ++a;
else

if (c > 0)
if (a < 4) ++b;
else

if (b < 4) ++c;
else --a;

else
if (c < 4) --b;
else --c;

else
a = 0;

or like this:

if (a > 0)
if (b > 0) ++a;
else if (c > 0)

if (a < 4) ++b;
else if (b c 4) ++c;
else --a;

else if (c < 4) --b;
else --c;

else
a = 0;

like this:

42 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

EXAMPLE 2.13 The Maximum of Three Again

Here is yet another way to do what was done in Example 2.8 and Example 2.10:

main0

int a, b, c, max;
tout << "Enter three integers: ";
tin >> a >> b >> c;
if (a > b)

if (a > c) max = a; // a > b and a > c
else max = c; // c >= a > b

else
if (b > c) max = b; // b >= a and b > c
else max = c; // c >= b >= a

tout << 'The maximum is H << max CC endl;

In the first run, the test (a > b) fails, so the second el se executes the test (b > c) which also fails,
thus executing the third el se which assigns c to max. In the second run, the test
and then the test (a > c) also succeeds, so a is assigned to max.

(a > b) succeeds,

This program is more efficient than the one in Example 2.10 because it evaluates only two
simple conditions instead of three compound conditions. Nevertheless, it should be considered in-
ferior because its logic is more complicated. The in-line comments are really needed to clarify the
logic. In the trade-off between efficiency and simplicity, the one should opt for simplicity.

Nested conditionals are by their very nature complicated. So it is usually better to avoid them
whenever possible. An exception to this rule is a special form of nested conditional where all
except possibly the last else is immediately followed by another i f. This is a popular logical
structure because it delineates in a simple way a sequence of disjoint alternatives. To clarify the
logic, programmers usually line up the e 1 se i f phrases, as shown in the next example.

EXAMPLE 2.14

This program converts a test score into its equivalent letter grade:

main0

. int score;
tout << "Enter the test score: I';
tin >> score;
if (score > 100) tout CC "Error: score is out of range.";
else if (score >= 90) tout CC 'A';
else if (score >= 80) tout C-C 'B';
else if (score >= 70) tout << 'C';
else if (score >= 60) tout << 'D';
else if (score >= 0) tout << 'F';
else tout -CC "Error: score is out of range.";

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 43

: ._ , .‘. : . .‘. ._‘.. .: ..,j , ., :. . . :
:_I _ _’ _.

. ’. .‘_

E n t e r t h e test txxxez -9 .._
Errur: scure is out of rqxp3. .-

The variable s c o r e is tested through a cascade of conditionals, continuing until one of the conditions is
found to be true, or until the last el se is reached as in the third run.

2.10 THE switch STATEMENT

The sequence of mutually exclusive-alternatives delineated by the multiple el se i f con-
struct can also be coded using a switch statement. Its syntax is

switch (expression) {
case constantl: statementList1;
case constan t2: statementLis t2;

case constantN: statementListN;
default: statementList;

The switch statement evaluates the expression and then looks for its value among the case
constants. If the value is found among the cons tan ts listed, then the statements in that s ta te-
men tLi s t are executed. Otherwise if there is a def au1 t (which is optional), then the program
branches to that s ta temen tLis t. Note that the expression must evaluate to an integer type and
that the constants must be integer constants (which include chars).

EXAMPLE 2.15

The program has the same effect as the program in Example 2.14:

main0

int score;
tout << "Enter the test score: '; tin >> score;
switch (score/lo) {

case 10:
case 9: tout << 'A' << endl; break;
case 8: tout << 'B' << endl; break;
case 7: tout << 'Cl << endl; break;
case 6: tout << ‘D’ << endl; break;
case 5:
case 4:
case 3:
case 2:
case 1:
case 0: tout << 'F' << endl; break;
default: tout << "Error: score is out of range.\n";

4 4 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

First the program divides the score by 10. In the second run .where the input is 47, the expression
score / 10 evaluates to 4. Then that value is located in the case list, and every statement from there to
the next break is executed. That spans all the cases down to case 0 to reach the next break statement.
This phenomenon is called a fall through.

2.11 THE CONDITIONAL EXPRESSION OPERATOR

C++ provides an abbreviated form of a special case of the i f . . . el se statement. It is called
the conditional expression operator and uses the ? and the : symbols in a special ternary
format:

condition ? expression1 : expression2

Like any operator, this combines the given expressions to produce a value. The value produced is
either the value of expression1 or that of expression2, according to whether the condition
is true or false. For example, the assignment statement

min =x<y?x:y;

will assign the value of x to min if x < y, otherwise it assigns the value of y to min.

The conditional expression operator is generally used only when the condition and both
expressions are very simple.

2.12 SCOPE

The scope of an identifier is that part of the program where it can be used. For example
variables cannot be used before they are declared, so their scopes begin where they are declared.
This is illustrated by the next example.

EXAMPLE 2.16 Scope of Variables

main0
-t

x = 11; // ERROR: this is not in the scope of x
int x;

x = 22; // OK: this is in the scope of x
y = 33,I // ERROR: this is not in the scope of y
int y;
x = 44; // OK: this is in the scope of x
y = 55; // OK: this is in the scope of y

>
x = 66; // OK: this is in the scope of x
y = 77. I // ERROR: this is not in the scope of y

The scope of x extends from the point where it is declared to the end of main (> . The scope of y
extends from the point where it is declared to the end of the internal block within which it is declared.

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 45

A program may have several objects with the same name as long as their scopes are nested or
disjoint. This is illustrated by the next example:

EXAMPLE 2.17 Nested and Parallel Scopes

int x = 11; // thisx is global

main0
1 // begin scope of main0

int x = 22;
{ // begin scope of internal block

int x = 33;
tout << "In block inside main(): x = ' -C-C x CC endl;

> // end scope of internal block
tout << "In main(): x = ' -C-K x -CC endl;
tout << "In main(): ::x = ' -CC ::x -CC endl;

1 // end scope of main0

There are three different objects named x in this program. The x that is initialized with the value 11
is a global variable, so its scope extends throughout the file. The x that is initialized with the value 22 has
scope limited to main () . Since this is nested within the scope of the first x, it hides the first x within
main () . The x that is initialized with the value 33 has scope limited to the internal block within
main () , so it hides both the first and the second x within that block.

The last line in the program uses the scope resolution operator : : to access the global x that is oth-
erwise hidden in main () .

2.13 ENUMERATION TYPES

In addition to the predefined types such as int and char, C++ allows you to define your
own special data types. This can be done in several ways, the most powerful of which use classes
as described in Chapters 8-14. We consider here a much simpler kind of user-defined type.

An enumeration type is an integral type that is defined by the user with the syntax
enum typename { enumeratorlist };

Here enum is a C++ keyword, typename stands for an identifier that names the type being
defined, and enumera tori is t stands for a list of identifiers that define integer constants. For
example the following defines the enumeration type Semester, specifying three possible values
that a variable of that type can have

enum Semester {fall, spring, summer};

We can then declare variables of this type:
Semester sl, s2;

and we can use those variables and those type values as we would with predefined types:
s l = spring;
s2 = fall;

i f (1S == s2) tout << "Same semester.\n";

46 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

The actual values defined in the enumera tori is t are called enumerators. In fact, they are
ordinary integer values. The values fall, spring, and summer defined for the Semester
type above could have been defined like this:

const int fall = 0;
const int winter = 1;
const int summer = 2;

The values 0, 1, . . . are assigned automatically when the type is defined. These default values can
be overridden in the enumera torIis t:

enum Coin {penny = 1, nickel = 5, dime = 10, quarter = 25);

If integer values are assigned to only some of the enumerators, then the ones that follow are
given consecutive values. For example,

enum Month {jan = 1, feb, mar, apr, may, jun, jul, aug, sep,
act, nov, dec};

will assign the numbers 1 through 12 to the twelve months.
Since enumerators are simply integer constants, it is legal to have several different enumera-

tors with the same value:
enum Answer {no = 0, false = 0, yes = 1, true = 1, ok = 1);

This would allow the code
Answer ans;

if (ans == yes) tout << "You said it was o.k.\n";
to work as expected. If the value of the variable ans is yes, true, or ok (all of which equal
l), then the condition will be true and the output will occur. Note that since the integer value 1
always means “true” in a condition, this conditional statement could also be written

if (ans) tout << "You said it was o.k.\n";

Enumeration types are usually defined to make code more self-documenting; i.e., easier to
understand. Here are a few more typical examples:

enum Boolean {false, true};
enum Sex {female, male};
enum Day {sun, mon, tue, wed, thu, fri, sat};
enum Base {binary = 2, octal = 8, decimal = 10, hexadecimal = 16);
enum Color {red, orange, yellow, green, blue, violet};
enum Rank {two, three, four, five, six, seven, eight, nine, ten,

jack, queen, king, ace};
enum Suit {clubs, diamonds, hearts, spades};
enum Roman {I = 1, V = 5, X = 10, L = 50, C = 100, D = 500,

M = 1000);

Definitions like these can help make your code more readable. But enumerations should not be
overused. Each enumerator in an enumerator list defines a new identifier. For example, the
definition of Roman above defines the seven identifiers I, V, X, L, C, D, and M as specific
integer constants, so these letters could not be used for any other purpose within the scope of
their definition. .

Note that enumerators must be valid identifiers. So for example, the following would not be .
*. I

valid:

enum Grade {F, D, C-, C, C-t, B-, B, B+, A-, A}; // ERROR!

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 47

because the characters ‘+’ and ‘-’ cannot be used in identifiers. Also, the following would not be
valid:

enum Month {jan = 1, feb, mar, apr, may, jun, jul, aug, sep,
act, nov, dec};

enum Base {bin = 2, act = 8, dec = 10, hex = 16); // ERROR!

because the constant act is being redefined.

2.14 INTEGER TYPE CONVERSIONS

In many cases, C++ allows objects of one type to be used where another type is expected.
This is called type conversion. The most common examples of type conversion are from one
integer type to another, which we consider here, and conversion from an integer type to a floating
point type, which we consider in Chapter 3.

The general idea is that one integer type may be used where another integer type is expected
if the expected type has a higher “rank”. For example, a char can be used where an int is
expected because int has higher rank than char.

EXAMPLE 2.18 Integer Promotion

main0
-t

char c = 'A';
short m = 22;
int n = c + m;
tout << % = ' -CC n << endl;

X3=87.

The char variable c is initialized with the integer value 65 (the ASCII for the character I A I) and
the short variable m is initialized with the integer value 22. In the assignment n = c + m, the oper-
ands c and m have different integral types, so their values 65 and 22 are both promoted to type int
before the resulting value of 87 is assigned to n.

Integral promotion like this is quite common and usually occurs unnoticed. The general rule is
that any integral type will be promoted to int whenever an integer conversion like this is necessary.
An exception to that rule applies on compilers whose implementation of int does not cover all the
values of the type being promoted. In this case the integral type will be promoted to uns igned in t
instead. For example, in Borland C++, the range of type unsigned short is 0 to 65,536 (see Ex-
ample 1.14) which extends beyond the range of int (-32,768 to 32,767), so on that compiler un-
signed short getspromotedto unsigned int insteadofto int.

Since enumeration types are integral types, integral promotion applies to them too, as the
next example illustrates.

48 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

EXAMPLE 2.19 Integer Promotion

enum Color {red, orange, yellow, green, blue, violet};

main0

Color x = blue;
tout << "X = ' << x << endl;

In the last line, the value of x is promoted from the enumeration type CO lor to the type int
before it is inserted into the output stream.

2.1

2.2

2.3

2.4

Write a single C++ statement that prints II Too many II if the variable count exceeds 100.

What is the difference between a reserved word and a standard identifier?.

What is “short-circuiting” and how is it helpful?

How is the following expression evaluated?

(x < y ? -1 : (x == y ? 0 : 1));

2.5

2.6

What is a “fall through”?

State whether each of the following is true or false. If false, tell why.

a. !(p q) isthesameas !p !q
b. !! !p isthesameas !p
C.p&&q II r is the same as p SC& ((2

2 7. What is wrong with the following code:

enum Semester {,fall, spring, summer};

enum Season {spring, summer, fall, winter};

2.8 What is wrong with the following code:

enum Friends {"Tom", "Dick", "Harry", };

2 9. What is wrong with the following code:

if (x = 0) tout << x << '1 = O\n";

else tout << x << ' .= O\n";I

2.10

2.11

What is wrong with the following code:

i f (x < y < z> tout << x <<

What is wrong with the following code:

a. tin CC count;
6. if x =c y min = x

Review Questions

I I
< << y << " < M << z CC endl; I

else min = y;

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 4 9

2.12 What is wrong with the following code:

tout << "Enter n: 'I;
tin x= n;
if (n < 0)

tout << "That is negative. Try again.\n";
tin >> n;

else
tout << "o.k. n = ' -CC n << endl;

Solved Problems

2.13 Construct a logical expression to represent each of the following conditions: a. score is
greater than or equal to 80 but less than 90; 6. answer is either I N I or I n ' ; c. n is even
but not 8; d. ch is a capital letter.

a. (score >= 80 SC& score < 90);

ZA (answer == ‘N’ answer == 'n');

h (n%2 == 0 && n != 8);

b. (ch >= 'A' &SC ch <= 'z');

2.14 What is wrong with the following code:

. if (x == 0)
if (y == 0) tout << "x and y are both zero.\n";

else tout << "x is not zero.\n";

The programmer clearly intended for the second output II x i s no t z ero . \ n II to be printed if
the first condition (x = = 0) is false, regardless of the second condition (y = = 0) . That is, the
el se was intended to be matched with the first i f . But the “e 1 se matching” rule causes it to be
matched it with the second condition, which means that the output I’ x i s not z ero . \ n ‘I will be
printed only when x is zero and y is not zero.

The “e 1 se matching” rule can be overridden with braces:

if (x == 0) {

if (y == 0) tout << "x and y are both zero.\n";

else tout << 'lx is not zero.\n";

Now the e 1 se will be matched with the first i f, the way the programmer had intended it to be.

2.15 What is the difference between the following two statements:

if (n > 2) { if (n < 6) tout C-C "OK"; > else tout << "N&I;

if (n > 2) { if (n < 6) tout C-K "OK"; else tout << "NG"; }

5 0 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

In the first statement, the el se is matched with the first i f . In the second statement, the e 1 se
is matched with the second i f. If y1 < 2, the first statement will print NG while the second statement
will do nothing. If 2 < y2 < 6, both statements will print OK. If y2 > 6, the first statement will do nothing
while the second statement will print NG.

N o t e that this code is difficult to
The first statement should be written

read because it does not follow standard i ndentation conventions.

if (n>2) {
if (n c 6) tout << "OK";

else tout CC "NG";

The braces are needed here to override the “else matching” rule. This else is intended to match
the first i f.

The second statement should be written

if (n > 2)

if (n c 6) tout << "OK";

else tout CC "NG";

Here the braces are not needed because the el se is intended to be matched with the second i f.

Solved Programming Problems

2.16 Write and run a program that reads the user’s age and then prints “You are a child.” if the
age < 18, “You are an adult.” if 18 I age < 65, and “You are a senior citizen.” if age 2 65.

Here weusedthe else if
of three disjoint intervals:

main0

construct because the three outcomes depend upon age being in one

int age;
tout << "Enter your age: ";
tin >> age;
if (age < 18) tout CC "You are a child.\n";
else if (age c 65) tout CC "You are an adult.\n";
else tout CC "you are a senior citizen.\&';

If control reaches the second condition (age c 6 5) , then the first condition must be false so in fact
18 < age < 65. Similarly, if control reaches the second
factage 2 65.

el se, then both conditions must be false so in

2.17 Write and run a program that reads two integers and then uses the conditional expression oper-
ator to print either “multiple” or “not” according to whether one of the integers is a multiple of
the other.

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 51

An integer m is a multiple of an integer n if the remainder from the integer division of m by n is
0. So the compound condition m % n == 0 I I n % m == 0 tests whether either is a multiple of
the other:

main0
1

int m, n;
tin >> m >> n;
tout << (m % n == 0 II n % m == 0 ? 'multiple" : "not") << endl;

The value of the conditional expression will be either II mu1 t ipl e ‘I o r ‘I not ‘I , according to
whether the compound condition is true. So sending the complete conditional expression to the output
stream produces the desired result.

2.18 Write and run a program that simulates a simple calculator. It reads two integers and a charac-
ter. If the character is a +, the sum is printed; if it is a -, the difference is printed; if it is a *,
the product is printed; if it is a / , the quotient is printed; and if it is a %, the remainder is
printed. Use a swi tch statement.

The character representing the operation should be the control variable for the swi tch statement:

int x, y;
char op;
tout << "Enter two integers: fl;
tin >> x >> y;
tout << "Enter an operator: II;
tin >> op;
switch (op) {

case '+I: tout << x + y << endl; break;
case I--': tout << x - y << endl; break;
case I*': tout << x * y << endl; break;
case '/I: tout << x / y << endl; break;
case '%I: tout << x % y << endl; break;

In each of the five cases, we simply print the value of the corresponding arithmetic operation and then

52 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

2.19 Write and run a program that plays the game of “Rock, paper, scissors.” In this game, two
players simultaneously say (or display a hand symbol representing) either “rock,” “paper,” or
“scissors.” The winner is the one whose choice dominates the other. The rules are: paper dom-
inates (wraps) rock, rock dominates (breaks) scissors, and scissors dominate (cut) paper. Use
enumerated types for the choices and for the results.

First define the two enum types Choice and Result. Then declare variables choicel,
choice2, and result of these types, and use an integer n to get the required input and assign it to
them:

enum Choice {ro ck, paper I scissors};
enum Result {pl ayerl, player2, tie};

main0
{

int n;
Choice choicel, choice2;
Result result;
tout << "Choose rock (0), paper (l), or scissors (2):\n";
tout << "Player #l: ';
tin >> n;
choice1 = Choice(n);
tout << "Player #2: 'I;
tin >> n;
choice2 = Choice(n);
if (choice1 == choice2) result = tie;
else if (choice1 == rock)

if (choice2 == paper) result = player2;
else result = playerl;

else if (choice1 == paper)
if (choice2 == rock)'result = playerl;
else result = player2;

else // (choice1 == scissors)
if (choice2 == rock) result = player2;
else result = playerl;

if (result == tie) tout -c< "\tYou tied.\n";
else if (result == playerl) tout << "\tPlayer #l wins.\n";
else tout << "\tPlayer #2 wins.\n";

>

C%aose rock (O), paper (I), or sckssors (2):
Player 40: 2
Player #2: Q

Player #2 wins.

Through a series of nested if statements, we are able to cover all the possibilities.

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES 53

2.20 Write and test a program that solves quadratic equations.

A quadratic equation is an equation of the form ax2 + bx + c = 0, where a, b, and c are given coeffi-
cients and x is the unknown. The coefficients are real number inputs, so they should be declared of type
float or double. Since quadratic equations typically have two solutions, we’ll use xl and x2
for the solutions to be output. These should be declared of type doubl e to avoid inaccuracies from
round-off error.

The solution(s) to the quadratic equation is given by the quadratic formula:

-bh,ib2-4ac
X=

2 a

But this will not apply if a is zero, so that condition must be checked separately. The formula also fails
to work (for real numbers) if the expression under the square root is negative. That expression b2 - 4ac
is called the discriminant of the quadratic. We define that as the separate variable d and check its sign:

#include <iostream.h>
#include cmath.h> // needed for the sqrt() function
// This solves the equation a*x*x + b*x + c == 0:
main0

float a, b, c;
tout cc "Enter coefficients of quadratic equation: ';
tin >> a >> b >> c;
if (a == 0) {

tout << "This is not a quadratic equation: a == O\n";
return 0;

)
tout cc "The equation is: ' CC a CC "~~2 + ' -CC b

<< " x + " cc c << ' = O\n";
double d, xl, x2;
d = b*b - 4*a*c*I // the discriminant
if (d c 0) {

tout << 'This equation has no real solutions: d < O\n";
return 0;

xl = (-b + sqrt(d))/(2*a);
x2 = (-b - sqrt Cd) > / U*a> ;
tout << "The solutions are: ' -CC xl << ', ' C-C x2 << endl;

Note how we use the return statement inside the conditionals to terminate the program if either a
is zero or d is negative. The alternative would have be to use e 1 se clauses after each i f.

54 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

Supplementary Problems

2.21 Write a single assignment statement that uses the conditional expression operator to assign the
absolute value of x to absx.

2.22 Construct a logical expression to represent each of the following conditions:

a. weight is greater than or equal to 115 but less than 125.
b. ch is either I Q i or 1 q I .

c. x is even but not 26.
d. donation is in the range 1000-2000 or guest is 1.
e. ch is a lowercase or an uppercase letter.

2.23 Construct a truth table for each of the following boolean expressions, showing its truth
value (0 or 1) for all 4 combinations of truth values of its operands p and q.

a. !p II q
b. p scsc q !p &SC !q
c. (p II q) &SC ! (p SC& q)

2.24 Use truth tables to determine whether the two boolean expressions in each of the following are
equivalent.

s
a. ! (p scsc q),and !p SCGC !q
b . !!p,and p

c . !p II q,andp II !g

d. p 6~6~ (q SC& r), and (p scsc q) scsc r
e. p II (q SC& r), and (p II q) &SC r

2.25 Write a single C++ statement that prints “too many” if the variable count exceeds 100, using

a. an if statement;

b. the conditional expression operator.

Supplementary Programming Problems

2.26 Rewrite the “Hello World” program so that it reads the user’s three initials as input and prints
them instead of “World!” For example, if the user enters R, W, and D, the output would be
Hello, R. W. D.

2.27 Write and run a program that reads four integers and prints them in the opposite order.

2.28 Write and run a program that reads four integers and prints the minimum and maximum. Use
the conditional statements as in Example 2.8.

2.29 Write and run a program that reads a grade, A, B, C, D, or F and then prints “excellent,”
“good,” “fair,” “poor,” or “failure.” Use the e 1 se i f structure.

2.30 Write and run a program that prints the truth tables
Problem 2.23.

2.31 Write and run a program that prints the truth tables to verify your answers to Problem 2.24.

for each of the boolean expressions in

CHAP. 21 CONDITIONAL STATEMENTS AND INTEGER TYPES

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

The 1993 U.S. Tax Rate Schedule for taxpayers with single status reads:

Table 2.1 Schedule X

If the amount
on Form 1040,

line 37, is:
Over-

But not
over-

Enter on Form
1040, line 38

of the
amount
over-

$0 $22,100 15% $0

22,100 53,500 $3,315.00 + 2 8 % 22,100

53,500 115,000 12,107.OO + 3 1 % 53,500

115,000 250,000 31,172.OO + 3 6 % 115,000

250,000 ------- 79,772.OO + 39.6% 250,000

55

Write and run a program that reads a dollar amount and prints the correct tax.

Write and run a program that reads a grade, A, B, C, D, or F and then prints “excellent,”
“good,” “fair,” “poor,” or “failure.” Use a swi t ch statement.

Write and run a program that reads a character and then uses a switch statement to print
“do” if the character is a C, “re” if it is a D, “me” if it is an E, “fa” if it is an F, “sol” if it is a G,
“la” if it is an A, “ti” if it is a B, and “error” if it is any other character.

Write and run a program that reads a character and then prints: “It is a vowel” if it is a vowel,
“It is an operator” if it is one of the five arithmetic operators, and “It is something else” if it is
anything else. Use a switch statement.

Write and run a program that reads a single char digit and then prints the number as a literal
string. For example, if the input is 7, then the output should be the word “seven”. Use a
switch statement.

Write and run a program that reads two characters and two integers. If the first character or the
two characters together form one of the six relational operators, then the two integers are com-
pared using that operator and a message describing the result is printed. For example, a run
could look like this:

? = 33 77
33 is not c;gtEaZ to 77, i

Modify the program in Example 2.10 by replacing the second i f with an e 1 se i f and the
third i f with an else. How does this improve the efficiency of the program? On the aver-
age, how many conditions will be tested per run?

Write and run a program that reads three integers and prints the minimum and maximum. Use
the conditional expression operator.

Modify Problem 2.18 so that it is more user-friendly. Use a char instead of an int for
input, allowing the user to type in either “r”, “p”, or “s” for “rock,” “paper,” or “scissors.”.

56 CONDITIONAL STATEMENTS AND INTEGER TYPES [CHAP. 2

Answers to Review Questions

2.1 if (count > 100) tout << "Too many";

2.2 A reserved word is a keyword in a programming language that serves to mark the structure of a statement.
For example, the keywords i f and el se are reserved words. A standard identifer is a keyword that
defines a type. Among the 48 keywords in C++, if, e 1 s e, and whi 1 e are reserved words, and
char, int, and float are standard identifiers.

2.3 The term “short-circuiting” is used to describe the way C++ evaluates compound logical expressions like b
(x > 2 I I y > 5) and (x > 2 &SC y > 5) . If x is greater than 2 in the first expression, then
y will not even be evaluated. If x is less than or equal to 2 in the second expression, then y will not
even be evaluated. In these cases only the first part of the compound expression is evaluated because that
value alone determines the truth value of the compound expression.

2.4 This expression evaluates to - 1 if x < y, it evaluates to 0 if x = = y, and it evaluates to 1 if x > y.

2.5 A “fall through” in a switch statement is a case that does not include a break statement, thereby
causing control to continue right on to the next case statement.

2.6 a. ! (p I I q) isnot the same as !p I I ! q; for example, if p is true and q is false, the first
expression will be false but the second expression will be true. The correct equivalent to the expres-
sion ! (p I I q) is the expression ! p &SC ! q.

b. ! ! ! p is the same as ! p.
c. p && 4 I I r is not the same as p SC& (q I I r) ; for example, if p is false and r is true,

the first expression wzbe true, but the second expression will be false: p && q I I r & the same
as (p &SC q) I I r.

27.

’ 2.8

The second enum definition attempts to redefine the constants spring, summer, and f al 1.

Enumerators must be valid identifiers. String literals like ‘I Tom " a n d " Dick " are not identifiers.

2.9 The programmer probably intended to test the condition (x = = 0) . But by using assignment operator
66 97 linstead of the equality operator “= =” the result will be radically different from what was intended.
For example, if x has the value 22 prior to the i f statement, then the i f statement will change the
value of x to 0. Moreover, the assignment expression (x = 0) will be evaluated to 0 which means
“false,” so the e 1 se part of the conditional will execute, reporting that x is not zero!

2.10 The programmer probably intended to test the condition (x < y &SC y < z > . The code as written
will compile and run, but not as intended. For example, if the prior values of x, y, and z are 44, 66,
and 22, respectively, then the algebraic condition “X < y < z)’ is false. But as written, the code will be eval-
uated from left to right, as (x < y > < z. First the condition x c y will be evaluated as “true.” But
this has the numeric value 1, so the expression (X < y) is evaluated to 1. Then the combined expression
(x < y) < z is evaluated as (1) < 66 which is also true. So the output statement will execute, errone-
ously reporting that 44 < 66 < 22.

2.11 a. Either cou t should be used in place of c in, or the extraction operator >> should be used in
place of the insertion operator <<.

b. Parentheses are required around the condition x < y, and a semicolon is required at the end of the
i f clause before the e 1 se.

2.12 There is more than one statement between the i f clause and the e 1 se clause.
into a compound statement by enclosing them in braces { }.

They n e e d to be made

Chapter 3

Iteration and Floating Types

Iteration is the repetition of a statement or block of statements in a program. C++ has three
iteration statements: the while statement, the do . . . while statement, and the for statement.
Iteration statements are also called loops because of their cyclic nature.

3.1 THE while STATEMENT

The while statement has the syntax
while (condition) statement;

First the condi t i on is evaluated. If it is nonzero (i.e., true), the s ta t emen t is executed and
the condi tion is evaluated again. These two steps are repeated until the condi tion evaluates
to zero (i.e., is false). Note that parentheses are required around the condi t i on.

EXAMPLE 3.1 Printing Cubes

This program uses a whi le loop to print cubes:

main0
1

int n;
tout << "Enter positive integers. Terminate with O.\n\t: ';
tin >> n;
while (n > 0) {

tout KC n <-c I1 cubed is I1 -cc n*n*n << '\n\t: 'I;
tin >> n;

1

Enter positive integers.. Terminate with Q*
: 2 , .

2 cubed is 8
: 5

5 cubed is 125
: 7

7 cubed is 343
: 0

The first value input for n is 2. The while statement tests the condition (n > 0 > . Since the condition
is true, the two statements inside the loop are executed. The second statement reads 5 into n. At the end of
the loop, control returns to the condition (n > 0) . Since it is still true, the two statements inside the loop
are executed again. Each time control reaches the end of the loop, the condition is tested again. After the
third iteration, n is 0, and the condition is false. That terminates the loop.

57

5 8 ITERATION AND FLOATING TYPES [CHAP. 3

Most C++ programmers indent all the statements that lie inside a loop. This makes it easier
to see the logic of the program.

EXAMPLE 3.2 Sum of Squares

This program uses a whi 1 e loop to find the sum of the squares of the integers from 1 to ~1:
n

c
i2 = 12+22+32+ l -.

i = l

main0
1

int i = 1, n, sum = 0;
tout << "Enter a positive integer:
while (i <= n) {

sum += i*i;
i++;

>
tout << "The sum of the first ' <<

cc sum << endl;

+ ?z2

II

; tin >> n;

n << ' squares is '

The first run computes the sum of the first 4 squares: 1 + 4 + 9 + 16 = 30. The second run computes the
sum of the first 6 squares: 1 + 4 + 9 + 16 + 25 + 36 = 9 1 .

When you want several statements to execute within a loop, you need to use braces { > to
combine them into a compound statement. Example 3.2 illustrates the standard way to format a
compound statement in a loop. The left brace ends the loop’s header line. The right brace stands
on a line by itself directly below the “w” of the while keyword. And the statements within the
compound statement are all indented.

Of course, the compiler doesn’t care how the code is formatted. It would accept this format:
while (i <= n) { sum += i*i; i-t+; }

But most C++ programmers find the displayed format easier to read. Some C programmers also
like to put the left brace on a line by itself, directly below the “w” of the while keyword.

3.2 THE do . . .while STATEMENT

The do.. . while statement is almost the same as the whi le statement. Its syntax is
do statement while (condition);

The only difference is that the do. . . while statement executes the statement first and then
evaluates the condition. These two steps are repeated until the condition evalzs to zero
(i.e, is false). A do. . . whi 1 e loop will always iterate at least once, regardless of the value of the
condi t ion, because the statement executes before the condi t ion is evaluated the first time.

CHAP. 31 ITERATION AND FLOATING TYPES 59

EXAMPLE 3.3 The Factorial Function

This program computes the factorial function: IZ! = (n) (~1 - 1) . . . (3) (2) (1) .

main0
-C

int n, f = 1;
tout << 'Enter a positive integer: '; tin >> n;
tout << n << ' factorial is ';
do {

f *= n;
n--;

} while (n > 1);
tout << f << endl;

The
that

Enter a pus-itive integer: 5 _ _’
!Ji EacturLgl is I.20 - ,, ,, ‘,
Enter a pusitive integer; 8
8 facturia1. i s 4 0 3 2 0 .

program initializes f to 1 and then multiplies it by the input number n and all the positive integers
are less than n. So 5! = (5)(4)(3)(2)(l) = 120, and S! = (8)(7)(6)(5)(4)(3)(2)(1) = 40,320.

33. THE for STATEMENT

A loop is controlled by three separate parts: an initialization, a continuation condition, and
an update. For example, in the program in Example 3.3, the loop control variable is n; its initial-
ization is c in >> n, its continuation condition is n > 1, and its update is n- -. When these
three parts are simple, the loop can be set up as a for loop, which is usually simpler than its
equivalent while loop and do. . . while loop.

The syntax for the for statement is
for (initialization; continuation condition; update) statement;

The initialization, the continuation condition,or the update maybeempty.

EXAMPLE 3.4 Sum of Squares Again

This program has the same effect as the one in Example 3.2:

main0

int n, sum = 0;
tout << "Enter a positive integer: ";
tin >> n;
for (int i = 1; i <= n; i++)

sum += i*i;
tout << 'The sum of the first ' << n << ' squares is '

<< sum << endl;

Here the initialization is int i = 1, the continuation condition is i < = n, and the update is i + +.

60 ITERATION AND FLOATING TYPES [CHAP. 3

It is customary to localize the declaration of the control variable in the initialization part of a
for loop. For example, the control variable i in the program above is declared to be an int
within the initialization part in t i = 1. This is a nice feature of C++. However, once the con-
trol variable is declared this way, it should not be redeclared in a later for loop. For example,

for (int i = 0; i < 100; i++)
sum += i*i;

for (int i = 0; i c 100; i++) // ERROR: i has already been declared
tout CC i*i*i;

The same control variable can be used again; it just cannot be redeclared: .
for (i = 0; i < 100; i++) // OK

tout CC i*i*i;
If you have the choice between a for loop and a while or do. . while loop, you should

probably use the for loop. As the next example illustrates, a for loop is usually easier to
understand.

EXAMPLE 3.5 The Factorial Function Again

Compare this program with the one in Example 3.3:

main0

int n, f = 1;
tout << "Enter a positive integer:
for (int i = 2; i <= n; i++)

f *= i;
tout << n CC fl factorial is ' CC f

II

; tin >>

CC endl;

w

This computes the factorial by multiplying 1 by the factors 2,3, . . . , n-1, n. It won’t run any faster than the
version done with the whi 1 e loop, but the code is more succinct.

EXAMPLE 3.6 The Extreme Values in a Sequence

This program reads a sequence of positive integers,
smallest and largest numbers in the sequence.

terminated by the integer 0. It then prints the

main0
1

int n, min, max;
tout cc "Enter positive integers. Terminate input with O:\n";
tin >> n;
for (min=max=n;n>O;) {

if (n c min) min = n; // min and max are the smallest
else if (n > max) max = n; // and largest of the n that
tin >> n; // have been read so far

tout CC "min = II << min << ' and max = ' CC max CC endl;

CHAP. 31 ITERATION AND FLOATING TYPES 61

Notice that the initialization part of the for loop min = max = n is the equivalent of two assign-
ments, and the update part is empty. Also notice the use of the in-line comment that spans three lines. It
describes a loop invariant, a condition on the variables that should be true on every iteration of the loop.

A sentinel is a special value of an input variable that is used to terminate the input loop. In
the example above, the value 0 is used as a sentinel.

EXAMPLE 3.7 More than One Control Variable

This program shows how a for loop may use more than one control variable:

main0
{

for (int m = 1, n = 8; m < n; m++, n--)
tout -CC "m = 'I << m << ', n = ' << n -CC endl;

m =. 2, n = 8 ,.

m=Z,n=7
.'_

m=3,n=5 .’ _
m = 4, 32 ="5

..,. .,

The initialization part of the for loop declares the two control variables m and n, initializing m to 1
and n to 8. The update part uses the comma operator to include two update expressions: m+ + and n- -.
The loop continues as long as m < n. (Note that the comma in the initialization part of the for loop is
not the comma operator; it is used there as part of an initialization list.)

3.4 THE break STATEMENT

We have already seen the break statement used in the switch statement. It is also used in
loops. When it executes, it terminates the loop, “breaking out” of the iteration at that point.

EXAMPLE 3.8 Breaking Out of an Infinite Loop

This whi le loop is equivalent to the one in Example 3 2 .. .

while (1) {
if (i > n) break; // loop stops here when i > n
sum += i*i;
1++;

As long as (i <= n) , the loop will continue, just as in Example 3.2. But as soon as (i > n) , t h e
break statement executes, immediately terminating the loop.

6 2 ITERATION AND FLOATING TYPES [CHAP. 3

EXAMPLE 3.9 Controlling Input with a Sentinel

This program reads a sequence of positive integers, terminated by 0, and prints their average:

main0

int n, count = 0, sum = 0;
tout << "Enter positive integers. Terminate input with O:\n";
for (; ; > -I

tout << " \Y << count + 1 << ': ';
tin >> n;
if (n == 0) break;
++count;
sum += n;

tout << "The average of the ' << count << ' numbers is '
<< float(sum')/count << endl;

When 0 is input, the break executes, which immediately terminating the for loop and causes the final
output statement to execute. Without the use of the break here, the + + count statement would have to be
put in a conditional or count would have to be decremented outside the loop or initialized to -1.

Notice that all three control parts of this for loop are empty: for (; ;) . This construct is pro-
nounced “forever.” Without the presence of the break, this would be an infinite loop.

3.5 THE continue STATEMENT

The break statement jumps over all the rest of the statements in the loop’s block and goes
to the next statement after the loop. The continue statement does the same thing except that,
instead of terminating the loop, it goes back to the beginning of the loop’s block to begin the next
iteration.

CHAP. 31 ITERATION AND FLOATING TYPES 63

EXAMPLE3.10 Using continue and break Stzitements -----

This little program illustrates the continue and break statements:
main0

int n;
for (;;I{

tout <-=+ "Enter int: 'I; tin >> n;
if (n%2 == 0) continue;
if (n%3 == 0) break;
tout -c-c "\tBottom of loop.\n";

1J
tout << "\tOutside of loop.\n";

Enter int: 7
Bottam of zoop.

Enter int: 4 ’
Enter int: 9

Outside of -Loop,

When n has the value 7, both of the if conditions fail and control reaches the bottom of the loop.
When n has the value 4, the first if condition is true (4 is a multiple of 2), so control skips over the rest
of the statements in the loop and jumps immediately to the top of the loop again to continue with the next
iteration. When n has the value 9, the first if condition is false (9 is not a multiple of 2) but the second
i f condition is true (9 is a multiple of 3), so control breaks out of the loop and jumps immediately to
the first statement that follows the loop.

3.6 THE goto STATEMENT

The break statement, the continue statement, and the switch statement cause the con-
trol of the program to branch to a location other than where it normally would go. The destina-
tion of the branch is determined by the context: break goes to the next statement outside the
loop continue goes to the loop’s continue condition, and switch goes to the correct case
constant. All three of these statements are called jump statements because they cause the control
of the program to “jump over” other statements.

The got0 statement is another kind of jump statement. Its destination is specified by a label
within the statement.

A label is simply an identifier followed by a colon, either at the beginning of a statement.
Labels work like the case statements inside a switch statement: they specify the destination
of the jump.

64 ITERATION AND FLOATING TYPES [CHAP. 3

EXAMPLE 3.11 Breaking Out of Nested Loops

This program illustrates the correct way to break out of nested loops.

main0

When the goto is reached inside
at the bottom of the outermost loop

int a, b, c;
tin >> a >> b >> c;
for (int i = 0; i c a; i++) {

for (int j = 0; j < b; j++>
for (int k = 0; k c c; k++)

if (i*j*k > 100) goto esc;
else tout CC i*j*k CC ' ";

esc: tout -CC endl;
1

1

the innermost loop9 program control j umps out to the output statement

There are other ways to achieve this nested
ables by replacing the i f statement inside the

loop exit. One
k-loop with

way would be to reset the loop vari-

if (i*j*k > 100) j = k = b + C;

else tout CC i*j*k << ' ";

This will cause both the j -loop and the k-loop to terminate because their continue conditions, j < b
and k < c, will be false. This is a “hacker’s method” because it artificially sets the values of the control
variables j and k to achieve the desired outcome as a side eflect.

Another approach is to use a “done flag” within the continue conditions of the for loops
like this:

int done = 0;
for (int i = 0; i < a && !done; i++) {

for (int j = 0; j < b && !done; j++>
for (int k = 0; k < c && !done; k++)

if (i*j*k > 100) done = 1;
else tout C-C i*j*k CC ' ";

1

But this too is somewhat artificial and cumbersome. The go to is really the best way to terminate nested
loops.

It is easy to overuse the got0 statement, as the next example illustrates.

CHAP. 31 ITERATION AND FLOATING TYPES

EXAMPLE 3.12 Overusing got o Statements

This nonsense program shows how the use of got o statements can lead to “spaghetti code”:

main0
1

int n;
tout << "Enter n: ";
tin >> n;

sl: tout c-c “Now at step 1 with n = ' CC n cc endl;
- -w
if (n c 2) return 0;

s2: tout cc "Now at step 2 with n = ' cc n cc endl;
if (n < 7) got0 s4;

s3: tout cc "Now at step 3 with n = ' CC n cc endl;
if (n % 2 == 0) got0 sl;

s4: tout << "Now at step 4 with n = ' c-c n -c-c endl;
n -= 2;
if (n > 4) got0 sl;
else got0 s3;

65

A s n decreases from 9 to 2, the go to statements send program control back and forth among the four
output statements labelled s 1, s 2, s 3, and s 4:

The imprudent use of go tos leads to unstructured spaghetti code which is difficult to debug.

[CHAP. 366 ITERATION AND FLOATING TYPES

3.7 REAL NUMBER TYPES

C++ supports three real number types: float , double, and long double. On most
systems, double uses twice as many bytes as float. Typically, float uses 4 bytes, double
uses 8 bytes, and long double uses 8, 10, 12, or 16 bytes.

Types that are used for real numbers are called “floating-point” types because of the way they
are stored internally in the computer. On most systems, a number like 123.45 is first converted to
binary form:

123.45 = 1111011.01110011~

Then the point is “floated” so that all the bits are on its right. In this example, the floating-point
form is obtained by floating the point 7 bits to the left, producing a mantissa 27 times smaller. So
the original number is

123.45 = 0.111101101110011,x 27

This number would be represented internally by storing the mantissa o .1111 o 11 o 111 o o 11 and
the exponent 7 separately. For a 32-bit float type, the mantissa is stored in a 23-bit segment
and the exponent in an 8-bit segment, leaving 1 bit for the sign of the number. For a 64-bit
double type, the mantissa is stored in a 52-bit segment and the exponent in an 1 l-bit segment.

The next example can be used on any computer to determine how many bytes it uses for each
type. The program uses the s i zeof operator which returns the size in bytes of the type speci-

fied.

EXAMPLE 3.13 Using the s i z eo f Operator

This program tells you how much space each of the 12 fundamental types uses:

main () {
tout << 'Number of bytes used:\n";
tout << "\t char: ' << sizeof(char) << endl;
tout << " \t short: ' << sizeof(short
tout << '\t int: " << sizeof(int
tout << "\t long: " << sizeof(long
tout << "\t unsigned char: ' << sizeof(unsigned char
tout << "\tunsigned short: ' CC sizeof(unsigned short
tout << "\t unsigned int: ' << sizeof(unsigned int
tout << "\t unsigned long: " << sizeof(unsigned long
tout << "\t signed char: " << sizeof(signed char
tout << " \t float: ' << sizeof(float
tout <-=c "\t double: ' << sizeof(double
tout << "\t long double: ' << sizeof(long double

1

<< endl;
<< endl;
<< endl;
<< endl;
<< endl;
<< endl;
-x endl;
<< endl;
<< endl;
CC endl;
<< endl;

The output below shows the sizes for a typical UNIX workstation. On this machine, int and long' are
equivalent, unsigned int and unsigned long areequivalent,and double and long double
are equivalent. In other words, ‘long’ is no different from ‘regular’ on this computer.

CHAP. 31 ITERATIONANDFLOATING TYPES 67

Th.e next program can be used to investigate floating-point types on any computer system. It
reads t:he values of various constants from the float. h header file. To access it, the program
must include the preprocessor directive:

#include <float.h>

This is like the #include <ios tream. h> directive that we always include in order to use the
tin and tout objects.

EXAMPLE 3.14 Reading from the f 1 oat . h File

This program tells you the precision and magnitude range that the f 1 oat type has on your system:

main () {
int fbits = 8*sizeof(float); // each byte contains 8 bits
tout << "float uses:\t" << fbits << ' bits:\n\t\t'

<< FLT-MANT-DIG - 1 << ' bits for its mantissa\n\t\t '
<< fbits - FLTJANT-DIG << ' bits for its exponent\n\t\t '
<< 1 << ll bit for its sign\n"
<< " to obtain: ' << FLT-DIG << ' sig. digits\n"
<< ' with minimum value: I' << FLT-MIN << end1
<< " and maximum value: ' << FLT MAX << endl;-

EJoat. uses: 32 bits:
23 bit23 far its manthsa
8 bits for its exponknt
I. bit for its sign

~~o~obtain:"6'sig. digits' "
.with minimw vdhe: 1.17549e-38
and mwcimum vale: 3.40282e+3$

Theconstants FLT MANT

header file. - -
DIG, F L T-DIG, FLT MIN, and FLT MAX are definedinthe f1oat.h- -

This output is from a UNIX workstation. It shows that the 32 bits it uses to store a float are parti-
tioned into 3 parts: 23 bits for the mantissa, 8 bits for the exponent, and 1 bit for the sign. The 23-bit man-
tissa produces a floating-point value with 6 significant digits, and the 8-bit exponent yields a range in
magnitude from about 10m3’ to about 3 x 103!

6 8 ITERATION AND FLOATING TYPES [CHAP. 3

All floating-point arithmetic is done in double precision. So the only time you should use
float instead of double is when you are storing large quantities of real numbers and are con-
cerned about storage space or access time.

3.8 TYPE CONVERSIONS

We saw in Chapter 2 how one integer type can be converted automatically to another. C++
also converts integral types into floating point types when they are expected. For example,

int n = 22;

float x = 3.14159;

x += n; // the value 22 is automatically converted to 22.0

tout << x - 2 << endl; // value 2 is automatically converted to 2.0

Converting from integer to float like this is what one would expect and is usually taken for
granted. But converting from a floating point type to an integral type is not automatic.

In general, if T is one type and v is a value of another type, then the expression

T (v>

converts v to type T. This is called type casting. For example, if expr is a floating-point
expression and n is a variable of type int, then

n = int (expr);

converts the value of expr to type int and assigns it to n. The effect is to remove the real
number’s fractional part, leaving only its whole number part to be assigned to n. For example,
2.71828 would be converted to 2. Note that this is truncating, not rounding.

EXAMPLE 3.15 Simple Type Casting

This program converts a double to an int:

main0
1

double v = 1234.56789;
int n = int(v);
tout << "v = 11 CC v << II, n = ' << n -CC endl;

)

The double value 1234.56789 is converted to the int value 1234.

When one type is to be converted to a “higher” type, the type case operator is not needed. We
saw this kind of type promotion among integral types in Chapter 2. Here’s a simple example of
promotion from char all the way up to double:

CHAP. 31 ITERATION AND FLOATING TYPES 69

EXAMPLE 3.16 Promotion of Types

This program promotes a char to a short to an int to a float to a double:

main0

char c = 'A'; tout << " char c = u << c CC endl;
short k = c; tout << H short k = ' << k << endl;
int m = k; tout << " int m = H << m C-C endl;
long n = m; tout << " long n = ' << n C-C endl;
float x = n; tout << u float x = M C-C x << endl;
double y = x; tout << "double y = 'I << y << endl;

)

The integer value of the character 1 A I is its ASCII code 65. This integer is stored as a char in c, as a
short in k, as an int in m, and as an long in n. This value is then converted to the floating point
value 65.0 and stored as a f 1 oat in x and as a double in y. Notice that cou t prints the integer c
as a character, and that it prints the real numbers x and y as integers because their fractional parts are 0.

Because it is so easy to convert between integer types and real types in C++, it is easy to for-
get the distinction between them. In general, integers are used for counting discrete things, while
reals are used for measuring on a continuous scale. This means that integer values are exact,
while real values are approximate.

In the C programming language, the syntax for casting v as type T is (T) V. C++ inherits
this form also, so we could have done n = int (v> as n = (int) v.

3.9 ROUNDOFF ERROR

In a computer, even the simplest floating-point values tend to be imprecise. This imprecision
is called roundoff error.

EXAMPLE 3.17 Roundoff Error

This program does some simple arithmetic to illustrate roundoff error:

main0
{

double x = 1000/3.0; tout << "x = 'I << x << endl;
double y = x - 333.0; tout << "y = 'I << y << endl;
double z = 3*y - 1.0; tout << "Z = H << z << endl;
if (z == 0) tout << "z == O.\n";
else tout << "z does not equal O.\n";

70 ITERATION AND FLOATING TYPES [CHAP. 3

In exact arithmetic, the variables would have the values x = 333 l/3, y = l/3, and z = 0. But l/3 cannot be
represented exactly as a floating-point value. The inaccuracy is reflected in the residue value for z.

This example also illustrates ar
ditional tests of equality. The test
likely to happen when z should a
with floating-point types.

n inherent problem with using floating-point types within con-
(z == o > will fail even is z is very nearly zero, which is

lgebraically be zero. So it is better to avaoid tests for equality

3.10 THE E-FORMAT FOR FLOATING-POINT VALUES

When input or output, floating-point values may be specified in either of two formats: fixed-
point and scientific. The output in Example 3.16 illustrates both: 3 3 3 .3 3 3 has fixed-point
format, and - 5 .6 8 4 3 4 e- 14 has scientific format.

In scientific format, the letter e stands for “exponent on 10.” So - 5 .6 8 4 3 4e- 14 means
-5.68434 x lo-14, which equals -0.0000000000000568434. Obviously, the scientific format is
more efficient for very small or very large numbers.

Floating-point values with magnitude in the range 0.1 to 999,999 will normally be printed in
fixed-point format; all others will be printed in scientific format.

EXAMPLE 3.18 Scientific Format

This program shows how floating-point values may be input in scientific format:

#include <iostream.h>
main0 :,

.t
double x;
tout << "Enter float: "; tin >> x;
tout << "Its reciprocal is: ' << l/x << endl;

You can use either e or E in the scientific format.

3.11 CONSTANTS, VARIABLES, AND OBJECTS

An object is a contiguous region of memory that has an address, a size, a type, and a value.
The address of an object is the memory address of its first byte. The size of an object is simply
the number of bytes that it occupies in memory. The value of an object is the constant determined
by the actual bits stored in its memory location and by the object’s type which prescribes how
those bits are to be interpreted.

CHAP. 31 ITERATION AND FLOATING TYPES 7 1

For example, with GNU C++ on a UNIX workstation, the object n defined by

int n = 22;

has the memory address 0x3 f f f cd6, the size 4, the type int, and the value 22. (The memory
address is a hexadecimal number. See Appendix G.)

The type of an object is determined by the programmer. The value of an object may also be
determined by the programmer at compile time, or it may be determined at run-time. The size of
an object is determined by the compiler. For example, in GNU C++ an int has size 4, while in
Borland C++ its size is 2. The address of an object is determined by the computer’s operating
system at run-time.

Some objects do not have names. We will see examples of such anonymous objects in
Chapters 4 and 5. A variable is an object that has a name. The object defined above is a variable
with name ‘n'.

The word “variable” is used to suggest that the object’s value can be changed. An object
whose value cannot be changed is called a constant. Constants are declared by preceding its type
specifier with the keyword cons t, like this:

const int n = 22;

Constants must be initialized when they are declared.

EXAMPLE 3.19 The cons t Specifier

This program illustrates constant definitions:

main0
-t

const char BEEP = '\b';
const int MAXINT = 2147483647;
int n = MAXINT/2;
const float KM PER MI = 1.60934;
const double PT = 5.14159265358979323846;

Constants are usually defined for values like n that will be used more than once in a program
but not changed.

It is customary to use all capital letters in constant identifiers to distinguish them from other
kinds of identifiers. A good compiler will replace each constant symbol with its numeric value.

3.12 GENERATING PSEUDO-RANDOM NUMBERS

One of the most important applications of computers is the simdation of real-world systems.
Most high-tech research and development is heavily dependent upon this technique for studying
how systems work without actually having to interact with them directly.

Simulation requires the computer generation of random numbers to model the uncertainty of
the real world. Of course, computers cannot actually generate truly random numbers because
computers are detewninistic: given the same input, the same computer will always produce the
same output. But it is possible to generate numbers that appear to be randomly generated; i.e.,

7 2 ITERATION AND FLOATING TYPES [CHAP. 3

numbers that are uniformly distributed within a given interval and for which there is no discern-
ible pattern. Such numbers are called pseudo-random numbers.

The Standard C header file <S tdl ib . h> defines the function rand (> which generates
pseudo-random integers in the range 0 to RAND M A X , which is a constant that is also defined in-
cs tdl ib . h>. Each time the rand () function is called, it generates another unsigned integer
in this range.

EXAMPLE 3.20 Generating Pseudo-Random Numbers

#include <iostream.h>
#include <stdlib.h>

main0
-t

for (int i = 0; i -C 8; i++)
tout CC rand() CC endl; '

tout << "RANDJAX = ' << RAND-MAX CC endl;
>

J403527590 .' .-'. :
377401575 . . _','., 1..
G6282$O84 .,, :: : ;':
11479Q27Erl

.<.'.. . '.' ,,_'.'.
2(,l3wi5474

._. ". . . i.,
3688QQ.89.9 - ,. , . . ,. ., . , . , . , . .; ,; ..,:: .: .‘i’ ‘. .:;.:. . , : I ,.:.‘. _; . , , .
Exi%O299-52

/ _ : .’ .,,z_ .,:; .;,
4862561.85 .:,I_ . . I. .I I.:. .
RrnD-rnX = 2147483647 _ 8 '.'_

16U3527590 '. 4
377401575 .:,; :'_ :.
662824084 '..'. , 5
fi47902782

.:',:.:.' '.: _' .".. .: ',2'035015$74' .; ,. ., '. ..j,..,. . ..l. ;..:' ..,:.._ _:,;... :..., :'.... :"'
'. -.'

3 6 8 8 0 0 8 9 9
_ : .'. ,_,. . .'..C "'

ZL508029952 I . . .:..' : L
486256485 ::
JRMD-MX = 2147483687 = '..:

On each run, the computer generates 8 unsigned integers that are uniformly distributed in the
interval 0 to RAND-MAX, which is 2,147,483,647 on this computer. Unfortunately each run produces the
same sequence of numbers. This is because they are generated from the same “seed.”

Each pseudo-random number is generated from the previously generated pseudo-random
number by applying a special “number crunching” function that is defined internally. The first
pseudo-random number is generated from an internally defined variable, called the seed for the
sequence. By default, this seed is initialized by the computer to be the same value every time the
program is run. To overcome this violation of pseudo-randomness, we can use the srand ()
function to select our own seed.

CHAP. 31 ITERATION AND FLOATING TYPES 73

EXAMPLE 3.21 Generating Pseudo-Random Numbers

#include <iostream.h>
#include <stdlib.h>

main0
1

unsigned seed;
tout << "Enter seed: I';
tin >> seed;
srand(seed);
for (int i = 0; i < 8; i++)

// initializes the seed

tout -CC rand() C-C endl;

Enter seed: 0
12345
1&I6932606; _’
654583775
I.449466924
229283573
H.59335178 .
1051550459~
2293799192

Enter s e e d : ' ‘123&s "
14069326C%
654583775
1449466924
229283573
1109335178 1
1052550459
1293799192
794471793

The line s r and (s eed) assigns the value of the variable s e ed to the internal “seed” used by the
rand () function to initialize the sequence of pseudo-random numbers that it generates. Difference seeds
produce difference results.

Note that the seed value 12345 used in the third run of the program is the first number generated by
rand (> in the first run. Consequently the first through seventh numbers generated in the third run are the
same as the second through eighth numbers generated in the first run. Also note that the sequence gener-
ated in the second run is the same as the one produced in Example 3.20. This suggests that, on this com-
puter, the default seed value is 1.

7 4 ITERATION AND FLOATING TYPES [CHAP. 3

The problem of having to enter a seed value interactively can be overcome by using the
computer’s system clock. The system dock keeps track of the current time in seconds. The
time (> function defined in the header file <time. h> returns the current time as an unsigned
integer. This then can be used as the seed for the rand (> function.

EXAMPLE 3.22 Generating Pseudo-Random Numbers

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

main0
-t

unsigned seed = time(NULL); // uses the .system clock
tout << "seed = ' CC seed -CC endl;
srand(seed); // initializes the seed
for (int i = 0; i < 8; i++)

tout << rand() -CC endl;
J

seed = ~808248257
1$7736%330
352899587
1443923328
1 8 5 7 4 2 3 2 8 9

, , ..,,. ,..

On the first run, the time (> function returns the integer 808,148,157 which is used to “seed” the
random number generator. The second run is done 3 seconds later, so the time (> function returns the
integer 808,148,160 which generates a completely different sequence.

In many simulation programs, one needs to generate random integers that are uniformly dis-
tributed in a given range. The next example illustrates how to do that.

CHAP. 31 ITERATION AND FLOATING TYPES 7 5

EXAMPLE 3.23 Generating Pseudo-Random Numbers

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

main0
1

unsigned seed = time(NULL);
tout << "seed = 'I CC seed -X endl;
srand(seed);
int min, max;
tout << "Enter minimum and maximum: 'I;
tin >> min >> max; // lowest and highest numbers
int range = max - min + 1; // number of numbers in range
for (int i = 0; i < 20; i++) {

int r = rand()/lOO%range + min;
tout c-c r << II II;

>
tout K-C endl;

seed = 808237677
Enter minimum and maximum: 1 3.00
85 57 1 10 5 73 81 43 46 42 17 44 48 ‘3 3 7 4 41 4 30 6 8

seed = 808238101
’Enter minimum a& maximum: 22 66

63 29 56 22 53 57 341 56 43 36 62 30 $1 57 26.61 5 9 26 28

The first run generates 20 integers uniformly distributed between 1 and 100. The second run generates
20 integers uniformly distributed between 22 and 66.

In the for loop, we divide rand () by 100 first to strip way the two right-most digits of the ran-
dom number. This is to compensate for the problem that this particular random number generator has of
~ producing numbers that alternate odd and even. Then rand () / 10 0 %range produces random numbers
in the range 0 to range-l, and rand () / 10 0 %range + min produces random numbers in the range
min to max.

A much better amxoach to generating Dseudo-random numbers is described in Problem 8.20.

3.1

3.2

Review Questions

What is the minimum number of iterations that

a. a while loop could make?

6. a do.. . whi le loop could make?

What is wrong with the following loop:

while (n <= 100)

sum += n*n;

76 ITERATION AND FLOATING TYPES

3.3 If s is a compound statement, and el, e2, and e3 are expressions, then what is the differ-
ence between the program fragment:

for (el; e2; e3)
s;

and the fragment:

el;
while (e2) {

s;
e3 ;

>

3.4 What is wrong with the following program:

main0
1

const double pi;
int n;
pi = 3.14159265358979;
n = 22;

3.5 What is an “infinite loop,” and how can it be useful?

3 6.

3.7

How can a loop be structured so that it terminates with a statement in the middle of its block?

What why should tests for equality with floating-point variables be avoided?

Solved Problems

3.8 Trace the following code fragment, showing the value of each variable each time it changes:

int x, y, z;
x=y=z=6;

X *= y += z -= 4;

First, 6 is assigned to z, y, and x. Then z is decremented by 4, obtaining the value 2. Then y is
incremented by 2, obtaining the value 8. Then x is multiplied by 8, obtaining the value 48.

3 9. Assuming that e is an expression and
loops into an equivalent while loop:

s is a statement, convert each of the following for

a. for (; e;) s

b. for (; ; e) s

a. while (e> s;

b. while (1) { s; e;},
assuming that s contains no continue statement. (See Exercise 3.3.)

[CHAP. 3

CHAP. 31 ITERATION AND FLOATING TYPES 7 7

3.10 Convert the following for loop into a whi le loop:

for (int i = 1; i C= n; i++)
tout CC i*i;

int i = 1;
while (i C= n) {

tout CC i*i;
it-+;

>

3.11 Describe the output from the following program:

main0

for (int i = 0; i c 8; i++)
if (i%2 == 0) tout CC i + 1 cc endl;
else if (i%3 == 0) tout CC i*i CC endl;
else if (i%5 == 0) tout CC 2*i - 1 CC endl;
else tout CC i CC endl;

3.12 Describe the output from the following program:

main0

for (int i = 0; i c 8; i++) {
if (i%2 == 0) tout CC i + 1 CC endl;
else if (i%3 == 0) continue;
else if (i%5 == 0) break;
tout << Tnd of program.\n";

tout cc "'End of program.\n";

1.; _ ,’ ;’ ; ; “, ;._'
End of program,' :._ .' .': I.I _ '.
EQd:. id! grogs;ram. - . :..'_' . . .'

,. ; I,. ', ,.. ., m .:m ,, :1 ,, 1, ., ,:, I .:. I, , ,,, ,I,:, ,,,'.
'. .'

5'. '..
: _‘. ‘.‘I

‘E.nd ‘sfs grogrik~ .,.“_ .-..
pjj@.& ..af p&Jgj$m, ,, ‘..: ‘,., ‘; .‘,,) ,., .I ‘. :,. ,‘.;:.”. .

3.13 In a 32-bit float type, 23 bits are used to store the mantissa and,8 bits are used to store the
exponent.

a. How many significant digits of precision does the 32-bit float type yield?

b. What is the range of magnitude for the 32-bit float type? I

7 8 ITERATION AND FLOATING TYPES [CHAP. 3

3.14

a. The 23 bits hold the 2nd through 24th bit of the mantissa. The first bit must be a 1, so it is not stored.
Thus 24 bits are represented. These 24 bits can hold 224 numbers. And 224 = 16777,216, which has 7
digits with full range, so 7 complete digits can be represented. But the last digit is in doubt because
of rounding. Thus, the 32-bit f loa t type yields 6 significant digits of precision.

b. The 8 bits that the 32-bit float type uses for its exponent can hold 2* = 256 different numbers.
Two of these are reserved for indicating underflow and overflow, leaving 254 numbers for exponents.
So an exponent can range from -126 to +127, yielding a magnitude range of 2-126 = 1.175494 x 10m3*
to 2127 = 1.70141 x 1038.

Solved Programming Problems

Write a program that converts inches to centimeters. For example, if the user enters 16.9 for a
length in inches, the output would be 42 .9 2 6 cm. (One inch equals 2.54 centimeters.)

We use two variables of type f 1 oat:

main0

float inches, cm;
tout << "Enter length in inches: ";
tin >> inches;
cm = 2.54*inches;
tout << inches << ' inches = ' C-C cm C=C ' centimeters.\n";

)

Simply read the input into inches, convert it to centimeters in cm, and output it.

3.15 Write a program to find the integer square root of a given number. That is the largest integer whose
square is less than or equal to the given number.

We use an “exhaustive” algorithm here: find &l the positive integers whose square is less than or
equal to the given number; then the largest of those is the integer square root:

main0
-t

float x;
tout << "Enter a positive number: ";
tin >> x;
for (int n = 1; n*n <= x; n++)

; // the null statement
tout << "The integer square root of ' << x C-C ' is '

C-C n-l << endl;

We start with n = 1 and continue to increment n until n*n > x. When the for loop terminates,
n is the smallest integer whose square is greater than x, so n- 1 is the integer square root of x.

Notice the use of the null statement in the for loop. Everything that needs to be done in the loop is
done within the control parts of the loop. But the semicolon is still necessary at the end of the loop.

CHAP. 31 ITERATION AND FLOATING TYPES 7 9

3.16 Write and run a program that directly implements the quotient operator / and the remainder
operator % for the division of positive integers.

The algorithm used here, applied to the fraction n/d, repeatedly subtracts the d from the n until
n is less than d. At that point, the value of n will be the remainder, and the number q of iterations
required to reach it will be the quotient:

main0
{

int n, d, q, r;
tout << "Enter numerator: 'I;
tin >> n;
tout << "Enter denominator: 'I;
tin >> d;
for (q = 0, r = n; r > d; q++) r -= d;
tout << n << I1 / II -c-c d x-c 'I = I' -c-c q c-c endl;
tout << n << I1 % I1 -c-c d << I' = I' -c-c r -cc endl;
tout << "(I' -c-c q -c-c 'I) ('I -cc d << 'I) + (II -cc r -c-c II) = II

c-c n -x endl;

This r u n iterated 4 times: 30 - 7 = 23,23 - 7 = 16, 16 - 7 = 9, a n d 9 - 7 = 2. So the quotient is 4, a n d the
remainder is 2. Note that the following relationship must always be true for integer division:

(quotient) (denominator) + (remainder) = numerator

3.17 Write and run a program that reverses the digits of a given positive integer.

The trick here is to strip off the digits one at a time from the given integer and “accumulate” them in
reverse in another integer:

main0
l

long m, d, n = 0;
tout -c-c "Enter a positive integer: ';
tin >> m;
while (m > 0) {

d = m % 10; // d will be the right-most digit of m
m /= 10; // then remove that digit from m
n = lO*n + d; // and append that digit to n

>
tout << "The reverse is I' KC n <C endl;

Enter a positive integer: I223456
The reverse is 654321

In this run, m begins with the value 123,456. In the first iteration of the loop, d is assigned the
digit 6, m is reduced to 12,345, and n is increased to 6. On the second iteration, d is assigned the
digit 5, m is reduced to 1,234, and n is increased to 65. On the third iteration, d is assigned the digit
4, m is reduced to 123, and n is increased to 654. This continues until, on the sixth iteration, d is
assigned the digit 1, m is reduced to 0, and n is increased to 654,321.

8 0 ITERATION AND FLOATING TYPES [CHAP. 3

3.18 Rewrite the for loop in Example 3.6, using the conditional expression operator in place of
the if statements.

The conditional expression (n c min ? n : min) evaluates to n if n < min, and it eval-
uates to min otherwise. So assigning that value to min is equivalent to the first line of the for
loop in the example. Similarly, the assignment max = (n > max ? n : min) is equivalent to
the second line in the other for loop.

for (min=max=n; n>O;) {
min = (n c min ? n : min); // min and max are the smallest
max = (n > max ? n : min); // and largest of the n that
tin >> n; // have been read so far

)

Note that in this version we did not use an equivalent to the el se i f .

3.19 Implement the Euclidean Algorithm for finding the greatest common divisor of two given pos- L
\

itive integers.

The Euclidean Algorithm transforms a pair of positive integers (m, n) into a pair (d, 0) by repeatedly
dividing the larger integer by the smaller integer and replacing the larger with the remainder. When the
remainder is 0, the other integer in the pair will be the greatest common divisor of the original pair (and
of all the intermediate pairs).

For example, if m is 532 and y2 is 112, then the Euclidean Algorithm reduces the pair (532,112) to
CWO) by

(532,112) + (112,84) + (84,28) + (28,0)

So 28 is the greatest common divisor of 532 and 112. This result can be verified from the facts that 532
= 28.19 a n d 112 = 28.8.

The reason that the Euclidean Algorithm works is that each pair in the sequence has the same set of
divisors, which are precisely the factors of the greatest common divisor. In the example above, that
common set of divisors is { 1, 2, 4, 7, 14, 28). The reason that this set of divisors is invariant under the
reduction process is that when m = n-q + r, a number is a common divisor of m and y1 if and only if it is
a common divisor of y2 and r.

main0
{ // begin scope of main0

int m, n, r;
tout << "Enter two positive integers: I';
tin >> m >> n;
if (m c n) { int temp = m; m = n; n = temp; } // make m >= n
tout << "The g.c.d. of ' CC m CC ' and ' CC n CC' ' is ";
while (n > 0) {

r = m % n ;
m = n;
n = r;

tout CC m CC endl;

Elr&ex .tpfTu .pssitive. integers: .$3a 2x2..; : ‘, “1. .,-,.,.
“rhe g;c’&, of 532 t&d Ia12 i s 28:

‘. ,’ .”,: .’ :‘..’ - :: :. .‘. ‘.

CHAP. 31 ITERATION AND FLOATING TYPES 81

3.20 Write and test a program that reads a given number of pairs (x, y) of real numbers and then
computes the least-squares regression line for the data set. Use the equation y = mx + b where

(
m=--

b = y-m2

and x is the mean (average) of the x’s and 7 is the mean of the y’s.

We use doubl e precision floats to minimize roundoff error:

main0
{

int n; // number of data points
double x, y, sumX = 0.0, sumY = 0.0, sumXX = 0.0, sumXY = 0 0;.
tout << "How many points: ';
tin >> n;
tout << "Enter ' << n C-C ' pairs, one pair per line:\n";
for (int i = 1; i <= n; i++)

tout << I\,’ c-c i << 'I: '1;
tin >> x >> y;
sumX += x; // accumulate the sum of the x's in sumX
sumY += y; // accumulate the sum of the y's in sumY
sumXX += x*x; // accumulate the sum of x*x in sumXX
sumXY += x*y; // accumulate the sum of x*y in sumXY

double meanX = sumX/n;
double meanY = sumY/n;
double m = (sumXY - meanY*sumX)/(sumXX - meanX*sumX);
double b = meanY - meanX*m;
tout << "The equation of the regression line is:\n'

"\ty = ' << m C-K 'lx + ' C-C b << end10I

Each of the four sums sumX, sumY, sumXX, and sumXY is accumulated within the input loop.
Then the averages meanX and meanY are computed. Then they are used in the formula to-compute
the slope m and the y-intercept b of the regression line.

The output from this program is very useful. The regression line is the straight line that best fits the
given data. That is, among all possible straight lines, the one given by the equation

y=1111.01x + 4444.03

is the best fitting line, in the sense that the sum of the squ
the line is minimal. The value of this result is that it can
For example, to guess at the probable y-value corresponding to the x-value 3.2, simply substitute that
into the following equation: y = 111 l.Ol(3.2) + 4444.03 = 3555.03 + 4444.03 = 7999.26.

.ares of the y-distances from the data points to
be used for interpolation (and extrapolation).

82 ITERATION AND FLOATING TYPES [CHAP. 3

3.21 Use the Monte Carlo simulation method to compute IL

The Monte Carlo simulation method is named after the casino in Monaco. It consists of picking
be used to compute n: by simulat-points at random and counting those that satisfy certain criteria. It can

ing the tossing of darts at a circular dart board mounted on a square:

If the darts are equally likely to hit any point in the square, then the proportion that hit inside the circle
will approximate the ratio of the area of the circle to that of the square. If the square has sides of length
2.0, then that ratio is (n: ?)/(s2) = (n: 1.02)/(2.02) = 7c/4, so 4 times that ratio will approximate K.

It is easier to use the quarter circle of radius 1.0 that lies in the first quadrant. This way, the ran-

domly selected coordinates will all be in the range 0.0 to 1 .O. The area of the square is 1 .02 = 1 .O and the
area of the quarter circle is (II: 1 .02)/4 = n/4, so the ratio is still 7c/4.

#include <iostream.h>
#include <stdlib.h>
#include ctime.h>

main0

const long int tosses = 1000; // toss 1000 darts
long int hits = 0;
float x, y;
unsigned seed = time(NULL);
srand(seed);
for(long int i = 0; i < tosses; i++)

x = float(rand())/RAND MAX;-
Y = float(rand())/RAND MAX;-
if (x*x + y*y -C 1) ++hits;

tout -CC 4.0*hits/tosses -CC endl;

3.. $.35.04

Both runs produce an estimate of 7c that is correct to 3 significant digits. This accuracy can be
improved by tossing more darts, but at the expense of more running time.

3.22 Simulate the Monty Hall game.

The Monte HaZZ game is named after the host of a television game show in which a contestant could
win a new car by guessing the right door that the car was behind. It became a popular puzzle in the
1990s because the best playing strategy is counterintuitive. The contestant chooses one door. Then
Monty opens one of the other doors that does not have the car behind it. At that point in the game, the
contestant has the option of changing his choice to the third door. Most people are surprised to learn that
the contestant is twice as likely to win the car if he does change his choice. This fact can be demon-
strated using conditional probabilities. But for most people, a computer simulation is more convincing.

CHAP. 31 ITERATION AND FLOATING TYPES 83

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

main0
-t

tout << "This is the Monty Hall Game.\nYou see three doors '
< < ' before you. One of them has a new car behind it.\n"
<< "You will choose one of the doors. Then, before you '
<< "get to see which\ndoor has the car behind it, Monty '
<< "will give you the chance to change\nyour choice after u
<< "showing you that one of the other doors has\nnothing "
<< "behind it.\n";

unsigned seed = time(NULL);
srand(seed);
int car, choice, open, option;
car = rand()%3 + 1; // random integer from 1 to 3
tout << "Which door do you choose (11213): 'I;
tin >> choice;
if (car == 1 SC& choice == 1) { open = 3; option = 2; }
if (car == 1 && choice == 2) { open = 3; option = 1; }
if (car == 1 && choice == 3) { open = 2; option = 1; }
if (car == 2 && choice == 1) { open = 3; option = 2; }
if (car == 2 &SC choice == 2) { open = 1; option = 3; }
if (car == 2 && choice == 3) { open = 1; option = 2; }
if (car == 3 && choice == 1) { open = 2; option = 3; }
if (car == 3 &SC choice == 2) { open = 1; option = 3; }
if (car == 3 &SC choice == 3) { open = 2; option = 1; }
tout << "Monty shows that there is no car behind door number '

<< open << I'. \nDo you want to change your choice to door '
<< "number " -x option << "? (yin): ";

char answer;
tin >> answer;
if (answer == 'y' II answer == 'Y') choice = option;
tout << "Door number ' C-C car C-C ' has the car behind it.\n'

<< "Since your final choice was door number ' -C-K choice;
if (choice == car) tout -CC ', you won the car!\n";
else tout << ", you did not win.\n";

8 4 ITERATION AND FLOATING TYPES [CHAP. 3

3.23 Apply the Babylonian Algorithm to compute the square root of 2.

The BabyEonian Algorithm (so called because it was used by the ancient Babylonians) com-
putes -\/2 by repeated replacing one estimate x with the closer estimate (X + 2/x)/2. Note that
this is simply the average of x and 2/x.

#include <iostream.h>
#include <math.h> // needed for the fabs() function

main0
1

const double tolerance = 5e-8;
double x = 2.0;
while (fabs(x*x - 2.0) > tolerance) {

tout << x << endl;
x = (x + 2.0/x)/2.0; // average of x and 2/x

tout << 'lx = l1 << x << II, x*x = 'I << x*x << endl;

2
345
L43.667
1.41422
x = 1.42421, x*x = 2

We use a “tolerance” of 5e- 8 (= 0.00000005) to ensure accuracy to 7 decimal places. The f abs (>
function (for “floating-point absolute value”), defined in the <math. h> header file, returns the abso-
lute value of the exnression nassed to it. So the loon continues until x*x is within the given tolerance

I I

of2.

3.24 Convert the following for

for (int i = 20; i

tout << i*i;

Supplementary Problems

loop into a while loop:

> 10; i--)

3.25 Run the program in Example 3.13 to find the sizes of the 12 fundamental C++ types on your
system.

3.26 Run the program in Example 3.14 to find the precision and magnitude range for f 1 oats on
your system.

3.27 Describe the output from the following fragment:

int f0 = fl = f2 = 1;
for (int i = 0; i < 10; i++) {

f0 = fl;
fl = f2;
f2 = f0 + fl;
tout << f2 << endl;

CHAP. 31 ITERATION AND FLOATING TYPES 85

3.28 Describe the output from the following fragment:

for (int i = 0; i < 8; i++)
if (i%2 == 0) tout -CC i + 3 << endl;
else if (i%3 == 0) tout -CC 2*i - 1 << endl;
else if (i%5 == 0) tout << i*i << endl;
else tout CC i << endl;

3.29 Describe the output from the following fragment:

int i = 0;
while (++i <= 9) {

if (i == 5) continue;
tout << i C-C endl;

3.30 Describe the output from the following fragment:

int i = 0;
while (i < 5) {

if (i < 2) {
i += 2;
continue;

else tout CC ++i << endl;
tout << "Bottom of loop.\n";

3.31 In a 64-bit double type, 52 bits are used to store the mantissa and 11 bits are used to store
the exponent.

a. How many significant digits of precision does the 64-bit doubl e type yield?

6. What is the range of magnitude for the 64-bit double type?

Supplementary Programming Problems

3.32 Write a program that reads a temperature in Celsius degrees and prints the equivalent in Fahr-
enheit degrees. For example, if the user enters 75.4 for a temperature in Celsius, the output
wouldbe 135.72 degrees Fahrenheit.

3.33 Write a program that converts centimeters to inches. For example, if the user enters 52.7 for a
length in centimeters, the output would be 2 0 .7 4 8 in.

3.34 Write a program that converts pounds to kilograms. For example, if the user enters 160 for a
weight in pounds, the output would be 72 .57 4 8 kg. (One pound equals 0.453592 kilo-
grams .)

3.35 Write a program that reads the radius of a sphere and prints its surface area and volume.

8 6 ITERATION AND FLOATING TYPES [CHAP. 3

3.36

3.37

3.38

3.39

3.40

3.41

3.42

3.43

Modify and run the program in Example 3.1 so that it also prints the square of n- 1 and the

square of n.

Modify the program in Example 3.1 so that it uses a do . . . whi 1 e loop.

Modify the program in Example 3.1 so that it uses a for loop.

Write and run a program like the one in Example 3.2 that prints the sum of the first n cubes.

Modify the program in Example 3.3 so that it uses a whi le loop to compute factorials.

Modify the program in Example 3.3 so that it uses a for loop to compute factorials

Modify the program in Example 3.3 so that it uses a whi 1 e loop to compute factorials with a
control variable inside the loop that increments instead of decrementing n.

Modify the program in Example 3.3 so that it uses a do. . . whi le loop to compute factorials

with a control variable inside the loop that increments instead of decrementing n.

3.44 Modify the program in Example 3.3 so that it uses a for loop with a control variable inside
the loop that increments instead of n decrementing.

3.45 Write and run a program that reads a positive integer
prints their sum. Use a do. . . whi le loop.

n and then reads n more integers and

3.46 Write and run a program that reads a positive integer n and then reads n more integers and
prints their sum. Use a for loop.

3.47 Write and run a program that reads a sequence of integers until a negative integer is input, and
then prints the sum of the positive integers.

3.48 Modify the program in Example 3.14 so that it prints the precision and magnitude range of the
long double type.Simplyreplace float with long double, and FLT with LDBL.

3.49 Write and run a program that reads a positive integer n and then prints a triangle of asterisks
in that number of rows. Use a for loop. For example, if n is 4, then the output would be

3.50 Write and run a program that reads a positive integer n and then prints a diamond of asterisks
in 212-l rows. Use a for loop. For example, if n is 4, then the output would be

*

&****

?&******

*

CHAP. 31 ITERATION AND FLOATING TYPES 87

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

. 3.60

3.61

Write and run a program that directly implements the quotient operator / and the remainder

operator % for the division of a negative integer by a positive integer. See Problem 3.16 and
Example 1.16.

Redo Problem 3.19 using a do . . . whi le loop instead of the whi le loop.

Write and run a program that directly implements the quotient operator / and the remainder
operator % for the division of any integer (positive, negative, or zero) by any nonzero integer.
See Problem 3.16 and Problem 3.5 1.

Modify the Integer Square Root program in Problem 3.15 so that it runs more efficiently. Use
the Binary Search Algorithm in place of the Linear Search Algorithm. First see if the given
positive integer x is less than 9; if it isn’t, output either 0 (if x < 1) or 1 (if x < 4) or 2, and
return. If x 2 9, then its integer square root is between 2 and x/2. Split that interval, and then
compare x with n*n where n is the midpoint of that interval. Use the comparison to deter-
mine in which half of the interval the solution lies. Repeat the process on that subinterval. Use
only integers for the endpoints and midpoints of the intervals. When the midpoint is 1 more
than its left endpoint, it will be the solution.

Modify the program in Example 3.14 so that it prints the precision and magnitude range of the
double type.

Modify the Quadratic Equation program in Problem 2.20 so that it prints the equation in a
form more like that used in mathematics. For example, if a is 1, b is 0, and c is -3, then it
would print XQ - 3 = 0 insteadof lx*2 + OX + -3 = 0.

Modify the Quadratic Equation program in Problem 2.20 so that it correctly handles the spe-
cial cases where a = 0, b = 0, and/or c = 0. For example, it would report that the 1.25 is the
solution to 4x - 5 = 0, that 0 is the solution to 4x = 0, that there is no solutions to 5 = 0, and that
all reals are solutions to 0 = 0.

Write and test a program that inputs 3 positive integers day, month, and year, and then
prints the date that they represent, the number of days in that month, and a statement about
whether that year is a leap year. For example, if the 3 inputs are 6, 4, and 1997, then the pro-
gram would print Apri 1 6, 1997 (for4/6/97), April has 30 days, and 1997 is not
a leap year.

Write and test a program that inputs 4 positive integers day, month, year, and days, and
then prints two dates, the date represented by the given day, month, and year, and the date
that occurs days later. For example, if the 4 inputs are 6,4, 1997, and 100, then the two dates
printed would be Apri 1 6, 19 97 (for 4/6/97), and JULY 15, 19 97 (for 4/6/97 + 100
days).

Modify the Linear Regression program (Problem 3.20) so that, after computing the equation of
the regression line, it allows the user to interpolate by inputting x-values and outputting the
corresponding y-values computed from the equation.

Modify the Monte Hall game (Problem 3.22) so that the user can play the game repeatedly in a
single run of the program. Count the number of times the player wins, and print the percentage
of wins at the end of the program.

88 ITERATION AND FLOATING TYPES [CHAP. 3

3.62 Modify the Babylonian Algorithm program (Problem 3.23) so that it computes the square root
of a positive number t that is input interactively. Average the iterate x with (x + t/x) / 2.

Answers to Review Questions

3.1 The minimum number of iterations that
a. a whi le loop could make is 0;
b. a do.. . whi 1 e loop could make is 1.

3 2. It is an infinite loop: the control variable n does not change.

3 3. There is no difference between these two fragments, unless s contains a continue statement. For
example, the following for statement will iterate 4 times and then terminate normally, but the
whi 1 e statement will be an infinite loop:

for (i = 0; i < 4; i++)
if (i == 2) continue;

i = 0;
while (i < 4) {

if (i == 2) continue;
i++;

3 4. The constant pi is not initialized. All constants must be given values when they are declared.

3 5. An “infinite loop” is one that never terminates. Such a loop is generally considered bad programming
because the program containing it will terminate normally. However, an apparent infinite loop like the
following can be useful:

while (1) {
tin >> n;
if (n == 0) break;
process(n);

1

The break statement will terminate the loop as soon as 0 is input. This is useful because it allows the
code to be a little more brief than if the condition (n = = 0) were used directly with the whi le
clause.

3 6. T h e break statement can be used to terminate a loop from within the middle of its block. The exam-
ple above illustrates this technique.

3 7. Due to roundoff error, the exact value of a f loa t or double is not likely to be what you would
expect. So a conditional like

if (z == c) . . .
should be avoided.

Chapter 4

Functions

Most useful programs are much larger than the programs that we have considered so far. To
make large programs manageable, programmers modularize them into subprograms. These
subprograms are called functions. They can be compiled and tested separately and reused in
different programs. This modularization is characteristic of successful object-oriented software.

4.1 STANDARD C LIBRARY FUNCTIONS

The Standard C Library is a collection of pre-defined functions and other program elements
which are accessed through header files. We have used some of these already: the INTJAX
constant defined in -C 1 imi t s . h> (Example 1.19, the rand (> function defined in <S tdl ib . h>
(Example 3.21), and the time (> function defined in <time. h> (Example 3.22). The common
mathematical functions are defined in the <math. h> header file. Our first example illustrates
the use of one of these mathematical functions.

EXAMPLE 4.1 The Square Root Function sqrt ()

The square root of a given positive number is the number whose square is the given number. The
square root of 9 is 3 because the square of 3 is 9. We can think of the square root function as a “black box.”
When you put in a 9, out comes a 3. When the number 2 is input, the number 1.41421 is output. This func-
tion has the same input-process-output nature that complete programs have. However, the processing step
is hidden: we do not need to know what the function does to 2 to produce 1.41421. All we need to know is
that the output 1.41421 does have the square root property: its square is the input 2.

Here is a simple program that uses the predefined square root function:

#include <iostream.h>
#include <math.h>
// Test-driver for the sqrt function:
main0
{

for (int i = 0; i < 6; i++)
tout C-C "\t" -CC i C-C "\t" C-C sqrt(i) << endl;

>

89

9 0 F U N C T I O N S [CHAP. 4

This program prints the square roots of the numbers 0 through 5. Each time the expression sqr t (i >
is evaluated in the for loop, the sqr t function is executed. Its actual code is hidden away within the
Standard C Library. In using it, we may confidently assume that the expression sqrt (i) will be
replaced by the actual square root of whatever value i has at that moment.

Notice the directive # inc lude <math . h> on the second line. This is necessary for the compiler to
find the definition of the sqr t function. It tells the compiler that the function is declared in the
<math. h> header file.

A function like sqr t () is executed by using its name as a variable in a statement, like this:
y = sqrt(x);

This is called invoking or calling the function. Thus in Example 4.1, the code sqrt (i) caZZs the
sqrt function. The expression i in the parentheses is called the argument or actual parameter
of the function call, and we say that it is passed by vaZue to the function. So when i is 3, the
value 3 is passed to the sqr t function by the call sqr t (i) .

This process is illustrated by the following diagram:

main0 3 sqrt()

1.73205 /

The variable i is declared in main () . During the fourth iteration of the for loop, its value is
3. That value is passed to the sqrt () function which then returns the value 1.73205.

EXAMPLE 4.2 Testing an Identity from Trigonometry

Here is another program that uses the <math . h> header file.
verification of the standard trigonometric identity sir-h = 2 sinxcosx :

Its purpose is to allow an empirical

#include <iostream.h>
#include <math.h>
// Program to test trigonometric identity sin 2x = 2 sin x cos x:
main0

for (float x = 0; x < 2; x += 0.2)
tout << "\t" << x << "\t\t" << sin(2*x) << "\t"

cc 2*sin(x)*cos(x) C-C endl;

0 O-0
0 . 2 0*389418 0*389428
0.4 0.717356 0.717356

- o-6. . 0 . 9 ’ 3 2 0 3 9 0 . 9 3 2 0 3 9 ,
oi ,0.999574 0 * 999574 .’
1 0 .909297 0,909297
f*2 O,Q754G3 0.675463 .

1 . 4 ‘0 t J34988’ 01334988 .:. . ..j
‘.

I..6 . .’ -0Jl583744 -0,0583744
1.8 -0.442521 -0.442521 . .

The program prints x in the first column, sin 2x in the second column, and 2 sin x cos x in the third column.
For each value of x tested, sin 2x = 2 sin x cos X. Of course, this does not prove the identity. It merely pro-
vides convincing empirical evidence of its truth.

CHAP. 41 FUNCTIONS 9 1

Function values may be used like ordinary variables in an expression. Thus we can write
y = sqrt(2);
tout << 2*sin(x)*cos(x);

We can even “nest” function calls, like this:
Y = sqrt(1 + 2*sqrt(3 + 4*sqrt(5)))

Most of the mathematical functions that you find on a pocket calculator are declared in the
<math . h> header file, including all those shown in Table 4.1.

Table 4.1 Some <math. h> Functions

Function Description Example

aces(x)

asin

atan

ceil(x)

cos (x)

exp (x>

fabs(x)

floor(x)

log (x>

loglO

POWkP)
sin(x)

sqrt (x>

tan(x)

inverse cosine of x (in radians) acos(0.2) returns 1.36944

inverse sine of x (in radians) asin(0.2) returns 0.201358

inverse tangent of x (in radians) atan(0.2) returns 0.197396

ceiling of x (rounds up) ceil(3.141593) returns 4.0

cosine of x (in radians) cos (2) returns -0.416147

exponential of x (base e) exp(2) returns 7.38906

absolute value of x fabs (-2) returns 2.0

floor of x (rounds down) floor(3.141593) returns 3.0

natural logarithm of x (base e) log(2) returns 0.693147

common logarithm of x (base 10) loglO(2) returns 0.30103

x to the power p pow(2,3) returns 8.0

sine of x (in radians) sin(2) returns 0.909297

square root of x sqrt(2) returns 1.41421

tangent of x (in radians) tan(2) returns -2.18504

Notice that every mathematical function returns a double type. If it is passed an integer, the
int is promoted to a double before it is processed by the function.

Table 4.2 lists some of the more useful header files in the Standard C Library.

Table 4.2 Some of the Header Files in the Standard C Library

Header File Description

<assert.h>

<ctype.h>

<float.h>

<limits.h>

<math.h>

<stdio.h>

<stdlib.h>

<string.h>

<time.h>

Declares the as s er t () function

Declares functions to test characters

Declares constants relevant to floats

Defines the integer limits on your local system

Declares mathematical functions

Declares functions for standard input and output

Declares utility functions

Declares functions for processing strings

Declares time and date functions

These are Standard C header files. They are used the same way that Standard C++ header files
such as < ios t ream. h> are used. For example, if you want to use the random number function

92 FUNCTIONS [CHAP. 4

rand () from the <s tdlib . h> header file, include the following preprocessor directive at the
beginning of your main program file:

#include <stdlib.h>

The Standard C Library is described in greater detail in Chapter 14.

4.2 USER-DEFINED FUNCTIONS

The great variety of functions provided by the C and C++ libraries is still not sufficient for
most programming tasks. Programmers also need to be able to define their own functions.

EXAMPLE 4.3 A cube () Function

Here is a simple example ofa user-defined function:

// Returns the cube of the given integer:
int cube(int x)
Ic

return x*x*x;

The function returns the cube of the integer passed to it. Thus cube (2) would return 8.

A user-defined function has two parts: its header and its body. The header of a function spec-
ifies its return type, name, and parameter list. In Example 4.3, the return type is int, the name is
cube, and the parameter list is int X. Thus the header for the cube function is

int cube(int x)

The body of a function is the block of code that follows its header. It contains the code that
performs the function’s action, including the return statement that specifies the value that the
function sends back to the place where it was called. The body of the cube function is

k

return x*x*x*I

This is about as simple a body as a function could have. Usually the body is much larger. But the
function’s header typically fits on a single line.

A function’s return statement serves two purposes: it terminates the function, and it returns a
value to the calling program. Its syntax is

return expression;

where expression is any expression whose value could be assigned to a variable whose type is
the same as the function’s return type.

4.3 TEST DRIVERS

Whenever you create your own function, you should immediately test it with a simple
program. Such a program is called a test driver for the function. Its only purpose is to test the
function. It is a temporary, ad hoc program that should be “quick and dirty.” That means that

CHAP. 41 FUNCTIONS 93

you need not include all the usual niceties such as user prompts, output labels, and documenta-
tion. Once you have used it to test your function thoroughly you can discard it.

EXAMPLE 4.4 A Test Driver for the cube () Function

Here is a complete program, consisting of our cube function followed by a test driver:

// Returns the cube of the given integer:
int cube(int x)
{

return x*x*x;

// Test driver for the cube function:
main0
{

int n = 1;
while (n != 0) {

tin >> n;
tout << cube(n) CC endl;

This reads integers and prints their cubes until the user inputs the sentinel value 0. Each integer read is
passed to the cube function by the call cube (n) . The value returned by the function replaces the
expression cube (n) and then is passed to the output object tout.

Note that we omitted the # include < ios tream . h> directive. This directive of course is required
for every program that uses tin or tout. It is omitted from further examples only to save space.

We can visualize the relationship between the main (> function and the cube (> function
like this:

The main (> function passes the value 5 to the cube (> function, and the cube (> function
returns the value 125 to the main (> function. The actual parameter n is passed by value to the
formal parameter X. This simply means that x is assigned the value of n when the function is
called.

Note that the cube (> function is defined above the main (> function in the example. This
is because the C++ compiler must know about the cube (> function before it is used in main () .

The next example shows a user-defined function named max (> which returns the larger of
the two ints passed to it. This function has two arguments.

94 FUNCTIONS [CHAP. 4

EXAMPLE 4.5 A Test Driver for the max () Function

Here is a function with two parameters. It returns the larger of the twp values passed to it:

// Returns the larger of the two given integers:
int max(int x, int y)
-l

if (x < y) return y;
else return x;

>

main0

int m, n;
do 1

tin >> m >> n;
tout << max(m,n) <<

} while (m != 0);

Notice that the function has more than one
the function and returns the indicated value

endl;

return statement. The first one that is reached terminates
to the calling program.

A return statement is like a break statement. It is a jump statement that jumps out of the
function that contains it. Although usually found at the end of the function, a return statement
may be put anywhere that any other statement could appear within a function.

4.4 FUNCTION DECLARATIONS AND DEFINITIONS

The last two examples illustrate one method of defining a function in a program: the
complete definition of the function is listed above the main program. This is the simplest
arrangement and is good for test drivers.

Another, more common arrangement is to list only the function’s header above the main
program, and then list the function’s complete definition (header and body) below the main
program. This is illustrated in the next example.

In this arrangement, the function’s declaration is separated from its definition. A function
declaration is simply the function’s header, followed by a semicolon. A function definition is the
complete function: header and body. A function declaration is also called a function prototype.

A function declaration is like a variable declaration; its purpose is simply to provide the
compiler with all the information it needs to compile the rest of the file. The compiler does not
need to know how the function works (its body). It only needs to know the function’s name, the
number and types of its parameters, and its return type. This is precisely the information
contained in the function’s header.

Also like a variable declaration, a function declaration must appear above any use of the
function’s name. But the function definition, when listed separately from the declaration, may
appear anywhere outside the main () function and is usually listed after it or in a separate file.

The variables that are listed in the function’s parameter list are calledfownal parameters or
formal arguments. They are local variables that exist only during the execution of the function.

CHAP. 41 FUNCTIONS 95

Their listing in the parameter list constitutes their declaration. In the example above, the formal
parameters are x and Y.

The variables that are listed in the function’s calls are called the actual parameters or actual
arguments. Like any other variable in the main program, they must be declared before they are
used in the call. In the example above, the actual parameters are m and n.

In these examples, the actual parameters arepassed by value. This means that their values are
assigned to the function’s corresponding formal parameters. So in the previous example, the
value of m is assigned to x and the value of n is assigned to Y. When passed by value, actual
parameters may be constants or general expressions. For example, the max () function could be
called by max (44,~ *m-n > . This would assign the value 44 to x and the value of the expression
5*m-n t0 y

EXAMPLE 4.6 The max () Function with Declaration Separate from Definition

This program is the same test driver for the same max () function as above. But here the function’s
declaration appears above the main program and the function’s definition follows it:

int max(int, int);

// Test driver for the max function:
main0

-t
int m, n;
do 1

tin >> m >> n;
tout << max(m,n) << endl;

} while (m != 0);

// Returns the larger of the two given integers:
int max(int x, int y)
t

if (x < y) return y;
else return x;

Notice that the formal
the declaration.

parameters, x and y, are listed in the definition (as usual) but not in

Note that there is really not much difference between a function declaration and a variable
declaration, especially if the function has no parameters. For example, in a program that pro-
cesses strings, you might need a variable named length to store the length of a string. But a rea-
sonable alternative would be to have a function that computes the length of the string wherever it
is needed, instead of storing and updating the value. The function would be declared as

int length();

whereas the variable would be declared as
int length;

The only difference is that the function declaration includes the parentheses (> . In reality, the
two alternatives are quite different, but syntactically they are nearly the same when they are used.

96 FUNCTIONS [CHAP. 4

In cases like this, one can regard a function as a kind of an “active variable;” i.e., a variable that
can do things.

4.5 SEPARATE COMPILATION

Function definitions are often compiled independently in separate files. For example, all the
functions declared in the Standard C Library are compiled separately. One reason for separate
compilation is “information hiding”-that is, information that is necessary for the complete
compilation of the program but not essential to the programmer’s understanding of the program
is hidden. Experience shows that information hiding facilitates the understanding and thus
success of large software projects.

EXAMPLE 4.7 The max () Function Compiled Separately

This shows one way that the max function and its test driver could be compiled separately. The test
driver is in a file named t e s t max. c- and the function is in a separate file named max. c.

testmax.c

int max(int, int);

// Test driver for the max function:
main0

int m, n;
do 1

tin >> m >> n;
tout CC max(m,n) cc endl;

} while (m != 0);

max.c

// Returns the larger of the two given integers:
int max(int x, int y)
{

if (x c y) return y;
else return x;

1

The actual commands that you would use to compile these files together depend upon your
local system. In UNIX you could use these commands:

$ c++ -c max-c
$ c++ -c test-max.c
$ c++ -0 test-max testmax. max.0
$ test-max

(Here the dollar sign is the system prompt.) The first command compiles the max function, the
second command compiles the test driver separately, the third command links them together to
produce the executable module t es t max,- which is then run by the command on the fourth line.

CHAP. 41 FUNCTIONS 97

One advantage of compiling functions separately is that they can be tested separately before
the program(s) that call them are written. Once you know that the max function works properly,
you can forget about how it works and save it as a “black box” ready to be used whenever it is
needed. This is how theunctions in the math library are used. It is the “off-the-shelf software”
point of view.

Another advantage of separate compilation is the ease with which one module can be
replaced by another equivalent module. For example, if you happen to discover a better way to
compute the maximum of two integers, you can compile and test that function, and then link that
module with whatever programs were using the previous version of the max (> function.

4.6 LOCAL VARIABLES AND FUNCTIONS

A Zocal variable is simply a variable that is declared inside a block. It is accessible only from
within that block. Since the body of a function itself is a block, variables declared within a
function are local to that function; they exist only while the function is executing. A function’s
formal parameters (arguments) are also regarded as being local to the function.

The next two examples show functions with local variables.

EXAMPLE 4.8 The factorial () Function

The factorial of a positive integer y2 is the number n! obtained by multiplying n by all the positive inte-
gers less than n:

n! = (n)(n - 1) l l . (3)(2)(l)
For example, 5! = (5)(4)(3)(2)(l) = 120.

Here is an implementation of the factorial function:

int factorial(int n)
{

if (n < 0) return 0;
int f = 1;
while (n > 1)

f *= n--;

return f;

This function has two local variables: n and f. The parameter n is local because it is declared in the
function’s parameter list. The variable f is local because it is declared within the body of the function.

Here is a test driver for the factorial function:

int factorial(int);

main0
{

for (int i = -1; i < 6; i++)
tout cc tl ' CC factorial(i);

tout CC endl;

'0' 1, f.26 .24 120 :;

98 FUNCTIONS [CHAP. 4

This program could be compiled separately, or it could be placed in the same file with the function and
compiled together.

EXAMPLE 4.9 The Permutation Function

A permutation is an arrangement of elements taken from a finite set. The permutation function P(n,k)
gives the number of different permutations of any k items taken from a set of YI items. One way to compute
this function is by the formula

n !
P(n, k) = ~

(n - k) !

For example,

P(5,2) = A-=-=5! 120=2()
(5-2)! 3! 6

So there are 20 different permutations of 2 items taken from a set of 5.

The code below implements this formula for the permutation function:

// Returns P(n;k), the number of permutations of k from n:
int perm(int n, int k)
-t

if (n < 0 II k < 0 II k > n) return 0;
return factorial(n)/factorial(n-k);

>

Notice that the condition (n < 0 1 1 k < 0 I I k > n) is used to handle the cases where either
parameter is out of range. In these cases the function returns an “impossible” value, 0, to indicate that its
input was erroneous. That value would then be recognized by the calling program as an “error flag.”

Here is a test driver for the perm () function:

int perm(int,int);

main0
1

for (int i = -1; i < 8; i++) {
for (int j = -1; j <= i+l; j++)

tout << " il << perm(i,j);
tout << endl;

>
>

CHAP. 41 FUNCTIONS 99

4.7 void FUNCTIONS

A function need not return a value. In other programming languages, such a function is
called a procedure or a subroutine. In C++, such a function is identified simply by placing the
keyword void where the function’s return type would be.

A type specifies a set of values. For example, the type short specifies the set of integers
from -32,768 to 32,767. The void type specifies the empty set. Consequently, no variable can
be declared with void type. A void function is simply one that returns no value.

EXAMPLE 4.10 A printDate () Function

This function prints the date in literal form, given its month, day, and year in numeric form:

void printDate(int, int, int);

main0

int month, day, year;

tin >> month >> day >> year;
printDate(month,day,year);

} while (month > 0);

void printDate(int m, int d, int y)

if (m < 1 II m > 12 II d < 1 I I d > 31 II y < 0) {
tout C-C 'Error: parameter out of range.\n";
return;

switch (m) {
case 1: tout << "January ";
case 2: tout << "February ';
case 3: tout -C-C "March ";
case 4: tout CC "April ";
case 5: tout << " May " ;

. case 6: tout C-C "June ";
case 7: tout << "July ";
case 8: tout << "August ";
case 9: tout << "September ";
case 10: tout c-c "October ';
case 11: tout << "November ";
case 12: tout -c-c "December ';

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

tout << d << I I C-C y << endl;

The printDa t e () function returns no value. Its only purpose is to print the date. So its return type is
void. The function uses a swi tch statement to print the month as a literal, and it prints the day and
year as integers.

100 FUNCTIONS [CHAP. 4

Note that the function returns without printing anything if the parameters are obviously out of range

(8e. ., m > 12 or y < 0). But impossible values such as February 19 , 19 9 6 would be printed.
Corrections for these anomalies are left as exercises.

Since a void function does not return a value, it need not include a return statement. If it
does have a return statement, then it should appear simply as

return;

with no expression following the keyword return. In this case, the purpose of the return
statement is simply to terminate the function.

A function with no return value is an action. Accordingly, it is usually best to use a verb phrase for its
name. For example, the above function is named printDat e instead of some noun phrase like date.

4.8 BOOLEAN FUNCTIONS

In some situations it is helpful to use a function to evaluate a condition, typically within an
i f statement or a while statement. Such functions are called boolean functions, after the
British logician George Boole (18 15 1864).

EXAMPLE 4.11 Classifying Characters

The following program classifies the 128 ASCII characters:

#include <iostream.h>
#include <ctype.h>

// Prints the category to which the given character belongs:
void printCharCategory(char c)
Ic

tout << "The character ['I << c << "1 is a 'I;
i f (isdigit(tout c< "digit.\n";
else if (islower(tout cc "lower-case letter.\n";
else if (isupper(tout cc "capital letter.\n";
else if (isspace(tout << "white space character.\n";
else if (iscntrl(c)) tout <<; "control character.\n";
else if (ispunct(c)) tout c< "punctuation mark.\n";
else tout << "Error.\n";

main0
1

for (int c = 0; c < 128; c++)
printCharCategory(c);

CHAP. 41
,

FUNCTIONS 101

The void function printCharCategory() calls the six boolean functions isdigit(),
islower(), isupper(), isspace& i scn trl () , and i spunc t () . Each of these functions is
predefined in the cc type. h> header file. These functions are used to test objects’ character type (i.e.,
“c type”).

Here is part of the output:

The complete output contains 128 lines.
This example illustrates several new ideas. The main idea is the use of the boolean functions

isdigit(), islower(), isupper(), isspace(), iscntrl (),and ispunct ().Forexample,
the call i s space (c) tests the character c to determine whether it is a white space character. (There
are six white space characters: the horizontal tab character \ t, the newline character \n, the vertical
tab character \v, the form feed character \ f, the carriage return character \ r, and the space charac-
ter.) If c is any of these characters, then the function returns 1 for “true”; otherwise it returns 0 for
“false.” Placing the call as the condition in the i f statement causes the corresponding output statement
to execute if and only if c is one of these characters.

Each character is tested within the printcharcategory () function. Although the program could
have been written without this separate function, its use modularizes the program making it more struc-
tured. We are conforming here to the general programming principle that recommends that every task be
relegated to a separate function.

EXAMPLE 4.12 A Function to Test Primality

Here is a boolean function to test whether a given integer is a prime number.

// Returns 1 if n is prime, 0 otherwise:
int isPrime(int n)
-t

float sqrtp = sqrt(p);
if (p < 2) return 0; // 2 is the first prime
if (p == 2) return 1;
if (p % 2 == 0) return 0; // 2 is the only even prime
for (int d = 3; d K= sqrtp; d += 2)

if (p % d == 0) return 0;
return 1;

>

It works by looking for a divisor d of the given number n. It tests divisibility by the value of the condi-
tion (n % d = = 0 > . This will be true precisely when d is a divisor of n. In that case, n cannot be a
prime number, so the function immediately returns 0 for “false.” If the for loop finishes without find-
ing any divisor of n, then the function returns 1 for “true.”

We can stop searching for divisors once we get past the square root of n because if n is a product
d*a, then one of these factors must be less than or equal to the square root of n. We define that to be a
constant so that it only has to be evaluated once; if we had used the condition d < = sqr t (n) to control
the for loop, it would re-evaluate that square root at the end of each iteration.

102 FUNCTIONS [CHAP. 4

It is also more efficient to check for even numbers (n = = 2 > first. This way, once we get to the for

loop, we need only check for odd divisors. This is done by incrementing the divider d by 2 on each iter-
ation.

Here is a test driver and a test run for the isPrime () function:

int isPrime(int);

main0

for (int n = 1; n < 50; n++)
if (isPrime(tout << n << ' ';
tout << endl;

2 3 5 7 I.1 53 17 19 23 29 31 37 41 43 47 ,

Notice that, like the “c-type” functions in the previous example, a verb phrase is used for the name of this
function. The name “i s Prime" makes the function’s use more readable for humans. For example, the
code

if (isPrime(. . .

is almost the same as the ordinary English phrase “if n is prime.”

It should be clear that this function is not optimal. In searching for divisors, we need only check prime
numbers, because every composite (non-prime) number is a unique product of primes. But how can we
use only prime values for d? The answer is to store the primes as we find them. But that requires using an
array, so we’ll have to wait until Chapter 5 to do that.

EXAMPLE 4.13 A Leap Year Function

A leap year is a year in which one extra day (February 29) is added to the regular calendar. Most of us
know that the leap years are the years that are divisible by 4. For example, 1992 and 1996 are leap years.
Most people, however, do not know that there is an exception to this rule: centennial years are not leap
years. For example, 1800 and 1900 were not leap years. Furthermore, there is an exception to the excep-
tion: centennial years which are divisible by 400 are leap years. Thus, the year 2000 will be a leap year.

Here is a boolean function that implements this definition:

// Returns 1 if y is a leap year, 0 otherwise:
int isLeapYear(int y)

return y % 4 = = 0 &SC y % 100 != 0 II y % 400 == 0;

>

The compound condition y % 4 == 0 && y % 100 ! = 0 I I y % 400 == 0 will be truepre-
cisely when y is divisible by 4 but not by 100 unless it is also divisible by 400. In these cases the function
returns 1; in all other cases it returns 0.

CHAP. 41 FUNCTIONS 1 0 3

Here is a test driver and test run for the function:

int isLeapYear(int);

// Test driver for the isLeapYear function:
main0

-t
int n;

tin >> n;
if (isLeapYear(n)) tout << n << H is a leap year.\n";
else tout << n << ' is not a leap year.\n";

} while (n > 1); .

4.9 I/O FUNCTIONS

Functions are particularly useful for encapsulating tasks that require messy details that are
not very germane to the primary task of the program. For example, in processing personnel
records, you might have a program that requires interactive input of a user’s age. By relegating
this task to a separate function, you can encapsulate the details needed to ensure correct data
entry without distracting the main program.

We have already seen examples of output functions. The only purpose the printDate
function in Example 4.10 was to print the date represented by its input parameters. Instead of
sending information back to the calling function, it sends its information to the standard output
(i.e., the computer screen). An input function like the one described above is analogous. Instead
of receiving its information through its parameters, it reads it from standard input (Le., the
keyboard).

Example 4.14 illustrates an input function. The while (1) control of the loop in this example
makes it look like an infinite loop: the condition (1) is always “true.” But the loop is actually controlled
by the return statement which not only terminates the loop but also terminates the function.

104 FUNCTIONS [CHAP. 4

EXAMPLE 4.14 A Function for Reading the User’s Age

Here is a simple function that prompts the user for his/her age and then returns it. It is “robust” in the
sense that it rejects any unreasonable integer input. It repeatedly requests input until it receives an integer
in the range 1 to 120:

int age0
{

int n;
while (1) {

tout << "How old are you: ';
tin >> n;
if (n c 0) tout << "\a\tYour age could not be negative.';
else if (n > 120) tout CC "\a\tYou could not be over 120.";
else return n;
tout << "\n\tTry again.\n";

As soon as the input received from tin is acceptable, the function terminates with a return state-
ment, sending the input back to the calling function. If the input is not acceptable (n c 0 or n > 12 0),
then the system beep is sounded by printing the character I \a I and a comment printed. Then the user is
asked to “Try again.”

Note that this is an example of a function whose return statement is not at the end of the function.

Here is a test driver and output from a sample run:

// Prompts the user to input her/her age, and returns that value:'
i n t age();

// Test driver for the age0 function:
main0
1

int a = age();
tout << "\nYou are ' << a << ' years old.\n";

>

Your age could not' Jx.2 negative*
Try again,

?
.,. " I ., ,. . . ,. .’ ;

Eiuw old ax you: 200 .‘.:
Yuu cauld nat b e uver 120.

- . ’. . ‘.
Try again, '._ '..: ‘.’

Huti a3cd are you : 19
:.

._’ .;.
. .. .

Ycm are 19 years old, .
. .

Notice that the function’s parameter list is empty. But even though it has no input parameters, the paren-
theses! () must be included both in the function’s header and in every call to the function.

CHAP. 41 FUNCTIONS

4.10 PASSING BY REFERENCE

1 0 5

Until now, all the parameters that we have seen in functions have been passed by value. That
means that the expression used in the function call is evaluated first and then the resulting value
is assigned to the corresponding parameter in the function’s parameter list before the function
begins executing. For example, in the call cube (x) , if x has the value 4, then the value 4 is
passed to the local variable n before the function begins to execute its statements. Since the
value 4 is used only locally inside the function, the variable x is unaffected by the function.
Thus the variable x is a read-only parameter.

The pass-by-value mechanism allows for more general expressions to be used in place of an
actual parameter in the function call. For example the cube function could also be called as
tube(3), or as cube(2*x-3), or even as cube(2*sqrt(x)-tube(3)). In each case,the
expression within the parentheses is evaluated to a single value and then that value is passed to
the function.

The read-only, pass-by-value method of communication is usually what we want for
functions. It makes the function more self-contained, protecting against accidental side effects.
However, there are some situations where a function needs to change the value of the parameter
passed to it. That can be done by passing it by reference.

To pass a parameter by reference instead of by value, simply append an ampersand 6c to the
type specifier in the functions parameter list. This makes the local variable a reference to the
actual parameter passed to it. So the actual parameter is read-write instead of read-only. Then any
change to the local variable inside the function will cause the same change to the actual parame-
ter that was passed to it.

EXAMPLE 4.15 The swap () Function

This little function is widely used in sorting data:

// Swaps x and y so that each ends up with the other's value:
void swap(float& x, float& y)
{

float temp = x;
x = y;
y = temp;

Its sole purpose is to interchange the two objects that are passed to it. This is accomplished by declaring
the formal parameters x and y as reference variables: f loa t & x , f 1 oat& y. The reference opera-
tor SC makes x and y synonyms for the actual parameters passed to the function.

106 FUNCTIONS [CHAP. 4

Here is a test driver and output from a sample run:

void swap(float&, float&);

// Test driver for the swap function:
main0

float a = 27, b = -5.041;
tout << a << fl ' << b << endl;
swap(a,b);
tout << a << ' ' CC b << endl;

When the call swap (a, b) executes, the function creates its local references x and y, so that x is the
function’s local name for a, and y is the function’s local name for b. Then the local variable temp is
declared and initialized with the value of a, a is assigned the value of b, and b is assigned the value
of temp. Consequently, a ends up with the value -5.041, and b ends up with the value 27.0.

Note that the function declaration:

void swap(float&, float&);

includes the reference operator & for each reference parameter, even though the parameters themselves
are omitted.

Some C++ programmers write the reference operator SC as a prefix to the parameter, like this:

void swap(float &x, float &y)

instead of as a suffix to its type as we do. The compiler will accept float& x, float &x, float & x, or even
float&x. It’s mostly a matter of taste.

EXAMPLE 4.16 Passing By Value and Passing By Reference

This example shows the difference between passing by value and passing by reference.

void f(int x, int& y) { x = 88; y = 99; }

main0
-t

int a = 22, b = 33;
tout << "a = M -CC a C-C II, b = ' -CC b -CC endl;

f (ah) ;
tout << "a = ' << a CC ", b = ' <=< b << endl;

a = 22, 53 = 33
3.L 22,a = 9 9

The call f (a, b) passes a by value to x and b by reference to y. So x is a local variable which is
assigned a’s value of 22, while y is an alias for the variable b whose value is 33. The function assigns
88 to x, but that has no effect on a. But when it assigns 99 to y, it is really assigning 99 to b. Thus,
when the function terminates, a still has its original value 22, while b has the new value 99. The actual
parameter a is read-only, while the actual parameter b is read-write.

CHAP. 41 FUNCTIONS 1 0 7

This table summarizes the differences between passing by value and passing by reference:

Table 4.3 Passing By Value Versus Passing By Reference

Passing By Value Passing By Reference

int x; int &x;

Formal parameter x is a local variable. Formal parameter x is a local reference.

It is a duplicate of the actual parameter. It is a svnonvm for the actual parameter.

It cannot change the actual parameter. It can change the actual parameter.

Actual parameter may be a constant, Actual parameter must be a variable.
a variable, or an expression.

Actual parameter is read-only. Actual parameter is read-write.

A common situation where reference parameters are needed is where the function has to
return more than one value. It can only return one value directly with a return statement. So if
more than one value must be returned, reference parameters can do the job.

EXAMPLE 4.17 Computing the Area and Circumference of a Circle

This function returns through its two reference parameters the area and the circumference of
a circle whose radius has the given length r:

void computeCircle(double& area, double& circumference, double r)
{

const double pi = 3.141592653589793;
area = pi*r*r;
circumference = 2*pi*r;

>

Here is a test driver and output from a sample run:

void computeCircle(double&, double&, double);

main0
{

double r, a, c;
tout << "Enter radius: ";
tin >> r;
computeCircle(a, c, r);
tout << "area = ' << a << ', circumference = ' -KC c <c endl;

Note that the output parameters area and circumference are listed first in the parameter list, to
the left of the input parameter r. This standard C style is consistent with the format of assignment state-
ments: q = p, where the information (the value) flows from the read-only variable p on the right & the
read-write variable q on the left.

.

108 FUNCTIONS [CHAP. 4

4.11 PASSING BY CONSTANT REFERENCE

There are two good reasons for passing a parameter by reference. If the function has to
change the value of the actual parameter, as the swap (> function did, then it must be passed by
reference. Also, if the actual parameter that is passed to a function takes up a lot of storage space
(for example, a one-megabyte graphics image), then it is more efficient to pass it by reference to
prevent it from being duplicated. However, this also allows the function to change the value (Le.,
contents) of the actual parameter. If you don’t want the function to change its contents (for
example, if the purpose of the function is to print the object), then passing by reference can be
risky. Fortunately, C++ provides a third alternative: passing by constant reference. It works the
same way as passing by reference, except that the function is prevented from changing the value
of the parameter. The effect is that the function has access to the actual parameter by means of its
formal parameter alias, but the value of that formal parameter may not be changed during the
execution of the function. A parameter that is passed by value is called “read-only” because it
cannot write (Le., change) the contents of that parameter.

EXAMPLE 4.18 Passing By Constant Reference

This illustrates the three ways to pass a parameter to a function:

void f(int x, int& y, const int& z)

x += z;
y += z;
tout << "X = u << x << II, y,= u C-C y -CC II, z = ' << z << endl;

The first parameter a is passed by value, the second parameter b is passed by reference, and the
third parameter c is passed by constant reference:

main0

int a = 22, b = 33, c = 44;
tout << "a = u << a << II, b = H << b CC ', c = ' -CC c CC endl;

f(a,b,d;
tout << "a = H <C a << II, b = 'I << b << ", c = ' CC c CC endl;

)

The function changes the formal parameters x and y, but it would not be. able to change Z. The func-
tion’s change of x has no effect upon the actual parameter a because it was passed by value. The func-
tion’s change of y has the same effect upon the actual parameter b because it was passed by reference.

Passing parameters by constant reference is used mostly in functions that process large objects, such
as arrays and class instances that are described in later chapters. Objects of fundamental types (integers,
floats, etc.) are usually passed either by value (if you don’t want the function to change them) or by refer-
ence (if you do want the function to change them).

CHAP. 41 FUNCTIONS 109

4.12 INLINE FUNCTIONS

A function involves substantial overhead. Extra time and space have to be used to invoke the
function, pass parameters to it, allocate storage for its local variables, store the current variables
and the location of execution in the main program, etc. In some cases, it is better to avoid all this
by specifying the function to be inline. This tells the compiler to replace each call to the
function with explicit code for the function. To the programmer, an inline function appears the
same as an ordinary function, except for the use of the inline specifier.

EXAMPLE 4.19 An inline Cube Function

This is the same cube () function that we had in EXAMPLE 4.1:

inline int cube(int n)
1

return n*n*n;

The only difference is the in1 ine designation in the function’s header. The compiler is told to replace
the expression cube (n > in the main program with the actual code n*n*n. So the following program is
compiled

main0
{

tout CC cube($) CC endl;
int x, y;
tin >> x;
Y = cube(2*x-3);

the result will be as though the program itself had really been

main0
1

tout CC (4)*(4)*(4) CC endl;
int x, y;
cln >> x;
Y = (2*x-3)*(2*x-3)*(2*x-3);

1

When the compiler replaces the inline function call with the function’s actual code, we
say that it expands the inline function.

Note that the C++ Standard does not actually require the compiler to expand inline
functions. It only “advises” the compiler to do so. One that doesn’t follow this “advice” could
still be validated as a Standard C++ compiler. On the other hand, some Standard C++ compilers
may expand some simple functions even if they are not declared to be inline.

110 FUNCTIONS [CHAP. 4

4.13 SCOPE

The scope of a name consists of that part of the program where it can be used. It begins
where the name is declared. If that declaration is inside a function (including the main ()
function), then the scope extends to the end of the innermost block that contains the declaration.

A program may have several objects with the same name as long as their scopes are nested or
disjoint. This is illustrated by the next example which is an elaboration of Example 2.17.

EXAMPLE 4.20 Nested and Parallel Scopes

In this example, f (> and cd) are global functions, and the first x is a global variable. So their
scope includes the entire file. This is calledfile scope. The second x is declared inside main (> so it has
local scope; i.e., it is accessible only from within main () . The third x is declared inside an internal

void f(); // f() is global
void g(>; // g(> is global
int x = 11; // this x is global

main0
{ // begin scope of main0

int x = 22;
{

!
// begin scope of internal block

int x = 33;
tout -c-c "In block inside main(): x = I1 CC x K-C endl;

> // end scope of internal block
tout << "In main(): x = ' -C-C x << endl;
tout << "In main(): ::x = ' -C-C ::x -CC endl; // accesses global x
f0;
so;

1 // end scope of main0

block, so its scope is restricted to that internal block. Each x scope overrides the scope of the previously
declared X, so there is no ambiguity when the identifier x is referenced. The scope resolution operator: :
is used to access the last x whose scope was overridden; in this case, the global x whose value is 11:

void f()
{ // begin scope of f()

int x = 44;
tout S-C "In f(): x = 'I -C-C x K-C endl;

> // end scope of f(>

void g()
1

COW -C-C "In g(): x = 'I C-C x K-C endl;
>

// begin scope of g()

// end scope of g()

IEn block .inside main().: x = 33
Tn main(): x = 2 2
I n main(>: ;:x = 11
In f(): x = 44
Tti g(): x = 11

CHAP. 41 FUNCTIONS 1 1 1

The x initialized with 44 has scope limited to the function f () which is parallel to main (> ; but its
scope is also nested within the global scope of the first x, so its scope overrides that of both the first x
within f (> . In this example, the only place where the scope of the first x is not overridden is within the
function g (> .

4.14 OVERLOADING

C++ allows you to use the same name for different functions. As long as they have different
parameter type lists, the compiler will regard them as different functions. To be distinguished, the
parameter lists must either contain a different number of parameters, or there must be at least one
nosition in their narameter lists where the tvnes are different.
I I

EXAMPLE 4.21 Overloading the

An earlier example defined a
functions in the same program:

int max(int, int);

mad)

mad)

Function

function for two integers. Here we define two other max (>

int max(int, int, int);

double max(double, double);

main0
-t

tout << max(99,77) << I' il << max(55,66,33) << ' H
-C-C max(3.4,7.2) C-C endl;

int max(int x, int y)

return (x > y ? x : y);

// Returns the maximum of the three given integers:
int max(int x, int y, int z)

int m = (x > y ? x : y);
return (z > m ? z : m);

// Returns the maximum of the two given real numbers:
double max(double x, double y)

return (x > y ? x : y);

Three different functions, all named max, are defined here. The compiler checks their parameter lists to
determine which one to use on each call. For example, the first call passes two ints, so the version that

112 FUNCTIONS [CHAP. 4

has two ints in its parameter list is called. (If that version had been omitted, then the system would pro-
mote the two ints 99 and 77 to the doubles 99.0 and 77.0 and then pass them to the version that has two
doubles in its parameter list.)

Overloaded functions are widely used in C++. Their value will become more apparent with
the use of classes in Chapter 8.

4.15 THE main() AND exit () FUNCTIONS

Every C++ program requires a function named main (> . In fact, we can think of the
complete program itself as being made up of the main () function together with all the other
functions that are called either directly or indirectly from it. The program starts by calling
main().

Although not required, most C++ compilers expect the main0 function to have
int . Since this is the default return type for any function, it need not be specified. So

return type
we usually

just write

main0

instead of

int main0

In either case, most compilers will allow the return statement to be omitted, although some
may give a warning if it is omitted. If it is included, it must return an integer.

Some C++ programmers prefer to declare main (> a void function like this:

void main0

This is acceptable to most compilers, although some will issue a warning and then automatically
change main (> to in t type. If the compiler does accept main (> as a void function, then of
course any return statement should appear simply as

return;

since in this case main (> has no return type.

If you want to terminate the program from within a function other than the main ()
function, you cannot simply use a return statement. The return statement will only termi-
nate the current function and return control to the invoking function. Fortunately, there is another
way to terminate the program and it can be used ‘anywhere within any function. That is the
exit0 function that is defined in the c s tdl ib . h> header file.

CHAP. 41 FUNCTIONS 1 1 3

EXAMPLE 4.22 Using the exit () Function to Terminate a Program

#include <iostream.h>
#include cstdlib.h>

double reciprocal(double x)

if (x == 0) exit(l);
return 1.0/x;

>

main0

double x;
tin >> x;
tout << reciprocal(x);

If the user enters 0 for x, the program will terminate from within the r ec iproca 1 (> function
without attempting to divide by it.

4.16 DEFAULT ARGUMENTS

C++ allows a function to have a variable number of arguments. This is done by providing
default values for the optional arguments.

EXAMPLE 4.23 Default Parameters

This function evaluates the third degree polynomial a0 + a+ + a2x2 + a3x3. The actual evaluation is
done using Horner’s Algorithm, grouping the calculations as a0 + (al + (a2 + a,x)x)x for greater efficiency:

double p(double, double, double =0, double =0, double =O);

main0
-c

double x = 2.0003;
COW << "p(x, 7) = ' c-c p(x, 7) -C-K endl;
tout << "p(x, 7, 6) = " -CC p(x, 7, 6) -CC endl;
tout << "p(x, 7, 6, 5) '= CC p(x, 7, 6, 5) << endl;

tout << "p(x, 7, 6, 5, 4) "= CC p(x, 7, 6, 5, 4) -C-C endl;

double p(double x, double a0, double al, double a2, double a3)

return a0 + (al + (a2 + a3*x)*x)*x;

Thecall p(x, aO, al, a2, a3 > evaluates the third-degree polynomial a0 + a,x + a2x2 + a3x3. But
since a 1, a2, and a3 all have the default value 0, the function can also be called by p (x , a 0) to

114 FUNCTIONS [CHAP. 4

evaluate the constant polynomial a03, or by p (x , aO , al) to evaluate the first-degree polynomial a0 +
alx,orby p(x, aO, al, a2) to evaluate the second-degree polynomial a0 + a+ + a2x2.

Note how the default values are given in the function prototype.

Here is the output from the test run:

For example the call p (x, 7 , 6 , 5) , which is equivalent to the call p (X, 7 , 6 , 5 , 0) , evaluates
the second degree polynomial 7 + 6 x + 5 x2.

In the example above, the function may be called with 2,3,4, or 5 arguments. So the effect of
allowing default parameter values is really to allow a variable number of actual parameters
passed to the function.

If a function has default parameter values, then the function’s parameter list must show all
the parameters with defau
like this:

void f(int a,

void g(int a,

t values to the right of all the parameters that have no default

int b, int c=4, int d=7, int e=3); // OK

int b=2, int c=4, int d, int e=3); // ERROR

values,

The “optional” parameters must all be listed last.

Review Questions

4.1 What are the advantages of using functions to modularize a program?

4.2 What is the difference between a function’s declaration and its definition?

4.3 Where can the declaration of a function be placed?

4.4 When does a function need an include directive?

4.5 What is the advantage of putting a function’s definition in a separate file?

4.6 What is the advantage of compiling a function separately?

4.7 What are the differences between passing a parameter by value and by reference?

4.8 What are the differences between passing a parameter by reference and by constant reference?

4.9 Why is a parameter that is passed by value referred to as “read-only”? Why is a parameter that
is passed by reference referred to as “read-write”?

4.10 What is wrong with the following declaration:

int f(int a, int b=O, int c);

CHAP. 41 FUNCTIONS 115

Solved Problems

4.11 In Example 4.13, the following expression was used to test whether y is a leap year:

Y % 4 == 0 &SC y % 100 != 0 I I y % 400 == 0

This expression is not the most efficient form. If y is not divisible by 4, it will still test the con-
d i t i on y % 40 0 == 0 which would have to be false. C++ implements “short circuiting,”
which means that subsequent parts of a compound condition are tested only when necessary.
Find an equivalent compound condition that is more efficient due to short circuiting.

T h e c o m p o u n d condition

y%4 == 0 &SC (y % 100 != 0 11 y % 400 == 0)

is equivalent and more efficient. The two can be seen to be equivalent by checking their values in the
four possibilities, represented by the four y values 1995, 1996, 1900, and 2000. This condition is more
efficient because if y is not divisible by 4 (the most likely case), then it will not test y further.

4.12 Describe how a void function with one reference parameter can be converted into an equiva-
lent non-void function with one value parameter.

Convert the reference parameter into a return value. For example, the function

void f(int& n)
-t

n *, 20I

is equivalent to the function

int g(int n)
-t

return 2*n;

These two functions are invoked differently:

int x = 22, y = 33;
f (x> ;
Y = g(y);

But in both cases, the effect is to double the value of the parameter.

Solved Programming Problems

4.13 Write a simple program like the one in Example 4.2 to check the identity: COS~X = 2~0s~~ - 1.

116

This is similar to Example 4.2:

#include <iostream.h>
#include <math.h>

main0

FUNCTIONS [CHAP. 4

for (float x = 0; x < 1; x += 0.1)
tout -CC cos(2*x) << '\t' << 2*cos(x)*cos(x) - 1 << endl;

2 c1

Q.98006’T i U,9aoo67
0*92106~ 0*92106l
fL825336 _ * 0.825336 f

0 .696707 -0 a 696707
0.5~0302 0.540302
0,362X58 0,362358
O*Z6.9967 0 JAi9.96‘7
-0.0291997 -0A2915397
-0 I227202 -0 .227202

Each value in the first column matches the corresponding value in the second column, showing that
the identity is true for the 10 values of x tested.

4.14 A more efficient way to compute the permutations function P(n,k) is by the formula

P(n,k) = (n) (n-l) (n-2)...(n-k+2) (n-k+l)

This means the product of the k integers from n down to n - k + 1. Use this formula to rewrite
and test the perm (> function from Example 4.9.

To compute a product of k integers, we use a for loop that iterates k times. Each time, p is
multiplied by n which is then decremented. The result is that 1 is multiplied by n, n- 1, n- 2, etc.,
downto n-k+l:

int perm(int, int);

main0
{

for (int i = -1; i < 8; i++) {
for (int j = -1; j <= i+l; j++)

tout << " H << perm(i,j);
tout << endl;

>

// Returns P(n,k), the number of permutations of k from n:
int perm(int n, int k)
1

if (n < 0 II k < 0 II k > n) return 0;
int p = 1;
for (int i = 1; i <= k; i++, n-4

* -p -n;
return p;

1

CHAP. 41 FUNCTIONS 117

4.15

The resulting output is the same as in Example 4.9.

The combination function C(n,k) gives the number of different (unordered) k-element subsets
that can be found in a given set of ~2 elements. The function can be computed from the formula

Implement this formula.

C(n, k) =
n!

k! (n-k) !

This is a straightforward implementation of the formula:

int comb(int, int);

main0
-t

for (int i = -1; i < 8; i++
for (int j = -1; j <= i

tout << " ' -CC comb
tout CC endl;

1
1

> -c
+l; j++)
<iA>;

int factorial(int);

// Returns C(n,k), the number of combinations of k from n:
int comb(int n, int k)
1

if (n c 0 II k c 0 II k > n) return 0;
return factorial(n)/(factorial(k)*factorial(n-k));

Notethatthe factorial0 function must be declared above the comb () function because it
is used by that function. But it does not need to be declared above the main (> function because it is
not used there.

118 FUNCTIONS [CHAP. 4

4.16 Write and test the dig i t () function:

int digit(int n, int k)

This function returns the kth digit of the positive integer n. For example, if n is the integer
29,415, then the call digit (n, 0) would return the digit 5, and the call dig i t (n , 2 >
would return the digit 4. Note that the digits are numbered from right to left beginning with the
“zeroth digit.”

This removes the right-most digit of n k times. This reduces n to an integer whose right-most
digit is the same as the kth digit of the original integer. That digit is then obtained as the remainder from
division by 10:

int digit(int, int);

main0
1

int n, k;
tout << "Integer: ";
tin >> n;
do 1

tout << "Digit: ";
tin >> k;
tout << "The ' << k C-C "th digit of ' -CC n << ' is '

<< digit(n, k) << endl;
} while (k > 0);

// Returns the kth digit of the integer n:
int digit(int n, int k)

for (int i = 0; i < k; i++)
n /= 10; // remove right-most digit

return n % 10;

This run was on a computer whose in ts can hold 9-digit integers.

4.17 The ancient Greeks classified numbers geometrically. For example, a number was called “trian-
gular” if that number of pebbles could be arranged in a symmetric triangle. The first eight trian-
gular numbers are 1, 3,6, 10, 15,21,28, and 36:

T,= 1 T, = 3 T, = 6 T,= 10 T,= 15

CHAP. 41 FUNCTIONS 119

Write and test the boolean function:

int isTriangular(int n)

This function returns 1 if the given integer n is a triangular number, and 0 otherwise.

The argument n is triangular if and only if it is a sum of consecutive integers 1 + 2 + 3 + l l l . So we
just have to compute these sums until we find one that is greater than or equal to n. If that sum is equal to
n, then n is a triangular number; otherwise, it isn’t:

int isTriangular(int);

main0

int n;
do -t

tin >> n;
if (isTriangular(tout -CC n << ' is triangular.\n";
else tout CC n << ' is not triangular.\n";

} while (n > 0);

// Returns 1 i f n i s a triangular number (1, 3, 6, 10, 15, etc.):
int isTriangular(int n)
1

int i = 0, sum = 0;
while (sum < n)

sum += ++i ;
if (sum == n) return 1;
else return 0;

4.18 Write a maximum function for three integers that uses the maximum for two integers.

We assume that the max (int , in t) function is already available:

int max(int, int);

int max(int x, int y, int z)
-t

int max(int,int);
return max(max(x,y),z);

)

120 FUNCTIONS [CHAP. 4

4.19 Write a function that converts rectangular coordinates to polar coordinates.

Every point in the coordinate plane has a unique pair (x, y) of rectangular coordinates and a unique
pair (r, 0) of polar coordinates with r 2 0 and 0 5 0 < 27~. The following function converts from rectangu-
lar to polar coordinates. Since the output consists of more than one variable, the two output variables r
and t are passed by reference:

void rectangularToPolar(double& r, double& t, double x, double y)

const double pi = 3.1415926535897932385;
r = sqrt(x*x + y*y);
if (x > 0)

if (y >= 0) t = atan(y/x);
else t = atan(y/x) + 2*pi;

else if (x == 0)
if (y > 0) t = pi/2;
else if (y == 0) t = 0;.
else t = 3*pi/2;

else t = atan(y/x) + pi;

4.20 Simulate the game of craps.

The game of craps is played with two dice. Each time the pair of dice is tossed, the sum of the two
numbers that come up is used. That sum will be an integer in the range 2 to 12 since the faces of each die
are numbers 1 to 6. The player wins immediately if he tosses a 7 or an 11, and he loses immediately if he
tosses a 2, 3, or 12. If he tosses a 4, 5, 6, 8, 9, or 10, then that number becomes his “point.” He then
repeats tossing the dice until he wins by making his point or he loses by tossing a 7.

#include ciostream.h>
#include cstdlib.h>
#include ctime.h>

void initializeSeed();
int toss();
void win();
void lose();

main0

initializeSeed();
int point = toss();
if (point == 2 II point == 3 II point == 12) lose();
if (point == 7 II point == 11) win();
int t;
for(x) {

t = toss();
if (t == 7) lose();
if (t == point) win();

CHAP. 41 121

void initializeSeed
c

unsigned seed = time(NULL);
srand (seed) ;

int toss0

int die1 = rand()/10%6 + 1;
int die2 = rand()/10%6 + 1;
int t = die1 + die2;
tout C-C "\tYou tossed a ' << t -CC endl;
return t;

void win0

tout << "\tYou won.\n";
exit(O);

void lose0

tout << "\tYou lost.\n";
exit(O);

3x.2 tossed a .4
Yuu t o s s e d a 6 ‘.
You tossed a 7 _

You Just. ;.

Y-011 b13sCsed a 8
Yuu +iLxsd3ed a 3, ,” ““..
Yc?J tossed a 6 . .
Yau tossed a 3
Y%X..I t o s s e d a 8
Yuu wun.

122 FUNCTIONS [CHAP. 4

Supplementary Programming Problems

STANDARD C LIBRARY FUNCTIONS

4.21 Write a simple program like the one in Example 4.2 to check the identity: cos2x + sin2x = 1.

4.22 Write a simple program like the one in Example 4.2 to check the identity:

tan 2x = 2 tan x /(1 - tan2x).

4.23 Write a simple program like the one in Example 4.2 to check the identity: cosh2X - sinh2x = 1.

4.24 Write a simple program like the one in Example 4.2 to check the identity: asinx + aces x = nl/2.

4.25 Write a simple program like the one in Example 4.2 to check the identity: log x2 = 2 log x.

4.26 Write a simple program like the one in Example 4.2 to check the identity: bx = e@ lo@).

4.27 Write a test driver to test the functions listed in Table 4.1.

USER-DEFINED FUNCTIONS

4.28 Write and test the following area () function that returns the area of a circle with given
radius:

float area(float r).

4.29 Write and test the following min (> function that returns the smallest of two given integers:

int min(int x, int y)

4.30 Write and test the following min (> function that returns the smallest of three given integers:

int min(int x, int y, int z)

4.31 Write and test the following min function that returns the smallest of four given integers:

int min(int x, int y, int z, int w)

4.32 Write and test the following min (> function that uses the min (int , int > function to find
and return the smallest of three given integers:

int min(int x, int y, int z)

4.33 Write and test the following min (> function that uses the min (int , int > function to find
and return the smallest of four given integers:

int min(int x, int y, int z, int w)

4.34 Write and test the following min (> function that uses the min (int , int , int > function
to find and return the smallest of four given integers:

int min(int x, int y, int z, int w)

4.35 Write and test the following power (> function that returns x raised to the power p, where p
can be any nonnegative integer:

float power(float x, unsigned p).

CHAP. 41 FUNCTIONS 123

4.36 Implement the f ac tori al () function with a for loop. Determine which values of n will
cause factorial (n) to overflow.

4.37 The combinations function C(n,k) can be computed from the formula

p (n, k)
w&k) = --g-.

Use this formula to rewrite and test the comb (> function implemented in Problem 4.15.

4.38 A more efficient way to compute C(n,k) is shown by the formula

C(n,k) = (n/l) ((n- 1)/2) ((n- 2)/3)...((n-k+2)/(k-1)) ((n-k+l)/k)

This alternates divisions and multiplications. Use this formula to rewrite and test the comb (>
function implemented in Problem 4.15. Hint: Use a for loop like the one in Problem 4.14.

4.39 Pascal’s Trianak is a triangular arrav of numbers that begins like this:

1
1 1

12 1
13 3 1

14 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Each number in Pascal’s Triangle is one of the combinations C(n,k). (See Problem 4.15 and
Problem 4.38.) If we count the rows and the diagonal columns starting with 0, then the number
in row ~1 and column k is C(n,k). For example, the number in row number 6 and column number
2 is C(6,2) = 15. Write a program that uses the comb () function to print Pascal’s Triangle
down to row number 12.

4.40 Write and test a function that implements the Euclidean Algorithm to return the greatest com-
mon divisor of two given positive integers. See Example 3.19.

4.41 Write and test a function that uses the greatest common divisor function (Problem 4.40) to
return the least common multiple of two given positive integers.

BOOLEAN FUNCTIONS

4.42 Write and test the following i ~Square () function that determines whether the given integer
is a square number:

int isSquare(int n)

The first ten square numbers are 1,4,9, 16,25, 36,49,64, 8 1 , and 100.

4.43 Write and test the following i sPentagona1 (> function that determines whether the given
integer is a pentagonal number:

int jsPentagonal(int n)

The first ten pentagonal numbers are 1,5, 12,22, 35,51,70,92, 117, and 145.

124 FUNCTIONS

OVERLOADING

4.44 Write and test the following drawsquare (> function that prints a combination of asterisks
and blanks so that the asterisks form the boundary of a square of width W:

void drawSquare(int w).

4.45 Write and test the following drawRec tang1 e () function that prints a combination of aster-
isks and blanks so that the asterisks form the boundary of a rectangle of width w and height h:

void drawSquare(int w, int h). \

4.46 Write and test the following average (> function that returns the average of four numbers:

float average(float xl, float x2, float x3, float x4)

4.47 Write and test the following average () function that returns the average of up to four posi-
tive numbers:

float average(float xl, float x2=0, float x3=0, float x4=0)

PASSING BY REFERENCE

4.48

4.49

4.50

4.51

4.52

4.53

4.54

Write and test the following compu t eC i rc 1 e (> function that returns the area a and the cir-
cumference c of a circle with given radius r :

void computeCircle(float& a, float& c, float r).

Write and test the following compu t eRec tang1 e (> function that returns the area a and the
perimeter p of a rectangle with given side width w and height h:

void computeRectangle(float& a, float& p, float w, float h).

Write and test the following compu t eTr i angl e (> function that returns the area a and the
perimeter p of a triangle with given side lengths a, b, and c:

void computeTriangle(float& a, float& p,
float a, float b, float c).

Write and test the following c ompu t esphere (> function that returns the volume v and the
surface area s of a sphere with given radius r:

void computeSphere(float& v, float& s, float r).

Write and test the following computecyl inder (> function that returns the volume v and
the surface area s of a cylinder with given radius r and height h:

void computeCylinder(float& v, float& s, float r, float h).

Write and test the following frequency () function that returns the equal temperament fre-
quency of the given pitch p above middle C. For example, if p has the value I F I , then fre-
quency would return 589 which is the nearest integer to 440(12th root of 2)*5.

int frequency(char p)

Write and test the following compu t eMeans () function that returns the arithmetic mean a,
the geometric mean g, and the harmonic mean h of up to three positive numbers:

void computeMeans(float& a, float& g, float& h, float xl,
float x2=0, float x3=0)

CHAP. 43 FUNCTIONS 125

FUNCTIONS WITH DEFAULT ARGUMENTS

4.55 Write and test a polynomial (> function like the one in Example 4.23 that will evaluate poly-
nomials up to degree 6 (i.e., the highest power of x is x6).

4.56 Write and test a function named content () that returns either the length of an interval [x1,x2]
or the area of a rectangle [x1,x2]x[y1,y2] or the volume of a parallelepiped [x,,x,]~Ly,,y~]~[z~,~~],
according to whether the function is passed 2,4, or 6 parameters. For example, the 4-parameter
call content(3.0, 8.0, - 4 . 0 , 6.0) would return (8.0 - 3.0)(6.0 - (-4.0)) = 50.0.

4.57 Write and test a function named dot Produc t (> that returns either the product of two num-
bers x1 and y1 or the dot product of a pair of two-dimensional vectors (x1, yl) and (x2, yJ or the
dot product of a pair of three-dimensional vectors (x1, y,, zl) and (x2, y2, z2), according to
whether the function is passed 2,4, or 6 parameters. For example, with four arguments, the call
dotProduct(3.0, 8.0, -4. 0, 6. O) would return (3.0)(-4.0) + (8.0)(6.0) = 36.0.

FUNCTIONS CALLING OTHER FUNCTIONS

4.58 Write and test the following max function that uses the max (int , int > function to find and
return the largest of four given integers:

int max(int x, int y, int z, int w)

4.59 Write and test the following min function that uses the min (int , int , int > function to
find and return the smallest of four given integers:

int min(int x, int y, int z, int w)

MODULARIZATION

4.60 Modularize the Monte Carlo program (Problem 3.23) for computing n.

4.61 Modularize the Monty Hall program (see Problem 3.22 and Problem 3.61) so that main () is
simply a sequence of function calls:

main0
1

Pr
in
in
ca
ge
se
i f
Pr

in
i t
t
r
t(
t(

i n

tIntroduction();
ializeSeed();
car, choice, open, option;
= randomInteger(l,3);
choice);
open I option, car, choice);
change(open, option)) choice = option
.tResults(car, choice);

4.62 Modify the Monte Hall program (Problem 4.60) so that it plays the game 6000 times. Use the
“no switch” strategy on the first 3000 games and the “switch” strategy on the second 3000
games. Keep track of what fraction the player wins with each strategy, and print the results.

126

4.63

4 1.

4.2

4.3

4.4

4.5

4 6.

4.7

4.8

4.9

FUNCTIONS [CHAP. 4

Modify the craps program (Problem 3.22) so that it plays the game 3600 times. Print the num-
ber and percentage of wins.

Answers to Review Questions

A separately compiled function can be regarded as independent “black box” which performs a specific
task. Once the function has been thoroughly tested, the programmer need not be concerned about how it
works. This frees the programmer to concentrate on the development of the main program. Moreover, if a
better way of implementing the function is found later, it can replace the previous version without affect-
ing the main program.

A function’s declaration (also called it prototype) is essentially only the function’s header. A function’s
definition is the complete function: header and body block. The declaration provides only the information
needed to call the function: its name, its parameter types, and its return type; it is the inter$ace between
the function and its caller. The definition gives all the information about the function, including the
details of how it works; it is the function’s implementation.

A function may be declared anywhere as long as its declaration is above all references to the function. So
the declaration must come before any calls to it, and if its definition is separate then it too must come after
its declaration.

A n include directive is used to include other files. Typically, function declarations and/or definitions
are listed in a separate “header” file (with. h file extension). If only the declarations are in the header file,
then the definitions would be compiled separately in other files.

The advantage of putting a function’s definition in a separate header file is that it
brought into the editor when changes are made to the functions that call it.

t have to be

The advantage of compiling a function
tions that call it are recompiled.

separately is that it does not need to be recompiled when the func-

A parameter passed by value is duplicated by its corresponding actual parameter. A parameter passed
by reference is simply renamed by its corresponding actual parameter.

A parameter passed by constant reference cannot be changed by the function to which it is passed.

A parameter that is passed by value cannot be changed (rewritten).

4.10 The function has a default value for a parameter (b) that precedes a parameter (c) with no default value.
This violates the requirement that all default parameters be listed last in the functions parameter list.

C<hapter 5

Arrays

5.1 INTRODUCTION

An array is a sequence of objects all of which have the same type. The objects are called the
elements of the array and are numbered consecutively 0, 1, 2, 3, These numbers are called
index vahes or subscripts of the array. The term “subscript” is used because as a mathematical
sequence, an array would be written with subscripts: ao, al, a2, These numbers locate the
element’s position within the array, thereby giving direct access into the array.

If the name of the array is a, then a [o] is the name of the element that is in position 0,
a [11 is the name of the element that is in position 1, etc. In general, the ith element is in position
i-l.Soifthearrayhasnelements,theirnamesare a[O], a[l], a[2], a[n-I].

Here is how you should imagine an array:

a 11.11 33.33 55.55 77.77 99.99
i

0 1 2 3 4

This shows an array named a with 5 elements: a [0] contains 11.11, a [l] contains 33.33, a [2]

contains 55.55, a [3] contains 77.77, and a [4] contains 99.99. The diagram actually repre-
sents a region of the computer’s memory because an array is always stored this way with its ele-
ments in a contiguous sequence.

The method of numbering the ith element with index i-l is called zero-based indexing. Its
use has the effect that the index of an array element is always the same as the number of “steps”
from the initial element a [o] to that element. For example, element a [3] is 3 steps from
element a [o] . The advantage of this method will become more apparent in Chapter 6 when we
see the relationship between arrays and pointers.

5.2 PROCESSING ARRAYS

Virtually all useful programs use arrays. One reason that arrays are so useful is that they
allow a single name with a variable index to be used in place of many different names. This
makes it easy to do many things that would be far more difficult without arrays.

127

1 2 8 ARRAYS

EXAMPLE 5.1 Printing a Sequence in Order

[CHAP. 5

This program reads 4 numbers and then prints them in reverse order:

main0
1

double a[4];
tout cc "Enter 4 real numbers:\n';
for (int i = 1; i C= 4; i++) {

tout CC i CC ": ';
tin >> a[i-11;

>
tout cc "Here they are in reverse order:\n";
for (i = 3; i >= 0; i--)

tout CC "\ta[" CC i CC "1 = ' CC a[i] -KC endl;

The declaration double a [4] declares a to be an array of 4 elements of type double. The first
for loop then allows the user to enter real numbers into these 4 components. Then the second for loop
prints these stored numbers in reverse order.

The array looks like this:

a 1.618 2.718 3.142 4.444

0 1 2 3

The next example works the same way. But it uses a symbolic constant for the size of the
array. This makes the code easier to modify.

CHAP. 51 ARRAYS 129

EXAMPLE 5.2 Using a Symbolic Constant to Declare and Process an Array

main0
1

const int size = 4;
double a[size];
tout << "Enter ' C-C size XC ' real numbers:\n";
for (int i = 1; i <= size; i++) {

co& cc i -c-c 1': It;
tin >> a[i-11;

1
tout << "Here they are in reverse order:\n";
for (i = size-l; i >= 0; i--)

tout << "\ta[U << i << "1 = I' << a[i] -C-C endl;
1

The constant integer s i ze is initialized with the value 4. It is then used to declare the array a, to prompt
the user, and to control both for loops. The program works the same as the previous version.

The format for an array declaration is
type array-name[array-size];

where type is the array’s element type and array-size is the number of elements. The
declaration in Example 5.2

double a[size];

declares a to be an array of 4 elements, each of type double. Standard C++ requires array-
size to be a positive integer constant. As we did in Example 5.2, it is customary to define the
array-size as a separate constant:

const int size = 4;

5.3 INITIALIZING AN ARRAY

In C++, an arrays can be initialized with a single initializer list, like this:
float a[41 = (22.2, 44.4, 66.6, 88.8);

The values in the list are assigned to the elements of the array in the order that they are listed.

EXAMPLE 5.3 Initializing an Array

This shows how to initialize an array explicitly:

main0
1

double a[4] = (22.2, 44.4, 66.6, 88.8);
for (int i = 0; i < 4; i++)

tout << ~~a[~~ << i << "1 = " << a[i] X-C endl;
1

d31 = 2 2 . 2
af13 = 4 4 . 4 -i
a[21 = 6 6 . 6
alI31 = 8 8 . 8

130 ARRAYS [CHAP. 5

The array’s initializer list contains 4 values, the same number as the size of the array specified in the
array’s declaration.

If the array has more elements than values listed in its initializer list, then the remaining ele-
ments are initialized to zero.

EXAMPLE 5.4

Here the may has 4 elements, but its initializer list has only 2 values:

main0
-t

double a[4] = (22.2, 44.4);
for (int i = 0; i c 4; i++)

tout CC "a[" -CC i CC "1 = ' CC a[i] CC endl;

The last 2 elements, which are not given values from the initializer list, are assigned the default value 0.

If an array declaration does not include an initializer list, then its elements may contain unex-
pected “garbage” values.

EXAMPLE 5.5

Here the array has no initializer:

main0
{

double a[4];
for (int i = 0; i c 4; i++)

tout CC "a[" CC i CC "1 = ' CC a[i] CC endl;

,_ 1 .‘a[03 23 2, ~~~~~,-3~Q : 1 ..y: / ., : ‘_ ‘:., s .:
‘. -:., . , _ :

..:&i.j.” =* ..i+j ‘ &.154.&&2~8$.j, __ 1’ .:.;, ; r -. :. : _, “,-. ., I. ; . _‘, .,.:,]:.., 1 ,. ‘_ ‘.
,, ‘gra] jg . .: ‘.’ 3..3.5-5fj+.,3.~&. . . ‘. , , ; ;. .‘., ” (; ‘, _, .:

. . . . ;. -,’ - ,: : .y ,, “. ,‘:, . : ‘,’
_ _’‘. :_ .a’[‘YJ 1 -=, ,y ; $8*8g#$~jj$ - . :‘: I , ’ : :

,’ .:... ‘.‘, ; . : ‘. ‘.. , ”‘.. ’ : . , ,

The contents of the uninitialized array are unpredictable.

When an array has an explicit initialization, its size specifier may be omitted from its decla-
ration. For example, in the program in Example 5.6, the declaration

float a[41 = (22.2, 44.4, 66.6, 88.8);

is equivalent to the declaration

float a[] = (22.2, 44.4, 66.6, 88.8);

The size is determined to be the number of values in the initializer list.

CHAP. 51 ARRAYS 131

5.4 PASSING AN ARRAY TO A FUNCTION

The code f loa t a [1 that is used to declare an array with an initializer list tells the
compiler two things: the name of the array is a, and the array’s elements will have type float.
The symbol a stores the array’s memory address. So the code float a [1 provides all the
information that the compiler needs to declare the array. The size of the array (i. e., the number of
elements in the array) does not need to be conveyed to the compiler.

The code that is used to pass an array to a function includes the array’s element type and its
name. This is illustrated in the next example. It includes two functions that process arrays. In
both parameter lists, the array a[] is declared in the parameter list as

double a[]

The actual number of elements has to be passed by means of a separate integer variable.

When a function is passed an array this way, it is actually passed only the address of the
memory cell where the array starts. This value is represented by the array’s name a. The
function can then change the contents of the array by directly accessing the memory cells where
the array’s elements are stored. So, although the name of the array is passed by value, its
elements can be changed just as if they had been passed by reference.

EXAMPLE 5.6 Array I/O Functions

This program illustrates how arrays are passed to functions:

const int size = 100;

void getArray(double [I, int&);

void printArray(const double [I, const int);

main0
1

double a[size];
int n;
getArray(a,n);
tout << "The array has ' C-C n CC ' elements.\nThey are:\n";
printArray(a,n);

void getArray(double a[], int& n)

n = 0;
tout << "Enter data. Terminate with O:\n";
for (n = 0; n < size; n++) {

tout CC n << 'I: ";
tin >> a[n];
if (a[n] == 0) break;

132 ARRAYS [CHAP. 5

void printArray(const double a[], const int n)
1

for (int i = 0; i < n;j++)
tout << '\t' << i CC ": 'I -c-c a[i] << endl;

1

Note how the functions are called getArray(a,n); printArray(a,n); they are passed the
array’s name a and an integer variable n. Also note that the for loop in the input function prevents the
user from entering more than size numbers into the array.

The input function getArray () changes the formal parameter size, so it is passed by reference.
The formal parameter a is passed the address of the first element in the array, and this address is not
changed, so a is passed by value. Since a is the name of an array (indicated by a []), the function can
still change the values of the array’s elements.

The output function printArray ()
the parameter list as cons t.

makes no changes to its parameters, so they are designated in

EXAMPLE 5.7 The sum Functions

This little function is quite useful:

// Returns the sum of the first n elements of the specified array:
double sum(const double a[], const int n)

double s = 0.0;
for (int i = 0; i < n; i++)

s += a[i];
return s;

Like the printArray () function in Example 5.10, this function does not change the values of its
parameters, so each is passed as a cons t.

5.5 C++ DOES NOT CHECK THE RANGE OF AN ARRAY INDEX

In some programming languages, an index variable will not be allowed to go beyond the
bounds set by the array’s definition. For example, in Pascal, if an array a is defined to be
indexed from 0 to 4, then the reference a [5 1 will cause the program to crash. This security
mechanism is not present in C++ (or C). As the next example shows, the index variable may run
far beyond its defined range without any error being detected by the computer.

CHAP. 51 ARRAYS 1 3 3

EXAMPLE 5.8 Index Out of Range

This run of the previous test driver tries to sum the first 30 elements of a 5-element array:

The array only has 5 elements. Once the index variable i exceeds the value 4 in the function’s for
loop, the reference a [i] is accessing memory cells that are not part of the array. Their contents are
unpredictable. In this run, the function adds the 5 elements to get a sum of 275.75, and then continues to
add another 25 “garbage values.” The 30 numbers add up to 8.10012 x 10257, without any indication from
the computer that anything is wrong.

It is the programmer’s responsibility to ensure that index values are kept in range. In some
cases, the computer will let you know if the index is out of range. The next example shows what
could happen on a UNIX workstation if the index gets too far out of range.

EXAMPLE 5.9 Segmentation Fault

On this run, the index is so far out of range that it goes beyond that part of memory allocated to the
running program:

_ : .,.. ‘._

This run-time error message means that the system has tried to access part of memory that lies outside the
“segment” allocated to the process that is currently running.

The next example shows one way that the programmer can protect against range errors.

EXAMPLE 5.10 Protecting against Range Errors

// Returns the sum of the first n elements of the specified array:
double sum(const double a[], const int n)
-t

if (n*sizeof(double) > sizeof(
return 0;

double s = 0.0;
for (int i = 0; i c n; i++)

s += a[i];
return s;

This function first checks the size of the parameter n. Since s i z eo f (double > returns the size of the
array’s elements, n will be out of range precisely when n* s i zeo f (double > > s i z eo f (a) . In this
case, the function returns 0, signalling that it cannot compute the requested sum.

5.6 THE LINEAR SEARCH ALGORITHM

Computers are probably used more for the storage and retrieval of information than for any
other purpose. Data is often stored in a sequential structure such as an array. The simplest way

134 ARRAYS [CHAP. 5

to find an object in an array is start at the beginning and inspect each element, one after the other,
until the object is found. This method is called the Linear Search AZgorithm.

EXAMPLE 5.11 The Linear Search

This program tests a function that implements the Linear Search Algorithm:

void se

main0
1

int
do

rch(int& found, int& location, int a[], int n, int target);

&I = (55, 22, 99, 66, 44, 88, 33, 77}, target, found, lot;

tout C-C "Target: ";
tin >> target;
search(found,loc,a,8,target);
if (found) tout CC target CC ' is at a[' CC lot CC "].\n";
else tout -CC target << ' was not found.\n";

} while (target != 0);

// Linear Search:
void search(int& found, int& location, int a[], int n, int target)

-l
found = location = 0;
while (!found &SC location c n)

found = (a[location++] == target);
--location;

T a r g e t : 3 3

.33 i s at a[6J1
: ,’

Target: 44
44 is ax q[43. :‘..
Targeg: 50

I .

50 wEG3 lx3e fuund.
,.... ., . . .i,. ,. i. ;.

_ . :. .
Target: 0 x . ..-
0 w&s nut found.

In each iteration of the search loop, the current element a [location] is compared with target. The
loop continues until a match is found or all the elements have been checked. Each iteration increments the
index location, after it is accessed. So if the loop terminates because a match was found, locator
must be decremented to the index where target was found.

Note that the search (> function has three “input parameters” (a, n, and target) and two “out-
put parameters” (found and location). We follow the conventional practice of listing the “output
parameters” in front of the “input parameters.”

5.7 THE BUBBLE SORT ALGORITHM

The Linear Search Algorithm is not very efficient. It obviously would not be a good way to
find a name in the telephone book. We can do this common task more efficiently because the

CHAP. 51 ARRAYS 1 3 5

names are sorted in alphabetical order. To use an efficient searching algorithm on a sequential
data structure such as an array, we must first sort the structure to put its element in order.

’ There are many algorithms for sorting an array. Although not as efficient as most others, the
Bubble Sort is one of the simplest sorting algorithms. It proceeds through a sequence of itera-
tions, each time moving the next largest item into its correct position. On each iteration, it
compares each pair of consecutive elements, moving the larger element up.

EXAMPLE 5.12 The Bubble Sort

This program tests a function that implements the Bubble Sort Algorithm. It is compiled with the
swap function shown in Example 4.15:

void print(float [I, const int);
void sort(float [I, const int);

main0
t

float a[81 = (55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7);
print(a, 8);
sort(a, 8);
print(a, 8);

1

void print(float a[], const int n)
{

for (int i = 0; i < n-l; i++) {
tout +c a[i] << '1, '1;
if ((i+1)%16 == 0) tout CC endl;

1
I

tout << a[n-l] -CC endl;
1

void swap(float& x, float& y)

// Bubble Sort:
void sort(float a[], const int n)
1

for (int i = n-l; i > 0; i--)
for (int j = 0; j < i; j++)

i f Mjl > a[j+U 1 swwb[jl ,a[j+ll);
1

55 22 99 66 44 88 33 77
22 3.3 44 55 66 77 88 99

The sort (> function uses two nested loops. The inside for loop compares pairs of adjacent elements
and swaps them whenever they are in reverse order. This way, each element “bubbles up” past all the ele-
ments that are less than it.

136 ARRAYS [CHAP. 5

5.8 THE BINARY SEARCH ALGORITHM

The binary search uses the “divide and conquer” strategy. It repeatedly divides the array into
two pieces and refocuses on the piece that could contain the target value.

EXAMPLE 5.13 The Binary Search Algorithm

This program tests a function that implements the Binary Search Algorithm:

// Binary Search:
void search(int& found, int& location, int a[], int n, int target);

main0

int a[] = (22, 33, 44, 55, 66, 77, 88, 99}, target, found, lot;

tout CC "Target: ';
tin >> target;
search(found,loc,a,8,target);
if (found) tout CC target << ' is at a[' CC lot CC "].\n";
else tout CC target CC ' was not found.\n";

} while (target != 0);

void search(int& found, int& location, int a[], int n, int target)
{

int left = 0, rignt = n-l;
found = 0;
while (!found &SC left c= right) {

location = (left + right)/2; // the midpoint
found = (a[location] == target);
if (a[location] c target) left = location + 1;
else right = location - 1;

)
1
J

Target : 3 3 1 ‘. ‘, .: ‘_
3,3-: ‘i~ti. at a [1 J ‘*

‘. :
. . ‘ . .i,’ :

er
. ..’

.~&xpt r 159 _. . . ,, .. .‘.1..
99. is .‘f& a [?j *,.,

. . :
,’ .5 . . ‘., . . .8

&&g&; %Jfj ; : ‘ , * : *‘. ‘ ,
‘. _.

, : , , ; . ; ,-. ,.,
. ,

‘ , ‘, :. .I ::.;,:so~.~;~L..-.;.. .tit e.b&..Y.a ~ ; .:, ~ . . , . . ,:. . , ..,,;. .:.. ..! ,. . : . . ,:I ; , ., . . , : . . , . . . : ‘...: ., . : ..,::. . , __:‘.; . . , . , .;~ . , ’ ;.:. : :‘ . .;I: ; . :, . : ‘ . ,:
”

T&g&t-: .2’$$.‘; :.‘:,: : ,,,.:: j’,, :” ‘; “’ ‘m. “J :” ,:,. 1-y ; ‘, ,, . , . ’ “” -‘, ;‘,.” : ,.
. .

2.2 :,,,isr,;$k ‘:@,[Q:],;
“1 ,‘.., , ‘ . ~y:;.;I.:;‘.;,’

;’ : :‘. “Y.. .“. :r .:.,:., .’ ‘: , _ :. ;. ,,“, ..:; ‘, . . .:.,.:,;.; .:.: ‘7.: .:,. j’::‘_ : ‘ , ‘.
~$i&lTg&Ls. -0’: ‘,:. :,., ” , ’ ‘- “: ‘.: : “..:. .:; ,(, ,:‘, ,: ~~“.‘_ ,‘:’ ” , , .,,::, (. , : , ‘, Y,. _‘;. ./.; ‘.‘.:,‘.‘:I’,:.~.:“::,I
‘r, .&@&.; && f.&&&

<
_ . ’ _’ , , ,

..
1 , i. . ’ y . : :I, ” ,;:..: , _ :!

‘ . .:

On each iteration of the whi 1 e loop, the middle element a [1 oca t i on] of the sub-array (from
a [1 e f t] to a [right]) is checked for the target. If it is not found there, then either the left half is
discarded by resetting left = location + 1, or the right half is discarded by resetting right =
location - 1, accordingtowhether (a[location] c target).

CHAP. 51 ARRAYS 1 3 7

The Binary Search is far more efficient than the Linear Search because each iteration reduces the

search by a factor of two. For example, if the array has 1,000 elements, the Linear search could require
1,000 iterations, while the Binary search would not require more than 10.

5.9 USING ARRAYS WITH ENUMERATION TYPES

Enumeration types were described in Chapter 2. They are naturally processed with arrays.

EXAMPLE 5.14 Days of the Week

This program defines an array high of seven f loa ts, representing the high temperatures for the
seven days of a week:

#include <iostream.h>
main0

any

enum Day {sun, mon, tue, wed, thu, fri, sat};
float high[sat+l] = (88.3, 95.0, 91.2, 89.9, 91.4, 92.5, 86.7);
for (Day day = sun; day C= sat; day++)

tout cc "The high temperature for day ' cc day CC ' was '
CC high[day] CC endl;

This program defines the type Day so that any variable declared to have this type may be assigned
of the 7 values sun, mon, tue, wed, thu, fri, or sat. This type can then be used the same

way that int or any other type is used.

The array size is sat+1 because sat = 6 and the array needs 7 elements.

The variable day, declared as an index in the for loop, takes the values sun, mon, tue, wed,
thu, f ri, or sat. Remember that they are really just like the integers 0, 1,2, 3,4,5, and 6.

Note that it is not possible to print the names of the symbolic constants. Thus the values of the vari-
able day printed by tout are 0, 1, 2, etc., not sun, mon, tue, etc.

The advantage of using enumeration constants this way is that they render your code “self-
documenting.” For example, the for loop control

for (Day day = sun; day C= sat; day++)

speaks for itself.
An enumeration type is really like the short and char types. But it is different in that the

values for the enumeration type have been given symbolic names, and the values’need not be
consecutive. It is really just another way of declaring a list of integer constants.

Appendix D shows how enumeration types fit into the hierarchy of all C++ types.

138

EXAMPLE 5.15 Boolean Qpe

ARRAYS [CHAP. 5

This shows how to implement a “boolean” type:

enum Boolean {false, true};

// Prompts user for personnel information:
void getInfo(Boolean& isMarried, Boolean& spouseIsEmployed);

main0

Boolean isMarried, spouseIsEmp1oyed;
getInfo(isMarried, spouseIsEmployed);
if (isMarried) {

tout cc "You are married.\n";
if (spouseIsEmployed) tout CC "Your spouse is employed.\n";
else tout CC "Your spouse is not employed.\n";

} else tout CC "You are not married.\n";

void getInfo(Boolean& isMarried, Boolean& spouseIsEmployed)

char ans;
tout cc "Are you married? "; tin >> ans;
isMarried = (ans == 'y' II ans == 'Y');
if (isMarried) {

tout cc "IS your spouse employed? "; tin >> ans;
spouseIsEmp1oyed = (ans == 'y' II ans == 'Y');

} else spouseIsEmployed = false;

Here the symbolic constant false has the numeric value 0, and the symbolic constant true has the
numeric value 1. That makes these artificial boolean values consistent with standard C++ which recog-
nizes the zero value as meaning “false” and non-zero values as meaning “true” when used in conditions
such as if (isMarried)

CHAP. 51 ARRAYS 139

5.10 TYPE DEFINITIONS

Enumeration types are one way for programmers to define their own types. For example,

enum Color {red, orange, yellow, green, blue, violet};

defines the type Color which can then be used to declare variables like this:

Color shirt = blue; ,
Color car[] = {green, red, blue, red};
float wavelength[violet+l] = (420, 480, 530, 570, 600, 620);

Here, shirt is a variable whose value can be any one of the 6 values of the type Color and is
initialized to have the value blue, car is an array of 4 such Color type variables indexed
from 0 to 3, and wavelength is an array of 6 float type variables indexed from red to violet.

C++ also provides a way to rename existing types. The keyword typedef declares a new
name (Le., an alias) for a specified type. The syntax is

typedef type alias;

where type is the given type and alias is the new name. For example, if you are used to
programming in Pascal, you might want to use these type aliases:

typedef long Integer;
typedef double Real;

You could then use the names Integer and Real to declare variables of type long int and
double, like this:

Integer n = 22;
const Real pi = 3.141592653589793;
Integer frequency[64];

Note the syntax for the typedef of an array type:

typedef element-type alias[];

It shows that the number of elements in an array is not part of its type.

A typedef statement does not define a new type; it only provides a synonym for an exist-
ing type. For example, the ce 1 s ius function defined above could be called by

tout << Celsius(x);

where x is declared by

double x = 100;

There is no conflict in the parameter because Real and double name the same type. This is
different from an enum statement which does define a new integer type.

The next example shows another use for typedefs.

140 A R R A Y S [CHAP. 5

EXAMPLE 5.16 The Bubble Sort Again

This is the same progi-am as in Example 5.12;The only change is the typedef of Sequence
which is then used in the $rameter lists and the declaration of a in main () :

typedef float SequenceH;
void sort(Sequence, const int);
void print(const Sequence, const int);

main0

Sequence a = (55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7);
print(a,8);
sort(a,8);
print(a,8);

void swap(float&, float&);

// Bubble Sort:
void sort(Sequence a, const int n)
{

for (int i = n-l; i > 0; i--)
for (int j = 0; j c i; j++)

if Mjl > aLi+ > sww(a[jl ,aLi+ll);

void print(const Sequence a, const int n)
1

for (int i = 0; i < 15; i++)
tout << " 'I cc a[i];

tout << endl;
1

Note the typedef:

typedef float Sequence[];
The brackets [] appear after the alias type name Sequence. Then this alias is used without brackets to
declare may variables and formal parameters.

5.11 MULTIDIMENSIONAL ARRAYS

The arrays we have considered previously have all been one-dimenbional. This means that
they are linear; i.e., sequential. But the element type of an array can be almost any type, includ-
ing an array type. An array of arrays is called a multidimensional array. A one-dimensional array
of one-dimensional arrays is called a two-dimensional array; a one-dimensional array of two-
dimensional arrays is called a three-dimensional array; etc.

The simplest way to declare a multidimensional array is like this:
double a[32][10][4];

This is a three-dimensional array with dimensions 32, 10, and 4. The statement
a[25][8][3] = 99.99

CHAP. 51 ARRAYS 1 4 1

would assign the value 99.99 to the element identified by the multi-index (25,8,3).

EXAMPLE 5.17 Reading and Printing a Two-Dimensional Array

This program shows how a two-dimensional array can be processed:

void read(int a[][5]);

void print(const int a[][5]);

main0

int a[3][5];
read(a);
print(a);

void read(int a[][5])
1

tout << "Enter 15 integers, 5 per row:\n";
for (int i = 0; i < 3; i++) {

tout CC "Row ' cc i << ": ";
for (int j = 0; j < 5; j++)

tin >> a[i][j];
1

1

void print(const int a[][5])

for (int i = 0; i c 3; i++) {
for (int j = 0; j < 5; j++)

tout cc " 'I cc a[i][j];
tout CC endl;

Notice that in the functions’ parameter lists, the first dimension is left unspecified while the second dimen-
sion (5) is specified. This is because a is stored as a one-dimensional array of 3 5-element arrays. The
compiler does not need to know how many (3) of these 5-element arrays are to be stored, but it does need
to know that they are 5-element arrays.

When a multi-dimensional array is passed to a function, the first dimension is not specified,
while all the remaining dimensions are specified.

142 ARRAYS [CHAP. 5

EXAMPLE 5.18 Reading and Printing a Two-Dimensional Array

const numstudents = 3;
const numQuizzes = 5;
typedef int Score[numStudents][numQuizzes];
void read(Score);
void printQuizAverages(const Score);
void printClassAverages(const Score);

main0
1

Score score;
tout CC "Enter ' C-C numQuizzes cc " scores for each student:\n";
readbcore); ,
tout cc "The quiz averages are:\n";
printQuizAverages(score);
tout << "The class averages are:\n";
printClassAverages(score);

1

void read(Score score)

for (int s = 0; s c numstudents; s++) {
tout << "Student " -cc s << ": ";
for (int q = 0; q -c numguizzes; q++)

tin >> score[s] [q];

void printQuizAverages(const Score score)
(

for (int s = 0; s < numstudents; s++) {
float sum = 0.0;
for (int q = 0; q -c numQuizzes; q++)

sum += scorebl hl;
tout C< "\tStudent It <C s << ": " cc sum/numQuizzes c< endl;

>
)

void printClassAverages(const Score score)
1

for (int q = 0; q < numQuizzes; q++) {
float sum = 0.0;
for (int s = 0; s < numstudents; s++)

sum += scorebl hl ;
tout c-c "\tQuiz " cc q << ": " cc sum/numStudents cc endl;

1
1

This uses a typede f to define the alias Score for the two-dimensional array type. This makes the
function headers more readable.

CHAP. 51 ARRAYS 1 4 3

The printQuizAverages() function prints the average of each of the 3 rows of scores, while the
printClassAverages

Here is an interactive

function prints the

of the program:
average of each of the 5 columns of scores.

EXAMPLE 5.19 Processing a Three-Dimensional Array

This program simply counts the number of zeros in a three-dimensional array:

int numZeros(int a[][4][3], int nl, int n2, int n3);

main0
1

int a[2][4][3] = 1 -I 15,0,2L uLO,9L WJ,OL 17,717) 1,
1 {3,O,OL -M,LOL W,O,OL C&O,91 1);

tout << "This array has ' << numZeros(a,2,4,3) << ' zeros:\n";

int numZeros(int a[][4][3], int nl, int n2, int n3)
{

int count = 0;
for (int i = 0; i c nl; i++)

for (int j = 0; j c n2; j++)
for (int k = 0;. k < n3; k++)

if (a[i][j][k] == 0) ++count;
return count;

1

Notice how the array is initialized: it is a 2-element array of 4-element arrays of 3 elements each. That
makes a total of 24 elements. It could have been initialized like this:
int a[2][4][3] = ~~,0,2,0,0,9,4,~,0,7,7,7,3,0,0,8,5,o,o,o,~,~,~,~~;
or like this:
int a[21 [4][3] = 1 ~5,0,2,0,0,9,4,l,O,7,7,7), ~3,0,0,8,~,0,0,0,0,2,0,9));
But these are more difficult to read and understand than the three-dimensional initializer list.

Also notice the three nested for loops. In general, processing a d-dimensional array is done with d
for loops, one for each dimension.

144 ARRAYS [CHAP. 5

Review Questions

5.1

5.2

5.3

How many different types’can the elements of an array have?

What type and range must an array’s subscript have?

What values will the elements of an array have when it is declared if it does not include an ini-
tializer?

54.

55.

5.6

5.7

What values will the elements of an array have when it is declared if it has an initializer with
fewer values than the number of elements in the array?

What happens if an array’s initializer has more values than the size of the array?

How does an enum statement differ from a typedef statement? 0

When a multi-dimensional array is passed to a function, why does C++ require all but the first
dimension to be specified in the parameter list?

Solved Programming Problems

5.8 Write and run a program that reads an unspecified number of numbers and then prints them
together with their deviations from their mean.

We can accumulate the numbers as they are read in and then compute the mean (average) just by
dividing their sum by their count:

const int size = 100;
main0

tout CC "Enter
double a[size]
for (int n = 0

tin >> x;
if (x == 0
a[n] = x;
sum += x;

data. Terminate with O:\n";
I xr sum = 0.0;
; ; n++) 1

) break;

double mean =
tout CC "mean

sum/n;
I I

= << mean CC endl;
for (int i = 0; i c n; i++)

tout cc I

\t

I CC a[i] cc I
\t

I cc a[i] - mean CC endl;

The input loop continues until 0 is read. The, deviations are printed as a [i] - mean.

CHAP. 51 ARRAYS 145

5.9 Write and test the function
void insert(int a[], int& n, int x)

This function inserts the item x into the sorted array a of n elements and increments n. The
new item is inserted at the location that maintains the sorted order of the array. This requires
shifting elements forward to make room for the new X.

Our test driver defines an array of size 100 and initializes it with 10 elements in increasing order:

void print(int [I, int);
void insert(int [I, int&, int);

main0

int a[1001 = { 261, 288, 289, 301, 329, 333, 345, 346, 346, 350);
int n = 10, x;
print(a, n);
tout << "Item to be inserted: ";
tin >> x;
insert(a, n, x);
print(a, n);

void print(int a[], int n)
1

for (int i = 0; i < n-l; i++) {
tout CC a[i] << 'I, 1';
if ((i+1)%16 == 0) tout CC endl;

>
tout CC a[n-1] cc endl;

void insert(int a[], int& n, int x)

for (int i = n; i > 0 SC& a[i-l] > x; i--)
a[il = a[i-11;

a[i] = x;
++n;

T h e insert () function works from the high end of the array, searching backward for the correct
location to put x. As it searches, it shifts the elements that are larger than x one place
make way for x. On the first run, 300 is inserted by shifting 7 elements to the right.

to the right to

146 ARRAYS [CHAP. 5

The second and third runs test “boundary values;” i.e., the extreme situations. One extreme is where
the new item is larger than all the elements in the array. This is tested in the second run by inserting 400.
The other extreme is where the new item is smaller than all the elements in the array. This is tested in
the third run by inserting 200.

5.10 Write and test the function

int frequency(float a[], int n, int x)

This function counts the number of times the item x appears among the first n elements of the
array a and returns that count as the frequency of x in a.

Here we initialize the array a with 40 randomly arranged integers to test the function

int frequency(float [I, int, int);

main0
{

float a[] = (561, 508, 400, 301, 329, 599, 455, 400, 346, 346,
329, 375, 561, 390, 399, 400, 401, 561, 405, 405,
455, 508, 473, 329, 561, 505, 329, 455, 561, 599,
561, 455, 346, 301, 455, 561, 399, 599, 508, 508);

int n = 40, x;
tout CC "Item: 1';
tin >> x;
tout << 'The frequency of item ' CC x CC ' is I'

CC frequency(a, n, x) CC endl;

int frequency(float a[], int n, int x)

int count = 0;
for (int i = 0; i c n; i++)

if (a[i] == x) ++count;
return count;

The function uses a counter count . It simply compares each element of the array with the item x
and increments the counter each time a match is found.

CHAP. 51 ARRAYS 147

5.11 Implement the Insertion Sort. In this algorithm, the main loop runs from 1 to n- 1. On the ith
iteration, the element a [i] is “inserted” into its correct position among the sub-array from
a [o] t o a [i] . This is done by shifting all the elements in the sub-array that are greater than
a [i] one position to the right. Then a [i] is copied into the gap between the elements less
than a [i] and those greater. (See Problem 5.9.)

Out test driver initializes the array a with 8 numbers in random order:

void print(float [I, const int);
void sort(float [I, const int);

main0
-i

float a[81 = (88.8, 44.4, 77.7, 11.1, 33.3, 99.9, 66.6, 22.2);
print(a, 8);
sort(a, 8);
print(a, 8);

void print(float a[], const int n)
-t

for (int i = 0; i < n-l; i++) {
tout CC a[i] CC 'I, 1';
if ((i+1)%16 == 0) tout CC endl;

>
tout CC a[n-l] CC endl;

// Insertion Sort:
void sort(float a[], const in,t n)

float temp;
for (int i = 1; i c n; i++) { // sort {a[O],...,a[i]}:

temp = a[i];
for (int j = i; j > 0 SC& a[j-11 > temp; j--)

a[j] = a[j-11;
a[j] = temp;

On the ith iteration of the main loop of the Insertion Sort inserts, element a [i] is “inserted” so
that the sub-array {a [0] , . . ., a [i] } will be in increasing order. This is done by storing a [i] tem-
porarily in temp and then using the inner loop to shift the larger elements to the right with a [j] =
a[j-l].Thentempcanbecopiedintotheelement a[j].Notethat a[k] < a[j] forall k 5 j,
and a[j] < a[k] for j < k 5 i.Thisensuresthatthesub-array{a[O],...,a[i]}issorted.

When the last iteration of the main loop is finished, i = = n - 1, so {a [0] , . . ., a [n- 1] } is sorted.

148 ARRAYS [CHAP. 5

5.12 Rewrite and test the Bubble Sort function presented in Example 5.12, as an indirect sort. Instead
of moving the actual elements of the array, sort an index array instead.

The test driver requires a test array a initialized with some random numbers and an index array.
initialized with index [i] = = i. This ensures that a [index [i]] will be the same as a [i]
initially:

void print(const float a[], const int n);
void sort(float a[], int index[], int n);
void print(const float a[], int index[], const int n);

main0
1

float a[8] = (55, 22, 99, 66, 44, 88, 33, 77);
int index[8] = (0, 1, 2, 3, 4, 5, 6, 7);
print(a, 8);
sort(a, index, 8);
print(a, index, 8);
print(a, 8);

void swap(int&, int&);

// Indirect Bubble Sort:
void sort(float a[], int index[], int n)
1

for (int i = 1; i c n; i++)
for (int j = 0; j c n-i; j++>

if (a[index[j]] > a[index[j+l]])
swap(index[j],index[j+l]);

void print(const float a[], const int n)
-t

for (int i = 0; i c n; i++)
tout << tl 'I cc a[i];

tout CC endl;

void print(const float a[], int index[], const int n)
-t

for (int i = 0; i c n; i++)
tout cc ll ' CC a[index[i]];

tout CC endl;
>

The only modification needed to the Bubble Sort is to enclose each index with index [. . .] . So j
is replaced with index [j] , and j +l is replaced with index [j +l] . The effect is to leave the
array a unchanged while moving the elements of the index array instead.

Note that we have two overloaded print () function: one to print the array directly, and the other

CHAP. 51 ARRAYS 149

5.13

to print it indirectly using an index array. This allow us to check that the original array a is left
unchanged by the indirect sort.

Implement the Sieve of Eratosthenes to find prime numbers. Set up an array prime [n] of
ints, set a[O] = a[I] = 0 (0 and 1 are not primes), and set a [2] through a [n- 11 to 1. Then
for each i from 3 to n-l, set a [i] = 0 if i is divisible by 2 (i.e., i%2 == 0). Then for
each i from4to n-1,set a[;] = 0 if i is divisible by 3. Repeat this process for each pos-
sible divisor from 2 to n / 2. When finished, all the is for which a [i] still equals 1 are the
prime numbers. They are the numbers that have fallen through the sieve.

The test driver initializes the prime array with 1000 zeros.
function, it prints those index numbers i forwhich prime[i]

const int size = 500;
void sieve(int prime[], const int n);

main0

int prime[size] = (0);
sieve(prime,size);
for (int i = 0; i c size; i++) {

if (prime[i]) tout CC i CC ' ";
if ((i+l) % 50 == 0) tout CC endl;

Then after
- -- - 1:

invoking the sieve ()

tout CC endl;

// Sets prime[i] = 1 if and only if i is prime:
void sieve(int prime[], const int n)
.i

for (int i = 2; i c n; i++)
prime[i] = 1; // assume all i > 1 are prime

for (int p = 2; p C= n/2; p++) {
for (int m = 2*p; m c n; m += p)

prime[m] = 0; // no multiple of p is prime
while (!prime[p])

++p; // advance p to next prime
1

1

The sieve () function initially sets prime [i] to 1 for each i > 2. Then it resets prime [i]
to 0 again for every multiple m of a prime p.

150 ARRAYS [CHAP. 5

5.14 Write and test the function

void reverse(float a[], int n)

This function reverses the array, so that its last element becomes its first, its second-to-last ele-
ment becomes its second, etc. Note that this is different from Example 5.1 which does not
require the movement of any elements in the array.

This solution simply swaps each of the first n/ 2 elements with the corresponding element in the
second half of the array:

void print(const float [I, const int);
void reverse(float [I, const int);

main0
1

float a[81 = { 8 8 . 8 , 4 4 . 4 , 77.7, 11.1, 33.3, 99.9, 66.6, 22.2);
print(a, 8);
reverse(a, 8);
print(a, 8);

void reverse(float a[], const int n)

float temp;
for (int i = 0; i c n/2; i++) {

temp = a[i];
a[il = a[n-i-l];
a[n-i-l] = temp;

1

5.15 Write and test a function that implements the Per$iect Shufle of a one-dimensional array with an
even number of elements. For example, it would replace {11,22,33,44,55,66,77,88}
with {11,55,22,66,33,77,44,88X

CHAP. 51 ARRAYS 151

This function interleaves the first half of the array with
temporary array temp. Then copy temp back into a:

the half. It is easier to do this using a

// The Perfect Shuffle for an even number of elements:
void shuffle(float a[], int n)

float temp[n];
for (int i = 0; i < n/2; i++) {

I temp[2*i] = a[i];
temp[2*i + l] = n/2 + i;

for (i = 0; i < n; i++)
a[i] = temp[i];

For the case n == 8, the first for loop copies a [0] into t emp [0] and a [4] into
temp[l] when i == 0;thenitcopies a[l] into temp[2] and a[51 into temp[3] when
i == 1;thenitcopies a[21 into temp[4] and a[6] into temp[5] when i == 2;thenit
copies a[3] into temp[6] and a[71 into temp[7] when i == 3.

5.16 Write and test the function that “rotates” 90’ clockwise a two-dimensional square array of
ints. For example, it would transform the array

11 22 33
44 55 66
77 88 99

into the may

77 44 11
88 55 22
99 66 33

This solution assumes that the type Matrix has been defined by a typede f .

void rotate(Matrix m, const int n)

Matrix temp;
for (int i = 0; i < size; i++)

for (int j = 0; j < size; j++)
temp[i][j] = m[size-j-l][i];

for (i = 0; i c size; i++)
for (j = 0; j c size; j++)

m[il Cl = temp[i][j];

We use a temporary array temp to hold the resulting rotated matrix, and then copy it back into m.
For the case n = = 3,thefirst for loopcopies m[2] [0] into temp[O] [0], m[l] [0] into
temp[O] [l],and m[O][O] into temp[0][2] when i == 0;thenitcopies m[2] [l] into
temp[l][O], m[l][l] into temp[l] [l],and m[O][l] into temp[1][2] when i ==
1;thenitcopies m[2] [2] into temp[2] [0], m[1][2] into temp[2] [l],and m[O][2]
into temp[2][2] when i == 2.

152 ARRAYS [CHAP. 5

Supplementary Programming Problems

5.17 Write and run a program like the one in Example 5.2, but fills the array in reverse and then
prints them in the order that they are stored. For example, the first number read is stored in the
last position and is printed last .

5.18 Write and run a program like that in Problem 5.8 but computes and prints both the mean and the
standard deviation of the input data. The standard deviation of the n numbers ao, . . ., a,-, is
defined by the formula

J

n- 1

C(ai-P)2
i = O

cJ=
n - l

where p is the mean of the data. This means: square each deviation a [i] - mean; sum those
squares; take the square root of that sum; divide that square root by n-l.

5.19 Extend the program from Problem 5.18 so that it also computes and prints the Z-scores of the
input data. The Z-scores of the n numbers ao, . . ., anml are defined by the formula zi = (ai - ~)/cT.
They normalize the given data so ,that it is centered about 0 and has standard deviation 1.

5.20 In the “good old days” when a grade of “C” was considered “average,” teachers of large classes
would often “curve” their grades according to the following distribution:

A .. 1.5 Iz

B .. 0.5 < z < 1.5
C .. -0.5 2 z < 0.5
D .. -1.5 I 2 < -0.5
F .. z < -1.5 I

If the grades were normally distributed (i.e., their density curve is bell-shaped), then this algo-
rithm would produce about 7% A’s, 24% B’s, 38% C’s, 24% D’s, and 7% F’s. Here the 2 values
are the Z scores described in Problem 5.19. Extend the program from Problem 5.18 so that it
prints the “curved” grade for each of the test scores read.

5.21 Write and test a function that replaces all the negative numbers in an array of integers with their
absolute values.

5.22 Write and test a function that returns the minimum value stored in an array.

5.23 Write and test a function that returns the index of the minimum value stored in an array.

5.24 Write and test the following function that returns through it reference parameters both the max-
imum and the minimum values stored in an array.

void extremes(int& min, int& max, int a[], int n)

5.25 Write and test the following function that returns through it reference parameters both the larg-
est and the second largest values (possibly equal) stored in an array.

void largest(int& maxl, int& max2, int a[], int n)

5.26

5.27

5.28

Write and test the following function that attempts to remove an item from an array:

int remove(int a[], int& n, int x)

The function searches the first n elements of the array a for the item X. If x is found, it is
removed, all the elements above that position are shifted down, n is decremented, and 1 is
returned to indicate a successful removal. If x is not found, the array is left unchanged and 0 is
returned to indicate “failure.” (See Problem 5.9.)

Write and test the following function:

void rotate(int a[], int n, int k)

The function “rotates” the first n elements of the array a, k positions to the right (or -k
positions to the left if k is negative). The last k elements are “rotated” around to the begin-
ning of the array. For example, if a is the array shown below:

0 1 2 3 4 5 6 7

22 33 44 55 66 77 88 99

thenthecall rotate(a, 8, 3) would transform a into

0 1 2 3 4 5 6 7

77 88 99 22 33 44 55 66

Note that the call rotate (a, 8 , - 5) would have the same effect.

Write and test the following function:

CHAP. 51 ARRAYS 153

void append(int a[], int m, int b[], int n)

The function appends the first n elements of the array b onto the end of the first m elements
of the array a. It assumes that a has room for at least m + n elements. For example, if a
and b look like this:

a 0 1 2 3 4 5 6 7 8 9 10 11 12 1 3 b 0 1 2 3 4 5 6 7

22 27 33 34 39 44 50 55 0 0 0 0 0 0 66 72 77 88 90 0 0 0

5.29

5.30

then the call append (a, 8, b, 5) would transform a into
a 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

22 27 33 34 39 44 50 55 66 72 77 88 90 0

Note that b is left unchanged, and only 5 elements of a are changed.

Write and test the following function:

int isPalindrome(int a[], int n)

The function returns 1 or 0, according to whether the first n elements of the arrav a form a Dalin-
drome. Apalindrome is an array like {22,33,44,55,44,33,22} that
when reversed. Warning: The function should leave the array unchanged.

re;ains unchanged

Write and test a function that adds element-wise 2 one-dimensional int
size. For example, if the two given arrays are

22 33 44 55 and 7 4 1 -2

then the third array would be assigned

29 37 45 53

arrays of the same

154 ARRAYS [CHAP. 5

5.31 Write and test a function that subtracts element-wise 2 one-dimensional int arrays of the
same size. For example, if the two given arrays are

22 33 44 55 and 7 4 1 -2

then the third array would be assigned:

15 29 43 57

5.32 Write and test a function that multiplies element-wise 2 one-dimensional int arrays of the
same size. For example, if the two given arrays are

2 4 6 8 and 7 4 1 -2
then the third array would be assigned

14 16 6 -16

5.33 One reason that the version of the Bubble Sort presented in Example 5.12 is inefficient is that it
will perform the same number of comparisons on an array of n elements regardless of how
ordered its elements are initially. Even if the array is already completely sorted, this version of
the Bubble Sort will still make about n2/2 comparisons. Modify this version so that the main
whi le loop stops as soon as it has a complete iteration with no swaps. Use a flag (i.e., an int
variable that stops the loop when its value is 1) named sorted that is set to 0 at the beginning
of each iteration of the main loop and then is set to 1 if a swap is made.

5.34 Rewrite and test the sort (> function presented in Example 5.12, using the Selection Sort
instead of the Bubble Sort. The Selection Sort of an array of n elements goes through n-l
iterations, each time selecting out the next largest element a [j] and swapping it with the ele-
ment that is in the position where a [j] should be. So on the first iteration it selects the largest
of all the elements and swaps it with a [n- 11, and on the second iteration it selects the largest
from the remaining unsorted elements a [0] , . . . , a[n-21 andswapsitwith a[n-Z],etc.On
its ith iteration it selects the largest from the remaining unsorted elements a [0] , . . . , a [n- i]
and swaps it with a [n-i 1.

5.35 Implement the Zndirect Selection Sort. (See Problem 5.12.)

5.36 Implement the Indirect Insertion Sort. (See Problem 5.11.)

5.37 Write and test a function that computes the median value stored in a sorted array. The median is
the middle number.

5.38 Write and test a function that computes the kth percentile of a sorted array. The kth percentile is
the number that is k% of the way from the beginning of the sorted array. For example, the 75th
percentile is the number x in the array for which 75% of the elements y have y L X. The median
is the 50th percentile.

5.39 Write a program to determine how many repeated perfect shuffles it takes to restore an array to
its original order. (See Problem 5.15.)

5.40 Implement the perfect shuffle for an array of any size, even or odd.

5.41 Write and test the following function:

void prepend(int a[], int m, int b[], int n)

The function prepends the first n elements of the array b ahead of the first m elements of the
array a. It assumes that a has room for at least m + n elements.

CHAP. 51 ARRAYS 155

5.42 Write and test a function that “transposes” a two-dimensional square array of intS. For exam-
ple, it would transform the array

11 22 33
44 55 66
77 88 99

into the array

1 1 4 4 7 7
2 2 5 5 8 8

- 33 6 6 9 9

5.43 Write and test a function that “zeros out” the diagonals
intS. For example, it would transform the may

of a two-dimensional square may of

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

into the array

0 12 13 14 0
2 1 0 23 0 25
31 32 0 34 35
4 1 0 43 0 45
0 52 53 54 0

5.44 Write and test a function that returns the trace (i.e., the sum of the main diagonal elements) of a
two-dimensional square array of intS. For example, it would return 46 for the array

11 22 33
40 20 60
35 25 15

5.45 Write and test a function that compares 2 two-dimensional int arrays of the same size and
assigns -1, 0, or 1 to each element of a third array of the same size according to whether the cor-
responding element of the first array is less than, equal to, or greater than the corresponding ele-
ment of the second array. For example, if the two given arrays are

22 44 66 33 44 55
50 50 50 50 50 80

then the

- 1
0

third

0
0

array would be assigned

1
- 1

5.46 Write and test a function that computes the “outer product” of 2 one-dimensional int arrays.
The (i, j) element of the resulting two-dimensional array will be the product of the ith element
of the first array with the jth element of the second array. For example, if the two given arrays
are

20 30 40 3 -2

then the third array would be assigned

60 90 120
-40 -60 -80

156 ARRAYS [CHAP. 5

5.47 A minimax or sad&e point in a two-dimensional array
row and the maximum of its column, or vice verse. For

1 1 2 2 3 3 3 3
9 9 5 5 6 6 7 7
7 7 4 4 9 9 2 2

is an element that is the minimum of its
example, in the following array

the element 33 is a minimax because it is the maximum of row 0 and the minimum of column 2.
The element 55 is another minimax because it is the minimum of row 1 and the maximum of
column 1. Write and test a program that reads the integers m and n, and then reads an m-by-n
matrix, and then prints the location and value of each minimax in the matrix. For example, it
would print

a[0,2] = 33 is a minimax
aLlI = 55 is a minimax

for the matrix shown above.

5.48 Write and test a function that creates Pascal’s Triangle in the square matrix passed to it. For
example, if it is passed the two-dimensional array a and the integer 4, then it would load the
following into a:

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

Answers to Review Questions

5.1

5.2

5.3

5.4

5.5

Only one: all of an array’s elements must be the same type.

An array’s subscript must be an integer type with range from 0 to n-l, where y1 is the array’s size.

In the absence of an initializer, the elements of an array will have unpredictable initial values.

If the array’s initializer has fewer values than the array size, then the specified values will be assigned to
the lowest numbered elements and the remaining elements will automatically be initialized to zero.

It is an error to have more initial values than the size of the array.

5.6 An enum statement defines an enumeration type which is a new unsigned integer type. A typedef
merely defines a synonym for an existing type.

5.7 When a multi-dimensional array is passed to a function, all dimensions except the first must be specified
so that the compiler will be able to compute the location of each element of the array.

Chapter 6

Pointers and References

6.1 INTRODUCTION

When a variable is declared, three fundamental attributes are associated with it: its name, its
type, and its address in memory. For example, the declaration

int n;

associates the name n, the type int, and the address of some location in memory where the
value of n is to be stored. Suppose that address is 0x3 f f f d14. (This is hexadecimal notation; it
is explained in Appendix G.) Then we can visualize n like this:

Ox3fffd14

nK1

int

The box represents the variable’s storage location in memory. The variable’s name is on the left
of the box, the variable’s address is above the box, and the variable’s type is below the box.

If the value of the variable is known, then it is shown inside the box:

Ox3fffd14
n rT-7y-q

int

The value of a variable is accessed by means of its name For example, we can print the value
of n with the statement

tout CC n;
* 1

The address of a variable is accessed by means of the address operator SC. ror example, we
can print the address of n with the statement

tout CC &n;

The address operator 6c “operates” on the variable’s name to produce its address. It has
precedence level 15 (see Appendix C) which is the same level as the logical NOT operator !
and pre-increment operator + +.

EXAMPLE 6.1 Printing Pointer Values

This shows how both the value and the address of a variable can be printed:

main0
-t

int n = 33;
tout << Yt = H C-C n CC endl; // print the value of n
tout << "Q-2 = H C-C &n -CC endl; // print the address of n

>

1 5 7

158 POINTERS AND REFERENCES [CHAP. 6

The output looks like this:

n = 33
&M = ck3fffdZ4

You can tell that the second output 0x3 f f f d14 is an address by the “OX” prefix for hexadecimal
format. This address is equal to the decimal number 67,10&l 16. (See Appendix G.)

Displaying the address of a variable this way is not very useful. The address operator SC has
other more important uses. We saw one use in Chapter 4: designating reference parameters in a
function declaration. That use is closely tied to another: declaring reference variables.

6.2 REFERENCES

A reference is an alias, a synonym for another variable. It is declared by using the reference
operator SC appended to the reference’s type.

EXAMPLE 6.2 Using References

Here r is declared to be a reference for n:

main0

int n = 33;
int& r = n; // r is a reference for n
tout C-C "n = U -CC n -KC 'I, r = ' << r << endl;
- -W
tout << "n = H -K-C n << ', r = ' << r << endl;
r *= 20I
tout C-C 'n = H -CC n -C-C ", r = ' << r CC endl;

The two identifiers n and r are different names for the same variable: they always have the same value.
Decrementing n changes both n and r to 32. Doubling r increases both n and r to 64.

EXAMPLE 6.3 References Are Aliases

This shows that r and n have the same memory address:

main0

int n = 33;
int& r = n;
tout << "&n = ' -CC &n << ', &r = ' CC &r C-K endl;

&n = 0x3fffdl.4, &r = 0x3EEfdl4 ._
,. . .

CHAP. 61 POINTERS AND REFERENCES 159

The following diagram illustrates how references work:

Ox3fffd14

n , r33)
int

The value 33 is stored only once. The identifiers n and r are both symbolic names for the same
memorylocation 0~3fffd14.

Like a cons t, a reference must be initialized when it is declared. That requirement should
seem reasonable: a synonym must have a something for which it is an alias. In other words, every
reference must have a referent.

Reference parameters were defined for functions in Chapter 4. We see now that they work the
same way as reference variables: they are merely synonyms for other variables. Indeed, a refer-
ence parameter for a function is really just a reference variable whose scope is limited to the
function.

We have seen that the ampersand character 6c has several uses in C++: when used as a prefix
to a variable name, it returns the address of that variable; when used as a suffix to a type in a
variable declaration, it declares the variable to be a synonym for the variable to which it is initial-
ized; and when used as a suffix to a type in a function’s parameter declaration, it declares the
parameter to be a reference parameter for the variable that is passed to it. All of these uses are
variations on the same theme: the ampersand refers to the address at which the value is stored.

6.3 POINTERS

The reference operator SC returns the memory address of the variable to which it is applied. We
used this in Example 6.1 to print the address. We can also store the address in another variable.
The type of the variable that stores an address is called a pointer. If the variable has type int,
then the pointer variable must have type “pointer to in t ,” denoted by in t * :

EXAMPLE 6.4 Pointer Values Are Addresses

main0

int n = 33;
int* p = &n; // p holds the address of n
tout -KC "n = H -CC n << ", &n = ' << &n << ", p = " -C-C p C-C endl;
tout << "scp = ' -cc &p << endl;

The pointer variable p and the expression &n have the same type (pointer to int) and the same value
(0x3 f f f d14). That value is stored at memory location 0x3 f f f dl0:

Ox3fffdlO Ox3fffd14

n-1
int

160 POINTERS AND REFERENCES [CHAP. 6

The variable p is called a “pointer” because its value “points” to the location of another
value. It is an int pointer because the value to which it points is an int.

The value of a pointer is an address. That address depends upon the state of the individual
computer on which the program is running. In most cases, the actual value of that address (e.g.,
0x3 f f f dl4) is not relevant to the issues that concern the programmer. So diagrams like the one
above are usually drawn something like this:

This captures the essential features of p and n: p is a pointer to n, and n has the value 33. A
pointer can be thought of as a “locator”: it tells where to locate another value.

Often we will need to use the pointer p alone to obtain the value to which it points. This is
called “dereferencing” the pointer, and is accomplished simply by applying the star * (the aster-
isk) symbol as an operator to the pointer: .

EXAMPLE 6.5 Dereferencing a Pointer

Here p points to the integer named n, so *p and n are the same value:

main0

int n = 33;
int* p = &n; // p points to n
tout CC "*p = H CC *p C-C endl;

“p ‘= ,33. :
: ,’‘.. _ x

This shows that *p is an alias for n.

The address operator SC and the dereference operator * are inverses of each other: n = = *p
whenever p == &n. This can also be expressed as n = = *6cn and p == sc*p.

EXAMPLE 6.6 Referencing Is the Opposite of Dereferencing

Here p points to the integer named n and r is a reference that is initialized to the value to which
p points. So p references n and r dereferences p. Therefore r is an alias for n; i.e., they are dif-
ferent names for the same value 33:

main0

int n = 33;
int* p = &n; // p points to n
int& r = *p; // r is a reference for n
tout CC "r = ' cc r CC endl;

This shows that r is a reference for n.

CHAP. 61 POINTERS AND REFERENCES 161

6.4 DERIVED TYPES

In Example 6.6, p has type pointer to int, and r has type reference to int. These types are
derived from the int type. Like arrays, constants, and functions, these are derived 2ypes. Here
are some declarations of derived types:

int& r = n; // r has type reference to int
int* p = &n; // p has type pointer to int
int a[] = (33, 66); // a has type array of int
const int c = 33; // c has type const int
int f() = { return 33;); // f has type function returns int

C++ types are classified as either fundamental or derived. (See Appendix D.) The fundamen-
tal types include enumeration types and all the number types. Each derived type is based upon
some other type(s). A variable declared to have any of the derived types illustrated above
(constant, array, pointer, reference, and function) is based upon a single fundamental type. A
derived type that is based upon more than one fundamental type is called a structure type. These
include structures, unions, and classes, which will be studied in later chapters.

6.5 OBJECTS AND LVALUES

The Annotated C++ Reference Manual [Ellis] states: “An object is a region of storage
Zvalue is an expression referring to an object or function.” Originally, the terms “lvalue”
“rvalue” referred to things that appeared on the left and right sides of assignments. But
“lvalue” is more general.

The simplest examples of lvalues are names of objects, i.e., variables:

. An
and

int n;
n = 44; // n is an lvalue

The simplest examples of things that are not lvalues are literals:
44 = n; /‘/ ERROR: 44 is not an Ivalue

But symbolic constants are lvalues:
const int max = 65535; // max is an lvalue

even though they cannot appear on the left side of an assignment:
max = 21024; // ERROR: max is constant

Lvalues that can appear on the left side of an assignment are called mutabLe Ivalues; those
that cannot are called immutable Zvalues. A variable is a mutable lvalue; a constant is an immuta-
ble lvalue. Other examples of mutable lvalues include subscripted variables and dereferenced
pointers:

int a[8];

a[51 = 22; // a[5] is a mutable lvalue
int* p = &n;

*P = 77; // *p is a mutable lvalue

Other examples of immutable lvalues include arrays, functions, and references.
In general, an lvalue is anything whose address is accessible. Since an address is what a

reference variable needs when it is declared, the C++ syntax requirement for such a declaration
specifies an lvalue:

type& refname = lvalue; I

162 POINTERS AND REFERENCES [CHAP. 6

For example, this is a legal declaration of a reference:
int& r = n; // OK: n is an lvalue

but these are illegal:
int& r = 44; // ERROR: 44 is not an hake

ERROR: n++ is not an haheint& r = n++;
int& r = cube(n); // ERROR: cube(n) is not an lvalue

6.6 RETURNING A REFERENCE

A function’s return type may be a reference provided that the value returned is an lvalue
which is not local to the function. This restriction means that the returned value is actually a
reference to an lvalue that exists after the function terminates. Consequently that returned lvalue
may be used like any other lvalue; for example, on the left side of an assignment:

EXAMPLE 6.7 Returning a Reference

int& max(int& m, int& n) // return type is reference to int

return (m > n ? m : n); // m and n are non-local references

main0

int m = 44, n = 22;
tout CC m cc II, u cc n cc fl, " cc max(m,n) CC endl;
max(m,n) = 55; // changes the value of m from 44 to 55
tout CC m cc fl, u cc n CC fl, " CC max(m,n) CC endl;

The max (> function returns a reference to the larger of the two variables passed to it. Since the return
value is a reference, the expression max (m , n > acts like a reference to m (since m is larger than n). So
assigning 55 to the expression max (m, n) is equivalent to assigning it to m itself.

EXAMPLE 6.8 Using a Function as an Array Subscript

float& component(float* v, int k)
L

return v[k-11;

main0
{

float v[4];
for (int k = 1; k C= 4; k++)

component(v,k) = 1.0/k;
for (int i = 0; i < 4; i++)

tout CC "v[" CC i CC "1 = v[i] cc endl;

CHAP. 61 POINTERS AND REFERENCES 1 6 3

The outnut looks like this:

The component () function allows vectors to be accessed using the scientific “l-based indexing”
instead of the default “O-based indexing.” So assignment component (v, k) = 1.0 /k is really the
assignment v [k+l] = 1. 0 /k. We’ll see a better way to do this in Chapter 9.

6.7 ARRAYS AND POINTERS

Although pointer types are not integer types, some integer arithmetic operators can be
applied to pointers. The affect of this arithmetic is to cause the pointer to point to another mem-
ory location. The actual change in address depends upon the size of the fundamental type to
which the pointer points.

Pointers can be incremented and decremented like integers. However, the increase or
decrease in the pointer’s value is equal to the size of the object to which it points:

EXAMPLE 6.9 Traversing an Array with a Pointer

This example shows how a pointer can be used to traverse an array.

main0
{

const int size = 3;
short a[size] = (22, 33, 44);
tout CC "a = ' CC a CC endl;
tout << "sizeof(short) = ' << sizeof(short) << endl;
short* end = a + size; // converts size to offset 6
short sum = 0;
for (short* p = a; p < end; p++) {

sum += *p;
tout << '\t p = ' << p;
tout << '\t *p = ' << *p;
tout C-K "\t sum = " -CC sum -CC endl;

>
tout << “end = I ’ C-K end <=c endl;

The second line of output shows that on this machine short integers occupy 2 bytes. Since p is a
pointer to short, each time it is incremented it advances 2 bytes to the next short integer in the array.
That way, sum += *p accumulates their sum of the integers. If p were a pointer to doubl e and
sizeof(double) were 8 bytes, then each time p is incremented it would advance 8 bytes.

164 POINTERS AND REFERENCES [CHAP. 6

Example 6.9 shows that when a pointer is incremented, its value is increased by the number
size (in bytes) of the object to which it points. For example,

float a[8];
float* p = a; // p points to a[O]

++p; // increases the value of p by sizeof(float)

If floats occupy 4 bytes, then + +p; increases the value of p by 4, and p += 5 ; increases
the value of p by 20. This is how an array can be traversed: by initializing a pointer to the first
element of the array and then repeatedly incrementing the pointer. Each increment moves the
pointer to the next element of the array.

We can also use a pointer for direct access into the array. For example, we can access a [5] by initial-
izing the pointer to a [0] and then adding 5 to it:

float* p = a; // p points to a[O]
p += 5; // now p points to a[51

So once the pointer is initialized to the starting address of the array, it works like an index.
WARNING: In C++ it is possible to access and even modify unallocated memory locations. This is

risky and should generally be avoided. For example,
float a[8];
float* p = a[7]; // p points to last element in the array

++p; // now p points to memory past last element!
*p = 22.2; // TROUBLE!

The next example shows an even tighter connection between arrays and pointers: the name of
an array itself is a cons t pointer to the first element of the array. It also shows that pointers can
be compared.

EXAMPLE 6.10 Examining the Addresses of Array Elements

main0

short a[] = (22, 33, 44, 55, 66);
tout cc "a = " << a << ", *a = ' << *a << endl;
for (short* p = a; p < a + 5; p++)

tout -cc "p = H << p << II, *p = ” << *p << endl;

Initially, a and p are the same: they are both pointers to short and they have the same value
(Ox3 f f f d0 8). Since a is a constant pointer, it cannot be increment to traverse the array. Instead, we
increment p and use the exit condition p 2 a + 5 to terminate the loop. This computes a + 5 to
be the hexadecimal address Ox3fffd08 + 5*sizeof(short) = Ox3fffd08 + 5*2 =
Ox3fffd08 + Oxa = 0x3 f f fd12, so the loop continues as long as p c 0x3 f f f d12.

The array subscript operator [1 is equivalent to the dereference operator *. They provide
direct access into the array the same way:

a[01 == *a

CHAP. 61 POINTERS AND REFERENCES 1 6 5

a[l] == *(a + 1)

a[2] == *(a + 2),&C.

So the array a could be traversed like this:
for (int i = 0; i c 8; i++)

tout CC *(a + i) CC endl;

The next example illustrates ho& pointers can be combined with integers to move both forward and
backward in memory.

EXAMPLE 6.11 Pattern Matching

In this example, the lot function searches through the first nl elements of array al looking for
the string of integers stored in the first n2 elements of array a2 inside it. If found, it returns a pointer to
the location within al where a2 begins; otherwise it returns the NULL pointer.

short* loc(short* al, short* a2, int nl, int n2)
{

short* end1 = al + nl;
for (short* pl = al; pl < endl; pl++)

if (*pl == *a2) {
for (int j = 0; j < n2; j++>

if (pl[j] != a2[j]) break;
if (j == n2) return pl;

return 0;

main0

short a1[9] = (11, 11, 11, 11, 11, 22, 33, 44, 55);
short a2[5] = (11, 11, 11, 22, 33);
tout << "Array al begins at location\t" CC al CC endl;
tout <c "Array a2 begins at location\t" CC a2 CC endl;
short* p = loc(a1, a2, 9, 5);
if (p> 1

tout << "Array a2 found at location\t" CC p CC endl;
for (int i = 0; i < 5; i++)

tout CC '\t" << &p[i] << ": ' CC p[i]
<< " \t" c-c &a2[i] CC ": ' CC a2[i] CC endl;

else tout CC "Not found.\n";

Arxay al? begins at XuCaliOn 'OX3.EfE~22' . . .'.,'
&rray a2 -begins.at location Ox3,f,ff.dQ$,' ' .' .'. .':y 1:; ,:.,::,; i"' "'. :
Array a2 faund at lucatiun (jx3fffdiG '. .' ., ';> ::';,.;~~~:~:.

'XkxXffdZ6:'lZ 0x3fffd08: .11'
,. ':J. '.i ,,. :.:

ox3fffdf18: 2.9
: :: s..

.Vx3fEfdOa: 21'
:.,' '.':" '.5 _.'. ;.",-.

i. OxZlfffdlaz I.1 Qx3fEfdQc: 11
.: '."_ . . ,.' _': ',

Ox3.fffdkc: 22 &igfff~f"j&: 22 '. . X'- : :' . .: c
ck~f~fd9Et: 33 mc3fffdm: 33 :

166 POINTERS AND REFERENCES [CHAP. 6

The pattern matching algorithm uses two loops. The outer loop is controlled by the pointer pl which
points to elements in array al where the inner loop will begin checking for a match with array a2. The

. inner loop is controlled by the integer j which is used to compare corresponding elements of the two
arrays. If a mismatch is found, the inner loop aborts and the outer loop continues by incrementing pl t o
look for a match starting with the next element of al. If the inner loop is allowed to finish, then the con-
dition I

(I == n2) will be true and the current location pointed to by pl is returned.
In the test driver, we verify that the match has indeed been found by checking the actual addresses.

6.8 THE new OPERATOR

When a pointer is declared like this:
float* p; // p is a pointer to a float

it only allocates memory for the pointer itself. The value of the pointer will be some memory
address, but the memory at that address is not yet allocated. This means that storage could
already be in use by some other variable. In this case, p is uninitialized: it is not pointing to any
allocated memory. Any attempt to access the memory to which it points will be an error:

*p = 3.14159; // ERROR: no storage has been allocated for *P
A good way to avoid this problem is to initialize pointers when they are declared:

float x = 3.14159; // x contains the value 3.14159
float* p = &x;
tout << *p;

// p contains the address of x
// OK: *p has been allocated

In this case, accessing *p is no problem because the memory needed to store the float 3.14159
was automatically allocated when x was declared; p points to the same allocated memory.

Another way to avoid the problem of a dangling pointer is to allocate memory explicitly for
the pointer itself. This is done with the new operator:

float* q;
q = new float; // allocates storage for 1 float
*q = 3.14159; // OK: *q has been allocated

The new operator returns the address of a block of s unallocated bytes in memory, where s is the
size of a float. (Typically, si zeof (float > is 4 bytes.) Assigning that address to g guarantees
that *CJ is not currently in use by any other variables.

The first two of these lines can be combined, thereby initializing g as it is declared:
float* q = new float;

Note that using the new operator to initialize g only initializes the pointer itself, not the
memory to which it points. It is possible to do both in the same statement that declares the
pointer:

float* q = new float(3.14159);
tout << *q; // ok: both q and *q have been initialized

In the unlikely event that there is not enough free memory to allocate a block of the required
size, the new operator will return o (the NULL pointer):

double* p = new double;

if (P == 0) abort(); // allocator failed: insufficient memory
else *p = 3.141592658979324;

This prudent code calls an abort (> function to prevent dereferencing the NULL pointer.

CHAP. 61 POINTERS AND REFERENCES 1 6 7

Consider again the two alternatives to allocating memory:
float x = 3.14159; // allocates named memory

float* p = new float(3.14159); // allocates unnamed memory

In the first case, memory is allocated at compile time to the named variable X. In the second
case, memory is allocated at run time to an unnamed object that is accessible through *p.

6.9 THE delete OPERATOR

The delete operator reverses the action of the new operator, returning allocated memory
to the free store. It should only be applied to pointers that have been allocated explicitly by the
new operator:

float* q = new float(3.14159);
delete q; // deallocates q
*q = 2.71828; // ERROR: q has been deallocated

Deallocating q returns the block of s i z eo f (f loa t) bytes to the free store, making it available
for allocation to other objects. Once g has been deallocated, it should not be used again until
after it has been reallocated. A deallocated pointer, also called a dangling pointer, is like an
uninitialized pointer: it doesn’t point to anything.

A pointer to a constant cannot be deleted:
const int * p = new int;

delete p; // ERROR: cannot delete pointer to const

This restriction is consistent with the general principle that constants cannot be changed.
' Using the delete operator for fundamental types (char, int, float, double, etc.) is

generally not recommended because little is gained at the risk of a potentially disastrous error:
float x = 3.14159; // x contains the value 3.14159

float* p = &x; // p contains the address of x
delete p; // RISKY: p was not allocated by new

This would deallocate the variable X, a mistake that can be very difficult to debug.

6.10 DYNAMIC ARRAYS

An array name is really just a constant pointer that is allocated at compile time:
float a[20]; // a is a const pointer to a block of 20 floats
float* const p = new float[20]; // so is p

Here, both a and p are constant pointers to blocks of 20 floats. The declaration of a is called
static binding because it is allocated at compile time; the symbol is bound to the allocated
memory even if the array is never used while the program is running.

In contrast, we can use a non-constant pointer to postpone the allocation of memory until the program
is runnning. This is generally called run-time binding or dynamic binding:

float* p = new float[20];

An array that is declared this way is called a dynamic array.
Compare the two ways of defining an array:

float a[20]; // static array .

float* p = new float[20]; // dynamic array

1 6 8 POINTERS AND REFERENCES [CHAP. 6

The static array a is created at compile time; its memory remains allocated thoughout the
run of the program. The dynamic array p is created at run time; its memory allocated only when
its declaration executes. Furthermore, the memory allocated to the array p is deallocated as
soon as the delete operator is invoked on it:

delete [] p; // deallocates the array p
Note that the subscript operator [1 must be included this way, because p is an array.

EXAMPLE 6.12 Using Dynamic Arrays

The get () function here creates a dynamic array

void get(double*& a, int& n)
{

tout << "Enter number of items: I'; tin >> n;
a = new double[n];
tout -C-C "Enter 'I CC n C-C II items, one per line:\n";
for (int i = 0; i < n; i++) {

tout << "\t" << i-t1 << I': II;
tin >> a[i];

1
1

void print(double* a, int n)
1

for (int i = 0; i c n; i++)
tout << a[i] << 'I 1';

tout -CC endl;
1

main0
1

double* a; // a is simply an unallocated pointer
int n;
get& n) ; // now a is an array of n doubles
print(a, n);
delete [] a; // now a is simply an unallocated pointer again
getb, n); // now a is an array of n doubles
print(a, n);

CHAP. 61 POINTERS AND REFERENCES 169

Inside the get () function, the new operator allocates storage for n doubles after the value of n is
obtained interactively. So the array is created “on the fly” while the program is running.

Before get () is used to create another array for a, the current array has to be deallocated with the
de 1 e t e operator. Note that the subscript operator [] must be specified when deleting an array.

Note that the array parameter a is a pointer that is passed by reference:

void get(double*& a, int& n)
This is necessary because the new operator will change the value of a which is the address of the first
element of the newly allocated array.

6.11 USING const WITH POINTERS

A pointer to a constant is different from a constant pointer. This distinction is illustrated in
the following example.

EXAMPLE 6.13 Constant Pointers, Pointer Constants, and Constant Pointer Constants

This fragment declares four variables: a pointer p, a constant pointer cp, a pointer pc to a constant,
and a constant pointer cpc to a constant:

int * p;
++(*P);
++p;
int * const cp;
++ ("cp) ;
++cp;
const int * pc;
.++ (*PC> ;
++pc;
const int * const cpc;
++(*cpc>;
++cpc;

Note that the reference operator

// a pointer to an int
// ok: increments int *p
// ok: increments pointer p
// a constant pointer to an int
// ok: increments int *cp
// illegal: pointer cp is constant
// a pointer to a constant int

// illegal: int *pc is constant
// ok: increments pointer pc
// a constant pointer to a constant int
// illegal: int *cpc is constant
// illegal: pointer cpc is constant

* may be used in a declaration with or without a space on
either side. Thus, the following three declarations are equivalent:

int* p; // indicates that p has type int* (pointer to int)
int * p; // style sometimes used for clarity
int *p; // old C style

6.12 ARRAYS OF POINTERS AND POINTERS TO ARRAYS

The elements of an array may be pointers. Here is an array of 4 pointers to type double:
double* p[4];

Its elements can allocated like any other pointer:
pm = new double(3.141592653589793);

We can visualize this array like this:

170 POINTERS AND REFERENCES [CHAP. 6

The next example illustrates a useful application of pointer arrays. It shows how to sort a list
indirectly by changing the pointers to the elements instead of moving the elements themselves.
This is equivalent to the Indirect Bubble Sort shown in Problem 5.12.

EXAMPLE 6.14 Indirect Bubble Sort

// The Indirect Bubble Sor
void sort(float* p[], int n

t sorts the pointer array:

On each iteration
are swapped.

float* temp;
for (int i = 1; i c n;

for (int j = 0; j <
i++)
n-i; j++)

if (*p[jl > *p[j+ll) {
temp = PM;
PC1 = p[j+ll;
PC+11 = temp;

of the inner loop, if the floats of adjacent pointers are out of order, then the pointers

6.13 POINTERS TO POINTERS

A pointer may point to another pointer. For example,
char c = 't'; I
char* pc = &c;

char** ppc = &PC;

char*** pppc = &ppc;
***pppc = ‘w’; // changes the value of c to 'WI

We can visualize these variables like this:

PPPC

PPC

CHAP. 61 POINTERS AND REFERENCES 1 7 1

The assignment * **pppc = I w I refers to the contents of the address PC that is pointed to
by the address ppc that is pointed to by the address pppc.

6.14 POINTERS TO FUNCTIONS

Like an array name, a function name is actually a constant pointer. We can think of its value
as the address of the code that implements the function.

A pointer to a function is simply a pointer whose value is the address of the function name.
Since that name is itself a pointer, a pointer to a function is just a pointer to a constant pointer.
For example,

int f(int); // declares the function f

int (*pf) (int); // declares the function pointer pf

pf = &f; // assigns the address of f to pf

We can visualize the function pointer like this:

Pf

The value of function pointers is that they allow us to define functions of functions. This is
done by passing a function pointer as a parameter to another function.

EXAMPLE 6.15 The Sum of a Function

The sum0 function has two parameters: the function pointer pf and the integer n:

int sum(int (*Hint), int);
int square(int);
int cube(int);

main0

tout -CC sum(square,4) CC endl; //1+4+9+16
tout CC sum(cube,4) CC endl; // 1 + 8 + 27 + 64

The call sum(square,4) computes and returns the sum square(l) + square(2) +

square(3) + square (4) . Since square (k) computes and returns k*k, the sum () function
returns 1 + 4 + 9 + 16 = 30.

172 POINTERS AND REFERENCES [CHAP. 6

Here are the function definitions and the output:

// Returns the sum f(0) + f(1) + f(2) + . . . + f(n-1):
int sum(int (*pf)(int k), int n)

int s = 0;
for (int i = 1; i c= n; i++)

s += (*pf) (i);
return s;

int square(int k)
t

return k*k;

int cube(int k)
i

return k*k*k;

3Q : _ .’ : ‘_. (‘..

~j.jQ ‘I ,: ‘, ,: ‘. , ’ :

) ,:.’ ‘, : ._,,: ‘.;-“. ‘. ,. ::’ “-;.:- .:-.,;:,: ;‘-1::. ,.:.. -j::,i-,~,,;::~:.,~.]ii’l;,~Il:i

‘.

1 ,_, _ ,. ‘: ; ;’ :. 1’ ‘, ” ‘: i ‘.‘Z. ; .y;, .ll’I: ,.::,‘;y :,.:-I:I-“;‘,:~‘.i:j~.:,~:-::.~;:,,;

‘. ‘. : ., "'_.’ ,....,.:_
The sum () function evaluates the function to which pf points, at each of the integers 1 through n,
and returns the sum of these n values.

Note that the declaration of the function pointer parameter pf in the sum () function’s parameter
list requires the dummy variable k.

6.15 NUL, NULL, AND void

The constant o (zero) has type int. Nevertheless, this symbol can be assigned to all the
fundamental types:

char c = 0; // initializes c to the char '\O'
short d = 0; // initializes d to the short int 0
int n = 0; // initializes n to the int 0
unsigned u = 0; // initializes u to the unsigned int 0
float x = 0; // initializes x to the float 0.0
double z = 0; // initializes z to the double 0.0

In each case, the object is initialized to the number zero. In the case of type char, the character c
becomes the null character; denoted by I \ o I or NUL, it.is the character whose ASCII code is 0.

The values of pointers are memory addresses. These addresses must remain within that part
of memory allocated to the executing process, with the exception of the address 0x0. This is
called .the NULL pointer. The same constant applies to pointers derived from any type:

char* pc = 0; // initializes pc to NULL
short* pd = 0; // initializes pd to NULL
int* pn = 0; // initializes pn to NULL

unsigned* pu = 0; // initializes pu to NULL
float* px = 0; // initializes px to NULL
double* pz = 0; // initializes pz to NULL

CHAP. 61 POINTERS AND REFERENCES 1 7 3

The NULL pointer cannot be dereferenced. This is a common but fatal error:
int* p = 0;
*p = 22; // ERROR: cannot dereference the NULL pointer

A reasonable precaution is to test a pointer before attempting to dereference it:
if (p) *p = 22; // ok

This tests the condition (p ! = NULL) because that condition is true precisely when p is
nonzero.

The name void denotes a special fundamental type. Unlike all the other fundamental types,
void can only be used in a derived type:

void x; // ERROR: no object can have type void
void* p; // OK

The most common use of the type void is to specify that a function does not return a value:
void swap(double&, double&);

Another, different use of void is to declare a pointer to an object of unknown type:
void* p = q;

This use is most common in low-level C programs designed to manipulate hardware resources.

61.

62.

63.

64.

65.

66.

670

68.

69.

6.10

Review Questions

How do you access the memory address of a variable?

How do you access the contents of the memory location whose address is stored in a pointer
variable?

Explain the difference between the following two uses of the reference operator SC:
int& r = n;
p = &n;

Exnlain the difference between the following two uses of the indirection operator *:
I

int* q = p;
u A.

n = *p;

What is a “dangling pointer”?

What dire consequences could resul

How can these dire consequences b

What is wrong with the following code:

int& r = 22;

What is wrong with the following code:

int* p = &44;

What is wrong with the following code:

char c = 'w';
char D = &c;

t from dereferencing a dangling pointer?

: avoided?

174 POINTERS AND REFERENCES [CHAP. 6

6.11 What is the difference between “static binding” and “dynamic binding”?

6.12 What is wrong with the following code:

char c = 'WI;
char* p = c;

6.13 What is wrong with the following code:

short a[32];
for (int i = 0; i c 32; i++)

a++ = -j--j;

6.14 Determine the value of each of the indicated variables after the following code executes.
Assume that integers occupy 4 bytes and that m is stored in memory starting at byte

Ox3fffdOO.
int m = 44;
int* p = &m;
int& r = m;
int n = (*p)++;
int* q = p - 1;
r = -k(--p) + 1;
++*q;

a. m
6. n
c. &m
d. *p
e. r

6.15 Classify each of the following as a mutable lvalue, an immutable lvalue, or a non-lvalue:

a .
b.
C.

d.
e .
f.
g.
h .
i..
J .
k .
1.

double x = 1.23;
4.56*x + 7.89
const double y = 1.23;
double a[81 = (0.0);

a[51
double f() { return 1.23; }
f(1.23)
double& r = x;

double* p = &x;
* P
const double* p = &x;
double* const p = &x;

6.16 What is wrong with the following code:

float x = 3.14159;
float* p = &x;
short d = 44;
short* q = &d;
P = q;

CHAP. 61 POINTERS AND REFERENCES 175

6.17 What is wrong with the following code:
int* p = new int;
int* q = new int;
tout CC "p = H CC p CC II, p + q = ' << p + q << endl;

6.18 What is the only thing that you should ever do with the NULL pointer?

6.19 In the following declaration, explain what type p is, and describe how it might be used:

double**** p;

6.20 If x has the address 0x3 f f f dlc, then what will values of p and q be for each of the fol-
lowing:

double x = 1.01;
double* p = &x;
double* q = p + 5;

6.21 If p and q are pointers to int and n is an int, which of the following are legal:

a*P+q
b. P-Cl
c. p+n
d. p-n
e. n+p

J n-q

6.22 What does it mean to say that an array is really a constant pointer?

6.23 How is it possible that a function can access every element of an array when it is passed only
the address of the first element?

6.24 Explain why the following three conditions are true for an array a and an int i:
a[i] == *(a + i);
*(a + i) == i[a];

a[il == i[a];

6.25 Explain the difference between the following two declarations:
double * f(>;
double (* f)();

6.26 Write a declaration for each of the following:

a. an array of 8 floats;
b. an array of 8 pointers to float;
c. a pointer to an array of 8 floats;
d. a pointer to an array of 8 pointers to float;
e. a. function that returns a float;

f a .

PL

function that returns a pointer to a float;
L

Ii’ a
pointer to a function that returns a float;

. 1pointer to a function that returns a pointer to a float;

176 POINTERS AND REFERENCES

Solved Programming Problems

6.27 Write a function that uses pointers to copy an array of doubl e.

[CHAP. 6

The copy () function uses the new operator to allocate an array of n doubles. The pointer p
contains the address of the first element of that new array, so it can be used for the name of the array, as
in p [i] . Then after copying the elements of a into the new array, p is returned by the function

double* copy(double a[], int n)
1

double* p = new double[n];
for (int i = 0; i c n; i++)

p[il = a[i];
P;return

)

void print (double [I, int);

main0
1

double a[8] = (22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9);
print(a, 8);
double* b = copy(a, 8);
aDI = a[41 = 11.1;
print(a, 8);
print(b, 8);

In this run we initialize a as an array of 8 doubles. We use a print () function to examine the
contents of a. The the copy () function is called and its return value is assigned to the pointer b
which then serves as the name of the new array. Before printing b, we change the values of two of a's
elements in order to check that b is not the same array as a, as the last two print () calls confirm.

6.28 Write a function that uses pointers to search for the address of a given integer in a given array.
If the given integer is found, the function returns its address; otherwise it returns NULL.

We use a for loop to traverse the array. If the target is found at a [i] , then its address
&a [i] is returned. Otherwise, NULL is returned:

int* location(int a[], int n, int target)
{

for (int i = 0; i < n; i++)
if (a[i] == target) return &a[i];

return NULL;

The test driver calls the function and stores its return address in the pointer p. If that is nonzero (i.e.,
not NULL), then it and the int to which it points are printed.

CHAP. 61 POINTERS AND REFERENCES

I

177

main0
{ I

int a[81 = (22, 33, 44, 55, 66, 77, 88, 99}, * p, n;
do {

tin >> n;\
if (p = location(a, 8, n)) tout CC p CC ", ' CC *p -C-C endl;
else tout CC n CC ' was not found.\n";

} while (n > 0);

0:. __,. ‘:, .,.. ,:. ,: ‘1 ,:

0 was. .nat fOUti@., ‘.:. .: _ ‘. _.

6.29 Write a function that is passed an array of n pointers to floats and returns a newly created
array that contains those n float values.

We use a for loop to traverse the array until p points to the target:

float* duplicate(float* p[], int n)
-I

float* const b = new float[n];
for (int i = 0; i c n; i++, q++)

b[i] = *p[i];
return b;

void print(float [I, int);
void print(float* [I, int);

main0
i

float a[81 = (44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5);
print(a, 8);
float* p[8];
for (int i = 0; i c 8; i++)

pE-1 = &a[i]; // p[i] points to a[i]
print@, 8);
float* const b = duplicate(p, 8);
print(b, 8);

178 POINTERS AND REFERENCES [CHAP. 6

6.30 Implement a function for integrating a function by means of Riemann sums. Use the formula

I ;ft)dx x = ($f(aiih))h
Z-

This function, named riemann () , is similar to the sum () function in Example 6.15. Its first
argument is a pointer to a function that has one doubl e argument and returns a doubl e. In this test
run, we pass it (a pointer to) the cube () function. The other three arguments are the boundaries a
and b of the interval [a, b] over which the integration is being performed and the number n of sub-
intervals to be used in the sum. The actual Riemann sum is the sum of the areas of the n rectangles
based on these subintervals whose heights are given by the function being integrated:

double riemann(double (*) (double), double, double, int);
double cube(double);

main0
1

tout CC riemann(cube,0,2,10) CC endl;
tout CC riemann(cube,0,2,100) CC endl;
tout CC riemann
tout CC riemann

+ f(a+h)*h + f(a+2h)*h + . . . + f(b-h)*h],// Returns [f(a)*h
// where h = (b-a)/n:
double riemann(double *Pf

b-a

) (double t), double a, double b, int n)
{

double s = 0, h =
int i;
for (x = a, i = 0;

s += (*Pf) bd ;
return s*h;

double cube(double t)

return t*t*t;

cube,0,2,1000) CC endl;
cube,0,2,10000) CC endl;

J/n, x;

i< n; x += h, i++)

In this test run, we are integrating the function y = J? over the interval [0,2]. By elementary calculus,
the value of this integral is 4.0. The call riemann (cube, 0 , 2 , 10) approximates this integral
using 10 subintervals, obtaining 3.24. The call r iemann (cube, 0 ,2 , 10 0 > approximates the inte-
gral using 100 subintervals, obtaining 3.9204. These sums get closer to their limit 4.0 as n increases.
With 10,000 subintervals, the Riemann sum is 3.9992.

Note that the only significant difference between this ri emann () function and the sum () f u n c -
tion in Example 6.15 is that the sum is multiplied by the subinterval width h before being returned.

CHAP. 61 POINTERS AND REFERENCES 179

6.31 Write a function that returns the numerical derivative of a given functionf at a given point x,
using a given tolerance h. Use the formula

f,() f(x+W -f(x-h)x =
2 h

This derivative () function is similar to the sum () function in Example 6.15, except that it
implements the formula for the numerical derivative instead. It has three arguments: a pointer to the
function5 the x value, and the tolerance h. In this test run, we pass it (pointers to) the cube (> f u n c -
tion and the sqr t () function.

#include ciostream.h>
#include cmath.h>

double derivative(double (*) (double), double, double);
double cube(double);

main0
1

tout CC derivative(cube, 1, 0.1) CC endl;
tout -CC derivative(cube, 1, 0.01) CC endl;
tout CC derivative(cube, 1, 0.001) CC endl;
tout cc derivative(sqrt, 1, 0.1) CC endl;
tout CC derivative(sqrt, 1, 0.01) cc endl;
tout CC derivative(sqrt, 1, 0.001) =CC endl;

// Returns an approximation to the derivative f'(x):
double derivative(double (*pf) (double t), double x, double h)

return ((*pf) (x+h) - (*pf> (x-h) > / U*h) ;

double cube(double t)

return t*t*t;
>

The derivative of the cube () function x3 is 3x2, and its value at x = 1 is 3, so the numerical deriv-
ative should be close to 3.0 for large h. Similarly, the derivative of the sqrt () function 4~ is l/(2&),
and its value at x = 1 is l/2, so its numerical derivative should be close to 0.5 for large h.

180 POINTERS AND REFERENCES [CHAP. 6

6.32 Write a function that is passed an array of n pointers to floats and returns a pointer to the
maximum of the n floats.

The pointer pmax is used to locate the maximum f 1 oat. It is initialized to have the same value as
p [0] which points to the first float. Then inside the for loop, the f 1 oat to which p [i]
points is compared to the float to which pmax points, and pmax is updated to point to the larger
f 1 oat when it is detected. So when the loop terminates, pmax points to the largest f 1 oat :

float* max(float* p[], int n)
{

float* pmax = p[O];
for (int i = 1; i c n; i++)

if (*p[i] > *pmax) pmax = p[il;
return pmax;

1

void print(float [I, int);
void print(float* [I, int);

main0

float a[81 = (44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5);
print(a, 8);
float* p[8];
for (int i = 0; i c 8; i++)

Nil = &a[i]; // p[i] points to a[i]
printb, 8);
float* m = max(p, 8);
tout CC m CC ', ' cc *m CC endl;

Here we have two (overloaded) print () functions: one to print the array of pointers, and one to
print the f 1 oats to which they point. After initializing and printing the array a, we define the array p
and initialize its elements to point to the elements of a. The call print(p, 8) verifies that p provides
indirect access to a. Finally the pointer m is declared and initialized with the address returned by the
max () function. The last output verifies that m does indeed point to the largest f 1 oat among those
accessed by P-

Supplementary Problems

6.33 Write the following function that is passed an array of n pointers to floats and returns a
newlv created arrav that contains those n f 1 oat values in reverse order.

J J

float* mirror(float* p[], int n)

6.34 Write the following function that returns the
before it points to the null character I \ 0 I :

unsigned len(const char* s)

number of bytes that s has to be in cremented

CHAP. 61 POINTERS AND REFERENCES 181

t 6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

6.43

6.44

6.45

\

6.46

Write the following function that copies the first n bytes beginning with * ~2 into the bytes
beginning with * s 1, where n is the number of bytes that ~2 has to be incremented before it
points to the null character 1 \ 0 I :
void cpy(char* sl, const char* s2)

Write the following function that copies the first n bytes beginning with * ~2 into the bytes
beginning at the location of the first occurrence of the null character f \ 0 I after * s 1, where n
is the number of bytes that ~2 has to be incremented before it points to the null character
I\o I ..
void cat(char* sl, const char* s2)

Write the following function that compares at most n bytes beginning with ~2 with the corre-
sponding bytes beginning with s 1, where n is the number of bytes that s 2 has to be incre-
mented before it points to the null character I \ 0 I . If all n bytes match, the function should
return 0; otherwise, it should return either -1 or 1 according to whether the byte from s 1 is
less than or greater than the byte from ~2 at the first mismatch:

int cmp(char* sl, char* s2)

Write the following function that searches the n bytes beginning with s for the character C,
where n is the number of bytes that s has to be incremented before it points to the null char-
acter '\O'. If the character is found, a pointer to it is returned; otherwise return NULL:

char* c)lr(char* s, char c)

Write the following function that returns the sum of the f 1 oats pointed to by the first n
pointers in the array p:

float sum(float* p[], int n)

Write the following function that changes the sign of each of the negative floats pointed to
by the first n pointers in the array p:

void abs(float* p[], int n)

Write the following function that indirectly sorts the floats pointed to by the first n point-
ers in the array p by rearranging the pointers:
void sort(float* p[], int n)

Implement the Indirect Selection Sort using an array of pointers. (See Problem 5.35.)

Implement the Indirect Insertion Sort. (See Problem 5.36.)

Implement the Indirect Random Shufie. (See Problem 5.15.)

Rewrite the sum () function (Example 6.15) so that it applies to functions with return type
double instead of int. Then test it on the sqrt () function (defined in <math. h>) and
the reciprocal function.

Apply the ~ riemann() function (Problem 6.30) to the following functions defined in
cmath.h>:
a. sqrt (), on the interval [l, 41;
b . CO s () , on the interval [0, n/2];
c. exp (> , on the interval [0, 11;
d . loa (1. on the interval 11, el.

182 POINTERS AND REFERENCES [CHAP. 6

6.47 Apply the derivative0 function (Problem 6.31) to the following functions defined in
cmath.h>:

a. sqrt(),atthepointx=4;

b. sin(),atthepointx=n/6;
c . exp(),atthepointx=O;
d. log(),atthepointx= 1.

6.48 Write the following function that returns the product of the n values jii l), f(2), and j(n).

(See Example 6.15.)

int product(int (*pf)(int k), int n)

6.49 Implement the Bisection A4ethod for solving equations. Use the following function:

double root(double (*pf)(double x), double a, double b, int n)

Here, p f points to a function f that defines the equation f(x) = 0 that is to be solved, a and
b bracket the unknown root x (i.e., a I x 2 b), and n is the number of iterations to use. For
example, the call root(square,1,2,100) would return 1.414213562373095 (= 42),
thereby solving the equation x2 = 2. The Bisection Method works by repeatedly bisecting the
interval and replacing it with the half that contains the root. It checks the sign of the product
f(a) fib) to determine whether the root is in the interval [a, b].

6.50 Implement the Trapezoidal Rule for integrating a function. Use the following function:

double trap(double (*pf) (double x), double a, double b, int n)

Here, pf points to the function f that is to be integrated, a and b bracket the interval [a, b]
over which f is to be integrated, and n is the number of subintervals to use. For example, the
call trap (square, 1,2 , 10 0) would return 1.41421. The Trapezoidal Rule returns the sum
of the areas of the n trapezoids that would approximate the area under the graph off. For exam-
ple, if n = 5, then it would return the following, where h = (b-a)/5, the width of each trapezoid.

h
2 Ilf(a) + 2f(a + h) + 2f (a + 2h) + 2f (a + 3h) + 2f (a + 4h) +f (b)]

Answers to Review Questions

61. APPlY the address SC to the variable &Lx.

6.2 Apply the dereference operator * to the variable * p.

6.3 The declaration in t & r = n ; declares r to be a reference (alias) for the in t variable n. The
assignment p = &n; assigns the address of n to the pointer p.

6.4 The declaration int * q = p ; declares q to be a pointer (memory address) pointing to the same
int to which n points. The assignment n = *p ; assigns to n the int to which p points.

6.5 A “dangling pointer” is a pointer that has not been initialized. It is dangerous because it could be pointing
to unallocated memory, or inaccessible memory.

66.

67.

If a pointer pointing to unallocated memory is dereferenced, it could change the value of some unidenti-
fied variable. If a pointer pointing to inaccessible memory is dereferenced, the program will probably
crash (i. e., terminate abruptly).

Initialize pointers when they are declared.

CHAP. 61 POINTERS AND REFERENCES 183

68. You cannot have a reference to a constant; it’s address is not accessible.

6.9 The reference operator SC cannot be applied to a constant.

6.10 The variable p has type char, while the expression &c has type pointer to char. To initialize p to
6~ c, p would have to be declared as type char * .

6.11 Static binding is when memory is allocated at compile time, as with the array declaration:

double a[400];
Dynamic binding is when memory is allocated at run time, by means of the new operator:

double* p;
P = new double[400];

6.12 The variable p has type char*, while the expression c has type char. To initialize p to c, p
would have the same type as c: either both char or both char *.

6.13 The only problem is that the array name a is a constant pointer, so it cannot be incremented. The follow-
ing modified code would be okay:

short a[32];
short* p = a;
for (int i = 0; i < 32; i++)

*p++ = i*i;

6.14
a.
b.
C .

d.
e.

f.

6.15
a.
b.
c.
d.
e.

f
g.
h .
i .

J
k.
1.

m =46
n = 44
&m = Ox3fffdOO
*P = 46
*r=46

*q = 46

mutable lvalue;
not an lvalue;
immutable lvalue;
immutable lvalue;
mutable lvalue;
immutable lvalue;
mutable lvalue if return type is a non-local reference; otherwise not an lvalue;
mutable lvalue;
mutable lvalue;
mutable lvalue, unless p points to a constant, in which case *p is an immutable lvalue;
mutable lvalue;
immutable lvalue; *

6.16 The pointers p and q have different types: p is pointer to f loa t while q is pointer to short.
It is an error to assign the address in one pointer type to a different pointer type.

6.17 It is an error to add two pointers.

6.18 Test it to see if it is NULL. In particular, you should never try to dereference it.

6.19 p is a pointer to a pointer to a pointer to a pointer to a doubl e. It could be used to represent a four-
dimensional array.

184 POINTERS AND REFERENCES [CHAP. 6

6.20

6.21

6.22

The value of p is the same as the address of a: 0x3 f f f dl c. The value of q depends upon
s i zeof (double) . If objects of type double occupy 8 bytes, then an offset of 8(5) = 40 is added to
p, to give q the hexadecimal value 0x3 f f f d4 4.

The only expressions among these six that are illegal are p + q and n - q.

The name of an array is a variable that contains the address of the first element of the array. This address
cannot be changed, so the array name is actually a constant pointer.

6.23 In the following code that adds all the elements of the array a, each increment of the pointer p locates
the next element:

const size = 3;

short a[size] = (22, 33, 44);
short* end = a + size; // adds size*sizeof(short) = 6 to a

for (short* p = a; p c end; p++)
sum += *p;

6.24 The value a [i] returned by the subscripting operator [] is the value stored at the address computed
from the expression a + i. In that expression, a is a pointer to its base type T and i is an in t, so
the offset i*sizeof (T) is added to the address a. The same evaluation would be made from the
expression i + a which is what would be used for i [a] .

6.25 The declaration double * f () ; declares f to be a function that returns a pointer to double. The
declaration double (* f) () ; declares * f to be a pointer to a function that returns a double.

6.26
a. float a[8];
b. float* a[8];
c. float (* a>[8];
d. float* (* a)[8];
e. float f(>;
jI float* f,(> ;
g. float (* f) 0;
h. float* (*, f>();

Chapter 7

Strings

7.1 INTRODUCTION

A string (also called a character string) is a sequence of contiguous characters in memory
terminated by the NUL character I \ 0 I . Strings are accessed by variables of type char*

(pointer to char). For example, if s has type char*, then
7

tout CC s CC endl;

will print all the characters stored in memory beginning at the address s and ending with the
first occurrence of the NUL character.

The C header file c string . h> provides a wealth of special functions for manipulating
strings. For example, the call s trl en (s) will return the number of characters in the string S,

not counting its terminating NUL character. These functions all declare their string parameters as
pointers to char. So before we study these string operations, we need to review pointers.

7.2 REVIEW OF POINTERS

A pointer is a memory address. For example, the following declarations define x to be a
float containing the value 44.44 and p to be a pointer containing the address of X:

float x = 44.44;
float* p = &x;

If we imagine memory to be a sequence of bytes with hexadecimal addresses, then we can
picture x and p like this:

3fffd08
Fl

3fffdOc
El

3fffdlO

3fffd14

3fffd18

This shows x stored at the address 3 f f f d14 and p stored at the address 3 f f f d10. The
variable x contains the float value 44.44 and the variable p contains the address value

185

186 STRINGS [CHAP. 7

3 f f f d14. The value of p is the address of X: 3 f f f d14. This relationship is usually represented
by a diagram like this:

This shows two rectangles, one labeled p and one labeled X. The rectangles represent storage
locations in memory. The variable p points to the variable X. We can access x through the

U

pointer p by means of the dereference operator *. The statement
*p = 77.77;

changes the value of x to 77.77:

P

We can have more than one pointer pointing to the same object:
float* q = &ix;

q

P

T
x177.771

3fffd08

3fffdOc

3fffdlO

3fffd14

3fffd18

3fffdlc

Now *p, *q, and x are all names for the same object whose address
and whose current value is 77.77. This shows g at address 3 f f f dOc.
theaddress 3fffd14 of X.

is shown to be 3fffd14
The value stored in g is

The example below traces these definitions on a UNIX workstation. Notice that, as these
figures indicate, memory is allocated in descending order. The first object, X, is stored at address
3 f f f dl4, occupying bytes 3 f f f d14-3 f f f d17. The second object, p, is stored at address
3fffdlO.

CHAP. 71 STRINGS 1 8 7

EXAMPLE 7.1 Tracing Pointers

This program defines a float x and two float pointers p and q. It prints their values and their
addresses. It also prints the values of the objects that the pointer point to:

main0

float x = 44.44;
tout << "X = ' CC x -CC endl;
tout -CC "\t&x = ' << &x -C-C endl; // prints address of x
float* p = &x; // p points to x
tout CC "\np = ' -CC p -C-C endl;
tout -CC "\t&p = ' << &p << endl; // prints address of p
tout C-C "\t*p = ' -CC *p C-C endl; // prints object p points to
*p = 77.77;
tout C-C "\np = ' CC p C-C endl;
tout << "\t&p = ' CC &p CC endl;
tout -CC "\t*p = ' C-C *p -CC endl;
tout << "x = ' -CC x <+c endl;
tout << "\t&x = ' CC &x -CC endl;
float* q = &x; // q points to x
tout -CC "\nq = ' -KC q -CC endl;
tout -CC "\t&q = ' << &q -CC endl;
tout << '\t*q = ' -CC *q C-C endl;
tout << "x = ' CC x C-C endl;
tout << “\t&x = ' CC &x -CC endl;

x= 44.44 , &ix = JbeRffEd24 : ‘, .’ _. .

I?= Ox3fEEdl,4 &p f Ox3fff’d&O “&ii =r 44.4.4: ‘,._ “.* 3 . ‘.

p. ,=, ,Qx’Sfmm - &p = -‘f)x? fff”JlQ , : _ ‘:‘.;“) .=
:

.J7 *‘77 1 ‘- (. . . ‘.,, , -
.., , . : , , , , . ..‘..........’‘.., ,,o#fff~14e ,,. ,.,.;., ‘,’ ,, ‘,,

x= 77,?7 is&t =
/ : ““‘j”“’ ‘ , _ : ’ :;y ‘,‘;;’ :

.:.

&$jfffd(jc -:*g/s 77,.77: e.”Q= Ox3fEfcu4 &?q zz. - 1

xl=; 77 *.77 . &x = Qx3fffdJc4 - ” :. .‘- ; ‘,-

Notice how address values are output: 0x3 f f f dl4 is the hexadecimal numeral 3 f f f d14. The prefix
O X is the standard notation used to indicate that the numeral is hexadecimal. Although there is no need to
do so, one can compute the corresponding decimal value, remembering that ‘a' is “hex” for 10, ‘b' is 11,
‘c’ is 12, ‘d' is 13, ‘e' is 14, and ‘f' is 15:

Ox3fffdl4 = 3~16~ + 15~16~ + 15~16~ + 15~16~ + 13~16~ + 1~16~ + 4~16~ = 67,108,116

So in this run, x is actually stored in the 4 bytes numbered 67,108,116-67,108,119. These are virtual
addresses on a UNIX workstation with 20 megabytes of memory. On a DOS PC with 4 megabytes of
memory, x, p, and q were stored at addresses Ox23e6, Ox23dc, and Ox23be.

If p is a pointer, then the call cou t -C < *p will always print the value of the object to which
p points, and the call cou t CC p will usually print the value of the address that is stored in p.
The important exception to this second rule is when p is declared to have type char*.

188 STRINGS

7.3 STRINGS

[CHAP. 7

In C++, a string is an array of characters with the following exceptional features:

l An extra component is appended to the end of the array, and its value is set to the NUL
character I \ o I . This means that the total number of characters in the array is always 1
more than the string length.

l The string may be initialized with a string literal, like this:

char str[] = "Bjarne";

Notethatthisarrayhas7elements: 'B', 'jl, la', IrI, InI, lel,and '\O'.

l The entire string may be output as a single object, like this:

tout cc str;

The system will copy characters from s tr to tout until the NUL character I \ o I is
encountered.

l The entire string may be input as a single object, like this:

tin >> buffer;

The system will copy characters from tin into buffer until a white space character
is encountered. The user must ensure that buffer is defined to be a character string long
enough to hold the input.

@The functions declared in the cstring.h> header file may be used to manipulate
strings. These include the string length function s trlen (> , the string copying
functions s trcpy (> and s trncpy (> , the string concatenating functions s trca t ()
and strncat (> , the string comparing functions strcmp (> and strncmp (> , and the
token extracting function s trtok () . These functions are described in Section 7.8.

EXAMPLE 7.2 Strings Are Terminated with the NUL Character

This little demo program shows that the NUL character I \ 0 I is appended to the string:

main0
{

char s[] = “ABCD”;

for (int i = 0; i c 5; i++)
tout CC "s[" cc i CC "1 = "1 CC s[i] CC "'\n";

When the NUL character is sent to cou t, nothing is printed- not even a blank. This is seen by printing
one apostrophe immediately before the character and another apostrophe immediately after the character.

CHAP. 71 STRINGS 189

7.4 STRING I/O

Input and output of strings is done in several ways in C++ programs. The best way is by
means of string class operators as described in Chapter 10. More straightforward methods are
described here.

EXAMPLE 7.3 Ordinary Input and Output of Strings

This program reads words into a 79-character buffer:

main0

char word[80];
do 1

tin >> word;
if (*word) tout CC "\t\"" CC word cc "\"\n";

} while (*word);

In this Iun, the whi le loop iterated 10 times: once for each word entered (including the Control-D that
stopped the loop). Each word in the input stream c in is echoed to the output stream cou t. Note that the
output stream is not “flushed” until the input stream encounters the end of the line.

Each string is printed with a double quotation mark on each side. This character must be desig-
nated by the character pair \ II inside a string literal.

The expression *word controls the loop. It is the initial character in the string. It will be nonzero
(i.e., “true”) as long as the string word contains a string of length greater than 0. The string of length 0,
called the empty string, contains the NUL character I \ 0 I in its first element. Pressing Control-D on a
UNIX or Macintosh computer (Control-Z on a DOS PC or in VAX/VMS) sends the end-of-file character
in from tin. This loads the empty string into word, setting *word (which is the same as word [0])
to I

\o ’ and stopping the loop. The last line of output shows only the Control-D echo.
Note that punctuation marks (apostrophes, commas, periods, etc.) are included in the strings, but

whitespace characters (blanks, tabs, newlines, etc.) are not.
The do loop in Example 7.3 could be replaced with:

tin >> word
while (*word) {

tout CC "\t\"" CC word CC "\"\n";
tin >> word;

When Control-D is pressed, the call tin >> word assigns the empty string to word.

190 STRINGS [C H A P . 7

Example 7.3 and Example 7.1 illustrate an important distinction: the output operator CC
behaves differently with pointers of type char* than with other pointer types. With a char*
pointer, the operator outputs the entire character string to which the pointer points. But with any
other pointer type, the operator will simply output the address of the pointer.

7.5 SOME tin MEMBER FUNCTIONS

The input stream object tin includes the input functions: tin. getline () , tin . get () ,
tin. ignore (>-, tin .putback (> , and tin. peek (> . Each of these function names includes the
prefix “tin .” because they are “member functions” of the tin object. This object-oriented
principle is explained in Chapters 8 and 12.

The call c in. get line (s tr , n) reads up to n characters into s tr and ignores the rest.

EXAMPLE 7.4 The c in. get 1 ine () Function with Two Parameters

This program echoes the input, line by line:

main0
1

char line[80];
do -t

cin.getline(line, 80);
if (*line) tout << "\t[" CC line << "]\n';

} while (*line);

Note that the condition (* 1 ine) will evaluate to “true” precisely when 1 ine contains a non-empty
string, because only then will 1 ine [0] be different from the NUL character (whose ASCII value is 0).

The call tin . getline (s tr , n, ch) reads all input up to the first occurrence of the delimit-
ing character ch into s tr. If the specified character ch is the newline character I \n I , then
this is equivalent to c in. get 1 ine (s tr , n > . This is illustrated in the next example where the
delimiting character is the comma I , I .

CHAP. 71 STRINGS 1 9 1

EXAMPLE 7.5 The tin. getline () Function

This program echoes the input, clause by clause:

main0

char clause[20];

cin.getline(clause, 20, I,');
if (*clause) tout << "\t[" << clause << "]\n";

} while (*clause);

Notice that the invisible endline character that follows “weary, ” is stored as the first character of the next
input line. Since the comma is being used as the delimiting character, the endline character is processed
just like an ordinary character.

T h e cin.get() function is used for reading input character-by-character. The call
tin. get (ch) copies the next character from the input stream tin into the variable ch and
returns 1, unless the end of file is detected in which case it returns 0.

EXAMPLE 7.6 The tin . get () Function

This program counts the number of occurrences of the letter ‘e’ in the input stream. The loop contin-
uesaslongasthe cin.get(ch) function is successful at reading characters into ch:

main0

char ch;
int count = 0;
while (cin.get(ch))

if (ch == 'e') ++count;
tout << count << H e's were counted.\n";

The opposite of get is put. The cou t . put (> function is used for writing to the output
stream tout character-by-character. This is illustrated in the next example.

192 STRINGS [CHAP. 7

EXAMPLE 7.7 The tout . put () Function

This program echoes the input stream, capitalizing each word:

#include cctype.h>
main0

char ch, pre = '\O';
while (cin.get(ch)) {

if (pre == ' ' II pre == '\n') cout.put(char(toupper(ch)));
else cout.put(ch);
pre = ch;

The output looks like this:

The variable pre holds the previously read character. The idea is that if pre is a blank or the newline
character, then the next character ch would be the first character of the next word. In that case, ch is
replaced by its equivalent uppercase character ch + I A I - I a I .

The header file CC type . h> declares the function toupper which returns the uppercase
equivalent of ch if ch is a lowercase letter.

The tin . putback (> function restores the last character read by a tin. get (> back to the
input stream tin. The tin. ignore (> function reads past one or more characters in the input
stream tin without processing them. Example 7.8 illustrates these functions.

The tin . peek (> function can be used in place of the combination tin . get () and
I* The callcin.putback (> functions

ch = cin.peek(

copies the next character of the input stream tin into the char variable ch without removing
that character from the input stream. Example 7.9 shows how the peek (> function can be used
in place of the .get (> and putback (> functions.

CHAP. 71 STRINGS 1 9 3

EXAMPLE 7.8 The tin. putback () and tin. ignore () Functions

This tests a function that extracts the integers from the input stream:

int nextIntO;

main0
{

int m = nextIntO, n = nextIntO;
cin.ignore(80,'\n'); // ignore rest of input line
tout CC m CC u + N CC n CC " = " CC m+n CC endl;

1

int nextIntO
{

char ch;
int n;
while (cin.get(ch))

if (ch >= '0' SC& ch <= '9') { // next character is a digit
cin.putback(ch); // put it back so it can be
tin >> n; // read as a complete int
break;

)
return n;

\

The next In t () function scans past the characters in c in until it encounters the first digit. In this run,
that digit is 3. Since this digit will be part of the first integer 305, it is put back into c in so that the com-

plete integer 305 can be read into n and returned.

EXAMPLE 7.9 The tin . peek () Function

This version of the next Int (> function is equivalent to the one in the previous example:

int nextIntO
{

char ch;

I int n;
while (ch = cin.peek())

if (ch >= '0' && ch <= '9') {
tin >> n;
break;

>
else cin.get(ch);

return n;
>

The expression ch = tin . peek () copies the next character into ch, and returns 1 if successful. Then
if ch is a digit, the complete integer is read into n and returned. Otherwise, the character is removed
from c in and the loop continues. If the end-of-file is encountered, the expression ch = c in . peek ()
returns 0, stopping the loop.

194 STRINGS [CHAP. 7

7.6 CHARACTER FUNCTIONS DEFINED IN cctype. h>

Example 7.7 illustrates the toupper (> function. This is one of a series of character manip-
ulation function defined in the CC type. h> header file. These are summarized in Table 7.1.

Table 7.1 cctype. h> Functions

isalnum()

isalpha

iscntrl()

isdigit

isgraph

islower

isprint

ispunct()

isspace

isupper

isxdigit()

tolower-

toupper ()

int isalnum(int c);
Returns nonzero if c is an alphabetic or numeric character; otherwise returns 0.

int isalpha(int c);
Returns nonzero if c is an alphabetic character; otherwise returns 0.

int iscntrl(int c);
Returns nonzero if c is a control character; otherwise returns 0.

int isdigit(int c);
Returns nonzero if c is a digit character; otherwise returns 0.

int isgraph(int c);
Returns nonzero if c is any non-blank printing character; otherwise returns 0.

int islower(int c);
Returns nonzero if c is a lowercase alphabetic character; otherwise returns 0.

int isprint(int c);
Returns nonzero if c is any printing character; otherwise returns 0.

int ispunct(int c);
Returns nonzero if c is any printing character, except the alphabetic characters,
the numeric characters, and the blank; otherwise returns 0.

int isspace(int c);
Returns nonzero if c is any white-space character, including the blank I I , the
form feed I \ f 1 , the newline I \n I , the carriage return I \ r 1 , the horizontal tab
I \ t 1 , and the vertical tab I \v I ; otherwise returns 0.

int isupper(int c);
Returns nonzero if c is an uppercase alphabetic character; otherwise returns 0.

int isxdigit(int c);
Returns nonzero if c is one of the 10 digit characters or one of the 12 hexadecimal
digitletters: 'a', lb', 'cl, Id', 'e', 'f I, 'A', ‘B’, ‘Cl, ID’, ‘El,

o r IF’; otherwise returns 0.

int tolower(int c);
Returns the lowercase version of c if c is an uppercase alphabetic character;
otherwise returns c.

int toupper(int c);
Returns the uppercase version of c if c is a lowercase alphabetic character; oth-
erwise returns c.

Note that these functions receive an int parameter c and they return an int. This works
because char is an integer type. Normally, a char is passed to the function and the return
value is assigned to a char, so we regard these as character-modifying functions.

CHAP. 71 STRINGS 195

Here is a diagram that summarizes most of the CC type. h> functions:
isprint

isgraph

isalnum

I I f isalpha \, ispunct

isdigit

[o-9)

iscntrl

<formfeed>
<newline>

<carriage return>
<horizontal tab>
<vertical tab>

<bell>
<backspace>

It shows, for example, that if ch is the character I $ I, then isprint (ch) , isgraph (ch) , and
ispunctkh) will return nonzero (i.e., “true”), while isalnumkh), isalpha (ch), and
i s lower (ch) will return zero (i.e., “false”)

7.7 ARRAYS OF STRINGS

Recall that a two-dimensional array is really a one-dimensional array whose components
themselves are one-dimensional arrays. When those component arrays are strings, we have an
array of strings.

Example 7.10 declares the two-dimensional array name as

char name[4][20];

This declaration allocates 80 bytes, arranged like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Each of the 4 rows is a one-dimensional array of 20 characters and therefore can be regarded as a
character string. These strings are accessed as name [0 I , name[l], name[2],andname[3].In
the sample run shown in Example 7.10, the data would be stored like this:

012 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

OGeorge Washington@
Tl4onn Adams@

2Thomas Jefferson@
3

Here, the symbol Q, represents the NUL character I \ o 1 .

196 STRINGS [CHAP. 7

EXAMPLE 7.10 An Array of Strings

This program reads in a sequence of strings, storing them in an array, and then prints them:

main0
-I

char name[8][24];
int count = 0;
tout cc "Enter at most 8 names with at most 23 characters:\n";
while (cin.getline(name[count++], 24))

--count;
tout cc "The names are:\n";
for (int i = 0; i c count; i++)

tout CC "\t" CC i CC ". [" CC name[i] cc "1" CC endl;

Note that all the activity in the whi 1 e loop is done within its control condition:

cin.getline(name[count++],20)

This call to the c in. get 1 ine (> function reads the next line into name [count
count . The function returns nonzero (i.e., “true”) if it was successful in reading

1
a

and then increments
character string into

name [count]. When the end-of-file is signalled (with <Control-D> or <Control-Z>), the tin. get-
line 0
cated bY

function fails, so it returns 0
the line that contains nothing

which stops the whi 1 e loop. The body of this loop is
but a semicolon.

empty, indi-

A more efficient way to store strings is to declare an array of pointers:

char* name[4];

Here, each of the 4 components has type char* which means that each name I: i] is a
string. This declaration does not initially allocate any storage for string data. Instead, we need to
store all the data in a buffer string. Then we can set each name [i 1 equal to the address of the
first character of the corresponding name in the buffer. This is done in Example 7.11. This
method is more efficient because each component of name [i 1 uses only as many bytes as are
needed to store the string (plus storage for one pointer). The trade-off is that the input routine
needs a sentinel to signal when the input is finished.

CHAP. 71 STRINGS 197

EXAMPLE 7.11 A String Array

This program illustrates the use of the get 1 ine () function with the sentinel character I $ 1 . It is
nearly equivalent to that in Example 7.10. It reads a sequence of names, one per line, terminated by the
sentinel 1 $ 1 . Then it prints the names which are stored in the array name:

main0
.I

char buffer[80];
cin.getline(buffer,80,'$');
char* name[4];
name[O] = buffer;
int count = 0;
for (char* p = buffer; *p != '\O'; p++)

if (*p == '\n') {
*p = '\O'; // end name[count]
name[++count] = p+l; // begin next name

>
tout c-c 'The names are:\&';
for (int i = 0; i c count; i++)

tout CC "\t' CC i CC ". [" -CC name[i] CC "1" CC endl;

The entire input is stored in buffer as the single string containing “George Washington\nJohn
Adams \nThomas Jeff erson\n". The for loop then scans through buffer using the pointer p. Each
time p finds the I \n I character, it terminates the string in name [count] by appending the NUL
character I \ 0 I to it. Then it increments the counter count and stores the address p+ 1 of the next
characterin name[count].

The resulting array name looks like this:

George Washington@

Note that the extra bytes that padded the ends of the names in Example 7.10 are not required here.

If the strings being stored are known at compile time, then the string array described above is
quite a bit simpler to handle. Example 7.12 illustrates how to initialize a string array.

198 STRINGS [CHAP. 7-

EXAMPLE 7.12 Initializing a String Array

This program is nearly equivalent to those in the previous two examples. It initializes the string array
name and then prints its contents:

main0

char* name[] = { 'George Washington",
"John Adams",
"Thomas Jefferson"

1 ;
tout cc "The names are:\n";
for (int i = 0; i < 3; i++)

tout C< "\t" CC i CC ". [" cc name[i] CC '1" c< endl;

The storage of the data in the name array here is the same as in Example 7.11.

7.8 THE C-STRING HANDLING LIBRARY

The C header file c string . h>, also called the C-String Library, includes a family of
functions that are very useful for manipulating strings. Example 7.13 illustrates the simplest of
these functions, the string length function, which returns the length of the string passed to it.

EXAMPLE 7.13 The String Length Function s tr len ()

This program is a simple test driver for the s tr 1 en (> function. The call s t r 1 en (s > simply
returns the number of characters in s that precede the first occurrence of the NUL character I \ 0 I :.

#include cstring.h>
main0

char s[] = "ABCDEFG";
tout << 'strlen(" cc s cc ') = " cc strlen(s) <C endl;
tout << "strlen(\"\") = " cc strlen(" ") CC endl;
char buffer[80];
tout cc "Enter string: "; tin >> buffer;
tout << "strlen(" cc buffer cc ") = ' cc strlen(buffer) cc endl;

In some ways, strings behave like fundamental objects (i.e., integers and reals). For example,
they can be output to tout in the same way. But strings are structured objects, composed of

CHAP. 71 STRINGS 199

smaller pieces (characters). So many of the operations that are provided for fundamental objects,
such as the assignment operator (=), the comparison operators (<, >, = =, < =, >=, and ! =), and
the arithmetic operators (+, etc.) are not available for strings. Some of the functions in the C
String Library simulate these operations. In Chapter 8 we will learn how to write our own ver-
sions of these operations.

The next example illustrates three other string functions. These are used to locate characters
and substrings within a given string.

EXAMPLE 7.14 The strchr (), s t rrchr (), and strstr () Functions

#include <string.h>
main0

char s[] = "The Mississippi is a long river.";
tout << "s = \"I << s << "\"\n";
char* p = strchr(s, ' ');
tout << "strchr(s, ' ') points to s[" << p - s CC "].\n";
p = strchr(s, Is');
tout << "strchr(s, 's') points to s[' << p - s << "].\n";
P = strrchr(s, Is');
tout << "strrchr(s, 's') points to s[' CC p - s CC "].\n";
p = strstr(s, "is");
tout << "strstr(s, \"is\") points to s[' CC p - s CC "].\n";
p = strstr(s, "isi");
if (P == NULL) tout << "strstr(s, \"isi\") returns NULL\n";

Thecall strchr(s, ' I > returns a pointer to the first occurrence of the blank character I I within
the string s. The expression p - s computes the index (offset) 3 of this character within the string.
(Remember that arrays used zero-based indexing, so the initial character I T I has index 0.) Similarly, the
character I s I first appears at index 6 in s.

Thecall strrchr(s, ' I > returns a pointer to the last occurrence of the character I s I within
the string s; this is s [17].

Thecall strstr(s, II is II) returns a pointer to the first occurrence of the substring II i s II within
the string s; this is at s [5]. The call strstr (s, " i s i ") returns the NULL pointer because
II i s i II does not occur anywhere within the string s.

There are two functions that simulate the assignment operator for strings:
strncpyo. The call strcpy(sl,s2) copies string s 2 into string

strcpy() and
~1. The call

strncpy(sl,s2,n) copies the first n characters of string ~2 into string s 1. Both functions
return ~1. These are illustrated in the next two examples.

200 STRINGS [CHAP. 7

EXAMPLE 7.15 The String Copy Function s trcpy ()

This program traces call s t rcpy (s 1, s 2) :

#include ciostream.h>
#include <string.h>
main0

char sl [] = I’ ABCDEFG It ;
char s2[] = “XYZ”;

tout << 'Before strcpy(sl,s2):\n';
tout CC '\tsl = [' << sl CC "1, length = ' CC strlen(s1) << endl;
tout <C "\ts2 = [" CC s2 C< "1, length = ' CC strlen(s2) CC endl;
strcpy(sl,s2);
tout << "After strcpy(sl,s2):\n";
tout CC '\tsl = [' CC sl CC "1, length = ' CC strlen(s1) << endl;
tout CC '\ts2 = [" CC s2 CC "1, length = ' CC strlen(s2) CC endl;

1

After s 2 is copied into s 1, they are indistinguishable: both consist of the 3 characters XYZ. The
effect of s trcpy (s 1, s 2) can be visualized like this:

8143A
B
CID
E

Since s2 has length 3, s trcpy (s 1, s2) copies 4 bytes (including the NUL character, shown as D),
overwriting the first 4 characters of s 1. This changes the length of s 1 to 3.

Note that s t rcpy (s 1, s 2 > creates a duplicate of string s2. The resulting two copies are distinct
strings. Changing one of these strings later would have no effect upon the other string.

CHAP. 71 STRINGS 2 0 1

EXAMPLE 7.16 The Second String Copy Function ,s t rncpy ()

This program traces calls s t rncpy (s 1, s2 , n) :

#include ciostream.h>
#include cstring.h>
// Test-driver for the strncpy() function:
main0
{

char sl[] = "AKDEFGQ
char s2[] = "XYZ";
tout << "Before strncpy(sl,s2,2) :\n";
tout << "\tsl = [" cc ~1 CC "1, length = ' << strlen(sl) CC endlo
tout << "\ts2 = [" << ~2 << "1, length = ' << strlen(s2) << end11 I
strncpy(sl,s2,2);
tout << "After strncpy(sl,s2,2) :\n";
tout << "\tsl = [" CC ~1 << "1, length = ' CC strlen(s1) << end10
tout << "\ts2 = [" << ~2 CC "1, length = ' CC strlen(s2) << end11 I

The call s trncpy (s 1, s 2 ,2) replaces the first 2 characters of s 1 with XY, leaving the rest of s 1
unchanged. The effect of s trncpy (s 1, s2 ,2) can be visualized like this:

sl

I

H
I

- A
B
C
D
E
F
G
0

strncpy(

/

I I

/
I I

s2pJYp-j
Y
ZH0

I I I I

Since s2 has length 3, s trncpy (s 1, s2 ,2 > copies 2 bytes (excluding the NUL character Q), over-
writing the first 2 characters of s 1. This has no effect upon the length of s I which is 7.

If n < s trlen (~2 > , as it is in the above example, then s trncpy (~1, ~2, n > simply copies
the first n characters of ~2 into the beginning of ~1. However, if n 2 s trlen (~2 > , then

202 STRINGS [CHAP. 7

strncpy(sl,s2,n) hasthesameeffectas strcpy(sLs2):itmakes SI aduplicateof s2
with the same length.

T h e strcat() a n d strncat() functions work the same as the s trcpy () and
s trncpy (> functions except that the characters from the second string are copied onto the end
of the first string. The term “cat" comes from the word “catenate” meaning “string together.”

EXAMPLE 7.17 The String Concatenation Function s treat ()

This program traces call s t rca t (s 1, s 2 > which appends the string s 2 onto the end of string s 1:

#include <iostream.h>
#include <string.h>
// Test-driver for the strcat() function:
main0

-t
char sl[] = "ABCDEFG";
char s2[] = "XYZ";
tout << "Before strcat(sl,s2):\n";
tout -K< "\tsl = [" << sl c< "1, length = ' << strlen
tout << "\ts2 = [" << s2 << "1, length = ' c< strlen
strcat(sl,s2);
tout << "After strcat(sl,s2):\n";
tout << "\tsl = [" << sl << "1, length = ' << strlen
tout << "\ts2 = [" -K s2 << "1, length = ' << strlen

>

sl) C< endl;
s2) CC endl;

sl) -H endl;
s2) c< endl;

Here is the output:

The call s t rca t (s 1, s 2) appends XY z onto the end of s 1. It can be visualized like this:

* A
B
C
D
E
F
G
0

strcat

CHAP. 71 STRINGS \ 203

Since s2 has length 3, s trca t (s 1, s2) copies 4 bytes (including the NUL character, shown as a),

overwriting the NUL characters of s 1 and its following 3 bytes. The length of s 1 is increased to 10.

If any of the extra bytes following s 1 that are needed to copy ~2 are in use by any other
object, then all of s 1 and its appended s 2 will be copied to some other free section of memory.

EXAMPLE 7.18 The Second String Concatenation Function s trnca t ()

This program traces calls s trnca t (s 1, s 2 , n) :

#include <iostream.h>
#include <string.h>
// Test-driver for the strncat() function:
main0
1

char sl[] = "ABCDEFG";
char s2[] = "XYZ";
tout << 'Before strncat(sl,s2,2):\n";
tout << '\tsl = [" c< sl cc "1, length = " << strlen(s1) c< endl;
tout << "\ts2 = [" << s2 cc "1, length = ' <c strlen(s2) <C endl;
strncat(sl,s2,2);
tout << "After strncat(sl,s2,2):\n";
tout << "\tsl = [" << sl cc "1, length = ' << strlen(s1) << endl;
tout << '\ts2 = [" <c s2 cc "1, length = " cc strlen(s2) << endl;

>

The output looks like this:

The call s t rnca t (s 1, s 2 ,2-) appends XY onto the end of s 1. The effect can be visualized like this:

strncat(sl,s2,2)

204 STRINGS [CHAP. 7

Since s2 has length 3, s trnca t (s 1, s2 ,2) copies 2 bytes overwriting the NUL character of s 1
and the byte that follows it. Then it puts the ~UL character in the next byte to complete the string s 1.
This increases its length to 9. (If either of the extra 2 bytes had been in use by some other object, then the
entire 10 characters ABCDEFGXYO would have been written in some other free part of memory.)

The next example illustrates the string tokenize&nction. Its purpose is to identify “tokens”
within a given string: e.g., words in a sentence.

EXAMPLE 7.19 The String Tokenize Function s t r tok ()

This program shows how strtok () is used to extract the individual words from a sentence.

#include <iostream.h>
#include <string.h>
// Test-driver for the strtok() function:
main0

char s[] = "Today's date is March 12, 1995.";
char* p;
tout << "The string is: [" << s << ']\nIts tokens are:\n";

P = strtok(s, I' I');
while (p) {

tout << "\t[" CC p CC "]\n";
P = strtok(NULL, ' ">;

)
tout << "Now the string is: [

II c-c s cc "]\n";

she st~ing.is.:..,~To~~~ls,d~~~ is,%aJrch 12,. 1995liJ '.._'_ I I. . ..I. I.
3353 tokens are:

: :: :: .-.: _' '..'. '.
i: Today.' s J '., . .: :. ..,
[date) . ._. :,_: '_ '_ ..:: .:

[is]
', :. ;._ '_ ; :',_ '. . .

[mcch] < _:. '...:. : : :_ :
[.I2 f. j. ,,, ,, ,,,, ., ., ,: ,, : ',,, ,; .,, ,,, ,,, .,., .,, ,.. I .: .,, ., ,., .,I..:.I.. .::.'jl.:. .~.r-I::..;...~:r'i~.--i~:~~:.,_ _ I :.
[l2wi.J- : '. ., '. :_ ._ '. ',-. .:. ,_,: ,: ;.

HOW $-he string is : [Today f s) - _.
_ .: '._

'. .: :1 '. .,., .,"' '.. -'.::. %":. : .:,;,.;.. .i:',,'y_. _..::
The call p = strtok(s, II II > sets the pointer p to point to the first token in the string s and
changes the blank that follows II Today 1 s II to the NUL character 1 \ 0 I (denoted by @ in the following
diagram). This has the effect of making both s and p the string II Today 1 s II. Then each successive
call p = strtok(NULL, ' II > advances the pointer p to the next non-blank character that follows
the new NUL character, changing each blank that it passes into a NUL character, and changing the first
blank that follows *p into a NUL character. This has the effect of making p the next substring that was
delimited by blanks and is now delimited by NUL characters. This continues until p reaches the NUL
character that terminated the original string s. That makes p NUL (i.e., 0), which stops the whi 1 e
loop. The combined effect upon the original string s of all the calls to s t r t o k (> is to’change every
blank into a NUL. This “tokenizes” the string s, changing it into a sequence of distinct token strings, only
the first of which is identified by s.

Note that the s tr tok (> function changes the string that it tokenizes. Therefore, if you want
to use the original string after you tokenize it, you should duplicate it with s trcpy (> .

CHAP. 71 STRINGS 205

strtok(s, ' ")strtok(s, ' ")

S

strtok(NULL, ' ")

P

MHa

S

strtok(NULL, ' ")

Also note that the second parameter of the s trtok (> function is a string. This function uses
all the characters in this string as delimiters in the first string. For example, to identify words in
s,youm.ightuse strtok(s, II , :;. ").

The s trpbrk (> function also uses a string of characters as a collection of characters. It
generalizes the s trchr (> function, looking for the first occurrence in the first string of any of
the characters in the second string.

EXAMPLE 7.20 The s trpbrk () Function

#include ciostream.h>
#include cstring.h>
main0

char s[] = 'The Mississippi is a long river.";
tout CC 3 = \"I' CC s CC "\"\n";
char* p = strpbrk(s, "nopqr");
tout cc "strpbrk(s, \"nopqr\") points to s[' CC p - s CC "].\n";
P = strpbrk(s, "NOPQR");
if (p == NULL) tout CC "strpbrk(s, \"NOPQR\") returns NULL.\n";

The call strpbrk(s, II nopqr II) returns the first occurrence in s of any of the five characters I n I ,

'01, 'p', ‘qf,or 'r'. The first of these found is the I p I at s [12] .

The call strpbrk(s, II NOPQR II) returns the NULL pointer because none of these five characters
occurs in s.

Table 7.2 summarizes some of the most useful functions declared in c s t r ing . h>. Note that
size t is a special integer type that is defined in the c string . h> file.-

206 STRINGS [CHAP.7

Table 7.2 <string. h> Functions

memcpy ()

s.trcat (

strchr(>

strcmp >

strcpy >

strcspn 0

strlen(>

strncpy

strpbrk 0

strncat()

strncmp()

0

strrchr()

strspn()

strstr()

strtok()

void* memcpy(void* sl, const void* s2, size-t n);
Replaces the first n bytes of * s 1 with the first n bytes of * s2. Returns s.

char* strcat(char* sl, const char* ~2);
Appends s2 to s 1. Returns s 1.
char* strchr(const char* s, int c);
Returns a pointer to the first occurrence of c in s. Returns NULL if c is not in s.

int strcmp(const char* sl, const char* ~2);
Compares s 1 with substring s2. Returns a negative integer, zero, or a positive integer,
according to whether s 1 is lexicographically less than, equal to, or greater than s2.

char* strcpy(char*%l, const char* ~2);
Replaces s 1 with s2. Returns s 1.

size-t strcspn(char* sl, const char* ~2);
Returns the length of the longest substring of s 1 that begins with s 1 [0] and contains
s 2 .none of the characters found in

size-t strlen(const char* s);
Returns the length of s, which is the number of characters beginning with s [0] that
precede the first occurrence of the NUL character.

char* strncat(char* sl, const char* s2, size-t n);
Appends the first n characters of s2 to s 1. Returns s 1. If n 2 s trlen (s2) , then
strncat(sl,s2,n) hasthesameeffectas strcat(sl,s2).

int strncmp(const char* sl, const char* s2, size-t n);
Compares s 1 with the substring s of the first n characters of s 2. Returns a negative
integer, zero, or a positive integer, according to whether s 1 is lexicographically less
than, equal to, or greater than s. If n 2 strlen(s2),thenstrncmp(sl,s2,n)
and s trcmp (sl , s2) have the same effect.

char* strncpy(char* sl, const char* s2, size-t n);
Replaces the first n characters of s 1 with the first n characters of s2. Returns s 1.
If n I strlen(sl), thenthelengthof sl isnotaffected. If n > strlen(s2),
thenstrncpy(sl,s2,n) and strcpy(sl,s2) havethesameeffect.

char* strpbrk(const char* sl, const char* ~2);
Returns the address of the first occurrence in s 1 of anv of the characters ins2. R e t u r n s
NULL if none of the characters in s 2 appears in s 1.

char* strrchr(const char* s, int c);
Returns a pointer to- the last occurrence of c in s. Returns NULL if c is not in s.

size-t strspn(char* sl, const char* ~2);
Returns the length of the longest substring of s 1 that begins with s2 [0] and contains
s2.only characters found in

char* strstr(const char* sl, const char* ~2);
Returns the address of the first occurrence of s2 as a substring of s 1. Returns NULL
if ch isnotin sl.

char* strtok(char* sl, const char* ~2);
Tokenizes the string s 1 into tokens delimited by the characters found in string s 2.
After the initial call s t r t ok (s 1, s2), each successive call strtok (NULL, s2)
returns a pointer to next token found in s 1. These calls change the string s 1, replacing
each delimiter with the NUL character I \ 0 I .

CHAP. 71 STRINGS 207

7.1

7.2

7.3

7.4

7.5

Review Questions

Consider the following declarations for s:

char s[6];
char s[6] = {'H', 'e', 'l', 'l', lo'};
char s[6] = "Hello";
char s[];
char s[] = new char[6];
char s[] = {'HI, 'e', 'l', 'l', lo'};
char s[] = "Hello";
char s[] = new("Hello");
char* s;
char* s = new char[6];
char* s = {'HI, 'e', 'I', 'l', lo'};
char* s = "Hello";
char* s = new("Hello");

a. Which of these is a valid declaration of a C++ character string?
b. Which of these is a valid declaration of a C++ character string of length 5, initialized to the

string "Hello" and allocated at compile time?
c. Which of these is a valid declaration of a C++ character string of length 5, initialized to the

string "Hello" and allocated at run time?
d. Which of these is a valid declaration of a C++ character string as a formal parameter for a

function?

What is wrong with using the statement

tin >> s;

to read the input II He1 lo, Wor Id ! " into a string s?

What does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095 ;
int count = 0;
for (char* p = s; *p; p++)

if (isupper(++count;
tout CC count -CC endl;

What does the following code print:

char s[] = "123 W. 42nd St., NY, NY 1002@-1095~ ;
for (char* p = s; *p; p++)

if (isupper(*p = tolower(
tout CC s CC endl;

What does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095' ;
for (char* p = s; *p; p++)

if (isupper((*p)++;
tout CC s CC endl;

2 0 8

7.6

7.7

7.8

7.9

7.10

7.11

7.12

STRINGS [CHAP. 7

What does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095 ;

int count = 0;

for (char* p = s; *p; p++)

if (ispunct(*p)) ++count;

tout cc count cc endl;

What does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095";

for (char* p = s; *p; p++)

if (ispunct(*p>> *(p-l) = tolower(

tout CC s CC endl;

What is the difference between the following two statements, if s 1 and s2 have type
char*:

sl = s2;

strcpy(sl,s2);

If first contains the string "Rutherford" and last containsthestring "Hayes", then
what will be the effect of each of the following calls:

a. int n = strlen(first);
b. char* sl = strchr(first, 'r');
C. char* sl = strrchr(fi,rst, 'r');

d. char* sl = strpbrk(first, "rstuv");

e. strcpy(first, last);
$ strncpy(first, last, 3);
g. strcat(first, last);
h. strncat(first, last, 3);

What do each of the following assign to n:

a. int n = strspn("abecedarian","abcde");
b. int n =$ strspn("beefeater","abcdef");
C. int n = strspn("baccalaureate", "abc"); /

d. int n = strcspn("baccalaureate","rstuv");

What does the following code print:

char* sl = "ABCDE";

char* s2 = "ABC";

if (strcmp(sl,s2) c 0) tout <C sl CC ' c ' C< s2 CC endl;

else tout CC sl CC ' >= ' CC s2 CC endl;

What does the following code print:

char* sl = "ABCDE";

char* s2 = "ABCE";

if (strcmp(sl,s2) c 0) tout << sl CC ' c 'I CC s2 <C endl;

else tout cc sl cc I I
> = ' CC s2 cc endl;

CHAP. 71 STRINGS 209

7.13 What does the following code print:
char* sl = “ABCDE”;

char* s2 = "I';

if (strcmp(sl,s2) < 0) tout << sl << I' < 'I << s2 << endl;
else tout << sl << ' >= 'I C-C s2 CC endl;

7.14 What does the following code print:

char* sl = ' ";
char* s2 = I'";
if (strcmp(sl,s2) == 0) tout << sl << ' == ' << s2 -c-c endl;
else tout << sl << ' != ' C-C s2 C-K endl;

Solved Problems

7.15 Explain why the following alternative to Example 7.12 does not work:

main0

char name[lO] [20], buffer[20];
int count = 0;
while (cin.getline(buffer,20))

name[count] = buffer;
--count;
tout << "The names are:\n";
for (int i = 0; i < count; i++)

tout << "\t" << i CC ". [" << name[i] << "1" << endl;

This does not work because the assignment

name[count] = buffer;

assigns the same pointer to each of the strings name [0] , name [11, etc. Arrays cannot be assigned
this way. To copy one array into another, use s trcpy () , or s trncpy () .

Solved Programming Problems

7.16 Write the s trcpy () function.

This copies the string s 2 into the string s 1:

char* strcpy(char* sl, const char* s2)

for (char* p = sl; *s2;)

*p++ = *s2++;
*p = ‘\O’;
return sl;

210 STRINGS [CHAP. 7

The pointer p is initialized at the beginning of s 1. On each iteration of the for loop, the character
* s 2 is copied into the character *p, and then both s 2 and p are incremented. The loop continues
until * s 2 is 0 (i.e., the null character I \ 0 I). Then th e null character is appended to the string s 1 by
assigning it to *p. (The pointer p was left pointing to the byte after the last byte copied when the loop
terminated.)

Note that this function does not allocate any new storage. So its first argument s 1 should already
have been defined to be a character string with the same length as s 2.

7.17 Write the s tmcat (> function.

This function appends up to n characters from s2 onto the end of s 1. It is the same as the
s t r c a t () function except that its third argument n limits the number of characters copied:

char* strncat(char* sl, const char* s2, size-t n)
-t

for (char* end = sl; *end; end++) ; // find end of sl
for (char* p = s2; *p && p - s2 c n;)

*end++ = *p++;
*end = '\O';
return sl;

The first for loop finds the end of string s 1. That is where the characters from string s 2 are to be
appended. The second for loop copies characters from s 2 to the locations that follow s 1. Notice how
the extra condition q - s2 c n limits the number of characters copied to n: the expression q -
s2 equals the number of characters copied because it is the difference between q (which points to the
next character to be copied) and s2 (which points to the beginning of the string).

Note that this function does not allocate any new storage. It requires that string s 1 have at least k
more bytes allocated, where k is the smaller of n and the length of string s 2.

7.18 Write and test a function that returns the plural form of the singular English word passed to it.

This requires testing the last letter and the second from last letter of the word to be pluralized. We use
pointers p and q to access these letters.

\

void pluralize(char* s)
-t

int len = strlen(s);
char* p = s + len - 1; // last letter
char* q = s + len - 2; // last 2 letters
if (*p == 'h' &SC (*q == 'c' II *q == 's')) strcat(p, "es");
else if (*p == 's') strcat(p, "es");
else if (*p == 'y')

if (isvowel(strcat(p, "s");
else strcpy(p, "ies");

else if (*p == 'z')
if (isvowel(strcat(p, "zes");
else strcat(p, "es");

else strcat(p, 'Is");
>

CHAP. 71 STRINGS 211

Two of the tests depend upon whether the second from
boolean function i svowel () for testing that condition:

last letter is a vowel, so we define a little

int isvowel(char c)

return (c == 'a' 11 c == 'e' 11 c == 'i' 11 c == '0'
II c == ‘u’);

The test driver repeatedly reads a word, prints it, pluralizes it, and prints it
when the user enters a single blank for a word:

again. The loop terminates

#include <iostream.h>
#include <string.h>

void pluralize(char*);

main0
1

char word[80];
for (;;) 1

cin.getline(word, 80);
if (*word == ' ') break;
tout << '\tThe singular is [" << word << "].\n";
pluralize(word);
tout << "\t The plural is [" << word << "].\n"; ,

212 STRINGS [CHAP. 7

7.19 Write a program that reads a sequence of names, one per line, and then sorts and prints them.

We assume that names have no more than 25 characters and that there will be no more than 25
names. We’ll read all the input in at once and store it all in a single buffer. Since each name will be
terminated with a NUL character, the buffer needs to be large enough to hold 25*(20 + 1) + 1 char-
acters (25 21-character strings plus one last NUL character).

The program is modularized into five function calls. The call input (bu f f er) reads everything
intothe buffer.Thecall tokenize(name, numNames, buffer) “tokenizes’the buffer,
storing pointers to its names in the name array and returning the number of names in nurnNames.
The call print(name, numNames) prints all the names that are stored in buf f er. The call
sort(name, numNames) does an indirect sort on the names stored in buf f er by rearranging the
pointers stored in the name array.

#include ciostream.h>
#include cstring.h>

const int nameLength = 20;
const int maxNumNames = 25;
const int bufferLength = maxNumNames*(nameLength + 1);
void input(char* buffer);
void tokenize(char** name, int& numNames, char* buffer);
void print(char** name, int numNames);
void sort(char** name, int nurnNames);

main0

char* name[maxNumNames];
char buffer[bufferLength+l];
int nurnNames;
input(buffer);
tokenize(name, num.Names, buffer);
print(name, numNames);
sort(name, numNames);
print(name, num.Names);

The entire input is done by the single call
This reads characters until the “$” character 1

cin.getline (bu ffer, buf ferlength,
s read, storing all the characters in buffer.

I I

$) .

// Reads up to 25 strings into buffer:
void input(char* buffer)
1

tout << "Enter up to " CC maxNurnNames CC ' names, one per line.'
<< " Terminate with \I$\'. \nNames are limited to "
CC nameLength CC " characters.\n';

cin.getline(buffer, bufferlength, '$I);

T h e t okeni z e () function uses the s t r t ok () function to scan through the bu f f er, “token-
izing” each substring that ends with the newline character I \n I and storing its address in the name
array. The for loop continues until p points to the sentinel 1 $ I . Notice that the function’s name
parameter is declared as a char* * because it is an array of pointers to chars. Also note that the
counter n is declared as an in t & (passed by reference) so that its new value is returned to main (> .

CHAP. 71 STRINGS 213

// Copies address of
void tokenize(char**

each string
name, int& n

1
char* p = strtok (buffer, "\n"
for (n = 0; p &SC *p != ‘$I; n

name[n] = p;
p = strtok(NULL, "\n");

1
1

in buffer into name array:
, char* buffer)

> ; // p points to each token
++I -t

The print () and sort () functions are similar to those seen before, except that both operate
here indirectly. Both functions operate on the name array, using to access the names that are stored in
bu f f er. Notice that the sort () function changes only the name array; the bu f f er is left
unchanged.

// Prints the n names stored in buffer:
void print(char** name, int n)

tout cc "The names are:\n";
for (int i = 0; i c n; i++)

tout cc '\t' <c i+l cc ". " << name[i] cc endl;

// Sorts the n names stored in buffer:
void sort(char** name, int n)

char* temp;
for (int i = 1; i < n; i++)

for (int j = 0; j c n-i; j++)
if (strcmp(name[j], name[j+l]) > 0) {

temp = name[j];
name[j] = name[j+l];
name[j+l] = temp;

>

// Bubble Sort

214 STRINGS [CHAP. 7

On this sample run the user entered 7 names and then the sentinel “$“. The names were then printed,
sorted, and printed again.

7.20 Write and test a function to reverse a string in place, without any duplication of characters.

T h e
ter, the

function first locates the end of the string.
second character with the second from last

Then it swaps the first character
character, etc.:

with the last charac-

void reverse(char* s)
-t

for (char* end = s; *end; end++); // find end of s
char temp;
while (s c end - 1). {

temp = *--end;
*end = *s;
*s++ = temp;

The test driver uses the get 1 ine (>
prints it again:

function to read the string. Then it prints it, reverses it, and

void reverse(char*);

main0

char string[80];
cin.getline(string, 80);
tout << "The string is [" CC string CC "].\n";
reverse(string);
tout << "The string is [I' CC string CC "].\n";

Supplementary Programming Problems

7.21 Write and run the variation of the program in Example 7.3 that uses while (tin >> word)
insteadof do..while (*word).

7.22 Write the s trchr () function.

CHAP. 71 STRINGS 215

7.23 Write a function that returns the number of occurrences of a given character within a given
string.

7.24 Write and test the s t rr 1 en () function.

7.25 Write and test the s trrchr () function.

7.26 Write and test the s trs tr (> function.

7.27 Write and test the s trncpy (> function.

7.28 Write and test the s t rca t () function.

7.29 Write and test the s trcmp (> function.

7.30 Write and test the s trncmp () function.

7.31 Write and test the s trchr () function.

7.32 Write and test the s trrchr () function.

7.33 Write and test the s trs tr () function.

7.34 Write and test the s trspn () function.

7.35 Write and test the s trcspn () function.

7.36 Write and test the s trpbrk () function.

7.37 Write a function that returns the number of words that contain a given character within a given
string. (See Example 7.19.)

7.38 Write a (nonrecursive) function that determines whether a given string is a palindrome. (See
Problem 5.29.)

7.39 First, try to predict what the following program will do to the string s. (See Example 7. i9.) Then
run the program to check your prediction.

#include <iostream.h>
#include <string.h>
// Test-driver for the strtok() function:
main0

char s[] = WHM~CD#EFG##HIJK#L#MN#####~#P#####~;
char* p;
tout << 'The string is: [" CC s CC "]\nIts tokens are:\n";
p = strtok(s, "#I');
while (p) {

tout CC "\t[" CC p CC "]\n";
P = strtok(NULL, I'#");

> ,

tout << "Now the string is: [" CC s -CC "]\n";

7.40 Write a program that reads one line of text and then prints it with all its letters capitalized.

216 STRINGS [CHAP. 7

7.41

7.42

Write a program that reads one line of text and then prints it with all its blanks removed.

Write a program that reads one line of text and then prints the number of vowels that were
read.

7.43

7.44

7.45

Write a program that reads one line of text and then prints the number of words that were read.

Write a program that reads one line of text and then prints the number of four-letter words that
were read.

Write a program that reads one line of text and then prints the same words in reverse order. For
example, the input

7.46

7.47

7.48

7.49

today is Tuesday
would produce the output

Tuesday is today

Write a program that reads one line of text and then prints it with each word reversed. For
example, the input

Today is Tuesday
would produce the output

yadoT si yadseuT

Write a program that reads one line of text and then prints it with the following changes: to
every occurrence of “he” is added “or she”; to every occurrence of “him” is added “or her”; to
every occurrence of “his” is added “or hers”.

Write a program that reads up to 50 lines of text, each line containing up to 80 characters, and
then prints all the lines in reverse order. For example, the input

All in the golden afternoon
Full leisurely we glide;
For both our oars, with little skill,
By little arms are plied.

would produce the output

By little arms are plied.
For both our oars, with little skill,
Full leisurely we glide;
All in the golden afternoon

Write a program that reads up to 50 lines of text, each line containing up to 80 characters, and
then prints all the words on each line in reverse order. For example, the input

All in the golden afternoon
Full leisurely we glide;
For both our oars, with little skill,
By little arms are plied.

would produce the output

afternoon golden the in All
skill, little with oars, our both For
glide; we leisurely Full
plied. are arms little By

CHAP. 71 STRINGS 217

7.50 Write a program that reads up to 50 lines of text, each line containing up to 80 characters, and
then prints all the words on each line in alphabetical order. For example, the input

All in the golden afternoon
Full leisurely we glide:
For both our oars, with little skill,
By little arms are plied.

would produce the output

afternoon All golden in the
Full glide; leisurely we
both For little oars, our skill, with
are arms By little plied.

7.51 Write a program that reads up to 50 lines of text, each line containing up to 80 characters, and
then reformats text so that no line has more than 40 characters. For example, the input

"The first thing I've gotto do," said Alice to herself, as she wan-
dered about in the wood, "is to grow to my right size again; and the
second thing is to find my way into that lovely garden.

would produce the output

'The first thing I've got to do," said
Alice to herself, as she wandered about
in the wood, "is to grow to my right size
again; and the second thing is to find my
way into that lovely garden.

7.52 Write a program that encodes and then decodes a line of text. The program should first input
the shift key k to the encoding; this will be an integer in the range 1 to 25. Then the program
will read a line of text, print it, encode it, print the resulting cyphertext, decode it, and then
print the resulting plaintext to show that it is the same as the original text. The encoding and
decoding should be done by separate functions. A letter is encoded simply by adding k to it,
and it is decoded by subtracting k from it. Both operations must “wrap around” the’end of the
alphabet, so for example I w 1 would be encoded to I B I and I d' would be decoded to ‘yl
if k were 6.

7.53 Write a program that plays the game of Hangman.

7.54 Write a function that prints a random sentence. Use the following arrays:

char* article[5] = {"a", "some", "that", "this", "the"}

char* noun[5] = ("boy", "dog", "girl", "man", "woman"};

char* verb[5] = {"barked at", "bit", "kissed", "spoke to"};

7.55 Write and test the following function that tallies the frequencies of each of the 26 letters
(regardless of case) in the given string:

void tally(int frequency[], const char* s)

So after returning, frequency [0] will be the number of occurrences of either I A I or I a I
in s, frequency [1] will be the number of occurrences of either I B I or I b I in S, etc.

218 STRINGS [CHAP. 7

7.56

7.57

7.1

7.2

7.3

7.4

7.5

76.

Write and test the following function that deletes all duplicate characters in the given string:

void delDups(char* s)
For example, if s is the string " ABRACADABRA II , then after the call de IDUPS (s) the string
would be reduced to " ABRCD 'I .

Write and test the following function that deletes all occurrences in s I of characters in s2:

void del(char* sl, const char* s2)
For example, if ~1 is the string " ABRACADABRA II , and s 1 is the string II AB II, and then after
thecall del(s1, ~2) the string s I would be reduced to " RCDR ".

Answers to Review Questions

Among the 13 declarations:
a. The following are valid declarations for a C++ character string:

char s[6];
char s[6] = {'H', 'e', 'l', 'l', '0');
char s[6] = "Hello";
char s[] = {'H', 'e', 'l', 'l', '0');
char s[] = "Hello";
char* s;
char* s = new char[6];
char* s = "Hello";

b. The following are valid declarations for a C++ character string of length 5, initialized to the string
"Hello" and allocated at compile time:

char s[6] = {'H', 'e', 'l', 'l', 'o'};
char s[6] = "Hello";
char s[] = {'H', 'e', 'l', 'l', 'o'};
char s[] = "Hello";
char* s = "Hello";

c. It is not possible to initialize a string like this at run time.

d. The following are valid declarations for a C++ character string as a formal parameter for a func-
tion:

char SC];
char* s;

This will read only as far as the first whitespace. For the given input, it would assign ” He1 lo, " to s.

This counts the number of uppercase letters in the string s, so the output is 6.

This changes all uppercase letters to lowercase in the string s:

123 w. 42nd st., ny, ny 10020-1095
Note that to change the case of a character *p, it must be assigned the return value of the function:

*p = tolower(

This increments all uppercase letters, changing the W to an X, the S to a T, etc.:

123 X. 42nd Tt., oz, oz 10020-1095

This counts the number of punctuation characters in the string s, so the output is 5.

CHAP. 71 STRINGS 219

7.7 This changes each character that is followed by a punctuation character to that following character:

123 . . 42nd S.,, N,, NY 1002--1095

7.8 The assignment s 1 = s 2 simply makes s 1 a synonym for s 2 ; i.e., they both point to the same char-
acter. The call s trcpy (s 1, s 2) actually copies the characters of s 2 into the string s 1, thereby
duplicating the string.

7.9 a. This assigns the integer 10 to n.
b. This assigns the substring I’ r f ord I' to s 1.
c. This assigns the substring I’ rd " to s 1.
d. This assigns the substring "utherford" to sl.
e . This copies 1 as t to f i r s t, so that f i fs t will also be the string I’ Hayes " .
jI This copies the substring ‘I Hay " into thefirstpartof first, making it "Hayherford".
g. Thisappends last ontotheendof first,makingit "RutherfordHayes".
h. This appends the substring " Hay " onto the end of firs t, making it " Ruther f ordHay I'.

7.10 a. 7.
b. 6.
c. 5.
d. 7;

7.11 It prints: ABCDE >= ABC

7.12 It prints: ABCDE < ABCE

7.13 It prints: ABCDE >=

7.14 It prints: ! =

Chapter 8

Classes

8.1 INTRODUCTION

A class is like an array: it is a derived type whose elements have other types. But unlike an
array, the elements of a class may have different types. Furthermore, some elements of a class
may be functions, including operators.

Although any region of storage may generally be regarded as an “object”, the word is usually
used to describe variables whose type is a class. Thus “object-oriented programming” involves
programs that use classes. We think of an object as a self-contained entity that stores its own data
and owns its own functions. The functionality of an object gives it life in the sense that it
“knows” how to do things on its own.

There is much more to object-oriented programming than simply including classes in your
programs. However, that is the first step. An adequate treatment of the discipline lies far beyond
an introductory outline such as this.

8.2 CLASS DECLARATIONS

Here is a is declaration fora class whose objects represent rational numbers (i. e., fractions

class Rational {
public:

void assign(int, int);
double convert.0;
void invert();
void print();

private:
int num, den;

> ;

The declaration begins with the keyword c las s followed by the name of the class and ends
with the required semicolon. The name of this class is Rat ional.

The functions assigno, convert(), invert (1, and print (> are called member
functions because they are members of the class. Similarly, the variables num and den are
called member data. Member functions are also called methods and services.

In this class, all the member functions are designated as pub1 ic, and all the member data
are designated as private. The difference is that pub1 ic members are accessible from outside
the class, while private members are accessible only from within the class. Preventing access
from outside the class is called “information hiding.” It allows the programmer to compartmen-
talize the software which makes it easier to understand, to debug, and to maintain.

The following example shows how this class could be implemented and used.

220

CHAP. 81 CLASSES

EXAMPLE 8.1 Implementing the Rat ional Class

class Rational
pubhc:

void assign(int, int);
double converto;
void invert();
void print();

private:
int num,

1 ;

main0
1

den;

221

Rational x;
x.assign(22,7);
tout << "X = I'; x.print();
tout << " = " C=C x.convert() CC endl;
x.invert();
tout << "l/x = "; x.print(); tout -CC endl;

void Rational: :assign(int numerator, int denominator)

num = numerator;
den = denominator;

double Rational::convert()
-t

return double(num)/den;

void Rational::invert()

int temp = num;
num = den;
den = temp;

void Rational::print()

tout CC num cc C-K den;

x = ,22/T. = 3.2428.6 ._ ‘1: _.
zjx .d .7/22 (,,,, , ‘ , ‘ . ;: ,.,,. ‘I ‘. . ’ ”: : ,‘.. .: ,.,,’ ..,, ,, ;:‘:.:I:3 . . i’

Here x is declared to be an object of the Rat ional class. Consequently, it has its own internal data
members num and den, and it has the ability to call the four class member functions as s ign () ,
convert(), invert (>, and print () . Note that a member function like invert () is called by
prefixing its name with the name of its owner: x . invert (> . Indeed, a member function can only be
called this way. We say that the object x “owns” the call.

222 CLASSES [CHAP. 8

this
An object like x is declared just like an ordinary variable. Its type is Rational. We can think of
type as a “user-defined type.” C++ allows us to extend the definition of the programming language by

adding the new Rational type to the collection of predefined numeric types in t, f 1 oat, etc. We can
envision the object x like this:

Notice the use of the specifier Rational : as a prefix to each function name. This is necessary for
each member function definition that is given outside of its class definition. The scope resolution operator

: : is
w o u l d

used to tie the function definition to the
not know that the function defined

Rational class. Without this specifier, the compiler
is a member function of the Rat ional class. This can

be avoided by including the function definitions within declaration, as shown below in Example 8.2.

When an object like the Rat ional object x in Example 8.1 is declared, we say that the
class has been instantiated, and we call the object an instance of the class. And just as we may
have many variables of the same type, we may also have may instances of the same class:

Rational x, YI G

EXAMPLE 8.2 A Self-Contained Implementation of the Rat ional Class

Here’s the same Rat ional class with the definitions of its member functions included within the
class declaration:

class Rational {
public:

void assign(int n, int d) { num = n; den = d; }
double convert0 { return double(num)/den; }
void invert0 { int temp = num; num = den; den = temp; }
void print0 { tout << num << '/' << den; }

private:
int num, den;

1 ;

In most cases, the preferred style is to define the member functions outside of the class decla-
ration, using the scope resolution operator as shown in Example 8.1. That format physically sep-
arates the function declarations from their definitions, consistent with the general principle of
information hiding. In fact, the definitions are often put in a separate file and compiled sepa-
rately. The point is that application programs that use the class need only know what the objects
can do; they do not need to know how the objects do it. The function declarations tell what they
do; the function definitions tell how they do it. This of course is how the predefined types (int,
double, etc.) work: we know what the result should be when we divide one float by another, but
we don’t really know how the division is done (i.e., what algorithm is implemented). More
importantly, we don’t want to know. Having to think about those details would distract us from
the task at hand. This point of view is often called information hiding and is an important princi-
ple in object-oriented programming.

CHAP. 81 CLASSES 223

When the member function definitions are separated from the declarations, as in Example
8.1, the declaration section is called the class intetiace, and the section containing the member
function definitions is called the implementation. The interface is the part of the class that the
programmer needs to see in order to use the class. The implementation would normally be
concealed in a separate file, thereby “hiding” that information that the user (i.e., the programmer)
does not need to know about. These class implementations are typically done by implementors
who work independently of the programmers who will use the classes that they have imple-
mented.

8.3 CONSTRUCTORS

The Rat ional class defined in Example 8.1 uses the assign (> function to initialize its
objects. It would be more natural to have this initialization occur when the objects are declared.
That’s how ordinary (predefined) types work:

int n = 22;

char* s = "Hello";

C++ allows this simpler style of initialization to be done for class objects using constructor
functions.

A constructor is a member function that is called automatically when an object is declared.
A constructor function must have the same name as the class itself, and it is declared without
return type. The following example illustrates how we can replace the ass ign () function with
a constructor.

EXAMPLE 8.3 A Constructor Function for the Rational Class

class Rational {
public:

Rational(int n, int d) { num = n; den = d; }
void print0 { tout -CC num << '/' CC den; }

private:
int num, den;

> ;

main0
t

Rational x(-1,3), y(22,7);
tout << "X = I';
x.print();
tout CC 'I and y = 'I;
y.print();

x= -If3 and y = 2217

The constructor function has the same effect as the ass ign (> function had in Example 8.1: it initializes
the object by assigning the specified values to its member data. When the declaration of x executes, the
constructor is called automatically and the integers -1 and 3 are passed to its parameters n and d. The

224 CLASSES [CHAP. 8

function then assigns these values to X'S num and den data members. So the declarations
Rational x(-1,3), y(22,7);

are equivalent to the three lines
Rational x, y;
x.assign(-1,3);
y.assign(22,7);

A class’s constructor “constructs” the class objects by allocating and initializing storage for
the objects and by performing any other tasks that are programmed into the function. It literally
creates a live object from a pile of unused bits.

We can visualize the relationshins between the Rational class itself and its instantiated
objects like this:

Rational

num 22I

num -1
X I

den 3c l

The class itself is represented by a rounded box containing its member functions. Each function
maintains a pointer, named “this", which points to the object that is calling it. The snapshot
here represents the status during the execution of the last line of the program, when the object Y
is calling the print () function: y . print () . At that moment, the “this" pointer for the
constructor points to no object because it is not being called.

A class may have several constructors. Like any other overloaded function, these are distin-
guished by their distinct parameter lists.

EXAMPLE 8.4 Adding More Constructors to the Rational Class

class Rational {
public:

Rational0 { num = 0; den = 1;)
Rational(int n) { num = n; den = 1;)
Rational(int n, int d) (num = n; den = d; }
void print0 { tout C-C num << '/I CC den; >

private:
int num, den;

main0
{

Rational x, y(4), z(22,7);
tout <<
x.print
tout <<
y.print
tout <<
z.print

1

“ X = ‘I;
1 .

l&y - 11 .- I
1 .

ll;nz - 11 .- I
1 ;

CHAP. S] CLASSES 225

The output looks like this:

This version of the Rat ional class has three constructors. The first has no parameters and initial-
izes the declared object with the default values 0 and 1. The second constructor has one integer parameter
and initializes the object to be the fractional equivalent to that integer. The third constructor is the same as
in Example 8.2.

Among the various constructors that a class may have, the simplest is the one with no param-
eters. It is called the default constructor. If this constructor is not explicitly declared in the class
definition, then the system will automatically create it for the class. That is what happens in
Example 8.1.

8.4 CONSTRUCTOR INITIALIZATION LISTS

Most constructors do nothing more than initialize the object’s member data. Consequently,
C++ provides a special syntactical device for constructors that simplifies this code. The device is
an initialization list.

Here is the third constructor in Example 8.2, rewritten using an initialization list:

Rational(int n, int d) : mm(n), den(d) { }

The assignment statements in the function’s body that assigned n to num and d to den are
removed. Their action is handled by the initialization list shown in boldface. Note that the list
begins with a colon and precedes the function body which is now empty.

Here is the Rat ional class with its three constructors rewritten using initializer lists.

EXAMPLE 8.5 Using Initializer Lists in the Rational Class

class Rational {
public:

Rational0 : num(O), den(l) {
Rational(int n) : num(n), den(
Rational(int n, int d) : num(n

private:
int num, den;

1
1) l 1
.), den(d) { }

Of course, these three separate constructors are not necessary. They can be combined into a
single constructor, using default parameter values:

226 CLASSES [CHAP. 8

EXAMPLE 8.6 Using Default Parameter Values in the Rational Class Constructor

class Rational {
public:

Rational(int n=O, int d=l) : num(n), den(d) { }
private:

int num, den;
1 ;

main0
{

Rational x, y(4), z(22,7);

Here, x will represent O/l, y will represent 4/l, and z will represent 22/7.

Recall that the default values are used when actual parameters are not passed. So in the declaration of
the Rat ional object x where no values are passed, the formal parameter n is given the default value
0 which is then assigned to x . num, and the formal parameter d is given the default value 1 which is then
assigned to x . den. In the declaration of the object y where only the value 4 is passed, the formal
parameter n is given that value 4 which is then assigned to y . num, and the formal parameter d is given
the default value 1 which is then assigned to y . den. No default values are used in the declaration of z.

8.5 ACCESS FUNCTIONS

Although a class’s member data are usually declared to be private to limit access to them, it is
also common to include pub1 ic member functions that provide read-only access to the data.
Such functions are called accessfunctions.

EXAMPLE 8.7 Access Functions in the Rational Class

class Rational {
public:

Rational(int n=O, int d=l) : num(n), den(d) { }
int numerator0 const { return num; }
int denominator0 const { return den; }

private:
int num, den;

1 ;

main0
{

Rational x(22,7);
tout << x.numerator() -c-c '/I c-c x.denominator() << endl;

The functions numerator () and denominator (> return the values of the private member data.

CHAP. 81 CLASSES 2 2 7

Note the use of the COW t keyword in the declarations of the two access functions. This allows the
functions to be applied to constant objects. (See Section 8.9.)

8.6 PRIVATE MEMBER FUNCTIONS

Class member data are usually declared to be private and member functions are usually
declared to be pub1 i c. But this dichotomy is not required. In some cases, it is useful to declare
one or more member functions to be private. As such, these functions can only be used within
the class itself; i.e., they are local utility functions.

EXAMPLE 8.8 Using private Member Functions gcd () and reduce ()

class Rational {
public:

Rational(int n=O, int d=l) : num(n), den(d) { reduce(); }
void print0 { tout CC num CC '/' << den C-C endl; }

private:
int num, den;
int gcd(int j, int k) { if (k==O) return j; return gcd(k,j%k);
void reduce0 { int g = gcd (num, den); num /= g; den /= g; }

main0

Rational ~(100,360);
x.print();

This version includes two private functions. The gcd () function returns the greatest common divi-
sor of the two integers passed to it. The reduce () function uses the gcd () to reduce the fraction
num/den to lowest terms. Thus the fraction 100/360 is stored as the object 5/18.

Instead of having a separate reduce () function, we could have done the actual reduction within
the constructor. But there are two good reasons for doing it this way. Combining the construction with
the reduction would violate the software principle that separate tasks should be handled by separate func-
tions. Moreover, the reduce () function will be needed later to reduce the results of arithmetic opera-
tions performed on Rational objects.

Note that the keywords pub1 ic and private are called access specifiers; they specify
whether the members are accessible outside the class definition. The keyword protected is the
third access specifier. It will be described in Chapter 11.

8.7 THE COPY CONSTRUCTOR

Every class has at least two constructors. These are identified by their unique declarations:
x0; // default constructor
X(const X&); // copy constructor

228 CLASSES [CHAP. 8

where x is the class identifier. For example, these two
would be declared:

special constructors for a Widget class

Widget(); // default constructor

Widget(const Widget&); // copy constructor

The first of these two special constructors is called the defadt consmmr; it is called automatically
whenever an object is declared in the simplest form, like this:

Widget x;

The second of these two special constructors is called the COPY CO~ZS~I-UC~OT-; it is called
automatically whenever an object is copied (i.e., duplicated), like this:

Widget y(x);

If either of these two constructors is not defined explicitly, then it is automatically defined
implicitly by the system.

Note that the copy constructor takes one parameter: the object that it is going to copy. That
object is passed by constant reference because it should not be changed.

When the copy constructor is called, it copies the complete state of an existing object into a
new object of the same class. If the class definition does not explicitly include a copy constructor
(as all the previous examples have not), then the system automatically creates one by default.
The ability to write your own copy constructor gives you more control over your software.

EXAMPLE 8.9 Adding a Copy Constructor to the Rat ional Class

class Rational {
public:

Rational(int n=O, int d=l) : num(n), den(d) { reduce(); }
Rational(const Rational& r) : num(r.num), den(r.den) { }
void print0 { tout CC num CC '/' CC den; }

private:
int num, den;
int gcd(int m, int n) { if (n==O) return m; return gcd(n,m%n); }
void reduce0 { int g = gcd(num, den); num /= g; den /= g; }

) ;

main0

Rational ~(100,360);
Rational y(x);
coutk "X = "; x.print(); tout << ", y = "; y.print();

20,5/3.8, y F 5/18 .. . :,..., :

The copy constructor copies the num and den fields of the parameter r into the object being con-
structed. When y is declared, it calls the copy constructor which copies x into y.

Note the required syntax for the copy constructor: it must have one parameter, which has the
same class as that being declared, and it must be passed by constant reference: cons t XL

CHAP. 81 CLASSES 229

The copy constructor is called automatically whenever

l an object is copied by means of a declaration initialization;

l an object is passed by value to a function;

l an object is returned by value from a function.

EXAMPLE 8.10 Tracing Calls to the Copy Constructor

class Rational {
public:

Rational(int n, int d) : num(n>, den(d) { }
Rational(const Rational& r) : num(r.num), den(r.den)

{ tout << "COPY CONSTRUCTOR CALLED\n"; }
private:

int num, den;
> ;

Rational f(Rationa1 r) // calls the copy constructor, copying ? to r

Rational s =
return s;

main0

r; // ,calls the copy constructor, copying r to s
// calls the copy constructor, copying s to ?

Rational x(22,7);
Rational y(x);
f(y) ;

// calls the copy constructor, copying x to y

COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED

In this example, the copy constructor is called four times. It is called when y is declared, copying x to
y; it is called when y is passed by value to the function f, copying y to r; it is called when s is
declared, copying r to s; and it is called when the function f returns by value, even though nothing is
copied there. Note that the initialization of s looks like an assignment. But as part of a declaration it calls
the copy constructor just as the declaration of y does.

If you do not include a copy constructor in your class definition, then the compiler generates
one automatically. This “default” copy constructor will simply copy objects bit-by-bit. In many
cases, this is exactly what you would want. So in these cases, there is no need for an explicitly
defined copy constructor.

However, in some important cases, a bit-by-bit copy will not be’ adequate. The String

class, defined in Chapter 10, is a prime example. In objects of that class, the relevant data
member holds only a pointer to the actual string, so a bit-by-bit copy would only duplicate the
pointer, not the string itself. In cases like this, it is essential that you define your own copy
constructor.

230 CLASSES [CHAP. 8

8.8 THE CLASS DESTRUCTOR

When an object is created, a constructor is called automatically to manage its birth.
Similarly, when an object comes to the end of its life, another special member function is called
automatically to manage its death. This function is called a destructor.

Each class has exactly one destructor. If it is not defined explicitly in the class definition,
then like the default constructor, the copy constructor, and the assignment operator, the destruc-
tor is created automatically.

EXAMPLE 8.11 Including a Destructor in the Rat ional Class

class Rational {
public:

Rational0 { tout << 'OBJECT IS BORN.\n"; >
-Rational0 { tout cc "OBJECT DIES.\n"; }

private:
int num, den;

> ;

main0
-t

-C
Rational x; // beginning of scope for x
tout << "Now x is alive.\n";

) // end of scope for x
tout << "Now between blocks.\n";

Rational y;
tout << “Now y is alive.\&';

The output here shows when the constructor and the destructor are called.

The class destructor is called for an object when it reaches the end of its scope. For a local
object, this will be at the end of the block within which it is declared. For a s tat ic object, it
will be at then end of the main (> function.

Although the system will provide them automatically, it is considered good programming
practice always to define the copy constructor, the assignment operator, and the destructor within
each class definition.

CHAP. 81 CLASSES 231

8.9 CONSTANT OBJECTS

It is good programming practice to make an object constant if it should not be changed. This
is done with the const keyword:

const char blank = ' ';
const int maxint = 2147483647;
const double pi = 3.141592653589793;
void init(float a[], const int size);

Like variables and function parameters, objects may also be declared to be constant:
const Rational pi(22,7);

However, when this is done, the C++ compiler restricts access to the object’s member functions.
For example, with the Rat ional class defined previously, the print (> function could not be
called for this object:

pi.print(); // error: call not allowed

In fact, unless we modify our class definition, the only member functions that could be called for
const objects would be the constructors and the destructor. To overcome this restriction, we
must declare as constant those member functions that we want to be able to use with const
objects.

A function is declared constant by inserting the cons t keyword between its parameter list
and its body:

void print0 const { tout CC num C-C '/I C-C den -CC endl; }

This modification of the function definition will allow it to be called for constant objects:
const Rational pi(22,7);
pi.print(); // o.k. now

8.10 STRUCTURES

The C++ c lass is a generalization of the C s true t (for “structure”) which is a class with
only pub1 ic members and no functions. One normally thinks of a class as a structure that is
given life by means of its member functions and which enjoys information hiding by means of
private data members.

To remain compatible with the older C language, C++ retains the s true t keyword which
allows s true ts to be defined. However, a C++ s true t is essentially the same as a C++
class. The only significant difference between a C++ s true t and a C++ class is with the
default access specifier assigned to members. Although not recommended, C++ classes can be
defined without explicitly specifying its member access specifier. For example,

class Rational {
int num, den;

J I

is a valid definition of a Rat ional class. Since the access specifier for its data members num
and den is not specified, it is set by default to be private. If we make it a s true t instead of
a class

struct Rational {
int num, den;

232 CLASSES [CHAP. 8

then the data members are set by default to be pub1 i C. But this could be corrected simply by
specifying the access specifier explicitly:

struct Rational {

private:

int num, den;

J I

So the difference between a class and a C++ s true t is really just cosmetic.

8.11 POINTERS TO OBJECTS

In many applications, it is advantageous to use pointers to objects (and structs). Here is a
simple example:

EXAMPLE 8.12 Using Pointers to Objects

class X {
public:

int data;
1 ;

main0

X* p = new X;

(*p).data = 22; // equivalent to: p->data = 22;
tout cc "(*p).data = ' << (*p).data CC ' = ' CC p->data << endl';
p->data = 44;
tout cc " p->data = ' CC (*p).data CC ' = ' CC p->data CC endl;

Since p is a pointer to an x object, *p is an x object, and (*p > . data accesses its (pub1 i c) data
member data. Note that parentheses are required in the expression (*p) . data because the direct
member selection operator “ .” has higher precedence than the dereferencing operator “*“. (See Appendix
0.

The two notations

(*p).data

p->data

have the same meaning. When working with pointers objects,
preferred because it is simpler and it suggests “the thing to which

Here is a more important example:

the “arrow” symbol “4 is
p points.”

CHAP. 81 CLASSES 233

EXAMPLE 8.13 A Node Class for Linked Lists

This defines a Node class each of whose objects contain an int data member and a next pointer.
The program allows the user to create a linked list in reverse. Then it traverses the list, printing each
data value.

class Node {
public:

Node(int d, Node* p=O) : data(d), next(p) { }
int data;
Node* next;

> ;

main0
-t

int n;
Node* p;
Node* q=O;
while (tin >> n) {

p = new Node(n, q);
q = p;

>
for (; pvnext; p = p->next)

tout CC p->data << ' --> ";
tout CC "*\n";

)

First note that the definition of the Node class includes two references to the class itself. This is allowed
because each reference is actually a pointer to the class. Also note that the constructor initializes both data
members.

The whi 1 e loop continues reading in t s into n until the user enters the end-of-file character
(Control-D on Mac and UNIX systems, and Control-Z on DOS and VAX systems). Within the loop, it
gets a new node, inserts the int into its data member, and connects the new node to the previous node
‘(pointed to by q). Finally, the for loop traverses the list, beginning with the node pointed to by p
(which is the last node constructed) and continuing until p- >next is NUL (in which case, p will be
pointing to the last node in the list).

The list constructed in this example can be visualized like this:

234 CLASSES [CHAP. 8

8.12 STATIC DATA MEMBERS

Sometimes a single value for a data member applies to all members of the class. In this case,
it would be inefficient to store the same value in every object of the class. That can be avoided by
declaring the data member to be static. This is done by including the static keyword at the
beginning of the variable’s declaration. It also requires that the variable be defined globally. So
the syntax looks like this:

class X {
public:

static int n; // declaration of n as a static data member
1 ;

int X::n = 0; // definition of n

Static variables are automatically initialized to 0, so the explicit initialization in the definition is
unnecessary unless you want it to have a non-zero initial value.

EXAMPLE 8.14 A static Data Member

The Widget class maintains a s tat i c data member count which keeps track of the number of
Widget objects in existence globally. Each time a widget is created (by the constructor) the counter is
incremented, and each time a widget is destroyed (by the destructor) the counter is decremented.

class Widget {
public:

Widget0 { ++count; }
-Widget() { --count; }
static int count;

> ;

int Widget::count = 0;

main0
-C

Widget w, x;
tout << "Now there are ' CC w.count CC ' widgets.\n";
-t

Widget w, x, y, z;
tout << "Now there are ' C-C w.count -KC ' widgets.\n";

>
tout << "Now there are ' CC w.count << ' widgets.\n";
Widget y;
tout << "Now there are ' << w.count << ' widgets.\n";

Nuw there are .2 widget;s* .,..

Notice how four widgets are created inside the inner block, and then they are destroyed when program
control leaves that block, reducing the global number of widgets from 6 to 2.

CHAP. 81 CLASSES 235

A static data member is like an ordinary global variable: only one copy of the variable exists
no matter how many instances of the class exist. The main difference is that it is a data member
of the class, and so may be private.

EXAMPLE 8.15 A static Data Member that is private

class Widget {
public:

Widget0 (++count; }
-Widget() { --count; }
int numWidgets() { return count; }

private:
static int count;

> ;

int Widget::count = 0;

main0
{

Widget w, x;
tout -c-c “Now there are 'I -C-C w.numMdgets() << 'I widgets.\n";
1

Widget w, x, y, z;
tout << “Now there are ' -CC w.numWidgets() -CC ' widgets.\n";

tout << "Now there are 'I -CC w.numWidgets() X-C ' widgets.\n";
Widget y;
tout << "Now there are ' C-K w.numWidgets() -C-C I1 widgets.\n";

This works the same way as Example 8.14. But now that the static variable count is private, we
need the access function numwidget s () toread count in main().

The relationships among the class, its members, and its objects can be visualized like this:

numWidgets() l

count 30)

The rounded box represents the class itself which contains the three member functions and the
data member count. The pub1 ic members are above the line and the private member(s)
are below it. Each member function maintains a pointer (named “this") which points to the
object that owns the current function call. This snapshot shows the status during the execution of
the last line in the program: three widgets (w, X , and Y) exist, and w is calling the
numwidgets () function which returns the value of the private data member count. Note that
this data member resides within the class itself; the class objects have no data.

236 CLASSES [CHAP.8

8.13 static FUNCTION MEMBERS

Like any ordinary member function, the numwidge t s (> function in Example 8.15 requires
that it be owned by some instance of the class. But since it returns the value of the s tat ic data
member count which is independent of the individual objects themselves, it doesn’t matter
which object calls it. We had w call it each time, but we could just as well have had x or Y or
z call it when they exist.. Moreover, we couldn’t call it at all until after some object had been
created. This is rather arbitrary. Since the action of the function is independent of the actual
function objects, it would be better to make the calls independent of them too. This can be done
simply by declaring the function to be s tat ic.

EXAMPLE 8.16 A static Function Member

The Widget class maintains a s tat ic data member count which keeps track of the number of

Widget objects in existence globally. Each time a widget is created (by the constructor) the counter is
incremented, and each time a widget is destroyed (by the destructor) the counter is decremented.

class Widget { ,
public:

Widget0 { ++count; >
-Widget() { --count; >
static int num() (return count; }

private:
static int count;

int Widget::count = 0;

main0
1

tout << “Now there are u << Widgetttnum
Widget w, x;
tout -c-K “Now there are I1 -c< Widget::num
1

Widget w, x, y, z;

0 << I1 widgets.\xP;

0 << 'I widgets.\n";

tout << Wow there are 11 << Widget::num() << ' widgets.\n";
>
tout << "Now there are I' CC Widget::num() << 'I widgets.\n";
Widget y;
tout << "Now there are ' << Widget::num() << 'I widgets.\n";

Declaring the num () function to be static renders it independent of the class instances. So now it is
invoked simply as a member of the Widget class using the scope resolution operator “ : : “. This allows
the function to be called before any objects have been instantiated.

CHAP. 81 CLASSES 2 3 7

The Drevious fiEure showing relationships among the class, its members, and should now
looks liki this: ”

Widget

The difference is that now the member function num(> has no “this" pointer. As a static
member function, it is associated with the class itself, not with its instances.

Static member functions can access only s tat i c data from their own class.

Review Questions

8.1 Explain the difference between a pub1 ic member and a private member of a class.

8.2 Explain the difference between the interface and the implementation of a class.

8.3 Explain the difference between a class member function and an application function.

8.4 Explain the difference between a constructor and a destructor.

8.5 Explain the difference between the default constructor and other constructors.

8.6 Explain the difference between the copy constructor and the assignment operator.

8.7 Explain the difference between an access function and a utility function.

88.

89.

Explain the difference between a class and a s true t in C++.

What name must a constructor have?

8.10 What name must a destructor have?

8.11 Howmany constructors can a class have?

8.12 How many destructors can a class have?

8.13 How and why is the scope resolution operator : : used in class definitions?

8.14 Which member functions are created automatically by the compiler if they are not included (by
the programmer) in the class definition?

8.15 How many times is the copy constructor called in the following code:

Widget f(Widget u)
1

Widget v(u);
Widget w = v;
return w;

>

238 CLASSES [CHAP. 8

main0

Widget x;
Widget y = f(f(x));

1
8.16 Why are the parentheses needed in the expression (*p> . data?

Solved Programming Problems

8.17 Implement a Point class for three-dimensional points (x,y,z). Include a default constructor, a
copy constructor, a negate (> function to transform the point into its negative, a norm ()
function to return the point’s distance from the origin (O,O,O), and a print (> function.

#include <iostream.h>
#include <math.h>

class Point (
public:

Point(float x=0, float y=O, float z=O) : x (x), y-(y), z-(z) (}-
Point(const Point& p) : x-(p.x->, y-(p.y-), z-(p.z-) { }
void negate0 { x- *= -1; y- *= -1; z- *= -1; }
double norm0 { return sqrt(x *x + y *y- - - - + z-*z);- }
void print0 /

{ tout << ' (' << x << I', " << y- << I', " << z- << I') I'; }-
private: L

float x-, Y-, z-;
1 ;

In this implementation, we have used the common device of ending the name of each data member
with an underscore (-). This has the advantage of making it easy to match up the names of constructor
parameters (x, y, and z) with their corresponding data members (x-, y-, and z -) without conflict.

8.18 Implement a Stack class for stacks of ints. Include a default constructor, a destructor, and
the usual stack operations: push () , pop () , isEmpty(>, and isFull(). use an array
implementation.

class Stack {
public:

Stack(int s=lO) : size(s), top(-1) { a = new int[size]; }
-Stack0 (delete [] a; }
void push(const int& item) { a[++top] = item; }
int pop0 { return a[top--I; }
int isEmpty const (return top == -1; }
int isFull() const { return top == (size-l); }

private:
int size; // size of array
int top; // top of stack
int* a; // array to hold stack items

CHAP. 81 CLASSES 239

In this implementation, top is always the index of the top element on the stack. The data member
s i z e is the size of the array that holds the stack items. So the stack is full when it contains that number
of items. The constructor sets s i z e to 10 as the default.

8.19 Implement a Time class. Each object of this class will represent a specific time of day, storing
the hours, minutes, and seconds as integers. Include a constructor, access functions, a function
advance(int h, int m, int s) to advance the current time of an existing object, a func-
tion reset(int h, int m, int s) to reset the current time of an existing object, and a
print () function

class Time {
public:

Time(int h=O, int m=O, int s=O)
: hr(h), min(m), set(s) { normalize(); }

int hours0 { return hr; }
int minutes0 { return min; >
int seconds0 { return set; >
void advance(int, int, int);
void reset(int, int, int);
void print0 { tout -CC hr CC II:" CC min CC '7' CC set; }

private:
int hr, min, set;
void normalize();

1 ;

void Time: :normalize()

min += set/60;
hr += min/60;
hr = hr % 24;
min = min % 60;
set = set % 60;

void Time: :advance(int h=O, int m=O, int s=l)
1

hr += h;
min += m;
set += s;
normalizeo;

)

void Time: :reset(int h=O, int m=O, int s=O)
1

hr = h;
min = m;
set = s;
normalizeo;

1

Here we have used a utility function normal i ze () which normalizes the Time object so that
its three data members are in the correct range: 0 5 set < 60,O 5 min < 60, and 0 < hr < 24.

240 CLASSES [CHAP.8

8.20 Implement a Random class for generating pseudo-random numbers.

This class uses the utility function randomi ze () which implements the Linear Congruential
Algorithm introduced by D. H. Lehmer in 1949. It updates the seed using the multiplier constant
mult- and the modulus constant mod-. Their values are consistent with those recommended by
Donald E. Knuth in his seminal work The Art of Computer Programming.

#include <iostream.h>
#include climits.h>
#include <time.h>
const unsigned long mult- = 234567821;
const unsigned long mod- = ULONGMAX; // = 4,294,967,295
const int max- = INTJAX; // = 2,147,483,647 or 32,767

class Random {
public:

Random0 { seed- = time(NULL); >
Random(unsigned long seed) : seed-(seed) { randomizeo; }
int integer(int max=max-) { randomizeo; return seed- % max-; }
int integer(int min, int max)

{ randomizeo; return min + seed- % (max - min + 1); }
double real0 { randomizeo; return double(seed-)/double(modJ;

1
private:

unsigned long seed-;
void randomize0 { seed- = (mult-*seed- + 1) % mod-; >

main0
1

Random random;
for (int i = 1; i c= 10; i++) {

int m = random.integer();
int n = random.integer(l, 99);
double x = random.real();
tout << "\tY << m << "\t'l CC n KC ll\tll << x CC endl;

$ 1078943~744 71 OJI791259
12%537O9367- ' 94 , 0,252746 ~ ' j - i

~705325754 31 0~.698051 , z j

67134329 37 0,8U5397 .- I I \
~9tI&77'6228 10 o,81263 _ , ” ” ‘. ~ ,>;

~ 1U76073003 11 ' j ,',% <0,949~2+? I.
I-1849257406 I 82 0.15s744 I ~, '

902847182 22 0*872112 j r n
, 772227400 j 11%"

: ,
0 . 6 0 3 8 4 4 >

I 460755423 . ' 1 QJ79l.49 '

Our test driver makes 10 calls to each of the three random number functions, generating 10 pseudo-
random integers in the range 0 to 2,147,483,647, 10 pseudo-random integers in the range 1 to 99, and 10
pseudo-random real numbers in the range 0.0 to 1.0.

CHAP. 81 CLASSES 241

8.21

8.22

Implement a Person class. Each object of this class will represent a human being. Data mem-
bers should include the person’s name, year of birth, and year of death. Include a default con-

structor, a destructor, access functions, and a print function.

#include <iostream.h>
#include <string.h>

class Person {
public:

Person(const char*, int, int);
-Person0 { delete [] name-; }
char* name0 { return name-; }
int born0 (return yob-; }
int died0 { return yod-; }
void print();

private:
int len-;
char* name-;
int yob-, yod-;

1 ;

Person: :Person(const char* name=O, int yob=O, int yod=O)
: len-(strlen(name)),
name (new char[len-+l]),-
yob-bob) 1
yod_ hod)

1
memcpy(name-, name, len-+l);

1

void Person::print()
1

tout -C-C "\tName: I1 -CC name -C-C endl;. -
if (yob-) tout -CC "\tBorn: I' -C-C yob- -CC endl;
if (yod-) tout CC "\tDied: ' -CC yod- -CC endl;

>

To keep the object self-contained, name- is stored as a separate string. To facilitate this separate
storage, we save its length in the data member len- and use the memcpy () function (defined in
string . h) to copy the string name into the string name-. Then the destructor uses the delete oper-
ator to de-allocate this storage.

Implement a String class. Each object of this class will represent a character string. Data

members are the length of the string and the actual character string. In addition to constructors,
destructor, access functions, and a print function, include a “subscript” function.

class String (
public:

String(short =O); // default constructor
String(const char*); // constructor
String(const String&); // copy constructor
-String0 { delete [] data;) // destructor
int length0 const (return len; } // access function

242 CLASSES [CHAP. 8

char* convert0 { return data; > // access function
char character(short i) { char c = data[i]; return c; }
void print0 { tout << data; }

private:
short len; // number of (non-null) characters in string
char* data; // the string

String: :String(short size) : len(size)
1

data = new char[len+l];
for (int i=O; i < len; i++) data[i] = ' ';
data[len] = '\O';

String: :String(const char* str) : len(strlen(str))
t

data = new char[len+l];
memcpy(data, str, len+l);

>

String: :String(const String& str) : len(str.len)
1

data = new char[len+l];
memcpy(data, str.data, len+l);

This implementation includes three constructors: the default constructor with optional parameter
size, a constructor that allows an object to be initialized with an ordinary C string, and the copy con-
structor. The second access function is named convert (> because it actually converts from type

because it returns oneString to char * type. The “subscript” function is named character ()
character in the string -the one indexed by the parameter i.

8.23 Implement a Matrix class for 2-by-2 matrices:

Include a default constructor, a copy constructor, an inverse () function that returns the

inverse of the matrix, a det () function that returns the determinant of the matrix, a Boolean
function i ss ingular () that returns 1 or 0 according to whether the determinant is zero, and
a print () function.

class Matrix {
public:

Matrix(double a=O, double b=O, double c=O, double d=O)
: a_(a) I b_(b) I c-(c) I d-(d) 1 1

Matrix(const Matrix& m)
: a-(m-a-), b-(m.bJ, c (m-c.& d_hd_) { >-

double det() { return a-*d- - b-*c-; }
int isSingular { return det() == 0; }
Matrix inverse();
void print();

CHAP. 81 CLASSES 243

Supplementary Programming Problems

8.24 Implement a Point class for two-dimensional points (x, y). Include a default constructor, a
copy constructor, a negate (> function to transform the point into its negative, a norm ()
function to return the point’s distance from the origin (O,O), and a print (> function.

8.25 Implement a Circle class. Each object of this class will represent a circle, storing its radius
and the x and y coordinates of its center as floats. Include a default constructor, access func-
tions,an area () function, and a circumference () function.

8.26 Modify the circle class (Problem 8.25) so that its data members are the float radius
and the two-dimensional Point center.

8.27 Implement a Sphere class. Each object of this class will represent a sphere with data mem-
bers float radius and the three-dimensional Point center. Include a default construc-
tor, access functions, an surfaceArea () function, and a volume () function.

8.28 Modify the S tack class (Problem 8.17) adding the member function
the number of items on the stack.

count0 which returns

8.29 Modify the Stack class (Problem 8.17) adding the member function print (> which prints
the contents of the stack.

8.30 Modify the Stack class (Problem 8.17) so that it holds items of type float instead of int.

8.31 Modify the Stack class (Problem 8.17) so that it holds items of type Rat ional.

class Matrix {
public:

Matrix(double a=O, double b=O, double c=O, double d=O)
: a_(a) I b-(b) f c-(c) I d W -t >-

Matrix(const Matrix& m)
: a-b--->, bA-dO, c-(m.c 1, d (m-d >

double det() { return a *d- -b *c:;
{ 1

int isSingular { return det()
- } -
== 0; }

Matrix inverse();
void print();

private:
double a-, b-, c-, d-;

1 ;

Matrix Matrix::inverse()
{

double k = l/d&();
Matrix temp(k*d-,-k*b-,-k*c-,k*a -);
return temp;

void Matrix::print()

tout << a- << ' << b- << '\n' << c- << << d- << ” \n” ;

244 CLASSES [CHAP. 8

8.32 Write a program that tests the application function

void reverse(Stack);

which reverses the items on the stack passed to it. This function should use two local stacks to
do its job.

8.33 Implement a Queue class for holding ints. A queue is like a stack (see Problem 8.17) except
that items are inserted at one end (called the rear) and removed from the other end (called the
front). Include a default constructor, a destructor, and the usual queue operations:
insert(), remove(), i s Emp ty () , and i SFU 11() . Use an array implementation.

8.34 Modify the Queue class (Problem 8.33) adding the member functions count () which

returns the number of items on the queue, and print (> which prints its contents.,

8.35 Modify the Queue class (Problem 8.33) so that it holds items of type Rat ional.

8.3,6 Write a program that tests the application function

void reverse(Queue);

which reverses the items on the queue passed to it. This function should use a local stacks to do
its job.

8.37 Modify the Time class (Problem 8.19) using the number of seconds elapsed since midnight as
the only data member. Include a function advance (int s > to advance the existing time by s
seconds,andafunction secondsElapsedSince(int h, int m, int s) thatretumsthe
number of seconds that have elapsed from the given time to the time stored.

8.38 Implement a Date class with member data for the month, day, and year. Each object of this
class will represent a specific A.D. date, storing the month, day, and year as integers. Include a
default constructor, a copy constructor, access functions, a function reset (int y, int m,
int d) to reset the date for an existing object, a function advance (int y, int m, int
d) to advance an existing date by y years, m months, and d days, and a print () function.
Use a normal i z e (> utility function to ensure that the data members are in the correct range:
II year, l< month I12,l I day I daysIn(month), where daysIn(int month) is
another utility function that returns the number of days in month. Ignore leap years.

.

8.39 Modify the Date class (Problem 8.38) to accommodate leap years. A year is a leap year if it is
divisible by 400, or if it is divisible by 4 but not by 100. For example, the years 1996 and 2000
are leap years, but the years 1995 and 1900 are not.

8.40 Modify the Date class (Problem 8.39) using the number of days elapsed since the date Janu-
ary 1, 1 A.D. as the only data member. Include a function advance (int d) to advance the
existingdateby d days,andafunction daysElapsedSince(int y, int m, int d) that
returns the number of days that have elapsed from the given date passed-to the date stored.

8.41 Modify the Date class (Problem 8.40) adding the function weekDay () that returns an inte-
ger in the range 0 to 6 for Sunday through Saturday. Use Zeller’s Algorithm:

if (month < 3) { mp = 0; yp = year - 1; }
else { mp = int(0.4*month + 2.3); yp = year; }

t = int(yp/4) - int(yp/lOO) + int(yp/400);

return (365*year + 31*(month - 1) + day + t - mp) % 7;

Modify the print () function so that it also prints the name of the day of the week.

CHAP. 81 CLASSES 245

8.42 Modify the Person class (Problem 8.21) to include the following member functions:

8.43

8.44

8.45 Implement an Addres s class for storing a residential address.

8.46 Modify the Person class (Problem 8.21) by adding an addres s data member with type
Address class (Problem 8.45).

8.47

8.48

8.49

8.50

int isLiving();

int age(int year);

The isLiving (> function returns 0 or 1 according to whether yod- is zero. The age ()
function returns the persons current age based upon the current year passed to it, or it returns
the person’s age at death if yod- is not zero.

Implement an Employee class by modifying the Person class (Problem 8.21). Include data
members for Social Security Number number, monthly salary, and tax rate. Include a member
function tax (> that returns the amount of tax paid.

Implement a Student class by modifying the Person class (Problem 8.21). Include data
members for student identification number, major program, grade point average, and credits
earned. Include a member function update (in t credi t , char grade) that processes the
given information (credit and grade) for one course, using it to update the student’s grade
point average, and credits earned.

Modify the Person class (Problem 8.21) replacing the declarations int yob-, yod with:-

Date dab-, dad-;

for “date of birth” and “date of death” (see Problem 8.38).

Implement a Computer class with data members for the computer type (e.g., II PC II), the CPU
(ge. ., II Intel Pentium"), the operating system (e.g., II DOS I), the number of megabytes of
memory (e.g., 8 > , the number of gigabytes of disk space (e.g., 1.2 > , the type of printer that it
has, whether it has a CD-ROM, whether it has Internet access, its purchase price, and year of
purchase. Include a default constructor, a destructor, access functions, and a print () func-
tion.

Implement the Rat ional class with its den member declared to be unsigned instead of
int. This allows for more than twice as many objects because unsigned allows more than
twice as many possible positive integer values as does int.

Implement the following additional member functions for the Rat ional class:

Rational plus(Rationa1);

Rational minus(Rationa1);

Rational' times(Rationa1);

Rational dividedBy(Rationa1);

So, for example, the call x. minus (y) would subtract the Rat ional object y from the
Rat ional object x. Note that this simulates the operator - = for the Rat ional class.

246 CLASSES [CHAP. 8

8.51 Implement the following additional member functions for the Rat ional class:

int isEqualTo(Rationa1);

int isGreaterThan(Rationa1);

int isLessThan(Rationa1);

So, for example, the call X. isGreaterThan (y) would return 1 or 0 according to whether the
Rational object x is greater than the Rational object y. Note that this simulates the
operator > for the Rat ional class.

8.52 Implement the following additional constructor for the Rat ional class:

Rational(Float);

So, for example, the declaration Rational x (3 .14) would construct the Rational object
x that represents the fraction 157/50.

8.53 Implement a Complex class for complex numbers. Each object of this class will represent a
complex number x -t y i, storing the real part x and the imaginary part y as real numbers of type
double. Include a default constructor, a copy constructor, access functions, a norm (> func-
tion that returns the norm (magnitude) of the complex number, an i sEqualTo (complex)
function,andarithmeticfunctions plus(Complex), minus(Complex), times(Complex),
and dividedBy(Complex).

8.54 Implement the following additional constructor for the Complex class (Problem 8.25):

Complex(Rationa1);

So, for example, the declarations

Rational x(22,7);

Complex z(x);

would construct the Rat ional object x that represents the fraction 22/7 and the Complex
object z that represents the real number 3.14159.

8.55 Implement the following additional functions for the Point class (Problem 8.17):

float dot(Point);

Point cross(Point);

The dot (> function returns the dot product (scalar product), and the cros s (> function
returns the cross product (vector product).

8.56 Modify the String class (Problem 8.21) by adding a constructor that allows an object to be
initialized with a single character, constructing a string of length 1 containing that character.

8.57 Modify the String class (Problem 8.21) by adding the function

String substr(short start, short length);

This function returns the String object that contains the substring of the owner indexed from
startto start + length - 1. For example, if s represents the string II ABCDEFGHI JK II , then
s . subs tr (2,s) would return the object that represents the string YDEFG II, and s . sub-
s tr (8 ,7) would return the object that represents the string II I JK II . Note that the value of
start is the length of the omitted prefix.

8.58 Modify the Matrix class (Problem 8.23) so that it represents 3-by-3 matrices.

CHAP. 81 CLASSES 2 4 7

8.59 Implement a Quaternion class for hypercomplex numbers (also called “hamiltonians”).
Each object of this class will represent a hypercomplex number t + x i + y j + z k, where each of
the components t, X, y, and z has type double. Include a default constructor, a copy constructor,
access functions, a norm (> function that returns the norm (magnitude) of the hypercomplex
number, an isEqualTo (Quaternion) function, and arithmetic functions plus (Quater-
nion), minus(Quaternion) ,and times(Quaternion) ,where multiplication is defined
bythefollowingrules:i2=j2=k2=-1,ij=k=-ji,jk=i=-kj,andki=j=-ik.

8.60 Write a program like the one in Example 8.2, except insert the new nodes at the end of the list so
that the data values can be input in the same order as they are output.

Answers to Review Questions

8 1.

82.

83.

A pub1 i c member is accessible from outside the class; a private member is not.

The class interface consists of the member data and the member function prototypes (i.e.’ just
declarations). The class implementation contains the definitions of the member functions.

A class member function is part of the class, so it has access to the class’s private
tion function is declared outside the class, and so it does not have access to the class’s

the function

parts. An applica-
private parts.

8.4 A constructor is a class member function that executes automatically whenever an object of that class is
instantiated (i.e., constructed). A destructor is a class member function that executes automatically
whenever the scope of that object terminates (i.e., is destructed).

85.

86.

The default constructor is the unique constructor that has no parameters (or the one whose parameters all
have default values).

A class’s copy constructor executes whenever an object of that class is copied by any mechanism except
direct assignment. This includes initialization, passing a parameter by value, and returning by value.

8.7 An access function is a pub1 i c class member function that returns the value of one of the class’s data
members. A utility function is a private class member function that is used only within the class to
perform “technical” tasks.

88.

8.9

A c las s a n d a s t rut t in C++ are essentially the same. The only significant difference is that the
default access level for a class of private, while that for a struct is pub1 ic.

Every class constructor must h a v e the same name as the class itself.

8.10 Every class destructor must have the same name as the class itself, prefixed with a tilde (-).

8.11 There is no limit to the number of constructors that a class may have. But since multiple constructors are
function overloads, they all must be distinguishable by their parameter lists.

8.12 A class can only one destructor.

8.13 The scope resolution operator : : used in general “to resolve external references.” It is used in a class
definition whenever the definition of a member function is given outside the scope of the class definition.

8.14 There are four class member functions that are created automatically by the compiler if they are not
included (by the programmer) in the class definition: the default constructor, the copy constructor, the
destructor, and the overloaded assignment operator.

248 CLASSES [CHAP. 8

8.15 The copy constructor is called 7 times in this code. Each call to the function f requires 3 calls to the
copy constructor: when the parameter is passed by value to u, when v is initialized, and when w is
returned by value. The seventh call is for the initialization y.

8.16 The parentheses are needed in the expression (*p > . data because the direct member selection
operator “ . ” has higher precedence than the dereferencing operator “*“. (See Appendix C.)

Chapter 9

Overloading Operators

9.1 INTRODUCTION

C++ includes a rich store of 45 operators. They are summarized in Appendix C. These
operators are defined automatically for the fundamental types (int, float, etc.). When you
define a class, you are actually creating a new type. Most of the C++ operators can be
overloaded to apply to your new class type. This chapter describes how to do that.

9.2 OVERLOADING THE ASSIGNMENT OPERATOR

Of all the operators, the assignment operator = is probably used the most. Its purpose is to
copy one object to another. Like the default constructor, the copy constructor, and the destructor,
the assignment operator is created automatically for every class that is defined. But also like
those other three member functions, it can be defined explicitly in the class definition.

EXAMPLE 9.1 Adding an Assignment Operator to the Rat ional Class

Here is a class interface for the Rat ional class, showing the default constructor, the copy construc-
tor, and the assignment operator:

class Rational {
public:

Rational(int =0, int =l); // default constructor
Rational(const Rational&); // copy constructor
void operator=(const Rational&); // assignment operator
// other declarations go here

private:
int num;
int den;

> ;

Note the required syntax for the assignment operator. The name of this member function is operator = .
Its argument list is the same as that of the copy constructor: it contains a single argument of the same
class, passed by constant reference.

, Here is the implementation of the overloaded assignment operator:

void Rational: :operator=(const Rational& r)
{

num = r.num;
den = r.den;

It simply copies the member data from the object r to the object that owns the call.

249

2 5 0 OVERLOADING OPERATORS [CHAP. 9

9 . 3 T H E t h i s P O I N T E R

C++ allows assignments to be chained together, like this:

x = y = z = 3.14;

This is executed first by assigning 3.14 to Z, then to Y, and finally to X. But, as Example 9.1
shows, the assignment operator is really a function named opera tar=. In this chain, the
function is called three times. On its first call, it assigns 3.14 to Z, so the input to the function is
3.14. On its second call, it assigns 3.14 to Y, so its input again must be 3.14. So that value
should be the output (Le., return value) of the first call. Similarly, the output of the second call
should again be 3.14 to serve as the input to the third call. The three calls to this function are
nested, like this:

fbL f(Y, f(z, 3.14)))

The point is that the assignment operator is a function that should return the value it assigns.
Therefore, instead of the return type void, the assignment operator should return a reference to
the same type as the object being assigned

Rational& operator=(Rational& r)

This allows assignments to be chained together.

EXAMPLE 9.2 The Preferred Function Prototype for an Overloaded Assignment Operator

class Rational {
public:

Rational(int =0, int =l); // default constructor
Rational(const Rational&); // copy constructor
Rational& operator=(const Rational&); // assignment operator
// other declarations go here

private:
int num;
int den;
// other declarations go here

The preferred syntax for the prototype of an overloaded assignment operator in a class T is
T& operator=(const T&);

The return type is a reference to an object of the same class T. But then this means that the
function should return the object that is being assigned, in order for the assignment chain to
work. So when the assignment operator is being overloaded as a class member function, it
should return the object that owns the call. Since there is no other name available for this owner
object, C++ defines a special pointer, named this, which points to the owner object.

We can envision the this pointer like this:

Now we can give the correct implementation of the overloaded assignment operator:

CHAP. 91 OVERLOADING OPERATORS 251

EXAMPLE 9.3 Implementation of the Assignment Operator for the Rational Class

Rational& Rational: :operator=(const Rational& r)

num = r.num;
den = r.den;
return *this;

. Now assignments for the Rat ional class can be chained together:

Rational x, y, z(22,7);
x = y = z;

The correct implementation for an overloaded assignment operator in a class T is
T&i T: :operator=(const T& t)

// assign each member datum of t to the
// corresponding member datum of the owner
return *this;

Finally, note that an assignment is different from an initialization, even though they both use
the equals sign:

Rational x(22,7); // this is an initialization
Rational y(x); // this is an initialization
Rational z = x; // this is an initialization
Rational w;
w = x; // this is an assignment

An initialization calls the copy constructor. An assignment calls the assignment operator.

9.4 OVERLOADING ARITHMETIC OPERATORS

All programming languages provide the standard arithmetic operators +, -, *, and / for
numeric types. So it is only natural to define these for user-defined numeric types like the
Rat ional class. In older programming languages like C and Pascal, this is done by defining
functions like this:

Rational product(Rationa1 x, Rational y)

Rational z(x.num*y.num, x.den*y.den);
return z;

This works. But the function has to be called in the conventional way:
Z = product(x,y);

C++ allows such functions to be defined using the standard arithmetic operator symbols, so
that they can be called more naturally:

z = x*y;

252 OVERLOADING OPERATORS [CHAP. 9

Like most operators in C++, the multiplication operator has a function name that uses the
reserved word operator: its name is “operator*". Using this in place of “product" in the
code above, we would expect the overloaded function to look something like this:

Rational operator*(Rational x, Rational y)

Rational z(x.num*y.num, x.den*y.den);

return z;

But this is not a member function. If it were, we would have to set it up as in Problem 8.50,
with only one argument. The operator * function requires two arguments.

Since the overloaded arithmetic operators cannot be member functions, they cannot access
the private member data num and den. Fortunately, C++ allows an exception to this rule so
that we can complete our definitions of the overloaded arithmetic functions. The solution is to
declare the function as afriend of the Rational class.

A friend function is a nonmember function that is given access to all members of the class
within which it is declared. So it has all the privileges of a member function without actually
being a member of the class. This attribute is used mostly with overloaded operators.

EXAMPLE 9.4 Declaring the Multiplication Operator as a friend Function

Here is the Rat ional class declaration with the overloaded multiplication operator declared as a
friend function:

class Rational {
friend Rational operator*(const Rational&, const Rational&);

public:
Rational(int =0, int =l);
Rational(const Rational&);
Rational& operator=(const Rational&);
// other declarations go here

private:
int num;
int den;
// other declarations go here

J I

Note that the function prototype is inserted inside the class declaration, above the pub1 ic section. Also
note that the two arguments to the function are both passed by constant reference.

Now we can implement this nonmember just as we had expected:

Rational operator*(const Rational& x, const Rational& y)
-t

Rational z(x.num * y.num, x.den * y.den);
return z;

Note that the keyword friend is not used in the function implementation. Also note that the scope res-
olution prefix Rat i onal : : is not used because this is not a member function.

Here is a little program that uses our improved Rational CkkSS:

CHAP. 91 OVERLOADING OPERATORS 253

EXAMPLE 9.5 The Rat ional Class with Assignment and Multiplication Operators

#include "Rationa1.h"

main0

Rational x(22,7), y(-3,8), z;
Z = x; // assignment operator is called
z.print(); tout =c< endl;
x = y*z; // multiplication operator is called
x.print(); tout C-C endl;

1

22/7
-33/28

Note that the reduce () function was called from within the overloaded multiplication operator to
reduce -66/56 to -33/58. (See Example 8.2.)

9.5 OVERLOADING THE ARITHMETIC ASSIGNMENT OPERATORS

C++ allows your to combine arithmetic operations with the assignment operator; for exam-
ple, using x * = Y in place of x = x * Y. These combination operators can all be overloaded
for use in your own classes.

EXAMPLE 9.6 The Rat ional Class with an Overloaded * = Operator

class Rational {
public:

Rational(int =O, int =l);
Rational& operator=(const Rational&);
Rational& operator*=(const Rational&);
// other declarations go here

private:
int num, den;
// other declarations go here

> ;

Rational& Rational::operator*=(const Rational& r)

num = num*r.num;
den = den*r.den;
return *this;

Theoperator operator*= has the same syntax and nearly the same implementation as the basic assign-
ment operator operator=. By returning * thi s, the operator can be chained, like this:

/
X * -- y *= z;

254 OVERLOADING OPERATORS [CHAP. 9

It is also important to ensure that overloaded operators perform consistently with each other. For
example, the following two lines should have the same effect, even though they call different operators:

x = x*y;
x *= y

9.6 OVERLOADING THE RELATIONAL OPERATORS

The six relational operators <, >, < =, >=, ==, and ! = can be overloaded the same way that
the arithmetic operators are overloaded: as friend functions.

EXAMPLE 9.7 Overloading the Equality Operator = = in the Rat ional Class

Like other friend functions, the equality operator is declared above the pub1 i c section of the class:

class Rational {
friend int operator==(const Rational&, const Rational&);
friend Rational operator*(const Rational&, const Rational&);
// other declarations go here

public:
Rational(int =0, int =l);
Rational(const Rational&);
Rational& operator=(const Rational&);
// other declarations go here

private:
int num;
int den;
// other declarations go here

1 ;

int operator== (const Rational& x, const Rational& y)

return (x.num * y.den == y.num * x.den);

The test for equality of two fractions a/b and c/d is equivalent to the test a*d == b*c. So we end up using
the equality operator for in ts to define the equality operator for Rat i onals.

Note that the relational operators return an int type, representing either “true” (1) or “false” (0).

9.7 OVERLOADING THE STREAM OPERATORS

C++ allows you to overload the stream insertion operator >> for customizing input and the
stream deletion operator << for customizing output. Like the arithmetic and relational opera-
tors, these should also be declared as friend functions.

For a class T with data member d, the syntax for the output operator is
friend ostream& operator<<(ostream& ostr, const T& t)

{ return ostr << t.d; }

Here, ostream is a standard class defined (indirectly) in the iostream. h header file. Note
that all the parameters and the return value are passed by reference.

CHAP. 91 OVERLOADING OPERATORS 255

This function can then be called using the same syntax that we used for fundamental types:
tout << "x = " C-C x -CC ", y = " -C-K y -CC endl;

Here is an example of how custom output can be written:

EXAMPLE 9.8 Overloading the Output Operator C-C the Rat ional Class

#include <iostream.h>

class Rational {
friend ostream& operator<<(ostream&, const Rational&);

public:
Rational(int n=O, int d=l) : num(n), den(d) { }
// other declarations go here

private:
int num, den;
// other declarations go here

> ;

main0

Rational x(22,7), y(-3,8);
tout << "x = << x << Y =

ostream& operator<<(ostream& ostr,

return ostr << r.num <<

<< y =c< endl;

const Rational& r)

<< r.den;
J
X= 2217, y ‘sr -3/83

When the second line of main (> executes, the expression cou t C-K II x = II executes first. This
calls the standard output operator C-C, passing the standard output stream cou t and the string II x = II
to it. As usual, this inserts the string into the output stream and then returns a reference to cou t. This
return value is then passed with the object x to the overloaded << operator. This call to operator<<
executes with cou t in place of o s t r and with x in place of r. The result is the execution of the line

return ostr << r.num << '/' << r.den;

which inserts 2 2 / 7 into the output stream and returns a reference to cou t. Then another call to the
standard output operator << and another call to the overloaded operator are made, with the output (a ref-
erence to tout) of each call cascading into the next call as input. Finally the last call to the standard out-
put operator << is made, passing cou t and endl. This flushes the stream, causing the complete line

x = 22/7, y = -3/8
to be printed.

The syntax for overloading the input operator for a class T with data member d is
friend istream& operator>>(istream& istr, T& t)

{ return istr x= t.d; }

Here, is tream is another standard class defined (indirectly) in the ios tream . h header file.
Here is an example of how custom input can be written:

2 5 6 OVERLOADING OPERATORS [CHAP. 9

EXAMPLE 9.9 Overloading the Input Operator >> in the Rat ional Class

#include ciostream.h>

class Rational {
friend istream& operator>>(istream&, Rational&);
friend ostream& operatorcc(ostream&,

public:
Rational(int
// other dec

private:
int num, den
int gcd(int,
void reduce(

const Rational&);

n=O, int d=l) : num(n>, den(d) { }
larations go here

int);
> ;

> ;

main0

Rational x, y;
tin >> x >> y;
tout CC 'x = ' CC x CC ', y = ' CC y C-C endl;

istream& operator>>(istream& istr, Rational& r)

tout CC "\t Numerator: "; istr >> r.num;
tout CC "\tDenominator: "; istr X= r.den;
r.reduce();
return istr;

This version of the input operator includes user prompts to facilitate input. It also includes a call to
the utility function reduce () . Note that, as a friend, the operator can access this private function.

9.8 CONVERSION OPERATORS

In our original implementation of the Rat ional class (Example 8.1) we defined the
member function convert (> to convert from type Rational to type double:

double convert0 { return double(num)/den; }

This requires the member function to be called as
x.convert();

In keeping with our goal to make objects of’ the Rat ional class behave like objects of
fundamental types (i.e., like ordinary variables), we would like to have a conversion function that

CHAP. 91 OVERLOADING OPERATORS 2 5 7

could be called with a syntax that conforms to ordinary type conversions:
n = int(t);

Y = double(x);

This can be done with a conversion operator.
Our Rat ional class already has the facility to convert an object from in t to Rat ional:

Rational x(22);

This is handled by the default constructor, which assigns 22 to X. num and 1 to X. den. This
constructor also handles direct type conversions from type int to type Rat ional:

x = Rational(22);

Constructors of a given class are used to convert from another type to that class type.
To convert from the given class type to another type requires a different kind of member

function. It is called a conversion operator, and it has a different syntax. If type is the type to
which the object is to be converted, then the conversion operator is declared as

operator type();

For example, a member function of the Rat ional class that returns an equivalent floatI
would be declared as

operator float();

Or, if we want it to convert to type double, then we would declare it as
operator double();

And, if we want it to be usable for constant RationalS (like pi), then we would declare it as
operator double0 const;

Recall that, in our original implementation of the Rat ional class (Example 8.1) we defined the
member function convert (> for this purpose.

EXAMPLE 9.10 Adding a Conversion Operator to the Rat ional Class

#include <iostream.h>

class Rational {
friend istream& operator>>(istream&, Rational&);
friend ostream& operator<<(ostream&, const Rational&);

public:
Rational(int n=O, int d=l) : numb), den(d) { >
operator double0 const;
// other declarations go here

private:
int num, den;
// other declarations go here

> ;

main0

Rational x(-5,8);
tout << "x = H << x -CC ", double(x) = H C-C double(x) << endl;
const Rational p(22,7);
const double pi = double(p);
tout << "p = H << p << II, pi = H << pi << endl;

258 OVERLOADING OPERATORS [CHAP. 9

Rational: :operator double0 const
-t

return double(num)/den;

)&’ 5% -5/8, doub2,e(x) = -0*;e;25 .
I? _=- 22,7,- pi ..= 3 .X4286 ’ - .

First we use the conversion operator double (> to convert the Rat ional object x into the
double -0.625. Then we use it again to convert the constant Rat ional object p into the constant
double pi.

9.9 OVERLOADING THE INCREMENT AND DECREMENT OPERATORS

The increment operator + + and the decrement operator - - each have two forms: prefix and
postfix. Each of these four forms can be overloaded. We’ll examine the overloading of the incre-
ment operator here. Overloading the decrement operator works the same way.

When applied to integer types, the pre-increment operator simply adds 1 to the value of the
object being incremented. This is a unary operator: its single argument is the object being incre-
mented. The syntax for overloading it for a class named T is simply

T operator++();

So for our Rat ional class, it is declared as

Rational operator++();

EXAMPLE 9.11 Adding a Pre-Increment Operator to the Rat ional Class

This example adds an overloaded pre-increment operator + + to our Rat ional class. Although we
can make this function do whatever we want, it should be consistent with the action that the standard pre-
increment operator performs on integer types. That adds 1 to the current value of the object before that
value is used in the expression. This is equivalent to adding its denominator to its numerator:

E+l
22+7 29= -=-

7 7 7

So, we simply add den to num and then return * this which is the object itself:9

class Rational {
friend ostream& operator<<(ostream&, const Rational&);

public:
Rational(int n=O, int d=l) : num(n), den(d) { >
Rational operator++();
// other declarations go here

private:
int num, den;
// other declarations go here

> ;

CHAP. 91 OVERLOADING OPERATORS 259

main0

Rational x(22,7), y = ++x;
tout << "y = N << y << ', x = 'I CC x CC endl;

Rational Rational::operator++()

num += den;
return *this;

Postfix operators have the same function name as the prefix operators. For example, both the
pre-increment operator and the post-increment operator are named operator + +. To distinguish
them, C++ specifies that the prefix operator has one argument and the postfix operator has two
arguments. (When used, they both appear to have one argument.) So the correct syntax for the
prototype for an overloaded post-increment operator is

T operator++(int);

The required argument must have type int. This appears a bit strange because no integer is
passed to the function when it is invoked. The integer argument is thus a dummy argument,
required only so that the postfix operator can be distinguished from the corresponding prefix
operator.

EXAMPLE 9.12 Adding a Post-Increment Operator to the Rat ional Class

To be consistent with the ordinary post-increment operator for integer types, this overloaded version
should not change the value of x until after it has been assigned to y. To do that, we need a temporary
object to hold the contents of the object that owns the call. This is done by assigning * this to temp.
Then this object can be returned after adding den to num.

class Rational {
friend ostream& operator<<(ostream&, const Rational&);

public:
Rational(int n=O, int d=l) : numb), den(d) { >
Rational operator++(); // pre-increment
Rational operator++(int); // post-increment
// other declarations go here

private:
int num, den;
// other declarations go here

> ;

main0
-i

Rational x(22,7), y = x++;
tout -CC "y = H =c< y << ", x = H -SC x CC endl;

260 OVERLOADING OPERATORS [CHAP. 9

Rational Rational::operator++(int)
-i

Rational temp = *this;
num += den;
return temp;

Y= 22/T, x = 29/7

Note that the dummy argument in the operator+ + function is an unnamed int. It need not be named
because it is not used. But it must be declared to distinguish the post-increment from the pre-increment
operator.

9.10 OVERLOADING THE SUBSCRIPT OPERATOR

Recall that, if a is an array, then the expression a [i] really means nothing more than
*(a+i). This is because a is actually the address of the initial element in the array, so a+i is
the address of the ith element, since the number of bytes added to a is i times the size of each
array element.

The symbol [I denotes the subscript operator. Its name derives from the original use of
arrays, where a [i 1 represented the mathematical symbol ai . When used as a [i 1, it has two
operands: a and i. The expression a [i 1 is equivalent to operator [1 (a, i > . And as an
operator, [] can be overloaded.

EXAMPLE 9.13 Adding a Subscript Operator to the Rat ional Class

#include <iostream.h>
#include <stdlib.h> // defines the exit0 function

class Rational {
friend ostream& operator<<(ostream&, const Rational&);

public:
Rational(int n=O, int d=l) : num(n), den(d) {
int& operator[] (int);
// other declarations go here

private:
int num, den;
// other declarations go here

> ;

main0

Rational x(22,7);
tout << "x = ' << x cc endl;
tout << "x[l] = I << x[l] << x[2] = " << x[21 << endl;

CHAP. 91 OVERLOADING OPERATORS 261

int& Rational: :operator[] (int i)
{

if (i == 1) return num;
if (i == 2) return den;
cerr -c< "ERROR: index out of range\n";
exit(O);

The expression x [1] calls the subscript operator, passing 1 to i, which returns x . num. Similarly, x [2]
returns x . den. If i has any value other than 1 or 2, then an error message is sent to cerr, the standard
error stream, and then the exi t () function is called.

This example is artificial. There is no advantage to accessing the fields of the Rat ional object x
with x [1] and x [2] instead of x . num and x . den. However, there are many important classes
where the subscript is very useful. (See Problem 9.14.)

Note that the subscript operator is an access function, since it provides pub1 ic access to
private member data.

Review Questions

9.1 How is the operator keyword used?

9.2 What does * this always refer to?

93. Why can’t the this pointer be used in nonmember functions?

9.4 Why should the overloaded assignment operator return * this?

9.5 What is the difference between the effects of the following two declarations:

Rational y(x);
Rational y = x;

9.6 What is the difference between the effects of the following two lines:

Rational y = x;
Rational y; y = x;

9.7 Why can’t * * be overloaded as an exponentiation operator?

98.

99.

Why should the stream operators -CC and >> be overloaded as friend functions?

Why should the arithmetic operators +, -9 *, and / be overloaded as friend functions?

9.10 How is the overloaded pre-increment operator distinguished from the overloaded post-
increment operator?

9.11 Why is the int argument in the implementation of the post-increment operator left unnamed?

9.12 What mechanism allows the overloaded subscript operator [] to be used on the left side of an
assignment statement, like this: v [2] = 2 2?

262 OVERLOADING OPERATORS [CHAP. 9

Solved Programming Problems

9.13 Implement the binary subtraction operator, the unary negation operator, and the less-than opera-
tor < for the Rational class (see Example 9.1).

All three of these operators are implemented as friend functions to give them access to the num
and den data members of their owner objects:

class Rational {
friend Rational operator-(const Rational&, const Rational&);
friend Rational operator-(const Rational&);
friend int operator<(const Rational&, const Rational&);

public:
Rational(int =0, int =l);
Rational(const Rational&);
Rational& operator=(const Rational&);
// other declarations go here

private:
int num, den;
int gcd(int, int)
int reduce();

> ;

The binary subtraction operator simply constructs and returns a Rational object z that repre-
sents the difference x - y:

Rational Rational: :operator-(const Rational& x, const Rational& y)

Rational z(x.num*y.den - y.num*x.den, x.den*y.den);
z.reduce();
return z;

Algebraically, the subtraction a/b - c/d is performed using the common denominator bd:
a c a d - b c

b-d = -a-

So the numerator of x - y shouldbe x.num*y.den - y . num*x . den and the denominator
should be x . den*y . den. The function constructs the Rational object z with that numerator and
denominator.

This algebraic formula can produce a fraction that is not in reduced form, even if x and y are. For
example, l/2 - l/6 = (1*6 - 2=1)/(2*6) = 4/12. So we call the reduce () utility function before returning
the resulting object z.

The unary negation operator overloads the symbol “-“. It is distinguished from the binary subtrac-
tion operator by its parameter list; it has only one parameter:

Rational Rational: :operator-(const Rational& x)
-t

Rational y(-x.num, x.den);
return y;

To negate a fraction a/b we simply negate its numerator: (-a)lb. So the newly
object y has the same denominator as x but its numerator is -x.num.

constructed Rational

CHAP. 91 OVERLOADING OPERATORS 263

The less-than operator is easier to do if we first modify our default constructor to ensure that every
object’s den value is positive. Then we can use the standard equivalence for the less-than operator:

a
<Lad<bc

b d

int operator<
{

return (x
1

(const Rational& x, const Rational& y)

.num*y.den < y.num*x.den);

Rational: :Rational(int n=O, int d=l) : num(n), den(d)
-t

if (d == 0) n = 0;
else if (d < 0) { n *= -1; d *= -1; }
reduce();

>

The modification ensuring that den > 0 could instead be done in the reduce () function, since that
utility should be called by every member function that allows den to be changed. However, none of our
other member functions allows the sign of den to change, so by requiring it to be positive when the
object is constructed we don’t need to check the condition again.

9.14 Implement a Vector class, with a default constructor, a copy constructor, a destructor, and
overloaded assignment operator, subscript operator, equality operator, stream insertion operator,
and stream extraction operator.

Here is the class declaration:

#include <iostream.h>

class Vector {
friend int operator==(const Vector&, const Vector&);
friend ostream& operator<c(ostream&, const Vector&);
friend istream& operator>>(istream&, Vector&);

public:
Vector(int =l, double =O.O); // default constructor
Vector(const Vector&); // copy constructor
-Vector(); // destructor
const Vector& operator=(const Vector&); // assignment operator
double& operator[] (int) const; // subscript operator

private:
int size;
double* data;

> ;

Here is the implementation of the overloaded equality operator:

int operator==(const Vector& v, const Vector& w)

if (v.size != w.size) return 0;
for (int i = 0; i < v.size; i++)

if (v.data[i] != w.data[i]) return 0;
return 1;

264 OVERLOADING OPERATORS [CHAP. 9

It is a nonmember function which returns 1 or 0 according to whether the two vectors v and w are
equal. If their sizes are not equal, then it returns 0 immediately. Otherwise it checks the corresponding
elements of the two vectors, one at a time. If there is any mismatch, then again it returns 0 immediately.
Only if the entire loop finishes without finding any mismatches can we conclude that the two vectors are
equal and return 1.

Here is the implementation of the overloaded stream extraction operator:

ostream& operatorcc(ostream& ostr, const Vector& v)
-t

ostr CC '(I;
for (int i = 0; i < v.size-1; i++) {

ostr cc v[i] CC ', ";
if ((i+1)%8 == 0) tout CC "\n ";

1
return ostr CC v[i] CC ")\n";

1

Thisprintsthevectorlikethis: (1.11111, 2.22222, 3.33333, 4.44444, 5.55556). The
conditional inside the loop allows the output to “wrap” around several lines neatly if the vector has more
than 8 elements.

The output is sent to OS tr which is just a local name for the output stream that is passed to the
function. That would be cou t if the function is called like this: cou t CC v ; .

In the last line of the function, the expression OS tr CC v[i] CC ")\n" makes two calls to the
(standard) stream extraction operator. Those two calls return OS t r as the value of this expression, and
so that object OS tr is then returned by this function.

Here is the overloaded insertion operator:

istream& operator>>(istream& istr, Vector& v)
1

for (int i = 0; i c v.size; i++) {
tout CC i CC I': ';
istr >> v[i];

1
return istr;

This implementation prompts the user for each element of the vector v. It could also be implemented
without user prompts, simply reading the elements one at a time.

Notice that the elements are read from the input stream i s tr, which is the first parameter passed in
to the function. When the function is called like this: c in > > v ; the standard input stream tin will
be passed to the parameter is tr, so the vector elements are actually read from c in. The argument
i s t r is simply a local name for the actual input stream which probably will be c in. Notice that this
argument is also returned, allowing a cascade of calls like this: c in > > u > > v > > w ; .

Here is the implementation of the default constructor:

Vector: :Vector(int sz=l,
-i

double t=O.O) .. size(sz)

data = new double[size];
for (int i = 0; i c size; i++)

data[i] = t;

CHAP. 91 OVERLOADING OPERATORS 265

The declaration Vet tor u ; would construct the vector u having 1 element with the value 0.0; the
declaration Vet t or v (4) ; would construct the vector v with 4 elements all with the value 0.0; and
the declaration Vector w(8, 3.14159) ; would construct the vector w with 8 elements all with
the value 3.14159.

This constructor uses the initialization list s i ze (s z > to assign the argument s z to the data
member s i z e. Then it uses the new operator to allocate that number of elements to the array data.
Finally, it initializes each element with the value t.

The copy constructor is almost the same as the default constructor:

Vector: :Vector(const Vector& v) : size(v.size)

data = new double[v.size];
for (int i = 0; i < size; i++)

data[i] = v.data[i];

It uses the data members of the vector argument v to initialize the object being constructed. So it
assigns v . s i z e to the new object’s s i z e member, and it assigns v . data [i] to the elements of
the new object’s data member.

The destructor simply restores the storage allocated to the data array and then sets data to
NULL and size too:

Vector:: -Vector()
{

delete [] data;
data = NULL;
size = 0;

The overloaded assignment operator creates a new object that duplicates the vector v:

const Vector& Vector: :operator=(const Vector& v)
-l

if (&v != this) {
delete [] data;
size = v.size;
data = new double[v.size];
for (int i = 0; i < size; i++)

data[i] = v.data[i];
>
return *this;

The condition (&v ! = thi s) determines whether the object that owns the call is different from
the vector v. If the address of v is the same as this (which is the address of the current object), then
they are the same object and nothing needs to be done. This check is a safety precaution to guard against
the possibility that an object might, directly or indirectly, be assigned to itself, like this: w = v = w; .

Before creating a new object, the function restores the allocated data array. Then it copies the vector
v the same way that the copy constructor did.

266 OVERLOADING OPERATORS [CHAP. 9

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

9.23

9.24

9.25

9.26

9.27

9.28

The overloaded subscript operator simply returns the i th component of the object’s data array:

double& Vector: :operator[] (int i) const

return data[i];

Supplementary Programming Problems

Implement the addition and division operators for the Rat i onal class (see Example 9.1).

Implement the operators + =, - = , a n d /= for the Rational class (see Example 9.1).

Implement the other five relational operators (c, >, < =, >=, and
(see Example 9.1).

! =) for the Rational class

Rewrite the overloaded input operator for the Rat ional class (Example 9.9) so that, instead
of prompting for the numerator and denominator, it reads a fraction type as “2 2 / 7”.

Implement a conversion operator in the Rat ional class to convert to float type.

Implement a conversion operator in the Rational class to round to in t type.

Implement pre-decrement and post-decrement operator in the Rat ional class.

Implement an exponentiation operator for the Rat ional class with prototype:

Rational operator&&(const Rational&, const unsigned&);

For example, if x represents the fraction 2/5, then x&&4 would return the Rat ional that
represents the fraction 16/625.

Implement an exponentiation operator for the Rat i onal class with prototype:

Rational operator&&(const Rational&, const irk&);

For example, if x represents the fraction 2/5, then xscsc - 4 would return the Rat ional that
represents the fraction 625/16. (See Problem 9.22.)

Implement addition for the Vet t or class (Problem 9.14) by overloading the + operator.

Implement subtraction for the vet tor class (Problem 9.14) by overloading the - operator.

Implement scalar multiplication for the Vector class (Problem 9.14) by overloading the *
operator. If t is a double and v is a vector, then t *V would return the Vet tor obtained by
multiplying each element of v by t.

Implement an inner product (i.e., the “dot product”) for the Vet tor class (Problem 9.14) by
overloading the * operator. If v and w are vectors, then V*W would return the double
obtained bv summing the products of the corresponding elements of v and W:

J

n- 1

VOW = c
ViWi = VOWO+VIWl+“‘+Vn-lWn-l

i=O

Implement a norm function for the Vector class (Problem 9.14). If v is a vector, then
v.norm() would return the square root of V*V (see Problem 9.27).

CHAP. 91 OVERLOADING OPERATORS 267

9.29

9.30

9.31

9.32

9.33

9.34

9.35

9.36

9.37

9.38

9.39

9.40

9.41

9.42

9.43

9.44

9.45

9.46

9.47

Modify the Vector class (Problem 9.14) so that its objects are all three-dimensional (physi-
cal) vectors with subscripts ranging from 1 to 3. Include vector addition (Problem 9.24), vector
subtraction (Problem 9.25), scalar multiplication (Problem 9.26), the inner product (Problem
9.27), the norm function (Problem 9.28), and a cross-product function:

v x w = (v2w3 - v3w2, v3w1- VlW3, VlW.2 - v2w1)

Implement an overloaded assignment operator = for the Time class (see Problem 8.19).

Implement overloaded stream insertion operator < < and stream extraction operator >> forI
the Time class (see Problem 8.19).

Implement overloaded pre-increment operator ++ and pre-decrement operator - - for the
Time class (see Problem 8.19), where “increment” means to add one second.

Implement an overloaded operator + = for the Time class (see Problem 8.19) that adds one
time to another.

Implement an overloaded assignment operator = for the point class (see Problem 8.17).

Implement overloaded stream insertion operator < < and stream extraction operator >> for
the point class (see Problem 8.17).

Implement overloaded comparison operators = = and ! = for the point class (see Problem
8.17).

Implement overloaded addition operator + and subtraction operator - for the point class
(see Problem 8.17).

Implement an overloaded multiplication operator * to return the dot product of two point
objects (see Problem 8.55).

Implement an overloaded bitwise AND operator 6~ to return the cross product of two point
objects (see Problem 8.55).

Implement a conversion operator that converts a point object (see Problem 8.17) into a
Vet tor object (see Problem 9.14).

Implement a conversion operator that converts a Vet tor object (see Problem 9.14) into a
point object (see Problem 8.17).

Implement an overloaded assignment operator = for the person class (see Problem 8.21).

Implement overloaded stream insertion operator < < and stream extraction operator >> for
the person class (see Problem 8.21).

Implement overloaded comparison operators == and ! = for the person class (see Problem

8.21).

Implement an overloaded assignment operator = for the Mat&x class (see Problem 8.23).

Implement overloaded stream insertion operator < < and stream extraction operator X= for
the Matrix class (see Problem 8.23).

Implement overloaded comparison operators = = and ! = for the Matrix class (see Problem
8.23).

268 OVERLOADING OPERATORS [CHAP. 9

9.48 Implement overloaded addition operator + and subtraction operator - for the Matrix class
(see Problem 8.23).

9.49 Implement a conversion operator that converts a Matrix object (see Problem 8.23) into a
Vet tor object (see Problem 9.14).

9.50 Implement a conversion operator that converts a Vet tor object (see Problem 9.14) into a
Matrix object (see Problem 8.23).

1 9.51 Implement an overloaded assignment operator = for the Date class (see Problem 8.38).

9.52 Implement overloaded stream insertion operator << and stream extraction operator >> for
the Date class (see Problem 8.38). /

9.53 Implement overloaded pre-increment operator ++ and pre-decrement operator -- for the
Date class (see Problem 8.38), where “increment” means to add one day./

9.54 ‘Implement an overloaded operator + = for the Date class (see Problem 8.38) that adds one
date to another.

9.55 Implement overloaded stream insertion operator << and stream extraction operator >> for
the Address class (see Problem 8.45). Include user prompts for the input.

9.56 Implement overloaded stream insertion operator < < and stream extraction operator >>
the Computer class (see Problem 8.48). Include user prompts for the input.

for

9.57 Implement an overloaded assignment operator = for the Complex class (see Problem 8.53).

9.58 Implement overloaded stream insertion operator << and stream extraction operator >> for
the Complex class (see Problem 8.53).

9.59 Implement overloaded comparison operators = = and ! = for the CornpI ex class (see Prob-
lem 8.53).

9.60 Implement overloaded addition operator + and subtraction operator - for the Complex
class (see Problem 8.54).

9.61 Implement overloaded multiplication operator * and division operator / for the Complex
class (see Problem 8.54).

9.62 Overload the NOT operator ! to return the norm for the Complex class (see Problem 8.53).
The norm of a complex number is the square root of the sum of the squares of its real and imag-
inary parts. So if z represents the complex number 3 - 4i, then ! z would return 5. Note that
this is a unary operator.

9.63 Overload the bitwise NOT operator - to return the conjugate for the CornpI ex class (see
Problem 8.53). The conjugate of a complex number is the same complex number except with
the sign of its imaginary part reversed. So if z represents the complex number 3 - 4i, then -Z
would return the Complex object that represents 3 + 4i. Note that this is a unary operator.

9.64 Implement a conversion operator that converts a Point object (see Problem 8.17) into a
Complex object (see Problem 8.59).

CHAP. 91 OVERLOADING OPERATORS 269

9.65 Implement a conversion operator that converts a Complex object (see Problem 8.53) into a
Point object (see Problem 8.17).

9.66 Implement the overloaded division operator / for the Complex class (see Problem 8.54)
using the norm operator ! (see Problem 9.62) and the conjugate operator - (see Problem 9.62).
The quotient of two complex numbers is computed by the formula

U u-v-=-
V I IV

where v is the conjugate of v and I VI is the norm of v.

9.67 Implement an overloaded assignment operator = for the Quaternion class (see Problem
8.59).

9.68 Implement overloaded stream insertion operator < < and stream extraction operator >> for
the Quaternion class (see Problem 8.59).

9.69 Implement overloaded comparison operators = = and != for the Quaternion class (see
Problem 8.59).

9.70 Implement overloaded addition operator + and subtraction operator - for the Quaternion
class (see Problem 8.59).

9.71 Overload the NOT operator ! to return the norm for the Quaternion class (see Problem
8.59). The norm of a quaternion is the square root of the sum of the sauares of its real and imag-

atemion 3 - 4iinary parts. So if z represents the qu
this is a unary operator.

9.72 Overload the bitwise NOT operator - to return the
Problem 8.59). The conjugate of a quatemion is the
. . 1 r i .P 1 Alimaginary parts reversea. So II z represents me complex number 3 - 4i + 12k, then - z would
return the Quatekion object that represents 3 + 4i -12k. Note that this is a unary operator.

9.73 Implement the overloaded division operator / for the Quaternion class (see Problem 8.59)
using the norm operator ! (see Problem 9.62) and the conjugate operator - (see Problem 9.72).
The quotient of two quatemions is computed by the formula

-
u u*v-=-
V I IV

where v is the conjugate of v and I VI is the norm of v.

9.74 Implement a conversion operator that converts a Point object (see Problem 8.17) into a
Quaternion object (see Problem 8.59).

9.75 Implement a conversion operator that converts a Quaternion object (see Problem 8.59) into a
Point object (see Problem 8.17).

9.76 Implement a conversion operator that converts a Complex object (see Problem 8.53) into a
Quaternion object (see Problem 8.59).

9.77 Implement a constructor that converts a Complex object (see Problem 8.53) into a Quater-
nion object (see Problem 8.59).

+12k, then ! z bould return 13. Note thit

conjugate for the Quaternion class (see
same quatemion except with the sign of its

2 7 0 OVERLOADING OPERATORS [CHAP. 9

Answers to Review Questions

9.1 The operator keyword is used to form the name of a function that overloads an operator. For exam-
ple, the name of the function that overloads the assignment operator = is “operator =".

9.2 The keyword thi s is a pointer to the object that owns the call of the member function in which the
expression appears.

9.3 The expression * thi s always refers to the object that owns the call of the member function in which
the expression appears. Therefore, it can only be used within member function.

9.4 The overloaded assignment operator should return * this so that the operator can be used in a cascade
of calls, like this: w = x = y = z ;

9.5 The declaration Rat ional y (x) ; calls the default constructor; the declaration Rational y = x
calls the copy constructor.

9.6 The declaration Rational y = x ; calls the copy constructor. The code Rational y ; y = x ;
calls the default constructor and then the assignment operator.

97. The symbol * * cannot be overloaded as an operator because it is not a C++ operator.

9.8 The stream operators c < and > > should be overloaded as friend functions because their left oper-
ands should be stream objects. If an overloaded operator is a member function, then its left operand is
* this, which is an object of the class to which the function is a member.

9.9 The arithmetic operators +, -, *, and / should be overloaded as friend functions so that their left
operands can be declared as cons t. This allows, for example, the use of an expression like 2 2 + x.
If an overloaded operator is a member function, then its left operand is * thi s, which is not cons t .

9.10 The overloaded pre-increment operator has no arguments. The overloaded post-increment operator h a s
one (dummy) argument, of type int.

9.11 The int argument in the implementation of the post-increment operator is left unnamed
because it is not used. It is a dummy argument.

9.12 By returning a reference, the overloaded subscript operator [] can be used on the left side of an assign-
ment statement, like this: v [2] = 2 2. This is because, as a reference, v [2] is an lvalue.

Chapter IO

A String Class

10.1 INTRODUCTION

Chapter 7 described the way that character strings are handled using C-style programming:
each string is implemented as a pointer p to a char in memory. The actual string of characters
that p represents are held in a contiguous block beginning with byte *p and terminated with
the NUL character i \ o i . To distinguish this representation from that which will be defined in
this chapter, we will refer to the former as “C-strings.”

Chapter 7 also described the string . h header file. It defines many functions that operate
on C-strings. The String class defined in this chapter will include functions that perform
equivalent operations on String objects. Indeed, many of these new operations will be imple-
mented using functions from the string . h header file.

The character string abstract data type is an ideal candidate for implementation as a C++
class, encapsulating the data and functionality in individualized objects. This chapter shows one
way to do that. Such an implementation allows us to use strings as objects of a String class.

10.2 THE String CLASS INTERFACE

There are generally two methods for delimiting an un-indexed sequence of objects. One
method is to use a trailer or terminating object to signal the end of the sequence. C-strings are
implemented this way, using the NUL character I \ o I as the trailer. It is also the method by
which the DOS and UNIX operating systems store records in a file, using the end-of-line charac-
ter '\n' as the trailer. The other method is to store the length of the sequence with the
sequence. This is how the VAX/VMS operating system stores records in a file. It is also how we
will implement our String class:

unsigned len; // the number of (non-NUL) characters stored
char* buf; // the actual character string

Here, 1en will be the length of the sequence of characters and buf will be the “buffer” that
holds them. Actually, buf is a C-string, so it really is just a pointer to a byte in memory.

For example, suppose that name and s tat e are string objects representing the C-strings
'IT. Jefferson" and Virginia". Then we can visualize them like this:

name state

memory :

271

272 A String CLASS [CHAP. 10

This implementation will improve the efficiency of some string operations. For example, to
determine that "ABCDEFGHIJKLMNOPQRSTUVWXY" and "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
are not equal requires examining all 51 characters. But since we are storing the strings’ lengths
in our String class, the comparison operator need only compare the integers 25 and 26 to
determine that these two strings are not equal.

Here is the class interface for a String class:
#include <iostream.h>

class String {
friend int operator==(const String&, const String&);
friend int operator!=(const String&, const String&);
friend int operator<(const String&, const String&);
friend int operator<=(const String&, const String&);
friend int operator>(const String&, const String&);
friend int operator>=(const String&, const String&);
friend ostream& operator<<(ostream&, const String&);
friend istream& operator>>(istream&, String&);
friend String operator+(const String&, const String&);

publx:
String(unsigned =O); // default constructor
String(char, unsigned); // constructor
String(const char*); // constructor
String(const String&); // copy constructor
-String(); // destructor
String& operator=(const String&); // assignment operator
String& operator+=(const String&); // append operator
operator char*0 const; // conversion operator
char& operator[] (unsigned) const; // subscript operator
unsigned length0 const; // access function

private:
unsigned len; // the number of (non-NUL) characters stored
char* buf; // the actual character string

1 ;

Note that this interface is very similar to that of the Vet t or class (Problem 9.14).

10.3 THE CONSTRUCTORS AND DESTRUCTOR

Here is the implementation of the default constructor:

String: :String(unsigned n) : len(n)
1

buf = new char[len+l];
for (int i = 0; i < len; i++)

buf[i] = ' ';
buf[len] = '\O';

YIt constructs a String object containing n blanks. If no parameter is passed, then n takes the
default value 0 and the empty string is constructed.

CHAP. lo] A String CLASS 273

EXAMPLE 10.1 Testing the Default Constructor

This test driver invokes the default constructor twice: once with no parameter and once passing 4:

#include '5'tring.h"

main0
1

String sl;
tout << "sl = [" << sl << "1, length = ' -CC sl.length() -CC endl;
String s2(4);
tout cc " s 2 = [” << s2 << "1, length = ' -C-C s2.length() -C-C endl;

The first object constructed, s 1, is the empty string. The second object, s 2, is a string of 4 blanks.

The second constructor creates a string of identical characters:

String: :String(char c, unsigned n) : len(n)
-t

buf = new char[len+l];
for (int i = 0; i < len; i++)

buf [i] = c;
buf[len] = '\O';

First it uses an initialization list to assign n to the object’s length field len. Then it uses the
new operator to allocate n+l characters to the object’s buffer array buf. The for loop assigns
the same character c to each of the first n elements of the buf array. As always, the NUL
character I \ o I is assigned to the last element of the object’s buffer.

EXAMPLE 10.2 Testing the Second Constructor

This test driver invokes the constructor twice: once with one parameter and once with two:

#include 5'tring.h"

main0

String sl('B',l);
tout << "sl = [" << sl << "1, length = ' CC sl.length() C-C endl;
String s2('B',4);
tout << "~2 = [" << ~2 CC "1, length = ' -CC sLlength() << endl;

First it constructs the string s 1 containing a single character I B I . Then it constructs the string s2 con-
taining four I B ' s.

2?4 A String CLASS [CHAP. 10

The third constructor converts a C-string into a string object:

String: :String(const char* s)

len = strlen(s);
buf = new char[len+l];
for (int i = 0; i < len; i++ >

buf[i] = s[i];
buf[len] = '\O';

It uses the s trlen defined in the string . h header file to set the object’s length field len to
the length of the C-string S. Then it does the same things that the second constructor did, except
that it copies the individual characters of s into the object’s buffer.

EXAMPLE 10.3 Testing the Third Constructor

This creates the string object s 1 that represents the C-string " He1 lo, World ! " :

#include "String.h'

main0

String sl("Hello, World!");
tout << '31 = [" << sl << "1, length = ' -CC sl.length() << endl;

The string has 13 characters, including the comma, the blank, and the exclamation point (but not counting
the NUL character I \ 0 I).

Here is how we might visualize the object sl:

memory :

As usual, we use the symbol @ to represent the NUL character.

The destructor for our String class is typical:

String: :-String0
{

delete [] buf;

It simply uses the delete operator to restore the memory that was allocated to the object. Note
that the subscript operator [] must be specified because buf is an array.

CHAP. lo] A String CLASS 275

10.4 THECOPYCONSTRUCTOR

In many class definitions, instead of defining a copy constructor explicitly, the one that is

automatically provided by the compiler can be used. It simply does a direct copy of each corre-
sponding data member. This, however, will not work properly for -our String class. The prob-
lem is that a direct memory copy would duplicate the buf pointer but not the string to which it
points. This would result in having two different objects with the same member data. Conse-
quently, we need to define our own copy constructor:

String: :String(const String& s) : len(s.len)
-C

buf = new char[len+l];
for (int i = 0; i < s.len; i++)

buf[i]
buf[len] =

= s.buf[i];
'\O';

1

This works the same way as the third constructor, except that the string s that it duplicates is an
existing String object instead of a C-string. Also, we can use an initialization list to assign
s . len to the new object’s len field. That was not possible in the third constructor because we
had to invoke a function (S trlen (>) to obtain the length of S.

EXAMPLE 10.4 Testing the Copy Constructor

This test driver invokes the copy constructor twice: once when it initializes the object creator, and
once when it initializes the object inventor:

#include "String.h"

main0
-C

String name("Bjarne Stroustrup");
tout << "name = [I' <c name << "]\nn;
String creator = name; // calls the copy constructor
tout << "creator = [I' << creator c< "]\n";
String inventor = "Charles Babbage"; // calls two constructors
tout << "inventor = [" c< inventor << "]\n";

First it uses the third constructor to construct the String object name which duplicates the constant
C-string "Bjarne Stroustrup". Then it uses the copy constructor to create the String object
creator which duplicates the String object name by being initialized by it.

The last declaration uses both constructors to construct the String object inventor. First it uses
the third constructor to create a temporary String object that duplicates the constant C-string
"Charles Babbage". Then it uses the copy constructor to create the String object inventor to

duplicate the temporary object.

276 A String CLASS [CHAP. 10

10.5 THE ASSIGNMENT OPERATOR

The assignment operator is used whenever one object is assigned to another object that has
already been declared of the same class. Like the copy constructor, the assignment operator is
automatically provided by the compiler if we don’t write our own version. But it is unwise to rely
upon the automatically generated assignment operator for classes whose objects contain pointers,
because duplicating pointers does not duplicate the data to which they point.

EXAMPLE 10.5 Using the Assignment Operator Generated by the Compiler

This example shows what can go wrong when you rely upon the automatically generated assign-
ment operator for the String class:

#include "String.h"

main0

String myCar = "Infiniti G20";
String yourCar = "Lexus ES3OO";
tout <c "\t myCar = [" c< myCar << "]\n";
tout << "\tyourCar = [" << yourCar << "]\n";
myCar = yourcar; // memberwise assignment
tout << "After: myCar = yourCar\n";
tout << "\t myCar = [" << myCar << "]\n";
tout << "\tyourCar = [" <c yourCar << "]\n";
yourCar[6] = 'L';
tout << "After: yourCar[6] = 'L'\n";
tout << "\t myCar = [" c< myCar << "]\n";
tout << "\tyourCar = [" << yourCar << "]\n";

The assignment operator that is generated automatically by the compiler simply uses “member-wise
assignment.” For our string class, that means that in the fifth statement in main (> , yourcar. len
is assigned to myCar. len and yourCar. buf is assigned to myCar. buf. But the buf members
are pointers, so the result is that both yourcar. buf and myCar. buf point to the same C-string in
memory: the one that contains “Lexus ES3 0 0". So when you buy a new Lexus LS300, it becomes my
car too! In other words, the assignment myCar = yourCar in this program means that I become a co-
owner of your new Lexus LS300 (and that I lost my Lexus ES300).

The following diagram illustrates the problem:

CHAP. lo] 277

yourCar

a
yourCar

memory:

a
yourCarl lenm / len

myCar

Both objects, yourcar and mycar, point to the same character string in memory. The assignment
myCar = yourcar simply duplicated the integer len and the pointer buf, without duplicating the
character string. So when the “E" is changed to an “L", it gets changed in both objects.

To overcome problems indicated by Example 10.5, we need to define our own assignment
operator so that an assignment Y = x replaces the object Y with a duplicate of the object X.

Here is our own assignment operator, defined explicitly:

String& String: :operator=(const String& s)
-t

if (&s == this) return *this;
len = s.len;
delete [] buf;
buf = new char[s.len + 11;
strcpy(buf, s.buf);
return *this;

First it checks whether the object s is different from the object to which it is to be assigned. If
they are already the same object, then nothing more needs to be done. The conditional tests
whether the address of s is the same as the address (this) of the current object.

If the two objects are not the same, then we recreate the current object so that it becomes a
duplicate of S. After setting len to s . len, we deallocate the memory currently assigned to

<

278

buf and then allocate a new
strcpy (> function (defined

A String CLASS [CHAP. 10

string of bytes of the correct length (S . 1en + 1). Then we use the
in string.h) to copy s.buf into buf andreturn *this.

EXAMPLE 10.6 Using the User-Defined Assignment Operator

Here is the output from the same program that we ran in Example 10.5, but which now uses our
explicitly defined assignment operator:

This time, when the assignment mycar = yourcar executes, it actually replaces the mycar object
with a duplicate of the yourcar object. And since this is a distinct duplicate, changing yourcar [61
to the letter "L" has no effect on the mycar object. In other words, when you sell me your Lexus ES300
and then buy a new Lexus LS300 for yourself, I still have my ES300 and you have your LS300.

The effect of our own user-defined assignment operator can be seen in the following diagram:

memory:

Here the new operator allocates storage for a new string in memory for the mycar object. So when the
‘9” is changed to an “L" in the yourcar object, it has no effect upon the mycar object.

CHAP. lo] A String CLASS 279

EXAMPLE 10.7 Another Test of the Assignment Operator

#include '5tring.h"

main0

String name("Babbage"), creator("Stroustrup");
tout -w "name = [II -x name << I']\nll;
tout << "creator = ['I << creator << "]\n";
name = creator; // calls the assignment operator
tout << "name = ['I c< name c< "]\W;

The output looks like this:

First it uses the third constructor to construct the two String objects name and creator, representing
the C-strings "Babbage" and "Stroustrup". Then it uses the assignment operator to assign the
String object creator to the String object name. Notice how the length of name is

The diagram on the next page illustrates the action of the assignment name = treat or. When the
function operator= is invoked, it creates the local variables thi s and s. The this pointer points to
the object name which owns the call, and s is a reference to the object creator. The function changes
thi s - >l en to 10 and resets thi s - >bu f to a newly allocated string of 11 bytes into which s . bu f is

copied using the s t rcpy () function.

10.6 THE ADDITION OPERATOR

The addition operator + is a natural choice for the concatenation function in a String
class. After all, concatenation means adding two strings together to form a new string.

Here is the concatenation function for our String class:

String operator+(const String& sl, const String& s2)
l

String s(sl.len + s2.len);
strcpy(s.buf, sl.buf);
strcat(s.buf, s2.buf);
return s;

>

First it constructs a new String object s of length sl . len + ~2 . len. Then it uses the
strcpy (> and strcat () functions defined in the string. h header file to copy ~1. buf to
s. buf and append ~2. buf to it.

280 A String CLASS [CHAP. 10

creator name

memory : I I I l~ltl~l~lulsltlrlul~l~l 1 l blalblblablebl I l l

a
creator

operator=

Egg

memory : I I l~l~l~l~l~l~l~l~l~l~l~l I I ldalblbl&ld@l l l l

a
operator=

creator

EXAMPLE 10.8 Testing the Addition Operator

#include "String.h"

main0
{

String first("Bjarne"), last("Stroustrup"), blank(" 'I);
tout << "first = [" -w first << "I, last = ['I << last c< "I\,";
String name = first + " " + last;
tout +c "name = [" K-c name << "]\n";

1

first = [Bjarme], last = [Stroustrup]
name = [Bjarne Stroustrup] _ 1

CHAP. lo] ! A String CLASS 2 8 1

In this example, we first construct the String objects first and last. Then we concatenate
first, blank, and last, andassigntheresulttothe String object name.

We can visualize the execution of this test driver like this:

last first

a
len 17

name I len 10
last I len 6

first I

memory : IBfjlalrlnlel lsltlrlolulsltlrlulpl0l "IA ISItlrIoIulsltIrIulpl0lBljlalrlnlel0l
v

Thelengthofthenew String object name is firstden + temp.len +last.len = lO+l+
6 = 17, where temp is the temporary String object that represents the C-string II II.

10.7 ANAPPENDOPERATOR

The += operator is one of a series of arithmetic assignment operators that combine the arith-
metic operators (+, -, *, etc.) with the assignment operator. Like most operators, the arithmetic
assignment operators can be overloaded to perform whatever operations you want. However, it
is unwise to define an overloaded operator to do anything that is not similar to the action of the
original operator.

The += operator is defined for integer types to be equivalent to the addition operator
followed by the assignment operator. For example, the following two blocks have the same
effect:

{ int n += m; }

{ int temp = m + n; int n = temp; }

The only difference is that the second block uses an extra int. In our String class, we
overloaded the += operator to preserve this meaning, so that the following two blocks will have
the same effect:

{ String s2 += sl; }

(String temp = sl + s2; int s2 = temp; }

282 A String CLASS [CHAP. 10

Here is the overloaded += operator for our String class:

String& String::operator+=(const String& s)

len += s.len;
char* tempbuf = new char[len+l];
strcpy(tempbuf, buf);
strcat(tempbuf, s.buf);
delete [] buf;
buf = tempbuf;
return *this;

First it increments its len field by the length of the String object passed to it. Then it
allocates the total number of bytes needed for the new string and holds this space in the
temporary C-string tempbuf. Then, just as it does with the addition operator (page 280), it uses
the strcpy (> and strcat () functions defined in the string. h header file to copy its buf
to t empbuf and then append s . buf to it. Now it can release the memory allocated to its
original buffer and then assign the t empbuf pointer to it.

EXAMPLE 10.9 Testing the += Operator

This test driver invokes the + = operator to append the string II (17 9 2 - 18 7 1) " onto the String
object name:

#include "String.h"

main0
{

String name('Tharles Babbage");
tout << "name = [" << name c< "]\n";
name += " (1792-1871)";
tout << "name = [" << name << "]\n";

nasrre = [ChaxJes Babbage]
name = [Charles Babbage (1792~187W ’

Note that the third constructor will be invoked to convert the C-string II (1792-1871) II into a
String object before it is passed to the += operator.

10.8 ACCESS FUNCTIONS

The operator

operator char*0 const;

is a conversion operator that converts a String object into a C-string. It has the reverse effect
of the constructor

String (const char*);

which converts a C-string into a String object.

CHAP. lo] A String CLASS 283

This conversion operator has a very simple implementation:

String: :operator char*0 const
{

return buf;
>

Its buf data member is the C-string that we want.-

Note that this conversion operator is an access function: it simply provides public access to
the private data member buf. It is not really an “inverse” of the String (const char*)
constructor because it does not create a new C-string. As an access function, it merely provides
public access to the buf C-string that already exists within the String object.

EXAMPLE 10.10 Testing the Conversion to C-String Operator

#include '5tring.h"

main0
1

String name("John von Neumann"); // name is a String object
tout << "name = ['I c< name << "]\n";
char* s = name; // s is a C-string
tout << "s = ['I << s -c-c 'I] \n" ;

nae = [John van Neumann]
s = [John van Neumann]

Here is the overloaded subscript operator for our String class:

char& String: :operator[] (unsigned i) const

return buf[i];

It simply returns the ith element of the object’s buf buffer.

EXAMPLE 10.11 Testing the Subscript Operator

#include '5tring.h"

main0
{

String name("Charles Babbage");
tout -x "name = ['I << name << II]\W;
tout << "name[8] = ['I << name[8] << "]\n";
name[8] = 'Cl;
tout << "name[8] = [I' << name[8] << "]\nI';
tout -x "name = ['I << name cc "]\n";

284 A String CLASS [CHAP. 10

The output looks like this:

name = [Charles Babbage] :.-_ '.
name[$J ft [Is] '.:
namef81 = fcj

,:
'."..'

nae = &%ar&s3 Cabbage] _ .

The only surprising result here is that the expression name [8] , which invokes the function, can be used
on the left side of an assignment! This works because the expression is an Ivalue. (See Section 6.5.)

The other access functions in our String class is the length (> function:

unsigned String::length() const

return len;

We have already tested the 1 eng th (> function. (See Example 10.1.)

10.9 THE COMPARISON OPERATORS

We have overloads for all six of the comparison operators: = =, ! =, <, c =, >, and >=. Fortu-
nately, all of these are already defined for C-strings in the string . h header file. So their imple-
mentation for our String class is trivial:

#include <string.h>

int operator==(const String& sl, const String& s2)
-t

return (strcmp(sl.buf, s2.buf) == 0);

int operator!=(const String& sl, const String& s2)
1

return (strcmp(sl.buf, s2.buf) != 0);
1

int operator<(const String& sl, const String& s2)
1

return (strcmp(sl.buf, s2.buf) < 0);

int operator<=(const String& sl, const String& s2)
-t

return (strcmp(sl.buf, s2.buf) <= 0);

All six of these simply call the s trcmp (> function defined in the string .,h header file.
(See Table 7.2 on page 206.) It returns an integer whose sign indicates how the two C-strings
compare: negative means that the first C-string lexicographically precedes the second; zero
means that the two are equal; and positive means that the first lexicographically follows the
second.

CHAP. lo] A String CLASS 285

EXAMPLE 10.12 Testing the Comparison Operators

main0
1

String x, y;
tout << "Enter two strings: "; tin >> x >> y;
if (x == y) Gout << "\t [" << x << 'I] == [I' << y << II] \,I1 ;
if (x != y) tout << "\t[" << x << "1 != [" << y << "I\,";
if (x < y) COut << "\t[' << x << "I < ['I << y << "]\nI'-
if (x <= y) COut << "\t[" << x << "I <= [" << y << "1 in";
if (x > y) COut << "\t[' << x << "I > [" << y << "]\n'I-
if (x >= y) COut << '\t[' << x << "1 >= [I' << y -c< "]\n"II

10.10 STREAM OPERATORS

The stream operators overloaded for our string class are the stream insertion operator C-C
and the stream extraction operator >>. We have already used these in several test drivers. Here
are their implementations:

ostream& operator<<(ostream& ostr, const String& s)
{

return ostr XX s.buf;
>

istream& operator>>(istream& istr, String& s)
1

char buffer[256];
istr >> buffer;
S = buffer;
return istr;

The overloaded stream insertion operator -CC simply inserts the object’s buf into the output
stream ostr and then returns that reference. The overloaded stream extraction operator >> uses
a temporary buffer string to read the input, assigns it to the reference S, and then returns the
istream reference istr.

Note that both of these overloaded stream operators return the stream object that is passed to
them. This makes these functions consistent with the corresponding predefined stream operators,
allowing them to be invoked in cascades like this:

286 A String CLASS [CHAP. 10

EXAMPLE 10.13 Testing the Stream Operators

#include 3tring.h"

main0
{

String sl, s2;
tin >> sl >> s2;
tout << sl << '****' CC s2 << endl;

This little program makes two calls to the overloaded insertion operator, two calls to the overloaded
extraction operator, and two calls to the standard (predefined) extraction operator. The first call is oper-
ator>> (tin, sl) which passes areference to the istream object tin to theparameter istr and
a reference to the string object s 1 to the parameter s. Then II He1 lo, II is read into the C-string
temp. This is assigned to the String object sl, and then a reference to c in is returned. That return value
is then used in the second call opera tar>> (c in, s2) which works the same way, leaving the object
s 2 representing II War 1 d ! II . '

The output line intermingles the two calls to the overloaded << operator with the two calls to the
standard << operator in the cascade:

f(f(f(f(tout, sl), ~****"), s2), end1);

where f is operator<<.

Review Questions

10.1 Why couldn’t the second constructor for our String class have a default value for its first
argument, like this:

String(char c=' I, unsigned n=O)

10.2 What is wrong with using the copy constructor that is automatically provided by the compiler
instead of writing our own copy constructor explicitly?

10.3 What is wrong with using the assignment operator that is automatically provided by the com-
piler instead of writing our own assignment operator explicitly?

10.4 In what ways is our String class more efficient than simply using C-strings? In what ways is it
less efficient.

Solved Programming Problems

10.5 Implement the String comparison operator = = directly, without using functions from the
standard s tr ing . h header file.

CHAP. lo] A String CLASS 287

We have the same function header. But now we have to check the object’s data members directly:

int operator==

if (sl.len
for (int i

if (sl
return 1;

(const String& sl, const String& s2)

!= s2.len) return 0;
= 0; i < sl.len; i++)
.buf[i] != s2.buf[i]) return 0;

Since we are storing the string lengths, we can determine immediately that the two strings are not equal if
their len fields are not the same. Otherwise, we scan through the two strings in parallel, comparing
corresponding characters. If a single mismatch is found, we can return 0 immediately. Only if all the
corresponding characters match can we conclude that the two strings are equal and return 1.

10.6 Implement and test the following member function for the string class:

istream& getline(istream& istr, char c='\n');

This function reads a line of characters from the input stream object i s t r until it encounters
the character C. These characters are stored in the object’s buffer, and the input stream object
is returned.

We have the same function header. But now we have to check the object’s data members directly:

istream& String: :getline(istream& istr, char c='\n')
1

char temp[256];
istr.getline(temp, 256, c);
len = strlen(temp);
delete [] buf;
buf = new char[len + 11;
strcpy(buf, temp);
return istr;

>

As with the overloaded extraction operator >>, this function uses a temporary C-string buffer of 256
characters. It invokes the get 1 ine () functions defined in < ios tream . h> to read the line. Then it
performs the same steps that are used in the third constructor to transform the C-string buffer temp into
the string object.

Here is a test driver for this function:

#include "String.h"

main0
-t

String s;
s.getline(cin);
tout << "\t[" << s << "]\n";
s.getline(cin, ' I '>;
tout << "\t[" << s << "]\n";
s.getline(cin, ' I '>;
tout << "\t[" << s << "]\n";

288 A String CLASS [CHAP. 10

Here is the output:

The first call uses the default value ’ \ n I for the delimiter argument c, so it reads the entire line. The
following two calls use the character I I

 1 for the delimiter, each reads only up to the next occurrence of
that character. The effect is to be able to use the delimiter as a separator between input fields.

10.7 Implement and test the following member function for the String class:

int firstLocation(const String& s, unsigned k=O);

This searches the object’s buffer, beginning with character buf [k] for the string S. If s is
found to be a substring, then the index of its first occurrence is returned; otherwise -1 is
returned.

In this solution, we implement a “brute force” searching method. Improvements could be made by
using more efficient pattern-matching algorithms, such as the Knuth-Morris-Pratt Algorithm, the Boyer-
Moore Algorithm, or the Rabin-Karp Algorithm. (See Chapter 19 in [Savitch].)

int String: :firstLocation(const String& s, unsigned k=O)

for (int i = k, j = 0; i c len &SC j c s.len; if+, j++)
if (buf[i] != s.buf[j]) {

i -= j;
j = -1;

1
if (j == s.len) return i - s.len; // substring found
else return -1;

In this implementation, the for loop compares buf [i] with s . buf [j] , incrementing i and j
simultaneously, and resetting i and j whenever a mismatch is found. For example, consider the call:
x.firstLocation(z). When i =5and j =0, buf [i] matches s.buf [j];theyareboth
'F'. So i and j both increment to i = 6 and j =l,andagain buf [i] matches s.buf [j];

this time they are both ’ G ’ . So i and j both increment to i = 7 and j = 2. But this time they do not
match: buf[i] = 'H' and s.buf[i] = 'Z'. So i is reset to 5, and j is reset to -1. But then
they both increment again before the next comparison is made, so next bu f [6] is compared with
s. buf [01. They don’t match, so next buf [71 is compared with s. buf [01.

The loop terminates when either i = len or j = s . 1 en. If (j = = s . 1 en) , then the sub-
string was found, because buf [i] matched s . buf [j] for each j from 0 to s . 1 en-l. In this
case, i is pointing to the character immediately after the last character in the match, so i - s . len
will point to the first character in the match and that is the location in buf that should be returned.

CHAP. lo] A String CLASS 2 8 9

10.8

10.9

I

10.10

10.11 Implement and test the following member function for the string class:

Here is a test driver for this function:

#include "String.h"

main0
1

String x("ABCDEFGHIJKLABCDEFGHIJKL");
String y("FGH");
tout <c x.firstLocation(y) << endl;
tout << x.firstLocation(y, 8) << endl;
tout <c x.firstLocation(y, 20) << endl;
String z("FGZ");
tout c< x.firstLocation(z) << endl;

) I
5.

_

L

17

r

,?- .
,I

-1 . .

Supplementary Programming Problems

Implement and test the other five comparison operators ! =, <, < =, >, and >= for the
S t r ing class directly, without using functions from the standard s tr ing . h header file.

Implement and test the following constructor for the string class:

String(const char* s, unsigned n, unsigned k=O);

This has the same effect as our third constructor, except that it uses n characters from the C-
string S, beginning with character s [k] . For example, the declarations

String x("ABCDEFGHIJKL", 3);
String y("ABCDEFGHIJKL", 3, 5);

would construct the object x representing the substring II ABC II and the object Y represent-
ing the substring II FGH 'I.

Implement and test the following modification of the copy constructor for the string class:

String(const String& s, unsigned n, unsigned k=O);

This uses n characters from the object s, beginning with character s . bu f [k] . For exam-
ple, if x is a String object representing " ABCDEFGHI JKL II, then

String y(x, 3);
String z(x, 3, 5);

would construct the object Y representing the substring II ABC II and the object z represent-
ing the substring II FGH II. (See Problem 10.9.)

int frequency(char c);

This returns the number of occurrences of the character c in the string For example, is x is the
string "Mississippi", then the call frequency (I i I) would return 4.

290 A String CLASS [CHAP. 10

10.12 Implement and test the following member function for the string class:

void remove(unsigned n, unsigned k=O);
This removes n characters from the object, beginning with character buf [k] . For example,

String x("ABCDEFGHIJKL");
x.remove(3, 5);

would remove the substring II FGH II from the object X, changing it to " ABCDEI JKL I'.

lo.13 Implement and test the following member function for the String class:

void insert(const String& s, unsigned k=O);
This inserts the string s into the current object, beginning with character buf [k] . For
example,

String x("ABCDEFGHIJKL");
String y("XYZ");
x.insert(y, 5);

would insert II XYZ II into the object X, changing it to " ABCDEXYZFGHI JKL II. Note that the
third constructor would be invoked automatically to produce the same effect from the call:

x.insert("XYZ", 5);
Also note that x. insert (y> prepends y to x, and that x. insert (y, x. n (> > is equiv-
alent to x + = y, appending y to X.

10.14 Implement and test the following member function for the String class:

void replace(const String& s, unsigned n, unsigned k=O);
This replaces n characters from the object, beginning with character buf [k] with string S:

String x("ABCDEFGHIJKL");
String y("XYZ");
x.replace(y, 6, 5);

would replace the substring " FGHI JK " in the object x with the string s, changing x to
"ABCDEXYZL". Note that the third constructor would be invoked automatically to produce the
same effect from the call:

x.replace("XYz", 6, 5);
Also note that x . replace (y , m, n > ; is equivalent to

x.remove(6, 5);
x.insert("XYZ", 5);

10.15 Implement and test the following member function for the String class:

int lastLocation(const String& s, unsigned k=O);

This searches the object’s buffer, beginning with character buf [k] for the string S. If s is
found to be a substring, then the index of its last occurrence is returned; otherwise -1 is
returned. For example,

String x("ABCDEFGHIJKLABCDEFGHIJKL");
String y("FGH");
tout << x.lastLocation(y) << endl;
tout << x.lastLocation(y, 20) << endl;
String z("FGZ");
tout << x.lastLocation(z) << endl;

would print 17, -1, and -1. (See Problem 10.7.)

CHAP. lo] A String CLASS 291

10.16 Implement and test the following member function for the String class:

int location(const String& s, unsigned n=O, unsigned k=O);

This searches the object’s buffer, beginning with character buf [k] for the string S. If s is
found to be a substring, then the index of its (n+l)st occurrence is returned (in other words, the
first n occurrences of the string s are ignored); otherwise -1 is returned. For example,

String x("ABCDEFGHIJKLABCDEFGHIJKLABCDEFGHIJKLABCDEFGHIJKL~);

String y("FGH");

tout << x.location(y) << endl;I
tout << x.location(y, 0, 20) -X endl;
tout << x.location(y, 2) << endl;

tout << x.location(y, 2, 20) << endl;

tout << x.location(y, 4) << endl;

would print 5, 29,29, -1, and -1. (See Problem 10.7.)

10.17 Implement and test the following member function for the string class:

int location(char c, unsigned n=O);

10.18

This searches the object’s buffer, for the character C. If c is found, then the index of its
(n+l)st occurrence is returned (in other words, the first n occurrences of the character c are
ignored); otherwise -1 is returned. For example, if x represents the string II ABBCCCBBAI~ ,
thenthecall x.location(C') wouldreturn3,thecall x.location(C', 3) would
return 11, the call x.location('C', 5) would return -1, and the call
x. location (I D 1) would return -1. (See Problem 10.16.)

Implement and test the following member function for the String class:

int firstOf(const String& s, unsigned k=O);

This searches the object’s buffer, beginning with character buf [k] , for any character c that
is in the string s. If any c is found, then the index of its first occurrence is returned; other-
wise -1 is returned. For example, if x represents the string II ABBCCCBBAII , then the call
x.firstOf (TDEII) wouldreturn3,thecall x.firstOf (IIBCDII, 4) wouldreturn6,and
thecall x.firstOf(~~~~~~~) wouldreturn-1.

10.19 Implement and test the following member function for the String class:

int lastOf(const String& s);

This searches the object’s buffer for any character c that is in the string S. If any c is
found, then the index of its last occurrence is returned; otherwise -1 is returned. For example,
if x represents the string I~ABBCCCBBAII, thenthecall x.lastof (1~~~~~~ > wouldreturn7,
and thecall x.lastof (IIXYZI~ > wouldreturn-1.

10.20 Implement and test the following member function for the String class:

int firstNotOf(const String& s, unsigned k=O);

This searches the object’s buffer, beginning with character buf [k] , for any character c that
is not in the string S. If any c is found, then the index of its first occurrence is returned; oth-
erZe -1 is returned. For example, if x represents the string II ABBCCCBBAII , then the call
~.first~otOf(~~~~~~~) wouldreturn3,and x.firstNotOf ("ABC") wouldreturn-1.

292 A String CLASS [CHAP. 10

lo.21 Implement and test the following member function for the String class:

int lastNotOf(const String& s);

This searches the object’s buffer, beginning with character buf [k] , for any character c that
is not in the string S. If any c is found, then the index of its last occurrence is returned; oth-
erwise -1 is returned. For example, if x represents the string ii~~~~~~~~~ll, then the call
~.lastNotOf(~~~~~~~ > wouldreturn7,and x.lastNotOf (IIABCI~) would return-1.

lo.22 Implement and test the following member function for the String class:

int isPrefix(const String& s);

This returns 1 or 0 according to whether s is. a prefix substring of the object. For example, if
X= I~ABCDEFGHIJKLII then isPrefix(~~~~~~~) wouldreturnl,and isPrefix(~~~~~~~)
would return 0.

10.23 Implement and test the following member function for the String class:

int isSufix(const String& s);

This returns 1 or 0 according to whether s is a suffix substring of the object. For example, if
X= I~ABCDEFGHIJKL~~ then isSuffix(lV~~~l~) wouldreturnl,and isPrefix(l~~~~~~)
would return 0.

10.24 Implement and test the following member function for the String class:

int capitalizeo;

This capitalizes all the words in the string. For this exercise, a “word” is defined as a maximal
substring that contains no white space. Use the i sspace (> function defined in the c type . h
header file. (See Table 7.1 on page 194.)

10.25 Implement and test the following member function for the String class:

int numWords();

This returns the number of word.s in the string. For this exercise, a “word” is defined as a max-
imal substring that contains no white space. Use the i sspace () function defined in the
ctme . h header file. (See Table 7.1 on page 194.)

10.26 Implement and test the following member function for the String class:

int numSentences();

This returns the number of sentences in the string. For this exercise, a “sentence” is defined as
a maximal substring that ends with a period and contains no other periods.

10.27 Implement and test the following member function for the string class:

void toUpper();

This function changes every lowercase character in the string to uppercase. For example, it
would transform the string "Honey, 1/m home! II into "HONEY, I'M HOME! II. Use the
character function toupper () defined in the ctype . h header file. (See Table 7.1 on
page 194.)

lo.28 Implement and test the following member function for the String class:

void toLower();

This function changes every uppercase character in the string to lowercase. For example, it
would transform the string "New York, NY II into l1 new York, ny ” . Use the character
function tolower () defined in the ctme . h header file. (See Table 7.1 on page 194.)

CHAP. lo] A String CLASS 293

10.29 Implement and test the following member function for the string class:

void reverseo;

This function reverses the string. For example, it would transform the string ABCD into DCBA.

lo.30 Implement and test the following member function for the String class:

int isPalindrome();

This returns 1 or 0 according to whether the string is a palindrome (i.e., it remains the same
string when reversed). For example, ispalindrome ("WASITELIOTSTOILETISAW')
would return 1 (for “true”).

lo.31 The String class implemented in this chapter would be inefficient for writing a text file or
for any purpose that involved many instances of the same word (like II the " or II New
York II). This inefficiency can be reduced significantly by allowing many objects to share the
same buf space in memory. However, using several pointers to point to the same data can
cause problems. (See Questions Example 10.1 and Example 10.2.) These potential problems
can be overcome by making the initial byte in buf a counter that keeps track of how many
objects are using that buffer. For example, the declarations

String sl("France"), s2("Spain"), s3("France"), s4("France");

would be represented as:

s2

memory :

Note that each string occupies len + 2 bytes in memory. Also note that the initial byte is
storing an nonnegative integer as a char, so it must remain in the range 0 to 127. Modify the
String implementation in this chapter to represent strings this way. The main changes have
to be made to the constructors, the destructor, and the assignment operator.

10.32 Modify the String class so that the user can set or clear a case-sensitive switch. When the
switch is off, comparisons are made without regard to case, so that ‘I NeXT lt and II next "
would be regarded as equal strings. One way to implement this feature is to add the s tat i c
data member

static int sensitivity;

and the s tat i c function member

static int setSensitivity();

294 A String CLASS [CHAP. 10 .

Answers to Review Questions

10.1 If the second constructor had default values for both of its arguments, then a declaration like this

String s;
would be ambiguous. Any constructor which has default values for all of its arguments is a default con-
structor, and a class may have only one default constructor.

10.2 The copy constructor that is automatically provided by the compiler merely duplicates the member data.
This would result in different objects having their own (different) buf pointers, but they would point to the
same C-string. That could be disastrous, for example, if one were changed or deleted.

10.3 See the answer to Question 10.2.

10.4 Our string class is more efficient when making comparisons. It is less efficient with its overloaded
stream extraction operator >> which uses a 256-byte buffer. It would also be inefficient in a text-
processing environment because of the overhead of its constructors. (See Problem 10.3 1.)

Chapter 11

Composition and Inheritance

11.1 INTRODUCTION

We often need to use existing classes to define new classes. The two ways to do this are
called composition and the inheritance. This chapter describes both methods and shows how to
decide when to use them.

11.2 COMPOSITION

Composition (also called containment or aggregation) of classes refers to the use of one or
more classes within the definition of another class. When a data member of the new class is an
object of another class, we say that the new class is a composite of the other objects.

EXAMPLE 11.1 A Person Class

Here is a simple definition for a class to represent people.

#include Y3tring.h" a

class Person {
public:

Person(char* n="", char* nat=YJ.S.A.", int s=l)
: name(n), nationality(nat), sex(s) { >

void printName { tout << name; }
void printNationality { tout << nationality; >

private:
String name, nationality;
int sex;

1 ;

main0
{

Person creator('Bjarne Stroustrup', "Denmark");
tout << 'The creator of C++ was ";
creator.printName();
tout << ' who was born in ';
creator.printNationality();
tout C< ".\n";

295

296 COMPOSITION AND INHERITANCE ,[CHAP. 11

We have used the string class that was defined in Chapter 10 to declare the data members name and
nationality for the Person class. Notice that we used the String class’s overloaded insertion
operator CC in the Person class’s printName () function.

Example 11.1 illustrates the composition of the St ring class within the Person class. The
next example defines another class that we can compose with the Person class to improve it:

EXAMPLE 11.2 A Date Class

class Date {
friend istream& operator>>(istream&, Date&);
friend ostream& operatorcc(ostream&, const Date&);

public:
Date(int m=O, int d=O, int y=O) : month(m), day(d), year(y) { }
void setDate(int m, int d, int y) { month = m; day = d; year = y;

private:
int month, day, year;

istream& operator>>(istream& in, Date& x)

in X= x.month X= x.day >> x.year;
return in;

ostream& operatorcc(ostream& out, const Date& x)

static char* monthName[13] = {", "January", "February",
"March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"};

out CC monthName[x.month] CC ' ' cc x.day CC ", ' CC x.year;
return out;

main0
1 _

Date peace(ll,ll,l918);
tout cc 'World War I ended on ' cc peace CC ".\n";
peace.setDate(8,14,1945);
tout cc "World War II ended on ' CC peace CC ".\n";
tout << "Enter month, day, and year: ";
Date date;
tin >> date;
tout cc "The date is ' CC date CC ".\n";

1

CHAP. 1 l] COMPOSITION AND “INHERITANCE 297

The test driver tests the default constructor, the se tDa t e (> function, the overloaded insertion operator
< <, and the overloaded extraction operator > >.

Now we can use the Date class inside the Person class to store a person’s date of birth
and date of death:

EXAMPLE 11.3 Composing the Date Class with the Person Class

#include '5tring.h"
#include "Date.h"

class Person {
public:

Person(char* n="", int s=O, char* nat="U.S.A.")
: name(n), sex(s), nationality(nat) { >

void setDOB(int m, int d, int y) { dob.setDate(m, d, y); >
void setDOD(int m, int d, int y) { dod.setDate(m, d, y); >
void printName { tout -CC name; >
void printNationality { tout CC nationality; >
void printDOB() { tout << dob; >
void printDOD() { tout << dod; >

private:
String name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male

1 ;

main0
-C

Person author("Thomas Jefferson", 1);
author.setDOB(4,13,1743);
author.setDOD(7,4,1826);
tout << 'The author of the Declaration of Independence was ";
author.printName(); I
tout << ".\nHe was born on ";
author.printDOB();
tout << ' and died on ";
author.printDOD();
tout << ".\n";

Notice again that we have used a member function of one class to define member functions of the com-
posed class: the se tDa t e () function is used to define the se tDOB (> and se tDOD (> functions.

Composition is often referred to as a “has-a” relationship because the objects of the compos-
ite class “have” objects of the composed class as members. Each object of the Person class
“has a” name and a nationality .which are String objects. Composition is one way of 1
reusing existing software to create new software.

298 COMPOSITION AND INHERITANCE [CHAP. 11

11.3 INHERITANCE

Another way to reuse existing software to create new software is by means of inheritance
(also called specialization or derivation). This is often referred to as an “is-a” relationship
because every object of the class being defined “is” also an object of the inherited class.

The common syntax folr deriving a class Y from a class x is
class Y : public X {

// . . .

Here x ;s’called the base cZass (or superclass) and Y is called the derived cZass (or subclass).
The keyword pub1 ic after the colon specifies public inheritance, which means that pub1 ic
members of the base class -become pub1 ic members of the derived class.

EXAMPLE 11.4 Deriving a Student Class from the Person Class

Students are people. So it is natural to use the People class to derive a Student class:

#include "Person.h"

class Student :: p u b l i c P e r s o n {
public:

Student(char* n, int s=O, char* i="")
: Person(n, s), id(i), credits(O) { }

void setDOM(int m, int d, int y) { dom.setDate(m, d, y); }
void printDOM() { tout << dom; }

private:
String id; // student identification number
Date dom; // date of matriculation
int credits; // course credits
float gpa; // grade-point average

The Student class inherits all the pub1 ic functionality of the Person class, including the
Person () constructor which it uses in its constructor to initialize name in the Person class. Note
that this is a private member of the Person class, so it could not be accessed directly.

Here is a test driver for the Student class:

#include "Student.h"

main0
-t

Student x("Ann Jones", "219360061");
x.setDOB(5, 13, 1977);
x.setDOM(8, 29, 1995);
x.printName() ;
tout CC "\n\t Born: "; x.printDOB
tout << "\n\tMatriculated: '; x.printDOM

)

> ;
> ; tout CC endl;

CHAP. 1 l] COMPOSITION AND INHERITANCE 299

11.4 protected CLASS MEMBERS

The Student class in Section 11.3 has a significant problem: it cannot directly access the
private data members of its Person superclass: name, nationality, DOB, DOD, and sex.
The lack of access on the first four of these is not serious because these can be written and read
through the Person class’s constructor and public access functions. However, there is no way
to write or read a student's sex. One way to overcome this problem would be to make sex a
data member of the Student class. But that is unnatural: sex is an attribute that all Person
objects have, not just Students. A better solution is to change the private access specifier to
protected in the Person class. That will allow access to these data members from derived
classes.

EXAMPLE 11.5 The Person Class with protected Data Members

These are the same class definitions that were given in Example 11.3 and Example 11.4 except that
the private access specifier has been changed to pro tee ted, and we have added the access function
printSex to the Student class:

#include "String.h"
#include "Date.h"

class Person {
public:

Person(char* n="", int s=O, char* nat=YJ.S.A.")
: name(n), sex(s), nationality(nat) { >

void setDOB(int m, int d, int y) { dob.setDate(m, d, y); >
void setDOD(int m, int d, int y) { dod.setDate(m, d, y); >
void printName { tout << name; >
void printNationality { tout << nationality; >
void printDOB() { tout << dob; >
void printDOD() { tout << dod; }

protected:
String name, nationality;
Date dob, dod; // date of birth, date of death
int sex; //o= *female, 1 = male

> ;

class Student : public Person {
public:

Student(char* n, int s=O, char* i="">
: Person(n, s), id(i), credits(O) { }

void setDOM(int m, int d, int y) { dom.setDate(m, d, y); >
void printDOM() { tout << dom; }
void printSex { tout CC (sex ? “male” : “ f emale”) ; }

protected:
String id; // student identification number
Date dom; // date of matriculation
int credits; // course credits
float gpa; // grade-point average

> ;

300 COMPOSITION AND INHERITANCE [CHAP. 11

Now all five data members defined in the Person class are accessible from its Student subclass,
as seen by the following test driver:

main0

Student x("Ann Jones", 0, "219360061");
x.setDOB(5, 13, 1977);
x.setDOM(8, 29, 1995);
x.setDOD(7,4,1826);
x.printName();
tout << "\n\t Born: "; x.printDOB
tout << "\n\t Sex: 'I; x.printSex
tout << "\n\tMatriculated: "; x.printDOM
tout & endl;

0 ;
0 ;
0 ;

The pro tee ted access category is a balance between private and public categories:
private members are accessible only from within the class itself and its friend classes;
protected members are accessible from within the class itself, its friend classes, its derived
classes, and their friend classes; pub1 ic members are accessible from anywhere within the
file. In general, pro tee ted is used instead of private whenever it is anticipated that a sub-
class might be defined for the class.

A subclass inherits all the pub1 ic and pro tee ted members of its base class. This means
that, from the point of view of the subclass, the pub1 ic and pro tee ted members of its base
class appear as though they actually were declared in the subclass. For example, suppose that
class x and subclass Y are defined as

class X {
public:

int a;
protected:

int b;
private:

int c;
> ;

class Y : public X {
public:

int d;
> ;

and x and y are declared as

x x;

y y;

Then we can visualize objects x and Y as shown below.

CHAP. 111 COMPOSITION AND INHERITANCE 301

The pub1 ic member a of class x is inherited as a pub1 ic member of y, and the
protected member b of class x is inherited as a protected member of y. But the
private member c of class x is not inherited by Y. (The horizontal lines in each object
indicate the separate the public, protected, and private regions of the object.)

11.5 OVERRIDING AND DOMINATING INHERITED MEMBERS

If Y is a subclass of x, then Y objects inherit all the public and protected member
data and member functions of X. For example, the name data and printName (> function in
the Person class are also members of the Student class.

In some cases, you might want to define a local version of an inherited member. For example,
if a is a data member of x and if Y is a subclass of X, then you could also define a separate
data member named a for Y. In this case, we say that the a defined in Y dominates the a
defined in x. Then a reference Y. a for an object Y of class Y will access the a defined in Y
instead of the a defined in x. To access the a defined in x, one would use y . x : : a.

The same rule applies to member functions. If a function named f (> is defined in x and
another function named f (> with the same signature is defined in Y, then Y. f (> invokes the
latter function, and y . x : : f (> invokes the former. In this case, the local function y . f (>
overrides the f (> function defined in x unless it is invoked as y . x : : f (> .

These distinctions are illustrated in the following example.

EXAMPLE 11.6 Dominating a Data Member and Overriding a Member Function

Here are two classes, x and Y, with Y inheriting from X.

class X {
public:

void f(> { tout << "X::f() executing\n"; }
int a;

> ;

class Y : public X {
public:

void f() { tout << "Y::f() executing\n"; } // overrides X::f()
int a; // dominates X::a

But the members of Y have the same signatures as those in X. So Y'S member function f () overrides
the f () defined in X, and Y'S data member a dominates the a defined in X.

302 COMPOSITION AND INHERITANCE [CHAP. 11

Here is a test driver for the two classes:

main0
-t

x x;
x.a = 22;
x-w;
tout << 'x.a = ' c-c x.a CC endl;
y y;
y.a = 44; // assigns 44 to the a defined in Y
y.x: :a = 66; // assigns 22 to the a defined in X
y.fO; // invokes the f() defined in Y
y.X::f(); // invokes the f() defined in X
tout << I' y . a = I' C-K y.a CC endl;
tout -C-C "y.X::a = ' C-C y.X::a << endl;
x z = y;
tout << '1z.a = cc z.a << endl;

Here, y has access to two different data members named a and two different functions f () . The
defaults are the ones defined in the derived class Y. The scope resolution operator : : is used in the form
x: : to override the defaults to access the corresponding members defined in the parent class X. When
the x object z and initialized with y, its x members are used: z . a is assigned the value

This diagram illustrates the three objects x, y, and z:

y.X::a.

Example 11.6 and most of the remaining examples in this chapter are designed to illustrate
the intricacies of inheritance. They are not intended to exemplify common programming prac-
tice. Instead, they focus on specific aspects of C++ which can then be applied to more general
and practical situations. In particular, the method of dominating data members as illustrated in
Example 11.6 is rather unusual. Although it is not uncommon to override function members,
dominating data members of the same type is rare. More common would be the reuse of the same
data name with a different type, like this:

class Y : public X {

public:

double a; the data member a in class X had type int

CHAP. 1 l] COMPOSITION AND INHERITANCE 3 0 3

In an inheritance hierarchy, default constructors and destructors behave differently from
other member functions. As the following example illustrates, each constructor invokes its
parent constructor before executing itself, and each destructor invokes its parent destructor after
executing itself:

EXAMPLE 11.7 Parent Constructors and Destructors

class X {
public:

x() { tout << 'X::X() constructor executing\n'; }
-x(> { tout << "X::X() destructor executing\n'; >

1 ;

class Y : public X {
public:

Y() { tout << 'Y::Y() constructor executing\n'; }
-Y() { tout << "Y::Y() destructor executing\n"; }

1 ;

class Z : public Y {
public:

Z(int n) { tout CC 'Z: :Z(int) constructor executing\n"; }
-z() { tout << 'Z: :Z() destructor executing\n'; }

> ;

main0
1

z z(44);

When z is declared, the z : : z (int) constructor is called. Before executing, it calls the Y : : Y ()
constructor which immediately calls the x : : x () constructor. After the x : : x () constructor has fin-
ished executing, control returns to the Y: : Y (> constructor which finishes executing. Then finally the
z : : z () constructor finishes executing. The effect is that all the parent default constructors execute in
top-down order.

The same thing happens with the destructors, except that each destructor executes its own code before
calling its parent destructor. So all the parent destructors execute in bottom-up order.

Here is a more realistic example:

304 COMPOSITION AND INHERITANCE [CHAP. 11

EXAMPLE 11.8 Parent Constructors and Destructors

Here is a demo program that uses a base class Person and a derived class Student:

class Person {
public:

Person(const char* s)
{ name = new char[strlen(s)+l]; strcpy(name, s); >

-Person0 { delete [I name; }
protected:

char* name;
> ;

class Student : public Person {
public:

Student(const char* s, const char* m) : Person(s)
{ major = new char[strlen(m)+l]; strcpy(major, m); }

-Student0 { delete [] major; >
private:

char* major;
> ;

main0

Person x("Bob");
-t

Student y("Sarah", "Biology");

When x is instantiated, it calls the Per son constructor which allocates 4 bytes of memory to store the
string “Bob". Then y instantiates, first calling the Person constructor which allocates 6 bytes to store
the string “Sarah" and then allocating 8 more bytes of memory to store the string “B i o 1 ogy". The scope
of y terminates before z is instantiated because it is declared within an internal block. At that moment,
y’s destructor deallocates the 8 bytes used for “Biology" and then calls the Per son destructor which
deallocates the 6 bytes used for “Sarah". Finally the Per son destructor is called to destroy x, deallo-
cating the 4 bytes used for “Bob".

11.6 private ACCESS VERSES protected ACCESS

The difference between private and pro tee ted class members is that subclasses can
access protected members of a parent class but not private members. Since protected
is more flexible, when would you want to make members private.3 The answer lies at the heart
of the principle of information hiding: restrict access now to facilitate changes later. If you think
you may want to modify the implementation of a data member in the future, then declaring it
private will obviate the need to make any corollary changes in subclasses. Subclasses are
independent of private data members.

CHAP. 1 l] COMPOSITION AND INHERITANCE 305

EXAMPLE 11.9 The person Class with protected and private Data Members

Suppose that we need to know whether people (i.e., Person objects) are high school graduates. We
could just add a pro tee ted data member like sex that stores either 0 or 1. But we might decide later
to replace it with data member(s) that contain more detailed information about the person’s education. So,
for now, we set up a private data member hs to prevent derived classes from accessing it directly:

class Person {
public:

Person(char* n="", int s=O, char* nat="U.S.A.")
: name(n), sex(s), nationality(nat) { }

//
protectedl

String name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male
void setHSgraduate(int g) { hs \= g; }
int isHSgraduate() { return hs; }

private:
int hs; // = 1 if high school graduate

1 ;

We include pro tee ted access functions to allow subclasses to access the information. If we do later
replace t h e hs data member with something else, we need only modify the implementations of these two
access functions without affecting any subclasses.

11.7 virtual FUNCTIONS AND POLYMORPHISM

One of the most powerful features of C++ is that it allows objects of different types to
respond differently to the same function call. This is called polymorphism and it is achieved by
means of virtual functions. Polymorphism is rendered possible by the fact that a pointer to a
base class instance may also point to any subclass instance:

class X {
// l *-

class Y : public X {
// . . .

// Y is a subclass if X

main0

x* p; // p is a pointer to objects of base class X
y y;
p = &lr; // p can also point to objects of subclass Y

So if p has type x* (“pointer to type x”), then p can also point to any object whose type is a
subclass of x. However, even when p is pointing to an instance of a subclass Y, its type is still
x* . So an expression like p- >f (> would invoke the function f (> defined in the base class.

3 0 6 COMPOSITION AND INHERITANCE [CHAP. 11

Recall that p- > f () is an alternate notation for *p . f () . This invokes the member function f (>
of the object to which p points. But what if p is actually pointing to an object y of a subclass of the
class to which p points, and what if that subclass Y has its own overriding version of f () ? Which f (>
gets executed: X: : f () or Y : : f () ? The answer is that p- >f () will execute x : : f () because p
had type X* . The fact that p happens to be pointing at that moment to an instance of subclass Y is irrel-
evant; it’s the statically defined type x * of p that normally determines its behavior.

EXAMPLE 11.10 Using virtual Functions

This demo program declares p to be a pointer to objects of the base class X. First it assigns p to
point to an instance x of class X. Then it assigns p to point to an instance y of the derived class Y.

class X {
public:

void f() { tout << "X::f() executing\n"; }
> ;

class Y : public X {
public:

void f() { tout << “Y::f () executing\n"; }
> ;

main0
{

x x ;
y y;
x* p = &Lx;
P->fO;

P = &y;

P->fO;

// invokes X: :f() because p has type X*

// invokes X: :f() because p has type X*

Two function calls p- > f (> are made. Both calls invoke the same version of f (> that is defined in the
base class x because p is declared to be a pointer to x objects. Having p point to y has no effect on
the second call p- > f () .

Transform X: : f (> into a virtualfinction by adding the keyword “virtual" to its declaration:

class X {
public:

virtual void f() { tout << "X::f() executing\n"; }

With the rest of the code left unchanged, the output now becomes

Now the second call p- > f () invokes Y : :f() insteadof x: :f (>.

This example illustrates polymorphism: the same call p- >f (> invokes different functions.
The function is selected according to which class of object p points to. This is called dynamic
binding because the associatioti (i.e., binding) of the call to the actual code to be executed is

CHAP. 111 COMPOSITION AND INHERITANCE 307

deferred until run time. The rule that the pointer’s statically defined type determines which mem-
ber function gets invoked is overruled by declaring the member function virtual.

Here is a more realistic example: .

EXAMPLE 11.11 Polymorphism through virtual Functions

Here is a Person class with a Student subclass and a Professor subclass:

class Person {
public:

Person(char* s) { name = new char[strlen(s+l)]; strcpy(name, s);
J

void print0 { tout << "My name is ' CC name << ".\n"; }
protected:

char* name;
> ;

class Student : public Person {
public:

Student(char* s, float g) : Person(s), gpa(g) { }
void print0 { tout << "My name is ' << name

<< ' and my G.P.A. is ' << gpa CC ".\n"; }
private:

float gpa;
> ;

class Professor : public Person {
public:

Professor(char* s, int n) : Person(s), pubis(n) { }
void print0 { tout CC "My name is ' CC name

<< ' and I have ' << publs << ' publications.\n"; }
private:

int publs;
> ;

main0
-t

Person* p;
Person x("Bob") ;
p = &Lx;
p->print();
Student y("Tom", 3.47);
P = &y;
p->print();
Professor z("Ann", 7);
p = &z;
p->print();

308 COMPOSITION AND INHERITANCE [CHAP. 11

The print () function defined in the base class is not virtual. So the call p->print () always
invokes that same base class function Person : :print () because p has type Person*. The pointer
p is statically bound to that base class function at compile time.

Now change the base class function Person : :print () into a virtual function, and run the
same program:

class Person {
public:

Person(char* s) { name = new char[strlen(s+l)]; strcpy(name, s);

virtual void print0 { tout << 'My name is ' << name << '.\n"; }
protected:

char* name;

Now the pointer p is dynamically bound to the print () function of whatever object it points to. So
the first call p->print() invokes the base class function Person : : print () , the second call
invokes the derived class function student : : print () , and the third call invokes the derived class
function Professor: :print (>. We say that the call p->print() is polymorphic because its
meaning changes according to circumstance.

In general, a member function should be declared as virtual whenever it is anticipated that at
least some of its subclasses will define their own local version of the function.

11.8 VIRTUAL DESTRUCTORS

- Virtual functions are overridden by functions that have the same signature and are defined in
subclasses. Since the names of constructors and destructors involve the names of their different
classes, it would seem that constructors and destructors could not be declared virtual. That is
indeed true for constructors. However, an exception is made for destructors.

Every class has a unique destructor, either defined explicitly within the class definition or
implicitly by the compiler. An explicit destructor may be defined to be virtual. The following
example illustrates the value in defining a virtual destructor:

EXAMPLE 11.12 Memory Leak

This program is similar to Example 11.6:

class X {
public:

x0 1 p = new int[2]; tout << "X0. "; >
-X() { delete [] p; tout << "-X().\n"; >

private:
int* p;

> ;

CHAP. 1 l] COMPOSITION AND INHERITANCE 309

class Y : public X {
public:

yo -t q = new int[1023]; tout << "Y(): Y::q = H cc q cc ". "; }
-Y() { delete [] q; tout << 'I-Y (> . " ; }

private:
int* q;

) ;

main0
-I

for (int i = 0; i c 8; i++){
X* r = new Y;
delete r;

x() * y(): Y::q = -0x582I.c. -X() *
:.;:: ;‘.

.,x0.
x (‘) :.

. . ..y:(1 .f y3..: q =.$. fJ3i$59..2.~.~.; .‘.. .+q(3. ‘*’ ._ :. ‘,..‘, ;,.. ,‘, 1.;; ,.,. ;.: ,’ ‘I. ,:. ;; ,.., +..,‘I

V(): ox5a29c; ‘-x-(.) i
‘. .’ . . .\‘.

n:cJ =
,‘...,.,
.I L” , ’ ..:‘.,., - ,

?W
WI .:

y () t y :’ = q = fjx$bi,J& wx () ‘(I. . ’ .: “‘,.:’ ’ _. .: . . ‘. ,, :’ ,+‘.;/,< :
w 1 .: Y::q’= OX5C22G. -y () + - ‘,’ ‘, ,‘. ;’ I” : ,,;’ ‘:. ,.~:-,~.:-,:;.~,~,~~:~~.

x0 y (‘.), ; 31; “, q z .0$5d2~c I -X’(.j ,+ ‘. , ’
‘..; :,;I., .‘:“.; ?..,

_
XI)
x (.) -:

y i.).: yr z.q ; qy&&~c,, wx (j ~ : , , : : :, : r ‘;: ‘:I’ ‘,, ,.,;:::y, ;:.‘-:_ :

� . :

: _:. . .

.* Y() : .‘Y: :q =’ &5ggJ7,; � 5 -⌧(1) l (,. ,. . ,, - ,: � : :.� .,,;,,.�, /:iji.,::.

. . .’ :.‘.
Each iteration of the for loop creates a new dynamk object. As in Example 11.6, the cons&c&&&e

invoked in top-down sequence: first x () and then Y (> , allocating 4100 bytes of storage (using 4 bytes
for each int). But since r is declared to be a pointer to x objects, only the x destructor is invoked,
deallocating only 8 bytes. SO on each iteration, 3992 bytes are lost! This loss is indicated by the actual yal-
ues of the pointer Y : : q.

To plug this leak, change the destructor -X () into a virtual function:

class X {
public:

x0 1 p = new-int[2]; tout cc "X0. 'I; }
v i r t u a l -X() { delete [] p; tout cc "-X().\n"; }

private:
int* p;

With the base class destructor declared virtual, each iteration of the for loop calls both destructors,
thereby restoring all memory that was allocated by the new operator. This allows the same memory to be
reused for the pointer r.

310 COMPOSITION AND INHERITANCE [CHAP. 11

This example illustrates what is known as a memory leak. In a large-scale software system,
this could lead to a catastrophe. Moreover, it is a bug that is not easily located. The moral is:
declare the base class destructor virtual whenever your class hierarchy uses dynamic binding.

As noted earlier, these examples are contrived to illustrate specific features of C++ and are
not meant to exemplify typical programming practice.

11.9 ABSTRACT BASE CLASSES

A well-designed object-oriented program will include a hierarchy of classes whose interrela-
tionships can be described by a tree diagram like the one below. The classes at the leaves of this

Vertebrate

Bird Fish Mammal

ItI
Owl Penguin Bat Carnivore Elephant Primate Rodent

Bear Cat Dog Monkey Human Beaver Mouse

tree (e.g., Owl, Fish, Dog) would include specific functions that implement the behavior of
their respective classes (e.g., Fish. swim () , Owl. fly () , Dog. dig ()). However, some of
these functions may be common to all the subclasses of a class (e.g., Vertebrate.eat(),
Mammal .suckle(), Primate.peel()). Such functions are likely to be declared virtual
these base classes, and then overridden in their subclasses for specific implementations.

in

If a virtual function is certain to be overridden in all of its subclasses, then there is no
need to implement it at all in its base class. This is done by making the virtual function
“pure.” A pure virtual member function is a virtual function that has no implementation in its
class. The syntax for specifying a pure virtual member function is to insert the initializer “= o ; ”
in place of the functions body, like this:

virtual int f() =O;

For example, in the Vertebrate class above, we might decide that the eat (> function
would be overridden in every one of its subclasses, and thus declare it as a pure virtual member
function within its Vertebrate base class:

class Vertebrate {
public:

virtual void eat0 =O; // pure virtual function
1 ;

class Fish : public Vertebrate {
public:

void eat(); // implemented specifically for Fish class elsewhere
> ;

CHAP. 1 l] COMPOSITION AND INHERITANCE 311

The individual classes in a class hierarchy are designated as either “abstract” or “concrete”
according to whether they have any pure virtual member functions. An abstract base class is a
class that has one or more pure virtual member functions. An concrete derived class is a class
that does not have any pure virtual member functions. In the example above, the Vertebrate
class is an abstract base class, and the Fish class is a concrete derived class. Abstract base
classes cannot be instantiated.

The existence of a pure virtual member function in a class requires that every one of its
concrete derived subclasses implement the function. In the example above, if the methods
Vertebrate.eat(), Mammal. suckle 0, and Primate.peel() were the only pure virtual
functions, then the abstract base classes (“ABCs”) would be Vertebrate, Mammal, and
Primate, and the other 15 classes would be concrete derived classes (“CDCs”). Each of these 15
CDCs would have its own implementation of the eat (> function, the 11 CDCs of the Mammal
class would have their own implementation of the suckle () function, and the 2 CDCs of the
Primate class would have their own implementation of the peel (> function.

An ABC is typically defined during the first stages of the process of developing a class hier-
archy. It lays out the framework from which the details are derived in the ABC’s subclasses. Its
pure virtual functions prescribe a certain uniformity within the hierarchy.

EXAMPLE 11.13 A Hierarchy of Media Classes

Here is a hierarchy of classes to represent various media objects:

Media

Audio Book Periodical

/t\
CD Tape Record

/ \\
Magazine Newspaper Journal Newsletter

The primary ABC is the Media class:

class Media {
public:

virtual void print0 =O;

virtual char* id() =O;

protected:
String title;

1 ;

It has two pure virtual functions and one data
Here is the concrete Book subclass:

class Book : Media {

member.

public:
Book(String a=" ", String t=" ", String p='", String i=" ")
: author(a), publisher(p), isbn(i) { title = t; >

void print.0 { tout CC title << ' by ' << author << endl; }
char* id() { return isbn; };

private:
String author, publisher, isbn;

> ;

312 COMPOSITION AND INHERITANCE [CHAP. 11

It implements the two virtual functions using its own member data.

Here is the concrete CD subclass:

class CD : Media {
public:

CD(String t=" ", String c=" ", String m=" 'I, String n=" I')
: composer(c), make(m), number(n) { title = t; }

void print0 { tout << title << ", " << composer << endl; }
char* id() { return make + ' ' + number; };

private:
String composer, make, number;

1 ;

The CD class will also be a CDC of the Audio class, which will be another ABC. So when the Audio
class is defined, its pure virtual functions will also have to be implemented in this CD class.

Here is the concrete Magazine subclass:

class Magazine : Media {
public:

Magazine(String t="", String i="", int v=O, int n=O)
: issn(i), volume(v), number(n) { title = t; }

void print0
{ tout << title << ' Magazine, Vol. '

CC volume << ", No." << number GC endl; >
char* id() { return issn; };

private:
String issn, publisher;
int volume, number;

The Magazine class will also be a CDC of the Periodical class, which will be another ABC. So
when the Periodical class is defined, its pure virtual functions will also have to be implemented in
this Magazine class.

Here is a test driver for the four classes defined above:

main0 .

c

Book book("Bjarne Stroustrup", "The C++ Programming Language",
"Addison-Wesley", "0-201-53992-6");

Magazine magazine("TIME", "0040-781X", 145, 23);
CD cd("BACH CANTATAS", "Johann Sebastian Bach",

"ARCHIV", "D120541");
book.print();
tout c< '\tid: ' <c book.id() << endl;
magazine.print();
tout c< "\tid: ' << magazine.id() << endl;
cd.print();
tout c< "\tid: fl C< cd.id() << endl;

CHAP. 1 l] COMPOSITION AND INHERITANCE 313

Here is the output:

Note that all the calls to the print () and id () functions are independent of their class implementa-
tions. So the implementations of these functions could be changed without making any changes to the pro-
gram. For example, we could change the Book : : print (> function to

void print0
{ tout << title << " by ' << author

<< ".\nPublished by 'I <-K publisher << ".\n"; >

and obtain the output

without any changes to the program.

11.10 OBJECT-ORIENTED PROGRAMMING

Object-oriented programming refers to the use of derived classes and virtual functions. A
thorough treatment of object-oriented programming is beyond the scope of this book. See the
books [Bergin], [Perry], and [Wang] listed in Appendix E for a more thorough treatment.

Suppose that you have three televisions, each equipped with its own video cassette recorder.
Like most VCRs, yours are loaded with features and have confusing user manuals. Your three
VCRs are all different, requiring different and complex operations to use them. Then one day
you see on the shelf of your local electronics store a simple remote controller that can operate all
kinds of VCRs. For example, it has a single “RECORD” button that causes whatever VCR it is
pointed at to record the current TV program on the current tape. This marvelous device repre-
sents the essence of object-oriented programming (“OOP”): conceptual simplification of diverse
implementations by means of a single inteeace. In this example, the interface is the remote
controller, and the implementations are the (hidden) operations within the controller and the
individual VCRs that carry out the requested functions (“RECORD”, “STOP”, “PLAY”, etc.).
The interface is the abstract base class below:

class VCR {
public:

virtual void on() =O;
virtual void off0 =O;
virtual void record0 =O;
virtual void stop0 =O;
virtual void play0 =O;

> :

314 COMPOSITION AND INHERITANCE [CHAP. 11

and the implementation s are the concrete derived classes below:

class Panasonic : public VCR {
public:

void on();
void off();
void record();
void stop();
void play();

> ;

class Sony : public VCR {
public:

void on();
void off();
void record();
void stop();
void play();

> ;

class Mitsubishi : public VCR {
public:

void on();
void off();
void record();
void stop();
void play();

One important advantage of object-oriented systems is extensibility. This refers to the ease
with which the system can be extended. In the example above, the VCR controller would be
called “extensible” if it automatically works the same way on new VCRs that we might add in
the future. The controller should not have to be modified when we extend our collection of
VCRs, adding a Toshiba or replacing the Sony with an RCA.

In the object-oriented programming, we imagine two distinct points of view of the system:
the view of the consumer (i.e., the client or user) that shows what is to be done, and the view of
the manufacturer (Le., the server or implementor) that shows how it is to be done. The consumer
sees only the abstract base class, while the manufacturer sees the concrete derived classes. The
customer’s actions are generally called operations, as opposed to the manufacturer’s implemen-
tations of these actions which are called generally methods. In C++, the actions are the pure
virtual functions, and the methods are their implementations in the concrete derived classes. In
this context, the abstract base class (the user’s view) is called the system inteqace, and the
concrete derived classes (the implementor’s view) are called the system implementation:

This dichotomy is most effective when we use pointers to objects, as in Example 11.13. Then
we can exploit dynamic binding make the system interface even more independent from the
system implementation. Extensibility is facilitated by the fact that only the newly added methods
need to be compiled.

CHAP. 1 l] COMPOSITION AND INHERITANCE 315

The Two Views in an Object-Oriented Program

The System Interface
(user’s view)

shows what is done
abstract base class

operations
pure virtual functions

The System Implementation
(implementor’s view)
shows how it is done

concrete derived classes
methods
functions

Review Questions

11.1 What is the difference between composition and inheritance?

11.2 What is the difference between protected and private members?

11.3 How do the default constructors and destructors behave in an inheritance hierarchy?

11.4 What is a virtual member function?

11.5 What is a pure virtual member function?

11.6 What is a memory leak?

11.7 How can virtual destructors plug a memory leak?

11.8 What is an abstract base class?

11.9 What is a concrete derived class?

11.10 What is the difference between static binding and dynamic binding?

11.11 What is polymorphism?

11.12 How does polymorphism promote extensibility?

11.13 What is wrong with the following definitions:

class X {
protected:

int a;
> ;

class Y : public X {
public:

void set(X x, int c) { x.a = C; >
> ;

Solved Programming Problems

11.14 Implement a Card class, a composite Hand class, and a composite Deck class for play-
ing poker.

316 COMPOSITION AND INHERITANCE [CHAP. 11

First we implement a Card class:

enum Rank {two, three, four, five, six, seven, eight,
nine, ten, jack, queen, king, ace};

enum Suit {clubs, diamonds, hearts, spades};

class Card {
friend class Hand;
friend class Deck;
friend ostream& operatorcc(ostream&, const Card&);

public:
char rank0 { return rank-; }
char suit0 { return suit-; }

private:
Card0 1 1;
Card(Rank rank, Suit suit) : rank (rank), suit (suit) { };- -
Card(const Card& c) : rank-(c.rank >, suit- - (c.suit)- { };
-Card0 1 1;
Rank rank-;
Suit suit-;

This class uses enumeration types for a card’s 13 possible ranks and 4 possible suits. Anticipating the
implementation of Hand and Deck classes, we declare them here to be friend classes to the
Card class. This will allow them to access the private members of the Card class. Notice that
all three constructors and the destructor are declared to be private. This will prevent any cards to be
created or destroyed except by the Card's two friend classes.

Here is the implementation of the overloaded insertion operator CC for cards:

ostream& operator<c(ostream& ostr, const Card& card)
{

switch (card.rank-) {
case two : ostr cc "two of II;
case three : ostr CC "three of ";
case four : ostr cc "four of ";
case five : ostr cc "five of ";
case six : ostr c< "six of ";
case seven : ostr CC "seven of ";
case eight : ostr cc "eight of ";
case nine : ostr cc "nine of ';
case ten : ostr cc "ten of ";
case jack : ostr cc "jack of ";
case queen : ostr CC "queen of ";
case king : ostr cc "king of ";
case ace : ostr cc "ace of ";

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

>
switch (card.suit-) {

case clubs : ostr CC "clubs"; break;
case diamonds : ostr C< "diamonds"; break;
case hearts : ostr C< "hearts"; break;
case spades : ostr cc "spades"; break;

return ostr;

CHAP. 1 l] COMPOSITION AND INHERITANCE 317

Here is the implementation of the Hand class:

#include "Card.h"

class Hand {
friend class Deck;

public:
Hand(unsigned n=5) : size(n) { cards = new CardhI;)
&Hand0 { delete [] cards; }
void display();
int isPair();
int isTwoPair();
int isThreeOfKind.0;
int isStraight();
int isFlush();
int isFullHouse();
int isFourOfKind();
int isStraightFlush();

private:
unsigned size;
Card* cards;
void sort();

1 ;

It uses an array to store the cards in the hand. The sort () function is a private utility that is called
by the Deck class after dealing the hand. It can be implemented by any simple sort algorithm such as
the Bubble Sort. The di splay () function is also straightforward, using the insertion operator CC
that is overloaded in the Card class.

The eight boolean functions that identify special poker hands are not so straightforward. Here is the
implementation of the i sThree0 f Kind () function:

int Hand: :isThreeOfKind()

if (cards[O].rank- == cards[l].rank-
&SC cards[l].rank- == cards[2].rank-
SC& cards[2].rank- != cards[3].rank-
&SC cards[3].rank- != cards[4].rank-) return 1;

if (cards[O].rank- != cards[l].rank-
&SC cards[l].rank- == cards[2].rank-
&& cards[2].rank- == cards[3].rank-
&SC cards[3].rank- != cards[4].rank-) return 1;

if (cards[O].rank- != cards[l].rank-
&& cards[l].rank- != cards[2].rank-
&& cards[2].rank- == cards[3].rank-
&& cards[3].rank- == cards[4].rank-) return 1;

return 0;

Since the hand is sorted by rank-, the only way there could be three cards of the same rank with the
other two cards of different rank would be one of the three forms: xxxyz, xyyyz, or xyzzz. If any of these
three forms is identified, then the function returns 1. If not it returns 0.

The isPair () function,the isTwoPair () function,the isFullHouse () function, and
the isFourOfKind () function are similartothe isThreeOfKind () function.

318 COMPOSITION AND INHERITANCE [CHAP. 11

The isstraight () function, the isFlush () function,andthe isStraightFlush()
function are also tricky. Here is the i sF lus h () function:

int Hand: :isFlush()
1

for (int i = 1; i < size; i++)
if (cards[i].suit- != cards[O].suit - > return 0;

return 1;

This compares the sui t of each of the second through fifth cards (card [l] through card [41).
If any of these are not thesame, then we know immediately that the hand is not a flush and can return 0.
If the loop terminates naturally, then all four pairs match and 1 is returned.

Here is the Deck class:

#include "Rand0m.h"
#include 'Hand.h"

class Deck {
public:

Deck();
void shuffle();
void deal(Hand&, unsigned =5>;

private:
unsigned top;
Card cards[52];
Random random;

1 ;

It uses the Random class in its shu f f 1 e () function. Note that
a private member since it is used only by another member function:

the random object is declared as

void Deck::deal(Hand& hand,
1

unsigned size=5)

for (int i = 0; i < size; i++)
hand.cards[i] = cards[top++];

hand.sort();

The top member always locates the top of the deck; i.e., the next card to be dealt. So the deal ()
function copies the top five cards off the deck into the hand's cards array. Then it sorts the hand.

The Deck's constructor initializes all 52 cards in the deck, int the order two of clubs, three
of clubs, four of clubs,..., ace of spades:

Deck::Deck()
1

for (int i = 0; i < 52; i++) {
cards[i] .rank = Rank(i%l3);-
cards[i].suit- = Suit(i/l3);

1
top = 0;

CHAP. 111 COMPOSITION AND INHERITANCE 319

So if hands are dealt without shuffling first, the first hand would be the straight flush of two through six
of clubs.

Finally, here is the shu f f 1 e () function:

void Deck::shuffle()

for (int i = 0; i < 52; i++) { // do 52 random swaps
int j = random.integer(O, 51);
Card c = cards[i];
cards[i] = cards[j];
cards[j] = c;

>
top = 0;

It swaps the cards in each of the 52 elements with the card in a randomly selected element of the deck’s
cards array

The implementations of the other functions are left as exercises. (See Problem 11.18.)

11.15 Implement the following class hierarchy:

Shape

TwoDimensional ThreeDimensional

Triangle Rectangle Circle Box Cone Cylinder Sphere

Here are the abstract base classes:

class Shape {
publx:

virtual void print0 = 0;
virtual float area0 = 0;

1 ;

class TwoDimensional : public Shape {
public:

virtual float perimeter0 = 0;
1 ;

class ThreeDimensional : public Shape {
public:

virtual float volume0 = 0;

Note that the print () function and the area () function prototypes are the same for all classes
in this hierarchy, so their interfaces (pure virtual functions) are placed in the Shape base class,
But only two-dimensional shapes have perimeters, and only three-dimensional shapes have volumes, so
their interfaces are placed in the appropriate second-level ABCs.

3 2 0 COMPOSITION AND INHERITANCE [CHAP. 11

Here is the Circle class:

class Circle : public TwoDimensional {
public:

Circle(float r) : radius(r) { }
void print0 { tout cc "Shape is a circle.\n"; }
float perimeter0 { return 2*pi*radius; }
float area0 { return pi*radius*radius; }

private: .

float radius;
> ;

Here are two of the seven concrete derived classes:

class Cone : public ThreeDimensional {
public:

Cone(float r, float h) : radius(r), height(h) { }
void print();
float area();
float volume() { return pi*radius*radius*height/3; }

private:
float radius, height;

1 ;

void Cone::print()
1

tout cc "Cone: radius = ' << radius cc ", height = '
CC height cc endl;

1

float Cone::area()
{

float s = sqrt(radius*radius + height*height);
return pi*radius*(radius + s);

The other five concrete derived classes are similar.

11.16 Define and test a Name class whose objects looks like this:

X

last

first

middle

title

suffix

nick

Jame

Then modify the Person class so that name has type Name instead of type String.

CHAP. 1 l] COMPOSITION AND INHERITANCE 321

Here is the interface for the Name class:

#include ~3tring.h"

class Name {
friend ostream&
friend istream&

public:

operatorc<(ostream&, const Name&);
operator>>(istream&, Name&);

Name(char*, char*, char*, char*, char*, char*);
String last0 { return last-; }
String first0 { return first-; }
String middle0 { return middle-; }
String title0 { return title-; }
String suffix0 { return suffix-; }
String nick0 { return nick-; }
void last(String s) { last- = s; }
void first(String s) { first- = s; }
void middle(String s) { middle- = s; }
void title(String s) { title- = s; }
void suffix(String s) { suffix- = s; }
void nick(String s) { nick- = s; }
void dump0 ;

private:
String last-, first-, middle-, title-, suffix-, nick-;

Here is an implementation for the Name class:

Name: :Name(char* last=" ", char* first="", char* middle="",
char* title="", char* suffix=" ", char* nick=" ")

: last (last), first-(first), middle-(middle), title-(title),-
suffix-(suffix), nick-(nick) { }

void Name::dump()
1.

tout cc " \t Last Name: ' C-C last- CC endl; '
tout C-C "\t First Name: ' CC first- CC endl;
tout CC '\tMiddle Names: " CC middle- CC endl;
tout << '\t ' Title: ' CC title- CC endl;
tout << ' \t Suffix: ' CC suffix- CC endl;
tout cc '\t Nickname: ' CC nick- CC endl;

ostream&> operatorcc(ostream& out, const Name& x)
{

if (x.title- != "I) out << x.title- cc ' ';
out CC x.first- cc " ';
if (x.middle- != II) out CC x.middle CC " ';-
out << x.last-;
if (x.suffix- != I") out CC " ' CC x.suffix-;
if (x.nick- != "") out cc ', \"" CC x.nick- CC "\"";
return out;

322 COMPOSITION AND INHERITANCE [CHAP. 11

istream& operator>>(istream& in, Name& x)

char buffer[80];
in.getline(buffer, 80, ' I ');
x.last- = buffer;
in.getline(buffer, 80, ' I '>;
x.first- = buffer;
in.getline(buffer, 80, ' I '>;
x.middle- = buffer;
in.getline(buffer, 80, ' I '>;
x.title- = buffer;
in.getline(buffer, 80, ' I ');
x.suffix- = buffer;
in.getline(buffer, 80);
x.nick- = buffer;
return in;

Finally, here is the modified Per son class:

#include "String.h"
#include "Date.h"
#include "Name.h"

class Person {
public:

Person(char* n="", int s=O, char* nat="U.S.A.")
: name(n), sex(s), nationality(nat) { }

void setDOB(int m, int d, int y) { dob.setDate(m, d, y); }
void setDOD(int m, int d, int y) { dod.setDate(m, d, y); >
void printName { tout c< name; }
void printNationality() { tout <c nationality; >
void printDOB() { tout <c dob; }
void printDOD() { tout <c dod; >

protected:
Name name;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male
String nationality;

Here is a test driver for the Name class, with test run:

#include ciostream.h>
#include "Name.h"

'main0
-t

Name x("Bach", "Johann", "Sebastian");
tout c< x c< endl;
x.dump();
x.last("Clinton");

CHAP. 1 l] COMPOSITION AND INHERITANCE 323

x.first("William");
x.middle("Jefferson");
x.title("President");
x.nick("Bill");
tout CC x CC endl;
x.dump();
tin >> x;
tout << x CC endl;
tout CC "x.last = [" << x.last() << I I I\ n" ;
tout << "x.first = [" << x.first() << "]\n";
tout << "x.middle = [" << x.middle() << "]\n";
tout << "x.title = [" << x.title() << "]\n";
tout << "x.suffix = [" cc x.suffix() c-c "]\n";
tout << "x.nick = [" << x.nick() << "]\n";

Supplementary Problems

11.17 Devise a system interface and a system implementation, similar to that for the VCR class in
Section 11.10, but for a network of printers. Assume that the network includes several differ-
ent kinds of printers. Your ABC should represent a generic printer.

Supplementary Programming Problems

11.18 Finish the implementation of the Card, Hand, and Deck classes defined in Problem 11.14,
and test them.

324 COMPOSITION AND INHERITANCE [CHAP. 11

11.19 Apply the Monte Carlo method (Problem 3.23 and Problem 4.60) to the Deck class (Prob-
lem 11.14) to estimate the odds of being dealt each of the eight special poker hands. Your out-
put should look something like this:

J;Eow many klands: 2598960
Il.200606 pair&
123964 two pairs
56255 three czf a kind ,
8726 straights
so54 flushes
3.745 f.uLL ksases .
405 foxpr gf a kind
68 -straight f l u s h e s

The number 2598,960 is the actual number of different 5-card hands that could be dealt from
an ordinary deck of 52 playing cards. Here are the actual number of possible different hands:

Table 11.1 Possible Poker Hands

H a n d Number of Hands

One Pair 1,098,240

Two Pairs 123,552

Three of a Kind 54,912

Straight 10,200

Flush 5,108

Full House 3,744

Four of a Kind 626

Straight Flush 40

11.20 The shuf f 1 e (> function implemented in Problem 11.14 is not how most players shuffle
cards. The common method is to interleave two halves of the deck. Done precisely, this would
transform our initialized deck into the following order: two of clubs, two of hearts,
three of clubs, three of hearts,..., ace of diamonds, ace of spades. In
terms of the cards initial numbers, this would be 0, 26, 1, 27, 2, 28, 3, 29, . . ., 24, 50, 25, 51.
This algorithm is known as the peeect shufle.

a. Implement this method in place of the other, and test your resulting Deck class.
6. Determine empirically how many perfect shuffles it takes to restore the deck to its original

ordering.

11.21 Define and test an Address class whose objects looks like this:

Address

CHAP. 1 l] COMPOSITION AND INHERITANCE 325

Each data member should be a String object. Then modify the Person class by adding
an addre s s data member with type Addre s s .

11.22 Define and test a Telephone class whose objects looks like this:

Telephone

Each data member should be a string object. Then modify the Per son class by adding
a t e 1 ephone data member with type Telephone. Write your overloaded insertion and
extraction operators so that they process the number in this format: (2 0 2 > 4 5 6 - 14 14.

11.23 Define and test a Money class whose objects represent dollar amounts. Use a cents data
member of type unsigned.I

11.24 Define and test a University class whose objects represent universities. Include the fol-
lowing data members:

String name;
Address address; .
Date founded;

11.25 Define and test a Degree class whose objects represent college degrees. Include the follow-
ing data members:

String name, discipline;
University university;
Date awarded;

11.26 Define and test a Faculty class whose objects represent universities. Include the following
data members:

int Rank;
Money salary;
String dept, office;
Degree highestDegree;

11.27 Modify and test the Student class by adding the following data members:

Address campusAddress;
Telephone CampusTelephone;
String school, emailAddress
Faculty advisor, degreesought;

326 COMPOSITION AND INHERITANCE [CHAP. 11

11.28 Define and test a subclass Undergrad that inherits from the Student class and includes
the following data members:

String school, major;
Person parent;

11.29 Define and test a subclass Grads tudent that inherits from the Student class and includes
the following data members:

String department;
Degree lastDegree;

11.30 Implement the following class hierarchy, using your results of the previous problems:

Person

/t\
Student Faculty Staff

/! /t\
Undergrad GradStudent Administrator Secretary Maintenance

The Person, Student, and Staff classes should be abstract base classes; the other six
classes should be concrete derived classes.

11.31 Implement the following class hierarchy:

Account

SCrldidsurance
Bank

Checking Savings Mortgage Mastercard VISA Life Auto Home Health

The top four (internal node) classes should be abstract base classes, and the bottom nine (leaf
node) classes should be concrete derived classes.

Answers to Review Questions

11.1 Composition of classes refers to using one class to declare members of another class. Inheritance refers
deriving a subclass from a base class.

11.2 A private member is inaccessible from anywhere outside its class definition. A pro tee ted
member is inaccessible from anywhere outside its class definition, with the exception that it is accessi-
ble from the definitions of derived classes.

CHAP. 1 l] COMPOSITION AND INHERITANCE 327

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

In an inheritance hierarchy, each default constructor invokes its parent’s default constructor before it
executes itself, and each destructor invokes its parent’s destructor after it executes itself. The effect is
that all the parent default constructors execute in top-down order, and all the parent destructors execute
in bottom-up order.

A vi r tual member function is a member function that can be overridden in a subclass.

A pure virtual function is a virtual member function that cannot be called directly; only its
overridden functions in derived classes can be called. A pure virtual function is identified by the
initializer = 0 at the end of its declaration.

An abstract base class is a base class which includes at least one pure virtual function. Abstract
base classes cannot be instantiated.

A concrete derived class is a subclass of an abstract base class that can be instantiated; i.e., one which
contains no pure virtual functions.

Static binding refers to the linking of a member function call to the function itself during compile time,
in contrast to dynamic binding which postpones that linking until run time. Dynamic is possible in C++
by using virtual functions and by passing to pointers to objects.

Polymorphism refers to the run-time binding that occurs when pointers to objects are used in classes that
have virtual functions. The expressions p- > f () will invoke the functions f () that is defined
in the object to which p points. However, that object could belong to any one of a series of subclasses,
and the selection of subclass could be made at run time. If the base-class function is virtual, then
the selection (the “binding”) of which f () to invoke is made at run time. So the expression p- > f ()
can take “many forms.”

Polymorphism promotes extensibility by allowing new subclasses and methods to be added to a class
hierarchy without having to modify application programs that already use the hierarchy’s interface.

The protected data member a can be accessed from the derived Y only if it is the member of the
current object (i.e. only if it is this- >a). Y cannot access x . a for any other object x.

Chapter 12

Stream 110

12.1 STREAM CLASSES

The C++ programming language itself does not include any input/output (I/O) facilities. That
is why we have to use the directive

#include <iostream.h>

in every program that uses I/O. The ios tream . h header file includes the definitions *for the I/O
library. This chapter describes the contents of those files and how they are used.

The I/O library defines the following two class hierarchies of stream classes:

ios

istream ostream

/CELlJ\treLL\

istrstream istringstream ostrstream ostringstream

A
fstream strstream

The classes that are derived from the ios base class are used for high-level stream processing,
while the classes that are derived from the s treambuf base class are used for low-level stream
processing.

The ios t ream class is the one that we usually use for ordinary I/O. Notice that is it a
subclass of both the i stream class and the os tream class, both of which are subclasses of the
ios base class. The three classes with “f s tream" in their name are used for file processing. The
four classes with “S trs tr" in their name are used for in-memory string stream processing. The
s tdiobuf class is used for combining C++\ stream I/O with the older C I/O functions.

12.2 THE ios CLASS

The ios class serves as the base class for the other streamclasses. Its primary purpose is to
control the buffer for whatever stream object has been instantiated. This means that the stream
controls how characters are inserted into or extracted from the buffer. To do that, the ios object
maintains a collection of data members that control properties such as the number base (octal,
decimal, hexadecimal) that is to be used, the width of the display field, the number of digits

328

CHAP. 121 STREAM I/O 329

displayed for floating point numbers, etc. We shall examine the pro tee ted part of the ios ,
class here in order to gain a deeper understanding of the functioning interface.

Here is part of the ios class:

class ios {
public:

typedef unsigned long fmtflags; // 32-bit bitstrings
typedef unsigned char iostate; // 8-bit bitstrings
// other members included here

protected:
streambuf* -strbuf; // points to buffer
ostream* -tie; // points to ostream tied to istream
int -width; // width of output field
int _prec; // precision for floats
char - fill; // fill character for padding field
fmtflags - flags; // holds all the format flags
iostate -state; // holds the current io state
ios(streambuf* -strbuf = 0, ostream* - tie = 0);
-ios();

1;
The two defined types (f mt f lags and ios ta t e) are unsigned integer types; i.e., bits strings.
Each of the 32 bits of the data member flags and each of the 8 bits of the data member-
-state can be used to represent different Boolean parameters for the stream. The default
constructor and the destructor for the ios class are declared protected so that the class
cannot be instantiated.

Note that the ios data members are all pro tee ted. This means that they are accessible
only from within a stream’s member functions; they are not accessible from user programs.

A stream object is an instance of a subclass of the ios class. So every stream object must have
the seven data members declared in the ios class. Such an object x can be imagined like this:

X

-width

_prec

fill-

-f lags

-strbuf w

-tie E t -

The object’s seven data members include a pointer to a s t reambu f , a pointer to an os tream,

two intS, a char, and two bit strings whose values are represented in octal. The -width
parameter determines how wide the output field will be, the srec parameter determines how
many digits will be displayed for floats and doubles, and the f i 11- parameter determines
which character will be used for padding a justified field. If this object x is an output stream,
then output will use a 15character field with 9-digit precision and the character 1 # I for fill. The
- flags and -state data members are bit-strings that hold many booZean parameters. The
-s treambuf pointer is used to connect the stream to its buffer, and the -tie pointer is used to
“tie” an input object (like tin) to an output object (like tout).

330 STREAM I/O [CHAP. 12

The -flags member is a 32-bit string, so it can hold 32 boolean “flags”. Only about half of
these are used by ios. Those values are given symbolic names by an enum declaration:

class ios {
public:

enum {
skipws = 01,
left = 02,
right = 04,
internal = 010,
dec = 020,
act = 040,
hex = 0100,
showbase = 0200,
show-point = 0400,
uppercase = 01000,
showpos = 02000,
scientific = 04000,
fixed = 010000,
unitbuf = 020000,
stdio = 040000

> ;

// values for format flag:
// skip white space
// left justified in field
// right justified in field (default)
// left and right justified
// use number base 10 for integers
// use number base 8 for integers
// use number base 16 for integers
// show number base for integers
// print trailing zeros for floats
// use 'E.', 'x' instead of 'e', 'x'
// use I+' with positive integers
// use scientific notation for floats
// use fixed point notation for floats
// flush after each output operation
// flush after each character output

// other members included here

Each of these 15 constant values is a power of 2, and is represented in octal form. By adding
these values for the flags that are “set,” we obtain the complete flag setting for the stream object
in a single octal number. For example, the x object shown above has the octal value o 3 2 4 o for
its _format data member. This octal number decomposes as

03240 = 02000 + 01000 + 0200 + 040

which indicates that four flags are set: the showpos flag (0 2 o o 0) signaling that the + sign is to
be included for positive integers; the uppercase flag (0 IO o 0) signaling that the I E I and I x 1
characters are to be used instead of the I e I and 1 x I characters when displaying numbers like
2.308~12 and 0x1204; the showbase flag (0200) signaling that the number base is to be
displayed for positive integers, and the oc t flag (0 4 0) signaling that integers will be input and
output in octal.

A stream’s data members are all protected, SO the ios class provides a set of access
functions for them. All seven of the data members have access functions that return their values:

class ios {
public:

// more members included here
streambuf* rdbuf() const { return -strbuf; }
ostream* tie0 const { return -tie; }
int width0 const { return -width; }
int precision0 const { return _prec; }
char fill0 const { return -fill; }
long flags0 const { return -flags; }
int rdstate() const { return -state; }
// more members included here

1 ;

CHAP. 121 STREAM I/O 331

EXAMPLE 12.1 Testing Some of the ios Access Functions

main0
1

tout -c-c "cout.width() = " << cout.width() C< endl;
tout << "cout.precision() = " x-c cout.precision() x-c endl;
tout << "cout.fill() -- [" << cout.fill() -c< "1" xc endl;
tout << Yin.flags() -- ' -cc act -cc cin.flags() << endl;
tout << "cout.flags() = " << act << cout.flags() << endl;

cout.width() = 0
'xx&precision{) = 6
couLfilf~) = [1
tin. flags () = 200UU000QU~
cout.f lags0 = 2UO~OOOO~4~ 'I

1 '
' ,

This shows that for tout, the default field width is 0, the default precision for floats is 6 digits, and the
default fill character is the blank 1 1 . The octal value 2 0 0 0 0 0 0 0 0 0 1 means that only the skipws
flag (0 1) is set for tin, which means that white space (blank, tab, newline, formfeed, and return) is
skipped by default. (The digit 2 in this octal value is irrelevant.) The octal value 2 0 0 0 0 0 0 0 0 4 1 means
that the skipws flag (0 1) and the act flag (040) are set for tout. The act flag was set by inserting
the oc t manipulator prior to the tout . flags () call.

Each of the four data members -width, _prec, -fill, and -flags also has an access
function that can change its value:

class ios {
public:

int width(int w) { int t = -width; -width = w; return t; }
int precision(int p){ int t = Jrec; _-Prec = p; return t; }
char fill(char c) { char t = -fill; -fill = c; return t; }
long flags(long f) { long t = -flags; -flags = f; return t; }
// more members included here

These all work the same way: they return the current value after replacing it with the new value.

EXAMPLE 12.2 Changing the Fill and Width of tout

main0
1

cout.fill('#');
coutwidth(40);
tout c-c "Hello, World." -c-c endl';
tout << "Hello, world.' CC endl;

>

~########~##############~##~~llu~ wcxld.
Hello, world.

After changing the fill character and the field width, the next item output is right-justified in a field of 40
columns with the 1 # I character padding on the left. Note that both the - fill and -width parame-
ters revert back to their default values (I 1 and 0) immediately after the next output.

332 STREAMIIO [CHAP.12

EXAMPLE 12.3 Changing the Precision of tout

main0

double pi = 3.14159265358979323846;
tout << "pi = ' << pi -CC endl;
cout.precision(l6);
tout << 'pi = ' c-c pi << endl;
tout C-K 'pi = " << pi << endl;
cout.precision(20);
tout CC "pi = ' << pi C=C endl;

Pi =- 3*14259 . . ._.'..: "'%_ .. ,.
pi. 22 3,141592453589793 . . ': ._:. .'_.r, .*. . .
pi = 3.1415~~Z6535897~3

: ._ '.':.', .
pi = 3.242592653589793116 -

'.::..:
'_ .:

The default value for the _prec data member is 6. This means that floats will be displayed using 6 dig- ’
its, as the first output of pi shows. Changing that to 16 causes tout to print 16 digits. That is the maxi-
mum number of digits that type double can store (on a 32-bit machine), so increasing it to 20 only results
in garbage digits after the 16th. Note that, unlike the -f i 11 and w i d t h parameters, the precision
parameter does not revert back to its default value after the next output.

12.3 ios FORMAT FLAGS

The width, precision, and fill parameters for a stream object are implemented with separate
data members because each parameter can have more than two values. For example, any letter of
the alphabet could be the fill character. But streams have many other attributes which are
Boolean; i.e., their value is either true or false. These are the parameters that are listed in the
first enum definition above, and are summarized in Table 12.1 below. All 15 of these flags are
packed into the single data member - flags.

The next example illustrates one way to change a stream’s format flags.

EXAMPLE 12.4 Using tout . flags () to Set a Stream’s Format Flags

main0
-t

int n = 234;
long oldf = cout.flags(ios::hex I ios::uppercase >;
tout << n << endl;
cout.flags(ios::hex I ios: :showbase >;
tout << n CC endl;
cout.flags(oldf);
tout << n << endl;

>

EA _: " .,.
(3xea

. .
,.'..,

234 , , i : Z’., . : . i :: , , . . -.- ,(_.

CHAP. 121 STREAM I/O 333

The first call to tout . flags () sets the hex and uppercase flags, while saving all the previous
settings in oldf. Notice that the hexadecimal form for the integer 234 is ea, which is printed EA
because the uppercase flag is set. (See Appendix H for more information on hexadecimal numerals.) The
second call to tout. flags () sets the hex and showbase flags, causing all other flags to be
cleared, so that the second output prints the hexadecimal letters for n in lowercase and with the leading
OX to show that the numeral is hexadecimal. The third call to tout . flags () restores the original

.(default) settings.

Table 12.1 Format Flags

Flag Effect When Set

ios: :skipws Skip leading white space during formatted input. (default)

ios: :left Left-justify output, padding on right to make required width.

ios: :right Right-justify output, padding on left to make required width. (default)

ios: :internal Right-justify numeric output, left-justify any sign or radix, and pad the middle
to make required width.

ios: :dec Input and output integers base 10. (default for output)

ios: : act Input and output integers base 8.

ios: :hex Input and output integers base 16.

ios: :showbase Output integers with radix prefix; e.g., 027 for (act), 0x2~1 for (hex). (default)

ios: :showpoint butput real numbers with decimal point and trailing zeros.

ios:: uppercase Use uppercase letters to output hex integers and reals in scientific.

ios: :showpos Prefix positive integers with 1 + 1 .

ios: :scientific Output real numbers in scientific notation; e.g., 1.2 3 45 6e- 0 9

ios: :fixed Output real numbers with n digits to right of decimal point, where rz is the pre-
cision (Jrec)

ios: :unitbuf Flush the output stream after each insertion.

ios: :stdio Flush stdio and stderr after each insertion.

The flags (> function sets the stream’s flags to the new setting without retaining any of the
previous settings. So it has the effect of clearing all the flags that are not named in the function’s
argument. In Example 12.4, the second call to tout . flags (> cleared the three settings made
by the first call. To set one or more flags without clearing any others, use the set f () function,
which is one of the three other member functions defined in ios for accessing the format flags:

class ios {
public:

// previous members included here
long setf(long f)

{ long t = -flags; -flags I= f; return,t; >
long setf(long f, long mask)

{ long t = -flags;
- flags = (- flags & -mask) 1 (f & mask); return t; >

long unsetf(long mask)
{ long t = _ flags & mask; -flags SC= -mask; return t;. }

// more members included here

334 STREAM I/O [CHAP. 12

The next example shows how to use the one-argument set f (> function to set flags without
clearing others.

EXAMPLE 12.5 Using cou t . set f () to Set a Stream’s Format Flags

This example is the same as Example 12.4 except that set f () is called instead of f lags () .

main0
1

int n = 234;
long oldf = cout.setf(ios::hex I ios::uppercase);
tout cc n CC endl;
cout.setf(ios::hex I ios:: showbase);
tout CC n cc endl;
cout.flags(oldf);
tout CC n CC endl;

EA. ‘. ., ... ,. : . ,,
^ _

,‘, : ”axE& ‘_. ‘. ._
_

sJ34 .‘, “1 : ‘.. .’
‘.. I _

.: ,’ ‘.
‘,

L

The first call to cou t . set f () sets the hex and uppercase flags, while saving all the previous
settings in o 1 df , so n is printed in uppercase hex. The second call to cou t . set f (> sets the hex
and showbase flags, leaving the uppercase flag set, so that the second output prints n is printed in
uppercase hex with the leading OX to show that the numeral is hexadecimal. The call to
cou t . flags () restores the original (default) settings, which are lowercase decimal without showing
the base.

, Three subgroups of format flags are defined to facilitate avoiding a conflict between contra-
dictory flags. Each group is identified by its format mask, as shown in Table 12.2.

Table 12.2 Format Flags

Mask Flags

ios::basefield ios: :dec, ios::oct, ios::hex

ios:: adjustfield ios: :left, ios::right, ios::internal
ios: :floatfield ios: :scientific, ios::fixed

These definitions are part of the ios class:

class ios {
public:

const long basefield = dec I act I hex;
const long adjustfield = left I right I internal;
const long floatfield = scientific I fixed;
// more members included here

1 ;

CHAP. 121 STREAM I/O 335

These constants are called “masks” because they are used to “mask out” all the flags except those
in its group. For example, in the implementation of the unset f (> function

long unsetf(long mask)
{ long t = _ flags SC mask; -flags &= -mask; return t; }

the expression -flags &= -mask clears all the flags in the mask, leaving all other flags
unchanged. The effect of this function is to clear all the flags in the format mask and to return
their previous settings:

EXAMPLE 12.6 Using unset f () to Clear a Stream’s Format Flags

main0
{

char buffer[80];
cin.unsetf(ios::skipws); // clear default skipws flag
tin >> buffer; tout << " [" cc buffer CC t']\n";
tin >> buffer; tout << " [" CC buffer X-C rl]\nII;
tin >> buffer; tout -c-c " [" XC buffer XX "]\n";
int n = 234;
cout.setf(ios::hex 1 ios::uppercase 1 ios: :showbase);
tout C-C n K-C endl;
cout.unsetf(ios::basefield); // clear all radix flags
tout -C-C n -CC endl;

The skipws flag is set by default, which means that ordinarily white space is skipped before reading a
value into a variable. But the call to tin. unsetf clears this flag so that white space will not be ignored.
The first three characters input are two blanks and the H, so the first read into buf f er reads only a
single blank. That is because the second blank signals an end to that input. The second read into buf f er
reads the second blank and the entire six-character string “He1 lo, ". Again, input is terminated by the first
blank encountered after the reading begins.

The call to tout . unset f clears all the flags that are in the base f i eld group. This includes the
hex flag that was set with the cou t . set f call.

m a y n o t w o r k o n s o m e o l d e r c o m p i l e r s (e . g . , v e r s i o n 4 . 5 o fWarning: This use of tout .unsetf
Microsoft Turbo C++).

The set f (> function that takes two arguments uses a format mask in its second argument:

long setf(long f, long mask)
(long t = -flags; -flags = (-flags&-mask)1 (f&mask); return t;)

The mask specifies which group of flags is to be changed. The function clears all the flags in the
group specified by mask and then sets the flag f if it is in that group.

336 STREAM I/O [CHAP. 12

EXAMPLE 12.7 Using tout . set f () with a Format Mask to Set a Stream’s Format Flags

This example is the same as Example 12.4 except that set f () is called instead of flags (> .

main0

int n = 234;
cout.setf(ios::hex I ios::uppercase I ios: :showbase);
tout CC n CC endl;
cout.setf(ios::oct, ios::basefield >;
tout -CC n << endl;

OXEA
0352 :

This is the correct way to change radix. To change from hexadecimal to octal, both the oc t flag has to be
set and the hex flag cleared. The second call to tout . setf does that.

12.4 ios STATE VARIABLES

Every stream has a -S tat e data member that is defined in the ios class. Like the -flags
member, the -state member is a bit string that holds several boolean variables. These state
variables are specified in the enum definition:

class ios {
public:

enum {
goodbit = 0,
eofbit = 01,
failbit = 02,
badbit = 04

// values for error state flag:
// all ok
// end of file
// last operation failed
// invalid operation

// other members included here

A stream’s format flags can only be changed explicitly, and only by means of the ios
access functions described below. In contrast, a stream’s state variables are changed implicitly, as
a result of I/O operations. For example, when a user inputs Control-D (or Control-Z on DOS and
VAX computers) to indicate end-of-file, the tin's eofjlag is set, and we say that the stream is in
an eof state.

By adding the numeric values for the flags that are “set,” we obtain the complete io state
setting for the stream object in a single S-bit number. For example, the x object shown above
has the octal value o for its -state data member. This number decomposes as

03 = 02 + 01

which indicates that two flags are set: the fai lbi t (02) signaling that the last operation failed
(because input was at the end-of-file), and the eof bi t (0 1). '

A stream’s four state variables (goodbit, eofbit, failbit, and badbit) can be accessed
individually by their access functions (good (> , eof (> , fail (> , and bad (>). They can also be
accessed collectively by the rds tat e (> function, as demonstrated by the next example.

CHAP. 121 STREAM I/O 337

EXAMPLE 12.8 Testing the rdstate () Function

main0

tout << "cin.rdstate() = I1 -C-C cin.rdstate() -C-C endl;
int n;
tin >> n;
tout << "cin.rdstate() = 'I -CC cin.rdstate() -C-C endl;

1

cin.rdstate() = Q
32
@in-rdstate() = 0

ein.rdstate() = 0
Axl
cin.kdstate() = 3

On the second run, the user pressed Control-D (or Control-Z on a PC or a VAX) to signal end-of-file.
This sets tin's eofbi t and f ailbi t, which have numeric values 1 and 2, making the (total) value of
the state variable 3.-

The state variables can set be means of the set (> function the same way that the single-
argument set f () function is used to set format flags. However, state variables are generally
used only to read the current state of the stream, so it is unlikely that you would want to change
them directly.

The following
tional expression:

two access functions are used to test the state of the stream within a condi-

class ios {
public:

operator void*() const; // conversion operator
int operator!0 const;
// other members included here

The first of these is a conversion operator. It returns a pointer that is NULL (i.e., 0) if -state is
nonzero and -1 otherwise. So for example, if in is an input stream, then the expression (in)
will evaluate to true if none of the flags are set (i.e., there is still more input), and false otherwise.

The second of these access functions overloads the negation operator. It simply calls fail ()
and returns its return value, which will be nonzero unless both the f ailbi t and the badbi t
are clear. The advantage of this alternate form for determining whether the stream can be used
any more is that, like the conversion operator above, this form can be used conveniently in condi-
tional expressions. For example, if out is an output stream, then the expression (! out > will
evaluate to true if either the f ai lbi t or the badbi t is set (i.e., the out stream will not function
any more), and false otherwise.

338 STREAM I/O [CHAP. 12

EXAMPLE 12.9 Using the Conversion Operator operator void* () to Control a Loop

main0
{

int n, sum=O;
tin >> n;
while (tin) { // loop will continue as long as -state ==

sum += n;
tin >> n;

tout -x "sum = II -CC sum -CC endl;

0

44% 2% 2 2
AD
ssum =7j . '

Using Control-D (or Control-Z) to terminate input is simple and convenient. Pressing this key
sets the eof bi t in the input stream. But then, if you want to use it again in the same program, it
has to be cleared first. This is done with the member function clear () , as shown below:

EXAMPLE 12.10 Using the clear () Function to Clear the eofbit

main0

int n, sum = 0;
while (tin >> n)

sum += n;
tout -cc "The partial sum is ' -CC sum C-C endl;
cin.clear();
while (tin >> n)

sum += n;
tout << "The total sum is I1 -CC sum CC endl;

4Q 90 2Q Tc? +
The partia1 szun i s 150 ,
3% 50 w
The total sun is 230

When the end-of-file is detected as a result of the Control-D, tin's eofbi t and f ailbi t are set,
and the expression (tin >> n) returns 0. This stops the first loop and prints the partial sum. Then the
call to c in. clear () resets the eo f bi t to 0 (i.e., clears it), so that the second whi 1 e loop can exe-
cute properly.

m a y n o t w o r k o n s o m e o l d e r c o m p i l e r s (e . g . , v e r s i o n 4 . 5 o fWarning;: This use of tout . clear ()
Microsoft Turbo C++).

The ios class’s -tie member is used to “tie” an input stream to an output stream. When
an input stream is tied to an output stream, the output stream is flushed automatically whenever
an operation is attempted on the input stream. This means that user prompts will work normally:

CHAP. 121 STREAM I/O ’ 339

EXAMPLE 12.11 Using tin. tie () to Break and Reconnect the Tie of tin to tout

main0

tout << "Press any key to continue:";
cin.get();
tout -c-c "Thank you." -CC endl;
cin.tie(O); // this breaks the tie of tin to tout
tout << "Press any key to continue:";
cin.get();
tout << "Thank you." C-C endl;
cin.tie(&cout); // this reconnects the tie of tin to tout
tout << "Press any key to continue:";
cin.get();
tout << "Thank you." -C-C endl;

Press any key to continue:x _
Thank yau. j
Press any key to cuntinue:Thank yoz~..
Press E%ny key. to contknue:x "
Thank you.

In the first I/O exchange, tout is flushed to prompt the user for a response, even though no end1 or
I \n I is passed to it. But then the call tin. tie (0) breaks tin's tie to tout, so in the next I/O

exchange the prompt does not wait for input before the next line is output. The call tin. tie (6;cout)
finally restores the tie, so that the third I/O exchange works normally again.

12.5 THE istreamANDostream CLASSES

The istream and ostream classes both inherit from the ios class:

class istream : virtual public ios { // . . . };

class ostream : virtual public ios { // . . . };

Making ios a virtual base class facilitates the multiple inheritance that the ios tream class
has from both the is tream and os tream classes by preventing multiple copies of the ios
class to be made for the iostream class.

The is tream class defines the tin object and the stream extraction operator >> for
formatted input. The ostream class defines the tout, cerr, and clog objects and the stream
insertion operator < < for formatted output. These objects and operators are inherited by the
seven subclasses shown in the diagram on page 328.

The familiar I/O operations that use the extraction and insertion operators are called format-
ted Z/O because these operators recognize the types of the objects that are accessed and they
for-n-rat the data accordingly. For example, if n is an integer with value 22, then tout -C-C n
prints the value 22 in integer format. The is tream and ostream classes also define a set of
member functions for unformatted Z/O that handles data simply as a sequence of bytes. These
functions are described below and are summarized in Appendix F.

340 STREAM I/O [CHAP. 12

The is tream class defines the stream extraction operator >> which reads data from
istream objects, which are usually the standard input device tin (Le., the keyboard). If
successful, this operator returns a reference to the object so that calls can be chained like this:

tin >> x >> y >> z;

If tin is unsuccessful, it returns 0. Under normal operation, tin skips white space characters
(blanks, tabs, newlines, etc.).

EXAMPLE 12.12 Simple Use of the Extraction Operator

main0

int m, n;
float t;
tin >> m >> t >> n;
tout -c-c I’m = 1’ -cc m -cc ‘I, t = ” c-c t << “, n = I' KC n -CC endl;

The >> operator will return 0 when it encounters the end-of-file character, transmitted by
Control-D on UNIX workstations and Macintoshes and by Control-Z on PCs and VAX/VMS
computers. This can be used to control an input loop:

EXAMPLE 12.13 Controlling an Input Loop

main0
1

int n, sum = 0;
while (tin >> n)

sum += n;
tout << "The sum is 'I cc sum x-c endl;

12.6 UNFORMATTED INPUT FUNCTIONS

The is t ream class defines a rich collection of unformatted input functions. Many of these
are summarized in Appendix F.

Several versions of the get (> function are defined by the is tream class. In its simplest
form, it has no arguments and simply returns the next character in the input stream. Its function
prototype is

int get();

This version of the function is typically used in an input loop:

CHAP. 121
.

STREAM I/O 341

EXAMPLE 12.14 Reading Characters with the tin . get () Function

Compare this with Example 7.6:

main0

char c;
while ((c = cin.get()) != EOF)

tout << c;
tout -CC endl;

Each call of the c in. get () function reads one more character from c in and returns it to the variable
c. Then the statement inside the loop inserts c into the output stream. These characters accumulate in a
buffer until the end-of-line character is inserted. Then the buffer is flushed, and the complete line is printed
just as it had been read.

The expression (c = cin.get (> > returns the value that is returned by the function call
* tin . get (> . That value is compared with the integer constant EOF, and as long as they are unequal the

loop continues. When the end-of-file character *D is read, tin . get () > returns the value of EOF,
thereby terminating the loop.

On most computers, EOF has the value -1:

EXAMPLE 12.15 The Integer Constant EOF

main0

tout << "EOF = ' cc EOF cc endl;

Another form of the get (> function reads the next character from the input stream into its
char parameter that is passed by reference:

istream& get(char& c);

This version returns false when the end of file is detected, so it can conveniently be used to
control an input loop like this: while (cin.get(ch))

342 STREAM I/O [CHAP. 12

EXAMPLE 12.16 Reading Characters with the tin . get () Function

This is the same as Example 12.14, except using this form of the get () function:

main0

char c;
while (cin.get(c))

tout << c;
tout -CC endl;

A third form of the get () function is similar to the getline () function. Its prototype is

istream& get(char* bu,ffer, int n, char delim = '\n');

This reads characters into buffer until either n-l characters are read or the de1 im character
is encountered, whichever comes first. It does not extract delim from the input stream.

EXAMPLE 12.17 Reading Characters with the tin . get () Function

main0

char buffer[80];
cin.get(buffer, 8); // reads next 7 characters
tout << " [" -CC buffer CC "]\n";
cin.get(buffer, sizeof(buffer));
tout cc " [" CC buffer CC "]\n";
cin.get(buffer, sizeof(buffer), I I I);
tout << " [" CC buffer CC "]\n";

into buffer

The first call tin . get (buffer , 8) reads the 7 characters IIABCDE I F II into buffer and then
terminates the string with the null character ‘\O’.Thesecondcall cin.get(buffer, 80) reads
the rest of the characters on the line, up to but not including the end-of-line character ’ \n ' . These 24
characters which appended with the null character I \ 0 I are read in to bu f f er. The third call
cin.get(buffer, 80, I I I) reads the end-of-line character from the first input line, followed by
the 5 characters II ABCDE II that precede the I 1 I character on the second line; these 5 characters,
appended with the null character I \ 0 I , are read in to buf f er.

CHAP. 121 STREAM I/O 343

The get line (> function is almost the same as the third form of the get (> function. The
only difference is that it does extract the delimiter character from the input stream but does not
store it in the buffer. Its prototype is

istream& getline(char* buffer, int n, char delim = '\n');

EXAMPLE 12.18 Reading Characters with the tin . get 1 ine () Function

main0

char buffer[80];
cin.getline(buffer, 8);
tout << " [" CC buffer C-C "]\n";
cin.getline(buffer, sizeof(buffer));
tout << " [" C-C buffer CC "]\n";
cin.getline(buffer, sizeof(buffer), '1 I);
tout << " [" CC buffer << "]\n";

Notethatthesecondcall cin.getline(buffer, sizeof (buffer)) readstotheendoftheinput
line, storing GHIJIKLMNOIPQRSTIUWXYIZ in buffer. Unlike the get0 function, the
get 1 ine () function then extracts the newline character from the input stream, so that the next character
to be read is the A on the next input line.

The ignore0 function is used to “eat” characters in the input stream. It simply extracts
characters, without copying them into any variable. Its prototype is

istream& ignore(int n = 1, int delim = EOF);

Called in its simplest form, tin. ignore (> will simply extract one character from tin. More
generally, cin.ignore(n) will simply extract n character from tin, and
cin.ignore(n, I $ I > would extract all the characters up to the next occurrence of the I $ I
character (or to the end of the file).

EXAMPLE 12.19 Eating Characters with the tin . ignore () Function

main0
1

int month, year;
tout << "Enter date (mm/dd/yy): ';
tin >> month;
cin.ignore(); // eats "/"
cin.ignore(80, '/I); // eats “dd/ II or “d/ II or II/II

tin >> year;
tout CC "Month = " C-C month C-C ', Year = 19' -CC year C-C endl;

,

344 STREAMI/ [CHAP.12

This little input routine asks the user for a date in the standard mm/ dd/ yy form and then reads from
it the month and the year, ignoring the day dd.

The peek (> function is kind of an opposite of the ignore () function: it reads the next
character in the input stream without extracting it. Its prototype is int peek () ;

EXAMPLE 12.20 Looking Ahead with the tin . peek () Function

main0
{

char buffer[80], C:
tout CC cin.peek 0 << I’, H << cin.peek
c = cin.peek();
tout << c << ', 'I;

0 << ” , ‘I;

cin.get(buffer, 5); // read the next 4 characters into buffer
c = cin.peek();
tout << c << ', ' << cin.peek() << ", ' << cin.peek() << endl;

The first three calls to tin . peek () return the I A I in the input stream. Note that it is output directly
as the integer 65 (the ASCII code for t A I). Then after reading “ABCD” into buf f er, the next three
calls to tin . peek () return the 1 E I in the input stream, output directly as the integer 69. Note that the
calls to the peek () function have no effect upon the input stream.

The putback (> function reverses the get (> function by putting a character back into the
input stream. Its prototype is

istream& putback(char c);

EXAMPLE 12.21 Using the tin. putback () Function

main0
1

cin.putback('Z');
cin.putback('Y');
cin.putback('X');
char buffer[80];
cin.get(buffer, 9); // read the next 8 characters into buffer
tout << ' ['I << buffer << "1, ";
cin.putback('RI);
cin.putback('Q');
cin.putback('P');
cin.get(buffer, 9); // read the next 8 characters into buffer
tout << " [" << buffer << "]\n";

CHAP. 121 ’ STREAM I/O 345

The first three calls to c in. pu tbac k () insert ‘I XY Z ‘I
the input stream actually contains II XY ZABCDEFGHI JKLMN I I

in front of the IA I in the input stream. So
before the first call to cin.get (). And

after the second series of c in. putback () calls, the input stream contains II PQRFGHI JKLMN II.

The is tream class includes several versions of the read (> function. This is an unformat-
ted input function designed for the direct transfer of raw bytes. It works the same way as the
get (> function except that it does not append the null character to the bytes read. It is typically
used with the gcount (> function which simply returns the number of bytes read:

istream& read(char* buffer, int n);

istream& read(unsigned char* buffer, int n);

int gcount();

The second version of read (> is used to transfer bit strings.

EXAMPLE 12.22 Transferring Bytes with the tin . read () Function

main0

char buffer[] = . . .�I????????????????????� l // 20 '?'s
cin.read(buffer, 8); ;/ transfer 8 bytes buffer
tout << " [" << buffer << "1; read: ' -c< cin.gcount() << endl;
cin.read(buffer, 4); // transfer 4 bytes buffer
tout << " [" << buffer << "1; read: ' << cin.gcount() << endl;

This example illustrates use of the read () function and the gcount () function. First it initializes
buffer with20 ‘?‘s.Thenweuse cin.read(buffer, 8) to transfer the first 8 bytes from c in
to buf f er. The output then shows that only the first 8 bytes of buf f er have been changed. Note that
no null character i \ 0 I has been appended to those 8 bytes. The second read (> repeats the process
with the next 4 bytes, leaving the other 16 bytes unchanged.

12.7 UNFORMATTED OUTPUT FUNCTIONS

The is t ream class defines functions for unformatted output that are analogous to unfor-
matted input functions.

The two versions of the put (> function are the inverses of the corresponding get ()
functions:

int put(char c);

ostream& put(char c);

They both insert the character c into the output stream.

3 4 6 STREAM I/O [CHAP. 12

EXAMPLE 12.23 Using the tout . put () Function

This example shows the parallel nature of the put (c) and get (c) functions:

#include <iostream.h>

main0
1

char c;
while (cin.get(c))

cout.put(c);
tout << endl;

EXAMPLE 12.24 Chaining the tout . put () Function

This example shows how the second version of the put (c) function can be concatenated into a chain of
calls:

#include <iostream.h>

main0

cout.put('H').put('e').put('l').put('l').put('o').put('\n');

HeT2u _

This works because tout . put (> returns the tout object itself.
The write0 function has versions that are the inverses of the corresponding read ()

functions:
ostream& write(const char* buffer, int n);
ostream& write(const unsigned char* buffer, int n);

They both transfer n bytes from buffer to the output stream.

EXAMPLE 12.25 Using the tout . write () Function

#include <iostream.h>

main0
-t

cout.write("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 8);
tout << endl;
cout.write("0123456789", 4);
tout << endl;

CHAP. 121

Here is the output:

STREAM I/O 347

U

ABCDEFCH .
-.

’._
0123 __

Like the corresponding r
sed to transfer bit strings.

ead0 function, the version ofthe write0 function is

When bytes are sent to an output stream they are bz&Gered. This means that they are first
accumulated in a region of memory called a “buffer,” so that they can be sent later in “batch
mode” to the output stream. The step that empties the output buffer and sends the string of bytes
to the output stream is called flushing the output b~$kr. The ostream function flush ()
performs this essential task. It is usually used indirectly by using the stream manipulator endl.

12.8 STREAM MANIPULATORS

A stream manipulator is a special kind of stream class member function. When used with the
insertion and extraction operators, they look like objects. But they really are function calls. For
example, tout -CC endl; is actually a call to the stream manipulator function end1 (> . Here’s
how it works.

The OS t ream class includes the following overloaded insertion operator:

ostream& operator<c(ostream& (*p) (ostream&))
{ return (*p)(*this); }

The parameter (*p)
OS tream parameter.

(ostream&) is a pointer to a function (see
When the statement

tout CC endl;

6.14) that has a single

is executed, operator<< is invoked, passing the end1 () function to is as the parameter. But
since this is a function parameter, the function pointer p is used to point to that function. So
when operator<< is invoked, p points to the end1 () function. This function is defined as

ostream& endl(ostream& ostr)

ostr.put('\n');
ostr.flush();

So when the statement tout << endl; is executed, operator<< is invoked with p pointing
to the tout . end1 (> function, so that the statement

return (*p>(*this);

becomes

return cout.endl(*this);

which prints a newline, flushes cow, and then returns tout.

The next example shows how you can write your own stream manipulator.

348 STREAM I/O [CHAP. 12

EXAMPLE 12.26 A Home-Grown Stream Manipulator

ostream& beep(ostream& ostr)
1 .

return ostr c-c "\a";

main0
{

tout -CC beep;

When used as shown here, the stream manipulator sends the alert character I \a I to the output stream,
which sounds the system beep.

All stream manipulators work this way. They are defined with prototypes like this:
ios& f(ios& ostr)
ostream& f(ostream& ostr)
istream& f(ostream& istr)

or, in the case of manipulators with parameters, like this:
ios& f(ios& ostr, int n)
ostream& f(ostream& ostr, int n)
istream& f(ostream& istr, int n)

Table 12.3 lists of some of the more common stream manipulators:

Table 12.3 Stream Manipulators

Manipulator Stream Action

binary ios Set stream mode to binary

dec ios Read or write integers base 10 (default)

end1 ostream End output line and flush output stream

ends ostream End output string

flush

hex

ostream Flush output stream

ios Read or write integers base 16 (i.e., in hexadecimal)

act ios Read or write integers base 8 (i.e., in octal)

resetiosflags(long u) ios Clear format flags specified by u

setbase(int n) ostream Write integers base n (default: 10)

setfill(int ch) ostream Set fill character to ch (default: 1 I)

setiosflags(long u) ios Set format flags specified by u

setprecision(int n) ios Set floating-point precision to n digits (default: 6)

setw(int 12) ios Set field width to n columns (default: 0)

text ios Set stream to text. (default)

ws ’ istream Skip white space

We have already seen how the end1 manipulator works. It inserts the newline character
I \n f into the output stream and then calls the flush manipulator which “flushes” the buffer.

CHAP. 121 STREAM II0 349

The ends manipulator simply inserts the null character 1 \ o I into the output stream. This
is illustrated in the next example.

EXAMPLE 12.27 Using the ends Stream Manipulator to Terminate a String

main0
{

char buffer[] = "????????????????????";

tin >> ws;
cin.read(buffer, 8);
tout << " [I' << buffer -CC ll]\n";

The input begins with several newlines, tabs, and blanks. These are all skipped before the 8 characters
“ABC DE" are into buf f er. Note that only the initial white space is eaten.

The act, dec, hex, and setbase (n) manipulators are used to change the number base of
integers that are input or output.

EXAMPLE 12.28 Using the act, dec, and hex Stream Manipulators

main0
{

int n = 510;
tout -c-c " \tHexadecimal:\t 'I -C-C hex -CC n <<

cc "\n\t Decimal:\t n << dec -cc n <<
<< "\n\t Octal:\t II cc act -c-c n -cc

tout << "Enter integer in octal: ";

" \t K-c n
I I
\t 11 << n

I I
\t H -c-c n -CC endl;

tin >> act >> n; // read integer base 8
tout -c< " \tHexadecimal:\t I' -CC hex X-C n C-C "\t ' -C-C n

-c-c "\n\t Decimal:\t n -c< dec -c-c n -cc "\t)1 -cc n
-cc "\n\t Octal:\t II -cc act -CC n << II \t I1 c< n -cc endl;

tout << "Enter integer in hexadecimal: ";
tin >> hex >> n; // read integer base 16
tout -c-c " \tHexadecimal:\t I' << hex << n << "\t 'I << n

c-c "\n\t Decimal:\t n c-c dec << n c-c "\t 11 cc n
-c-c "\n\t Octal:\t n xc act -cc n -c-c ll\t' u cc n cc endl;

3 5 0 STREAMIIO [CHAP.12

Here is the output:

Printing each number twice shows that the manipulator resets the number base for all subsequent input or
output until another manipulator is used.

The ws manipulator simply eats the next string of white space (blanks, tabs, newlines).

EXAMPLE 12.29 Using the ws Stream Manipulator to Eat white space

main0
{

char buffer[] = �????????????????????�I l

I

tin >> ws;
cin.read(buffer, 8);
tout -c-c " [" -C-C buffer -C-C "]\n";

>

ABC \, . DEF aH
D-C DE????????????]

The input begins with several newlines, tabs, and blanks. These are all skipped before the 8 characters
“ABC DE" are into buf f er. Note that only the initial white space is eaten.

Review Questions

12.1 Why is the default constructor for the ios class declared private?

12.2 Why aren’t the width, f i 11, and precision parameters of a stream packed into a bit
string the way all the other parameters are?

12.3 If a stream’s format- data member is o 4 o 3 5, what format flags are set?

12.4 If a stream’s format data member is- o 4 7 62 3, what format flags are set?

12.5 Why is the
classes?

ios class made to be a virtual base class for the istream and ostream

CHAP. 121 STREAM I/O 351

12.6 Why is the use of the CC and >> operators called “formatted” I/O, and the use of the func-
tions put () , get () , wri t e () , read () , etc., call “unformatted” I/O?

12.7 What is the difference between the get () function and the get line () function?

12.8 What is the difference between the get (> function and the read (> function?

Solved Problems

12.9 What should the function prototype for the ws () manipulator look like?

Every stream manipulator should have the general prototype
ios& f(ios&);

where i OS is the stream class that f manipulates. Since the ws manipulator is used with
i s t reams its prototype should be

istream& ws(istream&);

12.10 Write code that formats tout so that integers are printed in octal in a right-justified field of
12 columns.

cout.setf(ios::oct I ios::ios);
cout.width(l2);

Solved Programming Problems

12.11 Write a program that uses the set f () , f i 11() , and width (> functions to produce the fol-
lowing formatted output:

Chapter 10 A String Class.................................22 2
Chapter 11 Inheritance....................................24 4
Chapter 12 Streams..27 3

The idea here is to use left-justify the titles in a field width of 60 columns, with I . I as the fill char-
acter padding the field on the right, so that the page numbers align at the end of the field:

#include <iostream.h>

main0
-t

cout.setf(ios::left);
cout.fill('.');
const int w = 60;
cout.width(w);
tout << "\tChapter 10 A String Class" << "222\n";
cout.width(w);
tout << "\tChapter 11 Inheritance" << "244\n";
cout.width(w);
tout << "\tChapter 12 Streams" +c "273\n";

352 STREAM I/O [CHAP. 12

12.12 Write a function to reverse a string in place (Le., without duplicating all the characters).

void reverse(char* s)

char temp;
char* end = s + strlen(s) - 1;
while (s c end) {

temp = *s;
*s++ = *end;
*end-- = temp;

Supplementary Problems

12.13 What shou.ld the function prototype for the ends stream manipulator look like?

12.14 Write code that formats cou t so that floats are printed in scientific notation with 12-digit
precision.

Supplementary Programming Problems

12.15 Write a program that uses the set f () , f i 11(> , and width (> functions to produce the fol-
lowing formatted output:

Chapter 4 Functions..5 6
Chapter 5 Arrays...8 5
Chapter 6 Pointers and References.........................11 3

The trick here is to left-justify the titles, as done in Problem 12.11, and to right-justify the page
numbers in another fixed-length field.

12.16 Write a program that uses the set f (> , f i 1 1 () , and width () functions to produce the fol-
lowing formatted output:

Chapter 4 Functions..5 6
Chapter 5 Arrays...8 5
Chapter 6 Pointers and References.........................11 3

12.17 Write code for each of the following:
a. Print the integer 12345 in a left-justified 12-digit field.
b. Print the integer 1000 in hexadecimal with the OX prefix.
c. Print 3.14159 in a 12-digit field with preceding zeros.
d. Print in a 40-column field, “Hello” left-justified and “World” right-justified, padding

between them with the 1 ! 1 character.
e. Read an integer in decimal and print it in octal.
J Read an integer in hexadecimal and print it in decimal.

CHAP. 121 STREAM I/O 353

12.18 Write a program that uses the set f () , f i 11(> , and width () functions to produce the fol-
lowing formatted output:

Base system: $3099.
Intel 12OMHz Pentium processor
Intel Triton PC1 chip set
16MB RAM
1280 EIDE hard drive (10ms)
3.5" 1.44MB floppy drive
4X CD-ROM drive
17" MAG monitor
64-bit PC1 graphics accelerator with 2MB VRAM
28,800-baud fax/modem

Extra 16MB memory: 640.
42OMB tape backup system: 149.
Panasonic KX-P6100 laser printer: 399.

Subtotal: $4287.
Shipping: 75.
Total: $4362.

12.19 Write a function set width (in t W) that sets the field width for cou t to w columns.-

12.20 Write a function set f i 11 (char c) that sets the fill character for cou t to c.-

12.21 Write a function se t_prec i s ion (int d) that sets the floating-point precision for cou t
to d digits.

12.22 Write a function eof () that returns 1 if c in is at the end-of-file and 0 otherwise.

12.23 Write a function c lear-eo f (> that clears c in's end-of-file flag without changing any other
aspect of its state.

12.24 Write a single function print- s t a tu s (> that prints all the information available (precision,
fill character, end-of-file status, etc.) about both tin and tout.

12.25 Thecall write(buffer, 2 0 > will transfer the first 20 bytes of the string buffer to the

12.1

12.2

12.3

output stream, provided that buf f er contains at least 20 characters. Find out what this call
does if buffer contains fewer than 20 characters, and explain what happens.

Answers to Review Questions

The default constructor for the i OS class is declared private so that no ios object can be
declared.

The width, f i 11, and prec i s ion parameters of a stream cannot be packed into a bit string
because they are not boolean variables. Each of these three parameters can have more than two values.

The -format data value 0 4 0 3 5 decomposes as 04035 = 04000 + 020 + 010 + 04 + 01, so fiv e flags
are set: scientific, dec, internal, right, and skipws.

354 STREAM I/O [CHAP. 12

12.4 T h e format data value 0 4 7 6 2 3 decomposes as 047623 = 040000 + 04000 + 02000 + 01000 +-
0400 + 0200 + 020 + 02 + 01, so nine flags are set: stdio, scientific, showpos, uppercase,
showpoint, showbase, dec, internal, left, and skipws.

12.5 The ios class made to be a virtual base class for the istream and ostream classes so that
when the i os t r earn class inherits from both the i s t ream and o s t ream classes (and therefore
indirectly from the i os class), it will not get duplicate copies of the members of the i o s class.

12.6 Use of the CC and >> operators is called “formatted” I/O because these operators recognize the type
of objects passed to them and use that information to format the input and output. For example, if n is
an int, then c in >> n will read the input 27 as the integer 27, whereas get () will only read its
first digit as the character ’ 2 ’ . The functions put () , get () , wri t e () , read () , etc., process all
input and output as character data, so use of these functions is called “unformatted” I/O.

12.7 The only difference between the three-parameter version of the get () function and the get 1 ine ()
function is that the get () function does not extract the delimiter character from the input stream.

12.8 The read () function does not append the null character to the bytes read.

Chapter 13

Templates and Iterators

13.1 INTRODUCTION

A template is an abstract recipe for producing concrete code. Templates can be used to
produce functions and classes. The compiler uses the template to generate the code for various
functions or classes, the way you would use a cookie cutter to generate cookies from various
types of dough. The actual functions or classes generated by the template are called instances of
that template.

The same template can be used to generate many different instances. This is done by means
of template parameters which work much the same way for templates as ordinary parameters
work for ordinary functions. But whereas ordinary parameters are placeholders for objects,
template parameters are placeholders for types and classes.

The facility that C++ provides for instantiating templates is one of its major features and one
that distinguishes it from most other programming languages. As a mechanism for automatic
code generation, it allows for substantial improvements in programming efficiency.

13.2 FUNCTION TEMPLATES

In many sorting algorithms, we need
often done by a separate function. For ex

to interchange a pair of elements. This simp
.ample, the following function swaps integers:

void swap(int& m, int& n)
{

int temp = m;
m = n;
n = temp;

>

If however, we were sorting String objects, then we would need a different function:

void swap(String& sl, String& s2)

String temp = sl;
sl = s2;
s2 = temp;

le task is

These two functions do the same thing. Their only difference is the type of objects they swap.
We can avoid this redundancy by replacing both functions with a function template:

355

356 TEMPLATES AND ITERATORS [CHAP. 13

EXAMPLE 13.1 The swap Function Template

t e m p l a t e <class T>
void swap(T& x, T& y)

T temp = x;
x = y;
y = temp;

The symbol T is called a type parameter. It is simply a placeholder that is replaced by an actual type or
class when the function is invoked.

A function template is declared the same way as an ordinary function, except that it is pre-
ceded by the specification

template <class T>

and the type parameter T may be used in place of ordinary types within the function definition.
The use of the word class here means “any type.” More generally, a template may have
several type parameters, specified like this:

template <class T, class U, class V>

Function templates are called the same way ordinary functions are called:

int m = 22, n = 66;
swapb, n> ;
String sl = "John Adams", s2 = "James Madison";
swap(s1, ~2);
Rational x(22/7), ~(-3);
swank Y> ;

For each call, the compiler generates the complete function, replacing the type parameter with
the type or class to which the arguments belong. So the call swap (m, n > generates the integer
swap function shown above, and the call swap (~1, ~2 > generates the swap function for
String class.

Function templates are a direct generalization of function overloading. We could have
written several overloaded versions of the swap function, one for each type that we thought we
might need. The single swap function template serves the same purpose. But it is an improve-
ment in two ways. It only has to be written once to cover all the different types that might be
used with it. And we don’t have to decide in advance which types we will use with it; any type or
class can be substituted for the type parameter T. Function templates share source code among
structurally similar families of functions.

Here is another example of a function template:

CHAP. 131 TEMPLATES AND ITERATORS 357

EXAMPLE 13.2 The Bubble Sort Template

This is the Bubble Sort and a print function for vectors of any base type. (The String class is
defined in Chapter 10.)

#include "String.h"

template<class T>
void sort(T* v, int n)

T temp;
for (int i = 1; i < n; i++)

for (int j = 0; j < n-i; j++)
i f (v[jl > v[j+ll> swapbdjl, v[j+U);

1

template<class T>
void print(T* v, int n)
1

for (int i = 0; i < n; i++)
tout << I' ' c-c v[i];

tout << endl;

main0

short a[91 = (55, 33, 88, 11, 44, 99, 77, 22, 66);
print(a,9);
sort(a,9);
print(a,9);
String s[7] = {'Tom", "Hal", "Dan", "Bob", "Sue", "Ann", "Gus"};
print(s,7);
sort(s,7);
print(s,7);

1 1

Here, both sort () and print () are function templates. The type parameter T is replaced by the
type short in the first calls and by the class String in the second calls.

A function template works like a macro. The compiler uses the template to generate each
version of the function that is needed. In the previous example, the compiler produces two
versions of the sort () function and two versions of the print (> function, one each for the
type short and one each for the class string. The individual versions are called instances of
the function template, and the process of producing them is called instantiating the template. A
function that is an instance of a template is also called a template function. Using templates is a
form of automatic code generation; it allows the programmer to defer more of the work to the
compiler.

358 TEMPLATES AND ITERATORS [CHAP. 13

13.3 CLASS TEMPLATES

A class template works the same way as a function template except that it generates classes
instead of functions. The general syntax is

template<class T,...> class X { . . . >;

As with function templates, a class template may have several template parameters. Moreover,
some of them can be ordinary non-type parameters:

template<class T, int n, class U> class X { . . . };

Of course, since templates are instantiated at compile time, values passed to non-type parameters
must be constants:

template<class T, int n>
class X {};

main0

X<float,22> xl; // o.k.
const int n = 44;
X<char, n> x2; // o.k.
int m = 66;
Xcshort, m> x3; // Error: m must be constant

Class templates are sometimes called parameterized types.

The member functions of a class template are themselves function templates with the same
template header as the class template. For example, the function f (> declared in the class tem-
plate

templatexclass T>
class X {

T square(T t) { return t*t; }
1 ;

is handled the same way that the following template function would be handled:

template<class T>
T square(T t) { return t*t; }

It is instantiated by the compiler, replacing the template parameter T with the type passed to it.
Thus, the declaration

X<short> x;

generates the class and object

class X-short {
short square(short t) { return t*t; }

> ;
X-short x;

except that your compiler may use some name other than X-short for the class.

.

CHAP. 131 TEMPLATES AND ITERATORS 359

EXAMPLE 13.3 A Stack Class Template

A stack is a simple data structure that simulates an ordinary stack of objects of the same type (e.g., a
stack of dishes) with the restrictions that an object can be inserted into the stack only at the top and an
object can removed from the stack only at the top. In other words, a stack is a linear data structure with
access at only one end. A stack class abstracts this notion by hiding the implementation of the data struc-
ture, allowing access only by means of public functions that simulate the limited operations described
above.

Here is a class template for generating Stack classes:

templatecclass T>
class Stack {
public:

Stack(int s = 100) : size(s), top(-1) { data = new T[size]; }
-Stack0 { delete [] data; }
void push(const T&C x) { data[++top] = x; }
T pop0 { return data[top--I; >
int isEmpty() const { return top == -1; >
int isFull const { return top == size - 1; }

private:
int size;
int top;
T* data;

This definition uses an array data to implement a stack. The constructor initializes the s i z e of the
array, allocates that many elements of type T to the array, and initializes its top pointer to -1. The
value of top is always one less than the number of elements on the stack, and except when the stack is
empty, top is the index in the array of the top element on the stack. The push () function inserts an

object onto the stack, and the pop () function removes an object from the stack. A stack isEmpty ()
when its top has the value -1, andit isFull () whenits top pointer has the value size - 1.

Here is a program to test the s tack template:

main0

Stack<int> intStackl(5);
Stackcinb intStack2(10);
Stack<char> charStack(8);
intStackl.push(77);
charStack.push('A');
intStack2.push(22);
charStack.push('E');
charStack.push('K');
intStack2.push(44);
tout << intStack2.popO CC endl;
tout CC intStack2.popO CC endl;
if (intStack2.isEmptyO) tout CC "intStack2 is empty.\n";

44 _ :
22
.inESkack2 is empty._

360 TEMPLATES AND ITERATORS [CHAP. 13

The template has one parameter T which will be used to specify the type of the objects stored on the
stack. The first line declares intStack1 to be a stack that can hold up to 5 ints. Similarly,
intStack2 is a stack that can hold up to 10 ints, and charstack is a stack that can hold up to 8
chars.

After pushing and popping objects on and off the stacks, the last line calls the i sEmp ty () function

for int S tack2. At that instant, the two Stack classes and three Stack obiects look like this:J

StackAnt>

Stack0

-Stack0

push ()

POP0

.sEmpty (1

L

ntStack2

size

top

data
0

1

2

3

4

5

6

7

8

9

Stackcchar> :harSt.ack

Stack0

-Stack0 @-

push0 O-

POP0 v

isEmpty w

.a
0

1

2

3

4

5

6

7

Thecall intStack2.isEmpty () returns 1 (i.e., “true”) because intS tack2 . top has the value -1
at that moment.

Note that there are two instances of the Stack class template: Stackcinb and Stackccharx
These are distinct classes, each generated by the compiler. Each class has its own six distinct member
functions. For example, the two functions StackAnt>: :pop () and Stackccharx :pop () are
different: one returns an int and the other returns a char.

13.4 CONTAINER CLASSES

A container is simply an object that contains other objects. Ordinary arrays and stacks are
containers. A container class is a class whose instances are containers. The s tack<int> and
S tack<char> classes in Example 13.3 are container classes. Class templates are natural mecha-
nisms for generating container classes because the contained objects’ type can be specified using
a template parameter.

A container is called homogeneous if all of its objects have the same type; otherwise it is
called a heterogeneous container. Stacks, arrays, etc., are homogeneous containers.

A vector is an indexed sequence of objects of the same type. The word is borrowed from
mathematics where it originally referred to a three-dimensional point x = (x1, x2, x,). Of course,
that is just an array of 3 real numbers. The subscripts on the components are the same as the
index values on the array, except that in C++ those values must begin with 0. Since subscripts
cannot be written in source code, we use the bracket notation [1 instead. So x [o 1 represents
x1, x [11 represents x2, and x [2 1 represents x3.

CHAP. 131 TEMPLATES AND ITERATORS 361

EXAMPLE 13.4 A Vector Class Template

templatecclass T>
class Vector {
public:

Vector(unsigned n=8) : sz(n), data(new T[sz]) { }
Vector(const VectorcTS v) : sz(v.sz), data(new T[sz])

{ copy(v); >
-Vector0 { delete [] data; }
Vector<T>& operator=(const VectorcTS);
T&L operator[] (unsigned i) const { return data[i]; }
unsigned size0 { return sz; }

protected:
T* data;
unsigned sz;
void copy(const VectorcTS);

> ; \

template<class T>
Vector<T>& Vector<T>: :operator=(const VectorcT& v)

s z = v.sz;
data = new T[sz];
COPY (v> ;
return *this;

template<class T>
void VectorcTx: copy(const VectorcT>& v)

unsigned min-size = (sz < v.sz ? sz : v.sz);
for (int i = 0; i < min size;- i++)

data[i] = v.data[i];

Note that each implementationof a member function must be preceded by the same template designator
that precedes the class declaration: t emp 1 a t ec c 1 as s T > .

This template would allow the following code:

Vector<short> v;
v[5] = 127;
Vector<short> w = v, x(3);
tout << w.size();

Here v and w are both Vector objects with 8 elements of type short, and x is a Vector object
with 3 elements of type short. The class and its three objects can be visualized from the diagram shown
below. It shows the situation at the moment when the member function w . size (> is executing. The
class Vet tar< short > has been instantiated from the template, and three objects v, w, and x have
been instantiated from the class. Note that the copy () function is a private utility function, so it
cannot be invoked by any of the class instances.

Note that the expression v [5] is used on the left side of an assignment, even though this expression
is a function call. This is possible because the subscript operator returns a reference to a vet t orcT>,
making it an balm.

362 TEMPLATES AND ITERATORS [CHAP. 13

Vectoxxshorb

Vector0

Vector0

-Vector0

W

operator=0

operator[] (1rsize0

data
0

1

2

3

4

5

6

7

T7

dat data

\C O P Y 0)

Class templates are also called parametrized types because they act like types to which
parameters can be passed. For example, the object b above has type Vector<double>, so the
element type double acts like a parameter to the template Vector<lT>.

13.5 SUBCLASS TEMPLATES

Inheritance works with class templates the same way as with ordinary class inheritance. To
illustrate this technique, we will define a subclass template of the Vet tor class template
defined in Example 13.4.

EXAMPLE 13.5 A Subclass Template for Vectors

One problem with the Vet t or class as implemented by the template in Example 13.4 is that it
requires zero-based indexing; i.e., all subscripts must begin with 0. This is a requirement of the C++ lan-
guage itself. Some other programming languages allow array indexes to begin with 1 or any other integer.
We can add this useful feature to our Vet tor class template by declaring a subclass template:

template <class T>
class Array : public Vector<T> {
public:

Array(int i, int j) : iO(i), Vector<T>(j-i+l) { }
Array(const Array<T>& v) : iO(v.iO), Vector<T>(v) { }
T& operator[] (int i) const { return Vector<Tx:operator[] (i-i0);

>
int firstSubscript const
int lastSubscript const

protected:
int i0;

> ;

{ return i0; }
{ return iO+sz-1;

This Array class template inherits all the functionality of the Vet tor class template and also
allows subscripts to begin with any integer. The first member function listed is a new constructor that
allows the user to designate the first and last values of the subscript when the object is declared. The sec-
ond function is the copy constructor for this subclass, and the third function is the overloaded subscript
operator. The last two functions simply return the first and last values of the subscript range.

CHAP. 131 TEMPLATES AND ITERATORS 363

Note how the two Arrav constructors invoke the corresponding Vector constructors, and how
the Arrav subscr$t operator invokes the Vet t or subscriptloperat&

Array<float>

(7iz-L-%

Array() @-

-Array(') @-

operator=0 @-

operator[J () w

size0

9

firstSubscript @-

firstSubscript w

Here is a test driver and a sample run:

#include <iostream.h>
#include "Array.h"

X

data

main0
L

Array<float> x(1,3);
x[l] = 3.14159;
x[2] = 0.08516;
x[3] = 5041.92;
tout << "x.size() = ' -CC x.size() -CC endl;
tout << "x.firstSubscript() = " C-K x.firstSubscript() -CC endl;
tout << "x.lastSubscript() = " -CC x.lastSubscript() -CC endl;
for (int i = 1; i <= 3; i++)

tout -C-C "x[' -CC i C-C "1 = " << x[i] -C-C endl;

x.size() = 3
x.firstSubscript() = 1 I
x.lastSubscript() = 3 .r -' . .s
x[l] = 3.14159
xf2f = 0.08516
xf3] = 5041.92 ‘.

3 6 4 TEMPLATES AND ITERATORS [CHAP. 13

13.6 PASSING TEMPLATE CLASSES TO TEMPLATE PARAMETERS

We have already seen examples of passing a class to a template parameter:

Stack<Rational> s; // a stack of Rational objects
Vector<String> a; // a vector of String objects

Since template classes work like ordinary classes, we,can also pass them to template parameters:

Stack&ector<int>> s; // a stack of Vector objects
Array<Stack<Rational>> a; // an array of Stack objects

The next example shows how this “template nesting” can facilitate software reuse.
/

EXAMPLE 13.6 A Matrix Class Template

A matrix is essentially a two-dimensional vector. For example, a “2-by-3 matrix” is a table with 2
rows and 3 columns:

We can think of this as a 2-element vector, each of whose elements is a 3-element vector:

The
n e w

advantage of this point of view is that it allows us to reuse our Vet t or class template to define a
Matrix class template.

To facilitate the dynamic allocation of memory, we define a matrix as a vector of

Vector<Vector<T>*>

pointers to vectors:

We are passing a class template pointer to the template parameter indicated by the outside angle brackets.
This really means that when the Matrix class template is instantiated, the instances of the resulting
class will contain vectors of pointers to vectors.

template<class T>
class Matrix {
public:

Matrix(unsigned r=l, unsigned c=l) : row(r)
{ for (int i=O; i<r; i++) row[i] = new VectorcT>(c); }

-Matrix0 { for (int i=O; i<row.size(); i++) delete row[i]; >
Vector<T>& operator[] (unsigned i) const { return *row[i]; }
unsigned rows0 { return row.size(); }
unsigned columns0 { return row[O]->size(); }

protected:
VectorcVectorcT>*> row;

Here the only data member is row, a vector of pointers to vectors. As a vector, row can be used with the
subscript operator: row [i] which returns a pointer to the vector that represents the ith row of the
matrix.

The default constructor assigns to each row [i] a new vector containing c elements of type T.
The destructor has to de 1 et e each of these vectors separately. The rows () and columns() func-
tions return the number of rows and columns in the matrix. The number of rows is the value that the mem-
ber function size () returns for the Vet tor<Vec tor<T>*> object row. The number of columns is
the value that the member function s i ze (> returns for the Vet tor<T> object *row [0] , which can
bereferencedeitherby (*row[O]).size() orby row[O]->size().

CHAP. 131 TEMPLATES AND ITERATORS 365

Here is a test driver and a sample run:

main0

Matrixcfloab a(2,3);
a[O][O] = 0.0; a[O][l] = 0.1; a[O][2] = 0.2;
a[l][O] = 1.0; a[l][l] = 1.1; a[l][2] = 1.2;
tout cc 'The matrix a has ' << a.rows() << ' rows and '

CC a.columns() << 'I columns:\n";
for (int i=O; i<2; i++) {

for (int j=O; j<3; j++) tout << a[i][j] << ' ";
tout << endl;

The matrix m can be visualized like this:

Matrixcfloat>

Vector0

T
Vector0

operator[] ()

T-

I

I
Matrixcfloat>

\Vector<floaty

Vector<float>

Vector0

Vector0 @-

-Vector0 v

operator=0 *

operator[] 0

size0 *

copy0 /

The diagram shows the situation during one of the subscript access calls a [1] [2] .

Notice that the actual data values 0.2, 1.1, etc., are stored in two separate vet tar< float > objects.
The Matrix< f 1 oat > object m only contains pointers to those objects.

Note that our Matrix class template used composition with the Vet tor class template,
while our Array class template used inheritance with the Vet tor class template.

13.7 A CLASS TEMPLATE FOR LINKED LISTS

Linked lists were introduced in Chapter 8. (See Example 8.2.) These data structures provide
an alternative to vectors, with the advantage of dynamic storage. That is, unlike vectors, linked
lists can grow and shrink dynamically according to how many data items are being stored. There
is no wasted space for unused elements in the list.

366 TEMPLATES AND ITERATORS [CHAP. 13

EXAMPLE 13.7 A List Class Template

A list consists of a linked sequence of nodes. Each node contains one data item and a link to the next
node. So we begin by defining a Li s tNode class template:

templatecclass T>
class ListNode {

friend class ListcT>;
public:

.

ListNode(T& t, ListNode<T>* p) : data(t), next(p) { }
protected:

T data;
ListNode*

1 ;
next;

// data field
// points to next node in list

The constructor creates
to its next field:

t

String

; a new node, assigning the T value t to its data field and the pointer p

ListNode<String>

If T is a class (instead of an ordinary type), its constructor will be called by the declaration of data.
Note that the class Li s tcT> is declared here to be a friend of the Li s tNode class. This will
allow the member functions of the Li s t class to access the protected members of the Node class.

Here is the Li s t class template interface:

templatecclass T>
class List {
public:

List0 : first(O) { >
-List();
void insert(T t); // insert t at front of list
int remove(T& t); // remove first item t in list
int isEmpty() { return (first == 0); }
void print();

protected:
ListNodecT>* first;
ListNodecT>* newNode(T& t, ListNode<T>* p)

{ ListNodecT>* q = new ListNodecT>(t,p); return q; }

A L i s t object contains only the pointer f i r s t:

list

Listcinb y

This points to a Li s tNode object. The default constructor initializes the pointer to NULL. After items
have been inserted into the list, the first pointer will point to the first item in the list.

CHAP. 131 TEMPLATES AND ITERATORS 367

The newNode function invokes the new operator to obtain a new Lis tNode object by means of
the Li s tNode () constructor. The new node will contain the T value t in its data field and the
pointer p in its next field. The function returns a pointer to the new node. It is declared pro tee ted
because it is a utility function that is used only by the other member functions.

The Li s t destructor is responsible for deleting all the items in the list:

templatecclass T>
List<T>::-List0

ListNode<T>* temp;
for (ListNodecT>* p = first; p;) {

temp = p;
p = p->next;
delete temp;

// traverses list

This has to be done in a loop that traverses the list. Each node is deleted by invoking the de 1 et e oper-
ator on a pointer to the node.

The insert () function creates a new node containing the T value t and then inserts this new
node at the beginning of the list:

template<class T>
void List<T>::insert(T t)
{

ListNode<T>* p = newNode(t,first);
first = p;

Since the new node will be made the first node in the list, its next pointer should point to the node that
is currently first in the list. Passing the first pointer to the NewNode constructor does that. Then the
f irs t pointer is reset to point to the new node.

The remove () function removes the first item from the list, returning its data value by reference
in the parameter t. The function’s return value is 1 or 0 according to whether the operation succeeded:

templatecclass T>
int List<T>: :remove(T& t)

if (isEmpty return 0; // flag to signal no removal
t = first->data; // data value returned by reference
ListNode<T>* p = first;
first = first->next; // advance first pointer to remove node
delete p;
return 1; // flag to signal successful removal

The print () function simply traverses the list, printing each node’s data value:

templatecclass T>
void List<T>::print()
1

for (ListNodecT>* p=first; p; p=p->next)
tout CC p->data CC ' --> ";

tout CC "*\n";
>

368 TEMPLATES AND ITERATORS [CHAP. 13

Here is a test driver and a sample run:

#include ciostream.h>
#include "List.h'
#include '5tring.h"

main0
1

List&tring> f r i e n d s ;
friends.insert("Bowen, Van");
friends.insert('Dixon, Tom");
friends.insert("Mason, Joe");
friends.insert('White, Ann");
friends.print();
String name;
friends.remove(name);
tout << "Removed: H << name -CC endl;
friends.print();

Notice that, since each item is inserted at the beginning of the list, they end up in the opposite order from
their insertion.

This friends list can be visualized like this:

ListNode<String>

Jo)

data

List&trim>

f=b
I -List0 ti

qJ $J
insert0

This shows the situation at the moment that the insert () function has invoked the newNode (> func-
tion which has invoked the Li s tNode () constructor to create a new node for 'I Whi t e , Ann 'I .

CHAP. 131 TEMPLATES AND ITERATORS 369

13.8 ITERATOR CLASSES

A common activity performed on a container object is the traversal of the object. For
example, to traverse a L ist object means to “travel” through the list, “visiting” each element.
This was done by means of a for loop in both the destructor and the print (> function in our
List class template (Example 13.7).

An iterator is an object that has the ability to traverse through a container object. It acts like
a pointer, locating one item in the container at a time. All iterators have the same basic function-
ality, regardless of the type of container to which they are attached. The five fundamental opera-
tions are:

l initialize the iterator at some initial position in the container;

l return the data value stored at the current position;

l change the data value stored at the current position;

l determine whether there actually is an item at the iterator’s current position;

l advance to the next position in the container.

Since these five operations should be implemented by every iterator, it makes sense to declare an
abstract base class with these functions. We actually need an abstract base class template
because the container classes will be template instances:

templatecclass T>
class Iterator {
public:

virtual int reset0 =O; // initialize the iterator
virtual T operator00 =O; // read current value
virtual void operator=(T t) =O; // write current value
virtual int operator! () =O; // determine whether item exists
virtual int operator++0 =O; // advance to next item

1 ;

Recall that every pure virtual function prototype begins with the keyword “virtual” and ends with
the code “ () = 0”. The parentheses are required because it is a function, and the initializer “= 0”
makes it a pure virtual function. Also recall that an abstract base class is any class that contains
at least one pure virtual function. (See Section 11.9.)

Now we can use this abstract base class template to derive iterator templates for various
container classes.

The List class template in Example 13.7 had an obvious shortcoming: it allowed insertions
and deletions only at the front of the list. A list iterator will solve this problem:

370 TEMPLATES AND ITERATORS

EXAMPLE 13.8 An Iterator Class Template for the Li s t Class Template

#include 7Ast.h"
#include "1terator.h"

template<class T>
class ListIter : public Iterator<T> {

[CHAP. 13

public:
ListIter(ListcTS 1) : list(l) { reset(); >
virtual void reset0 { previous = NULL; current = list.first; >
virtual T operator0 () { return current->data; >
virtual void operator=(T t) { current->data = t; >
virtual int operator!(); // determine whether current exists
virtual int operator++(); // advance iterator to next item
void insert(T t); // insert t after current item
void preInsert(T t); // insert t before current item
void remove(); // remove current item

protected:
ListNodecT>* current; // points to current node
ListNode<T>* previous; // points to previous node
List<T>& list; // this is the list being traversed

> ;

In addition to a constructor and the five fundamental operations, we have added three other functions
that will make lists much more useful. They allow the insertion and deletion of items anywhere in the list.

The operator! () function serves two purposes. First it resets the current pointer if neces-
sary, and then it reports back whether that pointer is NULL. The first purpose is to “clean up” after a call
to the remove () function which deletes the node to which current points.

templatecclass T>
int ListIter<T>::operator! ()
{

if (current == NULL) // reset current pointer
if (previous == NULL) current = list.first;
else current = previous->next;

return (current != NULL); // returns TRUE if current exists

If the current and previous pointers are both NULL, then either the list is empty or it has only one
item. So setting current equal to the list’s first pointer will either make current NULL or leave it
pointing to the first item in the list. If current is NULL but previous is pointing to a node, then
we simply reset current to point to the item that follows that node. Finally, the function returns 0 or 1
according to whether current is NULL. This allows the function to be invoked in the form

if (!it) . . .

where i t is an iterator. The expression (! i t) is read “a current item exists,” because the function will
return 1 (i.e., “true”) if current is not NULL. We use this function to check the status of the current
pointer before invoking an insertion or deletion function that requires using the pointer.

CHAP. 131 TEMPLATES AND ITERATORS 371

The operator++0 “increments” the iterator by advancing its current pointer to the next item
in the list after advancing its previous pointer. It precedes this action with the same resetting proce-
dure that the operator ! () function performed if it finds the current pointer NULL:

template<class T>
int ListIter<Tx:operator++()

if (current == NULL) // reset current pointer
if (previous == NULL) current = list.first;
else current = previous->next;

else { // advance current pointer
previous = current;
current = current->next;

return (current != NULL); // returns TRUE if current exists

This operator allows for easy traversal of the list:
for (it.reset(); !it; it++) . . .

just like an ordinary for loop traversing an array. It resets the iterator to locate the first item in the list.
Then after visiting that item, it increments the iterator to advance and visit the next item. The loop contin-
ues as long as ! it returns “true”, which means that there is still an item to be visited.

The ins er t (t > function creates a new node for t and then inserts that node immediately after
the current node:

template<class T>
void ListIter<T>::insert(T t)
{

ListNode<T>* p = list.newNode(t,O);
if (list.isEmpty())

list-first = p;
else {

p->next = current->next;
current->next = p;

The insert operation can be visualized like this:

Note that the operation leaves the current and previous pointers unchanged.

.------

3 7 2 TEMPLATES AND ITERATORS [CHAP. 13

The pr e Ins er t (> function is similar to the ins er t () function, except that it inserts the new
node in front of the current node:

templatecclass T>
void ListItercT>::preInsert(T t)
-C

ListNodecT>* p = list.newNode(t,current);
if (current == list.first) list.first = previous = p;
else previous->next = p;

The pr e Ins er t operation can be visualized like this:

Before:
i t

t

I
Note that like insert, this operation also leaves the current and previous pointers unchanged.

The remove () function deletes the current node:

template<class T>
void ListItercT>::remove()
-l

if (current == list.first) list.first = current->next;
else previous->next = current->next;
delete current;
current = 0;

> '

It leaves the previous pointer unchanged and the current pointer NULL.

CHAP. 131 TEMPLATES AND ITERATORS 373

After:

friends /r--4.
I I .

The remove operation can be visualized like this:

ListIter<String> \

Afier: it

ListIter<String> \

Here is a test driver for the list iterator:

#include <i.ostream.h>
#include "List1ter.h"
#include "String.h"
main0

List<String> friends;
ListIter<String> it(friends);
it.insert("Bowen, Van");
it++; // sets current to first item

374 TEMPLATES AND ITERATORS [CHAP. 13

it.insert("Dixon, Tom");
it++; //
it.insert("Mason, Joe");
it++; //
it.insert('White, Ann");
it++; //
friends.print();
it.reset(); //
it++; //
it = "Davis, Jim"; //
it++; //
it.remove(); //
friends.print();
if (!it) it.preInsert("Morse, Sam");
friends.print();
for (it.reset(); !it; it++) //

i t = 11 [1' + it() + "1";
friends.print();

sets current to second item

sets current to third item

sets current to fourth item

sets current to first item
sets current to second item
replace with new name
sets current to third item
removes third item

traverses entire list

The for loop changes each data value in the list by prepending a left bracket and appending a right
bracket to each string. Note that the assignment it = II [II + it () + II] II calls the operator (> (>
and operator=0 functions of the ListIter&tring> class as well as the constructor
String(const char*) and operator+= () functiondefinedinthe String class.

To give List~ter objects the access to the protected members of List objects that they
need to do their job, we need to declare the Li s t I t er class a friend of the L i s t class:

template<class T>
class List {

friend class ListItereT>;
public:

// other members
protected:

ListNodecT>* first;
// other members

List iterators also need the access to the protected members of Lis tNode objects:

template<class T>
class ListNode {

friend class List<T>;
friend class ListItercT>;

public:
ListNode(T& t, ListNodecT>* p) : data(t), next(p) { }

protected:
T data; // data field
ListNode* next; // points to next node in list

CHAP. 131 TEMPLATES AND ITERATORS 375

An iterator acts like a window, allowing access to one item at a time in the container. Iterators
are sometimes called cursors because they locate a specific element among the entire structure,
the same way that a cursor on your computer screen locates one character location.

A structure may have more than one iterator. For example, one could declare three iterators
on a list like this:

List<float> list;
ListItercfloat> itl(list), it2(list), it3(list);
itl.insert(ll.01);
'itl++;
itl.insert(22.02);
itl++;
itl.insert(33.03);
for (it2.resetO; !it2; 1U++)

it2 = lO*it2; // multiplies each stored number by 10
it3 = itl; // replaces 110.1 with 330.3 in first item

The iterators are independent of each other. While i t2 traverses the list, i t 1 remains fixed on
the third item.

Review Questions

13.1 What is the difference between a function template and a template function?

13.2 What is the difference between a class template and a template class?

13.3 What are the advantages and disadvantages of using a linked list instead of a vector?

13.4 How is an iterator like an array subscript?

Solved Programming Problems

13.5 Write and test a program that instantiates a function template that returns the minimum of two
values.

A minimum function should compare two objects of the same type and return the object whose value
is smaller. The type should be the template parameter T:

template <class T>
T min(T x, T y)

return (x < y ? x : y);

This implementation uses the conditional expression operator: (x<y?x: y) . If x is less
than y, the expression evaluates to x; otherwise it evaluates to y.

376 TEMPLATES AND ITERATORS [CHAP. 13

Here is the test driver and a sample run:

#include <iostream.h>
#include "Rationa1.h"

main0

tout << "min(22, 44) = ' -CC min(22, 44) << endl;
tout << "min(66.66, 33.33) = ' -CC min(66.66, 33.33) C-C endl;
Rational x(22, 7), ~(314, 100);
tout << "min(x, y) = ' << min(x, y) << endl;

min(22, 4 4) = 2 2 ,
minfcSf5.66, 33,33) = 3 3 . 3 3
mink, y) ;f 324/100

13.6 Write and test a program that instantiates a function template that implements a binary search
ofa array of objects.

A search function should be passed the array a, the object key to be found, and the bounds on the
array index that define the scope of the search. If the object is found, its index in the array should be
returned; otherwise, the function should return -1 to signal that the object was not found:

template<class T>
int search(T a[], T key, int first, int last)

while (first <= last) {
int mid = (first + last)/2;
if (key < a[mid]) last = mid - 1;
else if (key > a[mid]) first = mid + 1;
else return mid;

I

return -1; // not found

Within the whi le loop, the subarray from a [f irs t] to a [1 as t] is bisected by mid. If key
< a [mid] then key cannot be in the second half of the array, so last is reset to mid-l to
reduce the scope of the search to the first half. Otherwise, if key > a [mid] , then key cannot be in
the first half of the array, so firs t is reset to mid+ 1 to reduce the scope of the search to the second
half. If both conditions are false, then key = = a [mid] and we can return.

Here is the test sample

template<class T> int search(T [I, T, int, int);

String names[] =

main0
{

"Adams","Black","Cohen","Davis","Evans","Frost",
"Green","Healy","Irwin","Jones","Kelly","Lewis"};

String name;
while (tin >> name) {

int location = search(names, name, 0, 9);

CHAP. 131 TEMPLATES AND ITERATORS 377

if (location == -1) tout << name << ' is not in list.\n";
else tout << name << ' is in position ' << location << endl;

13.7 Implement and test a template for generating Queue classes. A queue works like a stack,

except that insertions are made at one end of the linear structure and removed from the other
end. It simulates an ordinary waiting line.

Like the implementation of the Stack template, this implementation uses an array data of s i ze
elements of type T. The location in the array where the next object will be inserted is always given by
the value of (front % s i z e) , and the location in the array that holds the next object to be removed
isalwaysgivenbythevalueof (rear % size):

template<class T>
class Queue {
public:

Queue(int s = 100) : size(s+l), front(O), rear(O)
{ data = new T[size]; }

-Queue0 { delete [] data; >
void insert(const T& x) { data[rear++ % size] = x; }
T remove0 { return data[front++ % size]; >
int isEmpty const { return front == rear; >
int isFull() const { return (rear + 1) % size == front; }

private:
int size, front, rear;
T* data;

> ;

The test driver uses a queue that can hold at most 3 chars:

#include <iostream.h>
#include "(2ueue.h"

main0
{

Queue<char> q(3);
q.insert('A');
q.insert('B');
q.insert('C');
if (q.isFull()) tout << "Queue is full.\n";
else tout << 'Queue is not full.\n";

378 TEMPLATES AND ITERATORS [CHAP. 13

tout << q.remove() << endl;
tout << q.remove() << endl;
q.insert('D');
q.insert('E');
if (q.isFull()) tout xx "Queue is full.\n";
else tout << "Queue is not full.\n";
tout << q.remove() << endl;
tout << q.remove() << endl;
tout << q.remove() << endl;
if (q.isEmpty()) tout << "Queue is empty.\n";
else tout -x 'I Queue is not empty.\n";

Queue is full.
A
I3
Queue is full.
c +
D
E
Queue is empty.

13.8 Modify the Vector class template so that existing vectors can change their size.

We add two functions:

unsigned resize(unsigned n);
unsigned resize(unsigned n, T t);

Both function transform the vector into one of size n. If n < s z, then the last s z - n elements are
simply discarded. If n == s z, then the vector is left unchanged. If n > s z, then the first s z ele-
ments of the transformed vector will be the same as those of the prior version; the last n - sz a r e
assigned the value t by the second res i ze () function and are left uninitialized by the first. Both
functions return the new size:
template<class T>
unsigned Vector<T>::resize(unsigned n, T t)
1

T* new-data = new T[n];
copy(v);
for (i = sz; i < n; i++)

new-data[i] = t;
delete [] data;
s z = n;
data = new-data;
return sz;

CHAP. 131 TEMPLATES AND ITERATORS 3 7 9

template<class T>
unsigned Vector<T>::resize(unsigned n)

-C
T* new-data = new T[n];
copy(v);
delete [] data;
sz = n;
data = new-data;
return sz;

13.9 Add a constructor to the Vet t or class template that replicates an ordinary array as a vector.

The new constructor converts an array a whose elements have type T:

template<class T>
class Vector {
public:

Vector(T* a) : sz(sizeof(a>), data(new T[sz])
{ for (int i = 0; i < sz; i++) data[i] = a[i]-; }

// other members
> ;

Here is a test driver for the new constructor:

main0

int a[] = (22, 44, 66, 88 };
Vector<int> v(a);
tout << v.size() << endl;
for (int i = 0; i < 4; i++)

tout << v[i] << '1 '1;

4
22 _ 44 66 88

The advantage of this constructor is that we can initialize a vector now without having to assign each
component separately.

13.10 Derive an Array<T, E> class template from the Vector<T> class template, where the sec-
ond template parameter E holds an enumeration type to be used for the array index.

The derived template has three member functions: two constructors and a new subscript operator:

template <class T, class E>
class Array : public Vector<T> {
public:

Array(E last) : Vector<T>(unsigned(last) + 1) { }
Array(const Array<T,E>& a) : Vector<T>(a) { >
T& operator[] (E index) const

{ return Vector<T>: :operator[] (unsigned(index)); }

380 TEMPLATES AND ITERATORS [CHAP. 13

The first constructor calls the default constructor defined in the parent class Vet torcT>, passing to it
the number of E values that are to be used for the index. The new copy constructor and subscript oper-
ator also invoke their equivalent in the parent class.

Here is a test driver for the Array<T , E > template:

enum Days { SUN, MON, TUE, WED, THU, FRI, SAT };

main0

Arraycint,Days> customers(SAT);
customers[MON] = 27; customers[TUE] = 23;
customers[WED] = 20; customers[THU] = 23;
customers[FRI] = 36; customers[SAT] = customers[SUN] = 0;
for (Days day = SUN; day c= SAT; day++)

tout CC customers[day] CC ' ";

The enumeration type Days defines seven values for the type. Then the object customers is
declared to be an array of in t s indexed by these seven values. The rest of the program applies the sub-
script operator to initialize and then print the array.

Supplementary Programming Problems

13.11 Write and test a program that instantiates a function template that returns the maximum of two
values.

13.12 Implement and test the following function template:
template <class T>
void printArray(T* array, const int count);

13.13 Write and test a program that instantiates the following function template:

template <class T>
T power(T base, int exp)

Tp=l;
for (int i = 1; i C= exp; i++)

p *, base;
for (int i = 1; i C= -exp; i++)

p *= base;
return p;

Instantiate the function template for several numerical types, including the Rat ional class
defined in Chapter 8.

13.14 Write and test a program that instantiates a function template that implements a linear search
of an array of objects.

13.15 Write and test a program that instantiates a function template that implements the Selection
Sort on an array of objects.

CHAP. 131 TEMPLATES AND ITERATORS 381

13.16

13.17

13.18

13.19

13.20

13.21

Write and test a program that instantiates a function template that implements the Insertion
Sort on an array of objects.

Write a program that simulates a waiting line at a bank. Instantiate the Queue< shor t > class
to construct the waiting line, numbering the people who arrive 1, 2, 3, etc. Use a Random
class to generate times in the range 0.0 to 8.0 minutes to be used both for the time between
arrivals and for the service times. Compute and print the average waiting time and the average
length of the line.

Implement and test a template for generating Deque classes. A deque (pronounced “deck”)
generalizes both a stack and a queue by allowing insertions and deletions at both ends of the
linear structure. Use the following interface:

public:
Deque(int = 100);
-Deque();
void insertLeft(const T&);
void insertRight(const T&);
T removeLeft();
T removeRight();
int isEmpty() const;
int isFull() const;

private:
int size, left, right;
T* data;

Hint: Let 1 e f t and right always locate the next items on the left and right to be removed,
so that they play the role of Queue : : front.

Add the following constructor to the Vet tor class template:

Vector(const T a[], int n);

This function will duplicate an ordinary array as a Vet t or. For example, the code

String names[] = { "Ann", "Bob", "Cal", "Dan", "Eve" }

Vector<String> v(names);

would create the string Vet tor v with the same values that the names array has.

Add the following two member functions to the Vet tor class template:

T min(); // returns the minimum element in the vector

T max(>; // returns the minimum element in the vector

Use of these functions, of course, presume that the order operators <, >, etc., are defined for
the type T. For example, they would not work on an instance of Vector<Complex>.

Add the following member function to the Vet t or class template:

int find(T t);

This function searches for the element t in the Vet tor. If found, it returns the index of the
element; otherwise, it returns -1. Use the sequential search algorithm.

382 TEMPLATES AND ITERATORS

13.22 Add the following two I/O functions for the Vet t or class template:
v

friend ostream& operator<<

friend istream& operator>>

13.23 Add the following member function to

void sort();

I

ostream&, const Vector<T>&);

istream&, Vector<T>&);

the Vet t or class template:

[CHAP. 13

This function rearranges the elements of the Vet t or so that they are in increasing order. Use
your favorite sorting algorithm. Use of this function, of course, requires that the order opera-
tors C, >, etc., are defined for the type T.

13.24 Add the following member function to the Vet t or class template:

int find(T t);

This function searches for the element t in the Vet tor. If found, it returns the index of the
element; otherwise, it returns - 1. Use the binary search algorithm, assuming that the Vet tor
has already been sorted.

13.25 Add a constructor to the Vet tor class template that replicates an ordinary array of elements
of type T. This will allow the following simpler way to initialize a vector:

String a[] = { "Adams, Ned", "Blair, Tim", "Cooke, Sam" }

VectorcString> friends(a);

13.26 Replace the Array subclass template (Example 13.5) with an independent class template
that replaces the sz data member with one that holds the last subscript value. Your new
Array class template should have the same member functions as the Array subclass tem-
plate.

13.27 Add a constructor to the Matrix class template that replicates an ordinary two-dimensional
array as a matrix. (See Problem 13.8.) This will allow the following simpler way to initialize a
matrix:

float a[] = ((2.2, 4.4, 6.6}, (3.3, 5.5, 7.7) }

Matrixcfloab m(a);

13.28 Add the following two I/O functions for the Matrix class template:

friend ostream& operatorcc(ostream&, const Matrix<T>&);

friend istream& operator>>(istream&, Matrix<T>&);

13.29 Add the following member function to the Matrix class template:

MatrixcT> transposeo;

The transpose of a matrix is the matrix with the same elements except that the rows and col-
umns have been interchanged. For example, the transpose of the 2-by-3 matrix on page 364 is
the following 3-by-2 matrix:

r 1a d

13.30 Add the following member function to the Matrix class template:

Vector<T> column(int j);

This function returns the j th column of the matrix.

CHAP. 131 TEMPLATES AND ITERATORS 383

13.31

13.32

13.33

13.34

13.35

13.36

13.37

13.38

13.39

13.40

Usethe Vector<String> and Matrix<short> classes
quiz scores for a student group:

to process the following table of

Name QJ- Q2 Q3 Q4 Q5
Adams, J. 78 91 88 83 80
Baker, P. 81 94 97 90, 89
Cohen, A. 8'5 86 87 88 89
Davis, M. 82 56 75 81 88
Evans, C. 75 77 70 78 74
Flynn, R. 83 79 88 90 81
Gross, W. 86 87 88 89 90
Hayes, J. 91 94 99 87 92

Your program should do the following:

a. Declare the table and read in the test scores.
6. Print the scores in tabular form.
c. Compute and print each student’s quiz average.
d. Compute and print the group average for each quiz.

Add a constructor to the Li s t class template. that replicates an ordinary array of elements of
type T. This will allow the following simpler way to initialize a list:

String a[] = { "Adams, Ned", "Blair, Tim", "Cooke, Sam" }
List<String> friends(a);

Add the following two I/O functions for the Li s t class template:

friend ostream& operatorcc(ostream&, const ListcT>&);
friend istream& operator>>(istream&, ListcT>&);

Use composition to implement the s tack class template using the Li s t class template.
The only data member you need is L i s t < T> 1 i s t .

Use composition to implement the Queue class template using the Li s t class template with
the enhancements added in Problem 13.38.

Implement a copy constructor for the Li s t class template:
List(const List<T>&);

Implement the assignment operator for the Li s t class template:
ListcT>& operator=(const List<T>&);

Add the following two member functions to the Li s t class template:
void insertAtEnd(T t); // insert t at the end of the list

int removeFromEnd(T& t); // remove last item t from the list

Add the following member functions to the Li s t class template:
void append(const List<T>&);

This function appends the list passed to it to the list that owns the function call. It does not
create any new nodes.

Modify the Li s t class template by adding a dummy node to the end of each list. The dummy
node will act like a newline character in that it signals the end of the list. It is identified as the
only node whose next pointer points to itself. Its data field is not used.

384 TEMPLATES AND ITERATORS [CHAP. 13

13.41 Add the following member functions to the Li s t class template:

void reverse();

This function reverses the list, like this:

void reverse();

Do it two ways. First, do it by moving the actual data, using a stack. Then do it “in place” by
changing pointers and not moving any data.

13.42 Add the following member functions to the Li s t class template:

void merge(const List<T>&);

This function merges the list passed to it with the list that owns the function call. It assumes
that both lists are sorted in increasing order, and thus requires that the order operators <, >,
etc., are defined for the type T. It does not create any new nodes.

13.43 Modify the insert (> function in the List class template so that it maintains the list in
increasing order. This presupposes that only types and classes that have implemented an order
relation will be passed to the template parameter T.

13.44 Implement the Li s t class template by using circular lists. This is done simply by having the
next pointer of the last node point to the first node instead of being NULL.

13.45 Use the circularly linked implementation of Problem 13.44 to solve the Josephus Problem.
This problem simulates the elimination of a group of n soldiers standing in a circle, using an
increment m, where 1 L m < n. The soldiers are eliminated one at a time by counting up to m.
For example, if there are n=8 soldiers and the increment is m=3, the order of elimination is 3,
6, 1,5,2, 8,4,7. That should be the output from the program with input 8 and 3.

Answers to Review Questions

13.1 Afunction template is a template that is used to generate functions. A templatefunction is a function that
is produced by a template. For example, swap (T& , T&) in Example 13.1 is a function template, but
thecall swap(m, n) generates the actual template function that is invoked by the call.

13.2 A class template is a template that is used to generate classes. A template class is a class that is produced
by a template. For example, Stack in Example 13.3 is a class template, but the type Stackhnb
used in the declarations is an actual template class.

CHAP. 131 TEMPLATES AND ITERATORS 385

13.3 Vectors have the advantage of direct access (also called “random access”) to their components by means
of the subscript operator. So if the elements are kept in order, we can locate them very quickly using the
Binary Search Algorithm. Lists have the advantage of being dynamic, so that they never use more space
than is currently needed, and they aren’t restricted to a predetermined size (except for the size of the com-
puter’s memory). So vectors have a time advantage and lists have a space advantage.

13.4 Both iterators and array index act as locators into a data structure. The following code shows that they
work the same way:

float a[lOO]; // an array of 100 floats
int i = 0; // an index for the array
dil = 3.14159;
for (i = 0; i c 100; i++) tout CC a[i];
Listcfloab list; // a list Df floats
ListItercfloab it (list); // an iterator for the list
it = 3.14159;
for (it.reset(); !it; it++) tout CC it(>;

Chapter 14

Libraries

14.1 INTRODUCTION

A software library for a programming language is a collection of software components that
can be used in any program written in that language. These components contain definitions of
constants, classes, objects, and functions that can be used as if they were part of the definition of
the language itself. For example, the < ios tream . h> header file is a component of the Standard
C++ Library. It defines the tout object that we use for output in C++ programs.

Libraries are usually included with C++ compilers. For example, Borland C++ provides
several class libraries. These libraries typically include many I/O classes and container classes.
Libraries can also be obtained independently. For example, as of 1995, the Standard Template
Library is available by FTP and from some commercial vendors but has not yet been bundled
with any C++ compilers.

14.2 THE STANDARD C++ LIBRARY

At this writing, C++ is now in its final stages of standardization. The ANSI/IS0 Committee
has approved a draft standard that will probably become the international standard definition of
the C++ programming language before the end of 1996. Part of that standard includes what we
shall refer to here as the Standard C+ + Library. Since this standard is so new, it will be a while
before most commercial compilers include all of its features. So we will focus here on those
parts of the standard library that are already implemented.

The ANSI/IS0 C++ Standard specifies 86 header files for the Standard C++ Library. Of
these, 18 are the header files that comprise the Standard C Library, and the other 68 are the
header files that are specific to the C++ language. The latter are divided into two groups: 20
header files that were specified in an earlier “draft standard,” and 48 header files that make up the
new Standard Template Library. To distinguish these two groups, we will refer to them as the
“C++ Headers” and the “STL Headers.” All 86 of these header files are listed in the table below.

The C++ Standard specifies that the 20 C++ header files be named without the traditional
“. h" suffix. For example, the familiar dostream. h> header is listed as dostream>. Most
vendors ignore this advice and retain the “. h" suffix, as we shall in this book. Moreover, to
distinguish C headers from C++ headers, some vendors capitalize the names of their C++
headers. For example GNU C++ uses <string . h> for the Standard C++ <string> header to
distinguish it from the Standard C <string . h> header. In contrast, Borland C++, which runs
under case-insensitive DOS, uses ccstring. h> for the Standard C++ <string> header.

Since the C++ Standard is so new, the complete set of all 86 header files is not widely imple-
mented yet. But most C++ compilers do come with a substantial subset, including all the C
headers, the nine C++ stream headers (<fstream>, <iomanip>, -dos>, dostream>,

386

CHAP. 141 LIBRARIES

Table 14.1 Standard C++ Library Header Files

387

C Headers C++ Headers STL Headers

<assert.h> <bits> <algo.h> <lbvector.h>

<ctype.h> <bitstring> <algobase.h> <ldeque.h>

<errno.h> <complex> <bool.h> <list.h>

<float.h> <defines> <bvector.h> <llist.h>

<iso646.h> <dynarray> <defalloc.h> <lmap.h>

<limits.h> <exception> <deque.h> <lmultmap.h>

<locale.h> <fstream> <faralloc.h> <lmultset.h>

<math.h> <iomanip> <fdeque.h> <lngalloc.h>

<setjmp.h> <ios> <flist.h> <lset.h>

<signal.h> dostream> <fmap.h> <map.h>

<stdarg.h> <istream> <fmultmap.h> <multimap.h>

<stddef.h> <new> <fmultset.h> <multiset.h>

<stdio.h> costream> <fset.h>a <neralloc.h>

<stdlib.h> cptrdynarray> <function.h> <nmap.h>

<string.h> <sstream> <hdeque.h> <nmultmap.h>

<time.h>

<wchar.h>

<streambuf> <heap-h> <nmultset.h>

<string> <hlist.h> <nset.h>

<wctype.h> <strstream> Lh.rnap.h> <pair.h>

<typeinfo> chmultmap.h> <projectn.h>

<wstring> <hmultset.h> <set.h>

<hset.h> <stack.h>

<hugalloc.g> dempbuf.h>

<hvector.h> <tree.h>

-dterator.h> <vector.h>

<istream>, costream>, <sstream>, <fstreambuf>, and <strstream>), andsomeversion
of the C++ headers <bitstring>, <complex>, and <string>. Some container classes such as
List and vet tor may also be included, but these are not equivalent to those specified in the
STL. The latter include built-in iterators and a large number of algorithms. Some of these header
files have already been examined in earlier chapters. Chapter 10 describes most of the functions
defined in the C header <string . h>. Chapter 12 reviews much of the contents of the C++
stream headers.

Appendix E lists many books on programming in C++. Some of these contain more thorough
discussions of the Standard C++ Library. A complete treatment of the C headers is given in the
book [Plaugerl] (see Appendix E), while [Plauger2] similarly covers the C++ headers. The
journal The C++ Report frequently includes information on the STL. Its contents are available
on-line from the Hewlett Packard Corporation and from several independent vendors.

388 LIBRARIES

14.3 PROPRIETARY LIBRARIES

[CHAP. 14

Typically, vendors of C++ compilers or more general C++ development environments will
provide one or more libraries that include many of the Standard C++ headers as well as many
other headers for I/O classes, container classes, and mathematical functions. For example,
Borland C++ provides its Stream Class Library, its BIDS Library (Borland International Data
Structures), and its OWL Library (Object Windows Library). These libraries are distributed over
some 267 header files (in Borland C++ v.4.0), some of which are listed in Table 14.2.

Table 14.2 Some Borland C++ Header Files

C Headers C++ Headers BIDS Headers OWL Headers

<assert.h> <bcd.h> <arrays.h> <applicat.h>

<ctype.h> <checks.h> <assoc.h> <button.h>

<errno.h> <complex.h> <bags.h> <checkbox.h>

<float.h> <constrea.h> <binimp.h> <clipboar.h>

. <limits-h>

<locale.h>

<cstring.h> <date.h> <control.h>

<except.h> <deques.h> <dialog.h>

<math.h> <fstream.h> <dict.h> <edit.h>

<setjmp.h> <iomanip.h> <dlistimp.h> <gadget.h>

<signal.h> <iostream.h> <hashimp.h> <menu.h>

<stdarg.h> <new.h> <heapsel.h> <preview.h>

<stddef.h> <ref.h> <listimp.h> <printer.h>

<stdio.h> <regexp.h> <queues.h> <scroller.h>

<stdlib.h> <stdiostr.h> <seta.h> <slider.h>

<string.h> <strstrea.h> <stacks.h> <toolbox.h>

<time.h> <typeinfo.h> <vectimp.h> <window.h>

Notice that Borland’s BIDS Library includes some of the same container classes that are
specified in the STL: <deques . h> defines a deque class template, <dict.h> defines a map class
template, <listimp.h> defines a list class template, <seta.h> defines a set class template, and
<vectimp.h> defines a vector class template. But these are not equivalent to those defined in the
STL. As we shall see, the STL combines classes, iterators, and algorithms in a unique way.

Borland’s OWL Library contains class definitions for writing graphical user interfaces using
windows, menus, panels, clipboards, strollers, etc. Such class libraries are typical of modern
development environments. But they are highly proprietary and are not part of the C++ Standard.

Many C++ compliers use Microsoft’s Foundation Class Library. This library defines a large
number of classes, many of which are similar to those defined in Borland’s BIDS and OWL
libraries, including an application class, an array class template, a list class template, a map class
template, various window classes, view classes, etc.

CHAP. 141 LIBRARIES 389

14.4 CONTENTS OF THE STANDARD C HEADERS

This section gives a brief summary of the contents of some of the Standard C header files.
Since these are part of the C programming language, they do not contain any class definitions.

The <assert .h> header defines the assert (> function:
void assert(int expr);

This function is used to check a condition within a block of code. If the condition is false, the
program aborts; otherwise it continues normally.

EXAMPLE 14.1 Using the <assert. h> Header File

The <assert. h> header file contains the assert () function which is used to ensure that a
condition that is needed is satisfied

#include <iostream.h>
#include <assert.h>
main0
{

float x;
tout << "Enter a non-zero number: ";
tin >> x;
assert(x != 0);
tout -c-c "The reciprocal of I1 << x << " is 'I << 1.0/x;

Enter a non-zero number: 3
The reciprocal. of 3 is O-333333

Enter a non-zero number: 0
,test-assert.c;9: failed assertion 'x != 0'

The expression 1. 0 /X will cause the program to crash if x is zero. The call assert (x ! = 0)
guarantees that that expression will not be evaluated if x is zero. As the second run shows, when x is
zero, the execution of the program terminates during the call of the assert (> function.

The <ctype . h> header defines several utility functions for testing characters:
int isalnum(int c); // returns 1 if c is alphanumeric
int isalpha(int c); // returns 1 if c is alphabetic
int iscntrl(int c); // returns 1 if c is control
int isdigit(int c); // returns 1 if c is a digit

int isgraph(int c); // returns 1 if c is graphic
int islower(int c); // returns 1 if c is lowercase
int isprint(int c); // returns 1 if c is printable
int ispunct(int c); // returns 1 if c is punctuation

int isspace(int c); // returns 1 if c is whitespace
int isupper(int c); // returns 1 if c is uppercase
int isxdigit(int c); // returns 1 if c is a hexadecimal digit

It also defines the character conversion functions:
int tolower(int c); // converts to lowercase

int toupper(int c); // converts to uppercase

390 LIBRARIES [CHAP.14

The c float. h> header file defines system dependent constants that describe the floating
point types. Similarly the ~limi ts . h> header defines system dependent characteristics for the
integer types. Example 14.4 shows how to print these constants.

EXAMPLE 14.2 Using the ef loat. h> and <limits . h> Header Files

By printing the constants defined in these two header files, we can see how real and integer types are
limited on this particular computer:

#include <iostream.h>
#include climits.h>
#include <float.h>

main0

tout << "\tBits used for one byte: ' << CHAR BIT -x endl;-
tout << "\t Smallest char: ' << CHAR-MIN << endl;
tout << "\t Largest char: ' c< CHARJAX << endl;
tout << “\t Smallest short: ' << SHRT-MIN cc endl;
tout << “\t
tout << "\t
tout << "\t

Largest short: ' cc SHRTJAX << endl;
Smallest int: ' <c INT-MIN cc endl;
Largest int: ' cc INTMAX << endl;

tout << “\t Smallest float: << FLT-MIN <c endl;
tout << "\t Largest float: ' << FLTMAX c< endl;
tout << "\t Digits for float: ' << FLT-DIG c< endl;
tout << "\t Smallest double: ' <c DBLMIN <C endl;
tout << "\t Largest double: ' << DBLJAX CC endl;
tout << "\t Digits for double: ' <c DBL-DIG cc endl;

This shows, for example, that on this machine the numerical range for a char is -128 to 127, and that
values of type double contain 15 significant digits.

The c time. h> header defines functions that access the system clock. Example 14.4 shows
how some of these work. Note that the calculation on x is only to kill time.

CHAP. 141 LIBRARIES 391

EXAMPLE 14.3 Using the c t ime. h> Header File

#include <iostream.h>
#include <time.h>

main0

clock-t c;
time-t t;
char* s;
double x = 3.14159265358979;
tout << "CLOCKS-PER-SEC = ' <c CLOCKS-PER-SEC << endl;
for (long int i = 0; i < 1000000; i++)

x = 1 + x/(1+x);
c = clock();
tout << "clock0 = ' << c << endl;
tout << "seconds = ' << c/CLOCKS-PER-SEC << endl;
t = time(NULL);
tout << "time(NULL) = H << t << endl;
s = ctime(&t);
tout << "current time = fl << s C< endl;

The first line of output shows that this system increments its clock once per microsecond (i.e.,
l,OOO,OOO times per second). Next the for loop causes a delay of 2.956842 seconds, as shown by the
second line of output. So we see that the expression C/CLOCKS-PER-SEC shows how many CPU sec-
onds have elapsed.

The call time (NULL) shows that 805,308,632 seconds have elapsed since January 1, 1970. The
c t ime (> function converts this integer into the character string s that shows the current date and time.

The <S tdl ib . h> header file defines a diverse collection of constants and functions, includ-
ing the following:

#define EXIT SUCCESS 0- // for use with exit0
#define EXIT FAILURE 1- // for use with exit0
#define NULL 0 // null pointer
#define RAND-MAX 2147483646 // = INTJAX - 1, for use with rand()
int rand(); // returns random integers <= RAND MAX-
void srand(unsigned seed); // seeds the random number generator
int abs(int i); // absolute value for integers
int atoi(const char* s) // converts ASCII string to int
double atof(const char* s) // converts ASCII string to double
void abort0 // aborts program execution
void exit(int status) // end program execution normally

392 LIBRARIES [CHAP. 14

The integers returned by rand () are uniformly distributed in the range 0 to RAND MAX.-
However, the sequence of integers generated will be the same for the same seed. Use srand ()

first to initialize the seed. This is illustrated in the next example.

EXAMPLE 14.4 Using the c s tdl ib . h> and et ime. h> Header Files

This shows how to use the system clock to set the seed for the random number generator:

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

main0
-t

unsigned seed = time(NULL);
srand(seed);
for (int i = 0; i < 32; i++)

tout -CC 1 + rand()%6 << ' ";
tout << endl;

The call time (NULL > returns, the number of seconds that have elapsed in the twentieth century. By
passing this integer to srand (> , we ensure that each time the program is run it begins with a different
seed. Thus each of the three runs produces a different sequence of 32 “random” numbers. The expression
1 + rand (> % 6 generates random integers in the range 1 to 6, simulating the toss of a die.

Note that some predefined rand () functions do not give very satisfactory results. For serious simu-
lation, one should implement one’s own random. See Problem 8.21.

The c s tr ing . h> header file defines a large number of very useful functions for manipulat-
ing null-terminated arrays of characters. These are described in Chapter 10.

The <math. h> header defines mathematical functions such as the following:
double sin(double x); // sine
double atan(double x); // arctangent
double cosh(double x); // hyperbolic cosine ,
double pow(double x, double y); // x to the power y
double exp(double x); // e t9 the power x
double log(double x); // natural logarithm (base e)
double loglO(double x); // common logarithm (base 10)
double sqrt(double x); // square root of x
double ceil(double x); // least integer >= x
double floor(double x); // greatest integer <= x
double fabs(double x); // absolute value for reals

The <s tddef . h> header defines some special constants and types:
#define NULL ((void*) 0) // null pointer
typedef char wchar-t; // wide character type
typedef unsigned size-t; // size type

CHAP. 141 LIBRARIES 393

Note the use of the preprocessor directive #define. This is the way constants are defined in C.
Different compilers may have different definitions for the wide character and size types.

Wide characters are used to accommodate large character sets, such as the Chinese character set.
The s i z e t type is used with certain library functions, such as the s tr 1 en (> function defined-
in the <string . h> header file.

The -C s tdio . h> header file defines the non-stream I/O functions used by C programmers.
For example, the scanf (> and printf (> functions are used for formatted input and output.

14.5 STRING STREAMS

We have named the second group of header files that comprise the Standard C++ Library the
“C++ headers.” These contain the C++ definitions that completed the “draft C++ Standard”
before the Standard Template Library was included. Nine of these twenty headers are devoted to
the stream processing that is described in Chapter 12. In this section we expand that study with a
brief survey of string streams defined in <S trs treamx The following section describes how file
processing is managed using the file streams defined in < f s treamx

The -C s trs tream> header file defines three classes that allow the use of string streams in
C++. A string stream is a stream that exists only during the execution of the program in which it
is defined. String streams are also called an in-memory character sequences and internal Jiles.
Stream buffers provide a convenient way to use a block of memory for formatting output and
buffering input.

Here is the diagram shown on the first page of Chapter 12:

ios

istream ostream streambuf

fstream strstream

The three classes istrstream, ostrstream, and strstreambuf are defined in the
<strstream> header.

An is trs tream object is an input string stream that is attached to an ordinary char *
string. The object works like an ordinary input stream (like tin) except that when the extraction
operator >> is applied to it, data is read from its attached char * string instead of the keyboard.
Similarly, an ostrstream object is an output string stream that is also attached to a char*
string. It works like an ordinary output stream (like tout) except that when the insertion opera-

’ tor << is applied to it, data is sent to its attached string instead of the display screen. The next
example illustrates these classes.

String streams are useful for buffering input and output. Input from tin can be piped into
an input string stream, and then examined and validated before processing the data that it
receives. Similarly, output can be formatted in an output sting stream before it is sent to tout.
This is sometimes called incore formatting.

3 9 4 LIBRARIES [CHAP. 14

EXAMPLE 14.5 Using xstrstream. h> to Process String Streams

The <strstream.h> headerfiledefinesthe istrstream andthe ostrstream classes:

#include cstrstream.h>

main0
{

const int size = 80;
char inbuf[size] = "Hello, world! 3.14159 65535 Qll;

char outbuf[size];
istrstream istr(inbuf, size); // input strstream for inbuf
ostrstream ostr(outbuf, size); // output strstream for outbuf
char sl[size], s2[size];
float x;
long int n;
char c, p = '11;
istr >> sl >> s2 >> x >> n >> c;
tout -c-c "\tsl = [I1 cc sl cc It] \n'l;
tout << "\ts2 = [II -c-c ~2 -cc 'I] \nf' ;
tout CC "\tx = " -C-C x CC endl;
tout -CC "\tn = ' -CC n -C-C endl;
tout C-C "\tc = 'I C-C c -K-C endl;
ostr << sl << p -CC s2 << p -CC x K-C p -C-C n CC p -cc c << ends;
tout -c-c ” [” CC outbuf -CC "]\n";

After declaring inbuf and outbuf as simple 80-character strings, the input string stream is t r
and the output string stream OS t r are declared. These are tied to inbu f and outbu f , respectively.
So is tr acts like an input stream (like tin), except that the “input” comes from the inbuf string
instead of the keyboard. Similarly, os tr acts like an output stream (like tout), except that the “out-
put” goes to the outbuf string instead of the display screen.

The next example illustrates how string streams can be used as filters. It uses an output string
stream to create form letters.

EXAMPLE 14.6 Using a String Streams as a Filter

This uses a function form (> to create form letters:

#include cstrstream.h>

char* form(char* name, int male)
1

const size = 128;
static char buffer[size];

CHAP. 141 LIBRARIES 395

static ostrstream ostr(buffer, size);
ostr.seekp(ios::beg);
ostr C-C 'Dear ";
if (male) ostr -CC "Mr. ";
else ostr << "Mrs. ';
ostr << name

<< ",\n\tI have an exclusive offer for you and your ';
if (male) ostr << "wife, Mrs.";
else ostr C-C "husband, Mr.";
ostr -CC name -CC "...\n' << ends;
return buffer;

main0
I

tout << form("Baker", 1);
tout C-C form("Green", 1);
tout << form("North", 0);
tout -C-C form("Smith", 1);

Dear Mr. Baker,
I have an exclusive offer CX you WHY your.wiEe, MrsJSaker...

Dear Mr. Green,
I have an exclusive offer for you +XIC~ .your wife, Mrs.Green..,

Dear Mrs. North;
1 have an exclusive offer for you &nd.yok husb&n-d, MrAurth...

Dear Mr. Smith,

The bu f f er and o s t r stream are declared to be s tat i c so that they are not recreated each time the
function is called. Since the stream is reused this way, we have to call os t r . seekp (ios : : beg) each
time to reset the write pointer at the beginning of the stream to overwrite the previous string.

The <sstream> headerfiledefinesthethreeclasses istringstream, ostringstream,
and stringbuf for processing string streams. These are analogous to the is tr s t ream,
OS trs tream, and s trs treambuf classes, except that they are attached to instances of the
string class that is defined in the <string> header instead of to ordinary C strings (char*).

14.6 FILE PROCESSING

A stream is a manager of a flow of bytes. An input stream manages bytes flowing into the
program, and an output stream manages bytes flowing out of the program. Every stream is
attached to some kind of origin or destination which the stream represents in the program.
Instances of the is tream class (like tin) represent the standard input device (Le., the
keyboard). Instances of the os trs tream class represent char * strings that are being written
to. Instances of the is trings tream class represent string objects that are being read from.
The beauty of the stream I/O class hierarchy is that it provides a simple uniform programming
interface for all types of input and output.

396 LIBRARIES [CHAP. 14

The following diagram shows the relationships between streams and the things that they
manage. As a manager of a data source or destination, we can imagine a stream as a pipe
through which the data flows to or from the executing program:

main0
{

tout -C-C "Hello, World!\n";
:

This shows 3 input streams and 3 output streams, each represented by a gray box. For example,
inbuf is an input stream of type is trs tream which manages the input of data from a C-string
into the program, and cow is an output stream of type os tream which manages the output of
data from the program to the display screen.

C++ uses streams to manage data flow, including flow to and from external files. A file is a
sequence of bits stored on some external device such as a disk or magnetic tape. The bits are
interpreted according to the protocol of some software system. If the bits are grouped into &bit
bytes interpreted by the ASCII code, then the file is called a text file and can be processed by
standard editors. If the bits are grouped into 32-bit words representing color pixels, then the file
is a graphics jile and is processed by specialized graphics software. If the file is an executable
program, then its bits are interpreted as instructions to the computer’s processor.

In C++, a file is simply an external stream: a sequence of bytes stored on disk. If the file is
open for output, then it is an output file stream. If the file is open for input, then it is an input file
stream. The < fs tream> header defines the class o fs tream of output file streams and the class
i f s tream of input file streams. Instances of these classes behave like other internal streams: the
insertion and extraction operators apply the same way.

Example 14.4 shows how to write data to an external file. This requires instantiating the
ofs tream class which is defined in the < f s tream> header. Analogously, Example 14.4 shows
how to read data from external file. .

CHAP. 141 LIBRARIES 397

EXAMPLE 14.7 Writing to an External Data File

The < f s t ream. h> header file defines the of s t ream class which must be instantiated to write to
an external file:

#include <iostream.h> // defines tout stream
#include <fstream.h> // defines ofstream class
#include <stdlib.h> // defines exit0 function

main0
1

ofstream outfile("grades.dat", ios::out);
if (!outfile) {

cerr c-c "Error: output file could not be opened.\n";
exit(l);

1
char id[9], name[16];
int grade;
tout << "\tl: H;
int n = 1;
while (tin >> id >> name >> grade) {

outfile << name << 'I 'I -c-c id << 'I 'I x-c grade CC endl;
tout c-c "\t" -cc ++n c-c 'I: 'I;

1
outfile.close();

1: A&azns 209134662 83
2: J3akar 55281882977
3: Cohen 310051782 89'
4: Dads 846112103 85‘
5: Evtns 6526336670 92
6: w:

The first line invokes the of s tream constructor which opens file grades . dat as an output file,
constructs the stream out file, and attaches that stream to the file. The second line invokes the over-
loaded negation operator ! to ensure that the file is opened properly. If not, an error message is printed
and the program is terminated. Otherwise, the program uses an input loop to read names, identification
numbers, and grades from the standard input and writes them to the external file.

The resulting external file looks like this:

grades.dat
209134662 Adams 83
552818829 Baker 77

!

310051782 Cohen 89
446112103 Davis 85
616336670 Evans 92

EXAMPLE 14.8 Reading from an External Data File

The <fstream.h> header file defines the i f s tream class which must be instantiated to read
from an external file:

398 LIBRARIES [CHAP. 14

#include ciostream.h> // defines tout stream
#include cfstream.h> // defines ofstream class
#include cstdlib.h> // defines exit0 function

main0
.i

ifstream infile("grades.dat", ios::in);
if (!infile) {

cerr CC "Error: input file could not be opened.\n";
exit(l);

char id[9], name[16];
int grade, sum = 0, count = 0;
while (infile >> id >> name >> grade) {

sum += grade;
++count;

J
infile.close();
tout cc 'The grade average is ' CC float(sum /count CC endl;

This works like the previous example. Note how the inf i 1 e stream is used to control the whi 1 e
loop the same way that the tin stream was used in the previous example.

A file can be opened for both input and output simultaneously in C++. This is illustrated in
Example 14.9 which modifies an existing text file by capitalizing all of its lowercase characters.

EXAMPLE 14.9 Modifying a Text File

This program capitalizes all the characters in a text file. It gets the name of the text file from the com-
mand line argument argv [1] which passes it to the f s tream constructor to open the file as iof ile:

#include cfstream.h> // defines ofstream class
#include cstdlib.h> // defines exit0 function
#include cctype.h> // defines islower(), toupper functions

main(int argc, char** argv)

fstream iofile(argv[l], ios::in I ios::out);
if (!iofile) {

cerr CC "Error: file could not be opened.\n";
exit(l);

char c;
while ((c = iofile.get()) != EOF)

if (islower({
iofile.seekp(-1, ios::cur);
iofile.put(toupper(c));

>
iofile.close();

CHAP. 141 LIBRARIES 3 9 9

Note that the logical expression i o s : : in I i o s : : out is used to open io f i 1 e for both input
and output. This allows the file to be modified character-by-character.

The modification is done by applying the seekp (> and put (> functions to io f i le. The call
iofile.seekp(-1, ios: : cur) uses the parameter -1 to backup over the character just read so that
it could read or write it again. Then the call io f i 1 e . put (toupper (c)) replaces that character with

the capitalized version of the character c.

Suppose that the following file named Gettysburg . tx t has been prepared:

Gettysburg.txt
Fourscore and seven years ago our fathers brought forth
upon this continent a new nation, conceived in liberty,
and dedicated to the proposition that all men are
created equal.

If the name of the executable program is capi tal i z e, then the command

capitalize Gettysburg.txt

would transform that file into

Gettysburg.txt
FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH
UPON THIS CONTINENT A NEW NATION, CONCEIVED IN LIBERTY,
AND DEDICATED TO THE PROPOSITION THAT ALL MEN ARE
CREATED EQUAL.

In this case the command line parameter argc has the value 2, and the string array argv has the values
"capitalize" for argv [0] and "Gettysburg.txt" for argv[l].

14.7 THE STANDARD TEMPLATE LIBRARY

Table 14.1 shows the Standard C++ Library as three groups of header files. The third group
is known as the Standard Template Library. This is a collection of 48 headers that define a large ’
number of general-purpose container class templates together with iterator classes and generic
algorithms for manipulating them. The library is remarkable for its efficiency, consistency, and
elegance. It was developed at Hewlett-Packard by Alexander Stepanov and Meng Lee.

Example 14.10 shows how to use the Standard Template Library to merge two lists. Some
implementations may require c s t 1. h> to be included instead of c 1 is t . h>.

EXAMPLE 14.10 Merging Two STL Lists

The c 1 i s t . h> header file defines the 1 i s t class template including its iterators and algorithms.
This uses the merge algorithm to merge two integer lists:

4 0 0 LIBRARIES [CHAP. 14

#include <iostream.h>
#include <list.h>

// defines tout stream
// defines list and iterator classes

int al[3] = { 22, 44, 88 };
int a2[4] = { 33, 55, 77, 99 };
listAnt> ll(a1, al + 3);
list<int> 12(a2, a2 + 4);
ll.merge(l2);
for (list-Ant>: :iterator it = ll.begin(); it != ll.end(); it++)

tout << *it << ' ';
tout << endl;

22 33 44 55 77 88 99

We first set up the two arrays al and ai to be used to initialize the lists 11 and 12. Notice how
the name of the array is used as a pointer to locate the begining and ending of the array for the list con-
structor: al is the address of the first element and al + 3 is the address of the memory location imme-
diately after the third element.

Notice how the for loop works the same way with an iterator as it would with an ordinary integer
index: the iterator is initialized with it = 11. begin () , it is incremented with i t + +, and it controls
the loop with the condition i t ! = 11. end () .

The STL defines seven general container class templates: deque, vet tor, 1 is t, set,
map, mu1 tiset, and mu1 timap. A deque is a sequential structure that allows insertions and
deletions at two ends. A vector is a direct generalization of an ordinary array, allowing indexed
access. A list is a sequential structure that allows efficient insertions and deletions in the middle
of the sequence. A set is an unstructured collection of unique elements. A multiset (also called a
bag) is an unstructured collection of elements that need not be unique. A map (also called a dic-
tionary or table) is a set whose elements have two parts: the key and the data. A multimap is the
same as a map, except that the keys need not be unique. An ordinary telephone directory is a
good example of a multimap, where the keys are the subscribers’ names and the data are their
addresses and telephone numbers. An “inverted directory” where the unique telephone numbers
are the keys would be an example of a map. Maps and multimaps can be regarded as sets and
multisets, respectively, except that the elements have two components: a key field and a data
field. The key type must have an ordering, so string and double could be key types, but
complex and set couldnot.

There are certain operations which one would like to apply to any container object: find the
first element; find the last element; determine how many elements are in the container; insert an
element; remove an element. The STL defines these operations as member functions that work
the same way on all containers. They are summarized in Table 14.3. Here, a and b are
container objects, -t is a value of the container’s template type, n is a nonnegative integer, and
p, i, and j are iterators on the container.

The STL is a tightly woven system of classes, iterators, and algorithms. Its designers have
been very successful in implementing the diverse behavior of container classes in a consistent
and intuitive way. This is indicated by the functions listed in Table 14.3 and Table 14.4.

CHAP. 141 LIBRARIES

Table 14.3 Operations for All Container Classes

401

a.insert(p, t) Inserts a copy of t before p

a.insert(p, n, t) Inserts n copies of t before p

a.insert(p, i, j) Copies a [i] . . .a[j-l] before p

a.erase(i) Removes a [i]

a.erase(i, j) Removes a[i]...a[j-l]

i = a.begin() Sets i so that a [i] is the first element

j = a.end() Sets j so that a [j - 11 is the last element

t = a.front() Assigns the first element of a to t

t = a.back() Assigns the last element of a to t

n = a.size() Assigns the number of element of a to n

n = a.emptyO Assigns 1 to n if a is empty; 0 otherwise

a.swap(b) Swaps the contents of a and b

The STL is an algorithm-oriented library like the numerical libraries that FORTRAN
programmers have been using since the 1960s. The 62 generic algorithms in the STL are catego-
rized by the type of iterator they use. There are five types of iterators: Random Access, Bidirec-
tional, Forward, Input, and Output. These are illustrated by the diagram below. It shows that the
five iterator categories are nested. For example, every Input iterator is also a Forward iterator, and
every Forward iterator is also a Bidirectional iterator. It also shows what kind of operations can
be performed on each type of iterator. For example, all iterators can be incremented (++i), but
only Bidirectional and Random Access iterators can be decremented (- -i).

Random Access

Bidirectional

i += 4;
i -= 4;
t = i[4];
i[4] = t;
if (il < i2) . . .

Forward

-- i;
i--; f Input output

i2 = il;

Table 14.4 lists some of the STL’s generic algorithms. All seven of the container classes
support Bidirectional iterators, so all containers can apply any of the algorithms in columns 2
through 5 of the table. But only vector and deque classes support Random Access iterators,
so only instances of these classes can also apply the algorithms in the first column.B

Example 14.11 shows how to use an STL map to maintain a personal telephone book. The
elegance of the STL is apparent here. The code is self-documenting. The iterator i works like
an ordinary integer index. But so do the key strings with the syntax:

m["Jones, Jenny"] = "379-0512";

m.erase("Baker, Sue");

402 LIBRARIES

Table 14.4 Algorithms Categorized by Iterator Type

[CHAP. 14

Random Access Bidirectional Forward Input output

sort0 copy-backward0 search0 find0 generate-no

stable-sort0 reverse0 replace0 count0 fill-no

partial-sort0 partition0 unique0 copy (> COPY0

nth-element0 inplacemergeo rotate0 equal (>

push-heap (> generate0 includes0

POP heap (>- remove0 merge (>

make-heap0 fill0 max0

sort-heap0 min()

random-shuffle0 accumulate0

EXAMPLE 14.11 Creating a Phone Book

This program uses a map to maintain a personal telephone directory. The class template takes three
template parameters: the key type, the data type, and the comparison type. Here the person’s name is the
key and the telephone number is the data, so we use the string class for both the key type and the data
type. The class 1 es SC s t r ing> provides for the ordinary lexicographical ordering on the keys:

#include <iostream.h>
#include <map.h>
#include <string.h>
int main (>

typedef map< string, string, less<string> > mapType;
mapType m; // the telephone book
m["Jones, Jenny"] = "379-0512";
m["Baker, Sue"] = "794-7935";
m["Williams, Bill"] = "289-8085";
m["Thomas, Tom"] = "379-1225";
for (mapType: :iterator i = m.begin(); i != m.end(); i++)

tout << (*i).first << ': ' << (*i).second << endl;
m.erase("Baker, Sue");
m.insert("Roberts, Bob", "289-0491");
i = m.find("Thomas, Tom");
tout << "Tom\'s number is ' << (*i).second << endl;
m.erase(i);
for (i = m.begin(); i != m.end(); i++)

tout << (*i).first << ": ' << (*i).second << endl;

CHAP. 141 LIBRARIES 4 0 3

After inserting 4 records in our telephone book, we print the book and see that it is maintained in
alphabetical order. Then we remove the listing for Sue Baker, insert a listing for Bob Roberts, find the list-
ing for Tom Thomas, remove that listing, and then print the resulting updated book. Note that the
find () function returns the location to the iterator i.

Review Questions

14.1 What is a stream header?

14.2 What is the difference between the C header <string . h> and the C++ header <s tringb?

14.3 How are the Li s t and Vet t or classes defined in this book different from those defined in
the STL?

14.4 What is the difference between the Standard C++ Library and proprietary libraries?

14.5 What is the purpose of the assert () function?

14.6 What is the purpose of the #define directive?

14.7 What is wchar t?-

14.8 What is a string stream?

14.9 What is incore formatting?

14.10 What is the difference between a set and a multiset?

14.11 What is the difference between a set and a map?

Supplementary Programming Problems

14.12 Write and test a program that counts the number of characters in an external text file.

14.13 Write and test a program that picks a card at random from an ordinary deck of 52 playing
cards. Use the time () , srand () , and rand (> functions as in Example 14.4.

14.14 Write and test a program

14.15 Write and test aprogram that counts the number of w o r d s in an external text file.

14.16

Dear Mr. Smith,

that creates form letters like this:

This is your lucky day! You have the unique opportunity to install
aluminum siding on the Smith house at 1234 Main Street at an incredibly
low price. This exclusive offer is available to you and the Smith family for
only a limited time. So don’t hesitate, Mr. Smith. Call today!

Write and test a program that counts the number of lines in an external text file.

14.17 Write and test a program that encodes an external text file by replacing each of its characters
with the character that immediately follows it in the ASCII code.

4 0 4 LIBRARIES [CHAP. 14

Answers to Review Questions

14.1 A stream header is one of the nine header files that define stream classes in the Standard C++ Library:
<fstream>, <iomanip>, <ios>, <iostream>, <istream>, costream>, <sstream>,
<fstreambuf>, and cstrstreamx

14.2 The C header <string. h> contains only functions for manipulating null-terminated arrays of
characters (i.e., C-strings). The C++ header <string> defines a s tring class similar to that in
Chapter 12.

14.3 The 1 i s t and vet t or classes defined in the STL include built-in iterator classes and algorithms
suchas insert () and erase().

14.4 The Standard C++ Library is part of the ANSI/IS0 standard specification of the C++ language. It spec-
ifies the 86 header files listed in Table 14.1. These define constants, functions, classes, and templates
that should work with any C++ compiler in any software environment. Proprietary libraries such as
those that Borland supplies with its C++ compiler work only with that compiler. They include many of
the features of the Standard C++ Library. They also define special classes for creating I/O objects such
as windows and menus.

14.5 The as s er t () function allows you to check certain conditions that should prevail at certain points in
the program. The as s er t () function will terminate the program if the condition passed to it is not
true.

14.6 The #define directive is used to define constants in the C programming language. (This is done
with cons t in C++.) The directive is used in the C header files.

14.7 The wchar t is a wide character type defined in the C header < s tdde f . h>. It is used for large-
alphabets, such as the Chinese and Japanese alphabets.

14.8 A string stream is an object that can access string of bytes in memory as if it were an external file. It
works like an internal text file.

14.9 Incore formatting refers to the use of an output string stream for formatting the output before it is out-
put. The name derives from the term “core” which referred to main memory in the 1950s.

14.10 The elements of a set must be unique. A multiset can have several copies of the same element.

14.11 A map can be regarded as a set whose elements have two components: a key and a data component.

Appendix A

The ASCII Code

Each character is stored as its ASCII’ Code, which is an integer in the range 0 to 127. Note that
the first 32 characters are nonprinting characters, so their symbols in the first column are indicated
either with their control sequence or with their escape sequence. The controZ sequence of a nonprinting
character is the combination of Control key and another key that is pressed on the keyboard to enter
the character. For example, the end-of-file character (ASCII code 4) is entered with the c t rl -D se-
quence. The escape sequence of a nonprinting character is the combination of the backslash character
“\” (called the “control character”) and a letter that is typed in C++ source code to indicate the char-
acter. For example, the newline character (ASCII code 10) is written “\n" in a C++ program.

Character Description Decimal Octal Hex Binary

Ctrl-@ Null, end of string 0 0 0x0 0000 0000

I Ctrl-A 1 Start of heading 1 I 0 1 0x1 0000 0001

I Ctrl-B Start of text 2 I 02 1 0x2 1 0000 001oI

1 Ctrl-C 1 Endoftext I 3 I 03 1 0x3 1 0000 0011 (

I Ctrl-D I End of transmission, end of file I 4 I 04 1 0x4 1 0000 0100 I

Ctrl-E I Enquiry 5 I 05 1 0x5 IO000 0101 I

\ I Ctrl-F I Acknowledge 6 I 06 1 0x6 I0000 0110 1

\a 1 Bell, alert, system beep 7 I 07 1 0x7 1 ooooTG--j

\b Backspace 8 010 0x8 0000 1000

I 8 \t 1 Horizontal tab I 9 I 011 I 0x9 IO000 1001 I

\n Line feed, new line 10 I 012 I Oxa I0000 1010 I

\V I Vertical tab 11 I 013 1 Oxb I0000 1011 1

\f 1 Form feed, new page I 12 I 014 I oxc IO000 1100 I

\r I Carriage return 13 I 015 1 Oxd I0000 1101 1

I Ctrl-N I Shift out I 14 I 016 I oxe I 0000 1110 I

Ctrl-0 Shift in 15 I 017 1 Oxf IO000 111g

Ctrl-P I Data link escape 16 I 020 lox10 IO001 0000 I

1 Ctrl-Q I Device control 1, resume scroll I 17 I 021 lox11 IO001 0001 I

Ctrl-R Device control 2 18 I 022 1 0x12 1 0001 0010 1

Ctrl-0 Shift in 1 5 017 Oxf 0000 1111

Ctrl-P Data link e s c a p e 1 6 020 0x10 0001 0000

Ctrl-Q Device control 1, resume scroll 17 021 0x11 0001 0001

Ctrl-R Device control 2 18' 022 0x12 0001 0010

Ctrl-S Device control 3, stop scroll 1 9 023 0x13 0001 0011

Ctrl-T Device control 4 2 0 024 0x14 0001 0100

Ctrl-U Negative acknowledgment 2 1 025 0x15 0001 0101

Ctrl-V Synchronous idle 2 2 026 0x16 0001 0110

I Ctrl-S I Device control 3, stop scroll I Il.9 I 023 10x13 1 0001 0011 1

I C t r 1 -T I Device control 4 I 20 I 024 10x14 1 0001 0100 1

I Ctrl-U I Negative acknowledgment I 21 I 025 10x15 1 0001 0101 1

Ctrl-V I Synchronous idle I 22 I 026 10x16 I0001 0110 1

1. ASCII is an acronym for the American Standard Code for Information Interchange

405

406 THE ASCII CODE [A P P . A

Character Description Decimal Octal Hex Binary

Ctrl-W End transmission block 2 3 027 0x17 0001 0111

Ctrl-X Cancel 2 4 030 0x18 0001 1000

Ctrl-Y End of message, interrupt 2 5 031 0x19 0001 1001

Ctrl-Z Substitute, exit 2 6 032 Oxla 0001 1010

Ctrl-[E s c a p e 2 7 033 Oxlb 0001 1011

Ctrl-/ File separator 2 8 034 Oxlc 0001 1100

Ctrl-] Group separator 29 035 Oxld 0001 1101

Ctrl-/\ Record separator 3 0 036 Oxle 0001 1110

Ctrl- Unit 3 1 037 Oxlf 0001 1111- separator

Blank, space 32 040 0x20 0010 0000

! Exclamation point 33 041 0x21 0010 0001

II Quotation mark, double quote 3 4 042 0x22 0010 0010

Hash mark, number sign 3 5 043 0x23 0010 0011

$ Dollar sign 3 6 044 0x24 0010 0100 '

% Percent sign 3 7 045 0x25 0010 0101

& A m p e r s a n d 3 8 046 0x26 0010 0110

I Apostrophe, single quote 3 9 047 0x27 0010 0111

(Left parenthesis 4 0 050 0x28 0010 1000

> Right parenthesis 4 1 051 0x29 0010 1001

* Asterisk, star, times 42 052 Ox2a 0010 1010

+ Plus 43 053 Ox2b 0010 1011

I Comma 4 4 054 ox2c 0010 1100

- Dash, minus 4 5 055 Ox2d 0010 1101

; Dot, Slash period, decimal point 46 47 056 057

Ox2e 0010 1110

Ox2f 0010 1111

0 Digit zero 4 8 060 0x30 0011 0000

1 Digit one 4 9 061 0x31 0011 0001

2 Digit two 5 0 062 0x32 0011 0010

3 Digit three 5 1 063 0x33 0011 0011

4 Digit four 52 064 0x34 0011 0100

5 Digit five 53 065 0x35 0011 0101

6 Digit six 5 4 066 0x36 0011 0110

7 Digit seven 5 5 067 0x37 0011 0111

8 Digit eight 5 6 070 0x38 0011 1000

9 Digit nine 57 071 0x39 0011 1001

.. Colon 5 8 072 Ox3a 0011 1010

; Semicolon 59 073 0x3s 0011 1011

< Less than 60 074 ox3c 0011 1100

= Equal to 6 1 075 Ox3d 0011 1101

> Greater than 62 076 Ox3e 0011 1110

APP. A] THE ASCII CODE 407

Character Description Decimal Octal Hex Binary

? Question mark 63 077 Ox3f 0011 1111
@ Commercial at sign 64 0100 0x40 0100 0000

A Letter capital A 65 0101 0x41 0100 0001

B Letter capital B 66 0102 0x42 0100 0010

C Letter capital C 67 0103 0x43 0100 0011

D Letter capital D 68 0104 0x44 0100 0100

E Letter capital E 69 0105 0x45 0100 0101

F Letter capital F 7 0 0106 0x46 0100 0110

G Letter capital G 7 1 0107 0x47 0100 0111

H Letter capital H 7 2 0110 0x48 0100 1000

I Letter capital I 7 3 0111 0x49 0100 1001

J Letter capital J 7 4 0112 Ox4a 0100 1010

K Letter capital K 7 5 0113 Ox4b 0100 1011

L Letter capital L 7 6 0114 04xc 0100 1100

M Letter capital M 7 7 0115 Ox4d 0100 1101

N Letter capital N 7 8 0116 Ox4e 0100 1110

0 Letter capital 0 7 9 0117 Ox4f 0100 1111

P Letter capital P 8 0 0120 0x50 0101 0000

Q Letter capital Q 8 1 0121 0x51 0101 0001

R Letter capital R 82 1022 0x52 0101 0010

S Letter capital S 83 0123 0x53 0101 0011

T Letter capital T 8 4 0124 0x54 0101 0100

U Letter capital U 8 5 0125 0x55 0101 0101

V Letter capital V 8 6 0126 0x56 0101 0110

W Letter capital W 87 0127 0x57 0101 0111

X Letter capital X 88 0130 0x58 0101 1000

Y Letter capital Y 89 0131 0x59 0101 1001

Z Letter capital Z 9 0 0132 Ox5a 0101 1010

[Left bracket 9 1 0133 Ox5b 0101 1011

\ Backslash 92 0134 ox5c 0101 1100

1 Right bracket 93 0135 Ox5d 0101 1101

A Caret 9 4 0136 Ox5e 0101 1110

Underscore 9 5 0137 Ox5f 0101 1111-
I Accent grave 9 6 0140 0x60 0110 0000

a Letter lowercase A 9 7 0141 0x61 0110 0001

b Letter lowercase B 9 8 0142 0x62 0110 0010

C Letter lowercase C 99 0143 0x63 0110 0011

d Letter lowercase D 100 0144 0x64 0110 0100

e Letter lowercase E 101 0145 0x65 0110 0101

f Letter lowercase F 102 0146 0x66 0110 0110

408 THE ASCII CODE [A P P . A

Character BinaryDescription

Letter lowercase G

Decimal Octal Hex

103 0147 0x67g 0110 0111

Letter lowercase H I 104 (0150 10x68 0110 1000h

Letter lowercase I 105 (0151 10x69 0110 1001

0110 1010

1.

j Letter lowercase J I 106 1 0152 1 Ox6A

k Letter lowercase K 107 1 0153 (0x6~ 0110 1011

1 Letter lowercase L I 108 1 0154 1 Ox6C 0110 1100

0110 1101

0110 1110

0110 1111

0111 0000

0111 0001

0111 0010

0111 0011

0111 0100

0111 0101

0111 0110

0111 0111

0111 1000

0111 1001

0111 1010

0111 1011

0111 1100

0111 1101

0111 1110

0111 1111

m Letter lowercase M I 109 / 0155) 0x60

Letter lowercase N I 110 1 0156 1 0x6n

0 Letter lowercase 0 I 111 I 0157 (Ox6F

Letter lowercase P 112 1 0160 1 0x70P

q Letter lowercase Q I 113 1 0161 10x71

r Letter lowercase R 114 1 0162 1 0x72

Letter lowercase S 115 / 0163 / 0x73S

t Letter lowercase T I 116 1 0164) 0x74

U Letter lowercase U I 117 1 0165 1 0x75

Letter lowercase V I 118 1 0166 0x76V

W Letter lowercase W 119 1 0167 0x77

Letter lowercase X 120 I 0170 0x78X

Letter lowercase Y 121) 0171 0x79Y
Z Letter lowercase 2 122 1 0172 Ox7a

Left brace I 123 1 0173 Ox7b

Pipe 124 (01'74 ox7c

Right brace I 125) 0175 Ox7d

Tilde 126 1 0176 Ox7eN

Delete Delete, rub out I 127 1 0177 Ox7f

Appendix B

C++ Keywords

C++ has 48 keywords. These special words are used to define the syntax of the language.

Description

asm Allows information to be passed to the assembler directly asm ("check");

I'auto 1 Storage class for objects that exist only within their own block 1 au to int n ;

break (Terminates a loop or a swi t ch statement break; I

r case [Used in a swi tch statement to specify control expression I switch (n/10)

I catch 1 Specifies actions to take when an exception occurs catch(error) I
char 1 An integer type I char c; I
class 1 Specifies a class declaration 1 class X { . . . }; 1

const I Specifies a constant definition I const int s = 32; I
continue Jumps to beginning of next iteration in a loop continue;

default The “otherwise” case in a swi t ch statement default: sum = 0;

delete) Deallocates memory allocated by a new statement delete a; I
do 1 Specifies a do. . while loop I do {... } while . . . I
double I A real number type I double x; I
else I Specifies alternative in an i f statement else n = 0;

enum Used to declare an enumeration type enum boo1 { . . . };

extern Storage class for objects declared outside the local block extern int max;

float A real number type float x;

for Specifies a for loop for (; ;) . . .

friend Specifies a friend function in a class friend int f();

got0 Causes execution to jump to a labeled statement got0 error;

i f Specifies an i f statement if (n > 0) . . .

inline Declares a function whose text is to be substituted for its call inline int f();

int An integer type int n;

long Used to define integer and real types long double x;

new Allocates memory int* p = new into I
operator Used to declare an operator overload X operator++();

private Specifies private declarations in a class private: int n;

protected Specifies pro t ec ted declarations in a class protected: int n;

public Specifies pub1 i c declarations in a class public: int n;

register Storage class specifier for objects stored in registers register int i;

return Statement that terminates a function and returns a value return 0;

409 .

410 C++ KEYWORDS [APP. B

Keyword Description Example

short An integer type short n;

signed 1 Used to define integer types signed char c; I
sizeof 1 Operator that returns the number of bytes used to store an object 1 n = s i z eo f (f 1 oat) ; 1

static I Storage class of objects that exist for the duration of the program I static int n ;

struct I Specifies a structure definition I struct X { . . . }; I
switch I Specifies a switch statement I switch (n) { . . . 1 I

1 template 1 Specifiesa template class 1 template <class T> 1

this 1 Pointer that points to the current object I return *this; I
throw 1 Used to generate an exception 1 throw X(); I
try I Specifies a block that contains exception handlers I try { . . . } I
typedef I Declares a synonym for an existing type I typedef int Num; I

union I Specifies a structure whose elements occupy the same storage I union z { . . . > ; 1

I unsigned I Used to define integer types I unsigned int b; I
virtual 1 Declares a member function that is defined in a subclass 1 virtual int f(); 1

void I Designates the absence of a type 1 void f(>;

volatile I Declares objects that can be modified outside of program control I int vola t i le n ; I

while / Specifies a whi 1 e loop 1 while (n > 0) . . . I

Appendix C

C++ Operators

This table lists all the operators in C++, grouping them by order of precedence. The higher-level
precedence operators are evaluated before the lower-level precedence operators. For example, in the
expression (a - b* c > , the * operator will be evaluated first and the - operator second, because
* has precedence level 13 which is higher than the level 12 precedence of -. The column labeled
“Assoc.” tells whether an operator is right associative or left associative. For example, the expression
(a - b - c) is evaluated as ((a - b) - c) because - is left associative. The column labeled
“Arity” tells whether an operator operates on one, two, or three operands (unary, binary, or ternary).
The column labeled “Ovrldbl.” tells whether an operator is overloadable. (See Chapter 8.)

Assoc. Arity

U n a r y

Binary

Binary

Binary

Binary

Ovrldbl. 1 ExampleOP Description Prec.
. .. . Global scope resolution 17 Right

Left

Left

Left

Left

Left

Left

Right

Right

Right

Right

Right

Right

Right

Right

Right

Right

Right

Right

Right

Right

Left

Left

Left

Left

N o : :x
. .. . 1 Class scope resolution 1 17 N o x : : x

. Direct member selection I 16 1 s.len

-> Indirect member selection 16 Yes p->len

I [I 1 Subscript 16 Yes 1 a[il

I 0 call I 16 n/aFunction Yes Yes
0
++

1 Type construction ~~~ -1

I Post-increment 1 16

n/a Yes int(ch)

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

U n a r y

Binary

Binary

Binary

Binary

Binary

Yes n++
-- Post-decrement 16 Yes n--

) s i z eo f I Size of object or type I 15 N o sizeof

++ Pre-increment I 15 Yes ++n
-- Pre-decrement I 15 Yes - -n

Bitwise NOT I 15 Yes -S

I. 1 Logical NOT I 15 Yes I !P

+ 1 Positive I 15 Yes I +n

- Negative 15

* Dereference 15

6c Address 15

new Allocation 15

delete Deallocation 15

0 Type conversion 15
*. Direct member selection 14

->* Indirect member selection 14

* Multiplication 13

/ Division 13

Yes -n

Yes

Yes

Yes I new

Yes 1 delete p

Yes (int)ch

No Ix.*q
Yes P-W

Yes m*n

Yes m/n

411

412 PRECEDENCE OF OPERATORS IN C++ [APP. C

OP Description Prec. Assoc. Arity Ovrldbl. Example

% Remainder 13 Left Binary Yes m%n

+ Addition 12 Left Binary Yes m + n
- Subtraction 12 Left Binary Yes m - n

cc Bit shift left 11 Left Binary Yes tout CC n

>> Bit shift right 11 Left Binary Yes tin >> n

< Less than 10 Left Binary Yes X<Y

<= Less than or equal to 10 Left Binary Yes x <= y

> Greater than .lO Left Binary Yes X=-Y

>= Greater than or equal to 10 Left Binary Yes x >= y

- -- - Equal to 9 Left Binary Yes X - -- - Y

I.= Not equal to 9 Left Binary Yes X ! = y

6c Bitwise AND 8 Left Binary Yes s & t

A Bitwise XOR 7 Left Binary Yes sAt

I Bitwise OR 6 Left Binary Yes SK

&SC Logical AND 5 Left Binary Yes u SC& v

I I Logical OR 4 Left Binary Yes u II v

?: Conditional expression 3 Left Ternary No u ? x : y

= Assignment 2 Right Binary Yes n = 22

+ = Addition assignment 2 Right Binary Yes n += 8

Subtraction assignment 2 Right Binary Yes n -4- ----
*-- Multiplication assignment 2 Right Binary Yes n *= -1

/ -- Division assignment 2 Right Binary Yes n /= 10

9
0= Remainder assignment 2 Right Binary Yes n %= 10

SC= Bitwise AND assignment 2 Right Binary Yes s &= mask

A= Bitwise XOR assignment 2 Right Binary Yes s A= mask

I= Bitwise OR assignment 2 Right Binary Yes s I= mask

<<= Bit shift left assignment 2 Right Binary YeS s <<= 1

>>= Bit shift right assignment 2 Right Binary Yes \ s >>= 1

throw Throw exception 1 Right Unary Yes throw(22)

I Comma 0 Left Binary Yes ++m,--n

Type

Fundamental Der ived

\ / ’
Cons tan t Array Func t ion Indirect Structurevoid Ari thmet ic

\ \
Floating Integral

float double long double unsigned Enumerat ion signed struct

char short int long char short int long

Appendix E

References

[Adams]

C+ + An Introduction to Computing, by Joel Adams, Sanford Leestma, and Larry Nyhoff.
Prentice Hall, Englewood Cliffs, NJ (1995) o-02-369402-5.

[Barton]
Scientific and Engineering C+ +, by John J. Barton and Lee R. Nackman.
Addison-Wesley Publishing Company, Reading, MA (1994) O-201-53393-6.

[Bergin]
Data Abstraction, the Object-Oriented Approach Using C+ +, by Joseph Bergin.

McGraw-Hill, Inc., New York, NY (1994) o-07-91 1691-4.

[Bronson]
A First Book of C+ +, by Gary J. Bronson.

West Publishing Company, St. Paul, MN (1995) O-3 14-04236-9.

[Budd]
Classic Data Structures in C+ +, by Timothy A. Budd.

Addison-Wesley Publishing Company, Reading, MA (1994) o-201-50889-3.

[Capper1
Introducing C+ + for Scientists, Engineers and Mathematicians, by D. M. Capper.

Springer-Verlag, London (1994) 3-540- 19847-4.

[Cargill]

C+ + Programming Style, by Tom Cargill.
Addison-Wesley Publishing Company, Reading, MA (1992) o-201-56365-7.

[Carrano]

Data Abstraction and Problem Solving with C+ +, by Frank M. Carrano.
Benjamin/Cummings Publishing Company, Redwood City, CA (1993) o-8053-1226-9.

[Carroll]
Designing and Coding Reusable C+ +, by Martin D. Carroll and Margaret A. Ellis.

Addison-Wesley Publishing Company, Reading, MA (1995) O-20 l-5 1284-X.

[Cline]
C+ + FAQs, by Marshall P. Cline and Greg A. Lomow.

Addison-Wesley Publishing Company, Reading, MA (1995) o-201-58958-3.

[Coplien]

Advanced C+ +, Programming Styles and Idioms, by James 0. Coplien.

Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-54855-O.

414

APP. E] REFERENCES 415

[Deitel]
C+ + How to Program, by H. M. Deitel and P. J. Deitel.
Prentice Hall, Englewood Cliffs, NJ (1994) O-13-1 17334-O.

[Dewhurst]
Programming in C+ +, Second Edition, by Stephen C. Dewhurst and Kathy T. Stark.
Prentice Hall, Englewood Cliffs, NJ (1995) 0- 13- 1827 18-9.

[Ellis]
The Annotated C+ + Reference Manual, by Margaret A. Ellis and Bjarne Stroustrup.

Addison-Wesley Publishing Company, Reading, MA (1992) o-201-5 1459-1.

[Friedman]
Problem Solving, Abstraction, and Design Using C+ +, by F. L. Friedman and E. B. Koffman.
Addison-Wesley Publishing Company, Reading, MA (1994) o-201-52649-2.

[Graham]
Learning C+ +, by Neil1 Graham.
McGraw-Hill, Inc, New York, NY (1991) o-07-023983-5.

[Hansen]
The C+ + Answer Book, by Tony L. Hansen.
Addison-Wesley Publishing Company, Reading, MA (1990) 0-201-l 1497-6.

[Headington]
Data Abstraction and Structures Using C+ +, by Mark R. Headington and David D. Riley.
D. C. Heath and Company, Lexington, MA (1994) o-669-29220-6.

[Horowitz]
Fundamentals of Data Structures in C+ +, by Ellis Horowitz, Sartaj Sahni, and Dinesh Mehta.

W. H. Freeman and Company, New York, NY (1995) O-7167-8292-8.

[Johnsonbaugh]
Object-Oriented Programming in C+ +, by Richard Johnsonbaugh and Martin Kalin.
Prentice Hall, Englewood Cliffs, NJ (1995) o-02-360682-7.

[Knuthl]
The Art of Computer Programming, Volume 1: Fundamental Algorithms, Second Edition,
by Donald E. Knuth.
Addison-Wesley Publishing Company, Reading, MA (1973) O-201-03809-9.

[Knuth2]
The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Second Edition,
by Donald E. Knuth.
Addison-Wesley Publishing Company, Reading, MA (1981) o-201-03822-6.

[Knuth3]
The Art of Computer Programming, Volume 3: Sorting and Searching, by Donald E. Knuth.
Addison-Wesley Publishing Company, Reading, MA (1973) 0-201-03803-X.

[Ladd]
C+ + Templates and Tools, by Scott Robert Ladd.

M&T Books, New York, NY (1995) O-55851-437-6.

416 REFERENCES [APP. E

[Lippman]
The C+ + Primer, Second Edition, by Stanley B. Lippman.
Addison-Wesley Publishing Company, Reading, MA (1991) O-201-54848-8.

[Meyers]
E’ective C+ +, by Scott Meyers.
Addison-Wesley Publishing Company, Reading, MA (1992).

[Model]
Data Structures, Data Abstraction: A Contemporary Introduction Using C+ +, by M. L. Model.
Prentice Hall, Englewood Cliffs, NJ (1994) 0-13-088782-X.

[Murray]
C+ + Strategies and Tactics, by Robert B. Murray.
Addison-Wesley Publishing Company, Reading, MA (1993) o-201-56382-7.

[Nagler]
Learning C+ +, by Eric Nagler.

8 West Publishing Company, St. Paul, MN (1993) o-314-02464-6.

[Nelson]
C+ + Programmers Guide to the Standard Template Library, by Mark Nelson.
IDG Books Worldwide, Inc., Foster City, CA (1995) O-56884-3 14-3.

[Oualline]
Practical C+ + Programming, by Steve Oualline.
O’Reilly & Associates, Sebastopol, CA (1995) l-56592- 139-9.

Perry1
An Introduction to Object-Oriented Design in C+ +, by Jo Ellen Perry and Harold D. Leiin.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-201-76564-O.

[Plaugerl]
The Standard C Library, by P. J. Plauger.
Prentice Hall, Englewood Cliffs, NJ (1992) 0- 13- 13 1509-9.

[Plauger2]
The Draft Standard C+ + Library, by P. J. Plauger.
Prentice Hall, Englewood Cliffs, NJ (1995) 0- 13- 117003- 1.

[Pohl.l]
Object-Oriented Programming Using C+ +, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1993) O-8053-5384-4.

[Pohl.2]
C+ + for Pascal Programmers, Second Edition, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1994) o-8053-3 158-1.

[Prata]
C+ + Primer Plus, by Stephen Prata.
Waite Group Press, Corte Madera, CS (1991) o-878739-02-6.

[Ranade & Zamir]
C+ + Primer-for C Programmers, by Jay Ranade and Saba Zamir.
McGraw-Hill, Inc., New York, NY (1994) o-07-051487-9.

APP. E] REFERENCES

[Rudd]
C+ + Complete, by Anthony Rudd.
John Wiley & Sons, Inc, New York, NY (1994) 0-471-06565-X.

[Satir]
C+ +: The Core Language, by Gregory Satir and Doug Brown.
0’ Reilly & Associates, Sebastopol, CA (1995) O-56592- 116-X.

[Savitch]
Problem Solving with C+ +, by Walter Savitch.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-8053-7440-X.

[Sedgewick]
Algorithms in C+ +, by Robert Sedgewick.
Addison-Wesley Publishing Company, Reading, MA (1992) o-201-5 1059-6.

[Sengupta]
C+ + Object-Oriented Data Structures, by Saumyendra Sengupta and Carl Phillip Korobkin.
Springer-Verlag, New York, NY (1994) O-387-94 194-O

[Sessions]
Class Construction in C and C+ +, by Roger Sessions.
PTR Prentice Hall, Englewood Cliffs, NJ (1992) o-13-630104-5.

[Shammas]
Advanced C+ +, by Namir Clement Shammas.
SAMS Publishing, Carmel, IN (1992) 0-672-30158-X.

[Stepanov]
“The Standard Template Library,” Technical Report HPL-94-34, by A. A. Stepanov and M. Lee.
Hewlett-Packard Laboratories, April 1994.

[Stroustrupl]
The C+ + Programming Language, Second Edition, by Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1991) o-201-53992-6.

‘[Stroustrup2]
The Design and Evolution of C+ +, by Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1994) o-201-54330-3.

[Teale]
C+ + IOStreams, by Steve Teale.
Addison-Wesley Publishing Company, Reading, MA (1993) O-20 l-5964 l-5.

[Wang1
C+ + with Object-Oriented Programming, by Paul S. Wang.
PWS Publishing Company, Boston, MA (1994) O-534-19644-6.

[Weiss]
,

Data Structures and Algorithm Analysis in C+ +, by Mark Allen Weiss.
Benjamin/Cummings Publishing Company, Redwood City, CA (1994) o-8053-5443-3.

[Winston]
On to C+ +, by Patrick Henry Winston.

Addison-Wesley Publishing Company, Reading, MA (1994) O-201-58043-8.

417

Appendix F

Pre-Defined Functions

This appendix describes the pre-defined functions provided in the C++ libraries. Each entry
lists the function name, its prototype, a brief description of what it does, and the header file
where it is declared.

Function

abort0

abs()

acos()

asin()

atan()

atof()

atoi(>

at010

bad0

bsearch()

ceil0

Prototype and Description

void abort();
Aborts the program.

int abs(int n);
Returns the absolute value of n.

double acos(double x);
Returns the inverse cosine (arccosine) of X.

double asin(double x);
Returns the inverse sine (arcsine) of X.

double atan(double x);
Returns the inverse tangent (arctangent) of X.

double atof(const char* s);
Returns the floating-point number represented
literally in the string s.

int atoi(const char* s);
Returns the integer represented literally in the string s.

long atol(const char* s);
Returns the integer represented literally in the string s.

int ios::bad();
Returns nonzero if badbi t is set; returns 0 otherwise.

void* bsearch(const void* x, void* a,
size t n,-
size-t s,
int (*cmp)

(const void*, const void*));/
Implements the B$nary Search Algorithm to
search for x in the sorted array a of n ele-
ments each of size s using the function *cmp
to compare any two such elements. If found, a
pointer to the element is returned; other-
wise, the NULL pointer is returned.

double ceil(double x);
Returns x rounded up to the next whole number.

418

Header File

<stdlib.h>

<stdlib.h>

<math.h>

<math.h>

<math.h>

<stdlib.h>

<stdlib.h>

<stdlib.h>

<iostream.h>

<stdlib.h>

<math.h>

APP. F] PRE-DEFINED FUNCTIONS 419

clear0 void ios: :clear(int n=O); <iostream.h>
Changes stream state to n.

clearerr void clearerr(FILE* p); <stdio.h>
Clears the end-of-file and error flags for the file *p.

close0 void fstreambase::close(); <fstream.h>
Closes the file attached to the owner object.

cos (1 double cos(double x); <math.h>
Returns the inverse cosine of X.

cosh() double cosh(double x); <math.h>
Returns the hyperbolic cosine of X: (ex + e-“)/2.

difftime() double difftime(time t tl, time-t to); <math.h>
Returns time elapsed (in seconds) from time t 0 to time t 1.

eof (1 int ios::eof(); <iostream.h>
Returns nonzero if eo f bi t is set; returns 0 otherwise.

exit0 void exit(int n); <stdlib.h>
Terminates the program and returns n to the invoking process.

exp (> double exp(double x); <math.h>
Returns the exponential of X: ex.

fabs() double fabs(double x); <math.h>
Returns the absolute value of x .

fail0 int ios::fail(); &ostream.h>
Returns nonzero if f ai lbi t is set; returns 0 otherwise.

fclose() int fclose(FILE* p); <stdio.h>
Closes the file *p and flushes all buffers. Returns 0 if successful;
returns EOF otherwise.

fgetc (1 int fgetc(FILE* p); <stdio.h>
Reads and returns the next character from the file *p if possible;
returns EOF otherwise.

fgets (> char* fgets(char* s, int n, FILE* p); <stdio.h>
Reads the next line from the file *p and stores it in * s. The “next
line” means either the next n-l characters or all the characters up
to the next endline character, whichever comes first. The NUL
character is appended to the characters stored in s. Returns s if
successful; returns NULL otherwise.

fill0 char ios::fill(); <iostream.h>
Returns the current fill character.
char ios: :fill(char c);
Changes the current fill character to c and returns the previous fill
character.

f l a g s (> long ios::flags(); <iostream.h>
Returns the current format flags.
long ios: :flags(long n);
Changes the current format flags to n; returns previous flags.

floor0 double floor(double x); <math.h>
Returns x rounded down to the next whole number.

flush0 ostream& ostream::flush(); <iostream.h>
Flushes the output buffer and returns the updates stream.

420 PRE-DEFINED FUNCTIONS [APP. F

fopen () FILE* fopen(const char* p, const char* s); <stdio.h>
Opens the file *p and returns the address of the structure that rep-
resents the file if successful; returns NULL otherwise. The string
s determines the file’s mode: II r 'I for read, ‘I w I’ for write,

I’ a II for append, ‘I r + 'I for reading and writing an existing file,
II w+ II for reading and writing an existing file, and I’ a+ 'I for

reading and appending an existing file.

fprintf() int fprintf(FILE* p, const char* s, . . .); <stdio.h>
Writes formatted output to the file *p. Returns the number of char-
acters printed if successful; otherwise it returns a negative number.

fputc0 int fputc(int c, FILE* p); <stdio.h>
Writes character c to the file *p. Returns the character written or
EOF if unsuccessful.

fputs0

fread()

int fputs(const char* s, FILE* p); <stdio.h>
Writes string s to the file *p. Returns a nonnegative integer if
successful; otherwise it returns EOF.

size-t fread(void* s, size-t k, size-t n, <stdio.h>
FILE* p);

fscanf()

fseek()

ftell()

fwrite()

Reads up to n items each of size k from the file *p and
stores them at location s in memory. Returns the number of
items read.

int fscanf(FILE* p, const char* s, . . .); <stdio.h>
Reads formatted input from the file *p and stores them at location
s in memory. Returns EOF if end of file is reached; otherwise it
returns the number of items read into memory.

int fseek(FILE* p, long k, int base); <stdio.h>
Repositions the position marker of the file *p k bytes from its
base, where base should be SEEK-SET. for the beginning of
the file, SEEK-CUR for the current position of the file marker, or
SEEK END for the end of the file. Returns 0 if successful.-

long ftell(FILE* p); <stdio.h>
Returns the location of the position marker in file * p or returns - 1.

size-t fwrite(void* s, size-t k, size-t n, <stdio.h>
FILE* p);

Writes n items each of size k to the file *p and returns the
number written.

gcount() int istream::gcount(); <iostream.h>
Returns the number of characters most recently read.

get (1 int istream::get(); <iostream.h>
istream& istream: :get(signed char& c);
istream& istream: :get(unsigned char& c);
istream& istream::get(signed char* b, int n,

char e='\n');
istream& istream: :get(unsigned char* b, int
n,

char e='\n');
Reads the next character c from the i s tream. The first version
returns c or EOF. The last two versions read up to n characters
into b, stopping when e is encountered.

APP. F] PRE-DEFINED FUNCTIONS 421

getc (> int getc(FILE* p); <stdio.h>
Same as f ge tc () except implemented as a macro.

getchar int getchar(); <stdio.h>
Returns the next character from standard input or returns EOF.

gets (> char* gets(char* s); <stdio.h>
Reads next line from standard input and stores it in s. Returns s or
NULL if no characters are read.

good (>

ignore0

int ios::good(); <iostream.h>
Returns nonzero if stream s tat e is zero; returns zero otherwise.

istream& ignore(int n=l, int e=EOF); <iostream.h>
Extracts up to n characters from stream, or up to character e,
whichever comes first. Returns the stream.

isalnum() int isalnum(int c); <ctype.h>
Returns nonzero if c is an alphabetic or numeric character; returns
0 otherwise.

isalpha int isalpha(int c); <ctype.h>
Returns nonzero if c is an alphabetic character; otherwise returns
0.

iscntrl() int iscntrl(int c); <ctype.h>
Returns nonzero if c is a control character; otherwise returns 0.

isdigit int isdigit(int c); tctype.h>
Returns nonzero ‘if c is a digit character; otherwise returns 0.

isgraph int isgraph(int c); <ctype.h>
Returns nonzero if c is any non-blank printing character; other-
wise returns 0.

islower int islower(int c); <ctype.h>
Returns nonzero if c is a lowercase alphabetic character; other-
wise returns 0.

isprint int isprint(int c); <ctype.h>
Returns nonzero if c is any printing character; otherwise returns
0.

ispunct() int ispunct(int c); <ctype.h>
Returns nonzero if c is any punctuation mark, except the alpha-
betic characters, the numeric characters, and the blank; otherwise
returns 0.

isspace int isspace(int c); <ctype.h>
Returns nonzero if c is any white-space character, including the
blank ’ I , the form feed I \ f I , the newline I \n I , the carriage
return I \ r I , the horizontal tab I \ t ’ , and the vertical tab ’ \v ’ ;
otherwise returns 0.

isupper int isupper(int c); <ctype.h>
Returns nonzero if c is an uppercase alphabetic character; other-
wise returns 0.

isxdigit() int isxdigit(int c); <ctype.h>
Returns nonzero if c is one of the 10 digit characters or one of the
12hexadecimaldigitletters: 'a', 'b', 'c', 'd', 'e', 'f ',
I A I , I B I , I C I , I D I , I E I , or I F I ; otherwise returns 0.

422 PRE-DEFINED FUNCTIONS [APP. F

labs0 long labs(long n);
Returns absolute value of n.

cstdlib.h>

log0

log10 (>

memchr()

double log(double x); <math.h>
Returns the natural logarithm (base e) of x.

double loglO(double x); cmath.h>
Returns the common logarithm (base 10) of x.

void* memchr(const void* s, int c, size-t k); cstring.h>
Searches the k bytes of memory beginning at s for character c.
If found, the address of its first occurrence is returned. Returns
NULL otherwise.

memcmp() int memcmp(const void* sl, const void* s2, cstring.h>
size-t k);

Compares the k bytes of memory beginning at
sl with the k bytes of memory beginning at s2
and returns a negative, zero, or a positive
integer according to whether the first string
is lexicographically less than, equal to, or
greater than the second string.

memcpy (> void* memcpy(const void* sl, const void* s2, cstring.h>
size-t k);

Copies the k bytes of memory beginning at s2
into memory location sl and returns sl.

memmove() int memmove(const void* sl, const void* s2, cstring.h>
size-t k);

open (1

Same as memcpy() except strings may overlap.

void fstream: :open(const char* f, int m, cfstream.h>
int p=filebuf::openprot);

void ifstream: :open(const char* f,
int m=ios::in,
int p=filebuf::openprot);

void ofstream: :open(const char* f,
int m=ios::out,
int p=filebuf::openprot);

Opens the file f in mode m with protection p.

peek (1 int istream:: peek(); <iostream.h>
Returns next character (or EOF) from stream without extracting it.

POW0 double pow(double x, double y); cmath.h>
Returns x raised to the power y (X Y).

precision0 int ios: :precision(); <i.ostream.h>
int ios: :precision(int k);
Returns the current precision for the stream. The second version
changes the current precision to k and returns the old precision.

tolower- int tolower(int c); cctype.h>
Returns the lowercase version of c if c is an uppercase alpha-
betic character; otherwise returns c.

toupper (> int toupper(int c); <ctype.h>
Returns the uppercase version of c if c is a lowercase alphabetic
character; otherwise returns c.

AppendixG

the

Hexadecimal Numbers

Humans normally use the base 10 numbering system. This is
Greek word deka for “ten.” Our ancient ancestors learned it by

called the decimal system for
counting with their 10 fi.ngers.

Computers have only 2 fingers (Le., there are only 2 possible values for each bit), so the
binary system works well for computers. But the trouble with binary numbers is that their repre-
sentations require long strings of bits. For example, 1996 is represented as IIIIIOOIIOO in
binary. Most humans find long strings like that difficult to process.

Binary numbers are easy to convert to other bases if the base is a power of 2. For example,
conversion between binary and octal (base 8 = 23) merely requires grouping the binary bits into
groups of 3 and interpreting each triplet as an octal digit. For example, to convert the binary
numeral IIIIIOOIIOO write ~I,~II,OOI,IOO = 3714. Here, 11 converts to 3, III
converts to 7, o o 1 converts to I, and I o o converts to 4. Conversion from octal back to binary
is just as simple. For example, 2 6 5 o converts to I o 11 o 1 o 1 o o 0, which is 1448 in decimal. Note
that octal numerals use only the first 8 decimal digits: 0, I, 2, 3, 4, 5, 6, 7.

After 8, the next power of 2 is 16. Using that base makes the numerals even shorter. This is
called the hexadecimal system (from the Greek hex + deka for “six” + “ten”). Conversion
between binary and hexadecimal is just as simple as it is between binary and octal. For example,
to convert the binary numeral
(from right to left) and then
101,11~1,0100 = 5d4. Here,
4. The hexadecimal digits I 0,
alphabet: a, b, c, d, e, f.

~OII~OIOIOO to hexadecimal, group the bits into groups of 4
translate each group into the corresponding hexadecimal digit:
I o I converts to 5, I I o I converts to 11, and o I o o converts to
I 1, I 2, I 3, I 4, and I 5 are denoted by the first six letters of the

The output manipulators dec, hex, and act are used for converting different bases:

EXAMPLE G.1

This shows how both the value and the address of a variable can be printed:

. #include <iostream.h>
main0
{

int n = 1492; // base 10
tout << "Base 8: n = H -CC act CC n CC endl;
tout << "Base 10: n = b CC n CC endl;
tout c-c "Base 16: n = ' c-c hex cc n C-C endl;

423

424 HEXADECIMAL NUMBERS [APP. G

Here the manipulator oc t is used to convert the next output to octal form. Note that the output reverts
back to decimal until the hex manipulator is used.

The next example shows how to input integers in octal and hexadecimal. Octal numerals are
denoted with a 0 prefix, and hexadecimal numerals are denoted with a Ox prefix:

EXAMPLE 6.2

This shows how both the value and the address of a variable can be printed:

#include <iostream.h>
main0
1

int n;
tout << "Enter an octal numeral (use 0 prefix): ";
tin >> n;
tout << "Base 8: n = ' C-K act << n << endl;
tout << "Base 10: n = ' << dec C-C n -CC endl;
tout << "Base 16: n = ' << hex -C-C n << endl;
tout << "Enter a decimal numeral: "; -
tin >> n;
tout << "Base 8: n = ' << act C-C n << endl;
tout << "Base 10: n = ' C-C dec -CC n -C-C endl;
tout << "Base 16: n = ' C-C hex -CC n -CC endl;
tout << "Enter a hexadecimal numeral (use Ox prefix): ";
tin >> n;
tout << "Base 8: n = ' -CC act C-C n -CC endl;
tout << "Base 10: n = ' CC dec -CC n << endl;
tout << "Base 16: n = ' -C-C hex CC n C-C endl;

Index

ABC, 311 ,
abort(),391,418
abs (), 181,391,418
Absolute value, 84, 391, 392
Abstract base class, 311, 369,423
Abstract base class template, 369
Abstract data type, 423
Access function, 226, 261, 336,423
Access functions, 336
Access specifier:

private, 227, 299
protected, 227, 299
public, 227

accumulate(),401
acos(), 418
Actual arguments, 95
Actual parameter, 90, 95
Addition operator, 279,412
Address, 70, 157,423
Address operator, 157,411
ADT, 423
Aggregation, 295
Alert character, 4, 348
Algorithm, 423
Alias, 158,423
Allocate, 423
Allocation operator, 411
Alphabetic character, 9
Alphanumeric character, 9
American Standard Code for Information

Interchange, 3
Ancestor, 423
Append operator, 28 1
append(),l53
Arctangent, 392
Argument, 90,423
Arithmetic assignment operator, 28 1
Arithmetic operators, 25 1
Arity, 17, 411
Array, 127
ASCII, 3,423
ASCII code, 29,69,405
asin(), 418
asm, 37
Assembler, 423
Assembly language, 423

assert(),389,402,404
Assignment:

operator, 7, 10, 14,249, 251,412
statement, 11, 17

Associativity, 17,411
atan(),392,418
atof (>, 391,418
atoi(), 418
atol(), 418
auto,37

Babylonian Algorithm, 84
back(),400
Backslash character, 4,405
bad(),418
Badbit, 336
Base class, 298,423
begin&400
BIDS Library, 388
Binary, 423,425
Binary operator, 17,411
Binary Search Algorithm, 87, 137,418
Bisection Method, 182
Bit, 7
Bit shift left operator, 412
Bit shift right operator, 412
Bit string, 329, 345
Bitwise AND operator, 412
Bitwise NOT operator, 411
Bitwise OR operator, 412
Bitwise XOR operator, 412
Block, 36
Body, 94
Boole, George, 100
Boolean, 329
Boolean expression, 40
Boolean function, 100
Borland C++, 14,47, 388

Class Library, 388
Dynamic Link Library, 388
Object Windows Library, 388

Borland C++ Object Windows Library, 388
Borland International Data Structures, 388
break, 37,61,62,63, 88
bsearch(), 418
Bubble Sort, 135, 148,154,357

425

4 2 6 INDEX

Buffered output, 347
Byte, 14

Calling a function, 90
Carriage return character, 10 1
case,37
Case statements, 63
Case-sensitive switch, 293
Cast, 69
cat(), 181
catch,37
CDC, 311
ceil (),392,418
Ceiling function, 392
Central processing unit, 423
Chained assignment statement, 11
char,14,21,37
Character, 3

backslash, 405
control, 405
end-of-file, 405
newline, 405

Character constant, 4
chr(), 181
tin, 31, 32, 67
cin.bad(),336
cin.clear(),338
cin.eof(),336
cin.fail(),336
cin.good(),336
cin.rdstate(),336
Circular list, 384
class,37,220

Address,245,268,324
Array,365
Book,311
Card,323
CD, 312
Circle,243,320
Complex,246,268
Computer,245,268
Cone,320
Date,244,268,296
Deck,323,324
Degree,325
Deque,381
Employee,245
Faculty,325

class (cont.):
Fish,310
GradStudent,
Hand,323
ios,329
istream,
List,366,388
ListIterator, 370
ListNode, 366
Magazine,312
Map, 388
Matrix, 242,246,267,364,365
Media,31 1
Money, 325
Name, 3 2 1
Node, 233
ostream, 339
Person, 241,245, 267,295, 299, 305, 322,

325
Point,238,267,268
Quaternion, 247,269
Queue, 244,377,383
Random, 240
Rational, 220,223,226,231,252
Set,388
Sphere, 243
Stack, 238,359,383
streambuf,328
String, 241,246,271,296
string, 403
Student,245,298,299,325
Telephone, 325
Time,239,244,267
Undergrad,
university,325
VCR, 313
Vector,263,266,268,361,365,388
Vertebrate,310

Class hierarchy, 3 10, 3 11
Class implementation, 223
Class interface, 223
Class template, 358
clear(),338,339,419
clearerr&
close(), 419
CmpO, 181
Combined assignment statement, 20
Comma operator, 6 1,4 12

Comment, 1, 5, 6, 23,29
Compile, 423
Compiler, 423
Composite, 295
Composition, 295,296, 326, 365
Compound assignment statements, 11
Compound condition, 3 8
Compound declarations, 10
Compound statement, 36, 58
Concatenation, 279
Concrete derived class, 3 11
Conditional expression operator, 44,4 12
Conjugate, 269
const, 37
Constant, 9,71, 161, 167
Constant function, 23 1
Constant objects, 23 1
Constructor, 223, 227
Containment, 295
Continuation condition, 59
continue, 37
Continue condition, 59
Continue statement, 62, 63
Control character, 405
Control-D, 196, 338
Control sequence, 405
Control-Z, 196, 338
Conversion operator, 257, 269, 282, 337,411
copy(>, 176,401
Copy constructor, 227, 229, 249
cos (~$181,419
cosh(), 392,419
count(), 401
tout, 1, 31, 32, 67
CPU, 423
CPYO,~~~
Creating an object, 8
C-string, 403
C-String Library, 198
cube&178
Cursor, 375

Dangling pointer, 167, 173
Deallocating memory, 168
Deallocation operator, 4 11
dec, 330,425
Decimal, 423,425
Declaration, 7, 8, 9, 23

INDEX 427

Decrement, 20,25
Decrement operator, 17,411
Default, 37
Default constructor, 225,227, 249, 264, 272
Default copy constructor, 229
Default parameter values, 113, 225
define, 402,404
delete, 37,167,169,274
Dereference operator, 164, 411
Dereferencing, 160
Derivation, 298
derivativeo, 179,182
Derived class, 298
Derived type, 161
Destructor, 230, 249
Deterministic computers, 7 1
Deviation, 144
difftime(),419
Direct access, 127
Direct member selection operator, 411
Directive, 5,423
Division operator, 411
do.. -while statement, 37, 57, 58
Dominating member data, 301
Dot product, 125
double,37,66,68,85
Dummy argument, 259,270
Dummy node, 383
Dynamic array, 167,168
Dynamic binding, 167, 174, 183, 306, 308, 310
Dynamic storage, 365

e l s e , 3 7

=-wtyO,400
Empty program, 2
Empty string, 5
endO,
End-of-file character, 338,423,405
endl,7
Endline character, 7
enum, 37
Enumeration types, 45, 139, 161
Enumerator, 46, 56
eof(), 419
EOF flag, 336
EOF state, 336
EOF bit, 336, 338
equal& 401

428 INDEX

Equality operator, 263,4 12
erase(), 400
Escape sequence, 405
Euclidean Algorithm, 80, 123
exit (), 391,419
EXIT FAILURE,391
EXIT-SUCCESS,391
exp (;, 181,392,419
Expanding an inline function, 109
Exponent, 66, 67,78, 85
Exponential, 392
Expression, 24, 423
Extensibility, 3 14
extern,37
Extraction operator, 3 1, 339, 340
extremeso, 152

fabs(),84,392,419
factorial function, 59, 60, 86, 97
fail(), 419
Failbit, 336
Fall through, 44,48, 56
fclose(), 419
fgetc(), 419
fgets(), 419
File processing, 328, 393
File scope, 110
Files, 396,423
fill (), 330,331,401,419
fill no,401
find;),401
Fixed, 330
Fixed point, 70
flags(),330,419
float,37,66,68
float.h,67
Floating-point types, 66, 67
Floating-point value, 67, 68, 69
floor(),392,419
FLT DIG, 67
FLT-MANT -DIG, 67
FLT-MAX, 67-
FLT MIN, 67
flushO,
fopen(),420
for statement, 37, 57, 59
Forever loop, 62
Form feed character, IO 1

Formal arguments, 94
Formal parameter, 94,423
Format flags, 336
Format mask, 334
Formatted input, 339
Formatted output, 339
Foundation Class Library, 388
fprintf(),420
fputc(),420
fputs(),420
fread(),420
Free form language, 12
frequencyo, 146
friend function, 252, 262
front&400
fscanf(),420
fseek(),420
ftell(),420
Function:

abort(),391,418
abs (), 181,391,418
access, 226,261,423
accumulate(), 40 1
acos(), 418
append(),153
asin(), 418
assert(),389,402,404
atan(),392,418
atof (), 391,418
atoi (), 391,418
atol(), 418
back&400
bad&418
beginO,
bsearcho, 418
cat(), 181
ceil(),392,418
chr(), 181
clear(), 419
clearerr(),419
close(), 419
CmpO, 181
combination, 117
copy () , 176,401
copy'backward(),401
cos(),419
cosh(), 392,419
count(), 401

Function (cont.):
CPYOJ81
cube& 178
declaration, 94, 126
definition, 94, 126
derivativeo, 179,182
difftime(),@J

emPtYo,400
endO,
eofO,419
equal (>, 401
erase (>, 400
exit(), 391,419
exp(), 392,419
extremeso, 152
f&s (>, 84,392,419
factorial(),59
fail(), 419
fclose(),419
.fgetc(), 419
fgets(), 419
fill(),401,419
fill n&401
find;),401
flagsO, 419
floor(), 392,419
flusho, 419
fopen(), 420
fprintf(),420
fputco, 420
fputso, 420
fread(), 420
frequencyo, 146
front& 400
fscanf('),420
fseek(),420
ftell(),420
fwrite(), 420
wdO,227
gcount(), 420
generate(),401
generate no,401
get () $168, 192,285,420
getc(), 421
getchar(), 421
getline (1, 196, 197,209
gets(), 421
good(), 421

INDEX

ignore(), 192,421
includes&401
inplace-merge(), 401
insert(), 145,400
isalnum(), 194,389,421
isalpha& 194,389,421
iscntrl(), 194,389,421
isdigit(),194,389,421
isgrapho, 194,389,421
islower(),194,389,421
isPalindrome(),153
isprint(),194,389,421
ispunct(),194,208,389,421
isspace(),194,389,421
isupper(), 194,207,389,421
isvowel(), 211
isxdigit(), 194,389,421
labs(), 422
largest(), 152
lenO,180
logo,392,422
logaoo,392,422
make heap(),W
max(), 401
memchr(), 422
memcmp(), 422
memcpy(), 422
memrnove(),422
merge(>,401
min(),401
mirror(), 180
nth element(),401
ope& 422
partial sort(>,401
partiti&(),401
peek(),192,422
POP heap(),401
pow:), 392,422
precision(), 422
prepend&
print(),l80
printf(), 393
producto, 182
Prototype, 126
push heap&401
putback(), 192
rand (), 72,391
random_shuffle(),401

429

4 3 0 INDEX

Function (cont.):
reduce(), 227,253
remove(), 153,401
replace& 401
reverse (), 150,214,401
riemann(), 178,181
root(), 182
rotate (), 151, 153,401
scanf(), 393
search&401
sin&392
size&400
sort (), 181,401
sort-heap&401
sqrt (), 181,392
srand(),391
stable sort&401
strcatT,, 188,202,206,208
strchr(), 206,208
strcmp (), 188,206,209
strcpy(), 188,200,206,208,209
strcspn(), 206
strlen(), 4,188,198,199,206,208,393
strncat (), 188,203,206,208,210
strncmp(), 188,206
strncpy(), 188,201,206,208,209
strpbrk(), 205,206,208
strrchro, 206
strspn(), 206
strstr(), 199,206
strtok (), 188,204,206
sum(), 171,178,181
swap& 400
tokenize(),212
tolower (), 194,389,422
toupper (), 194,389,422
trace(), 155
transpose& 155
trap(), 182
unique& 401

Function call operator, 4 11
Function signature, 308
Function template, 355
Fundamental types, 66
fwriteO,420

Game of craps, 120
gcdO,227

gcount(), 345,420
generate& 401
generate n(), 401
Generatingiseudorandom numbers, 7 1
Generic algorithms, 400
get (), 168,192,285,340,341,342,345,420
getc(), 421
getchar(), 421
getline (), 196,197,209,343
gets(), 421
good(), 421
Goodbit, 336
goto statement, 37, 63
Greater than operator, 412
Greatest common divisor, 123
Greatest integer function, 392

Has-a relationship, 297
Header, 92, 94
Header file, 89,423
Heterogeneous container, 360
hex, 330,425
Hexadecimal notation, 157, 330,424,425
Homogeneous container, 360
Horizontal tab character, 4, 101
Horner’s Algorithm, 113
Hyperbolic cosine, 392

I/O library, 328
Identifier, 9, 24
if statement, 33, 37
if.. . else statement, 34
ignore (), 192,343,421
Immutable lvalues, 16 1
Implementation, 126, 3 13, 3 14,424
Inaccuracy, 70
include directive, 1, 5, 3 1, 67, 90,424
includes(),@l
Incore formatting, 393,403
Increment operator, 17,20, 30,411
Index value, 127
Indirect access, 180
Indirect Insertion Sort, 154
Indirect member selection operator, 411
Indirect print, 2 13
Indirect Selection Sort, 154, 18 1
Indirect sort, 212, 213
Infinite loop, 62, 76, 88 I

INDEX 431

Information hiding, 96, 222, 304
Inheritance, 295, 326, 365,424
Initialization, 59
Initialization list, 225, 265
Initialize, 10, 7 1, 159
Initializer list, 130
In-line comment, 6 1
inline functions, 37, 109
In-memory stream processiong, 328
inplace merge(), 401
Input object, 32
Input operator, 3 1
insert(), 145,400
Insertion operator, 2, 3, 339
Insertion Sort, 147,381
Instance, 222, 357,424
Instantiate, 222, 357,424
int, 14,26, 37,66,68
INT MAX, 391
Integer, 13,69,424

unsigned, 13
Integral promotion, 47
Interface, 126, 313, 314
Internal, 330
Interpolation, 8 1
Invoking a function, 90
ios:

badbit, 336
dec,330
eofbit, 336
failbit, 336
fixed,330
goodbit, 336
hex,330
internal, 330
left, 3 3 0
act, 330
right,330
scientific,330
showbase,
showpoint,
showpos, 330
skipws,330
stdio,330
unitbuf,330
uppercase, 330

iostream.h, 1,67,328
Is-a relationship, 298

isalnum () , 194,389,421
isalpha (), 194,389,421
iscntrl(), 194,389,421
isdigit (), 101,194,389,421
isgraph (), 194,389,421
islower (), 101,194,389,421
isPalindrome(),153
isprint (), 194,389,421
ispunct (), 101,194,208,389,421
isspace (), 101,194,389,421
istream, 328,339
isupper (), 101,194,207,389,421
isvowel(), 211
isxdigit (), 194,389,421
Iteration, 57
Iterator, 369

bidirectional, 40 1
forward, 40 1
input, 401
output, 401
random access, 400

Josephus Problem, 384
jump statement, 63

key, 404
keywords, 9,56,409
Knuth, Donald E., 240

label, 63
labso, 422
largest(), 152
Least common multiple, 123
Least integer function, 392
Least squares, 81
Left associative, 411
Lehmer, D., 240
len(), 180
Length, 4
Less than operator, 412
Library, 386,424
Linear Congruential Algorithm, 240
Linear Search, 137
Linear Search Algorithm, 87, 134
Linked list, 365
Linker, 424
Literal, 16 1
Local declaration, 37

432 INDEX

Local scope, 110
Local variable, 97
log(),181,392,422
loglo(),392,422
Logarithm, 392
Logical AND operator, 4 12
Logical NOT operator, 411
Logical operators, 3 8
long, 37,66
long double, 66
Loop, 57
Loop invariant, 61
Lowercase, 424
Lvalue, 161, 270,284, 361,424

Machine language, 424
Macro, 357
Magnitude range, 87
main(),9,112
make heap(),@l
Mantissa, 66,67,78, 85
map, 403,404
Mask, 335
math.h, 89,90,91
Matrix, 383
max(),401
Median, 154
Member data, 220,424
Member function, 220,424
Member selection operator, 411
memchr(), 422
memcmp(), 422
memcpy(), 422
memmove(), 422
Memory leak, 3 10, 3 15
merge(), 401
Method, 220, 314
Microsoft Foundation Class Library, 3 88
min(),401
minimax(), 156
Monte Carlo method, 324
Monte Carlo simulation, 82
Multidimensional array, 140
Multiplication operator, 4 11
multiset, 403,404
Mutable lvalues, 16 1

Name, 157

Negation operator, 262,411
Negative, 29
Nested conditionals, 42
Nested loops, 64
new, 37,166,176
Newline character, 2,4, 5, 33, 101, 212,405
Node, 233
Nonprinting characters, 405
Normal distribution, 152
Not equal to operator, 412
Not operator, 411
nth element(),dol
1&172
NULL, 166,172,391,392
Null pointer, 391, 392
Null statement, 78
Numerical derivative, 179

Object, 8,70, 161,424
Object-oriented programming, 220, 222, 3 13
Object-oriented programming language, 7
act, 330,425
open(), 422
Operation, 3 14
Operator, 3,9, 14, 37,411

addition, 4 12
address, 411
allocation, 411
assignment, 4 12
binary, 411
bit shift, 412
bitwise, 4 12
bitwise not, 411
comma, 61,412
conditional expression, 4 12
conversion, 282,411
deallocation, 4 11
decrement, 411
delete, 169, 274
dereference, 4 11
direct member selection, 411
division, 411
equal to, 412
function call, 411
greater than, 412
increment, 411
indirect member selection, 411
insertion, 3

INDEX 433

’ Operator (cont.):
less than, 412

* logical, 412
logical not, 411
member selection, 411
multiplication, 4 11
negative, 411
not, 411
not equal to, 412
output, 3
overloadable, 411
positive, 411
post-decrement, 4 11
post-increment, 4 11
pre-decrement, 4 11
pre-increment, 4 11
remainder, 4 12
scope resolution, 411
sizeof, 411
subscript, 169,411
subtraction, 4 12
ternary, 411
throw, 412
type construction, 411
type conversion, 411
unary, 411

ostream, 328
Outer product, 155
Output manipulator, 425
Output object, 32
Output operator, 2, 3, 14
Output stream, 3
Overflow, 20,29,78
Overload, 262
Overloadable operators, 4 11
Overloading relational operators, 253, 254
Overriding a function, 301
OWL Library, 388

Palindrome, 153
Parameter, 424
Parametrized types, 362
partial sort(),401
partit&), 401
Pascal, 139
Pascal’s Triangle, 156
Pass by constant reference, 108
Pass by reference, 105,212

Pass by value, 90, 95
peek () , 192,344,422
Percentile, 154
Perfect shuffle, 150, 324
Permutation function, 98
Person class, 299
Plural, 210
Pointer, 159, 163,424
Pointers to objects, 232
Polymorphism, 305, 306, 308, 327
Polynomial, 113, 114

POP heapO,401
Positive operator, 411
Post-decrement operator, 18,411
Postfix operator, 259
Post-increment operator, 18, 19,411
pow () $392,422
Power, 392
Precedence, 16,411
Precision, 78, 85, 87, 332,424
precision(), 330,422
Precompiler directive, 9
Pre-decrement operator, 18,4 11
Prefix operator, 259
Pre-increment operator, 18, 19,411
prepend(),l%
Preprocessor, 424
Preprocessor directive, 3 1
print(), 180
printf(), 393
private, 37
Private access, 227, 299
Procedure, 99
Processor, 424
product& 182
Program, 1
Promotion, 68, 91
protected,37
Protected access, 227, 299
Pseudo-random integers, 72
public,37
Public access, 227
Public inheritance, 298
Pure virtual function, 3 10
push_heap(),401
putback& 192,344

Quadratic equation, 53

434 INDEX

Quadratic formula, 5 3
quaternion, 269
Quote character, 4
Quotient operator, 79

rand () $72,391
RAND MAX, 72,391
Random numbers, 7 1,391
random shuffle(),401
Range ofmagnitude, 85
Rational, 223,226,231
rdstate(),330
read&345
Read-only parameter, 105, 108
Real number, 69
Real number types, 66
reduce(), 227,253
Reference, 158
Reference operator, 105, 158
Referent, 159
register, 37
Regression line, 8 1
Relational operator, 35, 254
Remainder operator, 79,412
remove(), 153,401
replace& 401
Reserved word, 38,48, 56
return statement, 2, 37,92,94
reverse (), 150,214,401
Riemann sums, 178
riemann(), 178,181
Right, 330
Right associative, 411
root(), 182
rotate (>, 151,153,401
Rounding, 68
Roundoff error, 69, 88
Run-time binding, 167
Rvalue, 161,424

.

Saddle point, 156
scanf(), 393
Scientific format, 70, 330
Scope, 110,230
Scope resolution operator, 110, 222,411
search(),401
Seed, 72,73,392
Selection Sort, 154, 380

Self-documenting code, 12,46
Semicolon, 2, 12
Sentinel, 6 1, 62, 2 12
Separately compiled function, I26
Sequential execution, 3 I
Service, 220
set, 403,404
setf (), 333
short,14,37
Short circuiting, 39, 56
showbase,
showpoint,
showos, 330
Shuffle, 150
Side effect, 64
Sieve of Eratosthenes, 149
Signature, 30 1
signed,37
Significant digits, 67, 78, 85
Simulation, 7 1, 120
sin (), 182,392
Sine, 392
Singular, 2 10
Size, 70
size& 400
size t, 205,392
Size type, 392
sizeof (>, 37,66,411
skipws,330
Software library, 386
sort (), 148,181,401 l

sort heap(),401
Source code, 424
Space character, 10 1
Spaghetti code, 65
Specialization, 298
sqrt (>, 181, 182,392
Square root function, 84, 89, 392
srand(),391
stable sort&401
Stack, 283
Standard C comment, 5
Standard C Library, 89
Standard C++ comment, 5
Standard C++ Library, 386
Standard deviation, I52
Standard identifier, 38, 48, 56
Standard output stream, 1

. Standard Template Library, 386, 399
Standardization, 386
State variables, 336, 337
static, 37, 424
Static binding, 167, 174, 182
Static data member, 234, 293
Static function member, 293
Static variable, 235
stdio,%o
stdlib.h,72
strcat(), 188,202,206,208
strchr(), 199,206,208
strcmp(), 188,206,209
strcpy(),188,200,202,206,208,209
strcspn(), 206
Stream, 3,32,328

output, 3
Stream classes, 328

INDEX

Superclass, 298

tolower (>,194,389,422

swap (> function, 37, 105,400
switch statement, 37,43, 56,61,63
System beep, 104,348
System clock, 74
Tab character, 33
Template, 37,424
Template class, 364, 375
Template function, 357
Ternary operator, 411
Test driver, 92
Text file, 396
this pointer, 37, 235
_ throw exception operator, 37,412
tie, 338
Token, 9,424
tokenize(),212
Tolerance, 84

Stream header, 402,403
Stream extraction operator, 264,285, 339, 340

Stream hierarchy, 328
Stream insertion operator, 264, 339
Stream manipulator, 347
Streams, 393
String class, 271-294
String length function, 198
String literal, 3, 5
String stream, 328, 393,403,404
string.h,5
strlen(), 4,5,188,198,206,208,393
strncat (>, 188,202,203,206,208,210
strncmp(), 188,206
strncpyo, 188,201,202,206,208,209
strpbrk, 205
strpbrk(), 205,206,208
strrchr(), 206,208
strspn(), 206
strstr(), 199,206
strtok(), 188,204,206
struct, 37
Structure type, 16 1
Student class, 299
Subclass template, 362
Subroutine, 99
Subscript, 127, 169
Subscript operator, 164,260, 274,411
Subtraction operator, 262,4 12
sum(), 171,178, 181

toupper(), 194,389,422
trace(), 155
Transpose, 382
transpose& 155
trap(), 182
Trapezoidal Rule, 182
Traversal, 369
Tree diagram, 3 10
Truncating, 68
Truth tables, 38
try, 37
Type, 7, 157,424
Type casting, 68
Type construction operator, 411
Type conversion operator, 47,4 11
Type parameter, 356
typedef,37,139

Unallocated memory, 164
Unary negation, 262
Unary operator, 17,411
Underflow, 78,424
Unformatted I/O, 339
Uninitialized pointer, 166
Uninitialized variables, 29
union, 37,424
unique(), 401
unitbuf,%o
UNIX, 424

435

436 INDEX

UNIX workstation, 66
unsetf(), 333,335
unsigned, 14,37,424

char,14,28
int, 14,66
long, 66
short,14

Update, 59
Uppercase, 330,424
User prompt, 33,264
Utility function, 227

Value, 7, 70
Variable, 7,71,424
Vector, 378,379
Vertical tab character, 101
virtual, 37 ’

Virtual destructor, 3 10, 3 15
Virtual function, 305, 306
void, 37, 172,424
void function, 37, 99
volatile, 37

wchar t, 392,403,404
whilestatement, 37, 57, 58
White space characters, 33, 101, 330-331, 333,

335, 340,348-350
Wide character type, 392
width(),330,331
ws, 350

Zeller’ s Algorithm, 244
Zero-based indexing, 127, 362
Z-score, 152

	Preface
	Contents
	Introduction to Programming in C++
	Conditional Statements and Integer Types
	Iteration and Floating Types
	Functions
	Arrays
	Pointers and References
	Strings
	Classes
	Overloading Operators
	A String Class
	Composition and Inheritance
	Stream I/O
	Templates and Iterators
	Libraries
	A - The ASCII Code
	B - C++ Keywords
	C - C++ Operators
	D - C++ Types
	E - References
	F - Pre-Defined Functions
	G - Hexadecimal Numbers
	Index

