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Just forty years ago, there wasn’t a single
computer in the world. Today, there are
millions, and they touch the lives of every
one of us.

Like most revolutionary inventions, the
computer was the culmination of a long
chain of technological developments,
beginning with the invention of the abacus
five thousand years ago.

Now, Bit by Bit tells the whole computer
story for the first time —from grooves in the
dirtand beads on a frame to today’s super-
fast computers. Entertaining, comprehen-
sive, and visually stunning, Bit by Bit
brings this incredible technology within
the grasp of us all.

But Bit by Bit is much more than a story
of machines; it is also about the brilliant,
forward-looking, and often eccentric men
and women who have shaped the com-
puter’s history —from Wilhelm Schickard,
the obscure German professor who
invented the first mechanical calculator in
1623; to Charles Babbage, the debonair
nineteenth-century genius whose Analyti-
cal Engine came within an inch of being a
full-fledged computer; to Stephen Woz-
niak, the young electronics wizard who
founded Silicon Valley’s Apple Computer
Company.

With magnificent photos culled from
around the world, and a superbly written
text, Bit by Bit is both a guided tour of the
world of the computer and an absorbing
account of its evolution.
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Preface

o machine, no matter how extraordinary, is as interest-

ing as its maker. When Wilhelm Schickard, a German

professor at the University of Tiibingen, invented the
first mechanical calculator in 1623, he was giving expression to
an imagination much richer, much stronger, than any collection of
gears and axles. “History,” declared the British historian and es-
sayist Thomas Carlyle, “is the essence of innumerable biogra-
phies,” and this book is as much, if not more, about the people
whose work led to the invention of computers as it is about com-
puters themselves.

Bit by Bit is also about ideas — in particular, the ancient
and great idea that intellectual work can be performed by ma-
chines. The notion apparently originated with the invention of
the abacus in Babylonia about five thousand years ago and
evolved, in ever more potent forms, into the slide rule, the me-
chanical calculator, the punch-card tabulator, the first electronic
calculating machines, and finally, in the United States and Great
Britain in the late 1940s, the electronic digital computer.

The invention of the computer was one of the greatest tech-
nological achievements of the twentieth century, but it wasn't un-
til the development of the personal computer, in the mid-1970s,
that the magnificent promise inherent in this machine was ful-
filled. We have reached a new stage in the evolution of the great
idea that began with the abacus, and it is only fitting that we now
pause to trace the long history of the ultimate machine, the reflec-
tion of our minds, the computer.
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CHAPTER 1

In this nineteenth-century
Chinese abacus, numbers
are entered by sliding beads
toward the erossbar. The
upper beads represent fives;
the lower ones, units. The
number shown is 7,230,189.
The instruction board above
the abacus is turned on its
side.

The First Mechanical
Calculators

There is no greater mistake than to call arithmetic an
exact science. There are . . . hidden laws of number
which it requires a mind like mine to perceive. For
instance, if you add a sum from the bottom up, and
then again from the top down, the result is always
different.

Maria Price La Touche, 1824-1906

.. I submit to the public a small machine by my
invention, by means of which you alone may, without
any effort, perform all the operations of arithmetic, and
may be relieved of the work which has often times
fatigued your spirit. . ..

Blaise Pascal, 1623-62

he history of computers has two starting points. In one

sense, it began during World War II, when a team of sci-

entists and engineers at the University of Pennsylvania,
in Philadelphia, invented a general-purpose electronic digital cal-
culator known as ENIAC, or Electronic Numerator, Integrator,
Analyzer, and Computer. Consisting of 18,000 vacuum tubes, oc-
cupying most of a large room, and adding 5,000 ten-digit decimal
numbers a second, ENIAC was a revolutionary development, light
years ahead of any other calculator. But it was not a computer in
the strict meaning of the term. It could not store a program — a
list of instructions that tells a computer what to do — and its op-
eration was controlled by the physical rearrangement of thou-
sands of wires and switches. Whatever a computer is — and we
shall go into that later in this book — it must be able to store a
program; otherwise, it isn’t all that different from a calculator.
Although ENIAC wasn't a bona fide computer, it quickly led to
the invention of one, and today’s computers are its direct
descendants.

In another sense, however, the history of computers com-
menced with the invention of the abacus, probably in Babylonia
(now Iraq) five thousand years ago. This humble tool was one of
the first, and certainly one of the most effective, embodiments of a



An advertisement for
Hindu-Arabic math from a
sixteenth-century English
book, Margarita
Philosophica. The smiling
man has discovered Hindu-
Arabie numbers; the
frowning man is still using
Roman numerals.
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momentous idea — the notion of using a machine to help us per-
form intellectual work. However obvious this idea may seem to-
day, its discovery initiated a long chain of technological develop-
ments that led, by way of countless wrong turns, dead ends, and
technological breakthroughs, to the invention of ENIAC and the
stored-program computer. The history of computers is the story
not only of a certain kind of machine, but of the progress of a
great idea from sliding beads on a frame to a machine that could
retain a program. Our history, then, properly begins with that
most humble of mathematical instruments, the abacus.

No one knows exactly where the abacus, or counting board, came
from. The word abacus comes from the Greek abakos or abax,
which means “board” or “tablet,” and in turn may have de-
scended from the ancient Hebrew word ibeq, which means “to
wipe the dust.” In its earliest form, the abacus was merely a row
of shallow grooves or lines traced in the ground, with pebbles,
stones, or bits of bone used as counters; the rows stood for units,
tens, hundreds, and so on, and the quantity of counters in the
rows represented a number. Unfortunately, there are no surviving
examples of the first abaci, since they were made out of sand or
wood; but counters, or round stones that apparently were used as
counters, have been unearthed from ancient Babylonian ruins.

The Babylonians and most early civilizations had written
number systems, although as a rule these systems were not de-
signed for reckoning. In general, the symbols were complex and
awkward to write, and the systems lacked the all-important con-
cepts of zero and fixed numerical places for tens, hundreds, and
so on. However, these inadequacies didn’t prevent many early
peoples from carrying out extraordinarily complicated calcula-
tions, and the reason is simple: the first number systems were not
really intended for computation but to record the results of calcu-
lations worked out on the abacus. Such was also the case with
Roman numerals: it's very difficult to divide MDCCLVI by LIX on
paper or in your head, but it isn’t hard to do with an abacus.
Without the use of zeros or numerical places, Roman notation was
inappropriate for pen- or mental-reckoning, but the Romans
weren't at a great disadvantage as long as they relied upon the
abacus.

Moreover — and this is the great beauty of the abacus —
you don’t have to know any number system to use it. Regardless
of whether you can read or write, you can use it to solve most
practical numerical problems, which means that even uneducated



Counting boards were
widely used in Europe
between A.n. 1200 and 1800.
Unfortunately, few survive.
This one was made in
sixteenth-century
Strasbourg.

A seventeenth-century
French jeton, front and

back.
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merchants or traders could carry out the kinds of matliematical
transactions involved in business, from keeping accounts to cal-
culating interest. As a result, the abacus became one of the sine
qua nons of the Western world, a commonplace and indispensa-
ble tool until the adoption of Hindu-Arabic numbers and the
gradual spread of numeracy and literacy led to its extinction; you
don’t need an abacus if your numerical notation is conducive to
pen- or mental-reckoning. All this may come as a surprise to mosl
of us, since Westerners think of the abacus as an exclusively Ori-
ental tool, yet it was widely used in Europe, chiefly in the form of
a wooden board with metal counters, until a few hundred years
ago.

Hindu-Arabic math entered Europe with the great Moorish
invasions of the eighth and ninth centuries, and it spread with
snail-like slowness. (Old habits die hard, even in modern times;
witness the persistence of the English system of weights and
measures in the United States, Great Britain, and other countries.)
Depending on the region, the transition to Hindu-Arabic numerals
occurred between the thirteenth and seventeenth century. They
appeared first in Italy and Spain, which, being on the Mediterra-
nean, were closest to the Arab world, and much later in France,
England, and Germany. The switch also occurred in different so-
cial classes at different times, with the educated upper classes
learning the new notation long before the unlettered lower ones.
In general, the Hindu-Arabic system was commonly employed
throughout Europe by the end of the sixteenth century.

The change created a great deal of confusion and consterna-
tion. Strange as it may seem to us today, most people were puz-
zled by the alien notions of zero and place and didn’t understand
their functions. For a time, the two systems were even used inter-
changeably, which created some amusing numerical bedfellows, a
mathematical mixing of oil and water; for instance, one set of je-
tons, (metal tokens minted by the French government for use as
counters on counting boards) show the date as MCCC94. For most
Europeans (those who were numerate, anyway), it was like learn-
ing a new language. The symbols took some getting used to and
there was a strong feeling — a feeling that’s still with us — that
you could prove anything with them. Indeed, some people were
outraged by the whole thing. In 1299, to cite the best-known case
of public antagonism to Hindu-Arabic math, the merchants of
Florence were forbidden to use these strange new symbols in
their accounts.

Although Hindu-Arabic notation made pen- or mental-reck-
oning fairly easy, most people still had a hard time with basic
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arithmetic, and the counting board hung on. As Europeans grew
increasingly adept with the new math, however, the board gradu-
ally fell by the wayside and had all but disappeared by the end of
the seventeenth century, when only the old-fashioned and the ig-
norant continued to use it. (Such people were referred to deri-
sively as “counter casters.”) Yet there was no practical reason for
tossing the age-old abacus aside; it is a useful tool regardless of
your number system, and it still thrives in Japan, China, and other
parts of Asia. But the Western world has always been partial to
“progress,” no matter how painful or inconvenient it may be, and
it was Hindu-Arabic math, not the abacus, that stood for progress.
And progress is exactly what came.
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John Napier (1550-1617), in
an engraving from a
painting in the collection of
the current Lord Napier.

Opposite:

The rent rolls of Bristol,
England, document the
switch to Hindu-Arabic. The
figures on the page at the
left, compiled in 1599, arc
in a stylized form of Roman
numerals; those on the right,
written in 1640, are Hindu-
Arabic. The third line from
the bottom on the 1599 rent
roll says: “Sume of this side
xxxii'" v¢ [32 pounds,
5 shillings].”
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The First Mechanical Calculators

In 1614, John Napier (1550-1617), baron of Merchiston, Scotland,
published one of the most important papers in the history of sci-
ence. A highly original mathematician, Napier announced the in-
vention of logarithms, or logs — a series of numbers that enabled
multiplication and division, the two most difficult arithmetic op-
erations, to be reduced to addition and subtraction. Instead of
multiplying or dividing natural numbers (1, 2, 3, etc.) on paper or
in your head, you simply looked up the numbers in a table of logs
and added or subtracted the given figures; then, to get the final an-
swer, you converted the sum of the logs back to a natural number
by referring to a table of antilogs. The principle of logs is quite
simple, and is based upon the fact, now taught to schoolchildren
everywhere, that numerical powers can be added or subtracted:
x? X x* = x®or x® + x* = x%

In their original version, Napier’s logs weren’t useful for or-
dinary figuring, so Henry Briggs (1561-1630), a geometry profes-
sor at Gresham College, London, took up the grueling job of calcu-
lating the logs for thousands of natural numbers. In 1617, Briggs
published a small table giving the logs for the numbers from 1 to
1,000 and, seven years later, a much larger one for 2,000 to 29,000
and 90,000 to 100,000. At a time when most people had trouble
with basic arithmetic, Brigg’s tables were a mathematical godsend
and were circulated widely. Other mathematicians gradually filled
in the gaps in his tables, providing, for example, the logs for fre-
quently used mathematical functions, such as sine and tangent,
which made Napier’s invention an increasingly indispensable
tool for navigators and surveyors.

The creation of logs was one of the seminal achievements
in the history of mathematics, with a great deal of influence on
the development of computers. Aside from its many practical ap-
plications, the invention led mathematicians to take a closer look
at numerical powers, and the development of exponents was one
result. Unlike most great scientific discoveries, Napier’s work
wasn’t preceded by decades of lesser labors along the same lines
by other mathematicians, and there isn’t even a hint in earlier
mathematical writings of the feasibility of abbreviating such basic
operations as multiplication and division. The invention was en-
tirely Napier’s doing, the work of a determined genius in out-of-
the-way Scotland, a rather primitive place compared to London,
Paris, and the other intellectual centers of seventeenth-century
Europe.

The wealthy lord of a castle outside Edinburgh, Napier re-
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In 1614, Napier's Mirifici
Logarithmorum Canonis
descriptio, one of the great
papers in the history of
science, was published. It
introduced logarithms and
contained ninety pages of
tables.
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garded mathematics as a hobby. He attended Cambridge Univer-
sity for a few years but, apparently at the suggestion of an uncle
who didn’t think much of English schools, finished his education
on the Continent, probably at the University of Paris. Living in a
time of intense religious strife — the Protestant Reformation was
underway -— Napier, who did not seem to do anything halfheart-
edly, got caught up in the general fanaticism. He became a zealous
anti-Catholic, a leader in the campaign against Popism, and spent
five years writing a long religious tract called Plaine Discovery of
the whole Revelation of Saint John, which he composed in Eng-
lish instead of Latin so that “hereby the simple of this lland may
be instructed” in the Protestant way. With the peculiar shortsight-
edness of the zealot, Napier was certain that he would be remem-
bered above all else for his Plaine Discovery.

Napier was also a resourceful inventor, especially in de-
fense of God and country. He devised a large hydraulic screw for
draining flooded coal mines and a small arsenal of weapons for
Scotland’s defense against an anticipated invasion by the dreaded
King Philip of Spain, a Catholic. (And he described these weap-
ons in a curious document entitled Secrett Inventionis, proffitabill
and necessary in theis dayes for defence of this land, and with-
standing of strangers, enemies of God’s truth and religion.) He
drew up plans for mirrors that could set fire to ships at a distance;
a cannon that could rain shot in a circle; and a round metal char-
iot — a forerunner of the tank — that could carry musketeers. Ac-
cording to a witness, the cannon was particularly fearful, destroy-
ing several sheep and cattle (of the Catholic faith, no doubt) in a
test on a plain outside Edinburgh.

In his autobiography, William Lilly, a seventeenth-century
astrologer. relates an amusing story, possibly apocryphal, about
the first meeting of Napier and Briggs. Lilly apparently heard the
tale from a witness, John Marr:

When Merchiston [Napier] first published his Logarithms Mr
Briggs . . . was so surprised with admiration of them that he
could have no quietness in himself until he had seen that no-
ble person whose only invention they were. He acquaints
John Marr therewith who went into Scotland before Mr
Briggs purposely to be there when these two so learned per-
sons should meet. Mr Briggs appoints a certain day when to
meet at Edinburgh; but, failing thereof, Merchiston was fear-
ful he would not come. It happened one day as John Marr
and the Lord Napier were speaking of Mr Briggs, “Oh! John,”
saith Merchiston, “Mr Briggs will not come now”; at the very
instant one knocks at the gate, John Marr hasted down and it
proved to be Mr Briggs to his great contentment. He brings



Napier’s rods were
fashioned in many different
forms and sizes. The set on
the right was made in the
seventeenth century and
came in a leather case; the
one on the left dates from
the eighteenth or nineteenth
century and came in a
wooden box. The rods on
the left have been set up to
multiply 746,159 by any
number from 2 to 9. To
multiply by 2, you simply
read the figures in the first
horizontal row, moving from
right to left and adding

the numbers in each
parallelogram. Hence
746,159 X 2 = 1/4/8+
1/2/12+1/1/8 or 1,492,318.
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Mr Briggs into my Lord’s chamber, where almost one quarter
of an hour was spent, each beholding the other with adinira-
tion, before one word was spoken.

In the last years of his life, Napier developed another in-
genious arithmetic trick — hardly as significant as logs but rather
a clever little gimmick. Employing an ancient numerical scheme
known as the Arabian lattice, he laid out a special version of the
multiplication tables on a set of four-sided wooden rods; there
was a rod, or numbered stick, for each of the ten digits, including
zero. Napier’s rods, or bones, as they came to be called, were es-
sentially a multiplication table cut up into movable columns. For
example, to multiply 1,952 by 4, you picked up the rods num-
bered 1, 9, 5, and 2, and placed them on a wooden board outfitted
with a vertical index labeled from 1 to 9. You moved your eye
down to index number 4, and added up the to numbers, or par-
tial products, that appeared in the fourth row of each of the rods.
That was your answer. By repeating these operations, you could
multiply and divide large numbers and find square and cube
roots. .

Napier’s rods were enormously popular and constituted the
Scotsman'’s chief claim to fame among his contemporaries. They

were used all over Europe, testimony to the poor state of numer-
acy at the time, when even the lower rungs of the multiplication
table taxed the ability of well-educated people. (Arithmetic ordi-
narily wasn’t taught in school.) The rods were available in basic.
middling, and deluxe versions; in an especially fancy edition,




Some versions of Napier’s
rods were cylindrical. Here,
the cvlinders have been set

to multiply 3,100,768,129 by

any multiplier from 1 to 9.
An addition table is
engraved on the lid.

Below: Gunter’s scale, front
and back. It is two feet long
and two inches wide.
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they might be carved out of ivory and set in a carrying case made
out of fine leather, with an addition table, pasted to the lid,
thrown in for good measure. In later versions, the rods were
turned into cylinders and mounted inside wooden boxes; instead
of laying out the rods on an index board (to set up the multipli-
cand), you simply rotated them in their places in the box. In any
event, Napier’s rods fell out of fashion after several decades, as
people gradually got the hang of Hindu-Arabic math.

Napier's work had many practical offshoots. In 1620, three years
after Napier’s death, the English mathematician William Gunter
(1581-1626) developed a physical analog of logarithms. Gunter, a
colleague of Briggs's at Gresham College, drew a grid of lines on a
sheet of parchment and multiplied and divided numbers by add-
ing and subtracting lengths with a compass. As with logs, the op-
erative principle is the exponent, and each point on Gunter’s
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William Oughtred (1574—
1660), in an engraving from
his Clavis Mathematicae
(1631)
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scale, or line, is exponentially distant from the others. The “Gun-
ter” became a popular navigator’s tool. Two years later, another
English mathematician, William Oughtred (1574-1660), rear-
ranged Gunter’s lines into a pair of circles, refigured their num-
bers, and came up with a device that found a warm spot in the
hearts of scientists and engineers for hundreds of years — the
slide rule, which enables you to perform rough but rapid multi-
plication and division by sliding a numbered stock between two
fixed slats.

Oughtred was one of those brilliant country clergymen who
dabbled in mathematics. A deeply religious man, he wavered be-
tween a career in academia and the church; but he decided to fol-
low his heart and, after serving as a fellow for several years at
Cambridge, his alma mater, joined the ministry. He wound up as
rector in Albury, Surrey, where he continued his research and cor-
responded with mathematicians all over Europe. He gained a con-
siderable reputation as a mathematician and attracted many stu-
dents. (Albury, which lies just south of London, wasn't far from
Oxford, Cambridge, and the other intellectual centers of England.)
There, Oughtred tutored the sons of the local nobility and taught
promising young mathematicians for free.

One of his more imaginative students was a fellow named
Richard Delamain, who went on to become a mathematics teacher
in London and who, in 1630, published a paper describing a cir-
cular slide rule. Oughtred, claiming to have invented the circular
rule eight years earlier, accused Delamain of stealing his idea. The
two men and their supporters fought it out for years, in print and
in person; one of Oughtred’s wittier defenders described Dela-
main as “the pickpurse of another man’s wit.” Oughtred finally
freed himself from his shyness for the printed word and issued a
paper on the circular rule in 1632 and another on a rectilinear
version in 1633. Meanwhile, Delamain, thanks to his newfound
fame as the creator of the circular rule, was appointed quartermas-
ter general and mathematics tutor to King Charles.

It appears that Delamain invented the circular rule later
than, but independently of, his teacher, who is the undisputed
creator of the more useful and popular rectilinear version. In any
event, the first rectilinear rule consisted of two wooden scales,
marked with logarithmic lines, that were held in the user’s hands
and slid back and forth against each other; in 1654, the rectilinear
rule as we know it today — a sliding stock between two fixed
slats — appeared. As time went by, both types of rule were modi-
fied and improved, and various mathematical scales, in addition
to the original ones for multiplication and division, were in-



The first circular rules
consisied of a series of
coneentric logarithmic
scales whose values had to
be added and subtracted
with compasses.

Right: The first rule with a
sliding stock (top) was made
by Robert Bissaker in 1654.
Below are rules made in
1689 and 1742.

Below right: In 1881. E.
Thacher, a New York
inventor, patented a huge
cvlindrical rule. It
contained two logarithmic
scales, each divided into
forty sections engraved on
the edges of twenty
triangular bars. By adding
and subtracting the values
with a compass, you could
perform computations that
were accurate to four places.
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cluded. Many special-purpose rules were also developed, in var-
ious shapes and sizes, for the use of scientists and engineers.

With their numerical scales engraved or printed on wood or
ebony, slide rules were accurate only for computations to the sec-
ond or third decimal place. (Plastic slide rules came along in the
1950s.) However, because many practical problems in science and
engineering don't require exact answers, the thumbnail computa-
tional ability of slide rules wasn’t necessarily a drawback, and the
slide rule enjoved a long and fruitful life. By the late nineteenth
century, the need for faster and more accurate figuring led to ever
bigger and more complicated rules and, by the middle of the
twentieth century, the device reached preposterous dimensions.
In 1952, for instance, an engineer at the Northrop Aircraft Com-
pany, of Hawthorne, California, created a circular rule that was
about the size of a tabletop. It was quite possibly the largest rule
ever made.

Incidentally, the invention of the slide rule wasn't
Oughtred’s only contribution to mathematics. In the early seven-
teenth century, there was little consensus on the kind of notation
to use for even the most basic arithmetic operations, and
Oughtred is credited with introducing the times sign (<) for mul-
tiplication and the double colon (::) for expressing ratios, a sym-
bol now rarelv used. Napier also did his part to standardize nu-
merical notation, giving us a simple and unambiguous way to
write decimals — the decimal point.




Richard Bemis, a Northrop
engineer, holds an enormous
circular rule that he had
designed in 1952 for
aerodynamic calculations.

At this point in our account, it's important to explain the differ-

ence between the terms digital and analog, one of the most cru-
cial distinctions in the lexicon of computers. The words describe
different methods of counting or measuring various phenomena,
and the distinction between them is best illustrated by two gad-
gets that are found in almost every car: a speedometer and an
odometer. As a recorder of miles traveled, an odometer is a digital
device, which means that it counts discrete entities; as a measurer
of miles per hour, a speedometer is an analog device, because it
keeps track of velocity. When we count things, regardless of what
those things may be, we are performing a digital operation — in
other words, using numbers that bear a one-to-one correspond-
ence to whatever it is we’re enumerating. Any device that counts
discrete items is a digital one. By contrast, when we measure
things, whether to find their weight, speed, height, or tempera-
ture, we are making an analogy between two quantities. Any
gadget that does this is an analog one.

Scales, rules, speedometers, thermometers, slide rules, and
conventional timepieces (the kind with hands) are all analog in-
struments, whereas odometers, Napier's rods, mechanical calcula-
tors, and the overwhelming majority of electronic computers are
digital devices. The line between digital and analog is quite dis-
tinct, even though some instruments, like watches and thermome-
ters, are manufactured in both digital and analog forms. In gen-
eral, when an operation calls for measuring something, an analog
device is employed; similarly, when it calls for counting things. a
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By X-raying the Antikythera
mechanism, a salt-encrusted
portion of which is shown
above, historians were able
to deduce its structure and
function.

Opposite: A reconstruction
of the Antikythera
mechanism. The device is
about as big as a
mantelpiece clock.
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digital machine is used. The speedometer-odometer illustration is
a simple way to remember the analog-digital contrast.

Analog computers have been around for thousands of
years. The ancient Greeks, for example, developed an astonish-
ingly sophisticated clocklike mechanism that could register and
predict the motion of the stars and planets. The device, found in
an ancient shipwreck off the southern Greek island of Antikythera
near Crete, in 1901, consisted of metal gears and pointers encased
in a box that opened up like a book. The Antikythera mechanism
is by far the most sophisticated scientific instrument from antiqui-
ty, and it seems scarcely possible that it was made in the first cen-
tury B.C. rather than in the seventeenth or eighteenth century. De-
spite the rapid proliferation of digital electronics, the world is
still thickly populated with analog gadgets, and the evolution of
these machines is closely linked with the invention of the
computer.

For hundreds of years, historians believed that the great French
mathematician and philosopher Blaise Pascal invented the first
mechanical calculator in approximately 1642. Pascal’s machine
was a small metal box equipped with a set of interlocking metal
gears; by turning the numbered dials on the outside of the box,
you could add and subtract. As it turns out, however, the first cal-
culator wasn’t invented by Pascal but by an obscure German pro-
fessor named Wilhelm Schickard. Schickard’s calculator was built
in 1623 — the year Pascal was born. This fortuitous discovery was
made in 1935 by an alert German historian by the name of Franz
Hammer, and it led to the reconstruction of Schickard’s machine
and to the historical resurrection of its inventor.

Schickard was born in Herrenberg, a small town near Stutt-
gart, in southwestern Germany, on 22 April 1592. Not much is
known about him. His father, Lukas, was a carpenter; his mother,
Margaret, the daughter of a Lutheran minister. A precocious child,
he won a scholarship to a monastery school in the nearby town of
Tibingen. (The scholarship was awarded by the government of
Wiirttemberg, then a quasi-independent state.) After graduating
from the monastery, he entered the seminary at the University of
Tiibingen, where he studied theology and prepared for the minis-
try. He received a B.A. in 1609 and, two vears later, an M.A. In
addition to theology, he specialized in what were then known as
the Oriental languages — Arabic, Hebrew, Persian, and Syrian.
From 1613 to 1619, he served as a pastor or deacon in several



Wilhelm Schickard (1592
1635) in a portrait at the
Universitv of Tibingen

A prolific scholar, Schickard
wrote dozens of books and
monographs, including a
Hebrew grammar, published
when he was twenty-two,
and a dissertation on
ancient Hebrew coins.
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nearby towns, and then returned to his alma mater as a professor
of Hebrew and Oriental languages.

Schickard was a polymath, with a wonderful talent for lan-
guages. He was also a skilled mechanic, cartographer, and en-
graver whose published writings span an extraordinarily wide
range of subjects — mathematics, astronomy, optics, meteorology,
cartography, Semitic studies, and theology. Even at a time when
the extent of knowledge in any field was considerably smaller
than it is today, and a determined individual could master several
diverse disciplines, the range and variety of Schickard’s achieve-
ments are impressive. He was a universal man — the first of many
in the history of computers — with a rare mixture of scientific
and artistic ability.

In the winter of 1617, Schickard met Johannes Kepler, the
great mathematician and astronomer. Kepler was passing through
Tiibingen on his way to Leonberg, the Wiirttemberg town where
his mother had been accused of being a witch. The old woman,
whom the mathematician had once described as “thin, garrulous,
and bad-tempered,” faced torture and trial (in that order), and Kep-
ler was on his way to Leonberg to arrange for her defense and
eventual acquittal. Imperial mathematician to the Holy Roman
Emperor, Kepler was a famous and controversial man, much per-
secuted for his religious beliefs; he was a Lutheran with strong
Calvinist leanings, and his faith ran counter to the prevailing
dogma. Ironically, his religious stand caused him infinitely
greater grief than his revolutionary scientific achievements, which
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A detail of one of
Schickard’s maps, showing a
section of Wiirttemberg
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most people didn’t understand and, therefore, were less well
known.

It is believed that Michael Maestlin, an astronomy profes-
sor at the university, introduced Schickard to Kepler. Although
Kepler was twenty-four years older than Schickard, the two men
had much in common, professionally and personally — the same
religion, the same alma mater, the same home province, the same
scientific interests — and they became friends. Their relationship
speaks well of Schickard, who was only a twenty-five-year-old
deacon at the time, not only because the great Kepler was inter-
ested in him but because Schickard himself was willing to risk
the general disgrace that surrounded a man whose family had
been touched by the devil and whose religious beliefs contra-
dicted the church’s. Kepler was impressed with the multitalented
Schickard and later asked him to draw the tables of figures for his
great work, Harmonice Mundi (World Harmony, 1619). The two
men corresponded with each other for several vears, and Schick-
ard looked after Kepler's son when the young man attended the
University of Tiibingen. (And he took over Maestlin’s chair when
the professor died in 1631.)

In their letters and conversations, Schickard and Kepler
discussed the latest mathematical and scientific achievements. in-
cluding logarithms and Napier’s rods. Schickard’s calculator ap-
pears to have been an outgrowth of these discussions, although it
seems that he conceived of the machine on his own. In anv event,
Schickard, who liked to work with his hands, designed and built
the Calculating Clock, as he called his invention. sometime in
1623.



In Schickard’s calculator,
carrying and borrowing was
accomplished with
“mutilated” gears positioned
between the number wheels.
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Schickard installed a
modified set of Napier’s rods
in the upper half of his
calculator. The
multiplication table shown
above was laid out on each
of the calculator’s six
cylinders.
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On 20 September 1623, Schickard wrote Kepler a letter that
described, in Latin, the result of his labors. “What you have done
in a logistical way (i.e., by calculation),” Schickard announced,

I have just tried to do by way of mechanics. I have con-
structed a machine consisting of eleven complete and six in-
complete (actually “mutilated”) sprocket wheels which can
calculate. You would burst out laughing if you were present
to see how it carries by itself from one column of tens to the
next or borrows from them during subtraction.

Schickard’s next letter, written on 25 February 1624,
brought bad news:

I had placed an order with a local man, Johann Pfister, for the
construction of a machine for you; but when half finished,
this machine, together with some other things of mine, espe-
cially several metal plates, fell victim to a fire which broke
out unseen during the night. . . . I take the loss very hard,
now especially, since there is no time now to produce a re-
placement soon.

At this point, the Calculating Clock disappears into the
sands of time. In 1618, the Thirty Years’ War erupted in Prague,
and half of Europe was swept up into the madness. For three dec-
ades, the armies of Germany, Austria, Sweden, France, and Spain
marched to and fro across the Continent. The majority of the sol-
diers were mercenaries with a professional interest in prolonging
the war; they ravaged the countryside for food and plunder, and
left ruin, starvation, and disease in their wake. Germany, the main
battleground, lost about 40 percent of its population, mostly
through starvation and plague; in some regions, such as Wiirttem-
berg, which the war reached in the late 1620s, more than half the
populace perished. Schickard died of bubonic plague on 24 Octo-
ber 1635, and his family passed away at about the same time. In
all likelihood, his house and possessions were burned, looted, or
given away.

With the death of Schickard’s family, no one was left to me-
morialize his achievements. Aside from an occasional reference in
obscure sources, the Calculating Clock was forgotten. But, against
all odds, some of Schickard’s papers were preserved in the Stutt-
gart Landesbibliothek and the two letters quoted above wound up
in collections of the astronomer’s works. The first letter was in-
cluded in a collection of Kepler’s papers that came to rest in the
Pulkovo Astronomical Observatory outside Leningrad, while the
second was published in a volume of Kepler's works entitled Lit-



Working from Schickard’s
letters and drawings, Dr.
Bruno Baron von Freytag
Loringhoff reconstructed
Schickard’s calculator in
1960. Below is a view of
the completed machine,
showing, from top to bottom,
Napier’s rods; the addition
and subtraction dials; and
the independent number
wheels, used for storing
numbers. Above is the back
of the machine, revealing
the rods.
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The Schickard sketch that
Franz Hammer discovered
at the Pulkovo Observatory
in 1935 is shown at the top
and, below it, the one that
he found at Stuttgart twenty-
one years later.
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terae ad Kepplerum (1718). (Catherine II of Russia acquired most
of the astronomer’s manuscripts, bound in eighteen volumes, in
1773.) Unfortunately, the many scientists, historians, and archi-
vists who pored over Kepler’s literary remains failed to recognize
the importance of Schickard’s letters, which is quite understanda-
ble given the size of Kepler’s papers. And there wasn’t much rea-
son to pay any attention to the dusty Schickard material in
Stuttgart.

In the early 1930s, the German Research Union and the Ba-
varian Academy of Sciences decided to publish a complete edi-
tion of Kepler’s works. Max Caspar, Kepler’s noted biographer,
and Franz Hammer, another Kepler expert, were the co-editors of
the series. One day in 1935 Hammer was sifting through copies of
the astronomer’s papers at the Pulkovo Observatory when he
came across a curious slip of paper about the size of a postcard.
The paper contained a rough drawing of a gadget of some sort. In
the letter to Kepler published in Litterae ad Kepplerum, Schick-
ard describes his invention in detail and refers to an enclosed
sketch, but the drawing had been lost. Fortunately, Hammer re-
membered that letter, and linked the drawing to it. Although he
realized that he had found documentary evidence of the invention
of a mechanical calculator, Hammer, burdened with a great deal of
work and hampered by the outbreak of World War II, didn't publi-
cize his discovery.

Twenty-one years later, Hammer was examining Schick-
ard’s papers in Stuttgart when, as luck would have it, he found
another drawing of the calculator along with a small piece of pa-
per containing instructions for a mechanic. The drawing jarred
his memory, and he decided to announce his findings. In 1957, at
a Congress on the History of Mathematics at a mathematical insti-
tute in Oberwolftach, in the Black Forest, he presented what he
had found. One of the people in the audience was Dr. Bruno
Baron von Freytag Loringheff, a mathematics professor at the Uni-
versity of Tiibingen and, in a manner of speaking, Schickard’s
spiritual descendant. Since Hammer didn’t understand how
Schickard’s device worked, Professor von Freytag, who knew a bit
about old mathematical methods, studied Schickard’s documents
and deciphered the puzzle. Back in Tiibingen, Professor von Frey-
tag embarked upon the reconstruction of the machine, and com-
pleted a working version in 1960.

Schickard’s calculator, which resembles a mechanical cash
register, was actually two machines in one; the top half was sim-
ply a version of Napier's logs, minus the oblique line, laid out on
six cylinders suspended in a wooden box. The face of the box was
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composed of nine wooden slats with little windows cut out of the
slats to show the numbers on the rods. If, for example, vou
wanted to multiply 332 by 5, you turned the first three rods to
332, slid the fifth slat to the left, and added the products that ap-
peared in the windows of that slat. As long as the multiplications
were simple enough, vou could get the final result by toting up
the numbers on the logs in your head. But if your multiplier had
several digits, vou were better off entering the product of each
multiplier on the mechanical adder that Schickard installed in the
bottom of the machine, underneath the rods.

There are six numbered dials on the face of that adding and
subtracting mechanism. Those dials are connected to six axles in
a box behind them. The chief technical problem in building a me-
chanical calculator is the design of a device for carrying or bor-
rowing tens, and Schickard apparently solved the problem by
equipping each of the axles with a single-toothed gear. (These are

the mutilated gears mentioned in his letter.) Each single-toothed
Dr. Bruno Baron von Freytag  gear was linked to an intermediate gear, which in turn meshed
L()’ringhojf in the early with a gear on the adjacent axle. When, for example, vou turned
= the first numbered dial past zero, the single-toothed gear nudged
the intermediate one, which moved the adjacent axle a notch. As
a result, a ten was added to that axle’s numbered dial. (Much the
same way automobile odometers work.) Subtraction was accom-
plished by turning the dials in the opposite direction, and all the
results showed up in little windows above the dials.

With typical German thoroughness, Schickard outfitted the
base of the machine (directly under the adding and subtracting
mechanism) with six independent numbered wheels, which ena-
bled the user to store a number while he or she fiddled with the
rods or adding dials. And he installed a bell, or what Professor
von Freytag believes may have been a bell, in the machine to no-

tify the user when an addition or subtraction exceeded the calcu-
lator’s capacity; the bell was rung whenever the sixth main gear

A close-up of the
calculator’s gearwork. The
teeth of a mutilated gear are
visible at the lower right.




Blaise Pascal (1623-1662)
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attempted to carry a ten forward or backward. Despite its numeri-
cal limitations, the machine (or Professor von Freytag’s recon-
struction) worked quite well. Schickard had created the mathe-
matical equivalent of the wheel, but his invention, swallowed

up by the Thirty Years” War, had no effect on the technology of
mechanical calculation.

In the eyes of the world, the first mechanical calculator was in-
vented by Blaise Pascal. Born in 1623 in Clermont-Ferrand, in the
Auvergne region of France, Blaise was the son of a well-heeled
lawyer who served as the deputy president (judge) of the local tax
court — a position that he had, in the tradition of the time, pur-
chased from the government. Etienne Pascal was an intelligent
man with a wide range of intellectual interests; he was especially
devoted to science and mathematics and seems to have been a
fairly talented mathematician. He was also a determined social
climber and a loyal officer of a severely oppressive government;
the France of Louis XIII and Cardinal Richelieu, the foreign min-
ister, was rocked by savage peasant revolts, and officers of the
state like Etienne occasionally were assassinated. In 1626, when
Blaise was three, his mother died, and Etienne, who had become
rich through quasi-official graft, resigned his judgeship and
moved to Paris, where he devoted himself to the education of his
son and two daughters.

Blaise's brilliance surfaced early. As a child, he discovered
several fundamental mathematical theorems (at least according to
one of his sisters, whose account may be exaggerated). At sixteen,
he wrote an essay on conic sections that proved a fundamental
theorem about geometric shapes inscribed in conic sections. He
supposedly derived four hundred corollaries from the theorem —
which has come to be known, in what is certainly a unique honor
for a teenager, as Pascal’s mystic hexagram. (His Essai pour les co-
niques has been lost, but a broadside, written several years later,
survived.) Most mathematicians couldn’t believe that the essay
was the work of a boy; René Descartes, one of the seventeenth
century’s most important mathematicians and philosophers, at
first suspected that Etienne was the real author of the essay, and it
took him a while to acknowledge Blaise’s genius.

Blaise’s short life was full of accomplishment. In his twen-
ties, in addition to inventing a calculator and producing several
mathematical treatises, he demonstrated the existence of atmos-
pheric pressure and of vacuums. In his thirties, he invented the
syringe and the hydraulic press, and enunciated the basic princi-
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Pascal’s Pensées, a
collection of notes and
manuscript fragments, was
published a year after his
death.

Right: Clermont-Ferrand,
Pascal’s birthplace, in the
early seventeenth century

ple of hydraulics — a principle now known as Pascal’s law.
(Briefly, it states that any pressure applied to a confined liquid
will be transmitted with equal force in every direction, regardless
of where the pressure is applied.) And along with Pierre de Fer-
mat, the Swiss mathematician, he laid the foundations of the the-
ory of probability, a project that began as a favor for a card-play-
ing nobleman who wanted to know more about the odds of the
draw. Blaise was also interested in the affairs of the world; shortly
before he died, in great pain, of ulcers and stomach cancer at the
age of thirty-nine, he and a group of farsighted Parisians estab-
lished one of the earliest public transportation systems in Europe,
a bus line in central Paris.

Blaise is one of the greatest might-have-beens in science.
There’s no telling what he might have accomplished had he not
died so young and had he not, at the age of thirty-two, entered a
Jansenist convent outside Paris. To a large degree, Blaise’s extreme
religiosity was fueled by agonizingly poor health and a pent-up
sexuality — he apparently was a homosexual — and he flagellated
himself for more than his share of sins. At the request of the Jan-
senists, Blaise generally abstained from scientific pursuits and de-
voted himself to the castigation of the Jesuits and the atheists. He
wrote two philosophical works, Les Provinciales and the Pensées,
which were considered masterpieces of expository writing and
which established him as one of the founders of modern French
prose.

The origin of Blaise’s calculator is rooted in both political
and personal matters. In 1635, France declared war on Spain and
marched into the Thirty Years’ War. Short of money, the French
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government reneged on part of its internal debt and stopped pay-
ing interest on certain government notes. Etienne, who had in-
vested heavily in municipal bonds, suddenly found himself with-
out an income. On the verge of bankruptcy, he joined four
hundred investors in a tempestuous confrontation with the
French chancellor, Peter Seguier, in a meeting in Paris in 1638.
Richelieu was outraged by the protest and ordered the arrest of
the more outspoken investors, and Etienne fled, alone, to his na-
tive Auvergne. Thanks to the intercession of influential friends
and the help of one of his daughters, who charmed the cardinal
with a performance in a children’s play, Etienne was restored to
favor. The state needed able men like him, and he was allowed to
prove his loyalty and recoup his fortune as the tax commissioner
for Upper Normandy, based in the thriving port of Rouen.

At first, Etienne, who assumed his new post in 1639, was
buried with work. He and his son were often up until two or three
o’clock in the morning, figuring and refiguring the ever-rising tax
levies with the help of counting boards. In the course of their la-
bor, it occurred to Blaise that it might be possible to mechanize
their calculations with a device that counted numbers much as a
timepiece marked the passage of time. “The calculating machine,”
wrote a reviewer in Le Figaro Littéraire in 1947, “was born of fil-
ial love flying to the rescue of the tax man.” With his father’s en-
couragement — Etienne was nothing if not forward looking —
Blaise went to work designing an apparatus that could do the job.
It was 1642 and Blaise was nineteen.
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A high-strung perfectionist, he labored on the machine for
two or three years, experimenting with many different designs,
components, and materials. Etienne hired workmen to make pro-
totypes under his son’s direction, but the going was slow, partly
because of Blaise's fastidiousness, partly because of the primitive
state of metalworking at the time; it was very difficult to cut pre-
cisely toothed gears. Blaise finally came up with a feasible de-
sign — a five-digit calculator about the size of a shoe box, with
dials on the front for entering the numbers and crown-type gears
on the inside for calculating the answers, which appeared in little
windows on the face. A practical engineer, he tested the solidity
of the gadget by taking it on bumpy carriage rides in the country.
Although the machine seemed sturdy enough, its five-digit capac-
ity was plainly inadequate, and Blaise went on to develop six-
and eight-digit models.

The Pascaline or Pascale, as the elegant contraption came
to be called, looked much better than it worked. It was really good
only for basic addition. Addition was performed simply
enough — you dialed in the numbers and the answers appeared
in the little windows on the face — but subtraction was a rather
tedious procedure. As Pascal designed the device, the gears could
turn in one direction only — we’ll see why in a moment — which
meant that subtraction had to be carried out by a roundabout
method known as nines complements. An ancient trick, nines
complements transforms subtraction into a form of addition. As
for multiplication and division, the Pascaline accomplished them,
maddeningly enough, by repeated addition and subtraction.

The nines complement method is worth a closer look,
since it is also used in many computers. Say you wanted to sub-
tract 600 from 800 on the Pascaline. First, you pulled down a thin
horizontal slat that masked the regular answer windows. A new
set of numbers was revealed on the drums — the nines comple-
ments. Then vou dialed in 600, which produced a nines comple-
ment of 399, or the difference between 600 and 999. Next you
returned the slat to its regular position and added 800 and 399,
which gave 1199. Finally, you mentally performed an end-around
carry, adding the leftmost digit in 1199, or 1, to 199, which
vielded the answer, 200. A nines complements is merely the dif-
ference between a given figure and a row of nines, the size of the
row being determined by the number of digits in the figure. By us-
ing nines complements, or a variant known as tens complements,
a computer can perform addition and subtraction, and therefore
multiplication and division, with the same circuits.

Inside, the Pascaline consisted of five to eight axles. There






Opposite: A six-digit version
of the Pascaline, built in
1654. Below is a frontal
view of the device, showing
the number dials and
answer windows. Above is
the back of the machine,
revealing the gears.

Right: The Pascaline’s inner
workings were quite
complicated. The weighted
ratchet (labeled c) is the
little gadget in front of the
numbered drums. It looks
like the handle of a shovel.
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were three crown-type gears on each axle, with a fourth perpen-
dicular gear linking the axles to the dials on the face of the ma-
chine. The axles also held the numbered drums. Whenever a ten
was carried, a weighted rachet between the main gears nudged
the adjacent gear, or next highest power of ten, around a notch,
and so on down the row. In theory, the weighted rachets were
supposed to make it easier for the Pascaline to perform carries;
but, in practice, the rachets tended to jam — the machine’s major
technical drawback. Moreover, the rachets prevented the gears
from turning in more than one direction, necessitating a rounda-
bout approach to subtraction.

With its weighted rachets and eight-digit capacity, the Pas-
caline was conceptually more ambitious than Schickard’s Calcu-
lating Clock. But the German'’s six-digit machine, with its simple
carrying mechanism, worked perfectly, while Pascal’s creation did
not. (By the way, the clock’s capacity for multiplication and divi-
sion derived from the unmechanical strategems of Napier’s rods
and any user of the Pascaline could have compensated for its
multiplying and dividing deficiencies by buying a set of rods.)
Nevertheless, the Pascaline was a historic achievement, for it
demonstrated that an apparently intellectual process like arithme-
tic could be performed by a machine. (Of course, the Calculating
Clock was also a cogent demonstration of the power of machines,
but it had no historical impact.)

Despite its shortcomings, the Pascaline was an instant sen-
sation. Rouen’s elite trooped through the Pascals’ drawing room
for free demonstrations, and Etienne and his son took their me-
chanical wonder to Paris, where they showed it off to rovalty,
businessmen, scientists, and government officials. Pierre de Rob-
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erval, a family friend and a mathematics professor at the Royal
College of France, agreed to demonstrate the contraption to pro-
spective customers in his apartment at the College Maitre Gervais
every Saturday morning and afternoon. He would sell the ma-
chine — on commission, of course — and teach buyers how to
use it. Blaise went to work writing advertising flyers for the in-
vention and asked another friend, the poet Charles Vion Dalibray,
to compose a publicity sonnet:

Dear Pascal. vou who understand with your subtle insight
What is most admirable in mechanics

And whose skill gives us today

A lasting proof of your marvelous genius,

After your great intelligence, what is the point of having any?
Calculation was the action of a reasonable man,

And now vour inimitable skill

Has given the power to the slowest of wits.

For this art we need neither reason nor memory,
Thauks to you, each of us can do it without fame or pain
Because each of us owes you the fame and the result.

Your mind is like that fertile soul

Which runs evervwhere inside the world,

And watches over and makes good whatever is lacking in all
that is done.

Perhaps inevitably, counterfeit versions of the Pascaline ap-
peared on the market. Blaise was furious. “I have seen with my
own eves one of these false products of my own idea,” he wrote
in one of his publicity broadsides, “constructed by a workman of
the City of Rouen, a clockmaker by profession. . . .

After being given a simple account of my first model, which I
had constructed several months previously, he was bold
enough to attempt another, and what is more, with a differ-
ent kind of movement; but since the fellow has no aptitude
for anything except the skillful use of his own tools and does
not even know whether there is such a thing as geometry or
mechanics, the result was that (though very competent in his
own line of business and very industrious in various ways
unconnected with it) he simply turned out a useless object,
nice enough to look at, to be sure, with its outside smooth
and well-polished, but so imperfect inside that it was no
good for anything; but owing simply to its novelty it aroused
a certain admiration among people who knew nothing at all
about such things, and not withstanding the fact that all the
basic defects came to light when it was tested, it found a
place in the collection of one of the connoisseurs of this
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same city which was filled with rare and interesting things.
The sight of this little abortion was extreniely distasteful to
me and so chilled the enthusiasm with which I was working
at the time to perfect my own model that I dismissed all my
workmen, fully intending to abandon the enterprise owing to
the fear I rightly felt that others might set to work with the
same boldness and that the spurious objects they niight pro-
duce from my original thought would undermine both public
confidence and the use that the Public might derive from it.

Blaise applied for a patent, or privilege as it then was
called, but it was slow in coming. Unluckily for him, the issuing
of patents was controlled by the office of Chancellor Seguier, who
had presided over the boisterous investors’ meeting of 1638. Se-
guier had a long memory. Although the Pascals” had attempted to
appease the chancellor by dedicating one of their first calculators
to him, Seguier didn’t act on their patent application until 1649,
four to five years after the Pascaline’s debut.

Patented or not, the machine failed to sell, even though
there obviously was a need for it, given the poor state of numer-
acy in seventeenth-century France. There were several reasons for
its failure, including its tendency to malfunction and its limited
mathematical ability, which didn’t make it very helpful to book-
keepers, clerks, and businessmen who could have used a good
adding machine. The Pascaline was also very expensive, going for

100 livres, or pounds, apiece, which was enough to keep a seven-
teenth-century Frenchman in modest comfort for a yvear. More-
over, people were suspicious of a machine that could count; if a
scale or a roulette wheel can be fixed, so can a calculator, and
more than two hundred years were to pass before most people
could place their trust in nuts and bolts. At the very least, the
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Pascals expected that they’d be able to sell the machine to royalty,
but the aristocrats disdained arithmetic and intellectual matters in
general: bookkeeping was for servants. It's not known how many
machines were sold but the total was probably no more than ten
or fifteen.

The third great calculator inventor of the seventeenth century was
Gottfried Wilhelm von Leibniz. The range and richness of his in-
tellect was nothing less than phenomenal. Leibniz was a master of
almost a dozen disciplines: logic, mathematics, mechanics, geol-
ogy, law, theology, philosophy, history, genealogy, and linguistics.
His greatest achievement was the invention of differential calcu-
lus, which he created about twenty vears later than Newton but in
a much more practical form. Indeed, the stubborn refusal of Eng-
lish mathematicians to adopt Leibniz’s notation retarded the de-
velopment of mathematics in England for more than a hundred
vears. Leibniz was driven by a monumental obsession to create, to
build, to analyze, to systematize — and to outdo the French. A
bibliography of his writings would go on for pages; many of his
manuscripts have still not been published and his letters may be

measured by the pound.

Born in 1646, two years before the end of the Thirty Years’
War, Leibniz was the son of a notary (a minor judge) and professor
of moral philosophy at the University of Leipzig. His father died
when he was six and he was raised by his mother, a pious Lu-
theran who passed away when he was eighteen. Like Pascal, he
was a prodigy, and his mother gave him the run of his dead fa-
ther’s library — not an easy decision in those days, when children
were brought up on a very tight leash and their reading restricted
to approved books, lest their minds be contaminated by impure
thoughts (of which Leibniz undoubtedly had many). He had a nat-
ural aptitude for languages and taught himself Latin when he was
eight and Greek a few years later. At thirteen, he discovered one
of his lifelong passions, the study of logic. He was, as he later
wrote, “greatly excited by the division and order of thoughts
which I perceived therein. I took the greatest pleasure in the pre-
dicaments which came before me as a muster-roll of all the things
in the world, and I turned to ‘Logics’ of all sorts to find the best
and most detailed form of this list.”

He entered the University of Leipzig when he was fifteen,
majoring in law. He was by nature a weaver of grand systems, and
in 1666 he wrote a treatise, De Arte Combinatoria (On the Art of
Combination) offering a system for reducing all reasoning to an
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ordered combination of elements, such as numbers, sounds, or
colors. That treatise is considered one of the theoretical ancestors
of modern logic, a primitive form of the logical rules that govern
the internal operation of computers. That same year, all his re-
quirements for the doctorate in law having been completed, Leib-
niz proudly presented himself for the degree. He was only nine-
teen, and the elders in charge of the gates of the bar turned him
down on account of his age. Furious, he went to the University of
Altdorf, in Niirnberg, where his dissertation {De Casibus Per-
plexis, or On Perplexing Cases) immediately won him a doctorate
and an offer of a professorship.

However, Leibniz disliked the stuffiness and pettiness of
academia and sought a diplomatic career. One of the most impor-
tant diplomats of the time, Johann Christian von Boyneburg, took
him under his wing and secured a post for him at the court of the
archbishop of Mainz, the Prince Elector Johann Philipp von
Schénborn. (The electors chose the Holy Roman Emperor, who
ruled over the states encompassing Germany and most of Central
Europe.) Leibniz was put to work codifying and revising the laws
of Nirnberg — hardly a reforming effort, since the many codifica-
tions of the period were designed to solidify the power of the rul-
ing classes. For the rest of his life, the broad-shouldered, bandy-
legged Leibniz served in one or another capacity as an official in
the courts of the German princes, a genius in the service of
mediocrities.

France was the greatest power in seventeenth-century Eu-
rope, and the Holy Roman Empire feared that she would invade
Holland and, possibly, Germany. Hoping to distract Louis XIV,
Leibniz and the archbishop’s advisors tried to interest him in a
military campaign in the Mideast. In terms full of religious emo-
tionalism, they recommended that France launch a holy crusade
against Egypt and Turkey. In 1672, the archbishop dispatched
Leibniz on a solitary mission to Paris to discuss the plan with the
king. Not surprisingly, the trip was an utter failure; Louis XIV
didn’t even bother to acknowledge the young German’s arrival, let
alone grant him an audience. But Paris proved to be a muse of the
highest order, and it was there, between 1672 and 1674, that Leib-
niz built his first calculator (or, rather, had a craftsman build it for
him).

He explained the genesis of the Stepped Reckoner, as he
called his invention, in a note written in 1685:

When, several years ago, I saw for the first time an instru-
ment which, when carried, automatically records the num-



A reconstruction of Leibniz's
Stepped Reckoner

bers of steps taken by a pedestrian [he’s referring to a pedom-
eter, of course]|, it occurred to me at once that the entire
arithmetic could be subjected to a similar kind of machinery
so that not only counting but also addition and subtraction,
multiplication and division could be accomplished by a suit-
ably arranged machine easily, promptly, and with sure
results.

The calculating box of Pascal was not known to me at that
time. [ believe it has not gained sufficient publicity. When [
noticed, however, the mere name of a calculating machine in
the preface of his “postumous thoughts” [the Pensées]| . . . |
immediatelv inquired about it in a letter to a Parisian friend.
When I learned from him that such a machine exists I re-
quested the most distinguished Carcavius by letter to give me
an explanation of the work which it is capable of performing.
He replied that addition and subtraction are accomplished by
it directly, the other [operations] in a round-about way by re-
peating additions and subtractions and performing still an-
other calculation. I wrote back that I venture to promise
something more, namely, that multiplication could be per-
formed by the machine as well as addition, and with greatest
speed and accuracy.

Conceptually, the Stepped Reckoner was a remarkable ma-
chine whose operating principles eventually led to the develop-
ment of the first successful mechanical calculator. The key to the
device was a special gear, devised by Leibniz and now known as
the Leibniz wheel, that acted as a mechanical multiplier. The gear
was really a metal cylinder with nine horizontal rows of teeth; the
first row ran one-tenth the length of the cylinder, the second two-
tenths, the third three-tenths, and so on until the nine-tenths
length of the ninth row. The Reckoner had eight of these stepped
wheels, all linked to a central shaft, and a single turn of the shaft
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rotated all the cylinders, which in turn rotated the wheels that
displayed the answers.

Say you wanted to multiply 1,984 by 5. First, you entered
the multiplicand (1,984) through the numbered dials, or pointers,
on the top face of the machine. Then you put a metal peg in the
fifth hole of the large dial on the far right; the peg served as a
built-in reminder that the multiplier was 5 and prevented vou
from entering a larger figure. You next took hold of the wooden
handle on the big dial on the front — this was the multiplier dial,
which was linked to the central shaft — and turned it once. The
answer appeared in the little windows behind the numbered
pointers. If the multiplier contained more than one digit — say,
555 — you had to shift the Reckoner’s movable carriage one place
to the left for every decimal place, and turn the multiplier handle
once for every digit. (Along with the stepped cylinder, the mova-
ble carriage ended up in many other calculators, not to mention

the typewriter.)
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Although the Reckoner could process fairly large num-
bers — multipliers of four or five digits, multiplicands of up to
eleven or twelve digits — it wasn’t fully automatic, and you had
to fiddle with a row of pentagonal widgets at the back of the ma-
chine to help it carry and borrow digits. Nevertheless, it was far
more sophisticated than the Calculating Clock or the Pascaline,
capable of all four arithmetic operations and much closer to what
we would consider to be a calculator. But the Reckoner suffered
from one great drawback, much more serious than its inability to
carry or borrow numbers automatically — it didn’t work. Leib-
niz’s ambition outran his engineering skill, and the only surviving
version of the calculator, on display at a museum in Hannover,
West Germany, is an inoperative relic.

In 1764, forty-eight years after Leibniz’s death, a Reckoner
was turned over to a clockmaker in Gottingen for overhauling.
The job wasn’t done, and Leibniz’s pride and joy wound up in the
attic of the University of Gottingen, where a leaky roof led to its
rediscovery in 1879. Fourteen years later, the university gave the
machine to the Arthur Burkhardt Company, the country’s leading
calculator manufacturer, for repair and analysis. Burkhardt re-
ported that, while the gadget worked in general, it failed to carry
tens when the multiplier was a two- or three-digit number. The
carrying mechanism had been improperly designed. It’'s unknown
whether Leibniz, who worked on the Reckoner off and on for
twenty years, built more than one calculator — one that was
flawed and one (or more) that worked. In all likelihood, given the
high costs of fashioning a device as complicated as the Reckoner,
Leibniz made only one and never managed to perfect it.

Endowed with boundless intellect and curiosity, Leibniz was one
of the first Western mathemnaticians to study and write about the
binary system of enumeration. There are only two digits in binary
math — 0 and 1 — but any number, no matter how large, may be
expressed with them. For example, a decimal 2 is 10 in binary; 3
is 11; 4 is 100; 5 is 101; 6 is 110; 7 is 111; 8 is 1000, and 9 is 1001.
Each digit to the left represents a greater power of 2. It’s the sim-
plest possible numerical system and it had enormous influence
on the development of computers. To Leibniz, however, binary
math had more religious than practical significance, and he re-
garded it as a sort of natural proof of the existence of God, arguing
that it demonstrated that the Lord, the all-knowing one, had cre-
ated the universe out of nothing. At one point, Leibniz, in a bril-
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liant flash of insight, considered making a binary calculator but,
unfortunately, nothing ever came of the idea.

(Incidentally, the term used today to refer to a single binary
digit — a bit — inspired the title of this book. The word is an ac-
ronym of the first letter of “binary” and the last two letters of
“digit.” Every operation in a computer is the result of the interac-
tion of bits.)

An enormously energetic man, Leibniz was in constant mo-
tion. He established the German Academy of Sciences; formulated
an enormously influential philosophy which held that the uni-
verse was made out of irreducible, ever-changing substances
called monads; worked as a mining engineer in the Harz Moun-
tains, where he invented a windmill-driven pump and theorized
that the earth was originally molten; sought the reunification of
the Catholic and Protestant churches; founded the science of to-
pology; was appointed an advisor to the Holy Roman Emperor
and made a baronet; and died in 1716, at the age of seventy. poor
and friendless, ignored by the noblemen he had served.
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CHAPTER 2

Charles Babbage completed
only a small part of his
Difference Engine. Twenty-
four inches high, nineteen
inches wide, and fourteen
inches deep, it was a
fraction the size of the
machine he envisioned.

The Engines of
Charles Babbage

One evening | was sitting in the rooms of thie Analytical
Society, at Cambridge, my head leaning forward on the
table in a kind of dreamy mood, with a table of
logarithms lying open before me. Another member,
coming into the room, and seeing me half asleep ealled
out “Well, Babbage, what are you dreaming about?” to
which I replied, “I am thinking that all these tables
(pointing to the logarithms) might be calculated by
machinery.”

Charles Babbage, 1791-1871

hether or not it really worked, the Stepped Reckoner
was one of the greatest inventions of the seventeenth
century. It inspired a host of imitators, and almost

every mechanical calculator built during the next 150 vears was
based on Leibniz’s device. Between 1770 and 1776, for example, a
German vicar named Mathieus Hahn built a drumlike calculator
containing eight Leibniz wheels (but no sliding carriage). And in
1775, the Englishman Charles, the third Earl Stanhope, designed a
machine with eight Leibniz wheels and a sliding carriage. Unlike
the Reckoner, both of these devices worked well, and gained a
small measure of fame for their inventors. Although Stanhope’s
device was simple enough for mass production, the idea of manu-
facturing machines en masse was only beginning to set in during
his day, and the first mass-produced calculator didn't appear until
about 1820.

The Arithmometer, as it was called, was invented by the
Frenchman Charles Xavier Thomas de Colmar (1785-1870).
Thomas ran an insurance company in Paris, where the mathemat-
ical nature of his work led him to contemplate the rich possibili-
ties of mechanical calculation. His machine was a first-rate piece
of practical engineering — compact, reliable, easy to use, and, like
Hahn's and Stanhope’s, based on the Leibniz wheel (but without a
carriage). Although the first Arithmometers were limited to six-
digit results, they were semiautomatic, being driven by a spring-
loaded belt that the user pulled before every operation. In later
models, the belt, which tended to wear down, was replaced by a



Mathieus Hahn and his son,
the court mechanic in
Stuttgart, constructed
several calculators. This
one, built in 1809, could
produce twelve-digit
products.

Thomas de Colmar (1775
1870)

metal crank, and the Arithmometer’s capacity was expanded to a
much more useful twelve digits. About fifteen hundred models
were sold over the next thirty vears, chiefly to banks, insurance

companies, and other businesses.

As the first mass-produced calculator, the Arithmometer at-
tracted a good deal of attention. Thomas built a giant version for
the 1855 Paris Exposition, and the machine, which resembled a
fancy upright piano, won a gold medal; another Arithmometer
captured a medal at the International Exhibition in London eleven
years later. Like the Reckoner, the Arithmometer had many imita-
tors, and arithmometer passed into the language as a generic term
that referred to any Thomas-type calculator. The term survived
until the early 1900s, when arithmometers fell out of use, re-
placed by keyboard calculators, which were much easier to use.

The Arithmometer was only one of hundreds of mechanical
inventions ushered in by the industrial revolution, which in-
spired an unprecedented appreciation of the power of ma-
chines — an appreciation that was celebrated in the many inter-
national industrial exhibitions of the nineteenth century. By the
early 1800s, the industrial revolution was in full swing in Great
Britain and spreading to the Continent, particularly France. The
rapid expansion of industry and commerce, and the growth in
population and education, sent a torrent of statistics through sci-
ence, industry, business, and government. The world was moving
on a faster and bigger track. For the first time, there was not only a
pressing need for calculators like the Arithmometer, there was
also a need for the systematic manufacture of numerical tables.

Since the advent of logs, the tools of the trade of anyone



Like all early calculators,
the Arithmometer was
difficult to use. If you
wanted to multiply, say,
3,042 by 234, you had to
turn the crank on the lower
right once for every digit of
the multiplier and slide the
narrow upper plate one step
to the right for every
decimal place (10s, 100s,
and so on) in the multiplier.

Six Leibniz wheels (the thick
cylinders in the center) were
used in this version of the
Arithmometer, built by
Arthur Burkhardt, the
German calculator
manufacturer, in about
1880.
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who worked with figures, whether bankers or navigators, were
mathematical tables. These lists of figures were indispensable in
science, finance, navigation, engineering, surveying, and other
fields. There were tables of square roots, cube roots, interest rates,
hyperbolic and exponential functions, mathematical constants,
like Bernoullian numbers, and the price of meat per pound at the
butcher’s. Many mathematicians devoted the greater part of their
careers to tabular calculation, and the need for accurate tables
was a matter of national concern. In 1784, for instance, the gov-
ernment of France decided to draw up new tables of logs and trig-
onometric functions (such as sine and cosine). Six distinguished
mathematicians devised the mathematical methods and super-
vised the enterprise; seven or eight human computers served as
foremen and another seventy or eighty performed the calcula-
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Charles Babbage (1792
1871) at fifty-six, in a
painting at the National
Portrait Gallery in London
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tions. The project took two years and the results were two hand-
written copies of seventeen volumes of tables. Known as the Ta-
bles de Cadastres (Surveyors’ Tables), they were never published
for fear of typographical errors and weresstored at a library in
Paris, where anyone could consult them.

Despite all the cost and effort that went into the making of
tables, they inevitably were full of errors. In 1835, an informal
survey of one scientist’s library turned up 140 books of tables,
and an examination of only some of the figures in forty of the
books uncovered 3,700 inaccuracies. Even the British Nautical
Almanac — the navigators’s bible — was sprinkled with mistakes,
and more than one ship was said to have run aground or been lost
at sea as a result of the miscalculations. Maddeningly enough,
some of the slip-ups wére even deliberate, inserted by publishers
as traps for would-be plagiarizers. Given the importance of tables
in navigation, their fallibility was an overriding concern in Great
Britain and other seafaring nations.

Mathematicians were at a loss for a remedy.And then.a
voung Englishman by the name of Charles Babbage came up with
a solution. The son of a wealthy banker, Babbage was a gifted
mathematician with the eye of a seer. He was a student at Cam-
bridge University, in 1812 or 1813, when the ﬁrst.glimmer of the
solution came to him. As he recalled in his autobiography, Pas-
sages from the Life ®f a Philosopher (1864), he was sitting in the
quarters of the Analytical Society, an undergraduate mathematics
club, gazing at a table of logs, when it suddenly occurred to him
that the figures might be calgulated by machine. It was a great
idea and none of his contemporaries seemed to have thought of it;
Babbage wasn’t thinking of using a run-of-the-mill calculator like
Stanhope’s but a machfhe specially designed to manufacture
tables.

(]

Babbage was only a sophomqgre or junior at the time and
the idea soon faded from his mind. But it recurred to him several
years later. Once again, the muse was a mathematical table and
the circumstan®es a chance conversation. In 1820 or 1821, Bab-
bage and John Herschel, an astronofer and a close friend from
Cambridge, were checking a set of tables they had helped prepare
for the Astronomical Sqgiety. (Herschel was the son of Sir William
Herschel, t&e great astronomer and founder of cosmology.) As
usual, there were several errors. *I wish to God these calculations
had been executed by steam,” said Babbage. Herschel, a talented
mathematician, thought the idea was sensible enough. “It is quite
possible,” he said. The two men discussed the notion, and Bab- ¢
bage later drew u}d plans for a machine that &uld do the job.
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The Difference Engine, as he called the gadget, was an am-
bitious conception. Powered by falling weights raised by a steam
engine, it could calculate tables by the method of coustant differ-
ences (which we’ll discuss in a moment) and record the results,
figured to the twentieth place, on metal plates. By printing the ta-
bles directly from these plates, or from plates made from the origi-
nals, it would eliminate the table-makers” worst gremlins, tveo-
graphical errors. Babbage hired several workmen to make a
prototype and, after ironing out the inevitable bugs, produced a
working model in 1822. It was a six-digit calculator macde@f
toothed wheels and run by a hand crank. Only a kernel of the ma-
chine he had in mind, it proved the feasibility of his conception.

The method of constant differeimes is a simple but pm‘vurl‘ul tech-
nique for calculating consistent numerical progressions. Table-
makers often used it, and the process can be best illustrated with
a task that the Difference Engine was designed to handle - the
calculation of the cubes of all the numbeg from 1 to 100,000.

Since the engine needs a set of initial values to get started,
we have to do some preliminary pap.erwurk. setting up a table of
the first few numbers and, by a process of subtraction, searching e
for the various numerical differences. Fi®%tewe subtract the cube
of 1 (which is®f course, 1) fi®m the cube of 2 (which is 8). The
result, 7, is the first order of difference. Then we subtract the cube
of 2 from th®cube of 3 (27), gpd the answer, 19, is another first
order of difference. Now we have to find the second order of dif-
ference. By subtracting 7, the first result, from 19, the second re-
sult, we get 12 — and that’s the second difference. It should be
obvious from the table below how we obtained the third, and in
the case of cubes, the constant, order of difterence:

Cube of Order of Difference
Number Number Between Numbers
FIRST SECOND THIRD
1 1 @
7
2 8 Py 12
S 19 2 @

3 27 (] 18

817 o 6 °
4 0 64 24

61 6
5 %5 30
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o 6@ 216 °
etc.
Py o
[ ]
°
(]



BIT by BIT 42

All this boils down to a basic mathematical principle: Any
consistent numerical progression may be calculated by a process
of repeated addition. Since the method of constant differences is a
repetitive process, it lends itself quite nicely to the actions of a
machine. As Babbage planned it, an operator would feed the var-
ious differences into the Difference Engine, which would add
them to each other again and again and record the answers with a
printer of some kind. Because each addition is based upon the
preceding one, the method contains a built-in check: if the last
numbers in a table are correct then all the numbers must be cor-
rect. A human computer, on the other hand, may slip up at any
point.

Babbage believed that he was the first person to conceive of
a Difference Engine, but he was wrong. There is very little new
under the sun and his invention was no exception. In 1786, one
E. Klipstein, of Frankfurt, Germany, published a small volume
called, roughly, Description of a Newly Invented Calculation Ma-
chine. The book gives an account of a calculator invented by a
J. H. Miiller, a captain of engineers in the Hessian army, and in-
cludes an appendix that, astonishingly, describes a Difference En-
gine (although Miiller used another term). The machine, which
Miuiller hoped to build if he could raise the necessary funds, was
designed to calculate tables by the method of constant differences
and print out the results directly on paper. (The Difference En-
gine's printing process was superior, since Babbage’s machine was
designed to punch out plates that could be used to print any num-
ber of copies.) Unfortunately, Miiller failed to raise the money and
nothing came of his proposal.

Babbage realized that a full-fledged Difference Engine
would require thousands of precisely engineered gears, axles, and
other parts and would cost thousands of pounds. Even if he pos-
sessed his father’s considerable fortune, which he was bound to
inherit, the project would undoubtedly strain his resources. More-
over, it would benefit England, not him,.and he therefore believed
that it should be financed with outside support, preferably from
the government. So Babbage wrote an open letter to Sir Hum-
phrey Davy, president of the Royal Society of London, Britain's
pre-eminent scientific organization. The missive, dated 3 July
1822, described the Difference Engine, explained its many appli-
cations and, in the understated tones of an English gentleman,
requested external funds.

Babbage’s letter was widely circulated and a copy reached
the exalted hands of the Lords of the Treasury, who were inter-
ested in any machine that might ease their work and improve the



Two of Babbage’s meticulous
engineering plans for the
Difference Engine, depicting
the machine from the side
(left) and from both ends
(right)

state of British navigation. On 1 April 1823, the Lords wrote the
Royal Society, requesting an assessment of Babbage’s proposal.
Davy appointed a committee to study the matter, and the organi-
zation issued its offical verdict about a month later: “Mr. Babbage
has displayed great talent and ingenuity in the construction of his
Machine for Computation, which the Committee think fully ade-
quate to the attainment of the objects proposed by the inventor;
and they consider Mr. Babbage as highly deserving of public en-
couragement in the prosecution of his arduous undertaking.”

On 27 June, Babbage was summoned for an interview with
John Frederick Robinson, chancellor of the Exchequer. “I had
some conversations with the Chancellor of the Ex® who treated me
in a most liberal and gentlemanlike manner,” Babbage wrote Her-
schel. “He seems quite convinced of the utility of the machine
and that it ought to be encouraged. At present he is to procure for
me £1000, and next session, if I want more to complete it, he is
willing that more should be granted or that I should have a com-
mittee of the house if a larger sum were wanted than the fund
could be charged with.” The chancellor’s offer was unprece-
dented; the British government didn’t normally support private
scientific or technical projects, but the condition of the Naval
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Almanac and other tables inspired it to take a chance. Babbage
got his money, and one of the most extraordinary episodes in the
history of science had begun.

Charles Babbage was a genius of the first order. He was one of the
most original and versatile scientists in history, and we can’t hope
to touch on all of his activities here. He was a mathematician, an
engineer, a politician, a professor, a writer, an inventor, a cryptog-
rapher, a man about town, a founder of scientific organizations,
and an expert on industry. His pioneering book, On the Economy
of Machinery and Manufactures (1832), was cited repeatedly by
Marx in Capital and by John Stuart Mill in Principles of Political
Economy. He was a human dynamo who needed only five or six
hours of sleep a day and who was driven by a millennarian vision
of man and machine that brought him within a hair’s breadth of
the invention of the greatest of machines, the computer.

Born on 26 December 1791, in London, he was the oldest
son of Benjamin and Betty Plumleigh Babbage. Benjamin was a
hard-nosed, no-nonsense banker who had started out as a gold-
smith in the small town of Totnes, a picturesque port in Devon-
shire, on the River Dart, about 200 miles southwest of London.
Benjamin parlayed his capital into a successful business as an in-
dependent banker, and he and his wife moved to London the year
before Charles’s birth. He became a junior partner in an up-and-
coming London bank, accumulated an impressive fortune, and re-
tired to Totnes in 1803, when Charles was eleven. Benjamin could
have been a character out of Dickens — stern, reserved, domineer-
ing, with a sharp temper and an excessive fondness for money.
There was no love lost between Charles and his father, although
his mother was a kind, loving, and patient woman, and he was
always close to her.

Charles grew up much as any other well-to-do English boy.
He attended small private schools near Totnes, where he studied
mathematics, navigation, accounting — subjects that made up the
bulk of the curriculum in the schools around the ports of Britain.
Math was his favorite discipline; as Babbage recalled in his auto-
biography, he and a like-minded student used to “get up every
morning at three o’clock, light a fire in the schoolroom, and work
until five or half-past five” studying algebra. He also had an in-
ventive frame of mind. One of his most memorable creations was
a pair of wooden boards, linked together with hinges, for walking
on water; he tested it on the Dart one day and almost drowned.

Charles entered Cambridge in 1810. Hardly a bookworm, he



Totnes, Babbage's
hometown, as seen from the
River Dart in a watercolor
by J. M. W. Turner, about
1824

was a charming, gregarious, and athletic young man, with a fond-
ness for whist and sailing. Even his serious pursuits bore a light-
hearted touch. During his years at Cambridge, for example, the
school was caught up in a controversy over the format of the Bi-
ble. Should the book be printed with or without explanatory
notes? One side sought to make the word of God more compre-
hensible to the masses, the other to preserve its literal purity.
Cambridge, which took its religion seriously, was littered with
|I posters and broadsides advocating one or the other side of the
issue.
‘ At the same time, however, the university was less than
| zealous in its cultivation of the intellect, and the school, Newton's
alma mater and once the guiding light of European mathematics,
had lost its luster. English mathematicians were trained in an in-
ferior notation of calculus — the confusing dots of the Newtonian
W version as opposed to the clearly defined d's of the Leibnizian
system — and the rift between Britain and the Continent had wid-
‘ ened to a point where most English mathematicians couldn't deci-
pher the publications of their Continental counterparts. English
mathematics was falling by the wayside, and Babbage. Herschel,
and most of the country’s bright young mathematicians and scien-
tists were unhappy with the quality of their education.
Nothing might seem more petty and inconsequential to us
today than the controversy between the dots and the d's, but it
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was a significant matter in the history of science, residue of the
great quarrel between Newton and Leibniz over the invention of
calculus.

One spring day in 1812, Babbage picked up a broadside
that demanded, in absurdly exaggerated terms, the publication of
the unelaborated word of God. He couldn't resist a parody. So he
wrote out a plan for the establishment of a society for the propa-
gation of “the principles of pure D-ism in opposition to the Dot-
age of the university.” The satire struck a sympathetic chord with
his mathematically minded schoolmates. Over the objections of
the university authorities, who frowned on independent student
organizations, Babbage and his friends established the Analytical
Society. The group was dedicated to the overthrow of the Newton-
ian way, and Babbage, the intellectual rabble-rouser who founded
it, was on his way to making his mark in the world.

LLike most undergraduate clubs, the Analytical Society was
more talk than action. It had about a dozen active members and
issued only one publication, Memoirs of the Analytical Society
(1813), consisting of mathematical papers written in the Leibniz-
ian style by Babbage and Herschel, before disbanding in 1814.
(Herschel, the society’s president and Cambridge’s best under-
graduate mathematician, graduated in 1813 and Babbage came
down the following year.) But the spirit of the group lived on. In
1816, two vears after Babbage had left college, he, Herschel, and
George Peacock, another ex-Analytical, launched a more mature
sally against the Newtonian dots with the publication of their
translation of a popular French textbook on calculus. Four years
later, the three men wrote a two-volume calculus workbook com-
plete with solutions. The books accomplished what the Analytical
Society had not. They were adopted by Cambridge teachers, and
helped steer British mathematicians back to the mainstream.

In July 1814, the newly graduated Babbage married Geor-
gina Whitmore, the youngest daughter of a prosperous family in
Shropshire, and began looking for a job. He didn’t want an aca-
demic career, since he disliked academia and regarded universi-
ties as fatally dull and stuffy places. (At times, however, Babbage
sought a professorship to supplement his income, and in 1827 he
was named to Newton’s chair — Lucasion Professor of Mathemat-
ics at Cambridge. Busy with his own work and uninterested in
teaching, he did not deliver a single lecture during his ten-year
tenure and ignored most of the post’s other duties.) And he was
bored by banking, his father’s business. In fact, he wasn’t sure
what he wanted to do. He considered something in mining, and
asked a friend of his father’s, a rich country gentleman with ex-
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tensive mining interests, for help. He (or so he wrote Herschel)
also ran employment ads in several country newspapers. But
nothing came his way. Even in the England of the industrial revo-
lution, suitable positions for college-educated men were hard to
find.

In 1815, Babbage was given a small house in London (most
likely a wedding gift from his father) and wasted no time entering
the local scientific scene. He gave a series of lectures on astron-
omy at the Royal Institution and joined Herschel and Peacock in
translating the French text on calculus. He published several
mathematical papers in The Journal of Science and in The Philo-
sophical Transactions of the Royal Society of London, and was
elected to the Royal Society in 1816, only two years after he had
left Cambridge. Anybody who was anybody in British science be-
longed to the society, as did many nonscientists; the group was
more like a good club than a bona fide scientific association, and
the nonscientists often held sway. The situation annoyed Babbage
to no end, and he eventually became one of the organization’s
sharpest critics. In reaction to the society’s mixed membership,
Babbage, ever the joiner, helped establish three competing organi-
zations — the Royal Astronomical Society, The London Statistical
Society, and the British Association for the Advancement of
Science.

The late 1810s and early 1820s were the happiest time of
Babbage’s life. His scientific reputation was growing — he pub-
lished ten papers between 1815 and 1821, as well as the books on
calculus — and his marriage was a joy. A sociable pair, he and
Georgina liked to entertain and often visited friends and relatives
in the country. Georgina gave birth to a child in 1815, and seven
more offspring arrived during the next twelve years (but only
three children survived into maturity). The family’s financial situ-
ation improved with the death of Georgina’s father, who left them
a tidy inheritance that complemented Babbage’s allowance from
his father. He had one or two servants and enough money to fi-
nance his research. Yet he was only a gentleman scientist, without
a worthy position, a great goal, or high status.

He found all three in the Difference Engine.

The project to build the Difference Engine began in August or
September of 1823. Two rooms in Babbage’s house were con-
verted into workshops and a third into a forge. On the recommen-
dation of a friend, Babbage hired Joseph Clement, a first-rate me-
chanical engineer, to serve as chief engineer and to fashion most
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A sketch of the mechanics of
adding and carrying with
the Difference Engine,

drawn in October and
November 1836
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of the parts in his own factory. Clement, who had worked for
Henry Maudslay, one of Britain's leading engineers, was down on
his luck when Babbage entered his life, with only one good lathe
to his name. Clement and the draftsmen and workmen he hired

plaved a pivotal role in the construction of the engine, and we
shall hear a good deal more about him.

Next Babbage undertook a thorough investigation of the
state of machine manufacture in British industry, going on a tour
with Georgina of factories throughout England and Scotland. Ma-
chines were an uncommon sight in everyday British life at the
time. Steamships had only begun to appear and the proliferation
of the railroad was ten years away. The most common mechanical
objects were clocks, watches, locks, guns, and pumps. There was,
of course, a much wider range of machinery in industry: looms,
lathes, stampers, turbines, shears, presses, boring engines, milling
machines, and so on. The Difference Engine would be vastly more
intricate than any of these — in fact, it probably would be the
most sophisticated machine made up to that time — and Babbage,
a perfectionist, demanded construction standards that the ma-
chine tools of the period simply could not meet.

The engine was designed to operate to the sixth order of
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difference (Miiller’s would have handled only three orders): cal-
culate numbers to the twentieth place; and print out forty-four
digits a minute. It required hundreds of carefully machined com-
ponents, all working in perfect coordination; any slack in the
gears might throw the engine out of whack. As he got deeper into
the project, however, Babbage realized that he couldn’t hope to
meet the engine’s precise specifications without better machine
tools, and he therefore redirected his effort, putting much sweat
and ingenuity into the design of new tools. In general, he would
design a part or series of parts for the engine, and then design and
build the tools to make them. In the course of the process, he in-
variably conceived of a better way to make either the parts or
tools, and the whole procedure had to be repeated. Although his
ambitious, multilayered enterprise lifted the British machine tool
industry to new heights, it also delayed the engine and greatly in-
flated its cost.

In 1827, four years after the project had begun, Babbage’s
father died. Babbage inherited about £100,000, the bulk of his
father’s estate, which made him a very rich man, with enough
money to help finance the project and to support his family in
style. Despite the government’s financial help, he spent thousands
of pounds on the Difference Engine and the grand conception that
followed it, the Analytical Engine. Yet, at the very time that Bab-
bage came into the means to enjoy his life to the fullest, death vis-
ited his family three more times within the year. His second old-
est son died in July; his wife passed away the following month,
apparently from complications caused by childbirth; and his new-
born son died soon after.

Filled with sorrow, Babbage left England for a vear-long
tour of the Continent. Clement continued to work on the Differ-
ence Engine, but the endeavor fell into low gear. Fortunately, the
trip did Babbage a great deal of good and he returned in better
spirits. Although his famous charm, wit, and humor had been re-
stored, Babbage had clearly changed. His family life was gone and
an uncharacteristic tone of bitterness entered his public contro-
versies — a tone that had not been there when Georgina was alive.
(As he grew older, and his dreams fell by the wayside, the bitter-
ness deepened.) Trying to forget his loss, Babbage threw himself
into the engine project and his numerous social and political ac-
tivities. He was an outspoken Liberal and managed one candi-
date’s successful Parliamentary campaign in 1829. Three vears
later, he ran for Parliament himself, placing third in a field of five.
If another woman entered his life, there is no record of it.

While abroad, Babbage had reviewed the project's ac-
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counts. In addition to the government’s £1,500, he had spent
£1,975 of his own money. As he understood the terms of his
agreement with the government, the Treasury was supposed to
reimburse him for any expenses above the original £1,500. There-
fore, Babbage (and some of his influential friends) asked the
Treasury to pay him back and authorize more funds. However, Rob-
inson, who had since left the Exchequer, claimed that he had
never committed the Treasury to more than the original sum and
that he most certainly had not given Babbage a blank check. Since
neither of them had put their agreement into writing, it was one
man’s word against the other’s. Babbage appealed to the Duke of
Wellington, the current prime minister, and Wellington ordered
the Treasury to evaluate the entire project. The Treasury, in turn,
asked the Royal Society for an appraisal of the engine, and once
again the society endorsed Babbage unqualifiedly. Then Welling-
ton decided to see the engine for himself.

It was November 1829, and Babbage had little to show for
six years of labor. There was the first model of the engine, assem-
bled by Babbage in 1822; Clement’s superior machine tools,
which had advanced the state of machine tooling and made the
engine feasible; and hundreds of drawings and parts for the en-
gine itself. The device was obviously several years and thousands
of pounds from completion. Yet Wellington was persuaded. A
military man, he had a fair amount of technical knowledge and a
solid understanding of the engine and its potential benefits to sci-
ence, technology, and England. At his order, the government dis-
bursed £7,500 in late 1829 and early 1830, and the project re-
sumed after a nine-month hiatus.

Babbage, meanwhile, faced another critical problem: Clem-
ent. Even before he had left for Europe, he had suspected the
chief engineer of padding his bills. He also believed that Clement
had built special lathes and other costly tools at the venture’s ex-
pense, not so much to use them on the engine as to enrich his
own shop. In those days, the law held that a workman had the
right to his own tools, even if they had been constructed on an
employer’s time and with an employer’s money. A holdover from
medieval times, when a craftsman’s tools were no more expensive
or elaborate than hammers and files, the law was unreasonable in
an era of expensive machine tools. But the law was the law, and
Babbage couldn’t claim Clement'’s tools for himself or for the gov-
ernment, the engine’s legal owner. As long as he employed Clem-
ent, the issue of ownership was a moot point, although it surely
would turn into a major dilemma if, for whatever reason, he de-
cided to let Clement go. So Babbage took the only step open to



A sketch of the Analytical
Engine’s driving and
directive apparatus. The
barrel, which contained the
machine’s internal operating
instructions, is on the far
right.
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The Engines of Charles Babbage

him: he refused to pay Clement’s bills until a three-man panel of
engineers was appointed to inspect the work and to approve the
bills. The arrangement was a common practice at the time, and it
worked for a while.

Babbage also wanted Clement to move his workshop closer
to his Dorset Street home. His house and Clement’s shop were
four miles apart, and Babbage, who often fretted about his health,
wanted the engine (or, rather, the many parts that made it up),
tools, and plans placed in a more convenient and comfortable set-
ting. He also worried about the safety of his project, since fire was
an ever-present hazard in nineteenth-century London and Clem-
ent’s shop was not fireproof. Clement stoutly resisted the change:;
he knew that his freedom of action and profits would certainly
shrink under Babbage’s direct supervision. But the government
went along with Babbage, and an architect was commissioned to
build the appropriate facilities on Babbage’s property. Although
Babbage offered to loan Clement a small house next to his, Clem-
ent was not appeased.

In 1832, almost ten years after the project had begun, there

P ————

3
N 1 T
w3 4
=, -
: I .
.y 0 v it ¢
R 7
14 ,
A
.
.
R Rt ’
San e x - s
3
" 7
v '- »
2 1

“ - e, S
o - \l{f._,. 3 ~ I © % »

’_."_ S et
< 3 = »
> B b el ',

) nt Sy Ll 4
= " PO : a8
= e 59 I
- .
> N
H 7'
'| \ -
R atd I B = WG AL AE <
] -5 \ | _ 1
oLITAEL [ 9 | == 1
i = \ \ A ey v
J. 4
\\‘ P
\ 28K
\ »‘.’,,’/
0 . . N =
B S ‘- T - P S —— ..—.&i




BIT by BIT 5%

were enough parts to assemble a section of the engine. Consisting
of six vertical axles and a few dozen gears, the section was about
twenty-four inches high, nineteen inches wide, and fourteen
inches deep. It worked perfectly, solving equations to the second
order of difference and yielding six-digit results. It was a beautiful
piece of machinery, one of the finest and most sophisticated ma-
chines of its time — as solid as the Empire (back then!) and as de-
pendable as the pound (ditto). The Arithmometer was a toy by

comparison. The precious invention was moved to a new fire-
proof building adjacent to Babbage’s house, where he showed it
off to his friends at his famous Saturday night parties. Wellington,
proud of his role in the project, was a regular guest.

Babbage’s weekly soirées were the most popular parties in
London. His home was one of the most interesting in the capital,

ulay Rl LR U with all sorts of amusing gadgets to play with. In addition to the

the Analytical Engine’s

variable-card counting famous engine, on display in a glass and mahogony case, he had a
mechanism. Among other foot-high silver automaton of a dancing woman dressed in a fancy

things, the variable cards
supplied the initial
numerical values of the
variables in an equation. entists, engineers, and businessmen — and he often pops up in

gown. Babbage knew many of the most important people in Eng-
land — writers, actors, aristocrats, and politicians, as well as sci-
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their diaries. Charles Darwin wrote: “I remember a funny dinner
at my brother’s, where, amongst a few others were Babbage and
Lyell [Charles Lyell, the founder of modern geology|, both of
whom liked to talk. Carlyle however silenced everyone by harangu-
ing during the whole dinner on the advantages of silence. After
dinner, Babbage, in his grimmest manner, thanked Carlyle for his
very interesting lecture on silence.”

After the engine had been transferred to his property, Bab-
bage continued to press Clement to make the move, too. But
Clement put up a big fuss. He submitted a bloated estimate of his
moving expenses and demanded £660 a year to maintain two
homes and to run a divided business. Outraged, the Treasury re-
fused his claims. Most of the £12,000 that had been spent on the
engine so far had passed through Clement’s hands and he had
earned a great deal of money. He had also equipped his shop with
thousands of pounds’ worth of machine tools, designed by Bab-
bage and paid for by the government, and which were, under the
law, his property. “My Lords,” the Treasury wrote, “cannot but ex-
press their surprise that Mr. Clement should have advanced so
unreasonable and inadmissable a claim.”

Clement’s selfishness became a major obstacle to the com-
pletion of the engine, and it was all downhill from here. The chief
engineer agreed to submit his claims to the arbitrators but, realiz-
ing that they were as unsympathetic to his cause as the Treasury,
changed his mind and then simply refused to budge. Under the
circumstances, Babbage declined to pay his bills (normally, Bab-
bage paid Clement and the Treasury paid Babbage), instructing
him thereafter to submit his chits directly to the Treasury —
which meant that he would no longer be reimbursed promptly. In
response, Clement, who seems to have been deeply jealous of
Babbage’s talent and wealth, fired his staff and refused to turn
over the engine’s plans or parts until his bills were paid. As a re-
sult, the project ground to a halt. Unfortunately, Clement had the
upper hand and there was nothing to do but examine his accounts
and pay him off, which the Treasury finally did. On 16 Julv 1834,
more than a year after work had stopped, Clement finally relin-
quished the goods. Babbage wrote the Treasury: “The drawings
and parts of the Engine are at length in a place of safetv — [ am
almost worn out with disgust and annovance at the whole affair.”

Although Babbage tried to resurrect the project. his appeals
fell between the cracks of British politics. There were several
changes in administration in 1834 and 1835 — from Melbourne to
Wellington to Peel and back to Melbourne — and Babbage's prob-
lems were lost in the shuffle. Moreover, he foolishly confounded



BIT by BIT 54

the issue by informing the government that he had conceived of a
far more powerful and versatile machine — an Analytical En-
gine — which rendered the Difference Engine obsolete. The Ana-
lytical Engine could do all that its predecessor could do, and a
great deal more. Under the circumstances, he suggested it might
be more prudent and less expensive to write off the Difference En-
gine and build the newer version. This was not what the govern-
ment, which had shelled out £17,000 for a glimmer in an inven-
tor’s eve, wanted to hear.

For his part, Babbage, who had spent £6,000 of his own
money on the endeavor, regarded the government as fatally short-
sighted and ill-equipped to lead England into the industrial age.
The criticism was uncannily astute, and in making it, Babbage
was, as usual, ahead of his time. “I have . . . been compelled to
perceive,” he wrote his friend, Edward, duke of Somerset, in
1833, “that of all countries England is that in which there exist
the greatest number of practical engineers who can appreciate the
mechanical part whilst at the same time it is of all others that
country in which the governing powers are most incompetent to
understand the merit either of the mechanical or mathematical.”

Not surprisingly, the government grew tired of Babbage’s
importunities. Wellington’s successors lacked his grasp of science
and technology and scoffed at Babbage’s work. “What shall we do
to get rid of Babbage’s calculating machine . . . worthless to sci-
ence in my view,” Prime Minister Peel wrote to an associate. “If it
would calculate the amount and the quantum benefit to be de-
rived to science it would render the only service I ever expect to
derive from it.” In 1842 — nineteen vears after Babbage, full of
confidence and high spirit, had started the project — Peel got his
way. The venture was officially canceled and the engine wound
up on display at the Science Museum in London.

But one cannot blame the project’s failure entirely on the
government. Clement’s selfishness, petty and indefensible, and
Babbage's perfectionism, which brooked no shortcuts, were also
responsible.

If the Difference Engine had been built it would have stood ten
feet high, ten feet wide, and five feet deep, and weighed about
two tons. Internally, it would have consisted of seven main verti-
cal axles. Six of those axles represented an order of difference, the
seventh the value of the function being computed. Each of the
axles held twenty wheels, or gears, since the engine could process
twenty-digit numbers or, in special circumstances, be readjusted



The general plan of the
Analytical Engine, as
Babbage saw the machine in
1840. The number wheels on
each side of the rack on the
right constitute the store; the
number wheels around the
large circle on the left
comprise the mill. The
capacity of the store could
be increased by building a
longer rack and adding
more number wheels.
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to use thirty-digit numbers. There were two sets of vertical axles
behind the main ones, one for carrying or borrowing tens from
one main axle to the next and another for engaging or disengaging
the carrying axles. (If any of the gears fell out of place, a system of
springs and pins forced it back into position, or, if the misalign-
ment was bad enough, brought the apparatus to a halt.)

While the engine was designed chiefly to calculate constant
progressions, it could also compute nonconstant ones like logs, in
which the differences are exponential. In such cases, it calculated
by approximation, employing a set of differences that applied to
one series of logs and then figuring out the answers to the twen-
tieth digit — but only printing out seven. Then it came to a stop,
ringing a bell to notify the operator to enter a new set of differ-
ences. Obviously, this process was painfully slow and cumber-
some, but it was preferable to pen-reckoning. Finally, the engine
printed out results via a stamping mechanism attached to the sev-
enth axle (which stored the result), producing negative molds that
could be converted into positive printing plates.

The Difference Engine received a great deal of publicity, and it
was only a matter of time before such a machine was built, if not
by Babbage then by someone else. In 1834, Pehr Georg Scheutz, a
technical editor, printer, and publisher in Stockholm, Sweden,
read an account of the project in the Edinburgh Review. Fasci-
nated, he built a small model of an engine out of wood, wire, and



Pehr Georg Scheutz (1785
1873)
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pasteboard. Babbage supplied the inspiration but Scheutz came
up with his own design; the article in the Edinburgh Review did
not contain a detailed description of the engine, and Scheutz, a
paragon of self-reliance, did not write Babbage for more informa-
tion. In 1837, Scheutz’s son, Edvard, an engineer who had been
trained in Sweden’s Royal Technological Institute, joined his fa-
ther’s effort, and the two of them set out to build a full-fledged
engine out of metal.

At this point, history repeated itself. Like Babbage, Scheutz
and his son soon realized that the venture outstripped their re-
sources and they appealed to the Swedish government for help.
But the authorities, who did not wish to go down the same road
as the British government, turned them down. The Scheutzes con-
tinued the project on their own and, by 1840, managed to produce
a small machine that operated to the first order of difference. Two
vears later, they extended the machine to three orders of differ-
ence and. a vear later, added a printing mechanism. Once again,
father and son applied for government support. This time around,
the Royal Swedish Academy of Sciences endorsed them, and the
Swedish Diet advanced 5,000 rix-dollars (about $1,500) on the
condition that the inventors finish the project by the end of 1853.
Otherwise, the money would have to be returned.

Unlike Babbage, the Scheutzes were an eminently practical
pair, and the Tabulating Machine, as they called it, was completed
on schedule (though not within the budget). The Swedish engine
was not as well built as Babbage’s and, as a result, was prone to
error. Nevertheless, it could operate to the fourth order of differ-
ence; process fifteen-digit numbers; and print out results, rounded
off to eight digits, on molds from which metal printing plates
could be cast. In operations involving constant differences, the
device could generate more than 120 tabular lines an hour, and
was only slightly slower in nonconstant operations, producing, in
one test run, about ten thousand logs in eighty hours, including
the time spent resetting the wheels for the twenty different equa-
tions used in the calculations. No human computer could have
worked as fast or as accurately. The Scheutzes’ difference engine
was the first concrete demonstration of the enormous mathemati-
cal potential of machines.

In 1854, the Scheutzes brought their invention to London,
where they demonstrated it before the Royal Society of London.
Babbage, ever the gentleman, welcomed his fellow inventors with
open arms. The following year, the Swedes entered the machine
in the Great Exhibition in Paris and it won a gold medal —
thanks, in part, to Babbage, who was a highly respected member



Edvard Scheutz (1821-1881)
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of the Institute of France and who had lobbied on their behalf.
(Thomas’s oversized Arithmometer, a Baroque throwback cam-
pared to the Tabulating Machine, also won a gold medal.) Pehr
and Edvard were deeply grateful for Babbage’s support. “Inventors
are so seldom found that acknowledge the efforts of others in
identical aims,” the father wrote Babbage from Stockhiolm in
1856,

that your liberality in this respect has, as we hear, made éclat
in the French scientific world. Respecting me and son we
would not have been so much surprised, having had occa-
sion before, during our stay in London, to learn at your
house the true character of an English gentleman: although
our admiration of it can only be surpassed by our deep sense
of gratitude. We came as strangers; but you did not receive us
as such: conforming to reality you received us but as cham-
pions for a grand scientific idea. This rare disinterestedness
offers so exhilarating an oasis in the deserts of humanity that
we wished the whole world should know of it.

The gold medal gave the Scheutzes the recognition they de-
served. It also attracted a buyer, which the pair had been search-
ing for almost from the day they had completed the machine. Dr.
Benjamin Gould, director of the Dudley Observatory in Albany,
New York, acquired the device for $5,000, and shipped it off to
America in 1857. There it had a rather odd history. Dr. Gould put
it aside for a year, and finally used it to calculate a set of tables
relating to the orbit of Mars. But the observatory’s trustees were
unhappy with Dr. Gould’s stewardship — among other things,
they considered the purchase of the Scheutz difference engine as
ill-advised — and fired him in 1859. After Dr. Gould's departure,
the machine, which required a good deal of mathematical and
mechanical skill to operate effectively, was never used again and
eventually was donated to the Smithsonian Institution.

Several difference engines were constructed in Sweden,
Austria, the United States, and England, where the British Regis-
ter General, who was in charge of the collection and publication
of vital statistics, had a copy of the Scheutzes' machine built in
the late 1850s. The Register General used it to produce a new set
of lifetime, annuity, and premium tables for the insurance indus-
try, and it was more heavily used than any other difference en-
gine. All in all, it calculated and printed out more than 600 differ-
ent tables, including 238 tables for the insurance project. The
machine made the Register General’s work somewhat easier, but it
required constant attention and often malfunctioned.



The Scheutz Difference
Engine was powered by
falling weights. This is a
photo of the second engine,
built for the General Register
Office in London in 1859.

It was during his nasty quarrel with Clement, who had deprived
him of his blueprints for a year and a half, that Babbage conceived
of the Analytical Engine. Why not, he asked himself, build a ma-
chine that could solve any mathematical problem, in addition to
those based on constant differences? Why not indeed? At the age
of forty-three, Babbage had a vision of a computer, and he pur-
sued it for the rest of his life; from the moment he began working
in earnest on the Analytical Engine, he seems to have stepped
straight into the middle of the twentieth century. He confronted
technical problems that the first computer engineers faced a
hundred years later, often coming up with the same solution as
he — although most of them were unaware of his work.

Babbage revised his plans for the Analytical Engine many
times, improving its structure and operation. As a result, it’s diffi-
cult to pin down exactly what he had in mind. He created the first
workable design by mid-1836 and overhauled it a year later. Dur-
ing the next twelve years, he refined the basic scheme of 1837 to
1838, putting the project aside in 1849. He took it up again in
1856 and tinkered with it until his death in 1871 at the age of sev-
enty-nine. He produced six to seven thousand pages of notes, and



An assortment of printing
molds produced by the
second Difference Engine.
The molds are made by the
flat, perpendicular gadget in
the center.
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he and his draftsmen (one or two men at any one time) created
about three hundred engineering drawings and six to seven
hundred charts illustrating, with a form of notation Babbage had
developed for the Difference Engine, precisely how the machine
operated. The drawings are more than meticulous engineering
plans; part art, part dream, they are one of the greatest intellectual
achievements of the nineteenth century.

At first, Babbage hoped that the government would finance
the Analytical Engine. “The constructor of the navy might as well
be required to pay for the building of a new ship he has devised
as the inventor of the Anal[lytical] Engine to manufacture it,” he
wrote in his notebook in 1868. The Analytical Engine would
serve England, not him, and he seemed to think that the govern-
ment had a moral duty to support it. Of course, the government
believed otherwise. Disgusted by the outcome of the first project,
it refused to sponsor another of Babbage’s ventures. Although
Babbage eventually realized that neither the Difference nor Ana-
lytical Engine would be built during his lifetime, he continued to
draw up plans for both machines at great personal expense.

The Analytical Engine was a thought experiment, an effort
to prove, on paper, that such a machine was possible. When, to-
ward the end of his life, Babbage gave up all hope of building the
engine himself, he lived in the hope that someone else would take
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In the late 1860s. Babbage
began building a scaled-
down version of the
Analvtical Engine. A
portion of the mill,
including a built-in printing
device, was assembled
shortly before his death.
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up his dream after his death and construct the engine using his
plans. Babbage was actually in the process of building part of the
engine when he died, and his son, Henry, fashioned a section of it
in about 1889. Unfortunately, his dream died with him. Eight
vears after his death, a committee of the British Association for
the Advancement of Science looked into the feasibility of build-
ing the machine. Understandably cowed by the complexity of the
task. it concluded that the venture was hopeless without Babbage.
Of course, it would have been equally hopeless with him. A per-
fectionist, he probably never would have completed it.

The Analytical Engine was designed in the shape of a lollipop:
the stick contained the store, where the numbers were kept, and
the candy held the mill, where the numbers were operated upon.
(In current computer terminology, the mill was the central pro-



By lifting a number from a
lower to a higher set of
number gears, the
Analytical Engine could
multiply by ten. In the
upper diagram, a thick
pinion (labeled S} is pushed
upward, transferring a
number to pinion L.
Division may be
aceomplished by reversing
the process. The Analytical
Engine’s internal operations
were controlled by a barrel
affixed with five rectangular
studs (bottom). A group of
levers (a, b, and ¢) read the
studs and relaved the
instructions to the rest of the
machine,
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cessing unit, or CPU, while the store was the memory.) Many
times larger than the Difference Engine, the machine contained
hundreds of vertical axles and thousands of wheels, or gears. The
axles, which were about ten feet tall, represented a number, the
wheels on the axles the digits in that number; since each axle
contained forty wheels, the machine could process numbers up to
forty digits long — twice the capacity of the Difference Engine.
All told, the Analytical Engine would have been about fiftecen feet
tall and twenty-five feet long, or about as big and heavy as a small
locomotive.

The mill contained nine main axles for performing multi-
plication and division and two accumulator axles for addition
and subtraction; the accumulators also stored the results of all op-
erations. As for the store, it held fifty primary axles and an equal
quantity of adjoining secondary axles. Each of the store’s axles
had two sets of wheels; since the act of reading a number from the
store erased it, the extra set of wheels enabled the machine to
keep a copy of the original number — meaning that the store
could contain one hundred forty-digit numbers. (And it could be
enlarged by the addition of more axles.) When a number was en-
tered into or taken out of the store, the primary axle holding the
figure relayed it to the secondary axle, where it was passed on to
a series of long horizontal toothed bars, or racks. Spanning the
length of the store, the racks conveyed the number to an “egress
axis” or an “ingress axis,” which served as gateways into and out
of the store.

The machine’s internal operation was orchestrated by a
barrel made up of metal slats with rectangular studs. The pattern
of the studs could be varied, and each of the barrel’s fifty to one
hundred slats could hold as many as four studs. (The barrel
served as the control unit.) It was these studs that told the engine
when and how to execute a given operation. For instance, when
the engine was directed to divide a number, the barrel turned to
the slat, or slats, that governed division, and slid forward, push-
ing the studs against a group of levers that manipulated the ap-
propriate axles in the mill and the store. By changing barrels, the
operator could alter the engine’s internal operations to suit the
calculating needs of the moment.

Despite its size and complexity, the Analvtical Engine was
hardly a lumbering mechanical monster. The addition or subtrac-
tion of two forty-digit numbers took only three seconds, multipli-
cation and division required two to four minutes — a pace that
meant most of the calculations had to be performed by repeated
addition and subtraction. Transferring a number between two ad-
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In the 1880s, Babbage’s son,
Henry, designed and built a
simple mill that printed a
table of the multiples of ,

but the gears tended to stick.

The flat plate near the base
of the mill is the printing
mechanism, shown in
greater detail in the second
photo on the left.
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jacent axles took two and a half seconds, while a carry from the
lowest wheel on an axle to the highest, or from the fortieth digit
all the way through to the first, needed only a fourth of a second;
Babbage, realizing that all the carrying to and fro would reduce
the engine's speed to a crawl, devised an ingenious mechanism
that triggered a carry before a number wheel actually turned to

nine.

The Analytical Engine’s external program was provided by
punch cards — just like most of the computers of the 1950s and
1960s. Babbage got the idea of using cards from the textile indus-
try. In 1801, the Frenchman Joseph-Marie Jacquard invented an
automatic loom that was controlled by punch cards; as the cards,



A drawing of one of the
Analytical Engine’s punch
cards.
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which were strung together into a kind of tape, moved through a
mechanical reader, wooden plungers passed through the holes, or-
chestrating the machine’s operation. The loom’s ability was noth-
ing less than amazing — Babbage owned a silk portrait of Jac-
quard sewn with instructions from about ten thousand cards

and Jacquard’s invention, which had been based on an earlier,
less-efficient loom invented by another Frenchman, had revolu-
tionized the textile business.

The Analytical Engine employed three types of cards, cach
with its own mechanical reader: “operation cards,” “variable
cards,” and “number cards.” The first kind of card carried the in-
structions; the second held the symbols of the variables in an
equation (x, v, and so on), the numerical value of the variables in
that equation (1, 18, whatever), and certain numerical constants
(like 7); and the third contained entries from mathematical tables,
such as logs and trigonometric functions. This three-pronged ap-
proach was cumbersome and complicated, and the programming
side of the Analytical Engine was the least-developed aspect of
the machine; Babbage wrote about two dozen programs between
1837 and 1840, but they are incomplete, segments of programs
rather than entire lists of instructions.

Like a modern computer, the Analytical Engine had the
ability to make decisions; that is, it could adopt one of two alter-
native courses of action based upon the results of its calculations.
In the case of the Analytical Engine, this ability was quite limited,
and the operation cards could only order the engine to add two
numbers and, if the results were less than zero, to proceed to a
specified card and carry out the indicated instruction (such as
“add 107). Known as a conditional jump, or branching, this is one
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In a vivid demonstration of
the power of his invention
Joseph-Marie Jacquard,
using 10,000 punch cards,
programmed a loom to
weave a portrait of himself
in black and white silk
{above).

Right: A Jucquard loom
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of the most important attributes of a computer — one of the char-
acteristics that distinguishes it from an ordinary calculator. The
operation cards could also instruct the machine to repeat a given
set of instructions any number of times or to perform a sidestep
within a general program; both of these tricks are important pro-
gramming tools, the latter called a subroutine, the former a loop.
Much of what we know about the engine’s programming
potential comes from a remarkable article written by Augusta Ada
Byron, countess of Lovelace, the daughter of Lord Byron, the poet.
A talented amateur mathematician, Ada met Babbage in 1833 and
was enthralled by the man and his work; at the suggestion of a
mutual friend, she translated an article on the Analytical Engine
written by an Italian mathematician. Ada added many pages of
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explanatory notes and her translation, published iu a popular sci-
entific journal, became the most widely circulated account of the
Analytical Engine, an astute analysis of the machiue and of Bab-
bage’s ideas. Ada had a good deal of literary talent, aud Lier notes
are often quoted today: “We niay say most aptly that the Analyti-
cal Engine weaves algebraic patterns just as the jacquard-loom
weaves flowers and leaves.”

Was the Analytical Engine a computer? Obviously, the an-
swer is a matter of definition. What is a computer? What is a cal-
culator? Unfortunately, the words are almost impossible to defiue.
Their meanings have changed over the years, and undoubtedly
will continue to change. For centuries, computer designated a
person who did calculations for a living; nowadays, it applies to a
certain kind of machine with a broad range of attributes and capa-
bilities; many years from now, it may refer to a device with sub-
stantially different characteristics and applications than today's
computers. The same holds true for calculator, which was often
employed as a synonym for computer. Since the late niueteenth
century, calculator has referred to a small machine that people
use to perform arithmetic; but it took on a much grander meaniug

Augusta Ada, Countess of ] ) ) ) o o
Lovelace, in a portrait in the 1940s, when it was enlisted to describe such “giant braius”

painted in about 1835 as the Selective Sequence Electronic Calculator.

In its broadest sense, and in the modern meaning of the
term, a compuler is an information-processing machine. It can
store data — numbers, letters, pictures, or symbols — and manip-
ulate that data according to programs that also have been stored
in the machine. The ability to retain data and programs gives
computers a considerable degree of automaticity, and, equally im-
portant, the capacity to make decisions, such as the conditional
jump, based on the results of its own computations. A calculator,
on the other hand, can’t do any of these things. It can only solve
mathematical problems, and its operation must be directed every
step of the way by the user. Unable to store data and programs, it
cannot make decisions. Physically, calculators vary a great deal
(as we shall see), but computers generally possess five basic
parts — a structure that seems to have arisen more out of practi-
cality than tradition (just as cars have four wheels). Those parts
are a central processor, a central control, a memory, and input and
output units.

On the one hand, the Analvtical Engine resembled a calcu-
lator. It could only perform mathematical work and could not
store programs. On the other hand, it also resembled a computer.
It was programmable, and possessed a large degree of automaticity
and a modest ability to make decisions. And it had a memory (a
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store), a central processor (a mill), and a control (the barrel). Nei-
ther fish nor fowl, it was a rudimentary form of computer known
as a program-controlled calculator. Such a machine falls short of
being a computer in at least one all-important respect: it cannot
retain a program, and its instructions are forever frozen on punch
cards, tape, or another medium. Although the Analytical Engine
is as far removed from a computer as an open-air biplane is from a
Boeing 747, it was a great, if unrealized, intellectual achieve-
ment — a magnificent glimpse of the future.

In the last years of his life, Charles Babbage was a lonely, cranky
old man. John Fletcher Moulton, a Cambridge mathematician, vis-
ited him a few years before his death. As Moulton recalled in a
speech at the Napier Tercentary in Edinburgh in 1914,

In the first room I saw the parts of the original Calculating
Machine, which had been shown in an incomplete state
many years before and had even been put to some use. 1
asked him about its present form. “I have not finished it be-
cause in working at it I came on the idea of my Analytical
Engine, which would do all that it was capable of doing and
much more. Indeed the idea was so much simpler that it
would have taken more work to complete the calculating ma-
chine than to design and construct the other in its entirety,
so I turned my attention to the Analytical Machine.” After a
few minutes’ talk we went into the next workroom where he
showed and explained to me the working of the elements of
the Analytical Machine. I asked if I could see it. “I have
never completed it,” he said, “because I hit upon the idea of
doing the same thing by a different and far more effective
method, and this rendered it useless to proceed on the old
lines.” Then we went into the third room. There lay scattered
bits of mechanism but I saw no trace of any working ma-
chine. Very cautiously I approached the subject, and received
the dreaded answer, “It is not constructed yet, but I am work-
ing at it, and will take less time to construct it altogether
than it would have taken to complete the Analytical Machine
from the stage in which I left it.” I took leave of the old man
with a heavy heart.



Charles Babbage in his
sixties
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CHAPTER 3

The Bridge Between
Two Centuries

Herman Hollerith is a man of honor
What he has done is beyond compare

To the wide world he has been the donor
Of an invention very rare

His praises we all gladly sing

His results make him outclass a king
Facts from factors he has made a business
May the vears good things to him bring.

Early IBM song, to the tune of “On the Trail of
the Lonesome Pine”

[ was a student in civil engineering in Berlin. Berlin is
a nice town and there were many opportunities for a
student to spend his time in an agreeable manner, for
instance with the nice girls. But instead of that we had
to perform big and awful calculations.

- Konrad Zuse, b. 1910

y the late 1800s, the United States, which had emerged
from the Civil War politically and economically united.
was the world’s greatest industrial power. Technologi-

cally, it had also begun to pull ahead of the rest of the world, its
vast and unregulated market a great spur to invention. Patent ap-
plications poured into the U. S. Patent Office, once a drowsy gov-
ernment agency. In the decade before the Civil War, the office
granted about a thousand patents a year. By the 1870s, the figure
had risen to twelve thousand a vear, and in 1890 alone it bal-
looned to twenty-five thousand. (By contrast, in 1890 Great Brit-
ain awarded only eleven thousand of these licenses to fame and
fortune.) A vigorous spirit of invention was afoot in America, and
it is to this colossus of innovation and industry that we now turn.
‘ In 1884, an ambitious voung engineer named Herman Hol-
flsimain office of the lerith filed the first of a series of patents f lect ‘hanical
Pradential Tnsurance ¢ k s of patents for an electromechanica
Company of America, system that counted and sorted punch cards. In the Analytical En-
Newark, New Jersey. By the  gine, punch cards contained numbers, variables, and processing
:;::? !‘)’lf(ig(”pﬁ';tsu{(:’k:‘r’:](lﬂg instructions; in the Hollerith system, they contained statistics —
businesses were awash with ~ any kind of statistics, whether gender, income, population, sales.
paperwork. or inventory. The cards were run through a sorter, which grouped



Herman Hollerith (1860—
1929) in 1880, a special
agent for the U.S. Census
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them into specified categories, and then through a tabulator,
which counted the perforations and displayed the totals. (The ma-
chines did not calculate or compute; they just collated and
added.) Hollerith’s system was the world’s first data processor;
suddenly, it was possible to count, collate, and analyze informa-
tion by machine.

Herman Hollerith (1860-1929), the son of German immi-
grants, was born in Buffalo, New York, where his family owned a
small carriage factory and repair shop. He attended the School of
Mines at Columbia University, in New York City, not so much be-
cause he was interested in mining but because he wanted to be an
engineer, and engineering schools were rare in those days. A
bright, hardworking perfectionist, Hollerith graduated near the
top of his class in 1879 and went to work as a special agent for
the Census Office in Washington, D.C. One of his professors, Wil-
liam P. Trowbridge, who moonlighted for the Census as an expert
special agent, got the job for him. The 1880 enumeration was
about to begin, and the Census needed employees with mathemat-
ical and engineering ability.

Hollerith began as Trowbridge's assistant. He investigated
the role of steam and water power in the iron and steelmaking in-
dustries and wrote a report on his findings. In his spare time, he
helped Dr. John Shaw Billings, head of the division of vital statis-
tics, compile his reports. Billings appreciated the young man’s
help, and invited him to dinner one Sunday night in August or
September of 1881. Billings was a dynamic and innovative man, a
first-rate administrator who established the Surgeon General’s Li-
brary. one of the largest medical libraries in the world, and who
became the first director of the New York Public Library, sketch-
ing the general plans for the great central library in Manhattan.
The surgeon general’s office had transferred him to the Census to
supervise the compilation of vital statistics.

Billings and Hollerith’s dinnertime conversation inevitably
turned to their work. Although the 1880 headcount had taken
only a few months, the chore of tabulating and analyzing the data
promised to drag on for years. By the time it was done, the Cen-
sus reports would be hopelessly out of date; the government
would be lucky enough to finish in time for the next census.
Since the country’s population, swelled by immigration, was
growing by the millions, the 1890 census undoubtedly would take
even more time and money. The situation was getting out of hand
and the Census was casting about for a solution. And Billings had
an idea — a gem of an idea. As Hollerith recalled in a letter to a
friend in 1919:



The formidable John Shaw
Billings (1838-1913), In a
portrait at the National
Library of Medicine, in
Bethesda, Maryland
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One Sunday evening, at Dr. Billings’ tea table, he said to me
there ought to be a machine for doing the purely mechanical
work of tabulating population and similar statistics. We

talked the matter over and I remember . . . he thought of us
ing cards with the description of the individual shown by
notches punched in the edge of the card. . . . After studying

the problem I went back to Dr. Billings and said that I
thought I could work out a solution for the problem and
asked him would he go in with me. The Doctor said he was
not interested any further than to see some solution of the
problem worked out. [Italics added.|

Tackling the problem on his own, Hollerith studied the
Census’s procedures. In the first step of the count, enumerators
called at every household and recorded the answers to their ques-
tions on large sheets of paper known as schedules. The completed
schedules were sent back to Washington, where an army of clerks
transcribed the answers to tally sheets. For example, for every na-
tive-born white male on a schedule, a slash mark was placed in a
small box on a tally sheet, five slashes to a box. It was easy to add
up the slashes on a tally sheet, since the form was divided into
large boxes that contained a specific number of small boxes: the
clerks totaled up the completed large boxes and noted the number
of slashes at the bottom of the sheet. In the next step, the tally to-
tals were transferred to consolidation sheets, whose figures were
combined to yield the population of the states, and finally, the
nation.

The 1880 enumeration required six tallies, one for every
major statistical classification. In the first tally, the Census broke
down the population by sex, race, and birthplace; in other tallies,
it collated these statistics with literacy, occupation, and other
characteristics. Every time a tally was called for, the clerks had to
sift through the schedules all over again, and there were millions
of schedules. The process was paintfully slow and expensive, and
prone to error. Moreover, it prevented the Census from performing
sophisticated analyses of the data.

‘verything was done by hand. The only mechanical aid
was a simple contraption called the Seaton device, invented by
Charles W. Seaton, the Census’s chief clerk, and used in the 1870
and 1880 censuses. It consisted of a continuous roll of tally sheets
wound on a set of spools in a wooden box. By zigzagging the roll
around the spools, it brought several columns of a sheet, which
measured seventeen by twenty inches, close together, making it
easier for the clerks to enter the slashes. (If Seaton’s solution
seems backward — why not just make tally sheets smaller? — the
reason was that, for purposes of recording and tabulating, the



Right: The 1880 census
schedule was divided into
twenty-six statistical
categories. Among other
things, the government
wanted to know whether the
respondents were “idiotic”
or “insane.”
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Clerks compiled the tally
sheets with the help of the
Seaton device.

SCHEDULE |.—Inhabitants in . the County of , State of

Page No enumerated by me on the day of June, 1886.

sheets had to contain a certain amount of data.) Completed rolls
were removed from the box, cut into separate sheets, and consoli-
dated numerically. Although the Seaton device made the clerks a
bit more efficient and accurate, it made only a small dent in the
Census’s problems. Nevertheless, Congress paid Seaton, a well-
connected if not especially talented inventor, $15,000 for the
rights to his invention. The size of the award was not lost on
Hollerith.

In 1882, Hollerith became an instructor in mechanical engi-
neering at Massachusetts Institute of Technology (MIT). Taking
advantage of the school’s workshops, lie built his first tabulating
svstem. For some reason, he decided to use punched tape instead
of cards. The tape was run over a metal drum, under an array of
metal brushes: whenever the brushes passed over a hole, electri-
cal contact was made with the drum, advancing a counter. A sepa-
rate counter was set up for each statistical category, and the totals
were displaved by a number on the counter (as time is shown on
a digital watch). The system was an improvement over tally and
consolidation sheets; once the data on the schedules had been
converted into punched tape, many items could be tabulated in a
single, fast run of the tape, in contrast to the one, two, or three
items that could be collated on a tally sheet at any time.

Although this svstem was a solid step forward, Hollerith
soon realized that he had made a serious mistake: paper tape was
a flawed medium, severely limiting the tabulator’s speed and flex-
ibility. For example, if you wanted to retrieve a particular piece of
information, or related pieces of information, from a tape, you
might have to sift through the entire reel. The data could be any-
where — at the beginning, in the middle, or, as these things often
seemed to work out, at the end. Moreover, once vou found the
data, there was no way to isolate it for future reference — other
than cutting the tape into pieces. (In modern terminology, this
method of retrieving data is known as serial access.)

To solve the problem, Hollerith turned to punch cards, and




Hollerith's first tabulator
emploved paper tape. Fig. 1
shows a tape pulley from
above; fig. 2, a pulley with a
punching template; fig. 3, a
hole puncher; fig. 4, a
punching template; and fig.
5, an electrical tape reader.
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it’s odd that he didn’t follow Billings’s suggestion in the first
place. Most likely, Billings's idea didn’t click in his mind until he
had rediscovered it on his own. “I was traveling in the West,” he
wrote a colleague vears after he had perfected his tabulators and
sorters, “and I had a ticket with what I think was called a punch
photograph. . . . The conductor . . . punched out a description of
the individual, as light hair, dark eyes, large nose, etc. So vou see,
[ only made a punch photograph of each person.” (Punched pho-
tographs discouraged vagrants from stealing passengers’ tickets
and passing them off as their own.)

In effect, Hollerith cut the tape into sections, and the result
was a quick and versatile tabulating system. Once you had tran-
scribed the information on the schedules to the cards, yvou could
manually or electromechanically isolate any card or class of
cards. (This form of retrieval is known as random uccess.) For in-
stance, vou could set aside a pile of cards representing nothing
but farmers and perform any statistical analyses of this group vou
wished. You did not have to sift through the schedules all over
again. Therefore, if you wanted to know how many white male
farmers owned more than five hundred acres and earned the bulk
of their income from tobacco, you had only to run through the
farmer cards, setting up the counters on the tabulator to match the
appropriate holes in the cards.

The decision to use cards led Hollerith to redesign his sys-
tem. He fashioned a special puncher — a pantograph punch —
consisting of a template and two connected punches; when the

H. HOLLERITH.
APPARATUS FOR COMPILING STATISTICS.
No. 395,783. Patented Jan. 8, 1889.
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The card puncher (upper left
and right) consisted of an
interchangeable template
and a dual puncher. The
first punch eards were
blank, which made them
difficult to read, but printed
cards were introduced for
the 1900 census.

operator punched the template, the second puncher perforated

the card. The card reader was a small press made up of an over-
head array of pins and an underlying bed of tiny cups of mercury;
when the operator slipped a card into the press and pulled down
on the handle, the pins passed through the holes into the mer-
cury, closing electrical circuits that advanced the counters, simple
dials set into a wooden table that resembled an upright piano. (He
had dispensed with digital counters.) As for the sorter, it was sim-
ply a box with several compartments; when a card with a desired
set of characteristics passed through the press, a box on the sorter
opened up. and the operator slipped the card into it.

Hollerith’s use of electricity is worth special mention. Bab-
bage had toyed with the idea of electrifying the Analytical En-
gine — by designing, for example, an electrical mill and store —
but the nature and use of electricity was poorly understood in his
day and he decided against it. By the 1880s, electrical equipment
and electrical power networks were no longer figments of an in-
ventor’s imagination, and a forward-looking engineer could rea-
sonably use electricity in his inventions. Hollerith intended to
power his tabulators with batteries and recharge them through the
local power company. His work possesses a distinctly modern air,
with all the advantages that accrue to electrical, as opposed to
mechanical, machines. His equipment was faster, smaller, simpler,
and more reliable than mechanical machines could ever have
been.



A tabulator in use at the
Census, probably in 1890.
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The Census was impressed with Hollerith’s work, but it decided
to conduct an official test of the system before making a commit-
ment. The trial pitted Hollerith’s machines against the “chip” sys-
tem of Charles F. Pidgen and the “slip” system of William C.
Hunt, both Census officials. In the chip system, data from the
schedules were transcribed to colored cards; in the slip system,
the information was written onto slips of paper in colored inks. In
both cases, the cards and slips were counted by hand. The compe-
tition called for the transcription and tabulation of a thick sheaf of
schedules, compiled during the 1880 census, covering 10,491
people in St. Louis. There were two parts to the trial: the time re-
quired to transcribe the schedules and the time required to tabu-
late the data.

Not surprisingly, Hollerith’s system swept the boards. It
showed its greatest advantage in the tabulation portion of the test,
completing the job eight to ten times faster than the hand-counted
slip and chip methods:
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Hollerith’s punch card
system received a great deal
of attention in the popular
and scientific press and was
featured on the cover of the
30 August 1890 issue of
Scientific American.
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Transcription Tabulation
HOURS MINUTES HOURS MINUTES
Hollerith cards 72 27 5 28
Pidgen chips 110 56 44 41
Hunt slips 144 25 58 22

Pleased with the results, the Census ordered fifty-six tabu-
lators and sorters (the machines were rented, not purchased), and
Hollerith was in business.
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His machines went to work in July 1890, shortly after the
completion of the headcount. The first task was a general tally of
the population, and Hollerith devised a special counter for the
job, a typewriterlike device equipped with twenty kevs, num-
bered 1 to 20. The clerks read the schedules, which represented
only one family per sheet, then pressed the key signifving the
number of people on the schedule. Some operators handled 9,200
schedules, listing 50,000 people, in a single day. By August 16,
only six weeks after the count had begun, the Census had a tally:
62,622,250. With great pride and fanfare, the figure was officially
announced in October, and.everyone was suitably amazed. Other
statistics quickly poured out of Washington, the typical Census
clerk processing an average of 7,000 to 8,000 cards a day. (The re-
cord was 19,071.) '

Compared to the 1880 census, which had taken nine vears
and cost $5.8 million, the 1890 count was completed in fewer
than seven years, but it had cost $11.5 million, almost twice as
much. Under the circumstances, there was some controversy
about the benefits of automation — an issue that still hasn’t been
settled. The Census, which had shelled out only $750,000 in
rental fees for Hollerith's equipment, ascribed the financial dis-



In 1894, John K. Gore, an
actuary for the Prudential
Insurance Company,
patented an automatic
punch card sorter (in the
background). It consisted of
four circular platforms, each
containing ten bins
configured with a different
arrangement of pins. A
motor turned the platforms,
and the cards dropped into
the appropriate bins.
Although Gore’s invention
could process about 15,000
cards an hour, it was built
with Prudential needs in
mind and wasn't used
elsewhere.
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parity to the expense of running a far more careful and thorough
statistical analysis of the raw data; the 1890 census was more
comprehensive than any previous headcount. Indeed, the Census
estimated that it had actually saved about $5 million in labor
costs. If, for the sake of argument, we assume that the disparity
wasn’t caused by bad management and political featherbedding,
then Hollerith’s system apparently possessed hidden costs — the
great temptation to use the equipment to the hilt. All those mil-
lions of cards, those thousands of watts of electricity, those scores
of statisticians, had run up a big bill.

Hollerith’s system was adopted all over the world. In late
1890, Austria ordered several tabulators and sorters for its census,
and Canada, France, and Russia also requested them. After much
initial resistance, private industry began renting them too.
Swamped with paperwork, large companies like the Chicago de-
partment store Marshall Field & Co., the New York Central Rail-
road Company, and the Pennsylvania Steel Company moved the
equipment into their accounting and inventory departments. Soon
they couldn’t live without it. By the early 1900s, Hollerith's firm,
the Tabulating Machine Company, had more customers than it
could handle. However, because the firm leased rather than sold
its equipment, which provided a steady and quite profitable
stream of income but produced a thinner cash flow, the company
was always short of capital. The best solution seemed to be a
merger, and in 1911 Hollerith’s firm joined with three other out-
fits to become the Computing-Tabulating-Recording Company
(CTR), which eventually became the International Business Ma-
chines Corporation, or IBM.

When we last examined the state of mechanical calculation,
Thomas de Colmar had invented and marketed a reliable four-
function calculator, called the Arithmometer. Based on the Leib-
niz wheel, it was the first major advance in calculator technology
since the late 1700s and Thomas’s design was widely emulated.
For decades, Thomas-type machines were the only truly useful
calculators on the market. But the situation changed dramatically
after 1875. As a result of advances in machine tooling and me-
chanical engineering, it became possible to do more with gears
and axles than ever before. A veritable explosion in calculator de-
sign and manufacturing took place, as a growing number of inven-
tors sensed a need and sought to fill it.

Once again, the major breakthroughs occurred in America.
In 1872, Frank Stephen Baldwin, of St. Louis, conceived of a new



In the early 1870s, Frank
Baldwin invented a new
calculating mechanism, the
pinwheel, a set of nine
spring-loaded pins at the
base of the large circle in the
patent drawing. An
improved version of the
patented machine is shown
above.
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kind of calculator mechanism, the pinwheel, which operated like
the Leibniz wheel. When the operator entered a number — let’s
say, five — via a lever on the face of the machine, five spring-
loaded pins, or sprockets, protruded from the edge of a wheel in-
side the device. The operator then turned a crank and the pin-
wheel rotated the relevant inner gears five notches. Baldwin’s
clever machine was the first major innovation since the Arith-
mometer, and it inspired a host of imitators. In 1875, he obtained
a patent and set up a small factory in Philadelphia, inaugurating
the American calculator industry. However, he failed to make a go
at it until 1912, when he and Jay Randolph Monroe, an auditor
for the Western Electric Company, established the Monroe Calcu-
lating Machine Company. By this time, poor Baldwin was sev-
enty-four years old.

Incidentally, in 1878 a Swedish engineer named Willgodt
Theophil Odhner developed a calculator very much like Bald-
win’s. Odhner had greater financial success than Baldwin and
several European manufacturers produced his machines. Al-
though both men have been credited with the invention of the
pinwheel principle, the honor rightly belongs to Baldwin: in his
first U.S. patent, Odhner didn't lay claim to the pinwheel idea.

At about the same time Baldwin came up with the pin-
wheel, other inventors managed to design calculators with the
mechanical equivalent of built-in multiplication tables. The first
of these machines, which greatly speeded up multiplication and
division, was invented in 1878 by Ramon Verea, a Spaniard living
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The Millionaire contained a
mechanism that represented
numerical products by racks
of different lengths.
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in New York City. His device “looked up” the product of two
numbers on a pair of cylinders, and multiplied the inner gears ac-
cordingly. An interesting fellow, Verea had no commercial ambi-
tions; he told a New York Herald reporter that he “did not make
the machine to either sell its patent or put it into use, but simply
to show that it was possible and that a Spaniard can invent as
well as an American.” Touché!

And the French were no less clever. In 1889, Léon Bollée,
an eighteen-vear-old mechanical genius, also invented a calcula-
tor with an internal multiplication table. His machine captured a
gold medal at the 1889 Paris Exhibition, but Bollée, an energetic
and restless man, soon went on to other things — such as con-
structing race cars and establishing the racetrack at Le Mans. It
was left to Otto Steiger, a Swiss engineer, to design and market
the first practical multiplication-table calculator. Known as The
Millionaire, it was introduced in 1893 and found a welcome
home in accounting rooms and universities all over the world.
The Millionaire had an unusually long life for a machine: 4,655
were sold before it was taken out of production in 1935.

All of these machines operated on different principles, tes-
timonyv both to the ingenuity of their inventors and to the anarchy
of the state of the art of mechanical calculation. Although Bald-

win's and Steiger’s calculators could perform all four arithmetic
functions, they failed to crack the mass market, and the reason
was chiefly technical. Along with all their rivals, these calculators
had at least two major limitations. First, they lacked a truly con-




Dorr E. Felt (1862--1930),
perhaps the most prolific
and original of the
calculator inventors

An advertisement for the
Comptometer, about 1900

The Bridge Between Two Cenluries 81

venient method for entering numbers, which made them some-
what awkward to use; second, they lacked a printer for recording
results, which meant that you had to keep track of your results
and write the answers down on a sheet of paper. There were too
many opportunities for error.

In 1885, Dorr E. Felt, a veritable fountain of creativity who
worked as a mechanic for the Pullman Company, in Chicago,
made the pivotal breakthrough with the invention of a key-driven
calculator. Felt’'s Comptometer was the epitome of convenience:
all you had to do was tap in the numbers on a typewriterlike key-
board and the gadget did the rest. The mere act of pressing the
keys, which were linked to springs, drove the device. Four years
later, Felt solved the second drawback with a built-in printer that
automatically recorded the entries and answers. He teamed up
with Robert Tarrant, a Chicago businessman, and the Felt & Tar-
rant Manufacturing Co. started production in 1889. By 1930,
when Felt died, the firm had $3.1 million in sales and 850
employees.

Without direct competition, Felt & Tarrant might have dom-
inated the market, but the idea of a calculator with a numeric keyv-
board and a built-in printer also occurred to William S. Burroughs
(1857-98). Burroughs, a clerk in a bank in upstate New York,
knew from firsthand experience the inadequacies of the available
calculators. When he was twenty-six, he moved to St. Louis and
worked briefly in his father’s model-making and casting shop.

where he met many inventors, including Baldwin. Suitably in-




Above: Compared to earlier
calculators, the
Comptometer was easy to
use. All you had to do was
push the keys; the machine
did the rest. Later models
contained built-in printers.

Right: In 1888, William S.
Burroughs patented his first
calculator. Like the
Comptometer, it was really
an adder-subtracter, but it
could multiply and divide
via repeated additions and
subtractions.
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spired, Burroughs began tinkering with a calculator of his own. In
1884, he developed a version with a keyboard driven by a handle
(not by springs, as in Felt’s model, which was not yet on the mar-
ket). With the substantial backing of three St. Louis merchants,
Burroughs rushed his machine into production in 1887.

But his haste proved to be an expensive mistake; the ma-
chines didn’t stand up to everyday use and had to be scrapped.
Furious, Burroughs walked into the stockroom one day and tossed
his machines out of the window, one by one. In 1892, he patented
another keyboard calculator, this time with a built-in printer, and
this model turned out to be a winner. It far outsold every other
calculator on the market; about 2,000 were purchased in 1901,
3,000 in 1902, 4,500 in 1903. Unfortunately, Burroughs, who suf-
fered from poor health, did not live long enough to enjoy his suc-
cess; he died in 1898 at the age of forty-one. By 1913, the Bur-
roughs Adding Machine Company, which had moved to Detroit,
had some 2,500 emplovees and $8 million in sales — it was as big
as all of its competitors combined.

Burroughs, Monroe, Felt and Tarrant, and the other calcula-
tor manufacturers found a ready market for their wares in banks,
companies, accounting departments, and universities. By the
1920s, electric calculators were available; you just pushed some
buttons and the machines did most of the work, printing out the

results on neat rolls of paper. Although anyone with a couple of
hundred dollars to spare could buy a machine that did basic
arithmetic, these calculators weren’'t much good at more compli-




A secretary with a portable
Burroughs calculator, about
1922

cated mathematical problems. Some scientists and engineers,

thinking they had the seeds of a solution, ganged conventional
calculators together in cascading rows; but such Rube Goldberg-
ian contraptions were expensive and cumbersome. The computer
demanded a completely different approach, from the composition
of its innards to the nature of its number system.

Among the most important and widely used analytical tools in
science and engineering are differential equations. A branch of
calculus, these equations give us the power to predict the behav-
ior of moving objects, like sailboats or airplanes, or of intangible
forces, like gravity and current, by relating them to certain vari-
ables. The sound of a plucked violin string, the sway of a bridge
in the wind, the flight of a rocket into space, the behavior of elec-
tricity in a power grid — all of these can be translated into differ-



William Thomson, Lord
Kelvin (1824-1907)
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ential equations. Much of our knowledge of the nature of light,
sound, heat, atomic structure, as well as other phenomena, natu-
ral and artificial, derives from these equations, which used to be
extremely difficult to solve. In fact, the effort to solve them led di-
rectly to the invention of the computer.

You can attack these equations in two ways: numerically,
with figures representing the variables in question, or graphically,
with waves or curves drawn on paper taking the place of num-
bers. When they have only one variable, they are easy to figure
out, but their difficulty increases dramatically as the number of
variables rises: the more complicated equations may take a team
of engineers or scientists months to complete, and the answers
may be full of errors. Beginning in 1814, when differential calcu-
lus was in its infancy, all sorts of clever little gadgets were de-
vised to help scientists work with the equations. These strange-
looking devices. which were made of cylinders, discs, and globes,
and had such multisyvllabic names as planimeters and linear inte-
grators, could be used to draw the solutions to simple differential
equations and other problems.

In the 1870s, the great British mathematician and physicist
William Thomson, first Baron Kelvin (1824-1907), realized that
these gadgets — which were all, by the way, analog devices, like
slide rules — held the seeds of much more powerful machines.
Lord Kelvin had an extraordinarily wide range of scientific inter-
ests; he made important contributions to almost every branch of
physics and is best remembered today as the creator of the Kelvin
temperature scale, which is widely used in science. In the early
1860s, his older brother, James, who was also a distinguished sci-
entist, invented a planimeter with a so-called disc, globe, and cyl-
inder integrator that could measure the area delineated on paper
bv a simple irregular curve. It occurred to Lord Kelvin, who was
interested in the mathematical problems associated with tides —
an important concern in an island nation like Britain — that his
brother’s invention could be put to other uses, and he built three
special-purpose calculating machines based on it.

One was a tide gauge, which recorded the height of sea
level by a curve traced on paper. The other was a tidal harmonic
analyzer, which broke down complex harmonic, or repeating,
waves into the simpler waves that made them up. (By analogy, a
harmonic musical note is composed of simple tones vibrating in
unison.) And the third, and most impressive of the lot, was a tide
predictor that could calculate the time and height of the ebb and
flood tides for any day of the vear. Kelvin, who also had a talent
for words, wrote that the harmonic analyzer substituted “brass for



Kelvin's tide predictor
(right), built in 1873, was
the first automatic analog
calculator. By mechanically
combining up to ten simple
waves, it drew a harmonic
wave — a tide prediction —
on the drums at the base of
the machine. In 1914, the
U.S. Coast and Geodetic
Survey put a much more
sophisticated tide predictor,
fifteen vears in the making,
into operation (below right).
The device could add as
many as thirty-seven simple
waves. A chart compiled
from the machine’s data is
shown below. The actual
tide is on the last line; the
predicted one, just above.
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In the mid-1920s, Vannevar
Bush and his colleagues at
MIT built a product
integraph, a semiautomatic
analog calculator that could
solve fairly complicated
problems in electrical
theory. Bush is at the far

left.
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brain in the great mechanical labour of calculating the elementary
constituents of the whole tidal rise and fall” — a description that
also suits the tide predictor.

As a result of this work, Kelvin realized that a full-fledged
“differential analyzer,” capable of solving complicated differential
equations graphically, was theoretically possible, and he outlined
the idea in a remarkable paper published in the Proceedings of
the Royal Society in 1876. Unfortunately, the technology of the
time wasn’t up to the job, and it wasn’t until 1930 that a differen-
tial analyzer was built — by an engineer who claimed that he
hadn’t read Kelvin’s paper until “a long time” after he had built
his analyzer. (And we have little choice but to accept that claim,
even though Kelvin’'s paper was quite well known among engi-
neers and scientists.)

The inventor was Vannevar Bush (1890-1974), a no-non-
sense, straight-talking engineering professor at MIT. Bush, who
became famous in the 1940s as the director of America’s wartime
research and development efforts, was up to his ears with differ-
ential equations related to electric power networks. “I was trying
to solve some of the problems of electric circuitry,” he wrote in
his autobiography. Pieces of the Action,

such as the ones connected with failures and blackouts in
power networks, and I was thoroughly stuck because I could
not solve the tough equations the investigation led to. Ralph
Booth [an electrical engineer] and I managed to solve one




The MIT differential
analyzer wasn't easy to use.
Like the product integraph,
it was semiautomatic, and
operators had to be
stationed at the input/output
tables (on the right) to keep
the machine’s pointers on
track. The glass-covered
boxes housed the
integrators, the computing
portion of the machine.

problem, on the stability of a proposed transmission line, but
solving it took months of making and manipulating charts
and graphs. Incidentally, the study showed that the line
would be unstable, and this result caused quite a commotion,
for the line had been designed by the engineers of the great
electrical manufacturing companies. But better ways of ana-
lyzing were certainly needed.

In 1927, Bush and his associates in MIT’s Electrical Engi-
neering Department embarked on a program to build a differential
analyzer. Three years later, the first big machine was in operation.
It was composed of six Thomson integrators and an equal number
of electric motors, with scores of metal shafts that linked the inte-
grators together and relayed their rotating motions, proportioned
to the given variables, to an output table that displayed the re-
sults; the machine was programmed by entering the data through
three so-called input tables and by rearranging the shafts and
gears, a job that often took two days. The analyzer resembled a
giant Erector Set — it wasn’t a very elegant machine — but it
worked quite well, generating solutions that were inaccurate by
no more than 2 percent, about the best that could be expected
from an analog calculator.

Bush’s analyzer was quite influential, an impressive dem-
onstration of the computational power of machines. Seven or
eight copies of the device were built in the United States, Great
Britain, and other countries, chiefly at universities, and Bush
went on to build a much faster and larger electromechanical ver-



Konrad Zuse fiddling with
the punched tape reader of
the Z4. The tape consisted of
discarded 35mm movie film.
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sion, using vacuum tubes, in the 1940s. But he and his colleagues
were barking up the wrong tree. The very nature of analog devices
makes them ill-suited for accurate, versatile computing, and, al-
though special-purpose analog calculators continued to be built,
the future belonged to electronic digital computers.

By the mid-1930s, in part as a result of the success of the differen-
tial analyzer, a handful of scientists and engineers in the United
States, Great Britain, and Germany began to give serious thought
to the mathematical potential of machines. These men worked
alone or in small teams and had little or no contact with each
other, although they sometimes wrote about their efforts or dis-
cussed their ideas at scientific and engineering conferences. Bab-
bage’s Analytical Engine, with its wonderfully simple but highly
flexible structure of mill, store, control, and card readers, had
been almost completely forgotten, except in Britain, and its un-
derlying principles had to be rediscovered. The first man to do so
was a young German engineer named Konrad Zuse.

As an engineering student at the Technical College of Ber-
lin-Charlottenberg, in Berlin, Zuse had to master the theory of
static indeterminate structures, which is based on a branch of al-
gebra known as linear equations. Mathematically, linear equations
are the flip side of differential equations; whereas the latter de-
scribe the behavior of dynamic entities, like projectiles, the for-
mer deal with the behavior of static structures, like buildings. For
example, in order to provide the proper structural support for a
roof, an engineer must first solve a set of simultaneous linear
equations that takes into account all the relevant variables, such
as the weight, strength, and elasticity of the construction mate-
rials. While these formulae are not especially intellectually pro-
found, they were maddeningly difficult in Zuse’s day; the practi-
cal limit for an individual was about six equations with six
unknowns, and a doubling in the number of equations creates an
eightfold boost in the quantity of calculations. Even with the help
of automatic calculators, a team of engineers needed months to
solve the equations related to a big roof.

Surely, thought Zuse, there must be a better way. It was
1934, and he was still in school. He hated the mathematical
drudgery of his profession and didn't relish the prospect of a ca-
reer spent hunched over a desk, figuring out equations, linear or
otherwise. Although he wasn’t much of a mathematician, he knew
a lot about mechanical engineering — enough to know that an-
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other mechanical calculator, full of oily gears and axles, wasn't
the answer. Fortunately, he was blessed with a good deal of in-
sight and common sense, and his approach was fresh and origi-
nal, unfettered by tradition and the opinion of experts. After care-
fully considering the nature of the problems of mechanical
calculation, he made three conceptual decisions that put him on
the right track from the beginning.

First, he decided that the only effective solution to the
computational obstacles of his profession was a universal calcula-
tor, one that could solve any equation. Therefore, he provided his
machine with a marvelously simple but highly flexible internal
structure — the same structure Babbage had given the Analytical
Engine. (However, Zuse didn’t learn about the Englishman until
1939.) The calculator was equipped with an arithmetic unit (or
central processing unit) for performing the computations; a mem-
ory for storing the numbers; a control unit for supervising the
flow of numbers and instructions within the machine; a so-called
program unit for reading instructions and data from punched
tape; and an output unit for displaying the results.

Second, Zuse decided to use binary, rather than decimal,
math — a decision that was pure inspiration and ensured his suc-
cess. The irreducible economy of the binary system meant that
the calculator’s components could be as simple as on/off switches
and that, in the final analysis, his machine was really a miniature
telegraph system, with a vocabulary of zeros and ones instead of
dots and dashes. Although Western mathematicians had known
about binary math since Leibniz’s time, Zuse was the first one to
use it in a calculator; for hundreds of years, the decimal system
was regarded as a God-given sine qua non until Zuse (and other
inventors, unaware of Zuse’s work) questioned the unquestion-
able. Even Babbage, who had considered using other number sys-
tems in the Analytical Engine, had come down on the side of tra-
dition, primarily because gears were ideally suited to decimal
math.

Finally, Zuse devised a simple set of operating rules to gov-
ern the machine's internal operations. Although he didn’t realize
it at the time, these rules were simply a restatement, in his own
notation, of the basic axioms of Boolean algebra (or Boolean
logic), and they enabled him to harness his machine’s binary com-
ponents to useful ends. Boolean algebra, named after the English
mathematician George Boole (1815-64), is a system of symbols
and procedural rules for performing certain operations on num-
bers, letters, pictures, objects — whatever. (Leibniz inaugurated
the search for such a system in his De Arte Combinatoria.) While



George Boole (1815-1864),
the founder of mathematical
logic

These tables illustrate the
outcome of every possible
operation of NOT, AND, and
OR. The contemporary
symbols for the operations
are below.
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this form of algebra may seem forbiddingly abstract, it’s really not
much more complicated than ordinary arithmetic. For example,
just as the appearance of a times sign ( X ) between two numbers
calls for a multiplication, the appearance of a Boolean symbol be-
tween two numbers, letters, or statements, also calls for the per-
formance of a specified operation.

There are many operations in Boolean algebra but the three
most basic are called AND, OR, and NOT. They are binary in na-
ture, able to process only two different kinds of entities, and they,
along with other Boolean operations, are often called gates, an apt
metaphor for their functions. (Although Boole’s system may be
applied to any group of items, we’ll confine our examples to bi-
nary numbers.) AND is a gate for 1s; if both numbers trying to slip
through an AND gate are 1, AND requires the passing on of a sin-
gle 1 to the next gate up the road. But any other combination of
digits (two Os or a 1 and a 0) will yield a 0. OR is a less selective
sieve for 1s; if either of the numbers at its gates is 1, then OR will
pass on a 1. As for NOT, it acts as an inverter, transforming any 1s
or Os that come knocking on its door into their opposites (a 1 into
a 0 and vice versa).

Although Boolean algebra contains other operations, AND,
OR, and NOT are all you — or a machine — need to add, subtract,
multiply, divide, and perform other logical processes, such as
comparing numbers or symbols. Given the binary character of
Boolean gates, it’s a relatively easy matter to engineer a binary
calculator’s components into patterns that mimic AND, OR, and
NOT. Of course, nothing could have been further from Boole’s
mind than the idea of incorporating his system into a machine;
yet the invention of the computer owes almost as much to Boole,
a self-taught mathematician who never went to college, as to any-
one else.

NOT AND , OR
A A A B |A-B A B |A+B
0 1 0 0 0 0 0 0
1 0 0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1
A A

>
p I
m

[ A-B A+B
B




In the 1880s, Allan
Marquand, a logician at
Princeton University, built a
machine that could solve
syllogisms and other simple
logical problems. The photo
on the left shows the back of
the device and the relatively
simple mechanism that ran
it.

In two epochal works, The Mathematical Analysis of
Logic — Being an Essay Towards a Calculus of Deductive Reason-
ing (1847) and An Investigation of the Laws of Thought (1854),
Boole sought to identify the procedural rules of reasoning and to
establish a rigorous system of logical analysis. Before the publica-

tion of these works, formal logic was a sleepy discipline with lit-
tle to show for thousands of years of efforts. Its most powerful an-
alytical tool was the syllogism, a form of deductive reasoning that
proceeds from a major to a minor premise and then to a conclu-
sion, as in “All men are mortal; all heroes are men; therefore all
heroes are mortal” — not much to crow about. One of the most
important results of Boole’s work was the demise of logic as a
philosophical discipline and its rebirth as a vigorous branch of
mathematics.

Although most logicians criticized or ignored Boole's ideas,
they were absorbed by a growing number of mathematicians, who
refined and amplified them, and Boole was rewarded with a pro-
fessorship at Queen’s College, in Ireland. (Babbage, who knew a
good idea when he saw one, wrote in the margin of his copy of
The Mathematical Analysis of Logic, “This is the work of a real
thinker.”) And then, in 1910, the British logicians Alfred North
Whitehead and Bertrand Russell published the first installment of
their three-volume Principia Mathematica (1910-13), which
transformed Boolean algebra into a formidable intellectual system
known as symbolic logic. We'll explore Russell and Whitehead's
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ideas later in the book: for the moment, though, it's important to
remember that the internal operations of computers are governed
by Boolean algebra, and that Zuse, in his uncanny instinct for the
heart of the matter, was the first to incorporate these rules into a
calculating machine.

In the spring of 1935, Zuse graduated from the Technical College
and went to work for the Henschel Aircraft Company, in Berlin,
as a stress analyst. He spent most of his time composing and solv-
ing linear equations. Enough was enough, and he started building
his first calculator in 1936, when he was twenty-six years old. (If
linear equations were used for the analysis of static structures,
why was Zuse fiddling with them in an aircraft plant? At certain
high speeds, aircraft wings will flap in the wind like flags in a
breeze. By considering wings as static structures and pinpointing
their “resonant frequency” with linear equations, engineers can
design wings that will be stable enough for any wind speeds a
plane is likely to encounter.)

Zuse paid for his projects out of his own pocket and con-
structed the first two machines in the living room of his parents’
apartment, with the help of a few close friends. His father was a
post office clerk and didn’t have much money, but Zuse’s parents
possessed a good deal of indulgent understanding; their son was
obviously a rather original young man. While the world around
him was going insane with Nazism, Zuse quietly submerged him-
self in his obsession, unaware of the work of like-minded engi-
neers and scientists in the United States and Great Britain. He
completed a prototype, later named the Z1, in 1938; a large jum-
ble of moving plates, the machine was entirely mechanical and
didn’t work very well, but it got him started in the right direction.

A la Jacquard and Babbage, the Z1 was controlled by
punched tape. Instead of the usual gears and axles, the memory
consisted of thin, slotted metal plates, the position of a pin in a
slot — whether on the left or the right — representing a 0 or a 1.
The memory contained more than a thousand plates, all cut by
hand out of metal sheets, and stored about the same number of
binary digits. It was the cleverest part of the Z1 and it operated
satisfactorily, which was more than could be said of the arithme-
tic unit. Although the binary multiplication table is simplicity it-
self (0 Xx 0 = 0and 1 X 1 = 1), Zuse never managed to get his
mechanical arithmetic unit to carry and borrow efficiently or to
link up well with the memory.

Confident of his design, Zuse set out to build a larger and



The Z1 in the living room of
Zuse’s parents’ apartment in
Berlin. Helmut Schreyer is
at left, Zuse on the right.
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more sophisticated calculator, the Z2. This machine was electro-
mechanical. At the suggestion of Helmut Schreyer, an electrical
engineer and Zuse's most imaginative collaborator, Zuse replaced
the balky mechanical parts of the Z1’s arithmetic unit with sec-
ondhand telephone relays. A relay is an on/off electromechanical
switch. (Hollerith’s tabulators and sorters used relays.) Once
widely used in telephone-switching circuits, it consists of an elec-
tromagnet (a coil of wire wrapped around a spool) that closes an
electrical circuit when the power is applied. The use of relays not
only enabled Zuse to construct an arithmetic unit that could carry
and borrow reliably, but one that operated rather fast, since relays
can turn on and off hundreds of times a minute. Zuse linked the
new arithmetic unit to the mechanical memory and, lo and be-
hold, the whole thing worked, more or less.
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If a calculator can be built out of relays, asked Schreyer,
why not go one step further and make one out of vacuum tubes,
which can switch on and off thousands of times a second? In the
1930s, tubes were used exclusively to amplify analog signals, like
radio waves, and few people had thought of using them for digital
applications — there weren’t very many. In 1919, two English sci-
entists invented a circuit known as flip-flop, a pair of tubes that
acted as a switch; in response to a suitable signal, one of the tubes
flipped on while the other flopped off. (The tubes didn’t turn
completely on or off but went into higher or lower states of en-
ergy; a cold tube can’t be switched on quickly and the act of turn-
ing tubes on and off tended to burn them out.) However, tubes
were expensive and hard to come by in Germany in the late
1930s, and Zuse, who felt more comfortable with mechanical
gadgets anyway, decided to stick with relays.

In 1941, Schreyer received a doctorate for a thesis on the
use of tubes as digital switches. But the advent of World War 11
cut Germany off from the United States and England, and his dis-
sertation ended up gathering dust on a library shelf and had no
effect on the history of computers.

In 1939, Germany invaded Poland. Zuse, who was twenty-
nine, was drafted. Did the mighty German war machine embrace
the promise of Zuse’s calculator and, showering him with all the
relays, tubes, and assistants he could use, proclaim: “Build us a
computer with which Deutschland can bring the Allies to their
knees?” Did Germany win the war? As Zuse recalled years later,

In 1939, due to the perfectly private state of my workshop
and due to the lack of official sponsorship, I became a soldier
at the beginning of the war. The manufacturer, who assisted
me [a calculator maker who partially financed Zuse’s work],
wrote a letter to my major requesting leave for me to com-
plete my work on an important invention. He wrote that I
was working on a machine useful for the calculations and de-
signs in the aircraft industry. My major looked at this letter
and said, “I don’t understand that. The German aircraft is the
best in the world. I don’t see what to calculate further on.”
Half a year later, I was freed from military service, not for
work on computers but as an engineer in the aircraft
industry.

Back at Henschel, Zuse finished the Z2 in his spare time.
Meanwhile, Schreyer, who had not been drafted, pursued his own
calculator plans. He managed to obtain about 150 tubes from the
Telefunken Company and, financed by the Aerodynamics Re-
search Institute, a major research organization, constructed a sim-



Konrad Zuse, about 1982
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ple machine that could convert three-digit decimal numbers into
binary numbers, and vice versa. In 1942, he submitted a proposal
for an electronic calculator to the German Army Command; the
computer would contain about 1,500 tubes and execute 10,000
operations a second. But Schreyer was turned down. Confident
that the war would be over within two or three years, the army
refused to fund any project that didn’t promise to contribute im-
mediately to the war effort.

Zuse also asked the Aerodynamics Research Institute for
help. The group wasn't interested in a general-purpose calcula-
tor — almost no one in Germany was — but it had an urgent com-
putational problem that Zuse might be able to help them with.
The calculation of airplane wing flutter was tying up personnel
and other badly needed resources and delaying aircraft produc-
tion. Zuse said that he could design a special-purpose calculator
to solve the necessary equations and asked for permission to
build a prototype; actually, he intended to devise a general-pur-
pose machine that could handle wing flutter equations along with
other kinds of problems, and thereby prove that a general-purpose
device was the way to go. Commissioned by the institute, he es-
tablished a fifteen-man company and the Z3, the first operational
general-purpose program-controlled calculator, was completed by
December 1941. :

It was a small machine, consisting of a tape reader, an oper-
ator’s console, and two cabinets packed with 2,600 relays. It had a
small memory, storing only sixty-four twenty-two-bit numbers,
but it was rather fast, multiplying two words in only three to five
seconds. In addition to the four basic operations of arithmetic, it
could find square roots and carry out other complicated tasks au-
tomatically. However, it couldn’t execute conditional jumps. None
of Zuse’s machines could; the idea never occurred to-him. In a
typical program, the initial values were entered into the memory
by hand, an inconvenient method, and the ensuing operations
were guided by punched tape. The cost of this great experiment
in artificial computation? A mere $6,500 in materials.

By the way, the Z3 converted data into strings of twenty-
two bits, which it stored and processed as separate units. In mod-
ern terminology, these twenty-two bit strings are called words.
Word sizes vary from machine to machine; in many personal com-
puters, for example, words contain sixteen bits.

Although the Z3 worked very well, the institute preferred
special-purpose machines. So Zuse built two special-purpose cal-
culators to analyze the wing flutter of flying bombs. Installed at
Henschel, the machines were wired to carry out a fixed series of



The Z3 in the Deutsches
Museum in Munich

calculations on the bombs as they came off the assembly lines, in-
dicating how each weapon’s wings should be adjusted. Despite
their computational limitations, they proved to be quite efficient
and the thirty women computers who had been employed to
solve wing flutter equations with mechanical calculators were
transferred to other jobs — a portent of the brave new world.

Henschel’s flying bomb shouldn’t be confused with the V-
series of rocket bombs that Germany rained on Great Britain.
Flying bombs were carried aloft by planes, released near their tar-
gets, and guided by radio signals from the aircraft. Fortunately,
the bombs came along too late in the war to do much damage; be-
ginning in August 1943, they were used against Allied ships in
the Mediterranean and, two years later, against the Russians in
the German retreat from Poland.

Encouraged by the success of the Z3, Zuse embarked on a larger
version, the Z4. A faster and more powerful machine, it would
process longer words — thirty-two bits as opposed to twenty-

two — and possess a bigger memory — 512 thirty-two-bit num-
bers as compared to sixty-four. Yet by this time Berlin was coming
apart at the seams. In 1944, British and American bombers were
raiding the city almost daily, and Zuse’s workshops were dam-
aged repeatedly in the bombing. He was forced to move the Z4
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