
Fundamentals of
Computer Architecture
and Design

Ahmet Bindal

Second Edition

Fundamentals of Computer Architecture
and Design

Ahmet Bindal

Fundamentals
of Computer
Architecture and Design
Second Edition

123

Ahmet Bindal
Computer Engineering Department
San Jose State University
San Jose, CA, USA

ISBN 978-3-030-00222-0 ISBN 978-3-030-00223-7 (eBook)
https://doi.org/10.1007/978-3-030-00223-7

Library of Congress Control Number: 2018953318

1st edition: © Springer International Publishing Switzerland 2017
2nd edition: © Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher nor
the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature
Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-00223-7

For my mother who always showed me the right path.

Preface

This book is written for young professionals and graduate students who have
prior logic design background and want to learn how to use logic blocks to
build a complete system from design specifications. My two-decade-long
industry experience has taught me that engineers are “shape-oriented” peo-
ple, and that they tend to learn from charts and diagrams. Therefore, the
teaching method you will see in this textbook caters this mid-set: a lot of
circuit schematics, block diagrams, timing diagrams, and examples supported
by minimal text.

The book has eight chapters. The first three chapters give a complete
review of the logic design principles since rest of the chapters significantly
depend on this review. Chapter 1 concentrates on the combinational logic
design. It describes basic logic gates, De Morgan’s theorem, truth tables, and
logic minimization. The chapter uses these key concepts in order to design
megacells, namely various types of adders and multipliers. Chapter 2 intro-
duces sequential logic components, namely latches, flip-flops, registers and
counters. It introduces the concept of timing diagrams to explain the func-
tionality of each logic block. Moore and Mealy-type state machines, counter–
decoder-type controllers, and the construction of simple memories are also
explained in this chapter. Chapter 2 is the first chapter that illustrates the
design process: how to develop architectural logic blocks using timing dia-
grams and how to build a controller from a timing diagram to govern data
flow. Chapter 3 focuses on the review of asynchronous logic design, which
includes state definitions, primitive flow tables, and state minimization.
Racing conditions in asynchronous designs, how to detect and correct them
are also explained in this chapter. The chapter ends with designing an
important asynchronous timing block: the C (or the Mueller) element and
describes an asynchronous timing methodology that leads to a complete
design using timing diagrams.

From Chaps. 4 to 8, computer architecture-related topics are covered.
Chapter 4 examines a very essential system element: system bus and com-
munication protocols between system modules. This chapter studies parallel
and serial bus architectures, defines bus master and bus slave concepts, and
examines their bus interfaces. Read and write bus protocols, bus handover,
and bus arbitration are also examined in this chapter. System memories,

vii

namely static random-access memory (SRAM), synchronous dynamic-
random access memory (SDRAM), electrically erasable programmable
read-only memory (E2PROM), and flash memory are examined in Chap. 5.
This chapter also shows how to design bus interface for each memory type
using timing diagrams and state machines.

Chapter 6 is about the design of a simple reduced instruction set computer
(RISC) central processing unit (CPU). This chapter has been expanded in the
second edition to cover a variety of subjects in the floating-point unit and
cache memory. In the first part of this chapter, fixed-point instructions are
introduced. This section first develops a dedicated hardware (data-path) to
execute each RISC instruction and then groups several instructions together
in a set and designs a common data-path to execute user programs that use
this instruction set. In this section, fixed-point-related structural, data and
program control hazards are described, and the methods of how to prevent
each type are explained. The second part of this chapter is dedicated to the
IEEE single and double-precision floating-point formats, leading to the
simplified designs of floating-point adder and multiplier. These designs are
then integrated with the fixed-point hardware to obtain a RISC CPU capable
of executing both fixed-point and floating-point arithmetic instructions. In the
same section, floating-point-related data hazards are described. A new
floating-point architecture is proposed based on a simplified version of the
Tomasulo algorithm in order to reduce and eliminate these hazards. In the
third part, various techniques to increase the program execution efficiency are
discussed. The trade-offs between static and dynamic pipelines, single-issue
versus dual-issue and triple-issue pipelines are explained with examples.
Compiler enhancement techniques, such as loop unrolling and dynamic
branch prediction methods, are illustrated to reduce overall CPU execution
time. The last section of this chapter explains different types of cache
memory architectures, including direct-mapped, set-associative and fully
associative caches, their operation and the trade-off between each cache
structure. The write-through and write-back mechanisms are discussed and
compared with each other, using design examples.

Furthermore, Chap. 6 now contains static and dynamic, single and mul-
tiple issue CPUs, the advantages of out-of-order execution and register
renaming. The final phase of this chapter is dedicated to multi-core CPUs
with a central memory and distributed memories. The data update and
replacement policy are described for each CPU architecture to maintain cache
coherency.

The design of system peripherals, namely direct memory access (DMA),
interrupt controller, system timers, serial interface, display adapter, and data
controllers are covered in Chap. 7. The interrupt controller has been
expanded in this new edition to cover context switching. The design
methodology for constructing the data-paths using timing diagrams shown in
Chap. 2 is closely followed to design the bus interface for each peripheral in
this chapter. Chapter 8 describes the field-programmable gate array (FPGA),
and the fundamentals of data-driven processors as special topics.

viii Preface

At the end of the book, there is a small appendix that introduces the
Verilog language. Verilog is a widely used Hardware Design Language
(HDL) to build and verify logic blocks, mega cells and systems. Interested
readers are encouraged to go one step beyond and learn system Verilog to be
able to verify large logic blocks.

San Jose, USA Prof. Ahmet Bindal

Preface ix

Contents

1 Review of Combinational Logic Circuits 1
1.1 Logic Gates . 1
1.2 Boolean Algebra . 7
1.3 Designing Combinational Logic Circuits Using

Truth Tables . 9
1.4 Combinational Logic Minimization—Karnaugh Maps 12
1.5 Basic Logic Blocks . 18
1.6 Combinational Mega Cells . 27

2 Review of Sequential Logic Circuits. 61
2.1 D Latch. 61
2.2 Timing Methodology Using D Latches 63
2.3 D Flip-Flop . 64
2.4 Timing Methodology Using D Flip-Flops 65
2.5 Timing Violations . 66
2.6 Register. 71
2.7 Shift Register . 73
2.8 Counter . 74
2.9 Moore Machine. 75
2.10 Mealy Machine . 79
2.11 Controller Design: Moore Versus Counter-Decoder

Scheme . 82
2.12 Memory . 86
2.13 A Design Example Using Sequential Logic

and Memory . 89

3 Review of Asynchronous Logic Circuits 101
3.1 S-R Latch . 101
3.2 Fundamental-Mode Circuit Topology 102
3.3 Fundamental-Mode Asynchronous Logic Circuits 102
3.4 Asynchronous Timing Methodology 110

4 System Bus . 119
4.1 Parallel Bus Architectures . 119
4.2 Basic Write Transfer . 124
4.3 Basic Read Transfer . 126
4.4 Bus Master Status Change . 127
4.5 Bus Master Handshake . 129
4.6 Arbiter . 130

xi

4.7 Bus Master Handover . 133
4.8 Serial Buses . 134

5 Memory Circuits and Systems . 151
5.1 Static Random Access Memory . 152
5.2 Synchronous Dynamic Random Access Memory 160
5.3 Electrically-Erasable-Programmable-Read-Only-

Memory . 181
5.4 Flash Memory. 189
5.5 Serial Flash Memory. 229
References. 250

6 Central Processing Unit . 251
6.1 Fixed-Point Unit . 251
6.2 Stack Pointer and Subroutines . 284
6.3 Fixed-Point Design Examples . 294
6.4 Fixed-Point Hazards . 303
6.5 Floating-Point Unit . 317
6.6 Increasing Program Execution Efficiency 350
6.7 Multi-core Architectures and Parallelism 369
6.8 Caches . 397

7 System Peripherals . 439
7.1 Overall System Architecture . 439
7.2 Direct Memory Access Controller. 440
7.3 Interrupt Controller . 448
7.4 Serial Transmitter Receiver Interface 465
7.5 Timers. 472
7.6 Display Adaptor . 480
7.7 Data Converters . 489
7.8 Digital-to-Analog Converter (DAC) 500

8 Special Topics . 517
8.1 Field-Programmable-Gate Array . 517
8.2 Data-Driven Processors . 535

Appendix: An Introduction to Verilog Hardware Design
Language . 551

Index . 587

xii Contents

About the Author

Ahmet Bindal received his M.S. and Ph.D.
degrees in Electrical Engineering from the
University of California, Los Angeles, CA. His
doctoral research was the material characteriza-
tion of HEMT GaAs transistors. During his
graduate studies, he was a research associate and
a technical consultant for Hughes Aircraft Com-
pany. In 1988, he joined the technical staff of
IBM Research and Development Center in
Fishkill, NY, where he worked as a device design
and characterization engineer. He developed
asymmetrical MOS transistors and ultrathin
Silicon-On-Insulator (SOI) technologies for
IBM. In 1993, he transferred to IBM at Roche-
ster, MN, as a senior circuit design engineer to
work on the floating-point unit of AS-400
mainframe processor. He continued his circuit
design career at Intel Corporation in Santa Clara,
CA, where he designed 16-bit packed multipliers
and adders for the MMX unit in Pentium II
processors. In 1996, he joined Philips Semicon-
ductors in Sunnyvale, CA, where he was
involved in the designs of instruction/data caches
and various SRAM modules for the TriMedia
processor. His involvement with VLSI architec-
ture also started in Philips Semiconductors and
led to the design of the Video-Out unit for the
same processor. In 1998, he joined Cadence
Design Systems as a VLSI architect and directed
a team of engineers to design a self-timed asyn-
chronous processor. After approximately 20
years of industry work, he joined the Computer

xiii

Engineering faculty at San Jose State University
in 2002. His current research interests range from
nanoscale electron devices to robotics. He has
over 30 scientific journal and conference publi-
cations and 10 invention disclosures with IBM.
He currently holds three US patents with IBM and
one with Intel Corporation. On the light side of
things, he is a model aircraft builder and an avid
windsurfer for more than 30 years.

xiv About the Author

1Review of Combinational Logic
Circuits

Logic gates are the essential elements of digital design, and ultimately constitute the building blocks
for digital systems. A good understanding in designing complex logic blocks from primitive logic
gates and mastering the design tools and techniques that need to be incorporated in the design process
is a requirement for the reader before moving on to the details of computer architecture and design.

This chapter starts with defining logic gates and the concept of truth table which then leads to the
implementation of basic logic circuits. Later in the chapter, the concept of Karnaugh maps is
introduced in order to minimize gate count, thereby completing the basic requirements of combi-
national logic design. Following the minimization techniques, various fundamental logic blocks such
as multiplexers, encoders, decoders and one-bit adders are introduced so that they can be used to
construct larger scale combinational logic circuits. The last section of this chapter is dedicated to the
design of mega cells. These include different types of adders such as ripple-carry adder,
carry-look-ahead adder, carry-select adder, and the combination of all three types depending on the
goals of the design: gate count, circuit speed and power consumption. Subtractors, linear and barrel
shifters, array and Booth multipliers constitute the remaining sections of this chapter.

It is vital for the reader to also invest time to learn a hardware design language such as Verilog
while studying this chapter and the rest of the chapters in this book. A simulation platform incor-
porating Verilog and a set of tools that work with Verilog such as design synthesis, static timing
analysis, and verification is an effective way to check if the intended design is correct or not. There is
nothing more valuable than trying various design ideas on a professional design environment,
understanding what works and what does not while working with different tool sets, and most
importantly learning from mistakes. An appendix introducing the basic principles of Verilog is
included at the end of this book for reference.

1.1 Logic Gates

AND gate

Assume that the output, OUT, in Fig. 1.1 is at logic 0 when both switches, A and B, are open. Unless
both A and B close, the output stays at logic 0.

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-00223-7_1

A two-input AND gate functions similarly to the circuit in Fig. 1.1. If any two inputs, A and B, of the
AND gate in Fig. 1.2 are at logic 0, the gate produces an output, OUT, at logic 0. Both inputs of the
gate must be equal to logic 1 in order to produce an output at logic 1. This behavior is tabulated in
Table 1.1, which is called a “truth table”.

The functional representation of the two-input AND gate is:

OUT ¼ A :B

Here, the symbol “.” between inputs A and B represents the AND-function.

OR gate

Now, assume a parallel connectivity between switches A and B as shown in Fig. 1.3. OUT becomes
to logic 1 if any of the switches close; otherwise the output will stay at logic 0.

1

OUT

A

B

Fig. 1.1 Switch representation of a two-input AND gate

A

B
OUT

Fig. 1.2 Two-input AND gate symbol

Table 1.1 Two-input AND gate truth table

A B OUT

0 0 0
0 1 0
1 0 0
1 1 1

1

OUT

A B

Fig. 1.3 Switch representation of two-input OR gate

2 1 Review of Combinational Logic Circuits

A two-input OR gate shown in Fig. 1.4 also functions similarly to the circuit in Fig. 1.3. If any two
inputs are at logic 1, the gate produces an output, OUT, at logic 1. Both inputs of the gate must be
equal to logic 0 in order to produce an output at logic 0. This behavior is tabulated in the truth table,
Table 1.2.

The functional representation of the two-input OR gate is:

OUT ¼ AþB

Here, the symbol “+” between inputs A and B signifies the OR-function.

Exclusive OR gate

A two-input Exclusive OR gate, XOR gate, is shown in Fig. 1.5. The XOR gate produces a logic 0
output if both inputs are equal. Therefore, in many logic applications this gate is used to compare the
input logic levels to see if they are equal. The functional behavior of the gate is tabulated in Table 1.3.

A

B
OUT

Fig. 1.4 Two-input OR gate symbol

A

B
OUT

Fig. 1.5 Two-input XOR gate symbol

Table 1.2 Two-input OR gate truth table

A B OUT

0 0 0
0 1 1
1 0 1
1 1 1

Table 1.3 Two-input XOR gate truth table

A B OUT

0 0 0
0 1 1
1 0 1
1 1 0

1.1 Logic Gates 3

The functional representation of the two-input XOR gate is:

OUT ¼ A� B

Here, the symbol “⊕” between inputs A and B signifies the XOR-function.

Buffer

A buffer is a single input device whose output is logically equal to its input. The only use of this gate
is to be able to supply enough current to logic gate inputs connected to its output. The logical
representation of this gate is shown in Fig. 1.6.

Complementary Logic Gates

All basic logic gates need to have complemented forms. If a single input needs to be complemented,
an inverter shown in Fig. 1.7 is used. The inverter truth table is shown in Table 1.4.

The functional representation of the inverter is:

OUT ¼ IN

Here, the symbol “-” on top of the input, IN, represents the complement-function.
The complemented form of two-input AND gate is called two-input NAND gate, where “N”

signifies negation. The logic representation is shown in Fig. 1.8, where a circle at the output of the
gate means complemented output. The truth table of this gate is shown in Table 1.5. Note that all
output values in this table are exact opposites of the values given in Table 1.1.

OUTIN

Fig. 1.6 Buffer symbol

OUTIN

Fig. 1.7 Inverter symbol

Table 1.4 Inverter truth table

IN OUT

0 1
1 0

A

B
OUT

Fig. 1.8 Two-input NAND gate symbol

4 1 Review of Combinational Logic Circuits

The functional representation of the two-input NAND gate is:

OUT ¼ A :B

Similar to the NAND gate, two-input OR and XOR gates have complemented configurations,
called two-input NOR and XNOR gates, respectively.

The symbolic representation and truth table of a two-input NOR gate is shown in Fig. 1.9 and
Table 1.6, respectively. Again, all the outputs in Table 1.6 are exact complements of Table 1.2.

The functional representation of the two-input NOR gate is:

OUT ¼ AþB

The symbolic representation and truth table of a two-input XNOR gate is shown in Fig. 1.10 and
Table 1.7, respectively. This gate, like its counterpart two-input XOR gate, is often used to detect if
input logic levels are equal.

Table 1.5 Two-input NAND gate truth table

A B OUT

0 0 1
0 1 1
1 0 1
1 1 0

A

B
OUT

Fig. 1.9 Two-input NOR gate symbol

Table 1.6 Two-input NOR gate truth table

A B OUT

0 0 1
0 1 0
1 0 0
1 1 0

A

B
OUT

Fig. 1.10 Two-input XNOR gate symbol

1.1 Logic Gates 5

The functional representation of the two-input XNOR gate is:

OUT ¼ A� B

Tri-State Buffer and Inverter

It is often necessary to create an open circuit between the input and the output of a logic gate if the
gate is not enabled. This need creates two more basic logic gates, the tri-state buffer and tri-state
inverter.

The tri-state buffer is shown in Fig. 1.11. Its truth table in Table 1.8 indicates continuity between
the input and the output terminals if the control input, EN, is at logic 1; when EN is lowered to logic
0, an open circuit exists between IN and OUT, which is defined as a high impedance, HiZ, condition
at the output terminal.

The tri-state inverter is shown in Fig. 1.12 along with its truth table in Table 1.9. This gate
behaves like an inverter when EN input is at logic 1; however, if EN is lowered to logic 0, its output
disconnects from its input.

Table 1.7 Two-input XNOR gate truth table

A B OUT

0 0 1
0 1 0
1 0 0
1 1 1

OUTIN

EN

Fig. 1.11 Tri-state buffer symbol

Table 1.8 Tri-state buffer truth table

TUONE NI

0 0 HiZ
0 1

1 0
1 1

0
HiZ

1

OUTIN

EN

Fig. 1.12 Tri-state inverter symbol

6 1 Review of Combinational Logic Circuits

The control input, EN, to tri-state buffer and inverter can also be complemented in order to produce
an active-low enabling scheme.

The tri-state buffer with the active-low enable input in Fig. 1.13 creates continuity when EN = 0.

The tri-state inverter with the active-low input in Fig. 1.14 also functions like an inverter when EN
is at logic 0, but its output becomes HiZ when EN is changed to logic 1.

1.2 Boolean Algebra

It is essential to be able to reconfigure logic gates to suit our design goals. Logical reconfigurations
may be as simple as re-grouping the inputs of a single gate or complementing the inputs of several
gates to reach a design objective.

Identity, commutative, associative, distributive laws and DeMorgan’s negation rules are used to
perform logical manipulations. Table 1.10 tabulates these laws.

Table 1.9 Tri-state inverter truth table

TUONE NI

0 0 HiZ
0 1

1 0
1 1

1
HiZ

0

OUTIN

EN

Fig. 1.13 Tri-state buffer symbol with complemented enable input

OUTIN

EN

Fig. 1.14 Tri-state inverter symbol with complemented enable input

1.1 Logic Gates 7

Example 1.1 Reduce OUT ¼ A :B :CþA :B :CþA :B using algebraic rules.

OUT ¼ A :B :CþA :B :CþA :B

¼ A :C : BþB
� �þA :B

¼ A : CþB
� �

Example 1.2 Reduce OUT ¼ AþA :B using algebraic rules.

OUT ¼ AþA :B

¼ AþA
� �

: AþBð Þ
¼ AþB

Table 1.10 Identity, commutative, associative, distributive and DeMorgan’s rules

A . B = B . A

A + B = B + A
Commutative

A . (B . C) = (A . B) . C
A + (B + C) = (A + B) + C Associative

A . (B + C) = A . B + A . C

A + B . C = (A + B) . (A + C)
Distributive

A . B = A + B

A + B = A . B

A . 1 = A

A . 0 = 0
A . A = A

A . A = 0

A = A

A + 1 = 1

A + 0 = A
A + A = A

A + A = 1

Identity

DeMorgan’s

8 1 Review of Combinational Logic Circuits

Example 1.3 Reduce OUT ¼ A :BþA :CþB :C using algebraic rules.

OUT ¼ A :BþA :CþB :C

¼ A :BþA :CþB :C : AþA
� �

¼ A :BþA :CþA :B :CþA :B :C

¼ A :B : 1þCð ÞþA :C : 1þBð Þ
¼ A :BþA :C

Example 1.4 Reduce OUT ¼ ðAþBÞ : ðAþCÞ using algebraic rules.

OUT ¼ AþBð Þ : AþC
� �

¼ A :AþA :CþA :BþB :C

¼ A :CþA :BþB :C

¼ A :CþA :BþB :C : AþA
� �

¼ A :CþA :BþA :B :CþA :B :C

¼ A :C : 1þBð ÞþA :B : 1þCð Þ
¼ A :CþA :B

Example 1.5 Convert OUT ¼ ðAþBÞ :C :D into an OR-combination of two-input AND gates
using algebraic laws and DeMorgan’s theorem.

OUT ¼ AþBð Þ :C :D

¼ AþBð Þ : CþD
� �

¼ A :CþA :DþB :CþB :D

Example 1.6 Convert OUT ¼ A :BþC :D into an AND-combination of two-input OR gates using
algebraic laws and DeMorgan’s theorem.

OUT ¼ A :BþC :D

¼ A :BþC :D

¼ AþB
� �

: CþD
� �

1.3 Designing Combinational Logic Circuits Using Truth Tables

A combinational circuit is cascaded form of basic logic gates without any feedback from the output to
any input. The logic function is obtained from a truth table that specifies the complete functionality of
the digital circuit.

1.2 Boolean Algebra 9

Example 1.7 Using the truth table given in Table 1.11 determine the output function of the digital
circuit.

The output function can be expressed either as the OR combination of AND gates or the AND
combination of OR gates.

If the output is expressed in terms of AND gates, all output entries that are equal to one in the truth
table must be grouped together as a single OR gate.

OUT ¼ A :B :C :DþA :B :C :DþA :B :C :DþA :B :C :D

þA :B :C :DþA :B :C :DþA :B :C :D

This expression is called the Sum Of Products (SOP), and it contains seven terms each of which is
called a “minterm”. In the first minterm, A :B :C :D, each A, B, C and D input is complemented to
produce OUT = 1 for the A = B = C = D = 0 entry of the truth table. Each of the remaining six
minterms also complies with producing OUT = 1 for their respective input entries.

The resulting combinational circuit is shown in Fig. 1.15.

Table 1.11 An arbitrary truth table with four inputs

A B C D OUT

0 0 0 0

0 0 0 1
0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1
0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1
1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1
1 1 1 0

1 1 1 1

1

1

1

0

0

1

0

0

1

1

1

0

0

0

0

0

10 1 Review of Combinational Logic Circuits

If the output function needs to be expressed in terms of OR gates, all the output entries that are
equal to zero in the truth table must be grouped as a single AND gate.

OUT ¼ AþBþCþD
� �

: AþBþCþD
� �

: AþBþCþD
� �

: AþBþCþD
� �

: AþBþCþD
� �

: AþBþCþD
� �

: AþBþCþD
� �

: AþBþCþD
� �

: AþBþCþD
� �

This expression is called the Product Of Sums (POS), and it contains nine terms each of which is
called a “maxterm”. The first maxterm, AþBþCþD, produces OUT = 0 for the ABCD = 0011
entry of the truth table. Since the output is formed with a nine-input AND gate, the values of the other
maxterms do not matter to produce OUT = 0. Each of the remaining eight maxterms generates
OUT = 0 for their corresponding truth table input entries.

The resulting combinational circuit is shown in Fig. 1.16.

A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D

A
B
C
D
A
B
C
D

OUT

Fig. 1.15 AND-OR logic representation of the truth table in Table 1.11

1.3 Designing Combinational Logic Circuits Using Truth Tables 11

1.4 Combinational Logic Minimization—Karnaugh Maps

One of the most useful tools in logic design is the use of Karnaugh maps (K-map) to minimize
combinational logic functions.

Minimization can be performed in two ways. To obtain SOP form of a minimized logic function,
the entries with logic 1 in the truth table must be grouped together in the K-map. To obtain POS form
of a minimized logic function, the entries with logic 0 must be grouped together in the K-map.

Example 1.8 Using the truth table in Table 1.12, determine the minimized SOP and POS output
functions. Prove them to be identical.

A
B
C
D

A
B
C
D

A
B
C
D
A
B
C
D
A
B
C
D

A
B
C
D
A
B
C
D

OUT

A
B
C
D

A
B
C
D

Fig. 1.16 OR-AND logic representation of the truth table in Table 1.11

12 1 Review of Combinational Logic Circuits

The K-map formed according to the truth table groups 1s to obtain the minimized output function,
OUT, in SOP form in Fig. 1.17.

Grouping 1s takes place among neighboring boxes in the K-map where only one variable is
allowed to change at a time. For instance, the first grouping of 1s combines ABC = 000 and
ABC = 010 as they are in neighboring boxes. Only B changes from logic 0 to logic 1 while A and C
stay constant at logic 0. To obtain OUT = 1, both A and C need to be complemented; this produces
the first term, A :C, for the output function. Similarly, the second grouping of 1s combines the
neighboring boxes, ABC = 000, 001, 100 and 101, where both A and C change while B stays
constant at logic 0. To obtain OUT = 1, B needs to be complemented; this generates the second term,
B, for the output function.

This means that either the term A :C or B makes OUT equal to logic 1. Therefore, the minimized
output function, OUT, in the SOP form is:

OUT ¼ BþA :C

Grouping 0s produces the minimized POS output function as shown in Fig. 1.18.

Table 1.12 An arbitrary truth table with three inputs

OUTA B C

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

00 01 11 10

0

1

1

1 0

1

1

1 0

0

AB
C

OUT

Fig. 1.17 K-map of the truth table in Table 1.12 to determine SOP

00 01 11 10

0

1

1

1 0

1

1

1 0

0

AB
C

OUT

Fig. 1.18 K-map of the truth table in Table 1.12 to determine POS

1.4 Combinational Logic Minimization—Karnaugh Maps 13

This time, the first grouping of 0s combines the boxes, ABC = 011 and 111, where A changes
from logic 0 to logic 1 while B and C stay constant at logic 1. This grouping targets OUT = 0, which
requires both B and C to be complemented. As a result, the first term of the output function, BþC, is
generated. The second grouping combines ABC = 110 and 111 where C changes value while A and
B are equal to logic 1. To obtain OUT = 0, both A and B need to be complemented. Consequently,
the second term, AþB, is generated.

Either of the terms BþC or AþB makes OUT = 0. Therefore, the minimized output function in
the POS form becomes:

OUT ¼ BþC
� �

: AþB
� �

To find out if the SOP and POS forms are identical, one can manipulate the POS using the
algebraic rules given earlier.

OUT ¼ BþC
� �

: AþB
� �

¼ A :BþB :BþA :CþB :C

¼ A :BþBþA :CþB :C

¼ B : Aþ 1þC
� �þA :C

¼ BþA :C

However, this is the SOP form of the output function derived above.

Example 1.9 Using the truth table in Example 1.7 determine the minimized SOP and POS output
functions.

To obtain an output function in SOP form, 1s in the K-map in Fig. 1.19 is grouped together as
shown below.

00 01 11 10

00

01

11

10

1

1 1

1

1

1

1

0 0

0

0 0 0 0

0 0

AB
CD

OUT

Fig. 1.19 K-map of the truth table in Table 1.11 to determine SOP

14 1 Review of Combinational Logic Circuits

The minimized output function contains only three minterms compared to seven minterms in
Example 1.7. Also, the minterms are reduced to groups of two or three inputs instead of four.

OUT ¼ B :CþA :C :DþB :D

The resultant combinational circuit is shown in Fig. 1.20.

Further minimization can be achieved algebraically, which then reduces the number of terms from
three to two.

OUT ¼ B : CþD
� �þA :C :D

The corresponding combinational circuit is shown in Fig. 1.21.

B
C

A
C
D

B
D

OUT

Fig. 1.20 Minimized logic circuit in SOP form from the K-map in Fig. 1.19

B

A
C
D

C
D

OUT

Fig. 1.21 Logic circuit in Fig. 1.20 after algebraic minimizations are applied

1.4 Combinational Logic Minimization—Karnaugh Maps 15

To obtain a POS output function, 0s are grouped together as shown in Fig. 1.22.
The minimized output function contains only three maxterms compared to nine in Example 1.7.

Also, the maxterms are reduced to groups of two inputs instead of four.

OUT ¼ CþD
� �

: AþB
� �

: BþD
� �

The resultant combinational circuit is shown in Fig. 1.23.

Example 1.10 Determine if the minimized SOP and POS output functions in Example 1.9 are
identical to each other.

Rewriting the POS form of OUT from Example 1.9 and using the algebraic laws shown earlier,
this expression can be re-written as:

OUT ¼ CþD
� �

: AþB
� �

: BþD
� �

¼ A :CþA :DþB :CþB :D
� �

: BþD
� �

¼ A :B :CþA :B :DþB :CþB :D

þA :C :DþB :C :D

¼ B :CþB :DþA :C :D

The result is identical to the SOP expression given in Example 1.9.

C
D

A
B

B
D

OUT

Fig. 1.23 Minimized logic circuit in POS form from the K-map in Fig. 1.22

00 01 11 10

00

01

11

10

1

1 1

1

1

1

1

0 0

0

0 00 0

0 0

AB
CD

OUT

Fig. 1.22 K-map of the truth table in Table 1.11 to determine POS

16 1 Review of Combinational Logic Circuits

Example 1.11 Determine the minimal SOP and POS forms of the output function, OUT, from the
K-map in Fig. 1.24. Note that the “X” sign corresponds to a “don’t care” condition that represents
either logic 0 or logic 1.

For SOP, we group 1s in the K-map in Fig. 1.25. Boxes with “don’t care” are used as 1s to achieve
a minimal SOP expression.

The SOP functional expression for OUT is:

OUT ¼ A :C :DþA :B :CþB :D

For POS, we group 0s in the K-map in Fig. 1.26. Boxes with “don’t care” symbols are used as 0s
to achieve a minimal POS expression.

00 01 11 10

00

01

11

10

1

0 0

X

1

0

1

0 1

0

0 X01

X 0

AB
CD

OUT

Fig. 1.24 An arbitrary K-map with “don’t care” entries

00 01 11 10

00

01

11

10

1

0 0

X

1

0

1

0 1

0

0 X01

X 0

AB
CD

OUT

Fig. 1.25 Grouping to determine SOP form for the K-map in Fig. 1.24

1.4 Combinational Logic Minimization—Karnaugh Maps 17

The POS functional expression for OUT is:

OUT ¼ CþD
� �

: BþD
� �

: AþBþC
� �

: AþBþC
� �

To show that the SOP and POS expressions are identical, we start with the POS expression using
the algebraic manipulations described earlier in Table 1.10.

OUT ¼ CþD
� �

: BþD
� �

: AþBþC
� �

: AþBþC
� �

¼ B :CþC :DþB :DþD
� �

: A :BþA :CþA :BþBþB :CþA :CþB :C
� �

¼ B :CþD
� �

: A :CþA :CþB
� �

¼ A :B :CþA :C :DþA :C :DþB :D

¼ A :B :CþA :C :DþB :DþA :C :D : BþB
� �

¼ A :B :CþA :C :DþB :DþA :B :C :DþA :B :C :D

¼ A :B :C : 1þD
� �þA :C :DþB :D : 1þA :C

� �
¼ A :B :CþA :C :DþB :D

The result is identical to the minimal SOP expression for OUT shown above.

1.5 Basic Logic Blocks

2-1 Multiplexer

A 2-1 multiplexer (MUX) is one of the most versatile logic elements in logic design. It is defined as
follows:

OUT ¼ A if sel ¼ 1
B else

�

A functional diagram of the 2-1 MUX is given in Fig. 1.27. According to the functional
description of this device, when sel = 1 input A is passed through the device to become its output.
When sel = 0 input B is passed through the device to become its output.

00 01 11 10

00

01

11

10

1

0 0

X

1

0

1

0 1

0

0 X01

X 0

AB
CD

OUT

Fig. 1.26 Grouping to determine POS form for the K-map in Fig. 1.24

18 1 Review of Combinational Logic Circuits

According to this definition, the truth table in Table 1.13 can be formed:

Now, let us transfer the output values from the truth table to the K-map in Fig. 1.28.

Grouping 1s in the K-map reveals the minimal output function of the 2-1 MUX in SOP form:

OUT ¼ sel :Aþ sel :B

The corresponding combinational circuit is shown in Fig. 1.29.

1 0

A B

OUT

sel

Fig. 1.27 2-1 MUX symbol

00 01 11 10

0

1

0

0 0

0

1

1 1

1

AB
sel

OUT

Fig. 1.28 2-1 MUX K-map

Table 1.13 2-1 MUX truth table

A Bsel OUT

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
0
1
0
0
1
1

1.5 Basic Logic Blocks 19

4-1 Multiplexer

Considering A, B, C and D are the inputs, the functional description of a 4-1 MUX becomes as
follows:

OUT ¼
A if sel1 ¼ 0 and sel2 ¼ 0
B if sel1 ¼ 0 and sel2 ¼ 1
C if sel1 ¼ 1 and sel2 ¼ 0
D else

2
664

According to this description, we can form a truth table and obtain the minimal SOP or POS
expression for OUT. However, it is quite easy to decipher the SOP expression for OUT from the
description above. The AND-combination of A, complemented sel1 and complemented sel2 inputs
constitute the first minterm of our SOP. The second minterm should contain B, complemented sel1
and uncomplemented sel2 according to the description above. Similarly, the third minterm contains
C, uncomplemented sel1 and complemented sel2. Finally, the last minterm contains D, uncomple-
mented sel1 and uncomplemented sel2 control inputs. Therefore, the SOP expression for the 4-1
MUX becomes equal to the logic expression below and is implemented in Fig. 1.30.

OUT ¼ sel1 : sel2 :Aþ sel1 : sel2 :Bþ sel1 : sel2 :Cþ sel1 : sel2 :D

sel1

A

OUT

sel2

sel1

B
sel2

sel1

C
sel2

sel1

D
sel2

Fig. 1.30 4-1 MUX logic circuit in SOP form

sel
A

OUT

sel
B

Fig. 1.29 2-1 MUX logic circuit

20 1 Review of Combinational Logic Circuits

However, implementing 4-1 MUX this way is not advantageous due to the amount of gate delays;
a three-input AND gate is a serial combination of a three-input NAND and an inverter, and similarly a
four-input OR connects a four-input NOR to an inverter. Therefore, we obtain a minimum of four gate
delays instead of two according to this circuit.

Logic translations are possible to reduce the gate delay. The first stage of this process is to
complement the outputs of all four three-input AND gates. This necessitates complementing the
inputs of the four-input OR gate, and results in a circuit in Fig. 1.31.

However, an OR gate with complemented inputs is equivalent to a NAND gate. Therefore, the
circuit in Fig. 1.32 becomes optimal for implementation purposes because the total MUX delay is
only the sum of a three-input NAND and a four-input NAND gate delays instead of the earlier four
gate delays.

sel1

A

OUT

sel2

sel1

B
sel2

sel1

C
sel2

sel1

D
sel2

Fig. 1.31 Logic conversion of 4-1 MUX in Fig. 1.30

sel1

A

OUT

sel2

sel1

B
sel2

sel1

C
sel2

sel1

D
sel2

Fig. 1.32 4-1 MUX logic circuit in NAND-NAND form

1.5 Basic Logic Blocks 21

The symbolic diagram of the 4-1 MUX is shown in Fig. 1.33.

Encoders

Encoders are combinational logic blocks that receive 2N number of inputs and produce N number of
encoded outputs.

Example 1.12 Generate an encoding logic from the truth table given in Table 1.14.

The K-maps in Fig. 1.34 groups 1s and produces the minimized SOP expressions for OUT1 and
OUT2.

OUT1 ¼ IN1 : IN2þ IN1 : IN2 : IN3 : IN4þ IN1 : IN2 : IN3 : IN4þ IN2 : IN3 : IN4þ IN2 : IN3 : IN4

¼ IN1 : IN2þ IN1 : IN2 : IN3� IN4ð Þþ IN2 : IN3� IN4
� �

OUT2 ¼ IN1 : IN2þ IN2 : IN3 : IN4þ IN2 : IN3 : IN4þ IN1 : IN2 : IN3 : IN4þ IN1 : IN2 : IN3 : IN4

¼ IN1 : IN2þ IN2 : IN3� IN4
� �þ IN1 : IN2 : IN3� IN4ð Þ

00

A B

OUT

sel1

C D

sel2
01 10 11

Fig. 1.33 4-1 MUX symbol

Table 1.14 An arbitrary encoder truth table with four inputs

IN1 IN2 IN3 IN4 OUT1 OUT2

0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 1 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 0

22 1 Review of Combinational Logic Circuits

Decoders

Decoders are combinational logic blocks used to decode encoded inputs. An ordinary decoder takes N
inputs and produces 2N outputs.

Example 1.13 Design a line decoder in which an active high enable signal activates only one of
eight independent outputs according to truth table in Table 1.15. When the enable signal is lowered to
logic 0, all eight outputs are disabled and stay at logic 0.

0 1 0 1

0101

1 1 1 1

0000

00 10 11 01

01

00

10

11

OUT1
IN3 IN4

IN1 IN2

1 1 1 1

0000

0 1 0 1

0101

00 10 11 01

01

00

10

11

OUT2
IN3 IN4

IN1 IN2

Fig. 1.34 K-map of the truth table in Table 1.14

Table 1.15 Truth table of a line decoder with three inputs with enable

IN[2] IN[1] IN[0] OUT[7] OUT[6] OUT[5] OUT[4] OUT[3] OUT[2] OUT[1] OUT[0]

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

EN

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1.5 Basic Logic Blocks 23

In this table, all outputs become logic 0 when the enable signal, EN, is at logic 0. However, when
EN = 1, activation of the output starts. For each three-bit input entry, there is always one output at
logic 1. For example, when IN[2] = IN[1] = IN[0] = 0, OUT[0] becomes active and equals to logic 1
while all other outputs stay at logic 0. IN[2] = IN[1] = IN[0] = 1 activates OUT[7] and disables all
other outputs.

We can produce each output expression from OUT[7] to OUT[0] simply by reading the input
values from the truth table. The accompanying circuit is composed of eight AND gates, each with
four inputs as shown in Fig. 1.35.

OUT½7� ¼ EN : IN½2� : IN½1� : IN½0�
OUT½6� ¼ EN : IN½2� : IN½1� : IN½0�
OUT½5� ¼ EN : IN½2� : IN½1� : IN½0�
OUT½4� ¼ EN : IN½2� : IN½1� : IN½0�
OUT½3� ¼ EN : IN½2� : IN½1� : IN½0�
OUT½2� ¼ EN : IN½2� : IN½1� : IN½0�
OUT½1� ¼ EN : IN½2� : IN½1� : IN½0�
OUT½0� ¼ EN : IN½2� : IN½1� : IN½0�

One-Bit Full Adder

A one-bit full adder has three inputs: A, B, and carry-in (CIN), and two outputs: sum (SUM) and
carry-out (COUT). The symbolic representation of a full adder is shown in Fig. 1.36.

IN[0]
IN[1]
IN[2]

EN

OUT[0]

IN[0]
IN[1]
IN[2]

EN

OUT[1]

IN[0]
IN[1]
IN[2]

EN

OUT[2]

IN[0]
IN[1]
IN[2]

EN

OUT[3]

IN[0]
IN[1]
IN[2]

EN

OUT[4]

IN[0]
IN[1]
IN[2]

EN

OUT[5]

IN[0]
IN[1]
IN[2]

EN

OUT[6]

IN[0]
IN[1]
IN[2]

EN

OUT[7]

Fig. 1.35 Logic circuit of a line decoder in Table 1.15

24 1 Review of Combinational Logic Circuits

A one-bit full adder simply adds the contents of its two inputs, A and B, to the contents of CIN,
and forms the truth table given in Table 1.16.

We can obtain the minimized SOP expressions for SUM and COUT from the K-maps in
Figs. 1.37 and 1.38.

FA

A B

COUTCIN

SUM

Fig. 1.36 One-bit full adder symbol

Table 1.16 One-bit full adder truth table

A B SUM COUTCIN

0 0 0 00

0 1 1 00
1 0 1 00

1 1 0 10
0 0 1 01
0 1 0 11

1 0 0 11

1 1 1 11

00 01 11 10

0

1

0

1 0

1

0

1 0

1

AB
CIN

SUM

Fig. 1.37 SUM output of a one-bit full adder

00 01 11 10

0

1

0

0 1

0

1

0 1

1

AB
CIN

COUT

Fig. 1.38 COUT output of a one-bit full adder

1.5 Basic Logic Blocks 25

Consequently,

SUM ¼ A :B :CINþA :B :CINþA :B :CINþA :B :CIN

¼ CIN A :BþA :B
� �þCIN : A :BþA :B

� �
¼ CIN A� B

� �þCIN : A� Bð Þ
¼ A� B� CIN

Thus,

COUT ¼ CIN :BþA :BþA :CIN

¼ CIN : AþBð ÞþA :B

The resultant logic circuits for SUM and COUT are shown in Fig. 1.39.

One-Bit Half Adder

A one-bit half adder has only two inputs, A and B with no CIN. A and B inputs are added to generate
SUM and COUT outputs. The symbolic representation of a half-adder is shown in Fig. 1.40.

CIN

A
B

A
B

COUT

A
B

CIN
SUM

Fig. 1.39 One-bit full adder logic circuit

HA

A B

COUT

SUM

Fig. 1.40 One-bit half-adder symbol

26 1 Review of Combinational Logic Circuits

The truth table given in Table 1.17 describes the functionality of the half adder.

From the truth table, the POS expressions for SUM and COUT can be written as:

SUM ¼ A� B

COUT ¼ A :B

Therefore, we can produce SUM and COUT circuits as shown in Fig. 1.41.

1.6 Combinational Mega Cells

Adders

One-bit full-adders can be cascaded serially to produce multiple-bit adder configurations. There are
three basic adder types:

Ripple-Carry Adder
Carry-Look-Ahead (CLA) Adder
Carry-Select Adder

However, different hybrid adder topologies can be designed by combining these configurations.
For the sake of simplicity, we will limit the number of bits to four and explain each topology in detail.

Ripple-Carry Adder

The ripple-carry adder is a cascaded configuration of multiple one-bit full adders. The circuit topology
of a four-bit ripple carry adder is shown in Fig. 1.42. In this figure, the carry-out output of a one-bit

A
B

SUM

A
B COUT

Fig. 1.41 One-bit half adder logic circuit

Table 1.17 One-bit half-adder truth table

A B SUM COUT

0 0 0 0

0 1 1 0
1 0 1 0

1 1 0 1

full adder is connected to the carry-in input of the next full adder to propagate carry from CIN[0] to
higher bits.

1.5 Basic Logic Blocks 27

For the 0th bit of this adder, we have:

SUM 0½ � ¼ A 0½ � � B 0½ � � CIN 0½ �
COUT 0½ � ¼ CIN 1½ � ¼ A 0½ � :B 0½ � þCIN 0½ � : A 0½ � þB 0½ �ð Þ ¼ G 0½ � þ P 0½ � :CIN 0½ �

where,

G 0½ � ¼ A 0½ � :B 0½ � as the zeroth order generation term

P 0½ � ¼ A 0½ � þB 0½ � as the zeroth order propagation term

For the first bit:

SUM 1½ � ¼ A 1½ � � B 1½ � � CIN 1½ � ¼ A 1½ � � B 1½ � � G 0½ � þ P 0½ � :CIN 0½ �ð Þ
COUT 1½ � ¼ CIN 2½ � ¼ G 1½ � þ P 1½ � :CIN 1½ �

¼ G 1½ � þ P 1½ � : G 0½ � þ P 0½ � :CIN 0½ �ð Þ ¼ G 1½ � þ P 1½ � :G 0½ � þ P 1½ � : P 0½ � :CIN 0½ �

where,

G 1½ � ¼ A 1½ � :B 1½ � as the first order generation term

P 1½ � ¼ A 1½ � þB 1½ � as the first order propagation term

For the second bit:

SUM 2½ � ¼ A 2½ � � B 2½ � � CIN 2½ � ¼ A 2½ � � B 2½ � � G 1½ � þ P 1½ � : G 0½ � þ P 0½ � :CIN 0½ �ð Þf g
¼ A 2½ � � B 2½ � � G 1½ � þ P 1½ � :G 0½ � þ P 1½ � : P 0½ � :CIN 0½ �ð Þ

COUT 2½ � ¼ CIN 3½ � ¼ G 2½ � þ P 2½ � :CIN 2½ �
¼ G 2½ � þ P 2½ � : G 1½ � þ P 1½ � : G 0½ � þ P 0½ � :CIN 0½ �ð Þf g
¼ G 2½ � þ P 2½ � :G 1½ � þ P 2½ � : P 1½ � :G 0½ � þ P 2½ � : P 1½ � : P 0½ � :CIN 0½ �

FA0FA1FA2FA3

A[3] B[3]

SUM[3]

CIN[3]
CIN[0]

COUT[2]

A[2] B[2] A[1] B[1] A[0] B[0]

CIN[2]

COUT[1]

CIN[1]

COUT[0]

SUM[2] SUM[1] SUM[0]

Fig. 1.42 Four-bit ripple-carry adder

28 1 Review of Combinational Logic Circuits

where,

G 2½ � ¼ A 2½ � :B 2½ � as the second order generation term

P 2½ � ¼ A 2½ � þB 2½ � as the second order propagation term

And for the third bit:

SUM 3½ � ¼ A 3½ � � B 3½ � � CIN 3½ � ¼ A 3½ � � B 3½ � � G 2½ � þ P 2½ � : G 1½ � þP 1½ � : G 0½ � þP 0½ � :CIN 0½ �ð Þf gf g
¼ A 3½ � � B 3½ � � G 2½ � þ P 2½ � :G 1½ � þ P 2½ � : P 1½ � :G 0½ � þ P 2½ � : P 1½ � : P 0½ � :CIN 0½ �ð Þ

These functional expressions of SUM and COUT also serve to estimate the maximum gate delays
for each bit of the adder.

The circuit diagram in Fig. 1.43 explains the maximum delay path through each bit.
The maximum gate delay from A[0] or B[0] inputs to SUM[0] is 2TXOR2, where TXOR2 is a single

two-input XOR gate delay.
The maximum gate delay from A[0] or B[0] to COUT[0] is 2TOR2 + TAND2 where TOR2 and

TAND2 are two-input OR gate and two-input AND gate delays, respectively.

The gate delay from A[1] or B[1] to SUM[1] is still 2TXOR2; however, the delay from A[0] or B[0]
to SUM[1] is 2TOR2 + TAND2 + TXOR2, which is more than 2TXOR2 and must be considered the
maximum gate delay for this particular bit position and for more significant bits.

The maximum gate delay from A[0] or B[0] to COUT[1] is 3TOR2 + 2TAND2. It may make more
sense to expand the expression for COUT[1] as COUT[1] = G[1] + P[1] . G[0] + P[1] . P[0] . CIN
[0], and figure out if the overall gate delay, TOR2 + TAND3 + TOR3, is smaller compared to

A[3] B[3]

SUM[3]

CIN[0]

Minimum
Delay

Maximum
Delay

A[2] B[2]

A[2] B[2]

A[1] B[1]

A[1] B[1]

A[0] B[0]

A[0] B[0]

SUM[2] SUM[1] SUM[0]

COUT[1] = CIN[2]COUT[2] = CIN[3] COUT[0] = CIN[1]

Fig. 1.43 Logic circuit of the four-bit adder with the maximum and minimum delays

1.6 Combinational Mega Cells 29

3TOR2 + 2TAND2. Here, TAND3 and TOR3 are single three-input AND and OR gate delays,
respectively.

The maximum gate delay from A[0] or B[0] to SUM[2] is 3TOR2 + 2TAND2 + TXOR2. When the
expression for SUM[2] is expanded as SUM[2] = A[2] ⊕ B[2] ⊕ (G[1] + P[1] . G[0] + P[1] . P[0] .
CIN[0]), we see that this delay becomes TOR2 + TAND3 + TOR3 + TXOR2, and may be smaller than
the original delay if TAND3 < 2TAND2 and TOR3 < 2TOR2.

The maximum gate delay from A[0] or B[0] to COUT[2] is 4TOR2 + 3TAND2. When COUT[2] is
expanded as COUT[2] = G[2] + P[2] . G[1] + P[2] . P[1] . G[0] + P[2] . P[1] . P[0] . CIN[0], the
maximum delay becomes TOR2 + TAND4 + TOR4, and may be smaller than the original delay if
TAND4 < 3TAND2 and TOR4 < 3TOR2. Here, TAND4 and TOR4 are single four-input AND and OR gate
delays, respectively.

Finally, the maximum delay from A [0] or B [0] to SUM [3] is 4TOR2 + 3TAND2 + TXOR2, which
is also the maximum propagation delay for this adder. When the functional expression for SUM[3] is
expanded as SUM[3] = A[3] ⊕ B[3] ⊕ (G[2] + P[2] . G[1] + P[2] . P[1] . G[0] + P[2] . P[1] . P[0] .
CIN[0]), the total propagation delay becomes TOR2 + TAND4 + TOR4 + TXOR2, and again it may be
smaller compared to the original delay if TAND4 < 3TAND2 and TOR4 < 3TOR2.

Carry-Look-Ahead Adder

The idea behind carry-look-ahead (CLA) adders is to create a topology where carry-in bits to all
one-bit full adders are available simultaneously. A four-bit CLA circuit topology is shown in
Fig. 1.44. In this figure, the SUM output of a more significant bit does not have to wait until the carry
bit ripples from the least significant bit position, but it gets computed after some logic delay. In
reality, all carry-in signals are generated by complex combinational logic blocks called
Carry-Look-Ahead (CLA) hook-ups, as shown in Fig. 1.44. Each CLA block adds a certain propa-
gation delay on top of the two-input XOR gate delay to produce a SUM output.

CIN[1]CIN[2]CIN[3]
CIN[0]

COUT[0]

A[3] B[3]

SUM[0]SUM[1]SUM[2]SUM[3]

G[2] + P[2].G[1] + P[2].P[1].G[0] + P[2].P[1].P[0].CIN[0]

G[1] + P[1].G[0] + P[1].P[0].CIN[0]

FA0FA1FA2FA3

A[2] B[2] A[1] B[1] A[0] B[0]

Fig. 1.44 A four-bit carry-look-ahead adder

30 1 Review of Combinational Logic Circuits

The earlier SUM and CIN expressions derived for the ripple carry adder can be applied to the CLA
adder to generate its functional equations.

Therefore,

SUM 0½ � ¼ A 0½ � � B 0½ � � CIN 0½ �
SUM 1½ � ¼ A 1½ � � B 1½ � � CIN 1½ �
SUM 2½ � ¼ A 2½ � � B 2½ � � CIN 2½ �
SUM 3½ � ¼ A 3½ � � B 3½ � � CIN 3½ �

where,

CIN 1½ � ¼ G 0½ � þ P 0½ � :CIN 0½ �
CIN 2½ � ¼ G 1½ � þ P 1½ � :G 0½ � þ P 1½ � : P 0½ � :CIN 0½ �
CIN 3½ � ¼ G 2½ � þ P 2½ � :G 1½ � þ P 2½ � : P 1½ � :G 0½ � þ P 2½ � : P 1½ � : P 0½ � :CIN 0½ �

Therefore, CIN[1] is generated by the COUT[0] function within FA0. However, CIN[2] and CIN
[3] have to be produced by separate logic blocks in order to provide CIN signals for FA2 and FA3.

According to Fig. 1.44, once a valid CIN[0] becomes available, it takes successively longer times
to generate valid signals for higher order SUM outputs due to the increasing complexity in CLA
hook-ups.

Assume that TSUM0, TSUM1, TSUM2 and TSUM3 are the propagation delays corresponding to the bits
0, 1, 2 and 3 with respect to the CIN[0] signal. We can approximate TSUM0 = TXOR2. To compute
TSUM1, we need to examine the expression for CIN[1]. In this expression, P[0] . CIN[0] produces a
two-input AND gate delay, and G[0] + (P[0] . CIN[0]) produces a two-input OR gate delay to be
added on top of TXOR2. Therefore, TSUM1 becomes TSUM1 = TAND2 + TOR2 + TXOR2. Similarly, the
expressions for CIN[2] and CIN[3] produce TSUM2 = TAND3 + TOR3 + TXOR2 and TSUM3 =
TAND4 + TOR4 + TXOR2, respectively.

The maximum propagation delay for this adder is, therefore, TSUM3 = TAND4 + TOR4 + TXOR2.
Despite the CLA adder’s advantage of being faster than the ripple-carry adder, in most cases the

extra CLA logic blocks make this adder topology occupy a larger chip area if the number of adder bits
is above eight.

Carry-Select Adder

Carry-Select Adders require two rows of identical adders. The identical adders can be as simple as
two rows of identical ripple-carry adders or CLA adders depending on the design requirements.
Figure 1.45 shows the circuit topology of a four-bit carry-select adder composed of two rows of
ripple carry adders.

1.6 Combinational Mega Cells 31

In this figure, the full adder at the least significant bit position operates normally and generates a
value for COUT[0]. As this value is generated the two one-bit full adders, one with CINA[1] = 0 and
the other with CINB[1] = 1, simultaneously generate SUMA[1] and SUMB[1]. If COUT[0] becomes
equal to one, SUMB[1] gets selected and becomes SUM[1]; otherwise, SUMA[1] becomes the SUM
[1] output. Whichever value ends up being SUM[1], it is produced after a 2-1 MUX propagation
delay.

However, we cannot say the same in generating SUM[2] and SUM[3] outputs in this figure. After
producing SUM[1], carry ripples through both adders normally to generate SUM[2] and SUM[3];
hence, the speed advantage of having two rows of adders becomes negligible. Therefore, we must be
careful when employing a carry-select scheme before designing an adder, as this method practically
doubles the chip area.

Even though carry-select topology is ineffective in speeding up this particular four-bit adder, it
may be advantageous if employed to an adder with greater number of bits in conjunction with another
adder topology such as the CLA.

Example 1.14 Design a 32-bit carry-look-ahead adder. Compute the worst-case propagation delay in
the circuit.

We need to be careful in dealing with the CLA hook-ups when generating higher order terms
because the complexity of these logic blocks can “grow” exponentially in size while they may only
provide marginal speed gain when compared to ripple-carry scheme.

Therefore, the first step of the design process is to separate the adder into eight-bit segments with
full CLA hook-ups. The proposed topology is shown in Fig. 1.46.

SUM[0]

CIN[0]
COUT[0]010101

A[0] B[0]

FA

FAFAFA

FAFAFA

SUM[1]SUM[2]SUM[3]

A[3] B[3]

CINA[1] = 0

CINB[1] = 1

CINA[2]

CINB[2]

CINA[3]

CINB[3]

SUMB[1] SUMA[1]

A[2] B[2] A[1] B[1]

SUMB[2] SUMA[2]SUMB[3] SUMA[3]

Fig. 1.45 A four-bit carry-select adder

32 1 Review of Combinational Logic Circuits

Each eight-bit CLA segment contains six CLA hook-ups from CLA0 to CLA5 as shown in
Fig. 1.47.

CIN and SUM expressions from bit 0 through bit 7 are given below.

SUM 0½ � ¼ A 0½ � � B 0½ � � CIN 0½ �

SUM 1½ � ¼ A 1½ � � B 1½ � � CIN 1½ �

where,

CIN 1½ � ¼ G 0½ � þ P 0½ � :CIN 0½ �

SUM 2½ � ¼ A 2½ � � B 2½ � � CIN 2½ �

SUM[7:0]

A[7:0]

CIN[0]

B[7:0]

SUM[15:8]

CIN[8]

B[15:8]A[15:8]

SUM[23:16]

CIN[16]

B[23:16]A[23:16]

SUM[31:24]

CIN[24]

B[31:24]A[31:24]
8 8 8 8 8 8 8 8

8 88 8

8-bit CLA8-bit CLA8-bit CLA8-bit CLA

Fig. 1.46 A 32-bit carry-look-ahead topology

FAFAFAFAFAFAFA

SUM[7]

A[7] B[7]

FACOUT[7]
CIN[7]

CLA0

CLA1

CLA2

CLA3

CLA4

CLA5

SUM[6]

A[6] B[6]

CIN[6]

SUM[5]

A[5] B[5]

CIN[5]

SUM[4]

A[4] B[4]

CIN[4]

SUM[3]

A[3] B[3]

CIN[3]

SUM[2]

A[2] B[2]

CIN[2]

SUM[1]

A[1] B[1]

CIN[1]

SUM[0]

A[0] B[0]

CIN[0]

Fig. 1.47 An eight-bit segment of the carry-look ahead adder in Fig. 1.46

1.6 Combinational Mega Cells 33

where,

CIN 2½ � ¼ G 1½ � þ P 1½ � :G½0� þ P 1½ � : P½0� :CIN 0½ �

SUM 3½ � ¼ A 3½ � � B 3½ � � CIN 3½ �

where,

CIN 3½ � ¼ G 2½ � þ P 2½ � :G½1� þ P 2½ � : P½1� :G½0� þ P½2� : P½1� : P½0� :CIN 0½ �

SUM 4½ � ¼ A 4½ � � B 4½ � � CIN 4½ �

where,

CIN 4½ � ¼ G 3½ � þ P 3½ � : G½2� þ P 2½ � :G½1� þ P½2� : P½1� :G½0� þ P½2� : P½1� : P½0� :CIN 0½ �ð Þ

SUM 5½ � ¼ A 5½ � � B 5½ � � CIN 5½ �

where,

CIN 5½ � ¼ G 4½ � þ P 4½ � : G½3� þ P 3½ �f : ðG½2� þ P½2� :G½1� þ P½2� : P½1� :G½0�
þ P 2½ � : P 1½ � : P 0½ � :CIN[0]Þg

¼ G 4½ � þ P 4½ � :G½3� þ P 4½ � : P 3½ � : ðG 2½ � þ P 2½ � :G 1½ � þ P 2½ � : P 1½ � :G 0½ �
þ P 2½ � :P½1� : P 0½ � :CIN[0])

SUM 6½ � ¼ A 6½ � � B 6½ � � CIN 6½ �

where,

CIN 6½ � ¼ G 5½ � þ P 5½ � : G½4� þ P 4½ �f : G½3� þ P½4� : P 3½ � : G½2� þ P½2� : G½1� þ P 2½ � : P 1½ � : G½0�ð
þ P 2½ � : P 1½ � : P 0½ � : CIN[0]Þg

¼ G 5½ � þ P 5½ � : G½4� þ P 5½ � : P 4½ � : G 3½ � þ P 5½ � : P 4½ � : P 3½ � : G 2½ � þ P 2½ � : Gð 1½ �
þ P 2½ � : P½1� : G 0½ � þ P 2½ � : P 1½ � : P 0½ � : CIN[0])

SUM 7½ � ¼ A 7½ � � B 7½ � � CIN 7½ �

where,

CIN 7½ � ¼ G 6½ � þ P 6½ � : G½5� þ P 5½ �f :G½4� þ P½5� : P 4½ � :G½3� þ P½5� : P½4� : P 3½ � : G 2½ �ð
þ P 2½ � :G 1½ � + P½2� : P 1½ � :G 0½ � þ P 2½ � : P 1½ � : P 0½ � :CIN[0])g

34 1 Review of Combinational Logic Circuits

And finally,

COUT 7½ � ¼ CIN 8½ � ¼ G 7½ � þ P 7½ � : fG 6½ � þ P 6½ � : fG 5½ � þ P 5½ � :G 4½ � þ P 5½ � : P 4½ � :G 3½ �
þ P 5½ � : P 4½ � : P 3½ � : G 2½ � þ P 2½ � :G 1½ � þ P 2½ � : P 1½ � :G 0½ � þ P 2½ � : P 1½ � : P 0½ � :CIN 0½ �ð Þgg

¼ G 7½ � þ P 7½ � :G 6½ � þ P 7½ � : P 6½ � : fG 5½ � þ P 5½ � :G 4½ � þ P 5½ � : P 4½ � :G 3½ �
þ P 5½ � : P 4½ � : P 3½ � : G 2½ � þ P 2½ � :G 1½ � þ P 2½ � : P 1½ � :G 0½ � þ P 2½ � : P 1½ � : P 0½ � :CIN 0½ �ð Þg

In these derivations, particular attention was paid to limit the number of inputs to four in all AND
and OR gates since larger gate inputs are counterproductive in reducing the overall propagation delay.

From these functional expressions, maximum propagation delays for SUM[7] and COUT[7] are
estimated using the longest logic strings in Fig. 1.48.

For SUM[7], the minterm, P[2] . P[1] . P[0] . CIN[0], generates the first four-input AND gate. This
is followed by a four-input OR-gate whose minterms are G[2], P[2] . G[1], P[2] . P[1] . G[0], and P[2]
. P[1] . P[0] . CIN[0]. This gate is followed by a four-input AND, four-input OR, two-input AND,
two-input OR and two-input XOR-gates in successive order. The entire string creates a propagation
delay of TSUM7 = 2(TAND4 + TOR4) + TAND2 + TOR2 + TXOR2 from CIN[0] to SUM[7].

For COUT[7], the longest propagation delay is between CIN[0] to COUT[7] as shown in
Fig. 1.48, and it is equal to TCOUT7 = 2(TAND4 + TOR4) + TAND3 + TOR3. The delays for the rest of
the circuit in Fig. 1.46 become easy to determine since the longest propagation delays have already
been evaluated.

The delay from CIN[0] to SUM[15], TSUM15, simply becomes equal to the sum of TCOUT7 and
TSUM7. In other words, TSUM15 = 4(TAND4 + TOR4) + TAND3 + TOR3 + TAND2 + TOR2 + TXOR2.
Similarly, the delay from CIN[0] to COUT[15], TCOUT15, is equal to TCOUT15 = 4(TAND4 +
TOR4) + 2(TAND3 + TOR3).

The remaining delays are evaluated in the same way and lead to the longest propagation delay in
this circuit, which is from CIN[0] to SUM[31], TSUM31.

CIN[0]

P2

P0
P1

G2

P5

P3
P4

G5 P6
G6

A7 + B7
SUM[7]

CIN[0]

P2

P0
P1

G2

P5

P3
P4

G5 P7
G7

COUT[7] = CIN[8]

Fig. 1.48 Propagation delay estimation of the eight-bit carry-look-ahead adder in Fig. 1.47

1.6 Combinational Mega Cells 35

Thus,

TSUM31 ¼ 3 2 TAND4 þTOR4ð ÞþTAND3 þTOR3½ � þ 2 TAND4 þTOR4ð ÞþTAND2 þTOR2 þTXOR2

or

TSUM31 ¼ 8 TAND4 þTOR4ð Þþ 3 TAND3 þTOR3ð ÞþTAND2 þTOR2 þTXOR2

Example 1.15 Design a 32-bit hybrid carry-select/carry-look-ahead adder. Compute the worst-case
propagation delay in the circuit.

Large adders are where the carry-select scheme shines! This is a classical example in which the
maximum propagation delay is reduced considerably compared to the CLA scheme examined in
Example 1.14.

As mentioned earlier, a twin set of an adder configuration is required by the carry-select scheme.
The adders can be ripple-carry, carry-look-ahead or the combination of the two.

In this example, the 32-bit adder is again divided in eight-bit segments where each segment
consists of a full CLA adder as shown in Fig. 1.49. The first segment, CLA-0, is a single unit which
produces COUT[7] with full CLA hook-ups. The rest of the eight-bit segments are mirror images of
each other and they are either named A-segments (A1, A2 and A3) or B-segments (B1, B2 and B3).

As the CLA-0 generates a valid COUT[7], the CLA-A1 and CLA-B1 simultaneously generate
COUTA[15] and COUTB[15]. When COUT[7] finally forms, it selects either COUTA[15] or
COUTB[15] depending on the value of CIN[0]. This segment produces COUT[15] and SUM[15:8].

COUT[15], on the other hand, is used to select between COUTA[23] and COUTB[23], both of
which have already been formed when COUT[15] arrives at the 2-1 MUX as a control input. COUT
[15] also selects between SUMA[23:16] and SUMB[23:16] to determine the correct SUM[23:16].

Similarly, COUT[23] is used as a control input to select between SUMA[31:24] and SUMB
[31:24]. If there is a need for COUT[31], COUT[23] can serve to determine the value of COUT[31].

The maximum propagation delay for the 32-bit carry-select/CLA adder can be found using the
logic string in Fig. 1.50. The first section of this string from CIN[0] to COUT[7] is identical to the

SUM[7:0]

A[7:0]

CIN[0]

B[7:0]

B[15:8]A[15:8]B[23:16]A[23:16]

0

B[31:24]A[31:24]
8 8 8 8 8 8

8 8

8

8

8 8

8-bit CLA-0

8-bit CLA-A18-bit CLA-A28-bit CLA-A3

SUM[15:8]

B[15:8]A[15:8]

SUM[23:16]

B[23:16]A[23:16]

SUM[31:24]

B[31:24]A[31:24]

8 8 8 8 8 8

88 8

8-bit CLA-B18-bit CLA-B28-bit CLA-B3 1

0

1

0

1

8
0 1

0

1

8
0 1

0

1

8
0 1

COUT[7]

SUMA[15:8]

SUMB[15:8]

SUMA[23:16]

SUMB[23:16]

SUMA[31:24]

SUMB[31:24]

COUT[15]COUT[23]

Fig. 1.49 A 32-bit carry-look-ahead/carry-select adder

36 1 Review of Combinational Logic Circuits

eight-bit CLA carry delay in Fig. 1.48. There are three cascaded MUX stages which correspond to the
selection of COUT[15], COUT[23], and SUM[31].

Considering that a 2-1 MUX propagation delay consists of a two-input AND gate followed by a
two-input OR gate, we obtain the following maximum delay for this 32-bit adder:

TSUM31 ¼ 2 TAND4 þTOR4ð ÞþTAND3 þTOR3 þ 3 TAND2 þTOR2ð Þ
Considering the maximum propagation delay in Example 1.14, this delay is shorter by at least 6

(TAND4 + TOR4). Larger carry-select/carry-look-ahead adder schemes provide greater speed benefits
at the cost of approximately doubling the adder area.

Subtractors

Subtraction is performed by a technique called twos (2s) complement addition. Twos complement
addition first requires complementing one of the adder inputs (1s complement) and then adding 1 to
the least significant bit.

Example 1.16 Form −4 using 2s complement addition using four bits.
A negative number is created by first inverting every bit of +4 (1s complement representation) and

then adding 1 to it. +4 is equal to 0100 in four-bit binary form.
Its 1s complement is 1011. Its 2s complement is 1011 + 0001 = 1100.
Therefore, logic 0 signifies a positive sign, and logic 1 signifies a negative sign at the most

significant bit position.

Example 1.17 Add +4 to −4 using 2s complement addition

+4 = 0100 in binary form
−4 = 1100 in 2s complement form of +4.
Perform +4–4 = 0100 + 1100 = 1 0000

Where, logic 1 at the overflow bit position is neglected in a four-bit binary format.
Therefore, we obtain 0000 = 0 as expected.

CIN[0]

P2

P0

P1

G2

P5

P3

P4

G5P7
G7

COUT[7]

0

10

10

1

SUM[31]

SUMA[31]

SUMB[31]

COUTA[23]

COUTB[23]

COUTA[15]

COUTB[15]

COUT[15]

COUT[23]

Fig. 1.50 Maximum delay propagation of the 32-bit adder in Fig. 1.49

1.6 Combinational Mega Cells 37

Subtractors function according to 2s complement addition. We need to form 1s complement of the
adder input to be subtracted and use CIN[0] = 1 at the adder’s least significant bit position to perform
subtraction.

Figure 1.51 illustrates the topology of a 32-bit subtractor where input B is complemented and CIN
[0] is tied to logic 1 to satisfy 2s complement addition and produce A − B.

Shifters

There are two commonly used shifters in logic design:

Linear shifters
Barrel shifters

Linear Shifters

A linear shifter shifts its inputs by a number of bits to the right or to the left, and routes the result to its
output.

Example 1.18 Design a four-bit linear shifter that shifts its inputs to the left by one bit and produces
logic 0 at the least significant output bit when SHIFT = 1. When SHIFT = 0, the shifter routes each
input directly to the corresponding output.

The logic diagram for this shifter is given in Fig. 1.52. In this figure, each input is connected to the
port 0 terminal of the 2-1 MUX as well as the port 1 terminal of the next MUX at the higher bit
position. Therefore, when SHIFT = 1, logic 0, IN[0], IN[1], and IN[2] are routed through port 1
terminal of each 2-1 MUX and become OUT[0], OUT[1], OUT[2], and OUT[3], respectively. When
SHIFT = 0, each input goes through port 0 terminal of the corresponding 2-1 MUX and becomes the
shifter output.

CIN[0] = 1

SUB[31:0]

B[31:0]

A[31:0]

32

SUBTRACTOR

32

32

Fig. 1.51 A symbolic representation of a 32-bit subtractor

0 1

IN[3]

OUT[3]

0 1

IN[2]

OUT[2]

0 1

IN[1]

OUT[1]

0 1

IN[0]

OUT[0]

0

SHIFT

Fig. 1.52 Four-bit linear shifter

38 1 Review of Combinational Logic Circuits

Barrel Shifters

Barrel shifters rotate their inputs either in clockwise or counterclockwise direction by a number of bits
but preserve all their inputs when generating an output.

Example 1.19 Design a four-bit barrel shifter that rotates its inputs in a clockwise direction by one
bit when SHIFT = 1. When SHIFT = 0, the shifter routes each one of its four inputs to its corre-
sponding output.

The logic diagram for this shifter is given in Fig. 1.53. The only difference between this circuit and
the linear shifter in Fig. 1.52 is the removal of logic 0 from the least significant bit, and connecting
this input to the IN[3] pin instead. Consequently, this leads to OUT[0] = IN[3], OUT[1] = IN[0],
OUT[2] = IN[1] and OUT[3] = IN[2] when SHIFT = 1, and OUT[0] = IN[0], OUT[1] = IN[1],
OUT[2] = IN[2] and OUT[3] = IN[3] when SHIFT = 0.

Example 1.20 Design a four-bit barrel shifter that rotates its inputs clockwise by one or two bits.
First, there must be three control inputs specifying “no shift”, “shift 1 bit” and “shift 2 bits”. This

requires a two control-bit input, SHIFT[1:0], as shown in Table 1.18. All assignments in this table are
done arbitrarily. However, it makes sense to assign a “No shift” to SHIFT[1:0] = 0, “Shift 1 bit” to
SHIFT[1:0] = 1 and “Shift 2 bits” to SHIFT[1:0] = 2 for actual rotation amount.

According to this table, if there is no shift, each input bit is simply routed to its own output. If
“shift 1 bit” input is active, then each input is routed to the neighboring output at the next significant
bit position. In other words, IN[3] rotates clockwise and becomes OUT[0]; IN[0], IN[1] and IN[2]
shift 1 bit to the left and become OUT[1], OUT[2] and OUT[3], respectively. If “shift 2 bits” becomes
active, then each input is routed to the output of the neighboring bit which is two significant bits
higher. This gives the impression that all input bits have been rotated twice before being routed to the
output; Thus, OUT[0] = IN[2], OUT[1] = IN[3], OUT[2] = IN[0] and OUT[3] = IN[1].

0 1

IN[3]

OUT[3]

0 1

IN[2]

OUT[2]

0 1

IN[1]

OUT[1]

0 1

IN[0]

OUT[0]

SHIFT

Fig. 1.53 Four-bit barrel shifter

Table 1.18 A four-bit barrel shifter truth table

00

10

01

11

No shift

Shift 1 bit

Shift 2 bits

No shift

SHIFT[1] SHIFT[0] OPERATION OUT[3] OUT[2] OUT[1] OUT[0]

IN[3] IN[2] IN[1] IN[0]

IN[2] IN[1] IN[0] IN[3]

IN[1] IN[0] IN[3] IN[2]

IN[3] IN[2] IN[1] IN[0]

1.6 Combinational Mega Cells 39

Therefore, using Table 1.18, we can conclude the logic diagram in Fig. 1.54.

A more detailed view of Fig. 1.54 is given in Fig. 1.55.

01

IN[3]

OUT[3]

SHIFT2

IN[2]IN[1]

01

IN[2]

OUT[2]

2

IN[1]IN[0]

01

IN[1]

OUT[1]

2

IN[0]IN[3]

01

IN[0]

OUT[0]

2

IN[3]IN[2]

2
SHIFT[1:0]

Fig. 1.54 Logic diagram of the barrel shifter in Table 1.18
SH

IF
T[

1]
SH

IF
T[

0]

sh
ift

 1
 b

it

sh
ift

 2
 b

its

no
 s

hi
ft

IN
[1

]
sh

ift
 2

 b
its

IN
[2

]
sh

ift
 1

 b
it

IN
[3

]
no

 s
hi

ft

O
U

T[
3]

IN
[0

]
sh

ift
 2

 b
its

IN
[1

]
sh

ift
 1

 b
it

IN
[2

]
no

 s
hi

ft

O
U

T[
2]

IN
[3

]
sh

ift
 2

 b
its

IN
[0

]
sh

ift
 1

 b
it

IN
[1

]
no

 s
hi

ft

O
U

T[
1]

IN
[2

]
sh

ift
 2

 b
its

IN
[3

]
sh

ift
 1

 b
it

IN
[0

]
no

 s
hi

ft

O
U

T[
0]

Fig. 1.55 Logic circuit of the barrel shifter in Fig. 1.54

40 1 Review of Combinational Logic Circuits

Multipliers

There are two types of multipliers:

Array multiplier
Booth multiplier

An array multiplier is relatively simple to design, but it requires a large number of gates. A Booth
multiplier, on the other hand, requires fewer gates but its implementation follows a rather lengthy
algorithm.

Array Multiplier

Similar to our everyday hand multiplication method, an array multiplier generates all partial products
before summing each column in the partial product tree to obtain a result. This scheme is explained in
Fig. 1.56 for a four-bit array multiplier.

The rules of partial product generation are as follows:

1. The zeroth partial product aligns with multiplicand and multiplier bit columns.
2. Each partial product is shifted one bit to the left with respect to the previous one once it is created.
3. Each partial product is the exact replica of the multiplicand if the multiplier bit is one. Otherwise,

it is deleted.

Example 1.21 Multiply 1101 and 1001 according to the rules of array multiplication.
Suppose 1101 is a multiplicand and 1001 is a multiplier. Then, for a four-bit multiplier four partial

products are formed. The bits in each column of the partial product are added successively. Carry bits
are propagated to more significant bit positions. This process is illustrated in Fig. 1.57.

A[3] A[2] A[1] A[0]

MULTIPLIERB[3] B[2] B[1] B[0]

MULTIPLICAND

B[0].A[2] B[0].A[1] B[0].A[0]B[0].A[3] 0th PARTIAL PRODUCT

1st PARTIAL PRODUCT

2nd PARTIAL PRODUCT

3rd PARTIAL PRODUCT

SUM[0]SUM[1]SUM[2]SUM[3]SUM[4]SUM[5]SUM[6] SUM OUTPUTSUM[7]

B[1].A[2] B[1].A[1] B[1].A[0]B[1].A[3]

B[2].A[2] B[2].A[1] B[2].A[0]B[2].A[3]

B[3].A[2] B[3].A[1] B[3].A[0]B[3].A[3]

Fig. 1.56 4 � 4 array multiplier algorithm

1.6 Combinational Mega Cells 41

Example 1.22 Design the partial product tree for a four-bit array multiplier.
Following the convention in Fig. 1.56 and the rules of partial product generation for an array

multiplier, we can implement the partial product tree as shown in Fig. 1.58.

In this figure, partial product elements of the zeroth partial product, B[0] . A[3], B[0] . A[2], B[0] .
A[1] and B[0] . A[0], are replaced by PP0[3:0] for purposes of better illustration. Similarly, PP1[3:0],
PP2[3:0] and PP3[3:0] are the new partial product outputs corresponding to the rows one, two and
three.

Example 1.23 Design a full adder tree responsible for adding every partial product in the partial
product tree for a four-bit array multiplier.

After generating partial products, the next design step is to add partial product elements column by
column to generate SUM outputs, SUM[7:0], while propagating carry bits for higher order columns.
Following the naming convention in Fig. 1.58, all 16 partial product elements are fed to the full adder
tree in Fig. 1.59. The box outlined by dashed lines shows how the carry propagation takes place from
one column to the next.

0 11 1

0 11 0

11 01
00 00

00 00
11 01

01 11 11 0

0th PARTIAL PRODUCT
1st PARTIAL PRODUCT
2nd PARTIAL PRODUCT
3rd PARTIAL PRODUCT

MULTIPLIER

MULTIPLICAND

SUM OUTPUT

Fig. 1.57 4 � 4 array multiplier algorithm example

1 0

A[3]

B[0]

PP0[2]

1 0

A[2]

PP0[1]

1 0

A[1]

1 0

A[0] 0

PP0[3]

0 00

PP0[0] 0th PARTIAL PRODUCT

1 0
B[1]

PP1[2]

1 0

PP1[1]

1 0 1 0

PP1[3] PP1[0] 1st PARTIAL PRODUCT

1 0
B[2]

PP2[2]

1 0

PP2[1]

1 0 1 0

PP2[3] PP2[0] 2nd PARTIAL PRODUCT

1 0
B[3]

PP3[2]

1 0

PP3[1]

1 0 1 0

PP3[3] PP3[0] 3rd PARTIAL PRODUCT

A[3] A[2] A[1] A[0] 00 00

A[3] A[2] A[1] A[0] 00 00

A[3] A[2] A[1] A[0] 00 00

Fig. 1.58 4 � 4 array multiplier bit selector tree

42 1 Review of Combinational Logic Circuits

Booth Multiplier

The Booth multiplier halves the number of partial products using a lengthy algorithm given below.

Assume that the product of two binary integers, X and Y, forms P = X . Y where X is a
multiplicand and Y is a multiplier.

In binary form, Y is expressed in powers of two:

Y ¼
Xn�1

k¼0
yk2

k

where, the most significant bit, yn−1, corresponds to the sign bit. When yn−1 = 0, Y is considered a
positive number, otherwise it is a negative number as mentioned earlier in the 2s complement
representation of integers.

In this section, we examine the Booth multiplication algorithm when Y is both positive and
negative numbers.

CASE 1: Y[0; thus yn�1 ¼ 0:
We can express a kth term of Y as:

yk2
k ¼ 2yk � ykð Þ2k ¼ 2yk�

1
2
2yk

� �
2k

¼ yk2
kþ 1 � 2yk2

k�1

SUM[7]

PP
1[

0]

PP
0[

1]

PP
0[

0]

PP
1[

1]

PP
0[

2]

PP
1[

2]

PP
0[

3]

PP
3[

0]

PP
2[

1]

PP
2[

0]

PP
2[

2]

PP
1[

3]
PP

3[
1]

PP
3[

2]

PP
2[

3]

PP
3[

3]

FA FA FA FA FA HA

FA

FA FA HA

HAHA

SUM[6] SUM[5] SUM[4] SUM[3] SUM[2] SUM[1] SUM[0]

CARRY
PROPAGATION

Fig. 1.59 An eight-bit propagate adder for the bit selector tree in Fig. 1.58

1.6 Combinational Mega Cells 43

Thus:

Y ¼
Xn�1

k¼0
yk2

k ¼
Xn�1

k¼0
yk2

kþ 1 � 2yk2
k�1

� �
¼ yn�12

n � 2yn�12
n�2

þ yn�22
n�2

þ yn�32
n�2 � 2yn�32

n�4

þ yn�42
n�4

:

:

:

þ y32
4 � 2y32

2

þ y22
2

þ y12
2�2y12

0

þ y02
0

Regrouping the terms of the same power yields:

Y ¼ yn�12
n þ 2n�2 �2yn�1 þ yn�2 þ yn�3ð Þ

þ 2n�4 �2yn�3 þ yn�4 þ yn�5ð Þ
:

:

:

þ 22 �2y3 þ y2 þ y1ð Þ
þ 20 �2y1 þ y0 þ y�1ð Þ

But, yn−1 = 0 and y−1 = 0 since Y > 0

Y ¼ 2n�2 �2yn�1 þ yn�2 þ yn�3ð Þ
þ 2n�4 �2yn�3 þ yn�4 þ yn�5ð Þ
:

:

:

þ 22 �2y3 þ y2 þ y1ð Þ
þ 20 �2y1 þ y0 þ y�1ð Þ

Now, let’s define a new set of coefficients:

zk ¼ �2ykþ 1 þ yk þ yk�1

44 1 Review of Combinational Logic Circuits

Then:

Y ¼ Pn�2
k¼0 zk2

k where, k = 0, 2, …, (n − 4), (n − 2).
When X is multiplied by Y, one obtains:

P ¼ X :Y ¼
Xn�2

k¼0
zk:Xð Þ : 2k

where, the number of partial products in the product term, P, is reduced by half.
Each zk = −2yk+1 + yk + yk−1 depends on the value of three adjacent bits, yk+1, yk and yk−1. This

is tabulated in Table 1.19.

Therefore, each partial product, (zk.X), in P is:

zk:Xð Þ ¼ 0; þX;�X; þ 2X;�2X

These partial products can easily be obtained by the following methods:

For zk.X = 0, all multiplicand bits are replaced by 0.
For zk.X = +X, all multiplicand bits are multiplied by one.
For, zk.X = +2X, all multiplicand bits are shifted left by one bit
For zk.X = −X, the multiplicand is 2s complemented.
For zk.X = −2X, all multiplicand bits are shifted left by one bit to form +2X, and then 2s comple-
mented to form −2X.

Now, the time has come to investigate when Y is negative.

CASE 2: Y\0; thus yn�1 ¼ �1
The first step is to sign-extend Y by one bit. Sign extension does not change the actual value of Y

but increases its terms from n to (n + 1). Thus:

Y ¼ �2n þ
Xn�1

k¼0
yk2

k

Table 1.19 Booth encoder truth table

yk+1 yk zkyk–1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

1 1 1

0
1
1
2

–2
–1
–1

0

1.6 Combinational Mega Cells 45

Let us consider

Xn�1

k¼0
2k ¼ 1þ 2þ 22 þ � � � þ 2n�1 ¼ f

Then,

2f ¼ 2þ 22 þ 23 þ � � � þ 2n

Thus:

f ¼ 2f�f ¼ 2n�1

or

2n ¼ 1þ f ¼ 1þ
Xn�1

k¼0
2k

Substituting −2n into Y yields:

Y ¼ �2n þ
Xn�1

k¼0
yk : 2

k ¼ �1�
Xn�1

k¼0
2k þ

Xn�1

k¼0
yk : 2

k ¼ �1þ
Xn�1

k¼0
yk�1ð Þ2k

or

�Y ¼ 1þ
Xn�1

k¼0
1�ykð Þ2k

However, (1 − yk) = 1 when yk = 0, and (1 − yk) = 0 when yk = 1. That means:

1�ykð Þ ¼ yk

Thus:

�Y ¼ 1þ
Xn�1

k¼0
yk : 2

k

The same mathematical manipulation applied to yk . 2
k in CASE 1 can also be applied to yk : 2

k.

yk: 2
k ¼ ð2:yk � ykÞ2k ¼ yk : 2 : 2

k � yk
1
2
: 2 : 2k

46 1 Review of Combinational Logic Circuits

Therefore,

Xn�1

k¼0
yk ¼

Xn�1

k¼0
yk: 2 : 2

k � yk:
1
2
: 2 : 2k

� �

¼
Xn�1

k¼0
yk: 2

kþ 1 � yk: 2 : 2
k�1

¼ yn�1: 2
n � yn�1: 2 : 2

n�2

þ yn�2: 2
n�2

þ yn�3: 2
n�2 � yn�3: 2 : 2

n�4

þ yn�4: 2
n�4

:

:

:

þ y3:2
4 � y3: 2: 2

2

þ y2: 2
2

þ y1: 2
2 � y1: 2 : 2

0

þ 20:y0
¼ yn�1: 2

n

þ �2:yn�1 þ yn�2 þ yn�3ð Þ2n�2

þ �2:yn�3 þ yn�4 þ yn�5ð Þ2n�4

:

:

:

þ �2:y3 þ y2 þ y1ð Þ22
þ �2:y1 þ y0 þ y�1ð Þ20

Here, y�1 ¼ 0.
Then,

�Y ¼ 1þ
Xn�1

k¼0
yk: 2

k

¼ yn�1: 2
n

þð�2:yn�1 þ yn�2 þ yn�3Þ2n�2

þð�2:yn�3 þ yn�4 þ yn�5Þ2n�4

:

:

:

þð�2:y3 þ y2 þ y1Þ22
þð�2:y1 þ y0 þ y�1Þ20 þ 1

1.6 Combinational Mega Cells 47

However, the sign-extended term, yn�1 : 2
n ¼ �1

Thus,

�Y ¼ 1þ
Xn�1

k¼0
yk : 2

k

¼ ð�2:yn�1 þ yn�2 þ yn�3Þ2n�2

þð�2:yn�3 þ yn�4 þ yn�5Þ2n�4

:

:

:

þð�2:y3 þ y2 þ y1Þ22
þð�2:y1 þ y0 þ y�1Þ20

Let

wk ¼ �2:ykþ 1 þ yk þ yk�1

Then,

�Y ¼ Pn�2
k¼0 wk2k where, k ¼ 0; 2; . . .; ðn� 4Þ; ðn� 2Þ:

But,

wk ¼ �2:ykþ 1 þ yk þ yk�1 ¼ �2 1� ykþ 1

� �þ 1� ykð Þþ 1� yk�1ð Þ
¼ 2ykþ 1 � yk � yk�1 ¼ �zk

Then,

�Y ¼
Xn�2

k¼0
wk2

k ¼ �
Xn�2

k¼0
zk2

k

or

Y ¼ Pn�2
k¼0 zk2

k which is the same equation for Y > 0.
Therefore, for both positive and negative values of Y, we have:

Y ¼ Pn�2
k¼0 zk2

k where, k ¼ 0; 2; . . .; ðn� 4Þ; ðn� 2Þ:
where, zk = −2yk+1 + yk + yk−1

Example 1.24 Starting from the generation of its partial products, design an eight-bit Booth
multiplier

The multiplier term, Y, for the eight-bit Booth multiplier follows the encoded expression:

Y ¼
X6

k¼0
zk2

k ¼ z02
0 þ z22

2 þ z42
4 þ z62

6

48 1 Review of Combinational Logic Circuits

Where, the encoded multiplier coefficients are:

z0 ¼ �2y1 þ y0 þ y�1 ¼ �2y1 þ y0
z2 ¼ �2y3 þ y2 þ y1
z4 ¼ �2y5 þ y4 þ y3
z6 ¼ �2y7 þ y6 þ y5

Thus, P = X . Y yields:

P ¼ 20 X : z0ð Þþ 22 X : z2ð Þþ 24 X : z4ð Þþ 26 X : z6ð Þ

This reduces the number of partial products from eight to four as shown in Fig. 1.60. In this figure,
u0, u1, u2, and u3 are added to the least significant bit position of each partial product to handle cases
where the partial product becomes −X, −2X.

For cases +X, +2X and 0, all u-terms become equal to zero. All partial products are sign-extended
and nine bits in length to be able to handle ±2X.

The calculation of thefinal product can be further simplified if the sign extension terms are eliminated.
Let’s sum all the sign extension terms and form the term, SE, below:

SE ¼ a8 : 215 þ � � � þ 28
� �þ b8 : 215 þ . . .210

� �þ c8 : 215 þ . . .212
� �þ d8 : 215 þ 214

� �

But,

215 þ � � � þ 28 ¼ 28 : 27 þ � � � þ 1ð Þ ¼ 28 : 28 � 1ð Þ ¼ 216 � 28

215 þ � � � þ 210 ¼ 210 : 25 þ � � � þ 1
� � ¼ 210 : 26 � 1

� � ¼ 216 � 210

215 þ � � � þ 212 ¼ 212 : 23 þ � � � þ 1ð Þ ¼ 212 : 24 � 1ð Þ ¼ 216 � 212

215 þ 214 ¼ 214 : 2þ 1ð Þ ¼ 214 : 22 � 1ð Þ ¼ 216�214

a8 a8 a8 a8 a8 a8 a8 a8 a7 a6 a5 a4 a3 a2 a1 a0

u0

b8 b8 b8 b8 b8 b8 b7 b6 b5 b4 b3 b2 b1 b0 0 0
u1

c8 c8 c8 c8 c7 c6 c5 c4 c3 c2 c1 c0 0 0 0 0
u2

d8 d8 d7 d6 d5 d4 d3 d2 d1 d0 0 0 0 0 0 0
u3

z0X

z2X

z4X

z6X

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

9-bit partial product due to a possible left shiftsign extension

SUM

Fig. 1.60 Partial product tree of an eight-bit Booth multiplier

1.6 Combinational Mega Cells 49

SE ¼ a8 : 2
16 � a8 : 2

8 þ b8 : 2
16 � b8 : 2

10 þ c8 : 2
16 � c8 : 2

12 þ d8 : 2
16 � d8 : 2

14

¼ 216 : a8 þ b8 þ c8 þ d8ð Þ� a8 : 2
8 � b8 : 2

10� c8 : 2
12 � d8 : 2

14

But,

�a8 ¼ a8 � 1

�b8 ¼ b8 � 1

�c8 ¼ c8 � 1

�d8 ¼ d8 � 1

Thus,

SE ¼ 216 : a8 þ b8 þ c8 þ d8ð Þþ 28 : a8 � 1ð Þþ 210 : b8 � 1
� �þ 212 : c8 � 1ð Þþ 214 : d8 � 1

� �
¼ 216 : a8 þ b8 þ c8 þ d8ð Þþ 28 : a8 þ 210 : b8 þ 212 : c8 þ 214 : d8 � 28 � 210 � 212 � 214

SE ¼ 216 : ða8 þ b8 þ c8 þ d8Þþ 28 : a8 þ 210 : b8 þ 212 : c8 þ 214 : d8

� 28 � 210 � 212 � 214 � 216 þ 216 þð1� 1Þ
¼ 216 : a8 þ b8 þ c8 þ d8�1ð Þþ 28 : a8 þ 210 : b8 þ 212 : c8 þ 214 : d8

�28 � 210 � 212 � 214 þ 216 � 1
� �þ 1

But,

216�1 ¼ 1þ 2þ 22 þ � � � þ 27
� �þ 28 þ 29 þ � � � þ 215

� �
¼ 28�1

� �þ 28 þ 29 þ � � � þ 215
� �

Then,

SE ¼ 216 : a8 þ b8 þ c8 þ d8�1ð Þþ 28 : a8 þ 210 : b8 þ 212 : c8 þ 214 : d8

� 28 � 210 � 212 � 214 þ 1þ 28�1
� �þ 28 þ 29 þ 210 þ 211 þ 212 þ 213 þ 214 þ 215

� �

Regrouping SE with the same power yields:

SE ¼ 216 : a8 þ b8 þ c8 þ d8�1ð Þþ 28 : a8 þ 1ð Þþ 29 þ 210 : b8 þ 211

þ 212 : c8 þ 213 þ 214 : d8 þ 215

50 1 Review of Combinational Logic Circuits

But, we don’t care what happens to the term 216 since this is the overflow bit in the multiplier sum.
Thus,

SE ¼ 28 : ða8 þ 1Þþ 29 þ 210 : b8 þ 211 þ 212 : c8 þ 213 þ 214 : d8 þ 215

Then the partial product tree in Fig. 1.60 simplifies a lot more as shown in Fig. 1.61.
In Fig. 1.60, ai = z0 . xi, bi = z2 . xi, ci = z4 . xi, and di = z6 . xi where i = 0, 1, 2, …, 7 and xi

represents each term in the multiplicand, X.
The complemented a8, b8, c8 and d8 in Fig. 1.61 are the “reserved bits” in case of a one-bit left

shift of the partial product.

Now, the time has come to implement the components of the eight-bit Booth multiplier: the
encoder, the partial product tree and the full-adder tree.

The Booth encoder is a logic block that forms each partial product. Earlier, we obtained the Booth
coefficient, zk = −2yk+1 + yk + yk−1, to aid the generation of each partial product in Fig. 1.61. One
can use the neighboring multiplier bits, yk+1, yk and yk−1, as inputs to zk to obtain the encoder outputs.
Table 1.19 is slightly modified to form the truth table for a Booth encoder as shown in Table 1.20.

Following Table 1.20, the Booth encoder is implemented in Fig. 1.62.

0 0 0 0 0 0 0 a8 a7 a6 a5 a4 a3 a2 a1 a0

u0

0 0 0 0 0 b8 b7 b6 b5 b4 b3 b2 b1 b0 0 0

0 0 0 c8 c7 c6 c5 c4 c3 c2 c1 c0 0 0 0 0

0 d8 d7 d6 d5 d4 d3 d2 d1 d0 0 0 0 0 0 0

z0X

z2X

z4X

z6X

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

sign extension

SUM

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 u1 0 0

0 0 0 0 1 0 0 0 0 0 0 u2 0 0 0 0

1 0 1 0 0 0 0 0 0 u3 0 0 0 0 0 0

Mid bitsMSB LSB

Fig. 1.61 Partial product tree of an eight-bit Booth multiplier after minimization

Table 1.20 Modified Booth encoder truth table

yk+1 yk zkyk–1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

1 1 1

0
1
1
2

–2
–1
–1

0

Encoder outputs

ZEROk = 1
P1k = 1

P1k = 1
P2k = 1
M2k = 1
M1k = 1
M1k = 1
ZEROk = 1

Encoder inputs

1.6 Combinational Mega Cells 51

In this figure, ZEROk, P1k, M1k, P2k and M2k correspond to the Booth coefficients, 0, +1, −1, +2
and −2, to be multiplied with the multiplicand, respectively.

Each partial product in Fig. 1.61 contains a u-term, namely u0, u1, u2 or u3 in case of a 2s
complement conversion of the partial product.

Therefore, for k = 0, 1, 2 or 3, uk becomes equal to one if M1k or M2k = 1 (if the multiplicand
is multiplied by −1), else it is equal to zero (if the multiplicand is multiplied by zero or +1).
The uk–terms are implemented as shown in Fig. 1.63.

yk+1

yk
yk-1

yk

ZEROk

yk+1

yk-1

P1k

yk

yk-1

yk

yk-1
yk+1

M1k

yk

yk-1

yk

yk-1

yk+1

yk

yk+1

yk-1
P2k

yk

yk+1

yk-1

M2k

Fig. 1.62 Booth encoder logic circuit

uk
M2k

M1k

Fig. 1.63 Implementation of uk

52 1 Review of Combinational Logic Circuits

The LSBs, namely the terms a0, b0, c0 and d0, in Fig. 1.61 form according to Table 1.21.

According to this table, when the multiplicand is multiplied by zero, the LSB of the partial product
becomes equal to zero. When the multiplicand is multiplied by +1 or −1, the LSB is simply equal to
the LSB of the multiplicand, x0, or its complement, respectively. Finally, when the multiplicand is
multiplied by +2 or −2, the partial product is shifted one bit to the left; the LSB becomes either zero
or one depending on the sign. Therefore, the LSB of the partial product is generated using a 5-1 MUX
as in Fig. 1.64.

The mid bits are a1 through a7, b1 through b7, c1 through c7, and d1 through d7 according to
Fig. 1.61. Table 1.22 defines the value of each mid bit as a function of Booth encoder outputs.

P1k M1k M2kZEROk P2k

2

3
4

x0

x0 LSB

1

5

0

0
1

Fig. 1.64 Logic diagram of the LSB for Fig. 1.61

Table 1.21 Truth table of the LSB for Fig. 1.61

ZEROk = 1 a0 = b0 = c0 = d0 = 0

P1k = 1 a0 = b0 = c0 = d0 = x0

M1k = 1 a0 = b0 = c0 = d0 = x0

P2k = 1 a0 = b0 = c0 = d0 = 0

M2k = 1 a0 = b0 = c0 = d0 = 1

Encoder output LSB

Table 1.22 Truth table of the mid bits for Fig. 1.61

ZEROk = 1 ai = bi = ci = di = 0

P1k = 1 ai = bi = ci = di = xi

M1k = 1 ai = bi = ci = di = xi

P2k = 1 ai = bi = ci = di = xi-1

M2k = 1 ai = bi = ci = di = xi-1

Encoder output Mid bits

where i = 1, 2,...7

where i = 1, 2,...7

where i = 1, 2,...7

where i = 1, 2,...7

where i = 1, 2,...7

1.6 Combinational Mega Cells 53

According to this table, all mid bits of a partial product are equal to zero if the multiplicand is
multiplied by zero. Mid bits become equal to multiplicand bits or their complements depending on the
multiplicand is multiplied by +1 or −1, respectively. When the multiplicand is multiplied by +2 or −2,
each term in the partial product is shifted one bit to the left. Therefore, each partial product bit
becomes equal to the lesser significant multiplicand bit or its complement. Thus, each mid bit can be
implemented as shown in Fig. 1.65.

The MSBs, namely the terms a8; b8; c8 or d8, in Fig. 1.61 form according to Table 1.23.

In this table, when the multiplicand is multiplied by zero, the MSB of the partial product becomes
equal to zero. When the multiplicand is multiplied by +1 or −1, the MSB is simply equal to the
sign-extended value of the most significant multiplicand bit, x7, or its complement, respectively.
When the multiplicand is multiplied by +2 or −2, the partial product is shifted to the left by one bit.
Consequently, the LSB becomes equal to the most significant multiplicand bit or its complement,
respectively. The MSB of a partial product can therefore be implemented as in Fig. 1.66.

P1k M1k M2kZEROk P2k

2
3
4

xi

xi Mid bit

1

5

0

xi-1

xi-1

Fig. 1.65 Logic diagram of the mid bits for Fig. 1.61

Table 1.23 Truth table of the MSB for Fig. 1.61

ZEROk = 1 a8 = b8 = c8 = d8 = 0

P1k = 1 a8 = b8 = c8 = d8 = x7

M1k = 1 a8 = b8 = c8 = d8 = x7

P2k = 1

M2k = 1

Encoder output MSB

a8 = b8 = c8 = d8 = x7

a8 = b8 = c8 = d8 = x7

54 1 Review of Combinational Logic Circuits

When all of the components are integrated, we obtain the circuit topology in Fig. 1.67 for an
eight-bit Booth multiplier.

P1k M1k M2kZEROk P2k

2
3
4

x7

x7 MSB

1

5

0

x7

x7

Fig. 1.66 Logic diagram of the MSB for Fig. 1.61

1.6 Combinational Mega Cells 55

B
O

O
T

H

E
N

C

B
O

O
T

H

E
N

C

B
O

O
T

H

E
N

C

B
O

O
T

H

E
N

C

U0

LSB

MID

MID

MID

MID

MID

MID

MID

MSB

U1

LSB

MID

MID

MID

MID

MID

MID

MID

MSB

U2

LSB

MID

MID

MID

MID

MID

MID

MID

MSB

U3

LSB

MID

MID

MID

MID

MID

MID

MID

MSB

y -
1

y 0 y 1 y 1 y 2 y 3 y 3 y 4 y 5 y 5 y 6 y 7

x 0
x 0

x 0
x 0

x 0
x 0

x 0
x 0

x 7
x 7

x 7
x 7

x 7
x 7

x 7
x 7

Z
E

R
O

P
1

M
1

P
2

M
2

Z
E

R
O

P
1

M
1

P
2

M
2Z
E

R
O

P
1

M
1

P
2

M
2

Z
E

R
O

P
1

M
1

P
2

M
2

0
1

s 0
s 1

s 2
s 3

s 4
s 5

s 6
s 7

s 8
s 9

s 1
0

s 1
1

s 1
2

s 1
3

s 1
4

s 1
5

1

1

1

C
A

R
R

Y

P
R

O
P

A
G

A
T

E

A
D

D
E

R

0

0

u 0
a 0

a 1
a 2

a 3
a 4

a 5
a 6

a 7
a 8

u 1
b 0

b 1
b 2

b 3
b 4

b 5
b 6

b 7
b 8

u 2
c 0

c 1
c 2

c 3
c 4

c 5
c 6

c 7
c 8

u 3
d 0

d 1
d 2

d 3
d 4

d 5
d 6

d 7
d 8

x 1
x 1

x 0
x 0

x 2
x 2

x 1
x 1

x 3
x 3

x 2
x 2

x 4
x 4

x 3
x 3

x 5
x 5

x 4
x 4

x 6
x 6

x 5
x 5

x 7
x 7

x 6
x 6

x 1
x 1

x 0
x 0

x 2
x 2

x 1
x 1

x 3
x 3

x 2
x 2

x 4
x 4

x 3
x 3

x 5
x 5

x 4
x 4

x 6
x 6

x 5
x 5

x 7
x 7

x 6
x 6

x 1
x 1

x 0
x 0

x 2
x 2

x 1
x 1

x 3
x 3

x 2
x 2

x 4
x 4

x 3
x 3

x 5
x 5

x 4
x 4

x 6
x 6

x 5
x 5

x 7
x 7

x 6
x 6

x 1
x 1

x 0
x 0

x 2
x 2

x 1
x 1

x 3
x 3

x 2
x 2

x 4
x 4

x 3
x 3

x 5
x 5

x 4
x 4

x 6
x 6

x 5
x 5

x 7
x 7

x 6
x 6

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

H
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

F
A

Fi
g
.
1.
67

8
�

8
B
oo

th
m
ul
tip

lie
r

56 1 Review of Combinational Logic Circuits

Example 1.25 Multiply A = 10110101 (multiplicand) by B = 01110010 (multiplier) using the
Booth algorithm. The multiplier bits are as follows:

y0 ¼ 0; y1 ¼ 1; y2 ¼ 0; y3 ¼ 0; y4 ¼ 1; y5 ¼ 1; y6 ¼ 1; y7 ¼ 0

Therefore, the Booth coefficients become:

z0 ¼ �2y1 þ y0 þ y�1 ¼ �2 : 1ð Þþ 0þ 0 ¼ �2

z2 ¼ �2y3 þ y2 þ y1 ¼ �2 : 0ð Þþ 0þ 1 ¼ þ 1

z4 ¼ �2y5 þ y4 þ y3 ¼ �2 : 1ð Þþ 1þ 0 ¼ �1

z6 ¼ �2y7 þ y6 þ y5 ¼ �2 : 0ð Þþ 1þ 1 ¼ þ 2

According to these coefficients, the partial product tree forms as in Fig. 1.68.

In this figure, the zeroth partial product (top row) is generated by multiplying the multiplicand by
−2. This requires first taking the 2s complement of the multiplicand, and then shifting it left by one
bit. In other words, if the multiplicand is equal to 10110101, then its 2s complement becomes
01001011. Shifting this value to the left by one bit reveals a nine-bit value of 010010110. Since the
sign bit of 01001011 is zero before any shifting takes place, sign extending 010010110 after the shift
in a 16-bit field yields 0000000010010110. The first partial product (second row from the top) is
produced by multiplying the multiplicand by +1. This simply replicates the multiplicand bits,
10110101, in the partial product. Since the sign bit of 10110101 is one, sign extending this value in a
14-bit field yields 11111110110101 as the partial product. The second partial product (third row from
the top) is formed by multiplying the multiplicand by −1. This simply requires taking the 2s com-
plement of the multiplicand, which is 01001011. Sign extending this value in a 12-bit field yields
000001001011 as the partial product. The third partial product (last row) is obtained by multiplying
the multiplicand by +2, which shifts the multiplicand one bit to the left. Since the multiplicand is
10110101, a nine-bit value of 101101010 is obtained after the shift. Sign extending this value in ten
bits yields 1101101010.

00 0 0 0 0 0 0 0 1 0 0 1 0 1 1

0 1 1 1 0 0 1 0

1 0 1 1 0 1 0 1Multiplicand =

Multiplier =

11 1 1 1 1 1 1 0 1 1 0 1 0

10 0 0 0 0 1 0 0 1 0 1

01 1 0 1 1 0 1 0 1

01 1 0 1 1 1 1 0 1 0 0 1 1 0 1

-2 = Take 2s complement of the multiplicand
 and shift left by 1 bit
+1 = Replicate the multiplicand

-1 = Take 2s complement of the multiplicand

+2 = Shift the multiplicand left by 1 bit

Fig. 1.68 A numerical example of an 8 � 8 Booth multiplier

1.6 Combinational Mega Cells 57

Review Questions

1. Implement the following gates:

(a) Implement a two-input XOR gate using two-input NAND gates and inverters.
(b) Implement a two-input AND gate using two-input XNOR gates and inverters.

2. Simplify the equation below:

out ¼ ðAþBÞ : ðAþBÞ

3. Simplify the equation below:

out ¼ ðAþCÞ : ðAþCÞ : ðAþBþCÞ

4. Obtain the SOP and POS expressions for the following function:

out ¼ ðA :BþCÞ : ðBþA :CÞ

5. Implement the following function using NAND gates and inverters:

out ¼ A :CþB :CþA :B :D

6. Implement the following function using NOR gates and inverters:

out ¼ ðA� B) : ðC� DÞ

7. Implement the following 2-1 multiplexer using AND and OR gates:
Note that the function of this complex gate must produce the following:
If En = 1 then out = A else (when En = 0) out = B.

A

B

out

En

0

1

58 1 Review of Combinational Logic Circuits

8. Implement the following 3-1 multiplexer using AND and OR gates:
Note that the function of this complex gate must produce the following:
If En = 2 then out = A; if En = 1 then out = B else (when En = 0 or En = 3) out = C.

A

C

out

En [1:0]

0

2

B 1

2

9. Implement a two-bit ripple-carry adder with inputs A[1:0] and B[1:0], and an output C[1:0]
using one-bit half and full-adders. Preserve the overflow bit at the output as C[2].

10. Implement a two-bit ripple-carry subtractor with inputs A[1:0] and B[1:0], and an output C[1:0]
using one-bit half and full-adders. Preserve the overflow bit at the output as C[2].

11. Implement a two-bit multiplier with inputs A[1:0] and B[1:0], and an output C[3:0] using
one-bit half and full-adders.

12. Construct a four-bit comparator with inputs A[3:0] and B[3:0] using a subtractor. The com-
parator circuit should identify the following cases with active-high outputs:

A 3:0½ � ¼ B 3:0½ �
A 3:0½ �[B 3:0½ �
A 3:0½ �\B 3:0½ �

13. Implement a two-bit decoder that produces four outputs.
When enabled the decoder generates the following outputs:
in[1:0] = 0 then out[3:0] = 1
in[1:0] = 1 then out[3:0] = 2
in[1:0] = 2 then out[3:0] = 4
in[1:0] = 3 then out[3:0] = 8
When disabled the out[3:0] always equals to zero regardless of the input value.

14. Design a 64-bit adder in ripple-carry form and compare it against the carry-look-ahead,
carry-select, and carry-look-ahead/carry-select hybrid forms in terms of speed and the number of
gates, the latter defining the circuit area. Divide the 64-bit carry-look-ahead/carry-select hybrid
into four-bit, eight-bit, 16-bit and 32-bit carry-look-ahead segments. Indicate which
carry-look-ahead/carry-select hybrid produces the optimum design.

15. Implement a 4 � 4 Booth multiplier. Design the Booth encoders for partial products and draw
the entire schematic of the multiplier. Compare this implementation with the 4 � 4 array
multiplier explained in this chapter. List the advantages of both designs in terms of speed and
circuit area.

1.6 Combinational Mega Cells 59

Projects

1. Implement the 4-1 multiplexer and verify its functionality using Verilog.
2. Implement the encoder circuit and verify its functionality using Verilog.
3. Implement the decoder circuit and verify its functionality using Verilog.
4. Implement the four-bit Ripple-Carry Adder and verify its functionality using Verilog.
5. Implement the four-bit Carry-Look-Ahead adder and verify its functionality using Verilog.
6. Implement the four-bit Carry-Select adder and verify its functionality using Verilog.
7. Implement the four-bit Carry-Select/Carry-Look-Ahead adder and verify its functionality using

Verilog.
8. Implement the four-bit barrel shifter and verify its functionality using Verilog.
9. Implement the four-bit array multiplier and verify its functionality using Verilog.

10. Implement the eight-bit Booth multiplier and verify its functionality using Verilog.

60 1 Review of Combinational Logic Circuits

2Review of Sequential Logic Circuits

The definition of clock and system timing are integral parts of a sequential digital circuit. Data in a
digital system moves from one storage device to the next by the virtue of a system clock. During its
travel, data is routed in and out of different combinational logic blocks, and becomes modified to
satisfy a specific functionality.

This chapter is dedicated to reviewing the memory devices that store data momentarily or per-
manently. The process of designing sequential circuits that require clock input will also be explained
in detail. The chapter begins with the introduction of two basic memory elements, the latch and the
flip-flop. It then explains how data travels between different memory elements using timing diagrams,
and analyzes timing violations as a result of unexpected combinational logic delays on the data path
or in the clock line. Later in the chapter, the basic sequential building blocks such as registers, shift
registers and counters are examined. Moore-type and Mealy-type state machines that control data
movement are also studied and compared against counter-decoder type controllers for various design
tasks. The concept of memory block and how it is used in a digital system is introduced at the end of
this chapter. The chapter concludes with a comprehensive example which demonstrates the transfer of
data from one memory block to the next, the use of timing diagrams in the development of the design,
and how to incrementally build a data-path and controller using timing diagrams.

2.1 D Latch

The D Latch is the most basic memory element in logic design. It has a data input, D, a clock input
and a data output, Q, as shown at the top portion of Fig. 2.1. It contains a tri-state inverter at its input
stage followed by two back-to-back inverters connected in a loop configuration, which serves to store
data.

The clock signal connected to the enable input of the tri-state inverter can be set either to be
active-high or active-low. In Fig. 2.1, the changes at the input transmit though the memory element
and become the output during the low phase of the clock. In contrast, the changes at the input are
blocked during the high phase of the clock, and no data transmits to the output. Once the data is stored
in the back-to-back inverter loop, it does not change until different data is introduced at the input. The
buffer at the output stage of the latch is used to drive multiple logic gate inputs.

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7_2

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-00223-7_2

The operation of the D latch is shown in Fig. 2.2. During the low phase of the clock, the tri-state
inverter is enabled. The new data transmits through the tri-state inverter, overwrites the old data in the
back-to-back inverter stage and reaches the output. When the clock switches to its high phase, the
input-output data transmission stops because the tri-state buffer is disabled and blocks any new data
transfer. Therefore, if certain data needs to be retained in the latch, it needs to be stored in the latch
some time before the rising edge of the clock. This time interval is called the set-up time, tS, and it is
approximately equal to the sum of delays through the tri-state inverter and the inverter in the memory
element. At the high phase of the clock, the data stored in the latch can no longer change as shown in
Fig. 2.2.

D

clock

Q

D Q

clock

Fig. 2.1 Logic and circuit diagrams of a D latch

Q

Low phase of the clock

ts

D

D

new data

High phase of the clock

Q

new data

Fig. 2.2 Operation of D latch

62 2 Review of Sequential Logic Circuits

2.2 Timing Methodology Using D Latches

Timing in logic systems is maintained by pipeline structures. A pipeline that consists of combina-
tional logic blocks bounded by D latches is shown in the top portion of Fig. 2.3. The main purpose of
pipelines is to process several data packets within the same clock cycle and maximize the data
throughput.

To illustrate the concept of pipeline, data is stored at each latch boundary for half a clock cycle, but
allowed to propagate from one combinational logic stage to the next at the high and low phases of
clock.

The bottom part of Fig. 2.3 shows the timing diagram of a data transfer for a set of data packets
ranging from D1 to D3 at the IN terminal. The first data packet, D10, retains its original value during
the high phase of the clock (Cycle 1H) at the node A. D10 then propagates through the T1 stage and
settles at the node B in a modified form, D11, sometime before the falling edge of the clock. Similarly,
D11 at the node C retains its value during the low phase of the clock while its processed form, D12,
propagates through the T2 stage and arrives at the node D before the rising edge of the clock. This
data is processed further in the T3 stage and transforms into D13 before it becomes available at the
OUT terminal at the falling edge of the clock in Cycle 2L.

Similarly, the next two data packets, D20 and D30, are also fed into the pipeline at the subsequent
positive clock edges. Both of these data propagate through the combinational logic stages, T1, T2 and
T3, and become available at theOUT terminal at the falling edge of Cycle 3L andCycle 4L, respectively.

The total execution time for all three data packets takes four clock cycles according to the timing
diagram in Fig. 2.3. If we were to remove all the latch boundaries between nodes A and F and wait
until all three data packets, D1, D2 and D3, were processed through the sum of the three combinational

B
T1

A
IN OUT

D
T2

C F
T3

E

OUT

A D10

IN

clock

B

C

D

E

F

T1 D11

D11

T2 D12

D12

D13T3

D13

D20

D21

D21

D22

D22

D23

D23

D30

D31

D31

D32

D32

D33

D33

Cycle 1H Cycle 1L Cycle 2H Cycle 2L Cycle 3H Cycle 3L Cycle 4H Cycle 4L

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D10 D20 D30

Fig. 2.3 Timing methodology using D latches

2.2 Timing Methodology Using D Latches 63

logic stages, T1, T2 and T3, the total execution time would have been 3 � 1.5 = 4.5 clock cycles as
each combinational logic stage requires half a clock cycle to process data. Therefore, pipelining
technique can be used both to process data in a shorter amount of time and to increase data throughput.

2.3 D Flip-Flop

D flip-flop is another important timing element in logic design to maintain timely propagation of data
from one combinational logic block to the next.

Similar to a latch, a flip-flop also has a data input, D, a clock input and a data output, Q, as shown
at the top portion of Fig. 2.4.

The bottom portion of Fig. 2.4 shows the circuit schematic of a typical flip-flop which contains two
latches in series. The first latch has an active-low clock input, and it is called the master. The second
latch has an active-high clock input, and it is called the slave. The master accepts new data during the
low phase of the clock, and transfers this data to the slave during the high phase of the clock.

Figure 2.5 shows the timing attributes of a flip-flop. The set-up time, tS, is the time interval for
valid data to arrive and settle in the master latch before the rising edge of the clock. Hold time, tH, is
the time interval after the positive edge of the clock when valid data needs to be kept steady and
unchanged. The data stored in the master latch propagates through the slave latch and becomes the
flip-flop output some time after the rising edge of the clock, and it is called clock-to-q delay or tCLKQ.

D

clock

Q

clock

MASTER SLAVE

D Q

clock

Fig. 2.4 Logic and circuit diagrams of a D flip-flop

tS tH

tCLKQ

Valid Data

D

Q

clock

?

Fig. 2.5 Timing attributes of a D flip-flop

64 2 Review of Sequential Logic Circuits

The operation of the flip-flop in two different phases of clock is shown in Fig. 2.6. During the low
phase of the clock, new data enters the master latch, and it is stored. This data cannot propagate
beyond the master latch because the tri-state inverter in the slave latch acts as an open circuit during
the low phase of the clock. The flip-flop output reveals only the old data stored in the slave latch.
When the clock goes high, the new data stored in the master latch transmits through the slave and
arrives at the output. One can approximate values of tS and tCLKQ using the existing gate delays in the
flip-flop.

2.4 Timing Methodology Using D Flip-Flops

Data propagation through a pipeline with D flip-flops is shown in Fig. 2.7. The bottom part of
Fig. 2.7 shows the timing diagram of data transfer through combinational logic blocks, T1, T2 and
T3, bounded by D flip-flops for a set of data packets ranging from D1 to D3.

The first data packet, D10, at the IN terminal has to be steady and valid during the set-up and hold
periods of the flip-flop, but it is free to change during the remaining part of the clock period as shown
by oscillatory lines. Once the clock goes high, the valid D10 starts to propagate through the com-
binational logic block of T1 and reaches the second flip-flop boundary. The processed data, D11, has
to arrive at the second flip-flop input, B, no later than the set-up time of the flip-flop. Otherwise, the
correct data cannot be latched. D11 propagates through the second (T2) and third (T3) combinational
logic stages, and becomes D12 and D13, respectively, before exiting at the OUT terminal as shown in
the timing diagram in Fig. 2.7.

The subsequent data packets, D20 and D30 are similarly fed into the pipeline stage from the IN
terminal following D10. They are processed and modified by the T1, T2 and T3 combinational logic
stages as they propagate through the pipeline, and emerge at the OUT terminal.

Q

Low phase of the clock

tS

D

D Q

High phase of the clock

tCLKQ

new data

new data old data

Fig. 2.6 Operation of D flip-flop

2.3 D Flip-Flop 65

The total execution time for three input data packets, D10, D20 and D30, takes six clock cycles,
including the initial three clock cycle build-up period before D13 emerges at the OUT terminal. If we
were to remove all the flip-flop boundaries between the nodes A and F, and wait for these three data
packets to be processed without any pipeline structure, the total execution time would have been
3 � 3 = 9 clock cycles, assuming each T1, T2 or T3 logic stage imposes one clock cycle delay.

Once again, the pipelining technique considerably reduces the overall processing time and data
throughput whether the timing methodology is latch-based or flip-flop-based.

The advantage of using latches as opposed to flip-flops is to be able to borrow time from
neighboring stages. For example, the propagation delay in T1 stage can be extended at the expense of
shortening the propagation delay in T2. This flexibility does not exist in a flip-flop based design in
Fig. 2.7.

2.5 Timing Violations

Although pipelining scheme helps reducing the overall data processing time, we still need to watch
out possible timing violations because of the unexpected delays in the data-path and the clock
network. Therefore, this section examines the set-up and hold timing violations in a pipeline con-
trolled by flip-flops.

B
T1

A
IN OUT

D
T2

C F
T3

E

OUT

D10 D20 D30 D40 D50 D60

A D10 D20 D30 D40 D50

IN

clock

B T1 D11 D21 D31 D41 D51

C D11 D21 D31 D41 D51

D T2 D12 D22 D32 D42

E D12 D22 D32 D42

F T3 D13 D23 D33

D13 D23 D33

D60

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Fig. 2.7 Timing methodology using D flip-flops

66 2 Review of Sequential Logic Circuits

Figure 2.8 shows a section of a pipeline where a combinational logic block with a propagation
delay of TCOMB is sandwiched between two flip-flop boundaries. At the rising edge of the clock, the
valid data that meets the set-up and hold time requirements is introduced at the IN terminal. After
tCLKQ delay, the data emerges at the node A and propagates through the combinational logic block as
shown in the timing diagram. However, the data arrives at the node B too late and violates the
allocated set-up time of the flip-flop. This is called set-up violation. The amount of violation is
dependent on the clock period and is calculated as follows:

Set-up violation = tS − [TC − (tCLKQ + TCOMB)]

Figure 2.9 describes the hold time violation where the clock shifts by TCLK due to an unexpected
delay in the clock line. In the timing diagram, the valid data is introduced to the pipeline from the IN
terminal, and it arrives at the node B after tCLKQ and TCOMB delays. Due to the shifted clock, the data
arrives at the node B early. This creates a substantial set-up time slack equal to (TC + TCLK – tS –

tCLKQ − TCOMB) but produces a hold time violation at the delayed clock edge. The amount of
violation is dependent on the clock delay and is calculated as follows:

Hold violation = (TCLK + tH) − (tCLKQ + TCOMB)

B
TCOMB

A
IN OUT

TCOMB

setup violation

tS tH

tCLKQ

IN

B

clock

A

valid

D Q

clock

D Q

clock

tS

TC

Fig. 2.8 Setup violation

2.5 Timing Violations 67

Set-up violations can be recovered simply by increasing the clock period, TC. However, there is no
easy way to fix hold violations as they need to be searched at each flip-flop input. When they are
found, buffer delays are added to the combinational logic block, TCOMB, in order to avoid the
violation.

The schematic in Fig. 2.10 examines the timing ramifications of two combinational logic blocks
with different propagation delays merging into one block in a pipeline stage. The data arrives at the
node C much earlier than the node D as shown in the timing diagram. The data at the nodes C and D
propagate through the last combinational block and arrive at the node E. This scenario creates
minimum and maximum delay paths at the node E. We need to focus on the maximum path,
(T2 + T3), when examining the possibility of a set-up violation and the minimum path, (T1 + T3),
when examining the possibility of a hold violation at the next flip-flop boundary.

TCLK

B

clock

shifted clock

TCOMB
A

IN OUT

TCOMB

tS tH

tCLKQ

clock

IN

A

B

shifted clock

hold violation

tS tH

tS tH

sending edge

receiving edge
TCLK

valid

D Q D Q

TC

Fig. 2.9 Hold violation

68 2 Review of Sequential Logic Circuits

To further illustrate the timing issues through multiple combinational logic blocks, an example
with logic gates is given in Fig. 2.11. In this example, the inputs of a one-bit adder are connected to
the nodes A and B. The adder is bypassed with the inclusion of a 2-1 MUX which selects either the
output of the adder or the bypass path.

The propagation delays of the inverter, TINV, and the two-input NAND gate, TNAND2, are given as
100 ps and 200 ps, respectively. The set-up, hold and clock-to-q delays are also given as 100 ps, 0 ps
and 300 ps, respectively.

E

T1
A

IN1

OUT

IN2 T2
B

T3

C

D

tS tH

tCLKQ

IN1, IN2

E

sending edge

A, B

T1C

D T2

T3 T3

tS tH

receiving edge

valid data

setup slack

clock

D Q

clock

D Q

clock

D Q

clock

Fig. 2.10 A timing example combining two independent data-paths

2.5 Timing Violations 69

One-bit adder and the 2-1 MUX are shown in terms of inverters and two-input NAND gates in
Fig. 2.12. We obtain a total of seven propagation paths all merging at the node R. However, we only
need to search for the maximum and the minimum delay paths to locate possible set-up and hold
violations.

TINV = 100ps
TNAND2 = 200ps
tS = 100ps
tH = 0ps
tCLKQ = 300ps

OUT

D Q

1

0

D Q

D Q

D Q

D Q
SEL

C

B

A

S

R

clock

IN1

IN2

IN3

IN4

Fig. 2.11 An example with multiple propagation paths

C

SEL

Maximum Delay Path

100ps

clock

D Q

D Q

D Q

D Q

clock

clock

clock

B

A

clock

D Q

200ps

200ps 200ps

200ps

S

R

IN1

IN2

IN3

IN4

Minimum Delay Path

1

2

1

2

3 4

5

6

3

Fig. 2.12 Logic circuit of Fig. 2.11 showing maximum and minimum paths

70 2 Review of Sequential Logic Circuits

The maximum delay path consists of the inverter 1 and a series of four two-input NAND gates
numbered as 1, 3, 4 and 6 shown in Fig. 2.12. This path results in a total delay of 900 ps. The
minimum delay path, on the other hand, contains the two two-input NAND gates numbered as 5 and
6, and it produces a delay of 400 ps. Placing these delays in the timing diagram in Fig. 2.13 yields a
set-up slack of 100 ps at the node R when a clock period of 1400 ps is used. There is no need to
investigate for hold violations because there is no shift in the clock edge.

2.6 Register

While a flip-flop holds data only for one clock cycle until new data arrives at the next clock edge, the
register can hold data perpetually until the power is turned off.

Figure 2.14 shows the circuit diagram of a one-bit register composed of a flip-flop and a 2-1 MUX.
The Write Enable pin, WE, is a selector input to the 2-1 MUX, and transfers new data from the IN
terminal to the flip-flop input if WE = 1. When WE = 0, any attempt to write new data to the register
is blocked; the old data stored in the register simply circulates around the feedback loop from one
clock cycle to the next.

The timing diagram at the bottom of Fig. 2.14 describes the operation of the one-bit register. The
data at the IN terminal is blocked until the WE input becomes logic 1 in the middle of the second
clock cycle. At this point, the new data is allowed to pass through the 2-1 MUX and renews the
contents of the register at the beginning of the third clock cycle. The WE input transitions to logic 0
before the end of the third clock cycle, and causes the register output, OUT, to stay at logic 1 during
the fourth clock cycle.

clock

IN1 – IN4

C

500ps

100ps

A, B

S

R

300ps

400ps 100ps 400ps

700ps 800ps 1200ps

setup slack 100ps

1400ps

Fig. 2.13 Timing diagram of the circuit in Fig. 2.12

2.5 Timing Violations 71

A 32-bit register shown in Fig. 2.15 is composed of 32 one-bit registers. All 32 registers have a
common clock and WE input. Therefore, any new 32-bit data introduced at the register input changes
the contents of the register at the rising edge of the clock if the WE input is at logic 1.

1

0

IN

OUT

WE

clock

IN

OUT

WE

D Q

clock

Fig. 2.14 One-bit register and a sample timing diagram

clock

IN[0]

OUT[0]

WE

10

OUT[30]OUT[31]

10 10

IN[30]IN[31]

Q

D

Q

D

Q

D

Fig. 2.15 32-bit register

72 2 Review of Sequential Logic Circuits

2.7 Shift Register

The shift register is a particular version of an ordinary register and specializes in shifting data to the
right or left according to design needs.

Figure 2.16 shows the circuit schematic of a four-bit shift register that shifts serial data at the IN
terminal to the left at every positive clock edge.

The operation of this shift register is explained in the timing diagram in Fig. 2.17. In cycle 1,
SHIFT = 0. Therefore, the change at the IN terminal during this cycle does not affect the register
outputs. However, when the SHIFT input transitions to logic 1 in the middle of cycle 2, it allows
IN = 1 to pass to the least significant output bit, OUT[0], at the beginning of the third clock cycle.
From the middle of cycle 2 to cycle 13, SHIFT is kept at logic 1. Therefore, any change at the IN
node directly transmits to the OUT[0] node at the positive edge of every clock cycle. The other
outputs, OUT[1], OUT[2] and OUT[3], produce the delayed versions of the data at OUT[0] by one
clock cycle because the output of a lesser significant bit in the shift register is connected to the input
of a greater significant bit.

When the SHIFT input becomes logic 0 from the middle of cycle 13 to cycle 17, the shift register
becomes impervious to any new data entry at the IN terminal, and retains the old values from the
beginning of cycle 13 to cycle 18 as seen in Fig. 2.17. From the middle of cycle 17 onwards, the
SHIFT input becomes logic 1 again, and the shift register distributes all new data entries at the IN
terminal to its outputs.

clock

IN

OUT[0]

SHIFT

10

OUT[1]OUT[3]

10 10

OUT[2] OUT[0]OUT[1]

OUT[2]

10

Q

D

Q

D

Q

D

Q

D

Fig. 2.16 Four-bit shift register

2.7 Shift Register 73

2.8 Counter

The counter is a special form of a register which is designed to count up (or down) at each rising edge
of the clock.

The counter in Fig. 2.18 shows a typical 32-bit up-counter with two control inputs, COUNT and
LOAD. The COUNT = 1, LOAD = 0 combination selects the C-port of the 3-1 MUX, and enables
the counter to count upwards at the rising edge of the clock. The COUNT = 0, LOAD = 1 combi-
nation, on the other hand, selects the L-port, and loads new data at the IN[31:0] terminal. Once
loaded, the counter output, OUT[31:0], increments by one at every positive clock edge until all the
output bits become logic 1. The next increment automatically resets the counter output to logic 0.
When LOAD = COUNT = 0, the counter selects the I-port of the 3-1 MUX. At this combination, it
neither loads new data nor counts upwards, but stalls, repeating the old output value.

The sample timing diagram at the bottom of Fig. 2.18 illustrates its operation. Prior to the first
clock edge, the LOAD input is at logic 1 which allows an input value, IN = 3, to be stored in the
counter. This results in OUT[31:0] = 3 at the positive edge of the first clock cycle. The LOAD = 0
and COUNT = 1 combination in the same cycle prompts the counter for the up-count process, and the
contents of the output subsequently increments by one in the next cycle. The result, 3 + 1 = 4, passes
through the C-port of the 3-1 MUX and arrives at the flip-flop inputs. At the positive edge of the
second clock cycle, this new value overwrites the old registered value, making OUT[31:0] equal to 4.
In the next cycle, the counter goes through the same process and increments by one. However, in the
same cycle, the COUNT input also transitions to logic 0, activating the I-port of the 3-1 MUX and
preventing any new data from entering the up-counter. As a result, the counter stops incrementing and
stalls at OUT[31:0] = 5 in the following clock cycles.

clock

IN

SHIFT

OUT[0]

OUT[1]

OUT[2]

OUT[3]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 2.17 A sample timing diagram of the four-bit shift register in Fig. 2.16

74 2 Review of Sequential Logic Circuits

2.9 Moore Machine

State machines are mainly used in digital designs to control the proper data-flow. Their topology is
mainly composed of one or multiple flip-flops and feedback loops that connect flip-flop outputs to
flip-flop inputs. There are two types of state machines: Moore-type and Mealy-type.

Figure 2.19 shows the Moore-type state machine topology consisting of a flip-flop and a feedback
loop. In this configuration, the feedback loop includes a combinational logic block that accepts both
the flip-flop output and external inputs. If there are multiple flip-flops, the combination of all flip-flop
outputs constitutes the “present” state of the machine. The combination of all flip-flop inputs is called
the “next” state because at the positive edge of the clock these inputs become the flip-flop outputs,
and form the present state. Flip-flop outputs are processed further by an additional combinational
logic block to form present state outputs.

The basic state diagram of a Moore machine, therefore, includes the present state (PS) and the next
state (NS) as shown on the right side of Fig. 2.19. The machine can transition from the PS to the NS if

clock

IN[31:0]

OUT[31:0]

LOAD

clock

OUT[31:0]

LOAD

+1

LCOUNT C I

32

COUNT

3 4 5 5 5

IN = 3

5

Q
D

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6

Fig. 2.18 A 32-bit counter and a sample timing diagram

2.9 Moore Machine 75

the required present state inputs are supplied. The outputs of the Moore machine are solely generated
by the present state. Therefore, machine outputs emerge only from each state as shown in the basic
state diagram.

The state diagram in Fig. 2.20 shows an example of a Moore-type machine with four states. Note
that every state-to-state transition in the state diagram requires a valid present state input entry, and
every node generates one present state output.

Combinational
Logic

Combinational
Logic

Present StateNext State Present State
Outputs

Present State
Inputs

PS

NS

Present State
Outputs

Present State
Inputs

Next State
Outputs

cl
oc

k

QD

Fig. 2.19 Block diagram and state representation of Moore machine

S0

S1

S2

S3

IN = 0

IN = 1

IN
 =

1IN = 1

IN = 0

IN = 0

IN = 0
IN = 1

OUT = 1

OUT = 2OUT = 4

OUT = 3

Fig. 2.20 State diagram of a Moore machine with four states

76 2 Review of Sequential Logic Circuits

The state 0, S0, produces a present state output, OUT = 1, regardless of the value of the present
state input, IN. When IN = 1, the state S0 transitions to the next state S1. Otherwise, it circulates back
to itself. The state S1 produces OUT = 2. Its next state becomes the state S1 if IN = 0; otherwise, it
transitions to a new state S2. The state S2 also produces a present state output, OUT = 3, and
transitions to the state S3 if IN = 1. The state S2 remains unchanged if IN = 0. In the fourth and final
state S3, the present state output, OUT = 4, is produced. The machine stays in this state if IN stays at
0; otherwise, it goes back to the state S1.

The present state inputs and outputs of this Moore machine and its states can be tabulated in a table
called the “state table” given in Fig. 2.21. In this table, the first column under PS lists all the possible
present states of the state diagram in Fig. 2.20. The middle two columns contain the next state entries
for IN = 0 and IN = 1. The last column lists the present state outputs, one for each present state.

The binary state assignment is performed according to Fig. 2.22 where only one bit is changed
between adjacent states.

The binary form of the state table in Fig. 2.21 is reconstructed in Fig. 2.23 according to the state
assignment in Fig. 2.22. This table, called the “transition table”, includes the binary representation of
the next state and the present state outputs.

PS IN = 0 OUTIN = 1

S0

S1

S2

S3

S0

S1

S2

S3

S1

S2

S3

S1

1

2

3

4

NS

Fig. 2.21 State table of the Moore machine in Fig. 2.20

States NS1 NS0

S0

S1

S2

S3

0

0

1

1

0

1

1

0

Fig. 2.22 Bit representations of states S0, S1, S2 and S3

2.9 Moore Machine 77

Forming this machine’s K-maps for the NS0, NS1, OUT0, OUT1 and OUT2 requires grouping all
the input terms, PS1, PS0 and IN, according to the table in Fig. 2.23. The K-maps and their corre-
sponding SOP representations are shown in Fig. 2.24.

The next step is to generate the circuit diagram that produces all five outputs of the Moore machine
in Fig. 2.24. This circuit diagram is given in Fig. 2.25.

In order to generate this circuit, the individual combinational logic blocks for the NS0 and NS1
must be constructed first in terms of PS0, PS1 and IN. Then each NS0 and NS1 is connected to the
corresponding flip-flop input to form the feedback loops of the state machine. The logic blocks for the
OUT0, OUT1 and OUT2 are generated directly from PS0 and PS1.

PS0 OUT2

IN = 0

PS1

0

1

1

0

0

0

1

1

1SN 0SN

0

1

1

0

0

0

1

1

IN = 1

1SN 0SN

1

1

0

1

0

1

1

0

OUT1 OUT0

0

0

0

1

0

1

1

0

1

0

1

0

Fig. 2.23 Transition table of the Moore machine in Fig. 2.20

Fig. 2.24 K-maps and SOP expressions for the Moore machine in Fig. 2.20

78 2 Review of Sequential Logic Circuits

2.10 Mealy Machine

The Mealy machine shares the same circuit topology with the Moore machine. The machine also
contains one or more flip-flops and feedback loops as shown in Fig. 2.26. However, the present state
outputs are generated from the combinational logic block in the feedback loop rather than from the
present states in the Moore-type machines.

As a result of this topology, the basic state diagram of a Mealy machine includes the present state,
the next state and the input condition that makes the state-to-state transition possible as shown on the
right side of Fig. 2.26. Present state outputs do not emerge from each present state; instead, they are
functions of present state inputs and present state.

IN

NS1

NS0 PS0

PS1

OUT2

D Q

OUT1

OUT0

D Q

clock

clock

Fig. 2.25 Logic circuit of the Moore machine in Fig. 2.20

clock

Combinational
Logic

Present StateNext State

Present State
Outputs

Present State
Inputs

PS

NS

Present State Outputs
Present State Inputs

QD

Fig. 2.26 Block diagram and state representation of Mealy machine

2.10 Mealy Machine 79

The Mealy state diagram in Fig. 2.27 exhibits similar characteristics compared to the Moore state
diagram in Fig. 2.20, and all the state names and the state-to-state transitions in this diagram are kept
the same for comparison purposes. However, each arrow connecting one state to the next carries the
value of present state output as a function of present state input as indicated in Fig. 2.26. As a result,
the Mealy state table in Fig. 2.28 contains two separate columns that tabulate the values of NS and
OUT for IN = 0 and IN = 1. The binary state assignment is the same as in Fig. 2.22, which results in
a transition table in Fig. 2.29.

S0

S1

S2

S3

IN = 0
OUT = 3

IN = 0
OUT = 1

IN = 0
OUT = 2

IN = 0
OUT = 4

IN = 1
OUT = 2

IN = 1OUT = 2

IN
 =

1
OUT

= 3

IN = 1OUT = 4

Fig. 2.27 State diagram of a Mealy machine with four states

PS IN = 0

OUT

IN = 1

S0

S1

S2

S3

S0

S1

S2

S3

S1

S2

S3

S1

1

2

3

4

NS

IN = 0 IN = 1

2

3

4

2

Fig. 2.28 State table of the Mealy machine in Fig. 2.27

80 2 Review of Sequential Logic Circuits

The K-maps for the NS0, NS1, OUT0, OUT1 and OUT2 are formed according to the table in
Fig. 2.29 and shown in Fig. 2.30 with the corresponding SOP expressions. Figure 2.31 shows the
circuit diagram of this machine according to the expressions in Fig. 2.30. The methodology used to
construct this circuit diagram is identical to the methodology used in the circuit diagram for the
Moore machine in Fig. 2.25.

PS0 OUT2

IN = 0

PS1

0

1

1

0

0

0

1

1

1SN 0SN

0

1

1

0

0

0

1

1

IN = 1

1SN 0SN

1

1

0

1

0

1

1

0

OUT1 OUT0

0

0

0

1

0

1

1

0

1

0

1

0

IN = 0

OUT2 OUT1 OUT0

0

0

1

0

1

1

0

1

0

1

0

0

IN = 1

Fig. 2.29 Transition table of the Mealy machine in Fig. 2.27

0 0 1 1

0 1 1 0

00 01 11 10IN

0

1

PS1 PS0

NS1 = PS0.IN + PS1.IN

0 1 1 0

1 1 0 1

00 01 11 10IN

0

1

NS0
PS1 PS0

NS1

NS0 = PS0.IN + PS1.PS0 + PS0.IN

= (PS0 + IN) + PS1.PS0

OUT2 = PS1.PS0.IN + PS1.PS0.IN = PS1.(PS0 + IN)

OUT1 = (PS0 + IN) + PS1.PS0 = NS0

OUT0 = PS1.PS0.IN + PS1.PS0.IN + PS1.PS0.IN = PS1.(PS0 + IN) + PS1.PS0.IN

0 0 0 1

0 0 1 0

00 01 11 10IN

0

1

PS1 PS0

0 1 1 0

1 1 0 1

00 01 11 10IN

0

1

OUT1
PS1 PS0

OUT2

1 0 1 0

0 1 0 0

00 01 11 10IN

0

1

PS1 PS0
OUT0

Fig. 2.30 K-maps and SOP expressions for the Mealy machine in Fig. 2.27

2.10 Mealy Machine 81

2.11 Controller Design: Moore Versus Counter-Decoder Scheme

Both Mealy and Moore-type state machines have practical implementation limits when it comes to
design. A large ring-style state machine composed of N states such as in Fig. 2.32 may have multiple
outputs attached to each state, making its implementation nearly impossible with conventional state
machine implementation techniques. However, these types of designs are excellent candidates for the
counter-decoder type of designs where each state in the state diagram is associated with a counter
output value. Therefore, as the counter increments the desired PS outputs of the state machine in
Fig. 2.32 can easily be replicated using a set of decoders at the counter output.

IN

NS1

NS0 PS0

PS1

OUT2

OUT1

OUT0

clock

QD

QD

Fig. 2.31 Logic circuit of the Mealy machine in Fig. 2.27

82 2 Review of Sequential Logic Circuits

To illustrate this theory, a controller that generates the timing diagram in Fig. 2.33 will be
implemented using both the Moore-type state machine and the counter-decoder approach.

From the timing diagram below, this state machine generates a single active-high output, Out = 1,
once in every 8 cycles as long as Stop = 0. When Stop = 1, however, the machine stalls and retains
its current state.

Once the state assignments are made for each clock cycle in the timing diagram Fig. 2.33, the state
diagram for a Moore-type state machine emerges in Fig. 2.34.

The states S0 and S1 in the timing diagram are assigned to the first and second clock cycles,
respectively. The third clock cycle is assigned to the S2 state where Out = 1. The fourth clock cycle

S0

S0

S0S0

S0

S8

S4S12

S2

S10 S6

S0

S0

S0

S1

S9

S5

S3

S11

S7

S(N-1)

Fig. 2.32 State diagram of a counter with N states

clock

S0 S1

Stop

Out

S2 S3 S3 S3 S4 S5 S6 S7 S0 S1 S2

Fig. 2.33 Timing diagram of a state machine with a single input, Stop, and a single output

2.11 Controller Design: Moore Versus Counter-Decoder Scheme 83

corresponds to the S3 state. The machine stays in the S3 state as long as Stop = 1. This ranges from
the fourth to the sixth clock cycle in the timing diagram. The state assignments from the seventh to
the tenth clock cycles become the states S4, S5, S6 and S7. The eleventh clock cycle returns to the S0
state.

Implementing the state diagram in Fig. 2.34 follows a lengthy process of producing the state
tables, transition tables, and K-maps that results in a total of four outputs (three flip-flop outputs due
to eight states and one output for Out). However, using a counter-decoder approach minimizes this
design task considerably and reveals a rather explicit circuit implementation.

When the timing diagram in Fig. 2.33 is redrawn to implement the counter-decoder design
approach, it yields a simple three-bit counter which counts from zero to seven as shown in Fig. 2.35.
The counter output, CountOut, is included in this figure to show the relationships between the state
assignments, S0 through S7, the input, Stop, and the output, Out. The figure also shows the clock
cycle where the counter resets itself when its output reaches seven.

S0

S4

S2S6

S1

S5 S3

S7

Out = 0

Out = 0

Out = 1

Out = 0

Out = 0

Out = 0

Out = 0

Out = 0

Stop = 1

Stop = 1Stop = 1

Stop = 1Stop = 1

Stop = 1

Stop = 1 Stop = 1

Stop = 0

Stop = 0

Stop = 0

St
op

 =
 0

Stop = 0Stop = 0

St
op

 =
 0Stop = 0

Fig. 2.34 Moore representation of the timing diagram in Fig. 2.33

84 2 Review of Sequential Logic Circuits

The first task for the design is to construct a three-bit up-counter as shown in Fig. 2.36. The
counter in this figure is derived from a general counter topology, and it consists of a three-bit adder,
three 2-1 MUXes and three flip-flops. A three-input AND-gate is used as a decoder at the counter
output to implement Out = 1 when the CountOut node reaches 2. Therefore, this method follows a
simple, step-by-step design approach in producing the final circuit that does not require implicit logic
design techniques.

clock

S0 S1

0CountOut 1 2 3 3 3 4 5 6 7 0 1 27

Stop

Out

S2 S3 S3 S3 S4 S5 S6 S7 S0 S1 S2

Fig. 2.35 Timing diagram of a three-bit counter with a single input, Stop, and a single output

clock

Out

+1

Stop

3

0 1

CountOut

Q
D

Fig. 2.36 Counter-decoder representation of the timing diagram in Fig. 2.35

2.11 Controller Design: Moore Versus Counter-Decoder Scheme 85

2.12 Memory

Small memory blocks can be assembled from one-bit registers in a variety of topologies. For example,
a 32-bit wide, 16-bit deep memory block shown in Fig. 2.37 can be built by stacking 16 rows of
32-bit registers on top of each other. Each 32-bit register contains tri-state buffers at its output to be
used during read as shown in Fig. 2.38.

All inputs to each column in Fig. 2.37 are connected together to write data. For example, the input
terminal, IN[0], in Fig. 2.37 is connected to all the input pins, In[0], from row 0 to row 15 in Fig. 2.38
to be able to write a single bit of data to a selected row. The same is true for the remaining inputs,
IN[1] through IN[31].

Similarly, all outputs of each column in Fig. 2.37 are connected together to read data from the
memory block. For example, the output pin, OUT[0], is connected to all output pins, Out[0], from
row 0 to row 15 in Fig. 2.38 to be able to read one bit of data from a selected row. The same is true for
the remaining output pins, OUT[1] through OUT[31].

Every row of the memory block in Fig. 2.37 is accessed by individual Write Enable (WE) and
Read Enable (RE) inputs for writing or reading data, respectively.

clock

IN[0]

OUT[0]OUT[30]OUT[31]

IN[30]IN[31]

32-bit Register Row 15

32-bit Register Row 14

32-bit Register Row 0

WE[15] 4
Address[3:0]

WE
Ad

dr
es

s
 D

ec
od

er

RE[15]

WE[14]
RE[14]

WE[0]
RE[0]

RE

Fig. 2.37 A 32 � 16 memory and the truth table of its address decoder

86 2 Review of Sequential Logic Circuits

In order to generate the WE inputs, WE[0] to WE[15], an address decoder is used. This decoder
enables only one row while deactivating all the other rows using a four-bit address, Address[3:0], and
a single WE input according to the truth table in Fig. 2.39. For example, a 32-bit data is written to
row 0 if WE = 1 and Address[3:0] = 0000 at the decoder input. However, WE = 0 blocks writing
data to all rows of the memory block regardless of the input address as shown in the truth table in
Fig. 2.40.

clock

In[0]

Out[0]

WE

10

Out[30]Out[31]

10 10

In[30]In[31]

Q

D

Q

D

Q

D

RE

Fig. 2.38 A 32-bit register slice at every row of Fig. 2.37

Address[3:0] WE[15]WE[14]

0

0
0

0

0
0

0

1
0

0

0
0

0

0
0

0

0
1

0111 1 1

WE[13]

0

0
0

0

WE[2] WE[1]

0

1
0

0

0
1

0 0

WE[0]

1

0
0

0

01001 1 1 0 0 0

Fig. 2.39 The address decoder for the 32 � 16 memory in Fig. 2.37 when WE = 1

2.12 Memory 87

The RE inputs, RE[0] through RE[15], use an address decoder similar to the one in Figs. 2.39 and
2.40 to read a block of data from a selected row. The read operation is achieved with a valid input
address and RE = 1 according to the truth table in Fig. 2.41. An RE = 0 entry disables reading data
from any row regardless of the value of the input address as shown in Fig. 2.42.

WE[15] WE[14]

0

0
0

0

0
0

0

1
0

0

0
0

0

0
0

0

0
1

0011 1 1

WE[13]

0

0
0

0

WE[2] WE[1]

0

0
0

0

0
0

0 0

WE[0]

0

0
0

0

00001 1 1 0 0 0

Address[3:0]

Fig. 2.40 The address decoder for the 32 � 16 memory in Fig. 2.37 when WE = 0

RE[15] RE[14]

0

0
0

0

0
0

0

1
0

0

0
0

0

0
0

0

0
1

0111 1 1

RE[13]

0

0
0

0

RE[2] RE[1]

0

1
0

0

0
1

0 0

RE[0]

1

0
0

0

01001 1 1 0 0 0

Address[3:0]

Fig. 2.41 The address decoder for the 32 � 16 memory in Fig. 2.37 when RE = 1

88 2 Review of Sequential Logic Circuits

Therefore, one must provide a valid input address and the control signals, RE and WE, to perform
a read or a write operation, respectively. The WE = 0, RE = 1 combination reads data from the
selected row. Similarly, the WE = 1 and RE = 0 combination writes data to a selected row. The
WE = 0 and RE = 0 combination disables both reading and writing to the memory block. The control
input entry, WE = 1 and RE = 1, is not allowed, and it should be interpreted as memory read.

2.13 A Design Example Using Sequential Logic and Memory

This design example combines the data-path and controller design concepts described in this chapter
and in Chap. 1. It also introduces the use of important sequential logic blocks such as flip-flop,
register, counter and memory in the same design.

Every design starts with gathering the small or large logic blocks to construct a data-path for a
proper data-flow according to design specifications. Once the data-path is set, then the precise data
movements from one logic block to the next is shown in a timing diagram. Any architectural change
in the data-path should follow a corresponding change in the timing diagram or vice versa.

When the data-path design and its timing diagram are complete, and fully associate with each
other, the next step in the design process is to build the controller circuit that governs the data-flow.
To define the states of the controller, clock periods that generate different sets of controller outputs are
separated from each other and named as distinct states. Similarly, clock periods with identical
controller outputs can be combined under the same state. The controller design can be Moore-type or
Mealy-type state machine according to the design needs. The design methodology of building the
data-path, timing diagram and controller shown here will be repeated in every design throughout this
book, especially when designing peripherals for a computer system in Chap. 7.

The example design in this section reads two eight-bit data packets from an 8 � 8 source memory
(memory A), processes them and stores the result in an 8 � 4 target memory (memory B). The
processing part depends on the relative contents of each data packet: if the contents of the first data
packet are larger than the second, the contents of the data packets are subtracted from each other
before the result is stored. Otherwise, they are added, and the result is stored.

The block diagram in Fig. 2.43 demonstrates the data-path required for this memory-to-memory
data transfer as described above. The timing diagram in Fig. 2.44 needs to accompany the data-flow
in Fig. 2.43 since it depicts precise data movements at each clock cycle.

RE[15] RE[14]

0

0
0

0

0
0

0

1
0

0

0
0

0

0
0

0

0
1

0011 1 1

RE[13]

0

0
0

0

RE[2] RE[1]

0

0
0

0

0
0

0 0

RE[0]

0

0
0

0

00001 1 1 0 0 0

Address[3:0]

Fig. 2.42 The address decoder for the 32 � 16 memory in Fig. 2.37 when RE = 0

2.12 Memory 89

http://dx.doi.org/10.1007/978-3-030-00223-7_1
http://dx.doi.org/10.1007/978-3-030-00223-7_7

To be able to write data to a memory address in Fig. 2.37, a valid data and address must be
available within the same clock cycle. In a similar fashion, data is read from the memory core a cycle
after a valid address is introduced.

Therefore, counter A generates the addresses 0 to 7 for the memory A and writes the data packets
A0 to A7 through DataInA[7:0] port. This is shown in the timing diagram in Fig. 2.44 from clock
cycles 1 through 8. When this task is complete, counter A resets and reads the first data packet A0
from AddrA[2:0] = 0 in clock cycle 9. In the next clock cycle, A0 becomes available at DOut1, and
the counter A increments by one. In cycle 11, AddrA[2:0] becomes 2, the data packet A1 is read from
DOut1[7:0], and the data packet A0 transfers to DOut2[7:0]. In this cycle, the contents of the data
packets A0 and A1 are compared with each other by subtracting A1 (at DOut1) from A0 (at DOut2).
If the contents of A0 are less than A1, then the sign bit, Sign, of (A0-A1) becomes negative. Sign = 1
selects (A0 + A1) at ADDOut[7:0] and routes this value to DataInB[7:0]. However, if the contents of
A0 are greater than A1, (A0 – A1) becomes positive. Sign = 0 selects (A0 – A1) and routes this value
from SUBOut[7:0] to DataInB[7:0]. The result at DataInB[7:0] is written at AddrB[1:0] = 0 of
memory B at the positive edge of clock cycle 12. In the same cycle, A1 is transferred to DOut2[7:0],

Counter B
AddrB[1:0]

DataInB[7:0]

Memory A

Memory B

DataInA[7:0]

07

0A0
A1

DOut1[7:0]
DOut2[7:0]

Sign

clock

A2
A3
A4
A5
A6
A7

1

2

3

4

5

6

7

07

0B0
B1
B2
B3

1

2

3

1

0

C
O
M
P

clock

Counter A
AddrA[2:0]

clock

ADDOut

SUBOut

QD
8

8

8

3

2

Fig. 2.43 Data-path of a memory transfer example

90 2 Review of Sequential Logic Circuits

cl
oc

k

D
O

ut
1

D
O

ut
2

Ad
dr

A

SU
BO

ut

Ad
dr

B

AD
D

O
ut

0
1

2
3

7
0

1
2

3

A0
A1

A2
A3

A4
A5

6A
7A

4
5

6
7

0

A0
A1

A2
A3

A4
A5

6A
7A

A0
+A

1
A2

+A
3

A4
+A

5
A6

+A
7

A1
+A

2
A3

+A
4

A5
+A

6
A7

+A
0

A0
-A

1
A2

-A
3

A4
-A

5
A6

-A
7

A1
-A

2
A3

-A
4

A5
-A

6

0
1

3
2

D
at

aI
nA

A0
A1

A2
A3

A7

A0 A7
-A

0

0
0

0
0

0
0

0
0

0
0

A0A0
A0 A0

A0
+A

0

A0
-A

0

A0
+A

0

A0
-A

0

1
2

3
4

8
9

11
12

13
14

15
16

17
10

0
18

19
20

Fi
g
.
2.
44

T
im

in
g
di
ag
ra
m

fo
r
th
e
m
em

or
y
tr
an
sf
er

da
ta
-p
at
h
in

Fi
g.

2.
43

2.13 A Design Example Using Sequential Logic and Memory 91

and A2 becomes available at DOut1[7:0]. A comparison between A1 and A2 takes place, and either
(A1 + A2) or (A1 – A2) is written to memory B depending on the value of the Sign node. However,
this is an unwarranted step in the data transfer process because the design requirement states that the
comparison has to be done only once between data packets from memory A. Since A1 is used in an
earlier comparison with A0, A1 cannot be used in a subsequent comparison with A2, and neither
(A1 + A2) nor (A1 − A2) should be written to memory B. The remaining clock cycles from 13
through 18 compare the values of A2 with A3, A4 with A5, and A6 with A7, and write the added or
subtracted results to memory B. After clock cycle 19, all operations on this data-path suspend, the
counters are reset and all writes to the memory core are disabled.

To govern the data-flow in Fig. 2.44, a Moore-type state machine (or a counter-decoder-type
controller) is used. A Mealy-type state machine for a controller design is usually avoided because the
present state inputs of this type of state machine may change during the clock period and result in
jittery outputs.

The inclusion of the controller identifies the control signals for the data-flow in Fig. 2.45. These
signals increment the counters A and B, and enable writes to memory A or B when necessary. Thus,

Counter B
AddrB[1:0]

DataInB[7:0]

IncB Reset

Memory A

Memory B

DataInA[7:0]

07
0A0

A1

DOut1[7:0]
DOut2[7:0]

Sign8

Controller

IncA IncB WEA WEB Reset

WEB

clock

A2
A3
A4
A5
A6
A7

1

2

3

4

5

6
7

07
0B0

B1
B2
B3

1

2

3

1

0

C
O
M
P

8

2

8

clock

Counter A
AddrA[2:0]

IncA Reset

WEA
clock

clock

ADDOut

SUBOut

QD

8

3

Fig. 2.45 Complete block diagram of the memory transfer example with controller

92 2 Review of Sequential Logic Circuits

cl
oc

k

D
O

ut
1

D
O

ut
2

Ad
dr

A

SU
BO

ut

Ad
dr

B

AD
D

O
ut

0
1

2
3

7
0

1
2

3

A0
A1

A2
A3

A4
A5

6A
7A

4
5

6
7

0

A0
A1

A2
A3

A4
A5

6A
7A

A0
+A

1
A2

+A
3

A4
+A

5
A6

+A
7

A1
+A

2
A3

+A
4

A5
+A

6
A7

+A
0

A0
-A

1
A2

-A
3

A4
-A

5
A6

-A
7

A1
-A

2
A3

-A
4

A5
-A

6

0
1

3
2

W
EA

In
cA

In
cB

W
EB

D
at

aI
nA

A0
A1

A2
A3

A7

A0 A7
-A

0

0
0

0
0

0
0

0
0

0
0

A0A0
A0 A0

A0
+A

0

A0
-A

0

A0
+A

0

A0
-A

0

1
2

3
4

8
9

11
12

13
14

15
16

17
10

R
es

et

0
18

19
20

Fi
g
.
2.
46

T
he

co
m
pl
et
e
tim

in
g
di
ag
ra
m

fo
r
th
e
m
em

or
y
tr
an
sf
er

in
Fi
g.

2.
45

2.13 A Design Example Using Sequential Logic and Memory 93

the timing diagram in Fig. 2.44 is expanded to include the control signals, IncA, IncB, WEA and
WEB, as shown in Fig. 2.46, and it provides a complete picture of the data transfer process from
memory A to memory B in contrast to the earlier timing diagram in Fig. 2.44.

The controller in Fig. 2.45 is implemented either by a Moore-type state machine in Fig. 2.47 or
counter-decoder-type design in Fig. 2.48.

Reset =1

S1

S0

Reset =0

S2

WEA = 1
IncA = 1

WEA = 1
IncA = 1

S3

S4

WEA = 1
IncA = 1

WEA = 1
IncA = 1

S5

S6

WEA = 1
IncA = 1

WEA = 1
IncA = 1

S7

S8

WEA = 1
IncA = 1

WEA = 1
IncA = 1

S9S10 IncA = 1IncA = 1

S18IncB = 1

S17

S16

WEB = 1

S15

S14

S13

S12IncA = 1
IncB = 1

S11IncA = 1
WEB = 1

IncA = 1
WEB = 1

IncA = 1
IncB = 1

IncA = 1
WEB = 1

IncA = 1
IncB = 1

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0

Reset =0
Fig. 2.47 Moore representation of the controller unit in Fig. 2.45 (only control signals equal to logic 1 are included to
avoid complexity)

94 2 Review of Sequential Logic Circuits

In the Moore type design, the states from S1 through S18 are assigned to each clock cycle of the
timing diagram in Fig. 2.46. The values of the present state outputs, WEA, IncA, WEB and IncB, in
each clock cycle are read from the timing diagram and attached to each state in Fig. 2.47. The reset
state, S0, is included in the Moore machine in case the data-path receives an external reset signal to
interrupt an ongoing data transfer process. Whichever state the machine may be in, Reset = 1 always
makes the state machine transition to the S0 state. These transitions are not included in Fig. 2.47 for
simplicity.

The counter-decoder style design in Fig. 2.48 consists of a five-bit counter and four decoders to
generate WEA, IncA, WEB and IncB control signals. To show the operation of this design to generate
WEA, for example, this particular decoder includes eight five-input AND gates, one for each clock
cycle from cycle 1 to cycle 8 in order to keep WEA = 1 in Fig. 2.46. The five-bit counter implicitly
receives a reset signal from its output when it reaches clock cycle 18, and resets counter A, counter B
and the rest of the system in Fig. 2.45.

WEA IncA WEBIncB

clock

Reset

5

5-BIT UP-COUNTER

Fig. 2.48 Counter-decoder representation of the controller unit in Fig. 2.45

2.13 A Design Example Using Sequential Logic and Memory 95

Review Questions

1. Implement the following Moore machine:

2. Implement the following Moore machine using a timer. The timer is initiated when In = 1. The
state machine goes to the A state and stays there for 10 cycles. In the tenth cycle, the state machine
transitions to the B state and stays in this state for only one cycle before switching to the IDLE
state. One implementation scheme is to construct a four-bit up-counter to generate the timer. When
the counter output reaches 9, the decoder at the output of the counter informs the state machine to
switch from the A state to the B state.

S0

S1

S2

S3

in =0

in =0

in =1

in =1 in =1

in =0

in
 =

0 in =1

out =0

out =1out =0

out =0

IDLE

B A

In = 0

In = 0

In = 1

In = 1
t < 10 clock cycles (CountOut = 0)

Out = 0

Out = 0Out = 1

In = 1
t = 10 clock cycles (CountOut = 1)

96 2 Review of Sequential Logic Circuits

3. The following truth table needs to be implemented using two-input NAND gates and inverters.

TNAND (two-input NAND gate delay) = 500 ps
TINV (inverter delay) = 100 ps
Tclk-q (clock-to-q delay) = 200 ps
tsu (setup time) = 200 ps
th (hold time) = 300 ps

(a) Implement this truth table between two flip-flop boundaries.
(b) Find the maximum clock frequency using a timing diagram.
(c) Shift the clock by 500 ps at the receiving flip-flop boundary. Show whether or not there is a hold

violation using a timing diagram.

4. A block diagram is given below:

Block B contains a one-bit adder with SUM = A ⊕ B ⊕ CIN, COUT = A . B + CIN . (A + B),
and two flip-flops as shown below:

A B C Out
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 3
1 0 1 2
1 1 0 1
1 1 1 0

BLOCK A BLOCK B

A

CIN

T clkshiftclk

B

CIN

A

B

clkshift

D Q

D Q

COUT

SUM

2.13 A Design Example Using Sequential Logic and Memory 97

(a) Using the gates with propagation delays above, determine the setup time of A, B, and CIN
with respect to clkshift.

(b) Assuming T = 0 ns and TCLK (clock period) = 5 ns, if data at A, B and CIN become valid
and stable 4 ns after the positive edge of clkshift, will there be any timing violations? Assume
tH (hold time) = 3 ns for the flip-flop.

(c) How can you eliminate the timing violations? Show your calculations and draw a timing
diagram with no timing violations.

5. A schematic is given below:

(a) If tSU (setup time) = 200 ps, tH (hold time) = 200 ps and tCLK-Q (clock-to-q delay) = 300 ps
for the flip-flop, and TA = 1000 ps, TB = 100 ps for the internal logic blocks on the sche-
matic, show if there is any timing violation or timing slack in a detailed timing diagram if
TC = 0 ps.

(b) What happens if TC = 400 ps? Show it in a separate timing diagram.

6. The state diagram of a Moore machine is given below:

100ps 200ps 200ps 400ps 400ps

D Q

D Q

TA

TB D Q

TC

IN1

IN2

clkTx

clkRx

A

B

C
D

A

B C

out = 0

out = 1out = 1

in = 0

in = 0

in = 1

in = 1 in = 0

in = 1

98 2 Review of Sequential Logic Circuits

The assignment of the states A, B and C are indicated as follows:

(a) Implement this state machine using inverters, two-input and three-input AND gates and
two-input OR gates.

(b) Find the maximum operating frequency of the implementation in part (a) if the following timing
assignments are applied:
tSU (setup time) = 100 ps, tH (hold time) = 100 ps, tCLK-Q (clock-to-q delay) = 200 ps, TINV =
200 ps, TAND2 = 300 ps, TAND3 = 400 ps, TOR2 = 400 ps.

7. Data is transferred from Memory Tx to Memory Rx starting from the address 0x00 and ending at
the address 0x0F as shown below. Once a valid address is produced for Memory Tx, the data is
read from this address at the next positive clock edge. On the other hand, data is written to the
Memory Rx at the positive edge of the clock when a valid address is produced. The operating
clock frequency of Memory Tx is twice the clock frequency of Memory Rx.

(a) Assuming address generators for Memory Tx and Memory Rx start generating valid addresses
at the same positive clock edge, show which data is actually stored in Memory Rx using a
timing diagram. Indicate all the address and data values for Memory Tx and Memory Rx in
the timing diagram.

states PS[1] PS[0]

A
B
C

0 0
0 1
1 1

0xFF

0xEE

0xDD

0xCC

0xBB

0xAA

0x99

0x88

0x77

0x66

0x55

0x44

0x33

0x22

0x11

0x00

7 0
0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

clock Tx

Memory Tx
7 0

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

clock Rx

Memory Rx

2.13 A Design Example Using Sequential Logic and Memory 99

(b) Now, assume that the operating clock frequency of Memory Tx is four times higher than the
clock frequency of Memory Rx, and the write to Memory Rx takes place at the negative edge
of the clock when a valid address is present. Redraw the timing diagram indicating all address
and data values transferred from Memory Tx to Memory Rx.

8. Serial data is transferred to program four eight-bit registers. The start of the transfer is indicated by
a seven-bit sequence = {1010101} immediately followed by the address of the register (two bits)
and the data (eight bits). The transfer stops after programming the last register. After this point, all
other incoming bits at the serial input are ignored. Design this interface by developing a data-path
and a timing diagram simultaneously. Implement the state diagram. Can this controller be
implemented by a counter-decoder scheme?

Projects

1. Implement the one-bit register and verify its functionality using Verilog. Use timing attributes in
the flip-flop and the multiplexer to create gate propagation delays. Change the clock frequency
until set-up time violation is produced.

2. Implement the four-bit shift register and verify its functionality using Verilog. Use timing attri-
butes for flip-flops and the multiplexers to create gate propagation delays. Examine the resulting
timing diagram.

3. Implement the 32-bit counter and verify its functionality using Verilog.
4. Implement the four-state Moore-type state machine and verify its functionality using Verilog.
5. Implement the four-state Mealy-type state machine and verify its functionality using Verilog.
6. Implement the three-bit counter-decoder and verify its functionality using Verilog and examining

the resulting timing diagram.
7. Implement the 32 � 16 memory block using Verilog. How can this memory be verified

functionally?
8. Implement the memory-to-memory transfer circuit at the end of this chapter and verify its

functionality using Verilog.

100 2 Review of Sequential Logic Circuits

3Review of Asynchronous Logic
Circuits

A digital system is often comprised of different time domains. Some domains work with clock, and
data is sequentially transferred from one flip-flop (or latch) boundary to the next. In other domains,
data is asynchronously processed and handled without the aid of a clock.

This chapter introduces asynchronous circuits that require no clock input. The complete design
methodology is given in terms of state assignments from timing diagrams, construction of flow tables
and gate minimization, which then leads to the implementation of fundamental mode circuits. The
chapter concludes with an asynchronous timing methodology with C (Mueller) elements that allows
data propagation between logic blocks without any clock input.

3.1 S-R Latch

A common storage element in asynchronous circuits is a Set-Reset (S-R) latch. This circuit is
composed of two NAND gates whose outputs are connected to their inputs as shown in Fig. 3.1.

Initially, both S and R inputs may be at logic 0, producing Q ¼ Q ¼ 1. If the S input transitions to
logic 1 while R = 0, Q stays at logic 1 andQ transitions to logic 0. This state is called the set state of the
S-R latch. If, on the other hand, the R input goes to logic 1 while the S input stays at 0, Q transitions to
logic 0 and Q stays at logic 1. This state is called the reset state. Simultaneously changing both the S
and R inputs from logic 0 to logic 1 causes a racing condition. If NAND gate number 1 has a shorter
gate delay than the NAND gate number 2, Q switches to logic 0 first, and forces Q to stay at logic 1.
If NAND gate number 2 has a shorter gate delay, Q switches to logic 0 first. Therefore, simultaneously
switching more than one input in asynchronous circuits creates unexpected outputs due to multiple
racing paths in a circuit. The fundamental-mode design methodology corrects this problem by per-
mitting only one input to change, and eliminates all unwanted transitions in the circuit.

S

R Q

Q1

2

Fig. 3.1 S-R latch

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7_3

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-00223-7_3

3.2 Fundamental-Mode Circuit Topology

An asynchronous circuit requires no clock input to operate. The circuit is composed of a combina-
tional logic block and a delay block. The delay block is another combinational logic circuit and its
inputs constitute the present state for the circuit. The outputs of the delay block are fed back to the
inputs of the combinational logic to form the next state as shown in Fig. 3.2.

Designing an asynchronous circuit requires to follow a certain procedure. The first task is to form a
primitive state flow table tabulating all possible states and transitions that the asynchronous circuit
can produce. This table must contain only one stable state per row to maintain the fundamental mode
of operation. Similarly, another table, containing only the outputs of the circuit, is formed. This table
should include every output change as the circuit makes a transition from one state to another.
Implication tables aim to minimize the primitive state and output tables prior to producing a final
circuit. In asynchronous circuit design, it is common to create race conditions where circuit delays
produce multiple simultaneous state transitions resulting in unwanted outputs. An effective method to
eliminate racing conditions is to work on the minimized state table and remove such state transitions
that cause the circuit to depart from its fundamental-mode of operation.

3.3 Fundamental-Mode Asynchronous Logic Circuits

In this section, an example will be used to present the entire process designing fundamental-mode
asynchronous circuits from the creation of primitive flow tables to the removal of racing conditions.

The circuit in this example consists of two inputs, in1 and in2, and a single output. The output is at
logic 0 whenever in1 = 0. The first change in in2 produces out = 1 while in1 = 1. The output
transitions back to logic 0 when in1 switches to logic 0.

The timing diagram in Fig. 3.3 summarizes the behavior of this circuit. State assignments in the
timing diagram follow the basic rule that requires the change in only one input per state. All stable
states are numbered and circled.

Combinational
Logic

Delay

inputs outputs

present statenext state

Fig. 3.2 Fundamental mode asynchronous circuit topology

102 3 Review of Asynchronous Logic Circuits

The state ① is when in1 = in2 = 0 and out = 0. Any change in in2 transitions the circuit to the
state ② with out = 0. Additional ripples at in2 while in1 = 0 change the state of the circuit between
the states ① and ②. Switching in1 from logic 0 to logic 1 while in2 = 1 forms a new state, state ③,
and produces out = 0. The first change in in2 while in1 = 1 creates another new state, state ④, with
out = 1. As in2 transitions back from logic 0 to logic 1 while in1 = 1, the state of the circuit changes
to the state⑤, but the output stays at out = 1. Further ripples at in2 while in1 = 1 create no change at
the output, and the circuit ends up transitioning between the states ④ and ⑤. When in1 transitions to
logic 0 while in2 = 1, the state of the circuit switches back to the state ②. Finally, when in2 also
switches back to logic 0, the state of the circuit becomes the state ①.

Now, let us assume that in1 transitions to logic 1 first while in2 is steady at logic 0. This condition
creates a new state, state ⑥, with an output value of out = 0. When in2 also transitions to logic 1
while in1 = 1, the state of the circuit changes from the state ⑥ to a new state, state ⑦, and out
becomes logic 1. As soon as in2 goes back to logic 0 while in1 = 1, the circuit also switches back to
the state ④ but out stays at logic 1. Further ripples in in2 while in1 = 1 simply change the state of the
circuit between the states ④ and ⑦. As soon as in1 transitions back to logic 0, the circuit goes to the
state ②. When in2 also changes to logic 0, the circuit goes back to the state ①.

Constructing primitive state table and output flow table is the direct extension of the timing
diagram in Fig. 3.3. When transferring stable, circled states from the timing diagram to the primitive
state table in Fig. 3.4, the fundamental-mode rule that enforces one stable state per row is strictly
observed. The non-circled states in this table are considered “transitionary” states: the circuit
momentarily stays in these states until it makes a permanent move to a stable state. For example, as
in2 transitions from logic 0 to logic 1 while in1 stays at logic 0 in the first row of Fig. 3.4, the state of
the circuit changes from the stable state ① to the transitionary state 2. The circuit stays in this
transitionary state only for a brief moment until it finally transitions to the stable state ② in row 2.
Similarly, as in1 switches from logic 0 to logic 1 while in2 = 1, the circuit transitions from the state
② to the state ③ through a transitionary state 3 in the second row. All simultaneous dual input
transitions are forbidden because of the primary rule in the fundamental mode of operation. There-
fore, a transition from in1 = in2 = 0 to in1 = in2 = 1 in the first row is not allowed. In this figure, the
boxes marked with “-” indicate the forbidden transitions.

1 2 2 3 4 5 2 1 6 7 4 7 2 1

in1

in2

out

Fig. 3.3 Timing diagram and state assignments

3.3 Fundamental-Mode Asynchronous Logic Circuits 103

Primitive state and output flow tables are usually integrated to produce a compact table as shown
in Fig. 3.5. Furthermore, labeling the present and next states clarifies the state transitions and the
output values during each transition. Figure 3.5 also separates the states that produce out = 0 from the
states that produce out = 1. This design practice comes in handy during the minimization step when
equivalence classes are formed.

The first step towards state minimization is to form an implication table as shown in Fig. 3.6. This
table includes all permitted, forbidden and “implied” states that can either go into the permitted or
forbidden categories.

in1 in2

2 - 6

1 3 -

- 2 4

1 - 5

- 2 4

1 - 7

- 2 4

1

2

3

4

5

6

7

00 01 11 10
in1 in2

0

0

0

1

1

0

1

00 01 11 10

Fig. 3.4 Primitive state and output flow tables for Fig. 3.3

2 - 6

1 3 -

- 2 4

1 - 7

1 - 5

- 2 4

- 2 4

1

2

3

6

5

7

00 01 11 10

in1 in2

0

0

0

0

1

1

1

00 01 11 10

in1 in2

1

2

3

6

4

5

7

ns out

ps

4

Fig. 3.5 Integrated primitive state and output flow tables

104 3 Review of Asynchronous Logic Circuits

Figure 3.6 must display all the present states in Fig. 3.5 except the state 7 (the last one on the list)
in the horizontal axis and the same states except the state 1 (the first in the list) in its vertical axis.

The box located at (2, 1) in Fig. 3.6 is checked because there are no other states involved in a
transition from the state ① to the state ② in Fig. 3.5. The box at (3, 1) contains 4–6, because the
“implied” states 6 and 4 in the column, in1 in2 = 10, of Fig. 3.5 must be traversed in order to go from
the state ① to the state ③. The columns, in1 in2 = 00 and 11, contain forbidden transitions, and they
cannot be used as implied states to allow a transition from the state ① to the state ③. The only other
column for a transition from the state ① to the state ③ is at the column, in1 in2 = 01, and it requires
a transition from the state 2 to the state 2, which is not possible. The box at (4, 6) in Fig. 3.6 contains
an “X” mark because the outputs produced at the states ④ and ⑥ are different. The same applies to
boxes at (5, 3) and (7, 3). The box at (6, 3) contains two implied transitions, 3–7 and 4–6, which
correspond to the columns, in1 in2 = 11 and 10, respectively.

We can further eliminate some of the implied state entries in the implication table of Fig. 3.6 if
these states are “related” to the boxes that have already been crossed out. Figure 3.7 shows the new
implication table after eliminations. In this table, the boxes that contain the transitionary states 4–6,
3–5 and 3–7 are safely crossed out since they are related to the boxes at (4, 6), (5, 3) and (7, 3).

4-6

4-6

4-6

4-6

3-7

3-5

3-5

3-7

3-7
4-6

3-5
5-7
4-6

4-6 5-7

21 63 54

2

7

6

3

5

4

Fig. 3.6 The implication table for Fig. 3.5

5-7

21 63 54

2

7

6

3

5

4

Fig. 3.7 The implication table after eliminations

3.3 Fundamental-Mode Asynchronous Logic Circuits 105

Forming the equivalence class table is the next step for minimization. First, all states in the
horizontal axis of the implication table in Fig. 3.7 are repeated backwards under the “States” column
in the equivalence class table in Fig. 3.8.

Column 5 in Fig. 3.7 contains a checked box. This box corresponds to a joint state, (5–7), listed as
an equivalence class in the first row of Fig. 3.8. Column 4 in Fig. 3.7 consists of a checked box at
(4, 5) and a second box containing an implied state 5–7 at (4, 7). Therefore, the second row of
Fig. 3.8 contains two new joint states, (4, 5) and (4, 7), as well as the earlier joint state, (5, 7), from
the first row. Since in this row the joint states, (5, 7), (4, 7) and (4, 5), overlap, they can be combined
in a compact joint state (4, 5, 7). Columns 6 and 3 in Fig. 3.7 have crossed-out boxes that contain no
implied states. Therefore, the third and the fourth row of Fig. 3.8 do not have new state entries, but
only a single combined state carried over from the second row. Column 2 in Fig. 3.7 has also
crossed-out boxes except at (2, 3), and this produces a new joint state, (2, 3), in the fifth row of
Fig. 3.8. Finally, column 1 in Fig. 3.7 contains two checked boxes at (1, 2) and (1, 6), which form
two additional joint states, (1, 2) and (1, 6), in the last row of Fig. 3.8. Therefore, the final equivalence
class list includes the joint states, (4, 5, 7), (2, 3) and (1, 6). The joint state (1, 2) is a shared state
between (2, 3) and (1, 6), and it is absorbed in the final list.

The final equivalence class list indicates the presence of only three states. Therefore, the same
number of states must be present in the minimal state flow table in Fig. 3.9, where the joint states,
(1, 6), (2, 3) and (4, 5, 7) are assigned to the states A, B and C, respectively.

States Equivalence Classes

5
4
6
3
2
1

Final List

(5, 7)
(5, 7) (4, 7) (4, 5) = (4, 5, 7)
(4, 5, 7)

(4, 5, 7) (2, 3)
(4, 5, 7)

(4, 5, 7) (2, 3) (1, 2) (1, 6)

(4, 5, 7) (2, 3) (1, 6)

Fig. 3.8 Equivalent class table

B C

A C

A B

A

B

C

00 01 11 10

in1 in2

0 - - 0

- 0 0 -

- - 1 1

00 01 11 10

in1 in2
ps

A

B

C

(1, 6) = A

(2, 3) = B

(4, 5, 7) = C

outns

Fig. 3.9 Minimized integrated primitive state and output flow tables

106 3 Review of Asynchronous Logic Circuits

In Fig. 3.5, the present states ① and ⑥ correspond to the states ① and 1 when in1 in2 = 00.
However, the states ① and 1 now belong to the new assigned state A in Fig. 3.9. Therefore, the
present state A transitions to a stable state A with out = 0 when in1 in2 = 00. Similarly, the present
states ① and ⑥ in Fig. 3.5 correspond to the states 2 and “-” when in1 in2 = 01, and produce no
output. In the new table, this translates to a transition from the present state A to the stable state B
when in1 in2 = 01. The other entries generating the next state, ns, and out in Fig. 3.9 are formed in a
similar manner.

The three states, A, B and C, in Fig. 3.9 require two next state bits, ns1 and ns2. The state
assignments are shown in Fig. 3.10.

Employing the state assignment table in Fig. 3.10 in the combined minimal state and output flow
table in Fig. 3.9 leads to the state and output K-maps in Fig. 3.11. The crossed-out entries in this
figure correspond to “don’t care” conditions, and they are treated as either logic 0 or logic 1 to
achieve the minimal sum of products (SOP) expression for each K-map.

Finally, the SOP expressions for ns1, ns2 and out in Fig. 3.11 generate the circuit diagram in
Fig. 3.12. To draw the complete circuit, first combinational logic blocks for ns1, ns2 and out are
formed using their SOP expressions. Then, each next state, ns1 and ns2, is connected to its corre-
sponding present state, ps1 and ps2, to complete the circuit diagram in Fig. 3.12.

A
B
C

ns1 ns2

0 0
0 1
1 1

Fig. 3.10 State assignments

0 0 1 0

0 0 0 1

0 0 1 1

00 01 11 10
in1 in2

00

01

11

10

ns1

ps1 ps2

0 1 1 0

0 1 1 1

0 1 1 1

00 01 11 10
in1 in2

00

01

11

10

ns2

ps1 ps2

0 0

0 0

1 1

00 01 11 10
in1 in2

00

01

11

10

out

ps1 ps2

ns2 = in2 + in1.ps2
out = in1.ps1

ns1 = in1.ps1 + in1.in2.ps2 + in1.in2.ps2

Fig. 3.11 K-maps for the next states, ns1 and ns2, and the output, out

3.3 Fundamental-Mode Asynchronous Logic Circuits 107

Even though the circuit in Fig. 3.12 represents the required state behavior, it may not eliminate all
possible racing conditions. When the state table in Fig. 3.9 is transformed into a state diagram in
Fig. 3.13, the forward and backward transitions between the states A and C may induce racing
conditions because two inputs change simultaneously.

To prevent racing conditions, a fictitious fourth state is introduced between the states A and C in
Fig. 3.13. This fourth state, a, forms a bridge when going from the state A to the state C (or vice
versa) and allows only one state input to change to prevent possible hazards as shown in Fig. 3.14.

in1

in2
ns1

ns2

ps2

ps1

out

Fig. 3.12 Fundamental mode asynchronous circuit for Fig. 3.3

A = 00 B = 01

C = 11racing condition
may exist
during these
transitions

Fig. 3.13 State diagram showing possible racing conditions

108 3 Review of Asynchronous Logic Circuits

However, the inclusion of the new state, a, necessitates reconfiguring the original state table in
Fig. 3.9. The new state table contains the state a as a transitionary state in Fig. 3.15, and the
transitions into this state do not produce any output.

When the hazard-free state and output K-maps are formed based on the flow table in Fig. 3.15, the
resultant SOP expressions for ns1 and ns2 in Fig. 3.16 contain only an additional term with respect to
the ones in Fig. 3.11. This is a small price to pay in the total gate count for the benefit of eliminating
all racing conditions.

A = 00 B = 01

α = 10 C = 11α

α

No hazard
A C
or
C A

Fig. 3.14 Reconfiguration of the state diagram to eliminate racing conditions

b α

a c

α b

a

b

c

00 01 11 10

in1 in2

0 - - 0

- 0 0 -

- - 1 1

00 01 11 10

in1 in2
ps

a

b

c

a

b

c

outns

a - c - - - - -α

Fig. 3.15 Integrated state and output flow tables without racing conditions

3.3 Fundamental-Mode Asynchronous Logic Circuits 109

3.4 Asynchronous Timing Methodology

Asynchronous data propagation through combinational logic blocks can be achieved using
C-elements (Mueller elements) as shown in Fig. 3.17.

In this figure, combinational logic blocks, CL1, CL2 and CL3, are connected through flip-flops to
propagate data. However, data propagation through the combinational logic does not have to be
complete within a fixed clock period as in conventional sequential circuits. The C-elements in
conjunction with inverting delay blocks, D1 through D3, allow variable data propagation to take place
for each stage.

As data propagates through a particular combinational logic block, the positive edge produced at
the Cout terminal of a C-element also propagates through the corresponding delay circuit. When data
reaches the next flip-flop boundary, the C-element in this stage also produces a positive Cout edge for
the flip-flop to fetch the incoming data.

The details of variable data propagation in Fig. 3.17 are illustrated in the timing diagram in
Fig. 3.18. In this figure, the C-element produces a positive edge at Cout1 and enables the flip-flop to
dispatch data1 from its output after a clock-to-q delay. As this data propagates through the

0 0 1 0

0 0 0 1

1 0 1 1

00 01 11 10
in1 in2

00

01

11

10

ns1

ps1 ps2

0 1

0 1 0 0

0 1 1 1

0 1 1 1

00 01 11 10
in1 in2

00

01

11

10

ns2

ps1 ps2

0 1

0 0

0 0

1 1

00 01 11 10
in1 in2

00

01

11

10

out

ps1 ps2

ns1 = in1.ps1 + in1.in2.ps2 + in2.ps1.ps2 + in1.in2.ps2

out = in1.ps1

ns2 = in1.in2 + in1.ps2 + in1.ps1

Fig. 3.16 Next state and output K-maps producing no racing conditions

data1 D Q CL1 D Q CL2 D Q CL3 D Q

C CD1 CD2 CD3

data2 data3 data4

Cout1 Cout2 Cout3 Cout4

Cin4Cin3Cin2

F1 F2 F3

Fig. 3.17 Asynchronous timing methodology using C-elements

110 3 Review of Asynchronous Logic Circuits

combinational logic block, CL1, the positive edge of Cout1 also travels through the delay block, D1,
and reaches the next C-element to form a positive edge at Cout2 to fetch the incoming data.

Data propagation in the second stage and the positive edge formation of Cout2 is identical to the
first stage with the exception of longer propagation delays, CL2 and D2. The third stage presents a
much smaller propagation delay, CL3, and requires a smaller delay element, D3.

Even though each combinational data-path delay in Fig. 3.18 is approximately twice as large as
the propagation delay of its corresponding delay element, the flip-flop set-up time, tsu, must be taken
into account to fine-tune the length of delay for each delay element.

Figure 3.19 shows the detailed Input/Output timing diagram of the C-element. In the first stage of
the data-path (CL1 in Fig. 3.17), a positive edge at Cout1 travels though the inverting delay element,
D1, and produces a negative edge at Cin2 for the next C-element. The C-element is designed such
that the negative edge at its Cin input creates a negative edge from its F output. Therefore, the
negative edge at the F1 node is fed back to the first C-element as an input and forces the first
C-element to lower its Cout output, resulting in Cout1 = 0 and creating a pulse with duration of D1.
The negative edge at Cout1, on the other hand, travels through the inverting delay element, D1, the
second time, and produces a positive edge at Cin2. This positive edge, in turn, enables the second
C-element to generate positive edges at F1 and Cout2 to latch the valid data at the data2 port.

As the data propagates through the second stage, the sequence of timing events that took place
between the first and second C-elements repeat once again between the second and the third

data1

D1

D1

Cout1

data2

Cout2

data3

Cout3

data4

Cout4

D2

D2
D3

D3

tsu

tsu

tsu

CL1 = 2D1 - tsu

CL2 = 2D2 - tsu

CL3 = 2D3 - tsu

Fig. 3.18 A timing diagram with variable clock lengths and stage delays

3.4 Asynchronous Timing Methodology 111

C-elements that define the boundaries of CL2. This results in generating a positive pulse at the Cout2,
two negative pulses at Cin3 and F2, and a positive Cout3 edge to be able to receive a new data at data3.

The vertical slicing in Fig. 3.19 helps to define all possible stable states in designing the
C-element. Even though Fig. 3.19 only samples the inputs and the outputs of the second C-element,
all C-elements in Fig. 3.17 yield identical results. Every stable state from the state ① to the state ④
allows only one input change as the fundamental-mode rule in asynchronous design methodology.
The state ① is entered when Cin2 = F2 = 1, and produces F1 = 1 and Cout2 = 0. As Cin2 transi-
tions to logic 0, the circuit goes into the state ② where it yields F1 = 0 and Cout2 = 0. The start of
the pulse at Cout2 defines the state ③ where Cin2 transitions back to logic 1, and both outputs, F1
and Cout2, change to logic 1. The last state, state ④, emerges when F2 switches to logic 0. This state
also causes Cout2 to change to logic 0, but retains F1 at logic 1. The transition of F2 to logic 1
prompts the C-element to go back to the state ①.

All possible state and output changes of the C-element in Fig. 3.19 are condensed in an integrated
state and output flow table in Fig. 3.20. In this figure, the “?” mark indicates that the C-element never
reaches these transitionary cases; the “-” mark again defines the forbidden states where the
fundamental-mode of design is violated.

Cout1

Cout2

Cout3

F3

Cin2

F1

Cin3

F2

Cin4

D1 D1

D2 D2

D3 D3

1 2 3 4 1

F2 = 1
Cin2 = 1

F1 = 1
Cout2 = 0

F2 = 1
Cin2 = 0

F1 = 0
Cout2 = 0

F2 = 1
Cin2 = 1

F1 = 1
Cout2 = 1

F2 = 0
Cin2 = 1

F1 = 1
Cout2 = 0

F2 = 1
Cin2 = 1

F1 = 1
Cout2 = 0

Fig. 3.19 C-element and delay-element input/output activity in Fig. 3.17

112 3 Review of Asynchronous Logic Circuits

The state assignments of the four stable states in Fig. 3.20 are shown in Fig. 3.21. This is a vital
step since the C-element states in Fig. 3.20 are still symbolic and have not yet been converted into
binary values.

Since the fundamental-mode design rule of changing only one input between state transitions is
fully observed, the state table in Fig. 3.22 shows no potential racing hazards in the current C-element
design.

- ? 2

? - 3

- 4 ?

? 1 -

1

2

3

4

00 01 11 10

F2 Cin2

10

00

11

10

00 01 11 10

F2 Cin2

1

2

3

4

ns F1 Cout2

ps1 ps2

Fig. 3.20 Integrated primitive state and output flow tables for C-element

ns1 ns2

0 0

0 1

1 1

1 0

1

2

3

4

Fig. 3.21 State assignments for Fig. 3.20

1 = 00 2 = 01

4 = 10 3 = 11

No hazard!
One state-bit
at a time

Fig. 3.22 Hazard-free state diagram of the C-element

3.4 Asynchronous Timing Methodology 113

Once the primitive flow table and state assignments are complete, the next state and output K-maps
of the C-element can be constructed as shown in Fig. 3.23.

In this figure, the cases marked by “?” and “-” are directly transferred from the primitive flow table
in Fig. 3.20. When generating the SOP expressions for the ns1, ns2, F1 and Cout2, these cases are
deliberately excluded from the terms in Fig. 3.23. This ensures that unwanted state transitions and
outputs do not take place in the final circuit in Fig. 3.24.

ns1 = F2.Cin2.ps2 + F2.Cin2.ps1 = Cin2.(F2.ps2 + F2.ps1)

ns2 = F2.Cin2.ps2 + F2.Cin2.ps1 = F2.(Cin2.ps2 + Cin2.ps1)

F1 = Cin2.ps1 + F2.Cin2 = Cin2.(ps1 + F2)

Cout2 = Cin2.ps1.ps2

- ? 0 0

? - 1 0

- 1 1 ?

00 01 11 10
F2 Cin2

00

01

11

10

ns1

ps1 ps2

? 1 0 -

- ? 0 1

? - 1 1

- 0 1 ?

00 01 11 10
F2 Cin2

00

01

11

10

ns2

ps1 ps2

? 0 0 -

- ? 1

? - 0

- 1 ?

00 01 11 10
F2 Cin2

00

01

11

10

F1

ps1 ps2

? 1 -

- ? 0

? - 0

- 1 ?

00 01 11 10
F2 Cin2

00

01

11

10

Cout2

ps1 ps2

? 0 -

Fig. 3.23 Next state and output K-maps of the C-element

114 3 Review of Asynchronous Logic Circuits

The input and output names of the second C-element in Fig. 3.17 are also changed for a generic
C-element. According to Fig. 3.24, the inputs, Cin2 and F2, have become Cin and Fin, and the
outputs, F1 and Cout2, have become Fout and Cout of a generic C-element, respectively.

ns1

ps1

Cin2 (Cin)

F2 (Fin)

Cout2 (Cout)

F1 (Fout)

ns2

ps2

Fig. 3.24 C-element circuit according to the fundamental mode design rules

3.4 Asynchronous Timing Methodology 115

Review Questions

1. An asynchronous circuit has two inputs, in1 and in2, and an output, out. When in1 = 1, the first
transition at in2 from logic 0 to logic 1 generates out = 1 in the waveform below. Output stays at
logic 1 unless in1 goes back to logic 0. The first transition at in2 from logic 1 to logic 0 while
in1 = 0 switches out back to logic 0. If out is initially at logic 0, transitions at in2 do not affect the
value of out as long as in1 = 0.
A sample waveform is given below.

in1

in2

out

Define all possible states using the waveform above and form an integrated primitive state and
output flow table. Form an associated implication table leading to the minimization of states and
outputs. Design the resultant fundamental mode asynchronous circuit.

2. An asynchronous circuit has two inputs, in1 and in2, and an output, out. When in1 = 0, the first
transition at in2 produces out = 0 as shown in the waveform below. When in1 = 1, a transition
from logic 0 to logic 1 at in2 increments the value of out by one. When out = 3 and in1 = 1, an
additional logic 0 to logic 1 transition at in2, produces out = 0.

Define the possible states from the waveform above, and form the primitive state and output flow
tables. Define the resultant implication table to minimize the initial states and outputs. Design the
resultant fundamental mode asynchronous circuit.

3. An asynchronous circuit has three inputs, in1, in2 and in3, and an output, out. When all inputs are
at logic 0, the first logic 0 to logic 1 transition at any input causes the output to display the input
ID. For example, a logic 0 to logic 1 transition at in1 while in2 = in3 = 0 produces out = 1
because this value is the ID number of in1. Similarly, the first logic 0 to logic 1 transition at in2
while in1 = in3 = 0 produces out = 2. Logic 0 to logic 1 transition at any input while one or more
inputs are at logic 1 does not change the output value. Similarly, logic 1 to logic 0 transition does
not affect neither state of the circuit nor the output value.

in1

in2

out [1:0] 0 1 2 3 0 0 1 2 0?

116 3 Review of Asynchronous Logic Circuits

Form the primitive state and output flow tables and the implication table to minimize the initial
state and output assignments on the waveform above. Design the fundamental mode asynchronous
circuit.

4. The schematic below is a data-path of an asynchronous system controlled by C-elements. The
combinational delays are shown by T1 through T4 blocks, each of which has a single input and
output. There are also junction delays, J1 through J4, which accept two or more inputs and
generate a single output.

(a) Compute D1 and D2 in terms of combinational and junction delays, T1, T2, T3, T4, J1, J2, J3
and J4.

(b) Show the data-flow that includes the signals from Cin1 to Cin3, and from Cout1 to Cout3 in a
timing diagram. Assume the clock-to-q delay is equal to Tc in the timing diagram.

5. Data is transferred from a 32 � 8 source memory to a 32 � 8 destination memory as shown in the
schematic below. When a 32-bit data is fetched from the source memory, the high (HI) and the
low (LO) 16 bits are multiplied by an integer multiplier, and the product is delivered at a
destination address. The initial values of the source and destination addresses are zero and seven,
respectively. During the data transfer the source address increments by one while the destination
address decrements by one until all eight data packets in the source memory are processed.
Assuming that source and destination memories are asynchronous in nature and neither needs a

T1 J1D Q

T2D Q T3

J2 D Q

D Q

D Q

J3 T4 J4 D Q

C D1 C D2 C

data1

data2

data3

data4

Cin1

Cout1
Cin2

Cout2
Cin3

Cout3

clock

clock

clock

out [1:0] 1 2

in1

2 3?

in2

in3

3.4 Asynchronous Timing Methodology 117

clock input to read or write data, include C elements in the circuit schematic to make this data
transfer possible. Assume Tacc is the access time to fetch data from the source memory, Twrite is
the time to write data to the destination memory, and Tclkq is the time to produce address from the
address pointer 1 or address pointer 2.

Projects

1. Implement the S-R latch and verify its functionality using Verilog.
2. Implement the fundamental mode asynchronous circuit and verify its functionality using Verilog.
3. Implement the C-element and verify its functionality using Verilog.

31
AddrC1 HI LO

0
Addr1

clock

reset incr1

Dout
32

16 lo

16 hi

31
HI LO

0

Din

AddrC2Addr2

clock

resetincr2

Addr2 = 7

Addr2 = 0

32

Addr1 = 7

Addr1 = 0

Source
memory

Destination
memory

118 3 Review of Asynchronous Logic Circuits

4System Bus

A system bus is responsible for maintaining all communication between the Central Processing Unit
(CPU), systemperipherals andmemories. The systembus operateswith a certain bus protocol to exchange
data between a busmaster and a bus slave. The bus protocol ensures to isolate all other systemdevices from
interfering the bus while the bus master exchanges data with a bus slave. Bus master initiates the data
transfer, and sends or receives data from a slave device or a systemmemory. Bus slave, on the other hand,
does not have the capability to start data transfer, but only to respond to bus master to exchange data.

There are two types of bus architectures. Serial bus architecture is essentially composed of a single
data wire between a master and a slave where data bits are exchanged one bit at a time. A parallel bus,
on the other hand, is comprised of many wires, and multitude of bits are sent or received all at once.
In this chapter, we will describe several serial and parallel bus protocols and priority schemes.

4.1 Parallel Bus Architectures

There are two types of parallel bus architectures in a typical system: unidirectional bus and bidi-
rectional bus. A unidirectional bus contains two separate paths for data: one that originates from a bus
master and ends at a slave, and the other that starts from a slave and ends at the master. A bidirec-
tional bus, on the other hand, shares one physical data path which allows data to flow in both
directions. However, this type of bus requires logic overhead and control complexity.

Figure 4.1 describes a 32-bit unidirectional bus architecture containing two bus masters and three
slaves. In this figure, the two unidirectional data-paths are highlighted with thicker lines. The first
path is the “write” path, which a bus master uses to write data to a slave. This path requires a Write
Data (WData) port from every master and slave. The second path is the “read” path for reading data
from a slave. This also requires a Read Data (RData) port from each master and slave. Both the bus
master and the slave device have address and control ports that define the destination address, the
direction of data transfer, the data width and the length of data transfer.

All bus masters have to negotiate with a bus arbiter to gain the ownership of the bus before starting
a data transfer. When there are pending requests from multiple bus masters, the arbiter decides which
bus master should start the data transfer first according to a certain priority scheme, and issues an
acknowledgement signal to the bus master with the highest priority. Therefore, every bus master has
Request (Req) and Acknowledge (Ack) ports to communicate with the arbiter. Once the permission is
granted, the master sends out the address and control signals to the selected slave in the first bus cycle,
and writes or reads data in the next cycle. The decoder (DEC) connected to the address bus generates
“Enable” (EN) signal to activate the selected slave. Every master and slave device has a Ready port
that indicates if the selected slave is ready to transmit or receive data.

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7_4

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-00223-7_4

A 32-bit bidirectional bus architecture is shown in Fig. 4.2. The number of masters and slaves are
kept the same as in Fig. 4.1 for comparison purposes. The only difference between the two figures is
the replacement of the unidirectional data bus in the earlier architecture with a bidirectional bus for
reading and writing data. Tri-state buffers on data lines are essential for bidirectional bus architectures
to isolate nonessential system devices from the bus when data transfer takes place exclusively
between a master and a slave. The address bus in Fig. 4.2 can be also integrated with the data bus to
allow both address and data to be exchanged on the same bus. However, this scheme is much slower
and requires extra control logic overhead to maintain proper data-flow and management.

Figure 4.3 shows all the Input/Output (I/O) ports of a typical bus master. The Req and Ack ports
are used to communicate with the arbiter as mentioned earlier. Bus master uses the “Ready” port to
determine if the slave is ready to transmit or receive data. The WData, RData and Address ports are
used for writing and reading data, and specifying the slave address, respectively. The control signals,
Status, Write, Size and Burst, describe the nature of the data transfer.

The Status port is a two-bit bus that describes the status of the bus master as shown in Table 4.1.
According to this table, the bus master may initiate a new data transfer by issuing the START signal.
If the master is in the midst of exchanging data with a slave, it issues the Continue (CONT) signal.

Bus Master 1

Req1

Address1

WData1

DEC

Bus Slave 1

EN1

WData1

RData1

Bus Slave 2

EN2

WData2

RData2

Bus Slave 3

EN3

WData3

RData3

Control1

Bus Master 2

Req2

Address2

WData2

Control2

Control1

Control2

Control3

C1

C2

A1

A2

W1

W2

RData1

RData2

R1

R2

R3

ARBITER

Req [1:0]

Ack [1:0]
Ready1

Ready2

Ready3
32

32

Ready

Ready

32

32

Ack1

Ack2

Address1

Address2

Address3

2

2

33

32

32

32

3

3

Fig. 4.1 A unidirectional bus structure with two bus masters and three slaves

120 4 System Bus

Bus Master 1
Req1

Address1RData1

DEC

Bus Slave 1

EN1
Control1

Control1

ARBITER

Req [1:0] Ack [1:0]

Ready1

32
Ready

32

Ack1

Address1

2 2

WData1

Bus Master 2
Req2

Address2

Control2

Ready

Ack2

Data1

Bus Slave 2

EN2

Control2
Ready2

Address2

Data2

Bus Slave 3

EN3

Control3
Ready3

Address3

Data3

WE1

RE1

WE2

RE2

RData2 WData2

3

3

3

2

2

Fig. 4.2 A bidirectional bus structure with two bus masters and three slaves

Bus
Master

Ack

Ready

32
RData [31:0]

From Slave

From Slave

Req To Arbiter

To Slave

From Arbiter

Burst [3:0]

Size [1:0]

WData [31:0]

Address [31:0]

Status [1:0]

Write

32

2

32

2

4

Fig. 4.3 Bus master interface

4.1 Parallel Bus Architectures 121

The IDLE signal indicates that the bus master has finished the data transfer. Once this signal is
produced, the master keeps issuing the last address and control signals of the current data transfer
until a new data transfer materializes on the bus. The bus master may also be in the midst of an
internal operation while exchanging data with a slave. For this particular event, the master may
momentarily stall the data transfer by issuing the BUSY signal.

The Write port, as its name implies, describes if the master is in the process of writing or reading
data as shown in Table 4.2.

The Size port describes the data bit width during a transfer and is shown in Table 4.3. A bus
master is allowed to transmit or receive data in eight bits (byte), 16 bits (half-word), 32 bits (word) or
64 bits (double-word), which cannot be changed during the transfer.

The Burst port describes the number of data packets to be sent or received by the bus master
according to Table 4.4. In this table, a bus master can transfer from one packet to over 32,000 packets
of data in a single burst.

Table 4.1 Bus master status control

Status[1:0]

0 0
0 1

1 0
1 1

Bus master status

Start Transfer (START)
Continue Transfer (CONT)
Finish Transfer (IDLE)
Pause Transfer (BUSY)

Table 4.2 Bus master write control

Write

0
1

Bus master write

Read
Write

Table 4.3 Bus master size control

Size[1:0]

0 0
0 1

1 0
1 1

Number of bits

8
16
32
64

122 4 System Bus

Figure 4.4 shows the I/O ports of a typical bus slave. The Req and Ack ports are omitted since the
slave is not authorized to initiate a data transfer. The Ready signal indicates if the slave is ready to
transmit or receive data once the transfer is initiated by the bus master. The WData, RData and
Address ports are used to write data, read data, and specify a destination address, respectively. The
control inputs, Status, Write, Size and Burst, describe the nature of the transfer as mentioned above.

Table 4.4 Bus master burst control

Burst[3:0]

0 0 0 0
0 0 0 1

0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1

0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1

1 0 1 0
1 0 1 1

1 1 0 0
1 1 0 1

1 1 1 0
1 1 1 1

1
2
4
8

16
32
64

128
256
512

1024
2048

4096
8192

16384
32768

Number of data packets

Bus
Slave

EN

Ready

From Master

From Decoder

Burst [3:0]

Size [1:0]

RData [31:0]

WData [31:0]

Status [1:0]

Write

32

2

32

2

Address [31:0]
32

To Master4

Fig. 4.4 Bus slave interface

4.1 Parallel Bus Architectures 123

The Enable (EN) input is produced by the address decoder, and based on the address generated by the
bus master to activate a particular slave.

4.2 Basic Write Transfer

From this point forward, we will be using timing diagrams as a standard tool to show the bus activity
between a master and a slave.

The bus protocol for write describes how a bus master writes data to a slave using a unidirectional
bus shown by the timing diagram in Fig. 4.5.

In the first clock cycle, the bus master sends out the destination address and control signals, A1 and
C1, to the slave regardless of the slave status. If the slave status is “Ready”, the actual data packet,
WData1, is sent in the second cycle along with the address and the control signals, A2 and C2, of the
next data packet. The slave should be able to read WData1 at the positive edge of the third clock cycle
if it is ready. However, there are instances where the slave may not be ready to receive or send data.
As an example, the slave changes its status to “Not Ready” in the second cycle of Fig. 4.6. As soon as
the slave’s status is detected at the positive edge of the third clock cycle, the master stalls the write
transfer. This means that the current data packet, WData2, and the next address and control signals,
A3 and C3, are repeated as long as the slave keeps its Not Ready status. The normal data transfer
resumes when the slave becomes Ready to receive the remaining data.

clock

Address

Controls

WData

Ready

WData1

A1

C1

A2

C2

A3

C3

WData2

slave reads WData1

Fig. 4.5 Basic write transfer

124 4 System Bus

Example 4.1 What happens to the write sequence when the slave changes its status frequently?
When the slave changes its status to Not Ready during a clock cycle, the master detects this change

at the next positive clock edge and holds the current data, next address and control signals until the
slave becomes Ready again.

An example where the slave changes its status frequently is shown in Fig. 4.7. In this figure, the
slave is Not Ready in the first cycle. Therefore, the first address and control packets, A1 and C1, are
prolonged, and no data is sent to the slave. When the slave produces a Ready signal during the second

clock

Address

Controls

WData

Ready

WData1

A2

C2

A3

C3

Not Ready
detection

A1

C1

WData2

slave reads WData1 slave reads WData2

Fig. 4.6 Basic write transfer including the case Ready = 0

clock

Address

Controls

WData

Ready

A1 A2 A3

C1 C2 C3

WData1

A4

C4

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

WData2 WData3

slave reads WData1 slave reads WData2

Fig. 4.7 A basic write transfer with varying Ready signal

4.2 Basic Write Transfer 125

cycle, the bus master produces the first data packet, WData1, and changes the address and control
signals to A2 and C2 at the positive edge of the third cycle. However, the slave decides to change its
status to Not Ready again during the third and fourth cycles. The master detects the status change at
the positive edge of the fourth and fifth clock cycles and responds by not changing A2, C2 and
WData1. The Ready signal in the fifth cycle prompts the master to produce A3, C3 and WData2 at the
beginning of the sixth cycle. The master holds these values until the beginning of the eighth cycle
when the slave changes its status to Ready again. At this point, the master sends the new A4, C4 and
WData3.

4.3 Basic Read Transfer

A basic read transfer is shown in Fig. 4.8. According to this figure, the slave produces data for the
master anytime after it issues the Ready signal. Once the master detects the Ready signal at a positive
edge, it reads the slave’s response at the next positive clock edge, and produces the next address and
control signals for the slave.

Example 4.2 What happens to the read sequence when the slave changes its status frequently?
Figure 4.9 shows an example where the slave changes its status frequently. In this figure, the slave

is Not Ready prior to the first cycle. Therefore, the master holds the first address and control packets,
A1 and C1, until the slave becomes Ready. When the master detects a Ready signal at the positive
edge of the third cycle, it responds by issuing a new set of address and control signals, A2 and C2, for
the slave. Within the third cycle, the slave also issues RData1 for the master. The master reads the
data at the positive edge of the sixth cycle after detecting a Ready signal from the slave.

RData RData1

clock

Address

Controls

A1

C1

Ready

A2

C2

master reads RData1

A3

C3

RData2

Fig. 4.8 Basic read transfer

126 4 System Bus

The rest of the read transactions in Fig. 4.9 follow the same protocol described above. In other
words, the master produces a new set of address and control signals for the slave every time it detects
a Ready signal from the slave; the slave issues a new data packet for the master after it becomes
Ready; and the master reads slave’s data when the slave is Ready.

4.4 Bus Master Status Change

It is possible that the bus master may be intermittently busy during a data transfer. In the event the bus
master is busy to carry out its own internal tasks, the bus protocol requires the bus master to hold the
address, control and data values as long as it is busy.

Figure 4.10 illustrates an example where the bus master becomes Busy in clock cycles 2, 9 and 10
while writing data to a slave. The master starts the data transfer by issuing Status = 00, which
corresponds to the Start condition according to Table 4.1, and promptly sends out the first address,
A1. In the second cycle, the bus master becomes busy and issues a Busy signal (Status = 11). As a
result, it repeats the previous address, A1, but is unable to dispatch any data even though Ready = 1
is produced by the slave during this period. In the third cycle, all internal operations cease, and the
bus master continues the normal data transfer by generating the Cont signal. The master also detects
that the slave is Ready at the positive edge of the third cycle and issues the second address, A2 along
with the first write data, WD1. In the next cycle, the master repeats A2 and WD1 because the slave
was not Ready at the positive edge of the fourth cycle. Despite the slave showing the Not Ready
condition in cycle 7, the normal data transfer sequence continues until cycle 9 where the bus master
changes its status to Busy again. This change, in turn, causes the bus master to extend the address,
A5, and the data, WD4, during cycles 9 and 10 irrespective of the slave status.

clock

Address

Controls

Ready

RData

A1 A2 A3

C1 C2 C3

RData 1 RData 2

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

master reads RData1 master reads RData2

Fig. 4.9 A basic read transfer with varying Ready signal

4.3 Basic Read Transfer 127

Example 4.3 What happens to the data transfer when the master changes its status frequently?
Assume that the bus master transfers two half words (16-bit wide data packets) to the addresses

0x20 and 0x22 of a memory block followed by 4 words (32-bit wide data packets) to the addresses
0x5c, 0x60, 0x64 and 0x68. The address map of this byte addressable memory is shown in Fig. 4.11
where the numbers in each box indicate an individual address.

During the data transfer, the master issues frequent Busy signals during cycles 2, 3, 4, 7 and 8 as
shown in the timing diagram in Fig. 4.12. Note that the slave is continuously Ready from cycle 2
until the end of the data transfer.

WData [31:0]

START BUSY

A1 A2 A3 A4 A5 A5

WD1 WD2

clock

Status [1:0]

Address [31:0]

Ready

CONT CONT

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle10 Cycle11

4DW4DW3DW

BUSY

slave
reads

WData1

slave
reads

WData2

slave
reads

WData3

slave
reads

WData4

A1 A6

WD5

slave
reads

WData5

Fig. 4.10 Bus master Status control change

20 21 22 23

5c 5d 5e 5f
60 61 62 63
64 65 66 67
68 69 6a 6b

Fig. 4.11 A byte-addressable memory

128 4 System Bus

The bus master starts transferring the first data packet by issuing Status = 00 (START), Burst =
0001 (two total data packets), Size = 01 (half word), Write = 1 and Address = 0x20 in the first cycle
according to Tables 4.1, 4.2, 4.3 and 4.4. Since the slave is Ready at the beginning of the second
cycle, the master prepares to dispatch the next address, 0x22, and the first write data, Data20.
However, in this cycle the master also becomes busy with internal operations until the beginning of
the fifth cycle and issues a Busy signal as shown in Fig. 4.12. The Busy condition requires the bus
master to repeat its control, address and data signals during this period. Therefore, when the master
finally changes its status to Cont in the fifth cycle, it is able to send Data20 in the same cycle, and
Data22 in the following cycle.

As soon as the first data transfer finishes, the master starts another write transfer in the sixth cycle
by issuing Status = 00 (START), Burst = 0010 (four total data packets), Size = 10 (word), Write = 1
and Address = 0x5C. Since the slave’s status is Ready, the master prepares to issue the next address
and data packets at the beginning of the seventh cycle. However, its internal operations interfere with
this process once again until the beginning of the ninth cycle. The master issues a Busy signal, and
repeats its control, address and data outputs. When the master finally changes its status to Cont in the
ninth cycle, it delivers the second address, 0x60, and the first data, Data5C. In the tenth cycle, the next
address, 0x64, and data, Data60, are issued, respectively. The master writes Data64 in the eleventh
cycle, and finishes the transfer by writing the last data, Data68, in the twelfth cycle. In this cycle, the
bus master changes its status to Idle, indicating the end of the data transfer.

4.5 Bus Master Handshake

Each bus master communicates with the arbiter using request-acknowledge signals, which form the
basic “handshake” protocol. The master starting a bus transfer issues a request signal, Req, requesting
the ownership of the bus from the arbiter. The arbiter grants this request by an acknowledgement
signal, Ack. If there is no ongoing data transfer, the acknowledgement is usually issued in the

Fig. 4.12 A write transfer example to the byte addressable memory in Fig. 4.11

4.4 Bus Master Status Change 129

following cycle after the master generates a request. However, the Ack signal may not be generated
many cycles after the Req signal is issued due to an existing data transfer.

Figure 4.13 shows the timing diagram of a handshake mechanism between a bus master and the
arbiter before the bus ownership is granted to the master. The double “*” sign on the Ack signal
signifies that this signal is generated many cycles after the arbiter has received a request from the
particular bus master. As soon as the master receives the Ack signal in the nth cycle, it changes its
status to Start in the (n + 1)th cycle, and sends out the first address, A1, regardless of the slave’s
status. If the slave is Ready, the master subsequently sends out the second address, A2, and the first
data, WData1, in the following cycle.

4.6 Arbiter

Bus arbitration is an essential part of bus management if there are more than one bus master
requesting the ownership of the bus. The arbitration is either hardware-coded and implemented as a
state machine or programmable and register-based.

Table 4.5 explains a hardware-coded bus arbitration mechanism between two bus masters. When
there are no requests to the arbiter, no Ack is generated to either bus master. However, if two requests
are issued at the same time, the acknowledge is issued to bus master 1 according to this table since
bus master 1 is assumed to have higher priority than bus master 2 as shown in the last row.

clock

Ready

Ack

Req

WData1

Status [1:0]

A1 A2

WData [31:0]

Address [31:0]

START CONT

Cycle n Cycle (n+1) Cycle (n+2) Cycle (n+3) Cycle (n+4)

A3

CONT

WData2

Cycle 1

Fig. 4.13 Bus master-arbiter handshake protocol

130 4 System Bus

The Table 4.5 is implemented as a state machine in Fig. 4.14. In this figure, the shorthand
representation of Req = (Req1 Req2) corresponds to bus master request inputs 1 and 2. Similarly,
Ack = (Ack1 Ack2) corresponds to the acknowledge signals generated by the arbiter for bus masters
1 and 2, respectively.

The arbiter is normally in the IDLE state when there are no pending requests. If there are
simultaneous requests from bus masters 1 and 2, the arbiter moves from the IDLE state to the ACK1
state, generates Ack1 = 1 for bus master 1, and ignores the request from bus master 2 by Ack2 = 0
according to Table 4.5. The inputs for this state-to-state transition are shown by Req = (1 x), where
Req1 = 1 and Req2 = x (don’t care). When bus master 1 terminates the data transfer by issuing
Req1 = 0, the arbiter either stays in the ACK1 state if there is another pending request from bus
master 1 or moves back to the IDLE state if there are no requests. However, if the arbiter receives
Req1 = 0 and Req2 = 1 while in the ACK1 state, it transitions to the ACK2 state, and issues
Ack2 = 1 to bus master 2.

Table 4.5 Bus arbitration table for two bus masters

Req1 Req2 Ack1 Ack2

0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 0

From IDLE State

IDLE

Req = (00)

Ack = (00)

ACK1 ACK2

Req = (1x)

Req = (00)

Req = (01)

Req = (1x) Req = (x1)Req = (01)

Req = (10)

)10(=kcA)01(=kcA

Ack = (Ack1 Ack2)
Req = (Req1 Req2)

Req = (00)

Fig. 4.14 Bus arbiter with two bus masters

4.6 Arbiter 131

In a similar fashion, the transition from the IDLE state to the ACK2 state requires Req2 = 1 and
Req1 = 0. Once in the ACK2 state, the arbiter grants the usage of the bus to bus master 2 by issuing
Ack2 = 1 and Ack1 = 0. When bus master 2 finishes the transfer by issuing Req2 = 0, the arbiter
either goes back to the IDLE state or transitions to the ACK1 state if Req1 = 1. In case the higher
priority bus master, bus master 1, requests the ownership of the bus by Req1 = 1 while the lower
priority bus master is in the middle of a transfer, the arbiter stays in the ACK2 state as long as
Req2 = 1 from bus master 2, ensuring the data transfer is complete.

Example 4.4 Design a hardware-coded arbiter with three bus masters where bus master 1 has the
highest priority followed by bus masters 2 and 3.

According to this definition, the bus master priorities can be tabulated in Table 4.6.

This table generates no acknowledge signal if there are no requests from any of the bus masters
(the top row). If only bus master 3 requests the bus, Ack3 = 1 is generated for bus master 3 (the
second row from the top). If there are two pending requests from bus masters 2 and 3, Ack2 = 1 is
issued for bus master 2 because it has higher priority than bus master 3 (fourth row from the top). If
all three bus masters request the ownership of the bus, the arbiter grants the bus to bus master 1 by
Ack1 = 1 because it has the highest priority with respect to the remaining bus masters (the last row).

The implementation of this priority table is shown in Fig. 4.15 as a state machine. The naming
convention in representing request and acknowledge signals in Fig. 4.15 is the same as in Fig. 4.14.
Therefore, Req = (Req1 Req2 Req3) corresponds to bus master requests 1, 2 and 3, and Ack = (Ack1
Ack2 Ack3) corresponds to the arbiter acknowledge signals for bus masters 1, 2 and 3, respectively.
Normally, the arbiter is in the IDLE state when there are no requests. If there are three simultaneous
requests from bus masters 1, 2 and 3, the arbiter transitions to the ACK1 state where it generates
Ack1 = 1 since bus master 1 has the highest priority. When bus master 1 finishes the data transfer, the
arbiter can either stay in the ACK1 state or transition to the ACK2 state or the ACK3 state depending
on the requests from all three bus masters. If there are no pending requests, the arbiter goes back to
the IDLE state.

Table 4.6 Bus arbitration table for three bus masters

Req1 Req2 Req3 Ack1 Ack2 Ack3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 0
1 0 0 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 1 0 0

From IDLE State

132 4 System Bus

The arbiter does not issue acknowledge signals to higher priority bus masters until an ongoing data
transfer of a lower priority bus master is complete. For example, in the ACK3 state the requests from
bus masters 1 and 2 are ignored as long as bus master 3 keeps its request high to continue transferring
data.

4.7 Bus Master Handover

The bus may be handed over to a different bus master if the current bus master lowers its request.
Figure 4.16 describes how this bus ownership takes place in a unidirectional bus. In this timing

diagram, the current bus master, bus master 1, starts a new transfer by generating a Start signal a cycle
after it receives Ack1 = 1 from the arbiter. The write transfer continues until the eighth cycle when
the bus master delivers its last address, A4. In cycle nine, the bus master delivers its last data, WA4,
lowers its request, and changes its status to Idle, thus terminating the data transfer. At the positive
edge of the tenth cycle, the arbiter detects Req1 = 0 and Req2 = 1, and switches the bus ownership
by issuing Ack1 = 0 and Ack2 = 1. The new master, bus master 2, starts a new transfer in the
eleventh cycle and generates its first address, B1. The write transfer continues until the fourteenth
cycle when bus master 2 delivers its last data, WB2.

IDLE

Req = (000)

Ack = (000)

ACK1 ACK2 ACK3

Req = (1xx)

Req = (000)

Req = (01x)

Req = (001)

Req = (1xx)

Req = (x1x)

Req = (xx1)

Req = (001)

Req = (01x) Req = (001)

Req = (10x) Req = (010)

Req = (1x0)

)100(=kcA)010(=kcA)001(=kcA

Ack = (Ack1 Ack2 Ack3)
Req = (Req1 Req2 Req3)

Req = (000)

req = (000)

Fig. 4.15 Bus arbiter with three bus masters

4.6 Arbiter 133

4.8 Serial Buses

Peripheral devices and external buffer memories that operate at low frequencies communicate with
the processor using a serial bus.

There are currently two popular serial buses used in low-speed communication. The Serial
Peripheral Interface (SPI) was introduced in 1979 by Motorola as an external microprocessor bus for
the well-known Motorola 68000 microprocessor. The SPI bus normally requires four wires; however,
wire count increments by one every time a peripheral device is added to the system. The second bus,
Inter-Integrated Circuit (I2C), was developed by Philips in 1982 to connect Philips CPUs to peripheral
chips in a TV set. This bus requires only two wires, but it is considerably slower compared to the SPI
bus.

Serial Peripheral Interface (SPI)

SPI is designed as a very straightforward serial bus. Four signals establish all the serial communi-
cation between a CPU and a peripheral device. The SPI clock signal, SCK, is distributed to all the
slaves in a system, and forces each peripheral to be synchronous with a single master. The Slave
Select signal (SS) is an active-low signal, and is used to enable a particular slave prior to data transfer.
Serial-Data-Out (SDO) or Master-Out-Slave-In (MOSI) port is what the master uses to send serial
data to a slave. Serial-Data-In (SDI) or Master-In-Slave-Out (MISO) port is what the master uses to
read serial data from a slave.

Figure 4.17 shows the serial bus configuration between the bus master and a single slave. All SPI
signals with the exception of SDI must be initiated by the bus master.

clock

Req2

Status [1:0] START

Ready

Ack2

Ack1

Req1

Address [31:0] A1 A2 A3 B2

WData [31:0] 1BW2AW1AW WB2WA3

B1A4

IDLE

WA4

CONT START CONT IDLE

Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10 Cycle11 Cycle12 Cycle13 Cycle14

A4 B2

Fig. 4.16 Bus master handover protocol

134 4 System Bus

When the bus master is connected to a multitude of slaves, it needs to generate an active-low Slave
Select signal for each slave as shown in Fig. 4.18.

SPI is considered a single-master serial communication protocol. This means that only one master
is assigned to initiate and carry out all serial communications with slaves. When the SPI master
wishes to send or request data from a slave, first it selects a particular slave by lowering the
corresponding SS signal to logic 0, and then producing a clock signal for the slave as shown in
Fig. 4.19. Once the select and clock signals are established, the master can send out serial data to the
selected slave at the negative edge of each SCK from its SDO port while simultaneously sample slave
data at the positive edge of each SCK at the SDI port. According to the SPI protocol, the slave is
capable of sending and receiving data except it cannot generate SCK.

SCK
SDO
SDI
SS1

SPI Master

SCK
SDI
SDO SS

SPI Slave3

SS2
SS3

SS

SPI Slave2

SS

SPI Slave1

SCK
SDI
SDO

SCK
SDI
SDO

Fig. 4.18 SPI bus between a master and three slaves

SCK

SDI
SDO

SS

SPI Master

SCK
SDI
SDO
SS

SPI Slave

Fig. 4.17 SPI bus between a master and a single slave

4.8 Serial Buses 135

In the example in Fig. 4.19, the master sends out serial data, DataM1 (most significant bit) to
DataM4 (least significant bit), from its SDO port at the negative edge of SCK, and samples slave data,
DataS1 (most significant bit) to DataS4 (least significant bit), at its SDI port at the positive edge of
SCK. The slave, on the other hand, can also dispatch serial data packets, DataS1 (most significant bit)
to DataS4 (least significant bit), from its SDO port at the negative edge of SCK, and sample master
data, DataM1 (most significant bit) to DataM4 (least significant bit), at its SDI port at the positive
edge of SCK.

There are four communication modes available for the SPI bus protocol. Each protocol is cate-
gorized according to the initial SCK level (the logic level at which SCK resides at steady state) and
the data generation edge of the SCK. Each communication mode is shown in Fig. 4.20.

MODE 0 communication protocol assumes that the steady state level for SCK is at logic 0. Each
data bit is generated at the negative edge of SCK by the master (or the slave), and is sampled at the
positive edge. A good example of the MODE 0 protocol is shown in Fig. 4.19.

MODE 1 still assumes the steady state level of SCK to be at logic 0, but the data generation takes
place at the positive edge of SCK. Both the master and the slave read data at the negative edge in this
mode.

SCK is initially at logic 0
Data release at the negative edge of SCK
Data fetch at the positive edge of SCK

SCK

SDI

SDO

SS

Master samples data at SDI port

DataS1 DataS2 DataS3 DataS4

DataM1 DataM2 DataM3 DataM4

Slave dispatches data from SDO port

Master dispatches data from SDO port

Slave samples data at SDI port

Fig. 4.19 SPI bus protocol between a master and a single slave

136 4 System Bus

MODE 2 switches the steady state level of SCK to logic 1. Data is released at the positive edge of
SCK and is sampled at the negative edge as shown in Fig. 4.20.

MODE 3 also assumes the steady state level of SCK at logic 1. However, data is released at the
negative edge of SCK and is sampled at the positive edge.

MODE 0

SCK is initially at logic 0
Data release at the negative edge of SCK

SCK

DATA

MODE 1

SCK is initially at logic 0
Data release at the positive edge of SCK

SCK

DATA

MODE 2

SCK is initially at logic 1
Data release at the positive edge of SCK

MODE 3

SCK is initially at logic 1
Data release at the negative edge of SCK

SCK

DATA

SCK

DATA

Data 1 Data 2

Data 1 Data 2 Data 3

Data 1 Data 2

Data 1 Data 2 Data 3

Fig. 4.20 SPI bus protocol modes

4.8 Serial Buses 137

A master-slave pair must use the same mode during a data exchange. If multiple slaves are used,
and each slave uses a different communication mode, the master has to reconfigure itself each time it
communicates with a different slave.

SPI bus has neither an acknowledgement mechanism to confirm receipt of data nor it offers any
other data-flow control. In reality, an SPI bus master has no knowledge if a physical slave exists on
the receiving end, or the data it sends is properly received by the slave. Most SPI implementations
pack a byte of data in a clock burst which is eight clock periods long. However, many variants of SPI
today use 16 or even 32 clock cycles to send more data bits in a burst in order to gain speed.

Inter Integrated Circuit (I2C)

Inter Integrated Circuit (I2C) is a multi-master bus protocol that exchanges data between bus devices
(masters and slaves) using only two lines, Serial Clock (SCL) and Serial Data (SDA).

Slave selection with slave select signals, address decoders or arbitrations is not necessary for this
particular bus protocol. Any number of slaves and masters can be employed in an I2C bus using only
two lines.

The data rate is commonly at 100 Kbps which is the standard mode. However, the bus can operate
as fast as 400 Kbps or even at 3.4 Mbps at high speed mode.

Physically, the I2C bus consists of the two active wires, SDA and SCL, between a master and a
slave device as shown in Fig. 4.21. The clock generation and data-flow are both bidirectional. This
protocol assumes the device initiating the data transfer to be the bus master; all the other devices on
the I2C bus are regarded as bus slaves.

In a typical I2C bus, both the bus master and the slave have two input ports, SCL In and SDA In,
and two output ports, SCL Out and SDA Out, as shown in Fig. 4.21. When a master issues SCL
Out = 1 (or SDA Out = 1), the corresponding n-channel MOSFET turns on, and pulls the SCL line
(or SDA line) to ground. When the master issues SCL Out = 0 (or SDA Out = 0), it causes the
corresponding n-channel transistor to turn off, resulting SCL (or SDA) afloat. However, neither SCL

SCL In

SCL Out

SCL

SDA In

SDA Out

SDA

Rpu

VDD

Rpu

VDD

SCL In

SCL Out

SDA In

SDA Out

I2C SlaveI2C Master

Fig. 4.21 I2C architecture

138 4 System Bus

nor SDA is truly left floating in an undetermined voltage level. The pull-up resistor, Rpu, immediately
lifts the floating line to the power supply voltage level, VDD. On the other side of the bus, the I2C
slave detects the change at the SCL In (or SDA In) port, and determines the current bus value.

Each slave on the I2C bus is defined by an address field of either seven bits or ten bits as shown in
Fig. 4.22. Each data packet following the address is eight bits long. There are only four control
signals that regulate the data flow: Start, Stop, Write/Read and Acknowledge.

The seven-bit and ten-bit versions of read and write data transfers are shown in Fig. 4.22. The top
sequence in this figure explains how a bus master writes multiple bytes of data to a slave that uses a
seven-bit address. The master begins the sequence by generating a Start bit. This acts as a “wake-up”
call to all the slave devices and enables them to watch for the incoming address. This step is followed
by a seven-bit long slave address. The bus master sends the most significant address bit first. The
remaining address bits are released one bit at a time until the least significant bit. At this point, all
slave devices compare the bus address just sent out with their own addresses. If the address does not
match, the slave simply ignores the rest of the incoming bits at the SDA bus, and waits for the
beginning of the next bus transfer. If the addresses match, however, the addressed slave waits for the
next bit that indicates the type of the transfer from the master. When the master sends out a Write bit,
the slave responds with an acknowledge signal, SAck, by pulling the SDA line to ground. The master
detects the acknowledge signal, and sends out the first eight-bit long data packet. The format for
transmitting data bits is the same as the address: the most significant bit of the data packet is sent out
first followed by the intermediate bits and the least significant bit. The slave produces another
acknowledgement when all eight data bits are successfully received. The data delivery continues until
the master completes sending all of its data packets. The transfer ends when the master generates a
Stop signal.

The second entry in Fig. 4.22 shows the write transfer to a bus slave whose address is ten bits long.
Following the Start bit, the bus master sends out a five-bit preamble, 11110, indicating that it is about
to send out a ten-bit slave address. Next, the master sends out the two most significant address bits

Master = Write Addr Mode = 7 bits

START Slave Address Write SAck Data1 SAck STOP

tib1tib1stib8tib1tib1stib7tib1 8 bits 1 bit

Master = Write Addr Mode = 10 bits

START Slave Address Write SAck

1 bit msb (2 bits) 1 bit 1 bit

Slave Address SAck

1 bit

11110

5 bits lsb (8 bits)

Data1

8 bits 1 bit

DataN SAck STOP

1 bit8 bits 1 bit

SAck DataN

SAck

Master response Slave response

Master response Slave response

Master = Read Addr Mode = 7 bits

START Slave Address Read SAck Data1 MNack STOP

tib1tib1stib8tib1tib1stib7tib1 8 bits 1 bit

MAck DataN

Master response Slave response

Master = Read Addr Mode = 10 bits

START Slave Address Read SAck

1 bit msb (2 bits) 1 bit 1 bit

Slave Address SAck

1 bit

11110

5 bits lsb (8 bits)

Data1

8 bits 1 bit

DataN

8 bits

MAck

Master response Slave response

MNack STOP

1 bit1 bit

Fig. 4.22 I2C modes of operation

4.8 Serial Buses 139

followed by the Write bit. When the delivery of all these entries is acknowledged by the slave, the
master sends out the remaining eight address bits. This is followed by another slave acknowledge-
ment, and the master transmitting all of its data bytes to the designated slave. The data transfer
completes when the bus master generating a Stop bit.

The third and the fourth entries in Fig. 4.22 show the seven-bit and ten-bit read sequences initiated
by the bus master. In each sequence, after receiving the Start bit and the address, the designated slave
starts sending out data packets to the master. After successfully receiving the first data byte, the
master responds to the slave with an acknowledge signal, MAck, after which the slave transmits the
next byte. The transfer continues until the slave delivers all of its data bytes to the master. However,
right before the master issues a Stop bit, it generates a no-acknowledgement signal, MNack, signaling
the end of the transfer as shown in Fig. 4.22.

The Start and Stop signals are generated by the combination of SCL and SDA values as shown in
Fig. 4.23. According to this figure, a Start signal is produced when the SDA line is pulled to ground
by the bus master while SCL = 1. Similarly, a Stop signal is created when the bus master releases the
SDA line while SCL = 1.

Figure 4.24 shows when data is permitted to change, and when it needs to be steady. The I2C
protocol only allows data changes when SCL is at logic 0. If the data on SDA changes while SCL is at
logic 1, this may be interpreted as a Start or a Stop condition depending on the data transition.
Therefore, the data on SDA is not allowed to change as long as SCL = 1.

Start condition

SCL

SDA

Stop condition

Fig. 4.23 I2C data stream start and stop conditions

Data change is
allowed

SCL

SDA

Data change is
NOT allowed
(Data is assumed
VALID)

Fig. 4.24 I2C data change conditions

140 4 System Bus

Figure 4.25 explains the timing diagram in which the bus master writes two bytes of data to a slave
with a seven-bit address. According to this figure, the write process starts with transitioning the value
at the SDA to logic 0 while SCL = 1. Following the Start bit, the slave address bits are delivered
sequentially from the most significant bit, SA[6], to the least significant bit, SA[0]. Each address bit is
introduced to the SDA only when SCL is at logic 0 according to the I2C bus protocol shown in
Fig. 4.24. The Write command and the subsequent slave acknowledgement are generated next. The
data bits in Byte 0 and Byte 1 are also delivered to the SDA starting from the most significant data bit,
D[7]. The write sequence finishes with the SDA transitioning to logic 1 while SCL = 1.

Figure 4.26 shows the timing diagram of reading two bytes of data from a slave. Following the
Start bit and the slave address, the master issues the Read command by SDA = 1. Subsequently, bytes
of data are transferred from the slave to the master with the master acknowledging the delivery of
each data byte. The transfer ends with the master not acknowledging the last byte of data, MNack,
and generating the Stop bit.

Here comes the reason why the I2C bus protocol excels in maintaining flawless communication
between any number of masters and slaves using only two physical wires. For example, what happens
if two or more devices are simultaneously trying to write data on the SDA? At the electrical level,
there is actually no contention between multiple devices trying to simultaneously enter a logic level
on the bus. If a particular device tries to write logic 0 to the bus while the other issues logic 1, then the
physical bus structure with pull-up resistors in Fig. 4.21 ensures that there will be no contention
between these two devices, and the bus transitions to logic 0. In other words, in any conflict, logic 0
always wins!

Master = Write Addr Mode = 7 bits

SCL

SDA SA[6] SA[5] SA[0] D[6] D[0]D[7] D[6] D[0]D[7]

kcASkcASkcASetirWStart Stop1etyB0etyBsserddAevalS

Fig. 4.25 I2C write timing diagram

Master = Read Addr Mode = 7 bits

SCL

SDA SA[6] SA[5] SA[0] D[6] D[0]D[7] D[6] D[0]D[7]

kcAMkcASdaeR MNackStart Stop1etyB0etyBsserddAevalS

Fig. 4.26 I2C read timing diagram

4.8 Serial Buses 141

This physical structure of the I2C bus also allows bus masters to be able to read values from the
bus or write values onto the bus freely without any danger of collision. In case of a conflict between
two masters (suppose one is trying to write logic 0 and the other logic 1), the master that tries to write
logic 0 gains the use of the bus without even being aware of the conflict. Only the master that tries to
write logic 1 will know that it has lost the bus access because it reads logic 0 from the bus while
trying to write logic 1. In most cases, this device will just delay its access and try it later.

Moreover, this bus protocol also helps to deal with communication problems. Any device present
on the bus listens to the bus activity, particularly the presence of Start and Stop bits. Potential bus
masters on the I2C bus detecting a Start signal will wait until they detect the Stop signal before
attempting to access the bus. Similarly, unaddressed slaves go back to hibernation mode until the Stop
bit is issued.

Similarly, the master-slave pair is aware of each other’s presence by the active-low acknowledge
bit after delivering each byte. If anything goes wrong and the device sending the data does not detect
acknowledgment from the recipient, the device sending data simply issues a Stop bit to stop the data
transfer and releases the bus.

An important element of the I2C communication is that the master device determines the clock
speed in order to synchronize with the slave. If there are situations where an I2C slave device is not
able to keep up with the master because the clock speed is too high, the master can lower the
frequency by a mechanism referred to as “clock stretching”. According to this mechanism, an I2C
slave device is allowed to hold the SCL at logic 0 if it needs the bus master to reduce the bus speed.
The master is required to observe the SCL signal level at all times and proceeds with the data transfer
until the line is no longer pulled to logic 0 by the slave.

All in all, both SPI and I2C offer good support for low speed peripheral communication. SPI is
faster and better suited for single bus master applications where devices stream data to each other,
while I2C is slower and better suited for multi-master applications. The two protocols offer the same
level of robustness and have been equally successful among vendors producing Flash memories,
Analog-to-Digital and Digital-to-Analog converters, real-time clocks, sensors, liquid crystal display
controllers etc.

142 4 System Bus

Review Questions

1. A CPU reads three bursts of data from a 32-bit wide byte-addressable memory in the following
manner:
• It reads four bytes with the starting address 0xF0,
• Immediately after the first transaction, the CPU reads two half-words from the starting address

0xF4,
• Immediately after the second transaction, it reads one word from the starting address 0xF8.

The contents of the memory are as follows:

The unidirectional bus protocol states that the data communication between a bus master and a
slave requires generating the address and control signals in the first cycle, and the data in the second
cycle. The bus master always issues a Start signal to indicate the start of a data transmission. After an
initial address, the master changes its status to Cont to indicate the continuation of the data transfer.
The bus master issues Idle to indicate the end of the data transfer or Busy to indicate its incapability to
produce address and control signals (and data if applicable). Any time the bus master is Busy, it
repeats its address and control signals (and data if applicable) from the previous clock cycle. Simi-
larly, if a Ready signal is not generated by the slave, the bus master also repeats its address and
control signals (and data if applicable) in the next clock cycle. At the end of a data transfer when the
bus master finishes issuing new addresses, it transitions to the Idle state even though there may be a
residual data read or a write still taking place in the subsequent clock cycle(s).

Fill in the blanks of the following timing diagram to complete all three data read bursts in the order
specified above.

start busy busy busy busy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

clock

status

burst

size

Addr

RData

Ready

0xCC 0xDD 0xEE 0xFF
0x88 0x99 0xAA 0xBB

0xF0
0xF4

0x44 0x55 0x66 0x77
0x00 0x11 0x22 0x33

0xF8
0xFC

31 0

4.8 Serial Buses 143

2. The following bidirectional bus maintains the communication between a CPU and a memory.

Addr

WData

RData

E
nA

ddr

E
nW

D
ata

E
nR

D
ata

S
el

A
dd

r
S

el
W

D
at

a
S

el
R

D
at

a

32

32

32

S
el

A
dd

r
S

el
W

D
at

a
S

el
R

D
at

a

Addr

Data

32

32

S
el

A
dd

r
S

el
W

D
at

a
S

el
R

D
at

a

32

WE RE

CPU Memory

A1
A2
A3
A4
A5
A6
A7
A8

Bus Controller

Bus

R
ea

dy

CPU
I/F

Memory
I/F

The CPU has the Addr, WData outputs to dispatch address and write-data, respectively. It also
uses the RData output to receive data from the memory.

The memory, on the other hand, has the Addr input to receive address from the CPU, and a
bidirectional Data port to receive and send data.

To validate the address and write-data, the EnAddr and EnWData signals are issued to the bus
controller, respectively. To validate read-data, the memory dispatches the Ready signal to the con-
troller. With all these inputs from the CPU and the memory, the controller generates the WE and RE
signals for the memory to write and read data, and the EnRData signal for the CPU to validate the
read data. The signals, SelAddr, SelWData and SelRData are also generated by the bus controller to
manage the timely distribution of address, write-data and read-data using a single 32-bit wide bidi-
rectional bus as shown in the figure above.

The write process to the memory requires a valid address with data as shown below:

clock

Addr

Data

Valid Addr

WE

RE

Data

data written

144 4 System Bus

The read process from the memory requires a cycle delay to produce valid data once an address is
issued. This is shown below:

(a) Since the bus protocol requires data following a valid address, construct a timing diagram to write
W1 into A1, W2 into A2, W3 into A3 and W4 into A4. Without any delay, perform a read
sequence to fetch data packets, R1, R2, R3 and R4, from the memory addresses A5, A6, A7 and
A8, respectively. Plot the 32-bit bus, Bus[31:0], and the control signals WE, RE, SelAddr,
SelWData and SelRData for the write and read sequences.

(b) Design the CPU and the memory interfaces with the bidirectional bus such that these two data
transfers are possible (note that these interfaces are not state machines).

3. A bus master writes four bytes of data to the following address locations of a 32-bit wide
byte-addressable memory (slave) organized in a Little Endian format:

Following the write cycle, the same bus master reads data (words) from the following slave
addresses:

(a) Draw the memory contents after writing and reading take place.

clock

Addr

Data

Valid Addr

WE

RE

Data

data read

Address Data

0x0D 0x11
0x11 0x22
0x15 0x33
0x19 0x44

Address Data

0x3C 0xAABBCCDD
0x40 0x55667788

4.8 Serial Buses 145

(b) If the bus master generates the first address during the first clock cycle and keeps generating new
addresses every time the slave responds with a Ready signal, what will be the values of the
address, control and data entries in the timing diagram below? Assume that the bus master does
not produce any Status signal comprised of Start, Cont, Busy and Idle.

clock

address

WE

size

burst

WData

RData

ready
1 2 3 4 5 6 7 8 9 10 11 12 13

4. A bus master reads four data packets starting from the address, 0x00, and ending at the address,
0x03, from an eight-bit wide memory. Immediately after this transaction, the bus master writes
0x00, 0x11, 0x22 and 0x33 into the addresses 0x04, 0x05, 0x06 and 0x07 respectively. This
memory contains the following data after this operation:

Assuming the unidirectional bus protocol is the same as described in question 1, fill in the blanks
of the timing diagram below to accommodate each read and write transfer.

0xAA

0xBB

0xCC

0xDD

0x00

0x11

0x22

0x33

00

01

02

03

04

05

06

07

7 0

146 4 System Bus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

busy busy

clock

Status

Write

Burst

Size

Address

WData

RData

Ready

5. A bus master is connected to four memory blocks acting as bus slaves in a bidirectional bus where
32-bit address, write data and read data are sent or received on the same bus. The I/O ports of the
bus master and the slaves are shown below:

RData[31:0]

WData[31:0]

Addr[31:0]

EN

W/R

Ready

Bus Master

Addr/Data[31:0]

EN

WE

Ready

Bus Slave

EnAddr

The bus master has separate read and write data ports to receive and transmit data, respectively.
The Enable, and W/R ports enable the bus master to write data, i.e. EN = 1 and W/R = 1. Similarly,
EN = 1 and W/R = 0 enable the bus master to read. Since address and data entries share the same
bus, the bus master provides a third control signal, EnAddr, to enable the address. The bus master
determines the slave’s readiness through its Ready signal.

The slave, in contrast, has only one port for receiving address or data. EN = 1 and WE = 1 writes
data to the slave. If data needs to be read from the slave, then EN = 1 and WE = 0 are used.

Draw the architectural diagram of such a system. Make sure to use the most significant address
bits, Addr[31:30], to select one of the slaves for the bus master to read or write data.

4.8 Serial Buses 147

6. A 16-bit digital system with unidirectional data and address buses is given below.

Bus Arbiter

Memory
Select

Reqm

Reqc

Reqd

Grantm

Grantc

Grantd

Addrd

Addrc

Addrm

WDatam

WDatac

MPU

Co-proc 1

Co-proc 2

RDatam

RDatac

3 3

DIn1

Addr1 DOut1

DIn2

Addr2 DOut2

DIn3

Addr3 DOut3

Memory 1

Memory 2

Memory 3

3

16

16

16

16

16

16

16

16

16

WE1, RE1

WE2, RE2

WE3, RE3RDatad
WDatad

This system contains three bus masters, a Microprocessor Unit (MPU), Co-processor 1 and
Co-processor 2. It also contains three slaves, Memory 1, Memory 2 and Memory 3.

A bus arbiter is responsible for prioritizing the ownership of the bus among the three bus masters.
The MPU has the highest and Co-processor 2 has the lowest priority to use the bus. When the arbiter
gives the ownership of the bus to a bus master, the bus master is free to exchange data with a slave as
long as it keeps its request signal at logic 1. When the bus master lowers its request signal after
finishing a data transfer, the arbiter also lowers its grant to assign the bus to another bus master
according to the priority list.

As long as a bus master owns the bus, it can send a 16-bit wide write data (WData) to the selected
slave memory at a specific address (Addr). Similarly, the bus master can read data from the slave
using the 16-bit wide read data (RData) bus.

For the sake of simplicity, the control signals on the schematic are not shown; however, each
memory has the Read Enable (RE) and Write Enable (WE) ports to control data storage.

(a) With the description above, draw the state diagram of the bus arbiter.
(b) While the MPU and Co-processor 1 remain at idle, Co-processor 2 requests two data transfers.

148 4 System Bus

Note that Co-processor 2 and Memory 1 operate at a clock frequency twice as high as the clock
frequency for Memory 2. Both memories have a read latency (access time) of one clock cycle, i.e.
data becomes available in the next clock cycle after issuing a valid address with RE = 1. Write
happens within the same clock cycle when the address is valid and WE = 1.

Including Co-processor 2’s request (reqd), grant (grantd), address (Addrd) and the control signals
(RE1, WE1, RE2, WE2) for each memory, create a timing diagram that shows data transfers between
Memory 1 and Memory 2 using the timing diagram template below.

AAAA
BBBB
0000

15 0

ABC0
ABC1
ABC2

0000
0000

CCCC

15 0
0000
0001
0002

Memory 1 Memory 2
WE1
RE1

WE2
RE2clk1 clk2

Din1

DOut1

Addr1

Din2

DOut2

Addr2

clk1

reqd

grantd

Addrd

RE1

DOut1

WE2

RE2

DOut2

WE1

clk2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4.8 Serial Buses 149

7. The waveforms below describe serial transmission of data using two known bus protocols, I2C
and SPI.

(a) A bus master is writing data to an I2C compliant slave according to the timing diagram below.
Assuming that the bus master uses the negative edge of SCLK to produce data on the SDA
bus, determine the slave address and the data packets in binary format.

(b) Now, the bus master transmits the same data packets on the SPI bus. Using the timing diagram
below, show the value of each data bit at the master’s Serial Data Out (SDO) terminal.
The bus master uses Mode3 convention and produces data at the negative edge of SCK. Note
that, the master may pause in between sending data packets, but the SDO bus should retain the
value of the least significant bit of each data packet during a data transfer.

SCK

SS

SDO ?

First data packet Second data packet

Projects

1. Implement the unidirectional bus with two bus masters and three slaves using Verilog. Make sure
both of the bus masters are able to produce status signals, START, CONT, BUSY and IDLE to
transfer data packets from one byte to two words (64 bits) on a 32-bit wide bus. Similarly, ensure
that all the slaves are able to generate Ready signals compliant to the parallel bus protocol given in
this chapter. Design the bus arbiter accordingly. Verify each individual block, i.e. the bus master,
the slave and the arbiter, and the overall system functionality.

2. Implement the bidirectional bus with two bus masters and three slaves using Verilog. Make sure
that the bus masters and slaves are fully compliant to the parallel bus protocol given in this
chapter. Design this bus arbiter. Again, verify each individual block, i.e. the bus master, the slave
and the arbiter, and the entire system functionality.

3. Implement the SPI bus with one bus master and three slaves using Verilog. Verify the system
functionality with timing diagrams.

4. Implement the I2C bus with seven-bit addressing mode using Verilog. Verify the system func-
tionality with timing diagrams.

150 4 System Bus

5Memory Circuits and Systems

Basic serial and parallel bus structures and different forms of data transfer between a bus master and a
slave were explained in Chap. 4. Regardless of the bus architecture, the bus master is defined as the
logic block that initiates the data transfer while the slave is defined as the device that can only listen
and exchange data with the master on demand. Both devices, however, include some sort of a
memory, and in slave’s case this can be a system memory or a buffer memory that belongs to a
peripheral device.

Depending on the read and write speed, capacity and permanence of data, system memories and
peripheral buffers can be categorized into three different forms. If fast read and write times are desired,
Static Random Access Memory (SRAM) is used despite its relatively large cell size compared to
other types of memory. SRAM is commonly used to store small temporary data, and it is typically
connected to a high speed parallel bus in a system. If large amounts of storage are required, but slow
read and write speed can be tolerated, then Dynamic Random Access Memory (DRAM) should be the
main memory type to use. DRAMs are still connected to the high speed parallel bus and typically
operate with receiving or delivering bursts of data. A typical DRAM cell is much smaller than an
SRAM cell with significantly lower power consumption. The main drawbacks of DRAM are the high
data read and write latencies, the complexity of memory control and management of data.

The permanence of data yet calls for a third memory type whose cell type consists of a
double-gated Metal-Oxide-Semiconductor (MOS) transistor. Data is permanently stored in the
floating gate of the device until it is overwritten with new data. Electrically-Erasable-Programmable-
Read-Only-Memory (E2PROM) or Flash memory fit into this type of device category. The advantage
of this memory type is that it keeps the stored data even after the system power is turned off.
However, this memory is the slowest compared to all other memory types, and it is subject to a
limited number of read and write cycles. Its optimal usage is, therefore, to store permanent data for
Built-In-Operating-Systems (BIOS), especially in hand-held devices where power consumption is
critical. A typical computing system can contain one or all three types of memories depending on the
usage and application software.

The basic functionality of SDRAM, E2PROM and Flash memories in this chapter is inspired from
Toshiba memory datasheets [1–6]. The more recent serial Flash memory with SPI interface is based
on the datasheet of an Atmel Flash memory [7]. In each case, the functionality of the memory block
has been substantially simplified (and modified) compared to the original datasheet in order to
increase reader’s comprehension for the subject matter. The purpose here is to show how each
memory type operates in a system, covering only the basic modes of operation to train the reader
rather than going into the details of the actual datasheets. The address, data and control timing
constraints for each memory have also been simplified compared to the datasheets. This allows us to

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7_5

151

http://dx.doi.org/10.1007/978-3-030-00223-7_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-00223-7_5

design the bus interface for each memory type with ease. For the sake of simplicity, we avoided
duplicating the port names, exact timing requirements and functionality details that can be found in
the actual datasheets. After reading this chapter, interested readers are encouraged to study the
referenced datasheets prior to carrying out their design tasks.

5.1 Static Random Access Memory

Static Random Access Memory (SRAM) is one of the most fundamental memory blocks in digital
design. Among all different types of memory, SRAM ranks the fastest; however, its large memory
cell size limits its usage for a variety of applications.

A typical SRAM architecture shown in Fig. 5.1 is composed of four different blocks: the SRAM
core, the address decoder, the sense amplifier and the internal SRAM controller. The memory core
retains immediate data. The sense amplifier amplifies the cell voltage to full logic levels during read.
The address decoder generates 2N Word Lines (WL) from an N-bit address. Finally, the controller
generates self-timed pulses required during a read or write cycle.

Ad
dr

es
s

D
ec

od
er

Internal SRAM
Controller

AddrIn[7:0]

EN

WE

EnWL WritePulse

WL [255:0]
8

031
255

0

DOut[31:0]

DIn[31:0]

SRAM Core

256

ReadPulse

Precharge

Sense Amplifier

32

32

Fig. 5.1 A typical SRAM architecture with eight-bit address and 32-bit data

152 5 Memory Circuits and Systems

Each SRAM cell is composed of two back-to-back inverters like ones used in a latch, and two
N-channel Metal Oxide Semiconductor (NMOS) pass-gate transistors to isolate the existing data in
the cell or allow new data into the cell as shown in Fig. 5.2. When data needs to be written into a cell,
WL = 1 turns on both NMOS transistors, allowing the true and complementary data to be simulta-
neously written into the cell from the Bit and Bitbar inputs. If we assume node A is initially at logic 0,
node B at logic 1 and WL = 0, the logic level at WL turns off both NMOS transistors, and the latch
becomes completely isolated from its surroundings. As a result, logic 0 level is contained in the cell.
But, if WL = 1, Bit node = 1 and Bitbar = 0, the logic level at WL turn on both of the NMOS
transistors, allowing the values at the Bit and Bitbar overwrite the existing logic levels at the nodes A
and B, changing the stored bit in the cell from logic 0 to logic 1.

Similarly, if the data needs to be read from the cell, both NMOS transistors are turned on by
WL = 1, and the small differential potential developed between the Bit and Bitbar outputs are
amplified by the sense amplifier to reach to a full logic level at the SRAM output.

The data write sequence starts with EN (Enable) = 1 and Write Enable (WE) = 1. This combi-
nation precharges the Bit and Bitbar nodes in the SRAM core to a preset voltage value and prepares
the memory for a write. When the precharge cycle is complete, the controller enables the address
decoder by EnWL = 1 as shown in Fig. 5.1. The decoder activates a single WL input out of 256 WLs
according to the value provided at AddrIn[7:0]. Within the same time period, the controller also
produces WritePulse = 1, which allows the valid data at DIn[31:0] to be written to the specified
address.

Reading data from the SRAM core is performed by EN = 1 and WE = 0. Similar to the write
operation, the controller first precharges the SRAM core prior to reading data, and then turns on the
address decoder. According to the address value at AddrIn port, the WL input to a specific row is
activated, and the data is read from each cell to the corresponding Bit and Bitbar nodes from the
designated row. The sense amplifier amplifies the cell voltage to full logic levels and delivers the data
to DOut port.

The SRAM I/O timing can be synchronized with clock as shown in Figs. 5.3 and 5.4. In Fig. 5.3,
when EN and WE inputs are raised to logic 1, SRAM goes into the write mode, and the valid data is
written to a specified address at the next positive clock edge. In Fig. 5.4, when EN = 1 and WE = 0,
SRAM is enabled and operates in the read mode. The core delivers valid data sometime after the next
positive edge of the clock.

WL

Bit Bitbar
A B

Fig. 5.2 SRAM memory cell

5.1 Static Random Access Memory 153

One of the important tasks to integrate an SRAM module to an existing system is to design its bus
interface. Figure 5.5 shows the block diagram of such an implementation. The bus interface basically
translates all bus control signals to SRAM control signals (and vice versa), but seldom makes any
modifications on address or data. In the unidirectional bus protocol described in Chap. 4, SRAM is
considered to be a bus slave that exchanges data with the bus master on the basis of a Ready signal.
Also as mentioned in Chap. 4, a bus master has four control signals to configure the data transfer. The
Status signal indicates if the bus master is sending the first data packet (START) or is in the process of
sending remaining data packets (CONT). The bus master may also send IDLE or BUSY signals to
indicate if it has finished the current data transfer or is busy with an internal task, respectively. The
Write signal specifies if the bus master intends to write data to a slave or read from a slave. The Burst
signal designates the number of data packets in the transaction, and the Size signal defines the width
of the data.

clock

WE

EN

Addr[7:0] Valid Address

DOut[31:0] Valid Data

Fig. 5.4 SRAM I/O timing for read

clock

WE

EN

Addr[7:0] Valid Address

DIn[31:0] Valid Data

Fig. 5.3 SRAM I/O timing for write

154 5 Memory Circuits and Systems

http://dx.doi.org/10.1007/978-3-030-00223-7_4
http://dx.doi.org/10.1007/978-3-030-00223-7_4

The timing diagram in Fig. 5.6 shows how to write four data packets, W1 to W4, to four con-
secutive SRAM addresses, A1 to A4, as an example for the bus interface in Fig. 5.5. To initiate a
write sequence, the bus master issues a valid address, Status = START and Write = 1 in the first
clock cycle, and enables the bus interface for a write by producing an active-high Bus Interface Write
Enable (BIWEn) signal. Upon receiving BIWEn = 1, the bus interface produces Ready = 1 in the
next cycle, and prompts the bus master to change the address and control signals in the third cycle. As
the bus master changes its address from A1 to A2, it also sends its first data packet, W1, according to
the unidirectional bus protocol explained in Chap. 4. However, in order to write to an SRAM address,
a valid data must be available within the same cycle as the valid address as shown in Fig. 5.3.
Therefore, a set of eight flip-flops are added at Addr port of the SRAM in Fig. 5.5 so that the address,
A1, is delayed for one clock cycle, and aligned with the current data, W1. The bus interface also
produces EN = WE = 1 in the third cycle so that W1 is written to A1 at the positive edge of the

AddrIn[7:0]

Bus Interface
SRAM

Status

Write

Ready

WE

DIn[31:0]

RData[31:0]

EN

clock

D
Q

W R

Addr[31:0]

BIWEn

32

DOut[31:0]

WData[31:0]

32

8

32

Addr[31:28]4

Burst

BIREn

8

Addr[7:0]

Fig. 5.5 SRAM bus interface block diagram (the counter keeping track of the number of issued SRAM addresses is
omitted for simplicity)

5.1 Static Random Access Memory 155

http://dx.doi.org/10.1007/978-3-030-00223-7_4

fourth clock cycle. The next write is accomplished in the same way: the SRAM address is delayed for
one cycle in order to write W2 to the address A2 at the positive edge of the fifth cycle. In the sixth
cycle, the bus interface lowers the Ready signal so that the bus master stops incrementing the slave
address. However, it keeps EN = WE = 1 to be able to write W4 to A4.

The bus interface state diagram for write in Fig. 5.7 is developed as a result of the timing diagram
in Fig. 5.6. The first state, Idle state, is the result of the bus interface waiting to receive BIWEn = 1

clock

Write

Status

Addr[7:0]

WData[31:0]

RData[31:0]

AddrIn[7:0]

DIn[31:0]

DOut[31:0]

WE

Ready

EN

START CONT CONT CONT

A1 A2 A3

W3W2W1 W4

A2 A3A1

W3W2W1 W4

IDLE

A4

Idle Standby Write Write Write Idle

Addr[31:28] SRAM Space

BIWEn

A4

Last
Write

4Burst

A4

W4

BM
writes

BM
writes

BM
writes

BM
writes

Fig. 5.6 SRAM bus interface timing diagram for write

156 5 Memory Circuits and Systems

from the bus master, which corresponds to the first clock cycle of the timing diagram in Fig. 5.6. The
next state that follows the Idle state is the Standby state where the bus interface generates Ready = 1.
This state is one clock cycle long and represents the second clock cycle in the timing diagram. The
Write state is the state during which the actual write sequence takes place: EN and WE are kept at
logic 1 as long as the number of write addresses issued by the bus master is less than Burst length.
This state corresponds to the third, fourth and fifth clock periods in the timing diagram. When the
number of write addresses reaches the value of the Burst length, the bus interface goes to the Last
Write stage and Ready signal becomes logic 0. The bus master writes the final data packet to the last
SRAM address in the sixth clock cycle.

In order to initiate a read sequence, the bus master issues a valid SRAM address, Status = START
and Write = 0 signals in the first clock cycle of Fig. 5.8. This combination produces an active-high
Bus Interface Read Enable, BIREn = 1, which is interpreted as the bus master intending to read data
from an SRAM address. Consequently, the bus interface generates EN = 1, WE = 0, Ready = 1 in

Idle

Standby

Ready = 0
EN = 0
WE = 0

Ready = 1
EN = 0
WE = 0

Write
Ready = 1

EN = 1
WE = 1

BIWEn = 1

Write = 1
Status = CONT or BUSY

BIWEn = 0

Last
Write

Ready = 0
EN = 1
WE = 1

(BM dispatches
the last data)

Write = 1
Status = CONT

Status = BUSY

Status = IDLE

No. of addresses = Burst

No. of addresses < Burst

Fig. 5.7 SRAM bus interface for write

5.1 Static Random Access Memory 157

the second cycle. This fetches the first data, R1, from the SRAM address, B1, in the third cycle. The
read transactions in the fourth and fifth cycles are identical to the third, as the the bus master reads R2
and R3 from the addresses, B2 and B3, respectively. In the sixth cycle, the bus interface retains
Ready = 1 so that the bus master is still able to read the last data, R4, from the address, B4.

clock

Write

Status

Addr[7:0]

WData[31:0]

RData[31:0]

AddrIn[7:0]

DIn[31:0]

DOut[31:0]

WE

Ready

EN

START CONT CONT

B2

R2R1

R2R1

R4

B1 B2

R4

Idle Read Read

Addr[31:28] SRAM Space

BIREn

B3

B3

Read

CONT

R3

R3

Last
Read

B4

4Burst

B4

IDLE

B4B1

BM
reads

BM
reads

BM
reads

BM
reads

IdleStandby

Fig. 5.8 SRAM bus interface timing diagram for read

158 5 Memory Circuits and Systems

As in the write case, the read bus interface in Fig. 5.9 is also a direct consequence of the timing
diagram in Fig. 5.8. The Idle state corresponds to the first clock cycle of the timing diagram in
Fig. 5.8. As soon as BIREn = 1 is generated, the bus interface transitions to the Standby state where
it produces EN = 1, WE = 0 and Ready = 1. The interface enters the Read state in the third cycle and
produces the same outputs as before in order for the bus master to read its first data, R1, and to send a
new address in the next cycle. The interface stays in the Read state until the number of read addresses
issued by the bus master is less than the Burst length. The Read state covers from the third to the fifth
cycle in the timing diagram in Fig. 5.8. When the number of read addresses reaches the Burst length,
the bus interface transitions to the Last Read state in cycle six where it continues to generate
Ready = 1. This is done so that the bus master is still able to read the last data as mentioned earlier.
The interface unconditionally goes back to the Idle state in the following cycle.

Increasing SRAM capacity necessitates employing extra address bits. In the example shown in
Fig. 5.10, the SRAM capacity is increased from 32 � 16 bits to 32 � 64 bits by appending two extra

Idle
Ready = 0

EN = 0
WE = 0

Standby
Ready = 1

EN = 1
WE = 0

Write = 0
Status = CONT
No. of addresses = Burst

BIREn = 0

BIREn = 1

Last
Read

Ready = 1
EN = 0

WE = X

Status = BUSY

Read
Ready = 1

EN = 1
WE = 0

Write = 0
Status = CONT or BUSY
No. of addresses < Burst

Status = IDLE

Fig. 5.9 SRAM bus interface for read

5.1 Static Random Access Memory 159

address bits, Addr[5:4], which serves to access one of the four SRAM blocks. In this figure, even
though Addr[3:0] points to the same address location for all four 32 � 16 SRAM blocks, Addr[5:4]
in conjunction with EN enables only one of the four blocks. Furthermore, the data read from the
selected block is routed through the 4-1 MUX using Addr[5:4] inputs. Addr[5:4] = 00 selects the
contents of DOut0 port and routes the data through port 0 of the 4-1 MUX to Out[31:0]. Similarly,
Addr[5:4] = 01, 10 and 11 select ports 1, 2 and 3 of the 4-1 MUX, and route data from DOut1,
DOut2 and DOut3 ports to Out[31:0], respectively.

5.2 Synchronous Dynamic Random Access Memory

Synchronous Dynamic Random Access Memory (SDRAM) is a variation of the older DRAM, and it
constitutes the main memory of almost any computing system. Even though its capacity can be many
orders of magnitude higher than SRAM, it lacks speed. Therefore, its usage is limited to storing large
blocks of data when speed is not important.

An SDRAM module is composed of four blocks. The memory core is where data is stored. The
row and column decoders locate the data. The sense amplifier amplifies the cell voltage during read.
The controller manages all the read and write sequences.

BLOCK 0

Addr[3:0]

4

WE
En0

BLOCK 1

Addr[3:0]

4

WE

Out[31:0]

32

BLOCK 2

In[31:0]

Addr[3:0]

4

WE

BLOCK 3

Addr[3:0]

4

WE

32

Addr[4]
Addr[5]

En1En2En3

DIn0

DOut0

DIn1

DOut1

DIn2

DOut2

DIn3

DOut3

1 03 2

EN
Ad

dr
[4

]
Ad

dr
[5

]

EN
Ad

dr
[4

]
Ad

dr
[5

]

EN
Ad

dr
[4

]
Ad

dr
[5

]

EN
Ad

dr
[4

]
Ad

dr
[5

]

Fig. 5.10 Increasing SRAM address space

160 5 Memory Circuits and Systems

The block diagram in Fig. 5.11 shows a typical 32-bit SDRAM architecture composed of four
memory cores, called banks, accessible by a single bidirectional input/output port. Prior to operating
the memory, the main internal functions, such as addressing modes, data latency and burst length,
must be stored in the Address Mode Register. Once programmed, the active-low Row Address
Strobe, RAS, Column Address Strobe, CAS, and Write Enable, WE, signals determine the func-
tionality of the memory as shown in Table 5.1. The data at the input/output port of a selected bank
can be masked at the Read/Write Logic block before it reaches the data Input/Output port, DInOut.

COLUMN
DECODE

COLUMN
DECODE

SENSE AMP

31 0

BANK
1

READ/WRITE
LOGIC

DInOut[31:0]

R
O
W

D
E
C
O
D
E

R
O
W

D
E
C
O
D
E

4
Mask[3:0]

SENSE AMP

31 0

BANK
0

COLUMN
DECODE

COLUMN
DECODE

SENSE AMP

31 0

BANK
3

R
O
W

D
E
C
O
D
E

R
O
W

D
E
C
O
D
E

SENSE AMP

31 0

BANK
2

ColAddr[9:0]

RowAddr[9:0]

Column Address
Stobe (CAS) CAS

RASRow Address
Stobe (RAS)

CAS CAS

RAS RAS

32

BS[1:0] = 3

WE WE

BS[1:0] = 2 BS[1:0] = 1 BS[1:0] = 0

CSCSCS Chip Select (CS)

WE

Address Mode Register

32

Write Enable (WE)

10

10

Fig. 5.11 A typical SDRAM architecture

Table 5.1 SDRAM modes of operation

CS RAS CAS WE

0 0 0 0 Program Addr. Mode Register

0 0 0 1 Self Refresh

0 0 1 0 Precharge a Bank with BS[1:0]

0 0 1 1 Activate a Bank with BS[1:0]

Write into a Bank with BS[1:0]

Read from a Bank with BS[1:0]

Burst Stop

Reserved

SDRAM Deselect

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 X X X

OPERATION

5.2 Synchronous Dynamic Random Access Memory 161

The SDRAM cell is a simple device composed of an NMOS pass-gate transistor to control the
data-flow in and out of the cell and a capacitor to store data as shown in Fig. 5.12. When new data
needs to be written into the cell, the NMOS transistor is turned on by Control = 1, and the data at the
DIn/Out terminal is allowed to overwrite the old data at the Cell node. Reading data from the cell, on
the other hand, requires activation of the sense amplifier prior to turning on the pass-gate transistor.
When data needs to be preserved, the NMOS transistor is simply turned off by Control = 0. However,
the charge on the cell capacitor slowly leaks through its insulator, resulting in a reduced cell voltage.
Thus, an automatic or manual cell refresh cycle becomes necessary during SDRAM operation to
preserve the bit value in the cell.

The first row of the truth table in Table 5.1 indicates how to program the internal Address Mode
Register. At the positive edge of the clock, CS, RAS, CAS and WE signals are pulled low to logic 0
to program the Address Mode Register as shown in Fig. 5.13. In the program mode, the address bits,
A[2:0], define the data burst length as shown in Table 5.2. Burst length can range from one word to
full page, which is equal to the contents of the entire bank. The address bit, A [3], defines how the
SDRAM address increments for each data packet. Sequential addressing is achieved simply by
incrementing the starting address by one, and eliminating the carry bit according to the size of the
burst length.

Control

C

DIn/Out Cell

Fig. 5.12 SDRAM memory cell

clock

A[2:0]

A[3]

BURST LENGTH

ADDRESS MODE

CS

RAS

CAS

WE

A[5:4] LATENCY

Fig. 5.13 Timing diagram for programming the Address Mode Register

162 5 Memory Circuits and Systems

For example, if the starting address is 13 and the burst length is two words, the carry bit from the
column A[0] is eliminated and the next address becomes 12 as shown in Table 5.3. In the same table,
if the burst length is increased to four, the carry bit from the column A [1] is eliminated, and the
address values after the starting address 13 become 14, 15 and 12. If the burst length becomes eight,
the carry bit from the column A [2] is eliminated, and the address values of 13, 14, 15, 8, 9, 10, 11
and 12 are produced successively. Sequential addressing confines reading or writing of data within a
predefined, circulatory memory space, convenient for specific software applications.

The linear addressing mode is a simplified version of the actual interleave addressing mode in
various SDRAMs, and increments the SDRAM address linearly as shown in Table 5.4. In this table,
if the starting address is 13 and the burst length is two, the next address will be 14. If the burst length
is increased to four, the next three addresses following 13 will be 14, 15 and 16. In contrast to the
sequential addressing mode, the linear addressing mode increments SDRAM address one bit at a
time, not confining the data in a circulatory address space.

The second row of the truth table in Table 5.1 shows how to initiate a manual refresh cycle. In
manual refresh mode, SDRAM replenishes node voltage values at each cell because the charge across
the cell capacitor leaks through its dielectric layer over time. The time duration between refresh cycles
depends on the technology used, the quality of the oxide growth and the thickness of the dielectric
used between capacitor plates as shown in Fig. 5.14.

Table 5.2 Truth tables for programming the Address Mode Register

A[2] A[1] A[0] Burst Length

0

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

0

0

1

1

0

1

0

1

1 Word

2 Words

4 Words

8 Words

16 Words

32 Words

64 Words

Full Page

A[3] Addressing Mode

Sequential

Linear

0

1

A[5] A[4] Latency

0

0

1

1

0

1

0

1

2

3

4

5

5.2 Synchronous Dynamic Random Access Memory 163

Table 5.3 SDRAM sequential mode addressing for burst lengths of 2, 4 and 8

A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

 0 0 0 0 0 0 1 1 0 1 = 13

 0 0 0 0 0 0 1 1 1 0 = 14

 0 0 0 0 0 0 1 1 1 1 = 15

 0 0 0 0 0 0 1 0 0 0 = 8

 0 0 0 0 0 0 1 0 0 1 = 9

 0 0 0 0 0 0 1 0 1 0 = 10

 0 0 0 0 0 0 1 0 1 1 = 11

 0 0 0 0 0 0 1 1 0 0 = 12

delete the carry bit

 + 1

 + 1

 + 1

 + 1

 + 1

 + 1

 + 1

Starting Address = 13, Burst Length = 8, Mode = Sequential

Starting Address = 13, Burst Length = 4, Mode = Sequential

 + 1

delete the carry bit

0 0 0 0 0 0 1 1 0 1 = 13

= 14

A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

0 0 0 0 0 0 1 1 1 0
 + 1

= 150 0 0 0 0 0 1 1 1 1

= 120 0 0 0 0 0 1 1 0 0
 + 1

Starting Address = 13, Burst Length = 2, Mode = Sequential

 + 1

delete the carry bit

0 0 0 0 0 0 1 1 0 1 = 13

= 12

A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

0 0 0 0 0 0 1 1 0 0

164 5 Memory Circuits and Systems

Table 5.4 SDRAM linear addressing mode for burst lengths of 2 and 4

Starting Address = 13, Burst Length = 2, Mode = Linear

A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

0 0 0 0 0 0 1 1 0 1 = 13

0 0 0 0 0 0 1 1 1 0 = 14

0 0 0 0 0 0 1 1 1 1 = 15

0 0 0 0 0 1 0 0 0 0 = 16

Starting Address = 13, Burst Length = 4, Mode = Linear

A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

0 0 0 0 0 0 1 1 0 1 = 13

0 0 0 0 0 0 1 1 1 0 = 14

Self Refresh

IDLE

IDLE

IDLE

IDLE

clock

BANK0

BANK1

BANK2

BANK3

CS

RAS

CAS

WE

Fig. 5.14 Timing diagram for self-refresh

5.2 Synchronous Dynamic Random Access Memory 165

Rows three through six in Table 5.1 constitute the read and the write sequences as shown in
Fig. 5.15. In this figure, a read or a write sequence always starts with precharging all the rows and
columns of the SDRAM core. This is followed by an activation cycle where the row address is
generated. In the last cycle, the column address is generated, and the data is either written or read
from the memory according to the control signals, CS, RAS, CAS and WE.

Prior to a read or a write, all the rows and columns of a bank must be precharged to a certain
voltage level for a period of one clock cycle as shown in Fig. 5.16. During precharge, CS, RAS and
WE, must be lowered to logic 0, and CAS must be kept at logic 1 as shown in the third row of
Table 5.1. The value of the precharge voltage can be anywhere between 0 V and the full supply
voltage depending on the technology and the requirements of the circuit design. The activation cycle
starts a certain time after precharging the bank. The time interval between the precharge and acti-
vation cycles is called the precharge time period, tPRE, as shown in Fig. 5.16. The activation cycle is
enabled by lowering CS and RAS to logic 0, but keeping CAS and WE at logic 1 as shown in the
fourth row of Table 5.1. Following the activation cycle, the next precharge period must not start until
after a certain time period has elapsed for the same bank. This time interval is called the RAS time
period, tRAS, as shown in Fig. 5.16.

PRECHARGE

ACTIVATE and
supply Row Address

READ and supply
Column Address

WAIT

WAIT

WAIT

PRECHARGE

ACTIVATE and
supply Row Address

WRITE and supply
Column Address

WAIT

WAIT

WAIT

Fig. 5.15 Write and read operation cycles

166 5 Memory Circuits and Systems

The fifth row of Table 5.1 shows how to write into a selected bank when CS = CAS = WE = 0
and RAS = 1. The actual write takes place in the last phase of the write sequence in Fig. 5.15
following the precharge and activation cycles. To illustrate the write sequence in detail, a single write
example is given in Fig. 5.17. In this figure, the write cycle starts with precharging Bank 1. After
t = tPRE,, the activation period starts and the row address is supplied to the SDRAM. When the
column address supplied after a time period of tCAS, four data packets, D(0) through D(3), are written
to SDRAM in four consecutive clock cycles. Note that in this figure if the same bank is used for
another write, a new time period, tRAS, needs to be placed between the bank activation cycle and the
next precharge period.

clock

BS[1]

BS[0]

tPRE

Precharge
BANK1

Activate
BANK1

CS

RAS

CAS

WE

Precharge
BANK1

tRAS

Fig. 5.16 Bank precharge and activation cycles

5.2 Synchronous Dynamic Random Access Memory 167

The example in Fig. 5.18 shows two separate write sequences into two different banks. When
writing takes place to more than one bank, interleaving each bank’s precharge and activation time
periods with each other produces a time saving scenario where one write burst takes place imme-
diately after the other, resulting in a shorter overall write cycle. In this figure, this technique allows to
write four words to bank 1 immediately after writing four words to bank 0 without any cycle loss.
Therefore, writing to two (or more) banks is a preferred method over writing to a single bank because
this process eliminates all unnecessary waiting periods between precharge cycles. However, as the
burst length involves a lot more than four words, the placement of bank precharge periods in the
timing diagram becomes less and less important.

The sixth row of Table 5.1 shows how to initiate a read cycle from a selected bank. Reading words
from SDRAM involves a latency period, and it needs to be programmed in the Address Mode
Register. The example in Fig. 5.19 shows the start of a read burst after a latency period of three clock
cycles once the read command and the address are given. A latency of three clock cycles means that
the data becomes available at the output of SDRAM in the third clock cycle after the read command
and the address are issued.

A[9:0]

DInOut

ROW ADDRESS
and

ACTIVATE BANK1

PRECHARGE
BANK1

COLUMN ADDRESS
and

WRITE BANK1

ROW COL

tRAS

BS[1]

BS[0]

tPRE tCAS

clock

CS

RAS

CAS

WE

D(0) D(1) D(2) D(3)

tBURST tWAIT

PRECHARGE
BANK1

Fig. 5.17 A single write cycle

168 5 Memory Circuits and Systems

clock

A[9:0]

DInOut

ACT
BANK0

PRE
BANK0

WRITE
BANK1

ROW1

BS[1]

BS[0]

ROW0 COL0 COL1

PRE
BANK1

WRITE
BANK0

ACT
BANK1

D0(0) D0(1) D0(2) D0(3) D1(0) D1(1) D1(2) D1(3)

CS

RAS

CAS

WE

Fig. 5.18 Multiple write cycles to different banks (tPRE = 1 cycle, tCAS = 2 cycles)

Read 8 WORDS from the Starting Address = 13 in Sequential Mode with Latency = 3

clock

Address

Data D(13)

Mode

D(14) D(15) D(8) D(9) D(10) D(11) D(12)

controls

13

LA
TE

N
C

Y
=

1

LA
TE

N
C

Y
=

2

LA
TE

N
C

Y
=

3

Fig. 5.19 Definition of latency during a read cycle

5.2 Synchronous Dynamic Random Access Memory 169

The example in Fig. 5.20 shows a single read sequence from bank 1. Until the read command and
the column address are issued, the read and write sequences follow identical paths. However after this
point, the read burst takes a different route and waits for the end of the programmed latency period.
Similar to the write process, a certain tRAS period must elapse for the read process before additional
streams of data can be read from the same bank. In this figure, tWAIT corresponds the waiting period
between the last data packet and the start of the next precharge period.

The example in Fig. 5.21 describes multiple reads from the same bank and assumes tWAIT is equal
to zero. This scenario produces a burst read of four words, D(0) through D(3), from bank 1, and
precharges the same bank during the last data packet delivery. The second burst read from bank 1
follows the same pattern as the first one, and delivers D(4) through D(7) after a programmed latency
of two clock periods. If tWAIT is different from zero, then the second precharge period in this figure
follows the pattern in Fig. 5.20 and starts after the tWAIT period expires.

The interleaving technique of reading data from two different banks in Fig. 5.22 is not any
different from the one in Fig. 5.18 when writing takes place to two different banks. As with the write
case, the placement of the second precharge cycle in the timing diagram is important to achieve two
consecutive read bursts, D0(0) to D0(3) from bank 0 and D1(0) to D1(3) from bank 1, without any
cycle loss and to accomplish the shortest possible time to fetch data from SDRAM.

A[9:0]

DInOut

LAST
READ BANK1

ROW COL

BS[1]

BS[0]

LATENCY = 3

clock

D(0) D(1) D(2) D(3)

CS

RAS

CAS

WE

ROW ADDRESS
and

ACTIVATE BANK1

PRECHARGE
BANK1

COLUMN ADDRESS
and

READ BANK1

tRAS

tPRE tCAS tBURST tWAITtLAT

PRECHARGE
BANK1

Fig. 5.20 Single read cycle

170 5 Memory Circuits and Systems

The seventh row of Table 5.1 shows how to stop a read or a write burst. Figure 5.23 shows a single
write sequence when the burst stop command is issued in the middle of a data burst. Upon receiving this
command, the selected bank goes into the standby mode and waits for the next precharge command.

clock

A[9:0]

DInOut

ROW ADDRESS
and

ACTIVATE BANK1

PRECHARGE
BANK1

BS[1]

BS[0]

COLUMN ADDRESS
and

READ BANK1

COLUMN ADDRESS
and

READ BANK1

LATENCY = 2

ROW ADDRESS
and

ACTIVATE BANK1

LATENCY = 2

CS

RAS

CAS

WE

COLROWCOLROW

D(0) D(1) D(2) D(3) D(4) D(5) D(6) D(7)

LAST READ and
PRECHARGE

BANK1

tRAS

Fig. 5.21 Multiple read cycles from the same bank (tPRE = 1 cycle, tCAS = 2 cycles, tWAIT = 0 cycle)

clock

DInOut

A[9:0]

BS[0]

BS[1]

PRE
BANK0

ACT
BANK0

PRE
BANK1

COL ADDR
and

READ BANK0

ACT
BANK1

COL ADDR
and

READ BANK1

CS

RAS

CAS

WE

ROW0 COL0 ROW1 COL1

D0(0) D1(0) D1(2) D1(3)D0(1) D0(2) D0(3) D1(1)

Fig. 5.22 Multiple read cycles from different banks (tPRE = 1 cycle, tCAS = 2 cycles)

5.2 Synchronous Dynamic Random Access Memory 171

When the burst stop command is given in the middle of a read, the last data packet is still delivered
at the clock edge following the burst stop command as shown in Fig. 5.24.

clock

A[9:0]

DInOut

ROW ADDRESS
and

ACT BANK0

BURST
STOP

PRECHARGE
BANK0

COL ADDRESS
and

WRITE into BANK0

CS

RAS

CAS

WE

ROW COL

Fig. 5.23 Burst stop during write

clock

A[9:0]

DInOut

CS

RAS

CAS

WE

ROW COL

CAS LATENCY = 2

ROW ADDRESS
and

ACT BANK0

BURST
STOP

PRECHARGE
BANK0

COL ADDRESS
and

READ from BANK0

Fig. 5.24 Burst stop during read

172 5 Memory Circuits and Systems

The Input/Output data can be masked with the Read/Write Logic block in Fig. 5.11. The truth
table in Table 5.5 lists all the possible cases of blocking and transmitting the incoming data from the
SDRAM core. When Mask[3:0] = 0000, for example, no mask is applied to the output data; all 32
bits of data are allowed to be written into the selected bank or read from it. The case, Mask
[3:0] = 1111, on the other hand, blocks all four bytes of data, and allows no byte to be written or read
from the selected address.

Figure 5.25 shows an example of the data-path and the controller of the SDRAM bus interface. In
this example, each ten-bit wide bus interface register containing the precharge (tPRE), CAS (tCAS), burst
(tBURST), latency (tLAT), and wait (tWAIT) periods must be programmed through a 10-bit program bus
prior to operating SDRAM. The precharge, CAS and wait registers contain the number of clock cycles
to achieve the required waiting period. The burst register should store the number of data packets of the
data transfer. Therefore, the value in this register must be identical to the value programmed in
the Address Mode Register. The latency register specifies the number of clock cycles prior to reading
the first data from an SDRAM address. The details of how the programming takes place prior to the
normal SDRAM operation and the required hardware are omitted from Fig. 5.25 to avoid complexity.

Table 5.5 Truth table for data output mask

Mask [3] Mask [2] Mask [1] Mask [0]

0 0 0 0

0 0 0 1 DInOut[7:0]

None

0 0 1 0

0 0 1 1 DInOut[15:0]

DInOut[15:8]

0 1 0 0

0 1 0 1 DInOut[23:16] and DInOut[7:0]

DInOut[23:16]

0 1 1 0

0 1 1 1 DInOut[23:0]

DInOut[23: 8]

1 0 0 0

1 0 0 1 DInOut[31:24] and DInOut[7:0]

DInOut[31:24]

1 0 1 0

1 0 1 1 DInOut[31:24] and DInOut[15:0]

DInOut[31:24] and DInOut[15:8]

1 1 0 0

1 1 0 1 DInOut[31:16] and DInOut[7:0]

DInOut[31:16]

1 1 1 0

1 1 1 1 DInOut[31:0]

DInOut[31:8]

MASKED BITS

5.2 Synchronous Dynamic Random Access Memory 173

Bu
s

In
te

rfa
ce

C
on

tro
l U

ni
t

St
at

us
W

rit
e

Si
ze

Bu
rs

t

R
ea

dy

En
R

D
at

a

En
W

D
at

a

W
D

at
a

R
D

at
a

32

32

cl
oc

k

C
ou

nt
O

ut

-1

SD
R

AM

D Q

BI
W

En

4

32
32

C
S

R
AS

C
AS W

E

2

1010
C R

Ad
dr

es
s

R
eg

Lo
ad

 tP
R

E
P

C
B

W
C

ou
nt

St
or

eR
eg

BI
R

En

Ad
dr

 M
od

e
R

eg

Pr
og

ra
m

 D
at

a

10
P

10

St
or

eR
eg

Lo
ad

 tC
AS

Lo
ad

 tB
U

R
ST

Lo
ad

 tW
AI

T

Lo
ad

 tP
R

E
Lo

ad
 tC

AS
Lo

ad
 tB

U
R

ST
Lo

ad
 tW

AI
T

tPRE

tCAS

tBURST

tWAIT

tP
R

E

tC
AS

tB
U

R
ST

tW
AI

T

tLA
T

tLA
T

Ad
dr

[1
9:

10
] =

 R
ow

 A
dd

r

Ad
dr

[9
:0

] =
 C

ol
um

n
Ad

dr

Ad
dr

[3
1:

0]

Ad
dr

[3
1:

28
]

Ad
dr

[2
1:

20
]

Pr
og

ra
m

 D
at

a
=

{ 0
00

0,
 A

dd
r[5

:0
] =

 A
dd

r M
od

e
R

eg
 }

D
In

/D
O

ut
[3

1:
0]

SelRow
SelCol

BS[1:0]

A[9:0]

10

Fi
g
.
5.
25

SD
R
A
M

bu
s
in
te
rf
ac
e
bl
oc
k
di
ag
ra
m

174 5 Memory Circuits and Systems

The Address Mode Register (or a set of registers defining basic SDRAM functionality) exists in many
older SDRAMs. However, recent SDRAMmodules omit the mode register completely and rely on the
bus interface unit to store such information. To manage the precharge, CAS, burst and wait periods the
memory controller continuously interacts with a down-counter in Fig. 5.25 since these periods are often
many clock cycles long.

For normal SDRAM operation, the bus address, Addr[31:0], has to be divided into several seg-
ments. In the example in Fig. 5.26, the four most significant bits of the SDRAM address, Addr
[31:28], indicate the SDRAM chip identification, and it is used to activate the corresponding bus
interface. Addr[21:20] is used to select the SDRAM bank, BS[1:0]. Addr[19:10] and Addr[9:0]
specify the row and column addresses, respectively.

Figure 5.27 shows a typical SDRAM write sequence. In this timing diagram, all five SDRAM
interface registers must be programmed prior to the IDLE/PROG clock cycle as mentioned earlier.
The SDRAM write sequence starts with the system bus sending Status = START, Write = 1 and the
starting SDRAM address. These three signals cause the Bus Interface Write Enable signal, BIWEn, to
transition to logic 1, which in turn, enables the bus interface for write in the first cycle of Fig. 5.27.
Once enabled, the bus interface stores the starting SDRAM address in the Address Reg, and issues the
precharge command by CS ¼ 0, RAS ¼ 0, CAS ¼ 1 and WE ¼ 0 for the selected bank. Within the
same cycle, the counter is loaded with the precharge wait period, tPRE, by LoadtPRE = 1 as shown in
the timing diagram.

The Precharge wait period is calculated by multiplying the number of clock cycles by the clock
period. The counter in this design is a down-counter. When its output value, CountOut, becomes one,
the controller initiates the activation cycle for the selected SDRAM bank and dispatches the row
address. The activation period starts with loading the value of tCAS to the down-counter by
LoadtCAS = 1. Within the same clock cycle, the row address, Addr[19:10], is transferred from the

Addr[31:0] = Addr[31:28] Addr[27:22] Addr[21:20] Addr[19:10] Addr[9:0]

Activate SDRAM
Bus Interface

Bank select[1:0] = BS[1:0]

Row Address[9:0] = A[9:0]

Reserved

Column Address[9:0] = A[9:0]

Fig. 5.26 SDRAM bus interface address mapping

5.2 Synchronous Dynamic Random Access Memory 175

cl
oc

k

ID
LE

/
PR

O
G

LO
AD

PR
E

tP
R

E
W

R
IT

E
W

R
IT

E

Ad
dr

St
at

us

W
rit

e

BI
W

En

St
or

eR
eg

Se
lR

ow

Se
lC

ol

C
S

R
AS

C
AS

W
E

W
D

at
a

En
W

D
at

a

Lo
ad

tP
R

E

R
ea

dy

tP
R

E
PR

E

R
ow

Ad
dr + Ac
t

Ba
nk

1

ST
AR

T

SD
R

AM
 S

ta
rt

Ad
dr

 =
 A

0
A1

A2
A3

Ad
dr

 =
 B

0

C
O

N
T

C
O

N
T

C
O

N
T

ID
LE

ST
AR

T

W
R

IT
E

W
R

IT
E

R
O

W
C

O
L

D
0

3
2

1
3

2
1

3
2

1
4

3
2

1

BM
 s

en
ds

 W
R

IT
E

da
ta

Ba
nk

 1
Ba

nk
 1

BS
[1

:0
]

A[
9:

0]

Lo
ad

tC
AS

Lo
ad

tB
U

R
ST

Lo
ad

tW
AI

T

tC
AS

C
ol

Ad
dr +

W
rit

e
Ba

nk
1

tB
U

R
ST

tW
AI

T

D
1

D
2

D
3

tP
R

E
tP

R
E

LO
AD

C
AS

tC
AS

tC
AS

LO
AD

BU
R

ST
ST

AR
T

W
R

IT
E

LO
AD

W
AI

T
tW

AI
T

tW
AI

T
tW

AI
T

O
ut

pu
t o

f t
he

 d
ow

n-
co

un
te

r

Ba
nk

 1

Fi
g
.
5.
27

W
ri
te

cy
cl
e
vi
a
SD

R
A
M

bu
s
in
te
rf
ac
e

176 5 Memory Circuits and Systems

Address Reg to the SDRAM through the R-port of the 3-1 MUX by SelRow = 1. When the activation
wait period expires, the controller uses the LoadtBURST input to load the length of the write burst (the
number of data packets) to the down-counter and subsequently initiates the write sequence in the next
cycle.

During the START WRITE period in the timing diagram in Fig. 5.27, the controller transfers the
column address, Addr[9:0], from the Address Reg to the A[9:0] input of the SDRAM through the
C-port of the 3-1 MUX in Fig. 5.25 by generating SelCol = 1. In the same cycle, the controller also
generates CS ¼ 0, RAS ¼ 0, CAS ¼ 1 andWE ¼ 1, and enables the tri-state buffer by EnWData = 1
in order to write the first write data packet, D0, to the SDRAM. To be able to write the remaining data
packets, the controller issues Ready = 1 from this point forward. When the sequence comes to the
LOAD WAIT period in Fig. 5.27 (where the last write takes place), the controller lowers the Ready
signal, but keeps the EnWData signal at logic 1 in order to write the last data packet, D3. This clock
cycle also signifies the start of the wait period, tWAIT. The controller issues LoadtWAIT = 1 to load
tWAIT into the down-counter if another write sequence needs to take place for the same bank.

The remaining control signals, Burst and Size, are omitted from the timing diagram for simplicity.
During the entire data transfer process, Burst is set to four and Size is set to 32 in this example. For byte
and half-word transfers, Size needs to be defined with masking in place as described in Table 5.5.

The state diagram of the controller for write is shown in Fig. 5.28. In this diagram, when the
interface receives BIWEn = 1, the controller transitions from the IDLE/PROG state, which corre-
sponds to the first cycle of the timing diagram in Fig. 5.27, to the LOAD PRE state, which corre-
sponds to the second clock cycle in the same timing diagram. In the LOAD PRE state, the controller
resets CS, RAS and WE, but sets CAS for the selected bank to start the precharge process. In this
state, two additional signals are generated: StoreReg = 1 to store the bus address in the Address Reg,
and LoadtPRE = 1 to start the precharge wait period. The controller remains in the precharge wait
state, tPRE, until CountOut = 1. The controller then transitions to the LOAD CAS state where it
activates the selected bank, issues SelRow = 1 to transfer the row address to the SDRAM, and
produces LoadtCAS = 1 to initiate the activation wait period. The next state, tCAS, is another wait state
where the controller waits until the activation period expires. Once this period is over, the controller
first goes into the LOAD BURST state, and then to the START WRITE state to initiate writing data to
the SDRAM. The latter corresponds to the state where the first data packet is written to the SDRAM
core as mentioned earlier. The subsequent writes take place when the controller transitions to the
WRITE state. The controller stays in this state until CountOut = 2, which signifies one more data
packet to be written to the SDRAM. The last data packet is finally written when the controller moves
to the LOAD WAIT state. Before attempting another write process, the controller waits in the tWAIT

state until CountOut = 1.
Note that all the state names in Fig. 5.28 and the cycle names on top of Fig. 5.27 are kept the same

to make one-to-one correspondence between the timing diagram and the state diagram.

5.2 Synchronous Dynamic Random Access Memory 177

The SDRAM read sequence also starts with the system bus sending Status = START,Write = 0 and
an initial SDRAM address. This combination sets the Bus Interface Read Enable signal, BIREn = 1,
to enable the bus interface to read data from the SDRAM core in the first cycle of the timing diagram in
Fig. 5.29. The remainder of the read process is identical to the write process until the controller issues
the read command during the START READ cycle in Fig. 5.29, and sends the column address of the

IDLE/
PROG

CountOut > 1

StoreReg = 1
CS = 0
RAS = 0
CAS = 1
WE = 0
LoadtPRE = 1
Ready = 0

LOAD
PRE

tPRE

Status = START
Write = 1
Addr = SDRAM start addr

else

LOAD
CAS

tCAS

START
WRITE

CountOut = 1

Ready=0

Ready=0 WRITE EnWData = 1
Ready = 1

SelRow = 1
CS = 0
RAS = 0
CAS = 1
WE = 1
A [9:0] = Addr [19:10] = Row Address
LoadtCAS = 1
Ready = 0

SelCol = 1
CS = 0
RAS = 1
CAS = 0
WE = 0
A [9:0] = Addr [9:0]
 = Col Address
EnWData = 1
Ready = 1

LOAD
WAIT

EnWData = 1
LoadtWAIT = 1
Ready = 0

tWAIT Ready=0

LOAD
BURST

CountOut > 2

CountOut = 2

LoadtBURST = 1
Ready = 1

CountOut > 2

CountOut = 2

CountOut > 1

CountOut = 1

Status = START
Write = 1
Addr = SDRAM start addr

else

CS = 0
RAS = 0
CAS = 0
WE = 0
Ready = 0

Fig. 5.28 SDRAM bus interface for write (control signals equal to logic 0 is omitted for simplicity)

178 5 Memory Circuits and Systems

cl
oc

k

ID
LE

/
PR

O
G

LO
AD

PR
E

tP
R

E
tP

R
E

tP
R

E
LO

AD
C

AS
tC

AS
tC

AS
ST

AR
T

R
EA

D
R

EA
D

R
EA

D
LO

AD
W

AI
T

tW
AI

T
tW

AI
T

tW
AI

T

Ad
dr

St
at

us

W
rit

e

BI
R

En

St
or

eR
eg

Se
lR

ow

Se
lC

ol

C
S

R
AS

C
AS W
E

BS
[1

:0
]

A[
9:

0]

R
D

at
a

En
R

D
at

a

Lo
ad

tP
R

E

Lo
ad

tC
AS

Lo
ad

tB
U

R
ST

Lo
ad

tW
AI

T

R
ea

dy

tP
R

E
PR

E

R
ow

Ad
dr

 +

Ac
t

Ba
nk

1
tC

AS

C
ol

Ad
dr

 +

R
ea

d
Ba

nk
1

tB
U

R
ST

tW
AI

T

ST
AR

T

SD
R

AM
 S

ta
rt

Ad
dr

 =
 A

0
A1

A2
A3

C
O

N
T

C
O

N
T

C
O

N
T

ID
LE

ST
AR

T

R
EA

D

Ba
nk

1
Ba

nk
1

Ba
nk

1

R
O

W
C

O
L

D
0

D
1

D
2

D
3

3
2

1
3

2
1

3
2

1
4

3
2

1

BM
 re

ad
s

SD
R

AM
 d

at
a

tC
AS

LA
T

W
AI

T
R

EA
D

tLA
T

ST
 A

dd
r

La
te

nc
y

=
2

O
ut

pu
t o

f t
he

 d
ow

n-
co

un
te

r

Fi
g
.
5.
29

R
ea
d
cy
cl
e
vi
a
SD

R
A
M

bu
s
in
te
rf
ac
e

5.2 Synchronous Dynamic Random Access Memory 179

IDLE/
PROG

CountOut > 1

LOAD
PRE

tPRE

Status = START
Write = 0
Addr = SDRAM Start Addr

else

LOAD
CAS

tCAS

START
READ

Ready=0

Ready=0

READ

LOAD
WAIT

EnRData = 1
Ready = 1

tWAIT Ready=0

StoreReg = 1
CS = 0
RAS = 0
CAS = 1
WE = 0
Load tPRE = 1
Ready = 0

SelRow = 1
CS = 0
RAS = 0
CAS = 1
WE = 1
A [9:0] = Addr [19:10] = Row Address
Load tCAS = 1
Ready = 0

LAT
WAIT

Load tBURST = 1
Ready = 0

LAT
WAIT

Ready = 0

LAT
WAIT

Ready = 0

LAT
WAIT

Ready = 0

LAT
WAIT

LAT
WAIT

Ready = 0

LAT
WAIT

Ready = 0

LAT
WAIT

LAT
WAIT

Ready = 0

LAT
WAIT

LATENCY = 2

SelCol = 1
CS = 0
RAS = 1
CAS = 0
WE = 1
A [9:0] = Addr [9:0] = Col Address
Ready = 0

CountOut = 1

CountOut > 1

CountOut = 1

CountOut > 2

CountOut = 2

LoadtWAIT = 1
EnRData = 1
Ready = 1

CountOut > 1
CountOut = 1

LATENCY = 3

Load tBURST = 1
Ready = 0

LATENCY = 4

Load tBURST = 1
Ready = 0

LATENCY = 5

Load tBURST = 1
Ready = 0

Status = START
Write = 0
Addr = SDRAM Start Addr

else

CS = 0
RAS = 0
CAS = 1
WE = 0
Ready = 0

Fig. 5.30 SDRAM bus interface for read (control signals equal to logic 0 is omitted for simplicity)

180 5 Memory Circuits and Systems

selected SDRAM bank. Since SDRAM data becomes available after a latency period, the controller
must replicate this exact delay prior to a read burst and produce the control signals during and after the
burst. For example, a cycle before the latency period expires, the controller needs to generate
LoadtBURST = 1 to load the burst duration to the down-counter to be able to detect the beginning and the
end of burst data. As a result, the controller can determine when to generate EnRData = 1 for the
tri-state buffer to read data packets, D0 to D3, from the SDRAM RData output. During the last data
delivery, the controller issues LoadtWAIT = 1 to load the value of tWAIT to the down-counter in the event
the same bank is selected for another read.

The state diagram in Fig. 5.30 for the read sequence is a direct result of the timing diagram in
Fig. 5.29. In this diagram, when the interface receives BIREn = 1, the controller transitions from the
IDLE state which corresponds to the first cycle in Fig. 5.29, to the LOAD PRE state which corre-
sponds to the second clock cycle in the same timing diagram. In the LOAD PRE state, the precharge
process is initiated by CS ¼ 0, RAS ¼ 0, WE ¼ 0 and CAS ¼ 1 for the selected bank. In this state,
the controller stores the valid bus address in the Address Reg by StoreReg = 1, and loads the
precharge wait period into the down-counter by LoadtPRE = 1. The controller stays in the tPRE state
until the precharge value in the down-counter expires. Subsequently, the controller transitions to the
LOAD CAS state where it activates the selected bank by CS ¼ 0, RAS ¼ 0, CAS ¼ 1 and WE ¼ 1,
issues SelRow = 1 to transfer the row address from the Address Reg to the SDRAM, and generates
LoadtCAS = 1 to load the activation wait period to the down-counter. The CAS wait period corre-
sponds to the tCAS state in Fig. 5.30. When this period is over at CountOut = 1, the controller
transitions to the START READ state where it issues CS ¼ 0, RAS ¼ 1, CAS ¼ 0 and WE ¼ 1 to
initiate the data read and produces SelCol = 1 to transfer the column address from Address Reg to the
SDRAM address port. This state is followed by four individual latency states to select the pro-
grammed read latency period. Since the read latency in Fig. 5.29 is equal to two, the state machine
traces through the single LAT WAIT state. In the LAT WAIT state, the controller issues
LoadtBURST = 1 and loads the value of the data burst, tBURST, to the down-counter. Following the
latency states, the state machine transitions to the READ state where it stays until CountOut = 2,
signifying the end of the read burst. In this state, it produces EnRData = 1 to enable the data output
buffer and Ready = 1 to validate the read data. At the end of the burst period, the state machine
moves to the LOAD WAIT state and issues LoadtWAIT = 1 to load the required wait period to the
down-counter until the next precharge takes place. Subsequently, the state machine transitions to the
tWAIT state and stays there until the wait period is over.

5.3 Electrically-Erasable-Programmable-Read-Only-Memory

Electrically-Erasable-Programmable-Read-Only-Memory (E2PROM) is historically considered the
predecessor of Flash memory and also the slowest memory in a computing system. Its greatest
advantage over the other types of memories is its ability to retain data after the system power is turned
off due to the floating-gate MOS transistor in its memory core. Its relatively small size compared to
electromechanical hard disks makes this device an ideal candidate to store Built-In-Operating-
Systems (BIOS) especially for hand-held computing platforms.

A typical E2PROM memory is composed of multiple sectors, each of which contains multiple
pages as shown in the example in Fig. 5.31. A single word in E2PROM can be located by specifying
its sector address, page address and row address. Sector address indicates which sector a particular
word resides. Page address locates the specific page inside a sector. Finally, the row address points to
the location of data byte inside a page. There are five control signals in E2PROM to perform read,

5.2 Synchronous Dynamic Random Access Memory 181

write or erase operations. The active-low Enable signal, EN, places a particular page in standby mode
and prepares it for an upcoming operation. The active-low Command Enable signal, CE, is issued
with a command code, such as read, write (program) or erase. The active-low Address Enable signal,
AE, is issued when an address is provided. Finally, the active-low Write Enable signal, WE, and the
Read Enable signal, RE, are issued for writing and reading data, respectively.

Typical E2PROM architecture consists of a memory core, address decoder, output data buffer,
status, address and command registers, and control logic as shown in Fig. 5.32. Prior to any oper-
ation, command and address registers are programmed. When the operation starts, the control logic
enables the address decoder, the data buffer and the memory core using the active-high Enable
Address (ENA), Enable Data Buffer (END), and Write Enable Core (WEC) or Read Enable Core
(REC) signals depending on the operation. The address stored in the address register is decoded to
point the location of data. If the read operation needs to be performed, the required data is retrieved
from the E2PROM core and stored in the data buffer before it is delivered to the I/O bus. If the
operation is a write (or program), the data is stored in the data buffer first before it is uploaded to the
designated E2PROM address. In all cases, EN needs to be at logic 0 to place E2PROM into standby

Row Addr[7:0]
8

WE

AE

RE

EN

CE

I/O

7
255

0Pa
ge

15

Pa
ge

1
Pa

ge
0

255

0Pa
ge

15

Pa
ge

1
Pa

ge
0

Sector 15 Sector 0

E2PROM Read/Write Interface

8

0 7 0

Page Addr[3:0] Sector Addr[3:0]

4 4

Fig. 5.31 A typical E2PROM organization

182 5 Memory Circuits and Systems

mode before starting an operation. The table in Fig. 5.33 describes all major operation modes.
Hibernate mode disables the address decoder, memory core and data buffer to reduce power dissi-
pation, and puts the device into sleep.

The E2PROM cell shown in Fig. 5.34 is basically an N-channel MOS transistor with an additional
floating gate layer sandwiched between its control gate terminal (Wordline) and the channel where the
electronic conduction takes place. This device has also drain (Bitline) and source (Sourceline) ter-
minals for connecting the cell to the neighboring circuitry.

To write logic 0 into the memory cell, a high voltage is applied between Wordline and Bitline
terminals while the Sourceline node remains connected to ground. This configuration generates hot
carriers in the transistor channel which tunnel through the gate oxide and reach the floating gate,
raising the threshold voltage of the transistor. The raised threshold voltage prevents the programmed
device to be turned on by the standard gate-source voltage used during normal circuit operations, and

8

WE

AE

RE

EN

CE

Control
Logic

Status Register

Command Register

Address Register

Ad
dr

es
s

D
ec

od
er Memory

Core

Data Buffer

8

From I/O[7:0]

From I/O[7:0]

To I/O[7:0]

ENA

END

WEC/REC

I/O[7:0]R
ow

 +
 P

ag
e

+
Se

ct
or

 A
dd

r

16

Fig. 5.32 A typical E2PROM architecture

EN WE RE

0 1 1 Standby

0 0 1 Write

0 1 0 Read

1 X X Hibernate

Fig. 5.33 E2PROM major operation modes

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 183

causes the value stored in the device to be interpreted as logic 0. An unprogrammed device with no
charge on the floating gate, on the other hand, exhibits low threshold voltage characteristics and can
be turned on by the standard gate-source voltage, producing a channel current. In this state, the value
stored in the device is interpreted as logic 1.

Figure 5.35 shows a typical command input sequence. There are four basic commands for this
E2PROM example: read, write (program), page-erase and status register read. Write and program
commands will be used interchangeably in E2PROM or Flash memories as they mean the same
operation. The operation sequence is always the command input followed by the address and data
entries. To issue a command input, EN is lowered to logic 0, AE is raised to logic 1 (because the entry
is not an address), and CE is lowered to logic 0, indicating that the value on the I/O bus is a command
input. Since the command input is written to the command register WE is also lowered to logic 0
some time after the negative edge of CE signal. This delay is called the setup time (tS) as shown in
Fig. 5.35. The low phaseWE signal lasts for a period of tLO, and transitions back to logic 1 some time
before the positive edge of CE. This time interval is called the hold time, tH. Prior to the positive edge
ofWE, a valid command input is issued, satisfying the data setup, tDS, and the data hold, tDH, times as
shown in Fig. 5.35.

Wordline

Sourceline Bitline

Floating gate

Channel

Fig. 5.34 E2PROM cell

CE

EN

WE

AE

I/O[7:0]

tDS tDH

Command Input

tHtS tLO

Fig. 5.35 Command input timing diagram

184 5 Memory Circuits and Systems

The address input timing shown in Fig. 5.36 has the same principle as the command input timing
described above: EN needs to be at logic 0 to enable the device, AE must be at logic 0 for the address
entry, and CE needs to be at logic 1 because this operation is not a command entry. During the low
phase of EN signal, WE signal must be lowered to logic 0 twice to locate data in the E2PROM. The
first time WE ¼ 0, an eight-bit row address is entered at the first positive edge of WE. This is
followed by the combination of four-bit page address and four-bit sector address at the next WE ¼ 0.
The WE signal must be lowered to logic 0 after a period of tS, and then back to logic 1 for a period of
tH before the positive edge of EN. TheWE signal must also be at the low phase for a period of tLO and
at the high phase for a period of tHI (or longer) during the address entry. Valid address values are
issued at each positive edge of WE within the tDS and tDH setup and hold time periods.

CE

EN

WE

AE

I/O[7:0]

tDS tDH

A[7:0]

tHtS tLO tHI

A[15:8]

Row
Address

Page + Sector
Address

Fig. 5.36 Address input timing diagram

CE

EN

WE

AE

I/O[7:0]

tDS tDH

DIn0

tHtS tLO tHI

DIn1 DInM

Fig. 5.37 Data input (write or program) timing diagram

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 185

Figure 5.37 describes data entry sequence where (M + 1) number of data packets are written to the
E2PROM core. During the entire write cycle AE signal must be at logic 1, indicating that the operation
is a data entry but not an address. Data packets are written at each positive edge of WE signal.

During a read the active-low control signals, AE and CE, are kept at logic 1. The Read Enable
signal, RE, enables the E2PROM to read data from its memory core at each negative edge as shown in
Fig. 5.38. The time delay between the negative edge of RE and the actual availability of data from the
memory is called the access time, tA, as shown in the same timing diagram. The RE signal must have
the specified tS, tH, tLO and tHI time periods to be able to read data from the memory core.

Reading data from the Status Register is a two-step process. The first step involves entering the
command input, Status Register Read, at the positive edge of WE signal. The contents of the register
are subsequently read sometime after the negative edge of RE (tA) as shown in Fig. 5.39. Note that
CE signal is initially kept at logic 0 when entering the command input, but raised to logic 1 when
reading the contents of the Status Register.

Full-page data write entry consists of the combination of four tasks as shown in Fig. 5.40. The first
task is entering the Write into Data Buffer command at the positive edge of WE while keeping CE at
logic 0. The second task is entering the page and sector addresses at the positive edge of WE while
AE is at logic 0. The third task is entering the full-page of data from D(0) to D(255) into the data
buffer at each positive edge of WE signal. Both AE and CE are kept at logic 1 during this phase. The
last task is entering the Write to Core Memory command in order to transfer all 256 bytes of data
from the data buffer to the memory core. The last cycle needs a relatively longer time period, tWRITE,
to complete the full-page write.

The read operation is composed of three individual tasks similar to the write operation as shown in
Fig. 5.41. The first task is entering the Read from Memory command at the positive edge of WE
while CE is at logic 0. The second step is entering the starting address by specifying the row, page
and sector address values at each positive edge of WE while AE is at logic 0. The third task is to read
data from the memory core at each negative edge of RE while CE and AE signals are at logic 1.

CE

EN

RE

AE

I/O[7:0] DOut0

tHtS tLO tHI

DOut1 DOutM

tA

Fig. 5.38 Data output (read) timing diagram

186 5 Memory Circuits and Systems

CE

EN

WE

AE

I/O[7:0]

tDS tDH

Status Read

tS tLO

RE

tLO tH

tA

tS

SR Read
Command

Read
SR Contents

tH

SR contents

Fig. 5.39 Timing diagram for reading status register

CE

EN

RE

AE

I/O[7:0]

tS

WE

tH

tS tH

WrtDB A15-8

tHtS

Program
Command
Register:
Write to
Data Buffer
Command

Page + Sector
Address

Full Page

DI(0) DI(1) DI(255) WrtCM

tWRITE

Program
Command
Register:
Write to
Core Memory
Command

tS tH

Fig. 5.40 Timing diagram for full-page write (program)

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 187

A typical full-page erase is described in Fig. 5.42. In this figure, the Erase Full Page command is
entered first at the positive edge ofWE while CE is at logic 0. The memory address composed of page

CE

EN

RE

AE

I/O[7:0]

tS

WE

tH

tS tH

Read A7-0 A15-8 DO(N) DO(N+1) DO(N+255)

tHtS

Program
Command
Register:
Read from
Memory
Command

Row
Address

Page + Sector
Address

From
Starting Addr

From
Last Addr

Fig. 5.41 Timing diagram for full-page read

CE

EN

RE

AE

I/O[7:0]

tS

WE

tH

tS tH

FPEras A15-8

tHtS

Program
Command
Register:
Erase
Full Page
Command

Page + Sector
Address

CMEras

tERASE

Program
Command
Register:
Erase
Core Memory
Command

Fig. 5.42 Timing diagram for full-page erase

188 5 Memory Circuits and Systems

and sector addresses is entered next while AE is at logic 0. The Erase Core Memory command is
entered following the address while CE is at logic 0. Full-page erase time period, tERASE, must be
employed to complete the operation.

5.4 Flash Memory

Flash memory is the successor of the Electrically-Erasable-Programmable-Read-Only-Memory, and
as its predecessor it has the capability of retaining data after power is turned off. Therefore, it is ideal
to use in hand-held computers, cell phones and other mobile platforms.

A typical Flash memory is composed of multiple sectors and pages as shown in Fig. 5.43. An
eight-bit word can be located in a Flash memory by specifying the sector, the page and the row
addresses. To be compatible with the E2PROM architecture example given in the previous section,
this particular Flash memory also contains 16 sectors and 16 pages. Each page contains 256 bytes.
The sector address constitutes the most significant four bits of the 16-bit Flash address, namely Addr
[15:12]. Each page in a sector is addressed by Addr[11:8], and each byte in a page is addressed by
Addr[7:0]. There are five main control signals in Flash memory to perform basic read, write
(program), erase, protect and reset operations. Write and program commands are equivalent to each
other, and used interchangeably throughout the manuscript when describing Flash memory

8

WE

Reset

EN

RE

255

0

Sector 15 Sector 0

Flash Read/Write Interface

8

7 0

Addr[15:8] = Addr[15:12] = Sector[3:0]
 Addr[11:8] = Page[3:0]

8

I/O[7:0]

255

0 Pa
ge

 1
5

Pa
ge

 1
Pa

ge
 0

Pa
ge

 1
5

Pa
ge

 1
Pa

ge
 0

7 0

Addr[7:0] = Row[7:0]

Fig. 5.43 Flash memory organization

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 189

operations. Many Flash datasheets use the term, program, to define writing a byte or a block of data to
Flash memory.

The active-low Enable input, EN, activates a particular page in the Flash memory to prepare it for
an upcoming operation. The active-low Read Enable input, RE, activates the Read/Write interface to
read data from the memory. The active-low Write Enable input, WE, enables to write (program) data
to the memory. The active-low Reset input, Reset, is used for resetting the hardware after which the
Flash memory automatically goes into the read mode.

Typical Flash memory architecture, much like the other memory structures we have examined
earlier, consists of a memory core, address decoder, sense amplifier, data buffer and control logic as
shown in Fig. 5.44. When a memory operation starts, the control logic enables the address decoder,
the address register, and the appropriate data buffers in order to activate the read or the write
data-path. The address in the address register is decoded to point the location of data in the memory
core. If a read operation needs to be performed, the retrieved data is first stored in the data buffer, and
then released to the bus. If the operation calls for a write, the data is stored in the data buffer first, and
then directed to the designated address in the memory core. The standby mode neither writes to the
memory nor reads from it. The hibernation mode disables the address decoder, memory core and data
buffer to reduce power dissipation. The main Flash operation modes are tabulated in Fig. 5.45.

WE

RE

Reset

EN

Control
Logic

Ad
dr

es
s

D
ec

od
er

Sector 15

Data Buffer

Sector 14 Sector 0

Ad
dr

es
s

R
eg

is
te

r

Address[15:0]

I/O[7:0]

High voltage

Fig. 5.44 Flash memory architecture

190 5 Memory Circuits and Systems

The memory cell shown in Fig. 5.34 is the basic storage element in the Flash memory core. It is an
N-channel MOS transistor with a floating gate whose sole purpose is to store electronic charge. The
device needs high voltages well above the power supply voltage to create and transfer electrons to the
floating gate. In order to obtain a much higher DC voltage from power supply for a short duration, the
control logic in Fig. 5.44 contains a charge pump circuit composed of a constant current source and a
capacitor. As the constant current charges the capacitor, the voltage across the capacitor rises linearly
with time, ultimately reaching a high DC potential to create electrons for the floating gate. The
mechanism of electron tunneling to the floating gate requires time. Therefore, a write or erase
operation may take many consecutive clock cycles compared to simple control operations such as
suspend or resume.

Figure 5.46 shows the basic read operation provided that data has already been transferred from
the memory core to the data buffer. Once a valid address is issued, data is produced at the I/O terminal
some time after the falling edge of the Read Enable signal, RE. Data is held at the I/O port for a period
of hold time, th, following the rising edge of RE as shown in the timing diagram below. The actual
read operation takes about four clock cycles as the entire data retrieval process from the memory core
takes time. This involves sensing the voltage level at the Flash cell, amplifying this value using the
sense amplifier, and propagating the data from the sense amplifier to the data buffer.

EN RE WE reset

0 0 1 1 Read

0 1 0 1 Write

0 1 1 1 Standby

Hibernate

Hardware reset

1 X X 1

X X X 0

MODE

Fig. 5.45 Main modes of Flash memory

Addr Address

EN

RE

WE

DataI/O[7:0]

thtacc

tcommand

Reset

Fig. 5.46 Basic read operation timing diagram

5.4 Flash Memory 191

In contrast to read, the basic write operation follows the timing diagram of Fig. 5.47. In this figure,
a valid address must be present at the address port when the Enable and Write Enable signals, EN and
WE, are both at logic 0. Valid data satisfying the setup and hold times, ts and th, is subsequently
written to the data buffer. The actual write process can take up to four clock cycles due to the data
propagation from the I/O port to the data buffer, and then from the data buffer to the Flash core.

Disabling the I/O port for read or write, and therefore putting the device in standby mode requires
EN signal to be at logic 0 as shown in Fig. 5.48. The I/O port will float and show high impedance
(Hi-Z).

Addr Address

EN

RE

WE

Data

thts

tcommand

Reset

I/O[7:0]

Fig. 5.47 Basic write (program) operation timing diagram

Addr Address

EN

RE

WE

tcommand

Reset

Hi-ZI/O[7:0]

Fig. 5.48 Basic standby operation

192 5 Memory Circuits and Systems

Hardware reset requires only lowering Reset signal during the command cycle. The actual reset
operation takes three bus cycles and resets the entire Flash memory as shown in 5.49.

Basic Flash memory operations are tabulated in Fig. 5.50. In actuality, there are a lot more
commands in commercially available Flash memories than what is shown in this table. This section
considers only essential byte-size operations in a Flash memory. Word-size operations, very specific
Flash command sequences, such as hidden ROM programs, query and verification commands and
boot protection processes are avoided in order to emphasize the core Flash memory operations for the
reader. Address and data entries indicating a specific command in Fig. 5.50 are also modified
compared to the actual datasheets to simplify the read, write (program) and erase sequences. The
number of clock cycles, the address and data preamble values in each cycle, and the operational codes
to perform read, write, page erase, chip erase, page protect, fast write and other modes of operation
may be different from the actual datasheets.

The first task of Fig. 5.50 is the Flash memory read sequence which takes four clock cycles. The
first three clock cycles of this sequence represents the waiting period to prepare the read path from the
memory core. During this period, address and data values in the form of alternating combinations of
1s and 0s, such as 0x5555/0xAA and then 0xAAAA/0x55, are introduced to the address and data
ports as shown in Fig. 5.51. Once the read command, 0x00, is issued in the third clock cycle, a byte
of data becomes available shortly after the negative edge of the RE signal in the fourth and final clock
cycle.

Figure 5.52 shows an example of the read operation which extracts the manufacturer’s ID and
device ID from the Flash memory. The first three clock cycles of this sequence are the same as the
normal read operation, but with the exception of the ID read code, 0x10. The next two cycles deliver
the manufacturer’s ID and the device ID following the negative edge of the RE signal.

Addr Address

EN

RE

WE

tcommand

Reset

X

X

X

Hi-ZI/O[7:0]

Fig. 5.49 Basic hardware reset operation timing diagram

5.4 Flash Memory 193

R
ea

d

W
rit

e

0x
55

55
0x

AA
0x

AA
AA

0x
55

0x
55

55
0x

00

W
rit

e
su

sp
en

d
W

rit
e

re
su

m
e

C
hi

p
er

as
e

Pa
ge

 e
ra

se
Pa

ge
 e

ra
se

 s
us

pe
nd

Pa
ge

 e
ra

se
 re

su
m

e
Pa

ge
 p

ro
te

ct
Fa

st
 w

rit
e

se
t

Fa
st

 w
rit

e
Fa

st
 w

rit
e

re
se

t

R
ea

d
Ad

dr
R

ea
d

D
at

a

0x
55

55
0x

AA
0x

AA
AA

0x
55

0x
55

55
0x

20
W

rit
e

Ad
dr

W
rit

e
D

at
a

Pa
ge

 A
dd

r
0x

30

A
dd

r
D

at
a

A
dd

r
D

at
a

A
dd

r
D

at
a

A
dd

r
D

at
a

M
A

IN
 C

O
M

M
A

N
D

S

Pa
ge

 A
dd

r
0x

40
0x

55
55

0x
AA

0x
AA

AA
0x

55
0x

55
55

0x
50

0x
55

55
0x

AA
0x

AA
AA

0x
55

0x
55

55
0x

60
0x

55
55

0x
AA

0x
AA

AA
0x

55
0x

55
55

0x
50

0x
55

55
0x

AA
0x

AA
AA

0x
55

Pa
ge

 A
dd

r
0x

70
Pa

ge
 A

dd
r

0x
80

Pa
ge

 A
dd

r
0x

90
Pa

ge
 A

dd
r

0x
A0

Pa
ge

 A
dd

r
0x

A0
Pa

ge
 A

dd
r

0x
A0

Pa
ge

 A
dd

r
Ve

rif
. C

od
e

0x
55

55
0x

AA
0x

AA
AA

0x
55

0x
55

55
0x

B0
0x

XX
XX

0x
C

0
W

rit
e

Ad
dr

W
rit

e
D

at
a

0x
XX

XX
0x

D
0

0x
XX

XX
0x

E0

C
YC

LE
 1

C
YC

LE
 2

C
YC

LE
 3

C
YC

LE
 4

C
YC

LE
 5

C
YC

LE
 6

ID
 R

ea
d

0x
55

55
0x

AA
0x

AA
AA

0x
55

0x
55

55
0x

10
M

an
uf

. A
dd

r
M

an
uf

. D
at

a
D

ev
ic

e
Ad

dr
D

ev
ic

e
D

at
a

R
es

et
0x

55
55

0x
AA

0x
AA

AA
0x

55
0x

55
55

0x
F0

Fi
g
.
5.
50

Fl
as
h
m
em

or
y
co
m
m
an
ds

w
ith

re
qu

ir
ed

cl
oc
k
cy
cl
es

194 5 Memory Circuits and Systems

There are basically two types of write (program) operations for the Flash memory: auto write
(program) and fast write (program). Figure 5.53 explains the auto write sequence where the first three
cycles are the same as the read sequence with the exception of the auto write command code, 0x20, in
the third clock cycle. In the fourth cycle, a valid address and a data are entered to the device when EN
and WE are both lowered to logic 0. The valid data is subsequently written to the specified address at
the positive edge ofWE. The data written to the Flash memory can be retrieved in the following cycle
without going through a separate read sequence. This is called the auto write verification step, and the
most recent written data becomes available at the I/O port as soon as RE is lowered to logic 0.

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555 Addr

0xAA 0x55 0x00 Data

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Read command Read data

I/O[7:0]

Fig. 5.51 Timing diagram for read operation

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555 Man Addr Dev Addr

0xAA 0x55 0x10 Man Data Dev Data

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

ID read command Manufacturer
ID read

Device ID
read

I/O[7:0]

Fig. 5.52 Timing diagram for ID read operation

5.4 Flash Memory 195

The write sequence can be suspended or resumed depending on the need. Both operations take
only one clock cycle with the appropriate suspend and resume codes as shown in Fig. 5.54 and
Fig. 5.55, respectively. The write suspend and resume codes can be read in the second cycle as a
verification step.

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555 Write Addr

0xAA 0x55 0x20 Write Data

Write Addr

Write Data

Write command Write Data Verification

Cycle 1 Cycle 2 Cycle 3 Cycle 4

I/O[7:0]

Fig. 5.53 Timing diagram for write (program) operation with the optional verification cycle

Addr Page Addr

EN

RE

WE

Page Addr

0x30 Suspend comm.

Write suspend
command

Verification

Cycle 1

I/O[7:0]

Fig. 5.54 Timing diagram for write (program) suspend operation with the optional verification cycle

196 5 Memory Circuits and Systems

The erase operation can be applied either to the entire chip or to a particular page. Both sequences
take six clock cycles because of the lengthy nature of erase process. In auto chip erase, the first three
and the last three cycles are almost identical except two new codes, 0x50 and 0x60, are issued in the
third and the sixth cycles. These codes signify the command to erase data in the entire chip as shown
in Fig. 5.56.

Addr Page Addr

EN

RE

WE

Page Addr

0x40 Resume comm.

Write resume
command

Verification

Cycle 1

I/O[7:0]

Fig. 5.55 Timing diagram for write (program) resume operation with the optional verification cycle

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555

0xAA 0x55 0x50

Chip erase command

Cycle 1 Cycle 2 Cycle 3

0xAAAA 0x55550x5555

0xAA 0x55 0x60

Cycle 4 Cycle 5 Cycle 6

I/O[7:0]

Fig. 5.56 Timing diagram for chip erase operation

5.4 Flash Memory 197

In auto page erase, the first five clock cycles are identical to the auto chip erase as shown in
Fig. 5.57. The page address to be erased is supplied with the page erase command, 0x70, in the sixth
cycle.

A certain Flash memory page can be protected from being overwritten or erased by issuing a page
protect operation. This is a three-cycle operation as shown in Fig. 5.58. In all three cycles, the page
address and the page protect code, 0x0A, have to be specified.

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555

0xAA 0x55 0x50

Page erase command

Cycle 1 Cycle 2 Cycle 3

0xAAAA Page Addr0x5555

0xAA 0x55 0x70

Cycle 4 Cycle 5 Cycle 6

Page Addr input

I/O[7:0]

Fig. 5.57 Timing diagram for page erase operation

Addr Page Addr

EN

RE

WE

Page Addr Page Addr

0xA0 0xA0 0xA0

Page protect command

Cycle 1 Cycle 2 Cycle 3

Page Addr

Protect comm.

Verification

I/O[7:0]

Fig. 5.58 Timing diagram for page protect operation with the optional verification cycle

198 5 Memory Circuits and Systems

If faster writing speed is required from the Flash memory, the fast write (program) sequence can be
used. This sequence is composed of three parts: fast write set, fast write and fast write reset. The fast
write set and reset codes are entered at the beginning and at the end of a write sequence. Figure 5.59
shows the timing diagram for the fast write set sequence where the set code, 0xB0, is entered in the
third clock cycle.

The timing diagram for the fast write is a two-cycle sequence as shown in Fig. 5.60. In the first
cycle, the fast write code, 0xC0, is entered. In the second cycle, a valid address and a data are entered
at the positive edge of WE.

Addr 0x5555

EN

RE

WE

0xAAAA

0xAA

Cycle 1 Cycle 2

Fast write set command

0x5555

0x55 0xB0

Cycle 3

I/O[7:0]

Fig. 5.59 Timing diagram for fast write (program) set operation

Addr 0xXXXX

EN

RE

WE

Write Addr

0xC0

Cycle 1 Cycle 2

Fast write command

Write DataI/O[7:0]

Fig. 5.60 Timing diagram for fast write (program) operation

5.4 Flash Memory 199

The fast write reset sequence shown in Fig. 5.61 is also a two-cycle process with two fast write
termination codes, 0xD0 and 0xE0, entered in two consecutive clock cycles.

Device reset can be initiated either by Reset input in Fig. 5.44 or by entering the reset code, 0xF0,
in the third clock cycle of Fig. 5.62.

Addr 0xXXXX

EN

RE

WE

0xXXXX

0xD0

Cycle 1 Cycle 2

Fast write reset command

0xE0I/O[7:0]

Fig. 5.61 Timing diagram for fast write (program) reset operation

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555

0xAA 0x55 0xF0

Reset command

Cycle 1 Cycle 2 Cycle 3

I/O[7:0]

Fig. 5.62 Timing diagram for Reset operation

200 5 Memory Circuits and Systems

Both reading and writing (programming) data are cyclic processes. This means that a loop has to
be established in the user program to generate a series of memory addresses to read or write data.

Figure 5.63 shows the auto write (program) flow chart where a loop is created to generate the next
write address. Each box in the flow chart corresponds to a clock cycle. The first three boxes of the
flow chart are responsible for preparing the memory core prior to write. The preparation period
terminates with the auto write code, 0x20, as mentioned earlier in Fig. 5.53. After entering the first
write address and data, the memory address is incremented. The same process repeats itself prior to
issuing the next address and data. When the final address is reached, the write process simply
terminates.

The sequence of events is a little different for the fast write (program) in Fig. 5.64. The fast write
phase starts with the three-cycle long fast write set sequence followed by the two cycle long fast write
sequence. Memory address keeps incrementing until the last data byte is written to the core. The fast
write process ends with the two-cycle long fast write reset sequence.

Start

0x5555/0xAA

0xAAAA/0x55

0x5555/0x20

Write Addr/
Write Data

Last AddrAddr = Addr + 1
NO

YES

Complete

Write
sequence

Fig. 5.63 Flow chart for write (program)

5.4 Flash Memory 201

Auto write and fast write processes can be interrupted or resumed by issuing one-cycle long
suspend and resume commands anytime during the write process.

In the following sections, we will demonstrate how to design I2C bus interfaces with Flash
memory in order to perform read, write and erase operations. In each design, we will assume only one
mode of operation to simplify the design process. The reader is encouraged to design a single

Start

0x5555/0xAA

0xAAAA/0x55

0x5555/0xB0

0xXXXX/0xC0

Write Addr/
Write Data

Last AddrAddr = Addr + 1

0xXXXX/0xD0

0xXXXX/0xE0

NO

YES

Complete

Fast write set
sequence

Fast write
sequence

Fast write reset
sequence

Fig. 5.64 Flow chart for fast write (program)

202 5 Memory Circuits and Systems

interface that combines the read, write, erase and other Flash memory operations after studying all
three design examples.

Example 5.1: I2C fast write (program) interface for Flash memory

The following design example constructs only the I2C fast write (program) interface for a Flash
memory that has parallel address and data ports as shown in Fig. 5.44 using a modified seven-bit
address mode. No read, auto write, erase, page protect, reset or other modes are included in this
design for the sake of simplicity.

Before dealing with the design details and methodology, it may be prudent to review the timing
diagram of I2C write sequence using the seven-bit addressing mode. Although Fig. 5.65 includes only
one byte of data, it describes the entire write protocol for the seven-bit address mode in Fig. 4.22.
This diagram also includes the start and the stop conditions in Fig. 4.23, and when data (or address) is
allowed to change in Fig. 4.24. After generating the start condition, the bus master delivers a
seven-bit slave address, starting from the most significant bit, A6. The address sequence is followed
by the write bit at logic 0. Once the slave receives the seven-bit address and the write (or the read)
command, it produces an acknowledgment, ACK, by lowering the SDA bus to logic 0. The master
detects the ACK signal, and sends out an eight-bit data starting from the most significant bit, D7.
Once the entire byte is received, the slave responds with another ACK. More data packets follow the
same routine until the master generates the stop condition.

In Fig. 5.65, the names that appear on top of each SCL cycle describe a distinct state. If a state
machine needs to be constructed from this timing diagram, we simply assign an independent state that
corresponds to each name in Fig. 5.65 and produce a state diagram in Fig. 5.66. In this diagram, the
start condition activates the state machine, which goes through the address and the command
sequences before the data. As long as the state machine does not detect any stop condition, it
constantly traces the data states D7 to D0. However, when there is a stop condition, the state machine
goes to the IDLE state and waits for another start condition to emerge.

Even though this example only shows the fast write interface, it sets up a solid foundation of how
to design a typical I2C interface between a bus master and a Flash memory. The first step of the

A6 A5 A0 W = 0 D7 D0ACK D6 ACK

STOPSTART

SCL

SDA

A6 A5 A0 W ACK D7 D6 D0 ACK

I2C
reads

I2C
ACK

I2C
reads

I2C
reads

I2C
reads

Master
reads

Master
sends

Master
sends

Master
sends

Master
sends

Master
sends

Master
sends

I2C
reads

I2C
reads

Master
sends

I2C
reads

I2C
ACK

Master
reads

Fig. 5.65 A simple timing diagram for I2C write (program) using seven-bit address mode

5.4 Flash Memory 203

http://dx.doi.org/10.1007/978-3-030-00223-7_4
http://dx.doi.org/10.1007/978-3-030-00223-7_4
http://dx.doi.org/10.1007/978-3-030-00223-7_4

design process is to create a rough interface block diagram showing all the major I/O ports between
the Flash memory and the I2C bus as shown in Fig. 5.67. For the fast write sequence, the address and
data packets are serially transferred to the interface through the SDA port. However, the Flash
memory needs the address and data fields all at once. Therefore, the write operation requires the
interface to perform serial-to-parallel conversion of incoming data. The interface also needs to pro-
duce two control signals, EN and WE, for the fast write sequence, and the control signal, EnDataOut,
for writing an eight-bit data to a designated Flash memory address.

Figure 5.68 shows the architectural block diagram of the Flash memory interface for the fast write
operation. As mentioned earlier when designing SRAM and SDRAM memory interfaces, creating a
complete data-path for an interface is not a single-step process. The design methodology requires
building a simple data-path with all of its functional units and a corresponding timing diagram
showing the flow of data in each clock cycle, the start and stop conditions, address and data for-
mations. However, as more detail is added to the architecture, the initial timing diagram also becomes

IDLE

A6

A0

W

ACK

D7

D0

ACK

START = 1

START = 0

STOP = 1

STOP = 0

Fig. 5.66 The state diagram for the simple I2C write (program) in Fig. 5.65

204 5 Memory Circuits and Systems

more complex to match the architecture. Figure 5.69 through Fig. 5.71 show a set of timing diagrams
related to the architecture in Fig. 5.68. These diagrams describe the start and stop conditions,
preamble sequence, address and data formations, repacking and delivery of serial address and data in
a systematic manner.

Once the cycle-by-cycle nature of address and data entries are accurately described in the timing
diagram, the control signals responsible for routing the address and data can be added to the diagram.
The final step of the design process is to assign distinct states to each clock cycle of the timing
diagram that contains different sets of control signals in order to generate a Moore-type state machine.

To start, we need to include four functional units in Fig. 5.68 to be able to handle a simple fast
write operation. The first functional unit is an eight-bit shift register whose sole purpose is to convert
the incoming serial data from the SDA port into a parallel form for the Flash memory. If the fast-write
process requires an authentication step prior to data exchange, the first eight-bit packet coming to this
interface must be delivered to the device ID register, which is considered the second functional unit.
The second and the third eight-bit data packets arriving at the interface belong to the most and the
least significant bytes of the 16-bit starting Flash memory address, respectively, and they are stored in
the address counter. The address counter, which constitutes the third functional unit, uses this initial
address to generate subsequent addresses for programming the Flash memory. All eight-bit data that
follows the address entry is routed directly to the data port of the Flash memory. There are also
several fixed-value registers connected to the inputs of the address and data MUXes in Fig. 5.68.
These registers contain the preamble data for setting and resetting the fast write modes for the Flash
memory prior to address and data sequences. The write controller, which is considered to be the
fourth functional unit, generates all the control signals necessary for storing data, incrementing the
address, and routing the address and data to the output ports of the interface. The host processor
delivers all address, control and data signals to the interface at the negative edge of the SCL, which
requires all the registers to operate at the positive edge of SCL in Fig. 5.68.

The START condition in Fig. 5.69 is produced by the bus master lowering the SDA signal to logic
0 while keeping the SCK signal at logic 1 in cycle 1. Once the START condition is detected, the serial
data on the SDA port is transferred to an eight-bit shift register which converts this data into a parallel
form before sending it to different registers in Fig. 5.68. In clock cycles 2 to 8, the seven-bit Flash

SDA

EN WE

Addr [15:0]

DataI/O [7:0]

16

I/O [7:0]

EnDataOut

Flash
Program

I/F

8
SCL

Fig. 5.67 Simplified page diagram of the I2C fast write (program) interface

5.4 Flash Memory 205

memory ID is loaded to the shift register starting from the most significant bit if device authentication
is required prior to data transmission. In cycle 9, the bus master sends the write bit, W, stored in the
shift register. In cycle 10, a number of events take place simultaneously. First, the write bit at the least
significant bit position of the shift register activates the write controller. Second, the device ID and the
write bit are transferred from the shift register to a special device ID register. Third, the Flash memory

Device ID + W
0

Address Counter

15 0

Shift Reg
7 0

LoadAddrLSB

LoadAddrMSB

IncrAddr

0x5555
15 0

0xAAAA
15 0

16

16

16

se
lA

dd
r

se
lA

AA
A

se
l5

55
5

AddrRegOut
0

1

2

Addr[15:0]

0xAA
7 0

0x55
7 0

0xB0
7 0

0xC0
7 0

0xD0
7 0

0xE0
7 0

0

1

2

3

4

5

6

8

8

8

8

8

8

8

DataI/O [7:0]

se
lD

at
a

se
lA

A

se
l5

5
se

lB
0

se
lC

0

se
lD

0

se
lE

0

SC
L

LoadDevID

shift
LoadDevID

IncrAddr
sel5555
selAAAA
selAddr
selAA
sel55
selB0
selC0
selD0
selE0
selData
EnDataOut

shift

SCL

SCL

SCL

SCL

LoadAddrLSB
LoadAddrMSB

EN WE

Write
Controller

shiftRegOut

SDA

I/O[7:0]

EnDataOut

EnSDAOut

88

7

W

SCL

MSB

0

1

SCL

SCLMaster

SCLAux

selAux

SCL

SDA
Detector

START

STOP

ST
AR

T

ST
O

P

EnSDAOut

Ad
dr

es
s

M
U

X

D
at

a
M

U
X

Fig. 5.68 I2C fast write (program) interface data-path

206 5 Memory Circuits and Systems

SC
L

SD
A

sh
ift

R
eg

O
ut

Ad
dr

EN W
E

sh
ift

Lo
ad

D
ev

ID

Lo
ad

Ad
dM

SB

Lo
ad

Ad
dL

SB

In
cr

Ad
dr

se
l5

55
5

se
lA

AA
A

se
lA

dd
r

se
lB

0

se
lC

0

se
lD

0

se
lE

0

se
l5

5

se
lA

A

se
lD

at
a

En
D

at
aO

ut

11
12

13
14

15
16

17
18

D
Ad

d6
D

Ad
d5

D
Ad

d4
D

Ad
d3

D
Ad

d2
D

Ad
d1

D
Ad

d0
AC

K
Ad

d1
5

Ad
d1

4
Ad

d1
3

Ad
d1

2
Ad

d1
1

Ad
d1

0
Ad

d9
Ad

d8
AC

K

1
2

3
4

8
9

10

D
ev

ID

0x
55

55
H

O
LD

0x
AA

AA
H

O
LD

0x
55

55
H

O
LD

0x
AA

0x
55

0x
B0

0x
C

0

En
SD

AO
ut

W

19

ST
AR

T

se
lA

ux

I/O
[7

:0
]

5
6

7

D
ev

ID
+W

0x
XX

XX

St
Ad

dM
SB

Fi
g
.
5.
69

I2
C
fa
st
w
ri
te

(p
ro
gr
am

)
se
t
se
qu

en
ce
,
de
vi
ce

ID
an
d
Fl
as
h
m
em

or
y
ad
dr
es
s
fo
rm

at
io
ns

5.4 Flash Memory 207

interface produces the first acknowledge signal, ACK, by EnSDAOut = 1, thus lowering the SDA bus
to logic 0. Finally, the interface sends the first preamble which consists of the address, 0x5555, and
the data, 0xAA, to the Flash memory and lowers EN and WE to logic 0 as the first step of the fast
write set.

In cycle 11, the most significant bit of the 16-bit initial Flash memory address, Add15, is received
from the SDA bus and stored in the shift register. This cycle is considered a hold period for EN and
WE signals. In cycle 12, the second most significant address bit, Add14, is stored in the shift register.
In this cycle, the second preamble that contains the address, 0xAAAA, and the data, 0x55, are sent to
the Flash memory as the second step of the fast write set. In cycle 14, the third address and command
preamble, 0x5555 and 0xB0, are sent to the Flash memory, completing the fast write set sequence.
The fast write sequence starts at cycle 16 where the fast write command, 0xC0, is sent to the Flash
memory. In cycle 19, the most significant byte of the 16-bit starting Flash memory address,
StAddMSB, is transferred from the shift register to the address register which resides inside the
address counter. In this cycle, the interface also generates the second ACK signal by EnSDAOut = 1.

From cycles 20 to 27 in Fig. 5.70, the least significant byte of the starting Flash address,
StAddLSB, is received by the shift register. In cycle 28, this byte is transferred to the least significant
byte of the address register in order to form the 16-bit starting Flash address. In this cycle, the
interface generates the third ACK signal. From cycles 29 to 36, the first set of data bits starting from
the most significant bit, DF7, to the least significant bit, DF0, are received by the shift register. In
cycle 37, the first eight-bit data packet, Data0, is transferred directly to the bidirectional I/O port of
Flash memory. The control signal, EnDataOut, enables the tri-state buffers in Fig. 5.68 to write this
data packet to the Flash memory.

Cycles 38 through 45 in Fig. 5.70 and Fig. 5.71 are used to store the second eight-bit data packet in
the shift register. Cycle 46 transfers this data packet, Data1, to the I/O port and generates an ACK
signal for receiving the second data byte from the bus master. If the STOP condition is detected during
the next clock cycle, the fast write process halts. The write controller goes into the fast write reset mode
and asynchronously produces selAux = 1 to engage the auxiliary clock, SCLAux, instead of using the
main SCL clock, SCLMaster, generated by the bus master. This is because the Flash memory needs
two more preambles that contain 0xD0 and 0xE0 commands to complete the fast write reset sequence.
Therefore, starting from cycle 48, SCL resumes with three more cycles. In cycle 48, the first preamble
that contains 0xD0, and in cycle 50 the second preamble that contains 0xE0 are sent to the Flash
memory by setting selD0 and then selE0 to logic 1, respectively. In the next cycle, selAux becomes
logic 0. Therefore, SCL switches back to the SCLMaster input which is permanently raised to logic 1.

The Moore machine in Fig. 5.72 implements the write controller in Fig. 5.68. At the onset of the
START condition, the controller wakes up and goes into the device ID retrieval mode. From cycle 2
to cycle 8 in Fig. 5.69, the serial device ID is received by the shift register on the SDA bus. These
cycles correspond to the states DAdd6 to DAdd0 in Fig. 5.72 where the shift signal is constantly kept
at logic 1, and writing data to the Flash memory is disabled. In cycle 9, the write bit is also stored in
the shift register. This corresponds to the W state in the state machine. In cycle 10, numerous events
take place simultaneously. First, shifting serial data into the shift register stops by shift = 0. Second,
the seven-bit device ID and the write bit are delivered to the device ID register by LoadDevID = 1.
Third, the first address and data preamble, 0x5555 and 0xAA, is delivered to the Flash memory
through port 1 of the address MUX by sel5555 = 1 and port 1 of the data MUX by selAA = 1.
Fourth, the control signals, EN and WE, are lowered to logic 0 in order to write the address and data

208 5 Memory Circuits and Systems

se
lA

ux

SC
L

SD
A

sh
ift

R
eg

O
ut

Ad
dr

EN W
E

sh
ift

Lo
ad

D
ev

ID

Lo
ad

Ad
dM

SB

Lo
ad

Ad
dL

SB

In
cr

Ad
dr

se
l5

55
5

se
lA

AA
A

se
lA

dd
r

se
lB

0

se
lC

0

se
lD

0

se
lE

0

se
l5

5

se
lA

A

se
lD

at
a

En
D

at
aO

ut

30
31

32
33

34
35

36
37

38

Ad
d7

AC
K

D
F7

D
F6

D
F5

D
F4

D
F3

D
F2

D
F1

D
F0

AC
K

D
7

20
21

22
23

24
25

26
27

28
29

Ad
d6

Ad
d1

Ad
d0

D
at

a0

St
Ad

d

D
at

a0

En
SD

AO
ut

I/O
[7

:0
]

St
Ad

dL
SB

Fi
g
.
5.
70

I2
C
fa
st
w
ri
te

(p
ro
gr
am

)
se
qu

en
ce

5.4 Flash Memory 209

se
lA

ux

SC
L

SD
A

sh
ift

R
eg

O
ut

Ad
dr

EN W
E

sh
ift

Lo
ad

D
ev

ID

Lo
ad

Ad
dM

SB

Lo
ad

Ad
dL

SB

In
cr

Ad
dr

se
l5

55
5

se
lA

AA
A

se
lA

dd
r

se
lB

0

se
lC

0

se
lD

0

se
lE

0

se
l5

5

se
lA

A

se
lD

at
a

En
D

at
aO

ut

49
50

51
52

53
54

55
56

57

D
6

D
5

D
4

D
3

D
2

D
1

D
0

39
40

41
42

43
44

45
46

47
48

D
at

a1

D
at

a1

H
O

LD
H

O
LD

0x
D

0
0x

E0

En
SD

AO
ut

ST
O

P

I/O
[7

:0
]

St
Ad

d+
1

0x
XX

XX
0x

XX
XX

AC
K

Fi
g
.
5.
71

I2
C
fa
st
w
ri
te

(p
ro
gr
am

)
re
se
t
se
qu

en
ce

210 5 Memory Circuits and Systems

preamble to the Flash memory. Finally, an ACK signal is generated by EnSDAOut = 1. This cycle
corresponds to the DevID ACK state of the write controller.

DAdd0

DAdd6

DevID
ACK

Add15

Add14

Add13

Add12

Add11

Add10

Add9

Add8

AddMSB
ACK

Add7

Add0

AddLSB
ACK

DF7

DF0

0xD0

HOLD

0xE0

IDLE START = 0
START = 1

shift = 1
EN = 1
WE = 1

shift = 0
EnSDAOut = 1
EnDataOut = 1
LoadDevID = 1

sel5555 = 1
selAA = 1

EN = 0
WE = 0

shift = 1
EnDataOut = 1

sel55 = 1
selAAAA = 1

EN = 0
WE = 0
shift = 1
EN = 1
WE = 1
shift = 1

EnDataOut = 1
selB0 = 1

sel5555 = 1
EN = 0
WE = 0
shift = 1
EN = 1
WE = 1
shift = 1

EnDataOut = 1
selC0 = 1

EN = 0
WE = 0

shift = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 0
EnSDAOut = 1

LoadAddMSB = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 0
EnSDAOut = 1
LoadAddLSB = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 0
EnDataOut = 1
selD0 = 1
selAux = 1
EN = 0
WE = 0
shift = 0
selAux = 1
EN = 1
WE = 1
shift = 0
EnDataOut = 1
selE0 = 1
selAux = 1
EN = 0
WE = 0

shift = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

STOP = 0

ST
O

P
=

1

W

shift = 1
EN = 1
WE = 1

D7

D0

shift = 1
EN = 1
WE = 1

shift = 1
IncrAddr = 1
EN = 1
WE = 1

Data
ACK

shift = 0
EnSDAOut = 1

selAddr = 1
selData = 1

EnDataOut = 1
EN = 0
WE = 0

Fig. 5.72 I2C fast write (program) interface controller (only the essential control signals are indicated in each state to
avoid complexity)

5.4 Flash Memory 211

In cycle 11, shifting data resumes, and the shift register receives the most significant bit of the
initial Flash address, Add15, while in the Add15 state. In cycle 12, corresponding to the Add14 state,
the second most significant address bit, Add14, is latched in the shift register by shift = 1. In the same
cycle, the second address and data preamble, 0xAAAA and 0x55, is delivered to the Flash memory
through port 2 of the address MUX by selAAAA = 1 and port 2 of the data MUX by sel55 = 1. The
control signals, EN and WE, are also lowered to logic 0 in order to write this preamble to the Flash
memory. In cycle 13, Add13 is stored in the shift register. This cycle corresponds to the Add13 state.
In cycle 14, the third address and data preamble, 0x5555 and 0xB0, is written to the Flash memory
through port 1 of the address MUX by sel5555 = 1 and port 3 of the data MUX by selB0 = 1. In this
cycle, the control signals, EN and WE, are lowered to logic 0 in order to write the last address and
data preambles. This cycle corresponds to the Add12 state. Cycle 15 designates the end of the fast
write set cycle, and corresponds to the Add11 state when the address bit, Add11, is loaded to the shift
register.

Cycle 16 enters the fast write command mode and writes the address and data preambles,
0xXXXX and 0xC0, through port 4 of the data MUX by selC0 = 1. In this cycle, EN and WE signals
are lowered to logic 0 to accommodate the write operation, and Add10 is latched in the shift register.
This clock cycle corresponds to the Add10 state. Storing the higher byte of the initial Flash address
becomes complete by the end of cycle 18. In cycle 19, the higher byte of the initial address is
transferred to the address register by LoadAddMSB = 1, and an acknowledge signal is generated by
EnSDAOut = 1. This cycle corresponds to the AddMSB ACK state in the state diagram. Similar
events take place when storing the least significant byte of the starting address in the shift register.
These states are marked as Add7 to Add0 in the state diagram, and correspond to the cycles 20 to 27,
respectively. The cycle 28, which corresponds to the AddLSB ACK state, generates the third
acknowledge for the bus master by EnSDAOut = 1, and transfers the least significant byte of the
starting Flash memory address to the address register by LoadAddLSB = 1.

From cycles 29 to 36, the first set of data bits are delivered to the shift register starting from the
most significant data bit, DF7. This sequence is shown as the states DF7 to DF0 in the state diagram.
In cycle 37, an acknowledgement is sent to the bus master by EnSDAOut = 1 shown as the
Data ACK state. During this period, the initial 16-bit address and eight-bit data are delivered to the
Flash memory through port 0 of the address MUX by selAddr = 1 and port 0 of the data MUX by
selData = 1. Tri-state buffer at the I/O port is also enabled by EnDataOut = 1. The second data byte is
received during cycles 38 to 45, which correspond to the states D7 to D0, respectively. Cycle 45 is
also the cycle to increment the Flash memory address by issuing IncrAddr = 1. In Cycle 46, the write
controller goes into the Data ACK state once again and issues an acknowledgement for receiving the
second data packet by EnSDAOut = 1. In this cycle, the second data packet is delivered to the
incremented Flash memory address, StAdd + 1, by selAddr = 1, selData = 1 and EnDataOut = 1. As
long as the STOP condition is not detected, data packets are delivered to the Flash memory at each
incremented address. However, if the bus master issues a STOP condition, the auxiliary SCL gen-
erator, SCLAux, is asynchronously enabled within the same cycle by selAux = 1. The write con-
troller goes into the fast write reset mode in the next clock cycle and keeps the auxiliary SCL
generator enabled by selAux = 1. For the next three clock cycles, the 0xD0 and 0xE0 command
codes, corresponding to the 0xD0 and 0xE0 states in the state diagram, are delivered to the Flash
memory through port 5 of the data MUX by selD0 = 1 and port 6 of the data MUX by selE0 = 1.

212 5 Memory Circuits and Systems

Example 5.2: I2C read interface for Flash memory

The following design example constructs only the I2C read interface for a Flash memory that has
parallel address and data ports as shown in Fig. 5.44 using a modified seven-bit address mode. No
other modes are included in this design except the read.

The timing diagram for I2C read with seven-bit address mode is given in Fig. 5.73 where eight-bit
data packets are serially read from a slave after issuing an address. The address sent by the bus master
requires slave’s acknowledgment (ACK). In contrast, data packets sent by the slave require the
master’s acknowledgment. If the bus master chooses not to acknowledge the receipt of data (NACK),
the data transfer stops in the next cycle. Figure 5.74 shows the sequence of events taking place in
Fig. 5.73 in the form of a state diagram where the logic level in Master ACK/NACK state determines
the continuation or the end of the data transfer.

The Flash memory read sequence described in Fig. 5.75 is a four-cycle process as mentioned
earlier in Fig. 5.50. The bus master sends the address and data preambles, 0x5555/0xAA and
0xAAAA/0x55, in the first two cycles. This is followed by the 0x5555/0x00 preamble containing the
read command code in the third cycle. All three cycles can be considered a preparation period for a
read operation which takes place in the fourth cycle. Following the read operation, the address is
incremented either by one or a predefined value according to the Flash memory address generation
protocol before the next data read sequence takes place.

To read data from the Flash memory, the address and command entries are serially sent by the host
processor to the I2C interface through the SDA port. The Flash memory requires a 16-bit address all at
once in order to read an eight-bit data, and this necessitates an interface to perform both
serial-to-parallel and parallel-to serial conversions. The interface has to produce three active-low
control signals, CE, WE and OE, to be able to read data from the Flash memory. It also needs to
produce the control signals, EnDataIn and EnDataOut, to route the incoming and outgoing data.

A6 A5 A0 R = 1 D7 D0ACK D6 Master
NACK

STOPSTART

SCL

SDA

A6 A5 A0 R ACK D7 D6 D0 NACK

I2C
reads

I2C
ACK

I2C
reads

Master
reads

Master
sends

Master
sends

Master
sends

I2C
reads

Master
sends

I2C
reads

Master
sends

Master
sends

I2C
reads

I2C
reads

Master
sends

Master
sends

I2C
reads

I2C
reads

Fig. 5.73 A simple timing diagram for the I2C read operation using seven-bit address mode

5.4 Flash Memory 213

Figure 5.76 shows the architectural diagram of the Flash memory read interface. Figures 5.77,
5.78 and 5.79 show the timing diagrams related to this architecture. These waveforms describe a
complete picture of the preamble formation, device ID creation, address generation and serializing the
read data from the Flash memory.

The architecture in Fig. 5.76 still contains four functional units as in the fast write (program)
data-path. The first functional unit is an eight-bit shift register which stores the serial address,
command and data, and converts the serial data on the SDA bus into a parallel form and the parallel
data from the Flash memory into a serial form. The second functional unit stores the device ID if the
Flash memory requires an identification process prior to data exchange, and the command bit. The
third unit stores the initial 16-bit Flash memory address and generates the subsequent memory
addresses using an up-counter. The fourth unit is the read controller, which is responsible for storing
the device ID, the command bit, forming and incrementing the initial address, and handling the proper

IDLE

A6

A0

R

D7

D0

START = 1

START = 0

SDA = 1SDA = 0

Slave
ACK

Master
ACK/NACK

Fig. 5.74 The state diagram for the simple I2C read operation in Fig. 5.73

214 5 Memory Circuits and Systems

data-flow that complies with the timing diagrams in Figs. 5.77, 5.78 and 5.79. There are also several
fixed-value registers, each of which contains the address and data preambles for retrieval of data from
the Flash memory. The host processor dispatches all address and control signals at the negative edge
of the SCL in order to read data from the Flash memory, and therefore it requires all the registers in
Fig. 5.76 to operate at the positive edge of SCL clock.

Figures 5.77, 5.78 and 5.79 describe the complete picture of reading data from the Flash memory.
Figure 5.77 shows the device ID and the command bit formations followed by the generation of the
most significant byte of the initial Flash memory address. Figure 5.78 describes the formation of the
least significant byte of the initial Flash memory address and the first data byte read from the memory.
Figure 5.79 includes two additional bytes of data sent to the bus master and the termination of data
transfer.

The bus master initiates the data transfer by issuing the START condition in Fig. 5.77. Between
cycles 1 and 8, the bus master sends the device ID followed by the read command on the SDA bus,
both of which are serially loaded to an eight-bit shift register by ShiftIn = 1. These cycles are
represented by the states DAdd6 to DAdd0 followed by the R state, which corresponds to the read
command, in the state diagram in Fig. 5.80. In cycle 9, the Flash memory interface responds to the
bus master with an acknowledgement by issuing EnSDAOut = 1, but pauses shifting data by Shif-
tIn = 0. In the same cycle, the interface also transfers data from the shift register to the device ID
register by LoadDevID = 1. This cycle corresponds to the first slave-acknowledgement state,
DevID SACK, in Fig. 5.80. In cycle 10, the interface starts sending the preamble to the Flash memory

Start

0x5555/0xAA

0xAAAA/0x55

0x5555/0x00

Read Addr/
Read Data

Last AddrAddr = Addr + 1
NO

YES

Complete

Read
preamble

Fig. 5.75 Flow chart for the read sequence

5.4 Flash Memory 215

Device ID + R
0

Shift Reg
7 0

0x5555
15 0

0xAAAA
15 0

16

16

16
se

lA
dd

r

se
lA

AA
A

se
l5

55
5

0

1

2

Addr[15:0]

8

SC
L

ShiftIn

LoadShift

IncrAddr

sel5555
selAAAA

selAddr

selAA
sel55

sel00

SDAIn
SDAOut

EnDataIn

Sh
ift

In

SCL

SCL

LoadAddrLSB

EN WE

Read
Controller

Sh
ift

R
eg

O
ut

SDA

EnSDAOut

7

R

SCL
SCL

SDA
Detector

START

STOP

ST
AR

T

ST
O

P
EnSDAOut

SDA

SDAIn SDAOut

Sh
ift

O
ut

Lo
ad

Sh
ift

Addr MSB
07

SCL
+ 1

8

8

8

8

selStartAddr

initAddr

AddrCountOut
0

1

IncrAddr
selStartAddr

0 1 2

0x55
07

0xAA
07

0x00
07

EnDataOut

EnDataIn

Sh
ift

R
eg

In
8

LoadDevID

LoadAddrMSB

se
l5

5
se

lA
A

se
l0

0

0

1

2

RE

ShiftOut

LoadDevID

selStartAddr

EnDataOut

I/O[7:0]

Ad
dr

es
s

M
U

X

D
at

a
M

U
X

Addr Reg MUX

16

16
Addr Reg

015

SCL

SCL

MasterAck (external from the Master)

Fig. 5.76 I2C read interface data-path

216 5 Memory Circuits and Systems

SC
L

SD
A

Sh
ift

R
eg

O
ut

Ad
dr

EN W
E

Sh
ift

In

Lo
ad

Sh
ift

Lo
ad

D
ev

ID

Lo
ad

Ad
dM

SB

In
cr

Ad
dr

se
l5

55
5

se
lA

AA
A

se
lA

dd
r

se
l0

0

En
D

at
aO

ut

se
l5

5

se
lA

A

En
SD

AO
ut

se
lS

ta
rtA

dd
r

10
11

12
13

14
15

16
17

D
Ad

d6
D

Ad
d5

D
Ad

d4
D

Ad
d3

D
Ad

d2
D

Ad
d1

D
Ad

d0
Ad

d1
5

Ad
d1

4
Ad

d1
3

Ad
d1

2
Ad

d1
1

Ad
d1

0
Ad

d9
Ad

d8

1
2

3
7

8
9

Ad
dM

SB

0x
55

55
H

O
LD

H
O

LD
0x

55
55

0x
AA

0x
55

0x
00

Sh
ift

O
ut

R

18

ST
AR

T
Sl

av
e

AC
K

Sl
av

e
AC

K

Sh
ift

R
eg

In

Ad
dr

C
ou

nt
O

ut

R
E

En
D

at
aI

n

SD
AI

n

SD
AO

ut

St
ar

t R
ea

d
Pr

ea
m

bl
e

H
IG

H

I/O
[7

:0
]

4
5

6

D
ev

ID
+R

0x
AA

AA

Fi
g
.
5.
77

I2
C
in
te
rf
ac
e
tim

in
g
di
ag
ra
m

em
ph

as
iz
in
g
de
vi
ce

ID
an
d
L
SB

of
th
e
st
ar
tin

g
Fl
as
h
m
em

or
y
ad
dr
es
s
fo
rm

at
io
ns

du
ri
ng

th
e
re
ad

op
er
at
io
n

5.4 Flash Memory 217

SC
L

SD
A

Sh
ift

R
eg

O
ut

Ad
dr

EN W
E

Sh
ift

In

Lo
ad

Sh
ift

Lo
ad

D
ev

ID

Lo
ad

Ad
dM

SB

In
cr

Ad
dr

se
l5

55
5

se
lA

AA
A

se
lA

dd
r

se
l0

0

En
D

at
aO

ut

se
l5

5

se
lA

A

En
SD

AO
ut

se
lS

ta
rtA

dd
r

29
30

31
32

33
34

35
36

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

19
20

21
22

26
27

28

0x
55

55
H

O
LD

H
O

LD
0x

55
55

0x
AA

0x
55

0x
00

Sh
ift

O
ut

37

Sl
av

e
AC

K
M

as
te

r
AC

K

Sh
ift

R
eg

In

Ad
dr

C
ou

nt
O

ut

R
E

En
D

at
aI

n

SD
AI

n

SD
AO

ut

Ad
d6

Ad
d5

Ad
d4

Ad
d3

Ad
d2

Ad
d1

Ad
d0

Ad
d7

D
7

D
at

a0
D

at
a1

H
O

LD

D
at

a0
D

at
a1

I/O
[7

:0
]

23
24

25

Ad
dL

SB

St
ar

tA
dd

St
ar

tA
dd

0x
AA

AA
St

Ad
d+

1

St
Ad

d+
1

Fi
g
.
5.
78

I2
C

in
te
rf
ac
e
tim

in
g
di
ag
ra
m

em
ph

as
iz
in
g
th
e
M
SB

of
th
e
st
ar
tin

g
Fl
as
h
m
em

or
y
ad
dr
es
s
an
d
da
ta

fo
rm

at
io
ns

du
ri
ng

th
e
re
ad

op
er
at
io
n

218 5 Memory Circuits and Systems

SC
L

SD
A

Sh
ift

R
eg

O
ut

Ad
dr

EN W
E

Sh
ift

In

Lo
ad

Sh
ift

Lo
ad

D
ev

ID

Lo
ad

Ad
dM

SB

In
cr

Ad
dr

se
l5

55
5

se
lA

AA
A

se
lA

dd
r

se
l0

0

En
D

at
aO

ut

se
l5

5

se
lA

A

En
SD

AO
ut

se
lS

ta
rtA

dd
r

48
49

50
51

52
53

54
55

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

38
39

40
41

45
46

47

0x
55

55
H

O
LD

H
O

LD
0x

55
55

0x
AA

0x
55

0x
00

Sh
ift

O
ut

M
as

te
r

AC
K

M
as

te
r

N
AC

K

Sh
ift

R
eg

In

Ad
dr

C
ou

nt
O

ut

R
E

En
D

at
aI

n

SD
AI

n

SD
AO

ut

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
at

a2

H
O

LD

D
at

a2

ST
O

P

0x
55

55
H

O
LD

H
O

LD
0x

55
55

0x
AA

0x
55

0x
00

H
O

LD

I/O
[7

:0
]

42
43

44

0x
AA

AA
St

Ad
d+

2

St
Ad

d+
2

0x
AA

AA
St

Ad
d+

3

St
Ad

d+
3

Fi
g
.
5.
79

I2
C
in
te
rf
ac
e
tim

in
g
di
ag
ra
m

em
ph

as
iz
in
g
th
e
da
ta

fo
rm

at
io
ns

an
d
th
e
en
d
of

th
e
re
ad

cy
cl
e

5.4 Flash Memory 219

for a read operation. In this cycle, the first address and data preamble, 0x5555/0xAA, is fetched from
the fixed-data registers, 0x5555 and 0xAA in Fig. 5.76. This preamble is subsequently sent to the
address port of the device through port 1 of the address MUX by sel5555 = 1, and to the data port of
the device through port 1 of the data MUX by selAA = 1. In this cycle, the bus master also sends the
most significant bit of the 16-bit Flash memory address, Add15, on the SDA bus.

In cycle 12, the interface sends the second address and data preamble, 0xAAAA/0x55, through
port 2 of the address MUX by selAAAA = 1 and port 0 of the data MUX by sel55 = 1. In cycle 14,
the last address and data preamble, 0x5555/0x00, containing the read command, is sent to the Flash
memory address and data ports. The cycles 10 to 17 correspond to storing the most significant byte of
the starting Flash memory address, Add15 to Add8, in the shift register by ShiftIn = 1. In cycle 18,
the interface sends an acknowledgement to the bus master by EnSDAOut = 1 to indicate that it has
received the higher byte of the starting Flash memory address. Within the same cycle, this higher byte
is stored in the 16-bit address register that resides in the address counter by LoadAddMSB = 1. This
cycle represents the second slave-acknowledgement state, AddLSB SACK, in Fig. 5.80.

In cycles 19 to 26, the bus master sends the least significant byte of the starting Flash memory
address by ShiftIn = 1. These cycles correspond to the states Add7 to Add0 in Fig. 5.80, respectively.
Cycle 27 constitutes the third slave-acknowledgement state, AddLSB SACK, in Fig. 5.80. There are
numerous events that take place during this clock cycle, and they are all inter-related. The first event
concatenates the least significant byte of the starting Flash memory address in the shift register with the
most significant byte in the Addr MSB register to form the complete 16-bit starting Flash memory
address. This address is subsequently sent to the Addr[15:0] terminal of the Flash memory through port
0 of the address register MUX by selStartAddr = 1 and port 0 of the address MUX by selAddr = 1.
The second event lowers EN and RE control signals to logic 0 and produces EnDataIn = 1 in order to
fetch the first data byte from the Flash memory, Data0, since the read preamble has already been sent
between cycles 10 and 14. The third event stores Data0 in the shift register through its ShiftRegIn port
by LoadShift = 1. Finally, the last event sends an acknowledgement signal to the bus master by
EnSDAOut = 1, signifying the least significant byte of the starting address has been received so that
the bus master can start receiving serial data on the SDA bus in the next cycle.

In cycle 28, the starting address, which could not be registered due to time limitations in the earlier
cycle, is now registered in the address register, and the address counter output, AddrCountOut,
becomes equal to the starting address, StartAdd. In the same cycle, the most significant bit of Data0,
D7, becomes available on the SDA bus by SDAOut = 1. Starting from cycle 30, the read preamble
associated with the second data is sent to the Flash memory. The read preamble could have been
issued as early as cycle 28 or 29 since the address counter still held StartAdd at the AddrCountOut
node during these periods. In cycle 35, the interface increments the starting address by IncrAddr = 1
and uses port 2 of the address register MUX to feed through the result. Until the beginning of cycle
36, all eight bits of Data0, D7 to D0, are serially sent to the bus master by SDAOut = 1. Therefore,
cycles 28 to 35 correspond to the states D7 to D0 in Fig. 5.80, respectively. In cycle 36, while the bus
master acknowledges the reception of Data0 by lowering the SDA bus to logic 0, and the interface
sends the incremented Flash memory address, StAdd + 1, to the Addr[15:0] terminal through port 0
of the address MUX by selAddr = 1. In the same cycle, the interface lowers EN and RE signals to
logic 0, fetches Data1 from the I/O port of the Flash memory by EnDataIn = 1, and stores this value
in the shift register by LoadShift = 1. This particular cycle corresponds to the master-acknowledge
state, MACK, in Fig. 5.80, where the state machine continues fetching data from the Flash memory.

220 5 Memory Circuits and Systems

DAdd0

DAdd6

DevID
SACK

Add15

Add14

Add13

Add12

Add11

Add10

Add9

Add8

AddMSB
SACK

Add7

Add0

AddLSB
SACK

IDLE START = 0
START = 1

ShiftIn = 1
SDAIn = 1

EN = 1
WE = 1
RE = 1

EnSDAOut = 1
LoadDevID = 1

EN = 1
WE = 1
RE = 1

ShiftIn = 1
SDAIn = 1

EN = 1
WE = 1
RE = 1

ShiftIn = 1
sel5555 = 1

selAA = 1
EnDataOut = 1

SDAIn = 1
EN = 0
WE = 0
RE = 1

MasterAck = 0

R D7

MACK

D6

D5

D4

D2

D2

D1

D0

ShiftIn = 1
selAAAA = 1

sel55 = 1
EnDataOut = 1

SDAIn = 1
EN = 0
WE = 0
RE = 1 ShiftIn = 1

SDAIn = 1
EN = 1
WE = 1
RE = 1

ShiftIn = 1
sel5555 = 1

sel00 = 1
EnDataOut = 1

SDAIn = 1
EN = 0
WE = 0
RE = 1

ShiftIn = 1
SDAIn = 1

EN = 1
WE = 1
RE = 1ShiftIn = 1

SDAIn = 1
EN = 1
WE = 1
RE = 1 ShiftIn = 1

SDAIn = 1
EN = 1
WE = 1
RE = 1LoadAddMSB = 1

EnSDAOut = 1
EN = 1
WE = 1
RE = 1

ShiftIn = 1
SDAIn = 1

EN = 1
WE = 1
RE = 1ShiftIn = 1

SDAIn = 1
EN = 1
WE = 1
RE = 1

ShiftIn = 1
SDAIn = 1
EN = 1
WE = 1
RE = 1

ShiftIn = 1
SDAIn = 1
EN = 1
WE = 1
RE = 1

LoadShift = 1
selStartAddr = 1
selAddr = 1
EnDataIn = 1
EnSDAOut = 1
EN = 0
WE = 1
RE = 0

ShiftOut = 1
SDAOut = 1
EN = 1
WE = 1
RE = 1

ShiftOut = 1
SDAOut = 1
EN = 1
WE = 1
RE = 1

ShiftOut = 1
sel5555 = 1
selAA = 1
EnDataOut = 1
SDAOut = 1
EN = 0
WE = 0
RE = 1

ShiftOut = 1
SDAOut = 1
EN = 1
WE = 1
RE = 1ShiftOut = 1

selAAAA = 1
sel55 = 1
EnDataOut = 1
SDAOut = 1
EN = 0
WE = 0
RE = 1

ShiftOut = 1
SDAOut = 1
EN = 1
WE = 1
RE = 1ShiftOut = 1

sel5555 = 1
sel00 = 1
EnDataOut = 1
SDAOut = 1
EN = 0
WE = 0
RE = 1

IncrAddr = 1
SDAOut = 1
EN = 1
WE = 1
RE = 1

LoadShift = 1
selAddr = 1
EnDataIn = 1
If SDA = 1
EN = 0
WE = 1
RE = 0

MasterAck = 1

MNACK
LoadShift = 0
selAddr = 0
EnDataIn = 0
If SDA = 1
EN = 1
WE = 1
RE = 1

Fig. 5.80 I2C read interface controller (only the essential control signals are indicated in each state to avoid
complexity)

5.4 Flash Memory 221

Cycles 37 to 44 and cycles 46 to 53 in Figs. 5.78 and 5.79 are comprised of identical events to the
one between cycles 28 and 35. They both correspond to the states D7 to D0 in Fig. 5.80. In cycle 54,
the bus master decides not to issue any more acknowledgements by keeping the MasterAck signal at
logic 0. As a result, the interface does not lower EN and RE signals to logic 0, and no data reading
takes place from the Flash memory. In the next cycle, the bus master terminates the SCL activity and
issues the STOP condition, signifying the end of data transfer.

Example 5.3: I2C page erase interface for Flash memory

The following design example constructs only the I2C page erase interface for a Flash memory that
has parallel address and data ports as shown in Fig. 5.44 using a modified seven-bit address mode. No
other Flash memory mode is implemented in this design except the erase.

The Flash memory page erase is a six-cycle sequence as described earlier in Fig. 5.50. The flow
chart for this process is shown in Fig. 5.81. In the first five cycles, the bus master sends fixed
address/data combinations to the Flash memory as a preamble to prepare the memory to erase a block
of data at a specified memory location. The page erase command is the 0x50 entry in the third cycle
followed by the page address and the second erase command, 0x70, in the sixth cycle to initiate the
process.

Start

0x5555/0xAA

0xAAAA/0x55

0x5555/0x50

Page Addr/
0x70

Complete

Page
Erase
preamble

0xAAAA/0x55

0x5555/0xAA

Fig. 5.81 Flow chart for Page Erase

222 5 Memory Circuits and Systems

Figure 5.82 shows the data-path for the I2C page erase interface. The shift register acquires the
device ID (if the Flash memory requires any type of device authentication prior to page erase) and the
page address from the SDA bus, and transfers them to the device ID register and the page address
register, respectively. There are also address and data registers that store only fixed values, and they
are routed to the address and data ports of the Flash memory in order to produce the correct preamble
and page erase command in Fig. 5.81.

Command Reg
0

Page Address Reg
15 0

Shift Reg
7 0

Lo
ad

Bl
kL

SB
Lo

ad
Bl

kM
SB

0x5555
15 0

0xAAAA
15 0

16

16

se
lB

lk
Ad

dr

se
lA

AA
A

se
l5

55
5

0

1

2

Addr[15:0]

0xAA
7 0

0x55
7 0

0x50
7 0

0x70
7 0

0

1

2

3

8

8

8

8

8

DataI/O [7:0]

se
lA

A

se
l5

5
se

l5
0

se
l7

0

SC
L

LoadDevID

shift
LoadDevID

sel5555
selAAAA
selBlkAddr
selAA
sel55
sel50
sel70
EnDataOut

shift

SCL

SCL

SCL

LoadBlkLSB
LoadBlkMSB

EN WE

Block
Erase

Controller

sh
ift

R
eg

O
ut

SDA

EnDataOut

EnSDAOut

88

7

SCL

SCL

SDA
Detector

START

STOP

Er
as

eC
om

ST
O

P

EnSDAOut

16

Device ID + W
0

LoadCom

7

SCL

Encoder

LoadCom

ST
AR

T

C
om

m
an

dO
ut

I/O[7:0]

Ad
dr

es
s

M
U

X

D
at

a
M

U
X

Fig. 5.82 I2C Page Erase interface data-path

5.4 Flash Memory 223

The page erase process is described in the timing diagrams of Figs. 5.83, 5.84 and 5.85. The
process starts with the bus master generating the START condition in Fig. 5.83. In cycles 2 to 9, the
bus master sends the seven-bit device ID and the write bit, starting with the most significant device ID
bit, DAdd6. Even though the write bit is considered a command bit, it does not have any significance
in the page erase preamble. The bus master sends this bit only to comply with the I2C protocol. All
these bits are temporarily stored in the shift register and correspond to the states DAdd6 to W in the
state diagram in Fig. 5.86. In cycle 10, the interface generates an acknowledgement, ACK, to signify
that it has received the first eight bits from the bus master by EnSDAOut = 1, and transfers the device
ID stored in the shift register to the device ID register by LoadDevID = 1. This cycle corresponds to
the DevID ACK state in Fig. 5.86.

From cycles 11 to 18, which correspond to the states Add15 to Add8 in the state diagram, the bus
master sends the most significant byte of the Flash memory page address to the interface. These bits
are received by the shift register and immediately transferred to the page address register in cycle 19
by LoadBlkMSB = 1. In this cycle, the interface also sends a second acknowledgment to the bus
master by EnSDAOut = 1, which is represented by the AddMSB ACK state in the state diagram.

From cycles 20 to 27, the interface receives the least significant byte of the page address. It stores
this byte in cycle 28 by LoadBlkLSB = 1, and sends a third acknowledgement to the bus master by
EnSDAOut = 1. These events are shown by the states Add7 to Add0 and the state AddLSB ACK in
the state diagram, respectively. Starting in cycle 29, the complete page address becomes available at
the Addr[15:0] terminal in Fig. 5.82 even though the page erase process has not been initiated. This
cycle is also the starting point for the bus master to send the erase command, 0x50, to the Flash
memory interface. Without this step, the interface will not be able to recognize if the ongoing process
is actually about erasing a block of data.

From cycle 29 to 36 that correspond to the states 0x50-0 to 0x50-7, the interface receives all eight
bits of the command code, 0x50, in the shift register. Then in cycle 37, it generates the fourth
acknowledgment by EnSDAOut = 1, and transfers the contents of the shift register, 0x50, to the
command register by LoadCom = 1. Later on, the interface uses this value to be able to generate the
correct preamble for the page erase operation. Cycle 37 corresponds to the 0x50 ACK state in the
state diagram. While the bus master sends the second command code, 0x70, from cycle 38 to 45 to
initiate the page erase, the interface, now aware of the page erase operation, sends the first address and
data preamble, 0x5555/0xAA, to the Flash memory in cycle 39. In this cycle, the fixed register value,
0x5555, is routed through port 1 of the address MUX by sel5555 = 1. The fixed register data, 0xAA,
is also sent to the I/O[7:0] port through port 0 of the data MUX by selAA = 1 and EnDataOut = 1. In
cycle 41, the second address and data preamble, 0xAAAA/0x55, is sent. This is followed by sending
the third preamble (including the first page erase command), 0x5555/0x50, in cycle 43, and then the
fourth preamble, 0x5555/0xAA, in cycle 45. The interface pauses for one cycle after dispatching each
address and data combination to comply with the Flash memory protocol of writing data.

Cycle 38 to cycle 45 are represented by the states 0x70-0 to 0x70-7 in the state diagram,
respectively. The interface sends the fifth acknowledgment to the bus master in cycle 46 by
EnSDAOut = 1 while in the 0x70 ACK state. In cycle 47, the interface sends the fifth address and
data preamble, 0xAAAA/0x55, and finally in cycle 49, it sends the page address with the second page
erase command, 0x70, to erase the entire block of data. Cycles 47 to 49 are represented by the
DontCare-0, DontCare-1 and DontCare-2 states in Fig. 5.86, respectively.

224 5 Memory Circuits and Systems

SC
L

SD
A

sh
ift

R
eg

O
ut

Ad
dr

EN W
E

sh
ift

Lo
ad

D
ev

ID

Lo
ad

Bl
kM

SB

Lo
ad

Bl
kL

SB

Lo
ad

C
om

se
l5

55
5

se
lA

AA
A

se
lB

lk
Ad

dr

se
lA

A

se
l5

5

se
l5

0

se
l7

0

En
D

at
aO

ut

11
12

13
14

15
16

17
18

D
Ad

d6
D

Ad
d5

D
Ad

d4
D

Ad
d0

AC
K

Ad
d1

5
Ad

d1
4

Ad
d1

3
Ad

d1
2

Ad
d1

1
Ad

d1
0

Ad
d9

Ad
d8

AC
K

1
2

3
4

8
9

10

En
SD

AO
ut

W

19

ST
AR

T

H
IG

H

H
IG

H

C
om

m
an

dO
ut

I/O
[7

:0
]

5
6

7

D
ev

ID
+W

Pa
ge

M
SB

Fi
g
.
5.
83

I2
C
pa
ge

er
as
e
se
qu

en
ce

w
ith

de
vi
ce

ID
an
d
th
e
L
SB

of
pa
ge

ad
dr
es
s

5.4 Flash Memory 225

SC
L

SD
A

sh
ift

R
eg

O
ut

Ad
dr

EN W
E

sh
ift

Lo
ad

D
ev

ID

Lo
ad

Bl
kM

SB

Lo
ad

Bl
kL

SB

Lo
ad

C
om

se
l5

55
5

se
lA

AA
A

se
lB

lk
Ad

dr

se
lA

A

se
l5

5

se
l5

0

se
l7

0

En
D

at
aO

ut

29
30

31
32

33
34

35
36

Ad
d7

Ad
d6

Ad
d5

Ad
d1

AC
K

0
0

1
0

0
0

0
AC

K

20
21

22
26

27
28

0x
50

En
SD

AO
ut

Ad
d0

37

H
IG

H

H
IG

H

C
om

m
an

dO
ut

Pa
ge

 A
dd

re
ss

1

I/O
[7

:0
]

23
24

25

Pa
ge

LS
B

Fi
g
.
5.
84

I2
C

pa
ge

er
as
e
se
qu

en
ce

w
ith

th
e
M
SB

of
pa
ge

ad
dr
es
s
an
d
th
e
er
as
e
co
m
m
an
d

226 5 Memory Circuits and Systems

SC
L

SD
A

sh
ift

R
eg

O
ut

Ad
dr

EN W
E

sh
ift

Lo
ad

D
ev

ID

Lo
ad

Bl
kM

SB

Lo
ad

Bl
kL

SB

Lo
ad

C
om

se
l5

55
5

se
lA

AA
A

se
lB

lk
Ad

dr

se
lA

A

se
l5

5

se
l5

0

se
l7

0

En
D

at
aO

ut

47
48

49
50

0
1

0
0

0
AC

K
X

X

38
39

40
44

45
46

En
SD

AO
ut

0

C
om

m
an

dO
ut

Pa
ge

 A
dd

re
ss

X

41
42

43

0X
50

0x
AA

0x
55

55

0x
55

St
ar

t P
ag

e
Er

as
e

Pr
ea

m
bl

e

0x
50

0x
55

55

0x
AA

0x
55

55
ho

ld
ho

ld
ho

ld
ho

ld

0x
55

ho
ld

0x
70

1
1

0X
70

C
on

tro
lle

r r
el

ea
se

s
0x

70
 a

s
op

po
se

d
to

 0
x6

0
(C

hi
p

Er
as

e)

ST
O

P

Pa
ge

 A
dd

re
ss

I/O
[7

:0
]

0x
AA

AA
0x

AA
AA

Fi
g
.
5.
85

I2
C

pa
ge

er
as
e
pr
ea
m
bl
e
an
d
th
e
pa
ge

er
as
e
co
m
m
an
d

5.4 Flash Memory 227

DAdd0

DAdd6

DevID
ACK

Add15

Add8

AddMSB
ACK

Add7

Add0

AddLSB
ACK

0x50
0

0x50
7

0x50
ACK

IDLE

START = 0

START = 1

shift = 1
EN = 1
WE = 1

EnSDAOut = 1
LoadDevID = 1

EN = 1
WE = 1

SDA = 1
W

0x70
0

0x70
ACK

0x70
1

0x70
2

0x70
3

0x70
4

0x70
5

0x70
6

0x70
7

SDA = 0

shift = 1
selBlkAddr = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

EnSDAOut = 1
LoadBlkMSB = 1

EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

shift = 1
EN = 1
WE = 1

EnSDAOut = 1
LoadBlkLSB = 1

EN = 1
WE = 1

shift = 1
selBlkAddr = 1
EN = 1
WE = 1
EnSDAOut = 1
LoadCom = 1
selBlkAddr = 1
EN = 1
WE = 1
shift = 1
selBlkAddr = 1
EN = 1
WE = 1

shift = 1
selBlkAddr = 1
EN = 1
WE = 1

shift = 1
selBlkAddr = 1
EN = 1
WE = 1

shift = 1
selBlkAddr = 1
EN = 1
WE = 1

EnSDAOut = 1
selBlkAddr = 1
EN = 1
WE = 1

shift = 1
sel5555 = 1
selAA = 1
EnDataOut = 1
EN = 0
WE = 0

shift = 1
selAAAA = 1
sel55 = 1
EnDataOut = 1
EN = 0
WE = 0

shift = 1
sel5555 = 1
sel50 = 1
EnDataOut = 1
EN = 0
WE = 0

shift = 1
sel5555 = 1
selAA = 1
EnDataOut = 1
EN = 0
WE = 0

DontCare
2

DontCare
0

DontCare
1

selBlkAddr = 1
EN = 1
WE = 1

selAAAA = 1
sel55 = 1
EnDataOut = 1
EN = 0
WE = 0

selBlkAddr = 1
sel70 = 1
EnDataOut = 1
EN = 0
WE = 0

Fig. 5.86 I2C page erase interface controller (only the essential control signals are indicated in each state to avoid
complexity)

228 5 Memory Circuits and Systems

An architecture combining the read and fast write interfaces can be implemented by a data-path
shown in Fig. 5.87. A shift register can be used to receive the incoming device address and command
bit from the SDA bus, which is subsequently is stored in an auxiliary register as shown in this figure.
The seven-bit device ID field can be used to activate one of the maximum 128 Flash memory chips.
The command bit, R or W, is used to enable either the read interface or the fast write interface
depending on its value. The Flash memory address residing in the shift register is then forwarded to
the eight-bit shift register in either the read or the fast write interface to prepare the Flash memory for
a data transfer.

The reader should be quite familiar with all three I2C interface designs shown above to be able to
integrate them in one interface to achieve a complete design.

5.5 Serial Flash Memory

Recent Flash memory chips already include I2C or SPI interface to interact with a host processor or
another bus master. The user does not have to deal with preambles, waiting periods or other com-
plexities of the serial bus, but simply write an I2C or SPI-compliant embedded program to initiate a
read, write or erase operation with the Flash memory.

Shift Reg
7 0

SCL

SDA

DeviceID
7 0

SCL

R/W

D
ec

od
er

EnFlash0

EnFlash127

Read
I/F

Shift Reg

SCL

Fast Write
I/F

Shift Reg

SCL

1

7

EnReadIF

EnProgIF

8

6

Fig. 5.87 I2C read and fast write (program) interface topologies

5.4 Flash Memory 229

This section examines the operation of a typical Flash memory with an SPI interface. Figure 5.88
shows the basic internal architecture of the Flash memory where an external active-low Slave Select
control signal, SS, is applied to enable the memory. The clock is supplied through the SCK port. The
serial data comes into the memory through Serial-Data-In (SDI) port and departs from
Serial-Data-Out (SDO) port. Once a serial address is retrieved from the SPI bus, it is stored in the
address register. The address decoder uses the contents of the address register to access the Flash
memory core and read the data to an internal data buffer. The serial data is subsequently delivered to
the bus master through the SDO port. If the operation is a write, the bus master sends serial data to the
SDI port, which is then transferred to an internal data buffer, and subsequently to the memory core.

Figure 5.89 describes a typical partitioning scheme of a 1 MB memory core that requires a 20-bit
address for each byte of data. To be consistent with the E2PROM and Flash memory organizations
discussed in previous sections, the entire memory block in this example is initially divided into
sixteen 64 KB sectors. Each sector is subdivided into sixteen 4 KB blocks, and each block is further
subdivided into 16 pages. Each page contains 256 bytes, any of which is accessible through the SPI
bus. Figure 5.90 shows the detailed address mapping of Block 0 in Sector 0 to further illustrate the
internal memory organization.

Figure 5.91 shows nine basic modes of operation for this Flash memory. Some of the modes in
this table are further divided into sub-modes according to the complexity of the main mode. For
example, in the write (program) mode, the opcode 0x20 assumes to write between 1 and 255 bytes to
the memory core while the opcode 0x23 writes 64 KB of data to a sector. Similarly, the erase mode
can be configured to erase a page, a block or the entire chip. The protect operation prevents over-
writing to a sector or the chip. The write enable feature is a security measure for the serial Flash

SPI Bus
Interface

Flash Memory
Core

Control Unit Data Buffer

Ad
dr

es
s

R
eg

Address
Decoder

SS

SCK
SDI
SDO

Fig. 5.88 Serial Flash memory architecture with SPI interface

230 5 Memory Circuits and Systems

memory, and it is used prior to an actual write or an erase operation. Once the write enable command
is issued, any kind of data alteration in the memory core becomes possible. Both the write enable and
protect features are registered in the status register and can be read on demand. The status register also
indicates whether the device is busy, such as in the middle of a write or read operation, write enable is
engaged or not, and which sector is protected. The Flash memory can be placed into a long term
hibernation mode to save power. The modes in Fig. 5.91 are at minimum compared to a typical serial
Flash memory to emphasize only the primary modes of operation. The opcode value for each mode is
also randomly selected. Actual serial Flash memory datasheets contain many more operational modes
with different opcode values assigned to each mode.

Page 0
(256B)

0x00000

0x000FF

7 0

Page 1
(256B)

Page 15
(256B)

7 0 7 0
0x00100

0x001FF

0x00F00

0x00FFF

Address mapping of Block 0 of Sector 0

Fig. 5.90 Memory organization of Block 0 of Sector 0: 16 pages, 256 bytes per page

Block 15 — 4KB
Block 14 — 4KB

Block 0 — 4KB

Sector 15 — 64KB

Block 15 — 4KB
Block 14 — 4KB

Block 0 — 4KB

Sector 14 — 64KB

Block 15 — 4KB
Block 14 — 4KB

Block 0 — 4KB

Sector 0 — 64KB

Fig. 5.89 A serial Flash core memory organization: 16 Sectors and 16 Blocks in each sector

5.5 Serial Flash Memory 231

This particular Flash memory operates in both mode 0 (SCK is initially at logic 0) and mode 3
(SCK is initially at logic 1) of the SPI protocol. However, most of the timing diagrams in this section
will refer to mode 0 when explaining different commands in Fig. 5.91.

Figures 5.92 and 5.93 explain the basic write protocols in mode 0 and mode 3, respectively. Once
SS signal is lowered to logic 0, data bits at the SDI port can be written to the Flash memory’s data
buffer at the positive edge of SCK. The data transaction stops when SS is raised to logic 1. The entire
data buffer is subsequently transferred to the memory core within a write period of tWRITE.

FLASH MEMORY COMMANDS OPCODES

Read 0x10

Write Byte (1-255) 0x20

Write Page 0x21

Write Block 0x22

Write Sector 0x23

Erase Page 0x30

Erase Block 0x31

Erase Chip 0x32

Protect Sector 0x40

Unprotect Sector 0x41

Protect Chip 0x42

Unprotect Chip 0x43

0x66

0x55

Read Status Register 0x77

Hibernate 0x88

Wake up 0x99

Write

Erase

Protect/Unprotect

Write Disable

Write Enable

Fig. 5.91 Main serial Flash memory commands

232 5 Memory Circuits and Systems

Similarly, Figs. 5.94 and 5.95 explain the basic read protocols in mode 0 and mode 3, respectively.
When SS signal is at logic 0, data is delivered from the memory core to the data buffer, and then from
the data buffer to SDO terminal at the negative edge of each SCK cycle. The memory access is equal
to tREAD with respect to the negative edge of SCK. When SS signal is raised to logic 1, SCK is no
longer allowed to change, and the read process terminates.

In both write and read operations, the most significant data bit is delivered first and the least
significant data bit is delivered last.

MSB LSBSDI

SS

SCK

Mode 0 - Write Protocol

Fig. 5.92 Serial Flash memory mode 0 SPI write (program) protocol

MSB LSBSDI

SS

SCK

Mode 3 - Write Protocol

Fig. 5.93 Serial Flash memory mode 3 SPI write (program) protocol

MSB LSBSDO

SS

SCK

Mode 0 - Read Protocol

Fig. 5.94 Serial Flash memory mode 0 SPI read protocol

5.5 Serial Flash Memory 233

A typical Flash memory byte read is shown in Fig. 5.96. The process starts with sending the
opcode, 0x10, corresponding to a read operation according to the table in Fig. 5.91. A 20-bit address
follows the opcode with the most significant address bit, A19, first, and the least significant address
bit, A0, last. The first data bit, D7 (also the most significant bit of data), is delivered to the SDO
terminal at the negative edge of SCK according to Fig. 5.96. The remaining seven data bits of the data
are sequentially delivered at each negative edge of SCK until SCK signal stabilizes at logic 0 and SS
transitions to logic 1.

Once a starting 20-bit address is issued, a number of bytes, ranging from one byte to the contents
of the entire memory (1 MB), can be read from the SDO terminal as long as the SS signal is kept at
logic 0, and the SCK activity is present. Terminating SCK and raising SS to logic 1 ceases the read
process as shown in Fig. 5.97.

MSB LSBSDO

SS

SCK

Mode 3 - Read Protocol

Fig. 5.95 Serial Flash memory mode 3 SPI read protocol

MSB LSB
0 0 0 1 0SDI

SS

SCK

A19 A18 A0

D7 D6
MSB LSB

D0SDO

BYTE

OPCODE = 0x10 = READ ADDRESS [19:0]

Fig. 5.96 Serial Flash memory byte read in mode 0

234 5 Memory Circuits and Systems

The Flash memory write (program) mode has four sub modes. In the byte write mode, bytes
ranging between 1 and 255 can be written to a page following the opcode, 0x20, and a 20-bit memory
address as shown in Fig. 5.98. After data is written to the last address of the page, subsequent bytes at
SDI terminal are considered invalid and will be ignored even though there may still be SCK activity
and/or SS may still be at logic 0. In some serial Flash memory chips, excess data is not ignored but
written to the memory core starting from the first address of the page (address looping).

Figure 5.99 describes the page write mode. After issuing the write page opcode, 0x21, and a 20-bit
page address, 256 bytes of data are sequentially written to the memory core starting from the top of
the page. Any data beyond 256 bytes will be ignored by the device. It is vital that the 20-bit starting
address aligns with the first address of the page. For example, if page 0 of block 0 in sector 0 needs to
be accessed to write data, the starting address has to be 0x00000 according to Fig. 5.90. Similarly, the
starting address has to be 0x00100 for page 1 or 0x00F00 for page 15 if the contents of either page
need to be written.

MSB LSB
0 0 1 0 0SDI

SS

SCK

A19 A18 A0 D7 D6
MSB LSB

D0

BYTE (1-255)OPCODE = 0x20 = WRITE BYTE ADDRESS [19:0]

Fig. 5.98 Serial Flash memory byte write in a burst (1 to 255 bytes) in mode 0

MSB LSB
0 0 0 1 0SDI

SS

SCK

A19 A18 A0

D7
MSB LSB

D0SDO

BYTE 0

OPCODE = 0x10 = READ ADDRESS [19:0]

D7
MSB LSB

D0

BYTE N (MAX = 1,048,575)

Fig. 5.97 Serial Flash memory in a burst of byte read in mode 0

5.5 Serial Flash Memory 235

Writing to a block or a sector is not any different from writing to a page. In both instances, the
starting 20-bit address needs to align with the topmost address of the block or the sector. For example,
writing a 4 KB of data to block 0 of sector 0 requires the starting address to be 0x00000. Similarly,
the starting address of block 1 of sector 0 is 0x01000 if a 4 KB data needs to be written to this block.

Erase can be performed on a page, a block or the entire chip according to the table in Fig. 5.91.
The page erase requires the opcode, 0x30, followed by the topmost address of the page as shown in
Fig. 5.100. Erasing the entire chip only requires the opcode, 0x32, as shown in Fig. 5.101.

Accidentally altering the contents of the Flash memory is a non-reversible process. Therefore,
many manufacturers formulate a security measure, such as a write enable command, prior to a write
or an erase operation. The write enable command requires issuing an opcode, 0x55, according to
Fig. 5.91, and it is implemented in Fig. 5.102. This code changes the write enable bit in the status

MSB LSB
0 0 1 0 1SDI

SS

SCK

A19 A18 A0 D7
MSB LSB

D0 D7
MSB LSB

D0

BYTE 0 BYTE 255OPCODE = 0x21 = WRITE PAGE ADDRESS [19:0]

PAGE

Fig. 5.99 Serial Flash memory page write in mode 0

MSB LSB
0 0 1 1 0SDI

SS

SCK

A19 A18 A0

OPCODE = 0x30 = PAGE ERASE PAGE ADDRESS [19:0]

Fig. 5.100 Serial Flash memory page erase in mode 0

236 5 Memory Circuits and Systems

register which then enables the Flash memory for write or erase. For example, in Fig. 5.103 the write
enable opcode, 0x55, is issued prior to the write byte opcode, 0x20, to allow any number of bytes to
be written to a page. If the write enable opcode is omitted prior to a byte, a page, a block or a sector
write, the data delivered to the memory core becomes invalid and is ignored.

Protecting a sector or the entire chip is also a vital security measure for the Flash memory. For
example, if a Flash memory contains BIOS data in specific sectors, accidentally accessing these
sectors for write or erase becomes fatal. Therefore, such accesses need to be prevented at all costs.
The opcode, 0x40, is issued with a specific sector address to protect the data in this sector as shown in
Fig. 5.104. However, as with the write and erase modes, the write enable opcode, 0x55, must
accompany the sector protect opcode, 0x40, to make the sector protect a valid entry as shown in the
timing diagram in Fig. 5.105.

0 0 1 1 0 0 1 0SDI

SS

SCK

OPCODE = 0x32 = CHIP ERASE

Fig. 5.101 Serial Flash memory chip erase in mode 0

0 1 0 1 0 1 0 1SDI

SS

SCK

OPCODE = 0x55 = WRITE ENABLE

Fig. 5.102 Serial Flash memory write enable operation in mode 0

5.5 Serial Flash Memory 237

The user may reverse the write enable status of the device by issuing a write disable command,
0x66, as shown in the timing diagram in Fig. 5.106.

Status register constitutes an important part of Flash memory programming. For this particular
Flash memory, there are four entries in the status register that contain vital operational information as
shown in Fig. 5.107. The SP0, SP1 and SP2 bits identify which sectors are protected. The Write
Enable Latch bit, WEL, signifies if the device has already been write-enabled or not. The
Write-In-Progress, WIP, bit defines if the device is busy with a write process.

The user can access the contents of the status register at any time by issuing the read status register
command, 0x77, as shown in Fig. 5.108. After executing this command, the contents of the status
register bits become available at the SDO port.

0 1 0 1 0SDI

SS

SCK

OPCODE = 0x55 = WRITE ENABLE

MSB LSB
1 0 1 0 0 A19 A18 A0 D7 D6

MSB LSB
D0

BYTE (1-255)OPCODE = 0x20 = WRITE BYTE ADDRESS [19:0]

Fig. 5.103 Serial Flash memory write (program) burst (1 to 255 bytes) followed by write enable

MSB LSB
0 1 0 0 0 0 0 0SDI

SS

SCK

A19 A18 A0

OPCODE = 0x40 = PROTECT SECTOR SECTOR ADDRESS [19:0]

Fig. 5.104 Serial Flash memory protect sector operation in mode 0

238 5 Memory Circuits and Systems

0 1 0 1SDI

SS

SCK

OPCODE = 0x55 = WRITE ENABLE

1
MSB LSB

0 1 0 0 0 A19 A18 A0

OPCODE = 0x40 = PROTECT SECTOR SECTOR ADDRESS [19:0]

Fig. 5.105 Serial Flash memory write enable operation followed by protect sector in mode 0

0 1 1 0 0 1 1 0SDI

SS

SCK

OPCODE = 0x66 = WRITE DISABLE

Fig. 5.106 Serial Flash memory write disable operation in mode 0

SP0 WIP
7 6 5 4

WEL = Write Enable Status = 1 Write Enable is active
 0 Write Enable is inactive

WIP = Write In Progress = 1 Device is busy with write
 0 Device is not busy with write

WEL
3

SP1SP2Reserved
2 1 0

2PS 1PS 0PS
000
100
010
110
001
101
011
111

No sector is protected
Address 0x00000 to 0x0FFFF is protected
Address 0x00000 to 0x1FFFF is protected
Address 0x00000 to 0x3FFFF is protected
Address 0x00000 to 0x7FFFF is protected
Address 0x00000 to 0xFFFFF is protected
Address 0x00000 to 0xFFFFF is protected
Address 0x00000 to 0xFFFFF is protected

Fig. 5.107 Serial Flash memory status register

5.5 Serial Flash Memory 239

The user can also place the Flash memory into the sleep mode to conserve power by issuing
hibernate opcode, 0x88, as shown in Fig. 5.109. The hibernation mode can be reversed by issuing the
wake-up opcode, 0x99, as shown in Fig. 5.91.

0 1 1 1 1SDI

SS

SCK

Res Res
MSB

SDO

STATUS REGISTER CONTENTS

OPCODE = 0x77 = READ STATUS REGISTER

Res SP2 SP1 SP0 WEL WIP
LSB

Fig. 5.108 Serial Flash memory status register read operation in mode 0

1 0 0 0 1 0 0 0SDI

SS

SCK

OPCODE = 0x88 = CHIP HIBERNATE

Fig. 5.109 Serial Flash memory chip hibernate operation in mode 0

240 5 Memory Circuits and Systems

Review Questions

1. An SDRAM is composed of two16-bit wide banks, bank 0 and bank 1, as shown below.

00000xAB00
11110xAB01
22220xAB02
33330xAB03
44440xAB04
55550xAB05
66660xAB06
77770xAB07
88880xAB08
99990xAB09
AAAA0xAB0A

AA000xCD00
BB110xCD01
CC220xCD02
DD330xCD03
EE440xCD04
FF550xCD05
AA110xCD06
BB220xCD07
CC330xCD08
DD440xCD09
EE550xCD0A

SDRAM Bank0 SDRAM Bank1
15 150 0

The truth table below defines precharge, activate and read cycles.

0

CS RAS CAS WE

Precharge

Activate

Read

Operation

0 1 0

0 0 1 1

0 1 0 1

Each 16-bit SDRAM address is composed of two parts: the most significant byte corresponds to
the row address, and the least significant byte to the column address as shown below.

Address = {Row Address, Column Address}
The wait period between the precharge and activate commands is one clock cycle. Similarly, the

wait period between the activate and read commands is also one cycle. The read burst from the
specified address starts after a latency of two cycles. The waiting period between the last data packet
and the next precharge command is also one cycle if the read repeats from the same bank.

(a) Show two read sequences in sequential addressing mode from Bank 0. Each burst contains four
data packets: the first burst from address 0xAB03 and the next from address 0xAB07.

(b) Show the two read sequences in sequential addressing mode from different banks with no delay in
between. Each burst contains four data packets: the first burst from Bank 0 with the starting
address 0xAB03 and the next from Bank 1 with the address 0xCD06.

5.5 Serial Flash Memory 241

2. A Flash memory is composed of two byte-addressable sectors. It has an eight-bit bidirectional I/O
port for reading and writing data, and a 16-bit unidirectional address port. The upper eight bits of
the address field are allocated for the sector address and the lower eight bits for the program
address. The three active-low inputs, EN, RE and WE, control the Flash memory according to the
following chart:

The initial data contents in this memory are shown below:

0xEE 0xFF 0x34 0x12
0xCC 0xDD 0x78 0x56

0x00
0x02

0xAA 0xBB 0xBC 0x9A
0x88 0x99 0xF0 0xDE

0x04
0x06

15 0150
0x00
0x02
0x04
0x06

Sector 0 Sector 1

The Flash command chart is as follows:

Sector protect 0x5555 0xAA 0xAAAA 0x55 Sector Addr 0x01

Fast write
0x5555

0xAA
0xAAAA

0x02
Write Addr Write Data

word
word

0xAAAA 0x5555 Write Addr Write Databyte

Read
0x5555

0xAA
0xAAAA

0x03
Read Addr Read Dataword

0xAAAA 0x5555 Read Addr Read Databyte

Cycle 1 Cycle 2 Cycle 3

Addr Data Addr Data Addr Data

In this diagram, the sector protect is a three-cycle sequence where the sector protect code, 0x01, is
provided in the third cycle along with the sector address.

Both the fast write and the read processes are initially three cycles. However, once the process
starts, additional reads or writes are reduced to two-cycle operations as shown in the flow chart below.

242 5 Memory Circuits and Systems

According to this chart, for each additional data to be read or written, the command code must be
employed in the second cycle, and the address/data combination in the third cycle.

The flow chart for fast write and read is as follows:

Start

First cycle

Second cycle

Addr/
Data

Last Addr

Finish

yes

Incr. Addr
no

(a) Protect sector 1. Show the timing diagram with control inputs, address and data.
(b) Fast write to sector 0 with four bytes of data, 0x11, 0x22, 0x33, 0x44, starting from address 0x04

and incrementing the address to write each byte of data. Show the timing diagram with control
inputs, address and data.

(c) Read four bytes from sector 0 at addresses 0x00, 0x02, 0x04 and 0x06. Show the timing diagram
with control inputs, address and data.

5.5 Serial Flash Memory 243

3. Two reads can be accomplished from a 16-bit wide SDRAM by a single CPU instruction.

SDRAM is organized by four banks with data shown below.

1111
2222
3333
4444
5555
6666
7777
8888

AA00
AA01
AA02
AA03
AA04
AA05
AA06
AA07

15 0

Bank0

AAAA
BBBB
CCCC
DDDD
EEEE
FFFF
0000
1111

BB00
BB01
BB02
BB03
BB04
BB05
BB06
BB07

15 0

Bank1

FFFF
EEEE
DDDD
CCCC
BBBB
AAAA
1111
0000

CC00
CC01
CC02
CC03
CC04
CC05
CC06
CC07

15 0

Bank2

8888
7777
6666
5555
4444
3333
2222
1111

DD00
DD01
DD02
DD03
DD04
DD05
DD06
DD07

15 0

Bank3

Each SDRAM address is composed of an eight-bit wide row address, RA[7:0], and an eight-bit
wide column address, CA[7:0], as in the following format:

SDRAM Address = {RA[7:0], CA[7:0]} where the row address occupies higher bits.
To control SDRAM, the following controls are available:

0

CS RAS CAS WE

Precharge

Activate

Read

Operation

0 1 0

0 0 1 1

0 1 0 1

The wait period between the precharge and activate commands is one clock cycle long. Similarly,
the wait period between the activate and read commands is also one clock cycle. The precharge
command for the next read operation can be issued one clock cycle after the last data is read out from
SDRAM. BS[1:0] = 0 selects Bank0, BS[1:0] = 1 selects Bank1, BS[1:0] = 2 selects Bank2, and BS
[1:0] = 3 selects Bank3 in the timing diagrams.

(a) Assuming that the mode register is pre-programmed with sequential mode addressing, a burst
length of four and a CAS latency of two, construct a timing diagram to show the two reads from
SDRAM addresses, 0xAA00 and 0xAA04. Start from the precharge cycle to accomplish each
read.

(b) With the same mode register contents in part (a), construct a timing diagram such that the two
reads from the SDRAM addresses, 0xAA00 and 0xBB02, take place in the shortest possible time.
Again start from the precharge cycle to accomplish each read. In this part, the bus master can
extend the wait period more than one clock cycle between the precharge, activate and read
commands in such a way that no two commands overlap with each other.

(c) With the same mode register contents in part (a), accomplish one read from the SDRAM address
0xCC00 with a burst length of two, and one read from the SDRAM address 0xDD02 with a burst
length of eight. Start from the precharge cycle to accomplish each read.

244 5 Memory Circuits and Systems

4. Subsequent write and read operations are performed on an SDRAM that consists of two banks.
Both banks have eight-bit wide I/O data ports.

The first SDRAM operation is a write operation that writes 0x11 to a starting address of 0xAB in
bank 0. This is followed by writing data values, 0xEE, 0x00 and 0xFF, to bank 0 in sequential mode.

The read operation takes place from bank 1 without any interruption. This means the first read data
is delivered to the data bus immediately after the last write data, 0xFF. The first read address is
defined as 0x12. Four data packets are read from this starting address in sequential mode with a
latency of two cycles.

Both write and read operations require tPRE = tCAS = 1 cycle.
Construct a timing diagram with control, address and data values to achieve these two consecutive

operations. Assume all initial data values in Bank 0 are 0x00. Make sure to mark each precharge,
activate, write and read cycle on the timing diagram. Indicate where latency happens.

Addr[0xA0]

7 0

Addr[0xA1]

Addr[0xA2]

Addr[0xA3]

Addr[0xA4]

Addr[0xA5]

Addr[0xA6]

Addr[0xA7]

BANK 0

Addr[0xA8]

Addr[0xA9]

Addr[0xAA]

Addr[0xAB]

Addr[0xAC]

Addr[0xAD]

Addr[0xAE]

Addr[0xAF]

Addr[0x10]0x88

0x99

0xAA

0xBB

0xCC

0xDD

0xEE

0xFF

7 0

Addr[0x11]

Addr[0x12]

Addr[0x13]

Addr[0x14]

Addr[0x15]

Addr[0x16]

Addr[0x17]

Addr[0x18]0x00

0x11

0x22

0x33

0x44

0x55

0x66

0x77

Addr[0x19]

Addr[0x1A]

Addr[0x1B]

Addr[0x1C]

Addr[0x1D]

Addr[0x1E]

Addr[0x1F]

BANK 1

5.5 Serial Flash Memory 245

5. An E2PROM memory is organized in four sectors. There are eight columns in each sector but no
pages. The existing data in this memory is shown below.

0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0 0x7

0x6
0x5
0x4
0x3
0x2
0x1
0x00xF

0xE
0xD
0xC
0xB
0xA
0x9
0x8 0xF

0xE
0xD
0xC
0xB
0xA
0x9
0x8

3 0

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

3 0 3 0 3 0

Sector 0 Sector 1 Sector 2 Sector 3

The command truth table is given below.

Function Command code

SR Read
Read
Write buffer

0x0
0x1
0x2
0x3Write core

The memory has five control pins:
EN is an active-low signal that activates the sector
AE is an active-high signal that accepts address
CE is an active-high signal that enables command function
WE is an active-low signal that enables write
RE is an active-low signal that enables read

Writing to the memory takes place at the rising edge of WE. At the falling edge of RE, reads take
place from the memory. The sequence of write starts with the command function followed by an
address and then data. A read sequence follows a similar fashion: it starts with the read command,
then an address and data. Assume all AE, WE and RE set-up times are 0 s. The setup and hold times
for command, address and data are all different from 0 s. It takes tWRITE to transfer data from the
buffer to the memory core.

(a) Draw a timing diagram to read data from column address = 0 and sector address = 3.
(b) Draw a timing diagram to write 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x7, 0x6 starting from the

column address = 2 and the sector address = 2 in the following manner: the first data, 0xA, to
column address 2; the second data, 0xB, to address 0x3 and so forth. Draw the contents of the
memory after the write sequence is complete.

246 5 Memory Circuits and Systems

6. A Flash memory has an eight-bit address, and all reads and writes are achieved on an eight-bit
bidirectional data bus. The Flash memory write sequence contains a preamble, a write command,
and an address and data combination as shown in the flow chart below.

Preamble

Write com

Addr/Data

Last
Addr

Preamble

DONE

Next Addr

START

yes
no

Once the write command is issued, address and data are generated continuously until the last write.
The sequence ends with the same preamble that started the write.

In the read sequence, the bus master starts fetching data once the preamble and read command are
issued. The sequence has the same exit preamble as shown below.

Preamble

Read com

Addr/Data

Last
Addr

Preamble

DONE

Next Addr

START

yes
no

START and DONE do not have any significance in timing diagrams other than that they indicate
the start and the end of the sequence, respectively.

5.5 Serial Flash Memory 247

The preamble, write and read commands are issued with hexadecimal values shown in the truth
table below.

The state of the Flash memory before any read or write operation is shown below. The leftmost
column in this figure shows the Flash memory address in hexadecimal.

FF
EE
DD
CC
BB
AA
99
88

7 0

F8
F9
FA
FB
FC
FD
FE
FF

The bus master produces three data transmissions for the Flash memory. In the first transmission,
four data packets below are written into the Flash memory.

In the second transmission, the bus master reads two data packets from the following addresses
below.

In the third transmission, the bus master reads two more data packets from the following addresses.

248 5 Memory Circuits and Systems

Construct a timing diagram with Address, WE, RE and Data values. Note that the Flash memory
requires a hold period which coincides with the high phase of EN signal. However, in the low phase,
when the Flash memory is active, the device either writes or reads depending on the value of WE and
RE signals, respectively.

7. A serial on-chip SPI bus described in Chap. 4 is used to program an SDRAM register file that
consists of five registers (see the SDRAM bus interface architecture).

Assume that each register in the register file has an eight-bit long address. Data in each register is
also assumed to be eight bits long.

Wait register receives the number of clock periods which is equivalent to tWAIT, Latency register to
tLAT, Burst register to tBURST, CAS register to tCAS, and Precharge register to tPRE.

The SPI bus uses its SDI terminal and sends out an eight-bit address (starting with the most
significant bit) followed by an eight-bit data (again starting with the most significant bit) at the
positive edge of SCK until all five registers are programmed while SS is at logic 0. Once the
programming is finished, SS node is pulled to logic 1.

Design the interface between the SPI bus and the register file. Make sure to show each I\/O port of
the SPI bus (such as SCK, SDI, SS etc.), the internal address, data and control signals of the interface
on the timing diagram. The functionality of the interface must be identical between the timing
diagram and the data-path.

Start building the timing diagram that includes only the address and the data. Then form the
corresponding data-path that matches the timing diagram. Increase the complexity of the design by
including the control signals in the timing diagram, governing the flow of data. Lastly, draw the state
diagram of the Moore type controller for the interface.

Projects

1. Implement and verify the SRAM bus interface unit with the unidirectional bus designed in
Chap. 4. Use Verilog as the hardware design language for the module implementation and
functional verification.

2. Implement and verify the SDRAM bus interface unit with the unidirectional bus designed in
Chap. 4. Use Verilog as the hardware design language for the module implementation and
functional verification. Produce the hardware to program the SDRAM register file. Assume a
serial bus such as SPI or I2C to distribute the program data to the registers.

3. Implement and verify the I2C fast write interface in the first design example in this chapter using
Verilog.

4. Implement and verify the I2C read interface in the second design example using Verilog.
5. Combine the read and the fast write interfaces into a single unit. Design and verify the complete

interface using Verilog.

Note that for projects 3 through 5, write a behavioral Verilog code that mimics the bus master in
order to send data on the I2C bus.

5.5 Serial Flash Memory 249

http://dx.doi.org/10.1007/978-3-030-00223-7_4
http://dx.doi.org/10.1007/978-3-030-00223-7_4
http://dx.doi.org/10.1007/978-3-030-00223-7_4

References

1. Toshiba datasheet TC59S6416/08/04BFT/BFTL-80, -10 Synchronous Dynamic RAM
2. Toshiba datasheet TC58DVM72A1FT00/TC58DVM72F1FT00 128Mbit E2PROM
3. Toshiba datasheet TC58256AFT 256Mbit E2PROM
4. Toshiba datasheet TC58FVT004/B004FT-85, -10, -12 4MBit CMOS Flash memory
5. Toshiba datasheet TC58FVT400/B400F/FT-85, -10, -12 4MBit CMOS Flash memory
6. Toshiba datasheet TC58FVT641/B641FT/XB-70, -10 64MBit CMOS Flash memory
7. Atmel datasheet AT26DF161 16Mbit serial data Flash memory

250 5 Memory Circuits and Systems

6Central Processing Unit

This chapter describes a basic Central Processing Unit (CPU), operating with a simplified Reduced
Instruction Set (RISC). The chapter is divided into four parts.

In the first part, fixed-point instructions are described. This section first develops dedicated
hardware (data-path) to execute a single RISC instruction, and then groups several instructions
together in a set and designs a common data-path to be able to execute user programs that use this
instruction set. In each step of the process, the instruction field is partitioned into several segments as
the instruction flows through the data-path, and the necessary hardware is formed to execute the
instruction and generate an output. In this section, fixed-point-related structural, data and program
control hazards are described, and the methods how to prevent each type of hazard is explained.

The second part of this chapter is dedicated to the IEEE single and double-precision floating-point
formats, leading to the simplified designs of floating-point adder and multiplier. These designs are
then integrated with the fixed-point hardware to obtain a RISC CPU capable of executing both
fixed-point and floating-point arithmetic instructions. In the same section, floating-point-related data
hazards are described. A new floating-point architecture is proposed based on a simplified version of
the Tomasula algorithm in order to reduce and eliminate these hazards.

In the third part, various techniques to increase the program execution efficiency are discussed.
The trade-offs between static and dynamic pipelines, single-issue versus dual and triple-issue
pipelines are explained with examples. Compiler enhancement techniques, such as loop unrolling and
dynamic branch prediction methods, are illustrated to reduce overall CPU execution time.

The last section of this chapter explains different types of cache memory architectures, including
direct-mapped, set-associative and fully-associative caches, their operation and the trade-off between
each cache structure. The write-through and write-back mechanisms are discussed, and compared
with each other, using various design examples.

6.1 Fixed-Point Unit

Instruction Formats

In a RISC CPU, all instructions include an Operation Code (OPC) field which instructs the processor
what to do with the rest of the fields in the instruction, and when to activate different hardware
components in the CPU to be able to execute the instruction. The OPC field is followed by one or
more operand fields. Each field either corresponds to a register address in the Register File (RF) or
contains immediate user data to process the instruction.

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7_6

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-00223-7_6

There are three types of instructions in a RISC CPU: register-to-register-type, immediate-type and
jump-type.

A register-to-register-type instruction contains an OPC followed by three operands: two source
register addresses and one destination register address pointing the RF, namely RS1, RS2 and RD.
The format of this instruction is shown below.

OPC RS1, RS2, RD

This type of instruction fetches the contents of the first and second source registers, Reg[RS1] and
Reg[RS2], from the RF, processes them according to the OPC, and writes the result to the destination
register, Reg[RD] in the RF. This operation is described below.

Reg[RS1] (OPC) Reg[RS2] ! Reg[RD]

An immediate-type instruction contains an OPC followed by three operands: one source register
address, RS, one destination register address, RD, and an immediate data as shown below.

OPC RS, RD, Imm Value

This type of instruction combines the contents of the source register, Reg[RS], with a sign-extended
immediate value according to the OPC, and writes the result to the destination register, Reg[RD], in
the RF. This operation is shown below.

Reg[RS] (OPC) Immediate Value ! Reg[RD]

The jump-type instruction contains an OPC followed by a single immediate value shown below.

OPC Imm Value

This type of instruction uses the immediate field to modify the contents of the Program Counter
(PC) for the instruction memory. The operation of this instruction is given below.

Immediate Value ! PC

All three instruction types fit in a 32-bit wide instruction memory as shown Fig. 6.1. In this figure, the
numbers on top of each field correspond to the bit positions of the instruction memory, defining the
borders of the OPC or a particular operand field.

252 6 Central Processing Unit

CPU Data-Path

A modern RISC CPU is composed of an Arithmetic Logic Unit (ALU) to execute operands, a small
memory in the form of registers (RF) to store temporary data, and two large size memories operating
as instruction and data caches. A Program Counter (PC) generates the instruction memory address for
each instruction in the instruction memory as shown in Fig. 6.2. Each instruction is fetched from this
memory and separated into OPC and operand fields. The OPC field guides the data-flow through the
rest of the CPU. The operand field contains either a number of RF addresses or the user data or the
combination of the two. Once the source and destination RF addresses become available at the output
of the instruction memory, the corresponding data is fetched from the RF and processed in the ALU
according to the OPC. The processed data is consequently written back to the RF at a destination
address. On the other hand, if a particular instruction needs to fetch data from the data memory
instead of the RF, the ALU calculates the effective memory address of the data memory. When the
data becomes available at the data memory output, it is routed back to a destination address in the RF.
Sometimes, instructions contain user-defined immediate values. These are separated from the rest of
the operand fields and combined with the contents of a source register, Reg[RS], in the ALU. The
processed data is subsequently written back to the RF.

31
OPC RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

31
OPC RS RD Immediate Value/Not Used

26 25 21 20 16 15 0

31
OPC Immediate Value/Not Used

26 25 0

Register-to-Register Type

Immediate Type

Jump Type

Fig. 6.1 Instruction field formats

6.1 Fixed-Point Unit 253

Instructions can be executed in RISC CPUs in two ways. In a non-pipelined CPU architecture,
instructions are fetched from the instruction memory and processed through the remaining four stages
of the CPU in Fig. 6.2 before the CPU takes the next instruction. This is shown in Fig. 6.3. In this
figure, IF corresponds to the Instruction Fetch stage, RF to the Register File stage, A to the ALU
stage, DM to the Data Memory stage, and finally WB to the Write-Back stage.

Non-pipelined structures are inefficient in terms of data throughput but require lower clock fre-
quencies to operate. The CPU becomes more efficient in terms of throughput if the architecture in
Fig. 6.2 is subdivided into smaller functional stages where each stage is separated from its neigh-
boring stage by a flip-flop boundary that stores data (or address) only for one clock cycle as shown in
Fig. 6.4. In this figure, the CPU data-path consists of five stages where individual tasks are executed
in each stage within one clock cycle. According to this scheme, the clock frequency becomes five
times higher compared to the architecture in Fig. 6.2.

PC

OPC Dec

A
L
U

Addr

Instruction
Memory

Ain Dout

Register
File

RS1

RS2

Ain1

Ain2

Dout1

Dout2

Immediate value path

Din

RF

Imm

Ain

Dout

Data Memory bypass path

DM

BY

Data
Memory

WE

Ain3 WE

Fig. 6.2 A non-pipelined CPU

Instruction 1

Instruction 2

Instruction 3

IF RF A DM WB

cycle
1

cycle
2

cycle
3

IF RF A DM WB

IF RF A DM WB

NON-
PIPELINED

Fig. 6.3 A non-pipelined CPU timing table

254 6 Central Processing Unit

The first stage of this new pipeline in Fig. 6.4 is the instruction memory access as mentioned
earlier. In this stage, each program instruction is fetched from the instruction memory and stored in
the instruction register at the first flip-flop boundary. This architecture supports a word-addressable
instruction memory, and therefore requires the PC to increment by one.

The next pipeline stage is the RF stage where the instruction OPC is separated from its operands.
The OPC is decoded in order to generate control signals to route the address and data in the rest of the
CPU. Operand fields are either source register addresses to access the data in the RF or immediate
data supplied by the user as mentioned earlier. If the operand corresponds to an RF address, the data
fetched from this address is loaded to the register that resides at the second flip-flop boundary. If the
operand is an immediate data, it is sign extended to 32 bits before it is loaded to a register in the
second flip-flop boundary.

The third stage of the CPU pipeline is the ALU stage. The data from the source registers in the RF
or the immediate data are processed in this stage according to the OPC and loaded to the register at
the third flip-flop boundary.

The fourth stage is the data memory stage. This stage accesses the data memory contents or
bypasses the data memory completely. If the instruction calls for a load or a store operation, the ALU
calculates the data memory address to access its contents. Otherwise, the ALU result simply bypasses
the data memory to be stored at the fourth flip-flop boundary.

The last stage of the CPU pipeline is the write-back stage. In this stage, data is either routed from
the output of the data memory or from the bypass path to a designated destination address in the RF.

A pipelined RISC CPU’s efficiency and speed are shown in the timing table in Fig. 6.5. This figure
extends to 15 high frequency clock cycles, which is the equivalent to three low frequency clock
cycles in Fig. 6.3. The number of completed instructions in this new pipeline is almost 12, which is
four times larger than the number of instructions in Fig. 6.3. The difference between non-pipelined
and pipelined CPU efficiency only gets better as the number of instructions increases.

Instruction Memory Stage RF Stage Data Memory Stage Write-Back Stage

1st flip-flop
boundary

ALU Stage

2nd flip-flop
boundary

3rd flip-flop
boundary

4th flip-flop
boundary

PC

OPC Dec

A
L
U

Addr

Instruction
Memory

Ain Dout

Register
File

RS1

RS2

Ain1

Ain2

Dout1

Dout2

Immediate value path

Din

RF

Imm

Ain

Dout

Data Memory bypass path

DM

BY

Data
Memory

WE

Ain3 WE

Fig. 6.4 A pipelined five-stage CPU

6.1 Fixed-Point Unit 255

The next section of this chapter examines the hardware requirements of register-to-register-type,
immediate-type and jump-type RISC instructions.

Register-to-Register Type ALU Instructions

Fixed-point register-to-register type ALU instructions interact with the ALU only. The most fun-
damental instruction in this category is the Add (ADD) instruction that contains the ADD opcode,
two source register addresses, RS1 and RS2, and a destination register address, RD, as shown below.

ADD RS1, RS2, RD

This instruction fetches data from the source addresses, RS1 and RS2, adds them, and returns the
result to the destination address, RD, according to the equation below.

Reg[RS1] + Reg[RS2] ! Reg[RD]

The field format of this instruction in the instruction memory is shown in Fig. 6.6. The numbers on
top of each field represent the OPC and operand bit boundaries.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

IF RF A DM WB

cycle
1

cycle
2

cycle
3

cycle
4

cycle
5

cycle
6

cycle
7

cycle
8

cycle
9

cycle
10

cycle
11

cycle
12

cycle
13

cycle
14

cycle
15

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

Instruction 7

Instruction 8

Instruction 9

Instruction 10

Instruction 11

Instruction 12

PIPELINED cycle
16

Fig. 6.5 A pipelined CPU timing table

256 6 Central Processing Unit

The required hardware for the ADD instruction is shown in Fig. 6.7. In this figure, the PC
generates an instruction memory address, and loads the contents of the ADD instruction from the
instruction memory to the instruction register at the end of the first clock cycle. Since the instruction
contains two source register addresses, RS1 and RS1, the contents of these registers, Reg[RS1] and
Reg[RS2], are fetched from the RF and stored at the second flip-flop boundary. In the third clock
cycle, the ALU adds Reg[RS1] and Reg[RS2], and stores the result at the third flip-flop boundary.
In the fourth clock cycle, the ALU result is written back to the destination register address, RD, in
the RF. No processing is applied to RD. The destination address simply propagates from one flip-flop
stage to another and points where the ALU result needs to go in the RF.

Since the ADD instruction does not require any data to be stored or fetched from the data memory,
the data memory stage is omitted from this data-path which reduces the number of stages from five
to four.

31
ADD RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.6 Fixed-point ADD instruction field format

O
P
C

R
S
1

R
S
2

N
O
T

U
S
E
D

0

15
16

20
21

25
26

31

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut1

AIn3 DIn

clock

AIn DOut
32

32
5

5 32

32

32

32

32

325

R
D

11

5

5

AIn2 DOut2

Instruction
Register

RS1

RS2

RD

Reg[RS1]

Reg[RS2]

Write-Back
Stage

PC

+1

D Q

clock

Reg[RS1] + Reg[RS2]

OPC DEC D Q

clock

6

OPC ADD

OPC = ADD selects
the fixed-point adder
in the ALU

Instruction
Memory Stage

RF
Stage ALU Stage

32

5

WE

ADD OPC produces WE = 1 for the RF

D Q

clock

Fig. 6.7 ADD instruction data-path

6.1 Fixed-Point Unit 257

Similar to the ADD instruction, the Subtract (SUB) instruction subtracts the 32-bit data at RS2
from the 32-bit data at RS1 and returns the result to RD. The instruction and its operational equation
are shown below.

SUB RS1, RS2, RD
Reg[RS1] − Reg[RS2] ! Reg[RD]

The field format of the SUB instruction in the instruction memory is the same as the ADD instruction
in Fig. 6.6 except the ADD OPC is replaced by SUB. This instruction also follows the same data-path
as the ADD instruction except the OPC selects the subtractor in the ALU instead of the adder.

The fixed-point Multiplication (MUL) instruction requires four operands as shown below. This
instruction multiplies the contents of RS1 and RS2 and generates a 64-bit result. The lower and upper
32 bits of the result in curly brackets are written to RD1 and RD2, respectively.

MUL RS1, RS2, RD1, RD2
Reg[RS1] * Reg[RS2] ! {Reg[RD2], Reg[RD1]}

The field format of this instruction in the instruction memory is shown in Fig. 6.8.

There are two ways to generate a data-path for this particular instruction. The first method executes
this instruction using four pipeline stages and requires two RF write-back ports as shown in Fig. 6.9.
In this figure, the lower 32 bits of the multiplication result, MUL[31:0], are written to the RF address
RD1 while the higher 32 bits, MUL[63:32], are written to the address RD2.

31
MUL RS1 RS2 RD2 Not Used

26 25 21 20 16 15 11 10 0
RD1

6 5

Fig. 6.8 Fixed-point MUL instruction field format

258 6 Central Processing Unit

The second method writes the multiplication result back to the RF in two successive clock cycles
instead of one but does not require the RF to have two write-back ports. In this scheme, the 64-bit
multiplication result is divided between two distinct paths in the ALU as shown in Fig. 6.10. The
lower 32 bits, MUL[31:0], are written back to the RF at the end of fourth cycle while the higher 32
bits, MUL[63:32], are stored at an additional flip-flop boundary. The higher 32 bits are subsequently
written back to the RF at the end of the fifth cycle.

O
P
C

R
S
1

R
S
2

0

15
16

20
21

25
26

31

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

RF

AIn1 DOut1

AInH

DInH

clock

AIn DOut
32

5

5 32

32

32

32

64

55

R
D
2 11

5

64

5

5

AIn2 DOut2

Instruction
Register

RS1

RS2

RD2

Reg[RS1]

Reg[RS2]

Write-Back
Stage

Reg[RS1] x Reg[RS2]

R
D
1

10

6
5

DInL

AInL

D Q

clock

D Q

clock

5

MUL [63:0]

32

M
U

L[
31

:0
]

32

M
U

L[
63

:3
2]

5

RD1

32

PC

+1

D Q

clock

OPC DEC D Q

clock

6

OPC MUL

OPC = MUL selects
the fixed-point multiplier
in the ALU

Instruction Memory
Stage

RF
Stage

ALU
Stage

OPC = MUL produces WE = 1 for the RF

WE

D Q

clock

Fig. 6.9 Data-path for fixed-point multiplication using 2 write-back ports

6.1 Fixed-Point Unit 259

Logical operations utilize the logical functional units in the ALU. The And (AND) instruction
below “bitwise ANDs” the contents of RS1 and RS2, and returns the result to the RF at the address,
RD. The operational equation of this instruction contains the “&” sign to indicate that this is an AND
operation. The field format of this instruction is shown in Fig. 6.11.

AND RS1, RS2, RD
Reg[RS1] & Reg[RS2] ! Reg[RD]

The AND instruction data-path in Fig. 6.12 is identical to the ADD or SUB instruction data-paths
except for the ALU which requires 32 sets of two-input AND gates to carry out the instruction.

O
P
C

R
S
1

R
S
2

0

15
16

20
21

25
26

31

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut1

DIn

clock

AIn DOut
32

5

5 32

32

32

32

32L

5

R
D
2 11

5

32

5 5 5

AIn2 DOut2

Instruction
Register

RS1

RS2

RD2

Reg[RS1]

Reg[RS2]

Write-Back
Stage

R
D
1

10

6
5

AIn

D Q

clock

D Q

clock

5

MUL[31:0]

32

5

RD1

D Q

clock

32

64

32H

MUL[63:32]
D Q

clock

32

1

0

D Q

clock

1

0

5

5

32

DELAY

DELAY

OPC = MUL selects port 1

32

PC

+1

D Q

clock

OPC DEC D Q

clock

6

OPC MUL OPC = MUL selects the fixed-point multiplier in the ALU

Instruction Memory
Stage

RF
Stage

ALU
Stage

OPC = MUL selects port 1

Fig. 6.10 Data-path for fixed-point multiplication using a single write-back port (WE = 1 to RF is not shown for
clarity)

31
AND RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.11 Fixed-point AND instruction field format

260 6 Central Processing Unit

The Or (OR), Exclusive Or (XOR), Nand (NAND), Nor (NOR) and Exclusive Nor (XNOR)
instructions have identical instruction formats except the opcode field. These operations are shown
below.

OR RS1, RS2, RD
Reg[RS1] | Reg[RS2] ! Reg[RD]

XOR RS1, RS2, RD
Reg[RS1] ^ Reg[RS2] ! Reg[RD]

NAND RS1, RS2, RD
Reg[RS1] * & Reg[RS2] ! Reg[RD]

NOR RS1, RS2, RD
Reg[RS1] * | Reg[RS2] ! Reg[RD]

XNOR RS1, RS2, RD
Reg[RS1] *^ Reg[RS2] ! Reg[RD]

O
P
C

R
S
1

R
S
2

N
O
T

U
S
E
D

0

15
16

20
21

25
26

31

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut1

AIn3 DIn

clock

AIn DOut
32

32
5

5 32

32

32

32

32

325

R
D

11

5

5

AIn2 DOut2

Instruction
Register

RS1

RS2

RD

Reg[RS1]

Reg[RS2]

Write-Back
Stage

PC

+1

D Q

clock

Reg[RS1] & Reg[RS2]

OPC DEC D Q

clock

6

OPC AND

OPC = AND selects
32 two-bit AND gates
in the ALU

Instruction
Memory Stage

RF
Stage ALU Stage

32

5

OPC = AND produces WE = 1 for the RF

WE

D Q

clock

Fig. 6.12 AND instruction data-path

6.1 Fixed-Point Unit 261

Here, “|” and “^” signs refer to the OR and XOR operations, respectively. The “*” sign corre-
sponds to negation and generates a complemented value. Therefore, “*&”, “*|” and “*^” oper-
ations denote the bitwise-NAND, NOR and XNOR, respectively.

The OR, XOR, NAND, NOR and XNOR instructions follow the same, four-stage data-path as the
AND instruction in Fig. 6.12. However, each logical instruction requires different types of logic gates
in the ALU stage, and the OPC field selects which to use.

Another important register-to-register type instruction is the shift instruction. The Shift Left
(SL) instruction shifts the contents of RS1 to the left by the amount stored at the address RS2, and
returns the result to RD. The format and the operation of this instruction are shown below. The “<<”
sign indicates left-shift operation. This instruction’s field format is similar to the previous
register-to-register-type instructions as shown in Fig. 6.13.

SL RS1, RS2, RD
Reg[RS1] << Reg[RS2] ! Reg[RD]

The Shift Right (SR) instruction is similar to the SL instruction except the contents of RS1 are
shifted to the right by the amount indicated in RS2. The “>>” sign corresponds to the SR operation.

SR RS1, RS2, RD
Reg[RS1] >> Reg[RS2] ! Reg[RD]

Both the SL and SR instructions require linear shifters in the ALU. These units are large com-
binational logic blocks that are predominantly made out of multiplexers as examined in Chap. 1. Both
of these instructions follow the same data-path as any other register-register-type instructions with
three operands. Figure 6.14 shows the combined data-path for the SL and SR instructions. The ALU
stage contains both a left and a right linear shifter. The first input to either shifter, Reg[RS1],
represents the value to be shifted to the right or left. The second input, Reg[RS2], specifies the
amount to be shifted in number of bits. Even though the ALU executes both the left and right-shifted
versions of Reg[RS1] simultaneously, only one result is selected by the OPC and written back to the
RF. If the instruction is a shift-right (SR) instruction, then OPC selects the right (R) port of the 2-1
MUX, and the SR result is written to the RF. Otherwise, the OPC selects the left (L) port, and the
shift-left (SL) result is written to the RF. Both the SL and SR instructions require a four-stage CPU
pipeline.

31
SL RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.13 Fixed-point Shift-Left (SL) instruction field format

262 6 Central Processing Unit

http://dx.doi.org/10.1007/978-3-030-00223-7_1

As an example, let us combine the individual data-paths for ADD, SUB, AND, NAND, OR,
NOR, XOR, XNOR, SL and SR instructions in a single CPU to execute a user program. The
architecture in Fig. 6.15 shows eight individual functional units in the ALU followed by an 8-1 MUX
to select the desired ALU output. In this figure, there is only one adder, and it is able to execute a
two’s complement addition to perform subtraction. The left and right linear shifters are also combined
in a single unit. The SL or SR opcode selects the output of either the left shifter or the right shifter for
the destination register. The outputs of all logical units are selected by an 8-1 MUX and forwarded to
the RF.

O
P
C

R
S
1

R
S
2

N
O
T

U
S
E
D

0

15
16

20
21

25
26

31

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut1

AIn3 DIn

clock

AIn DOut
32

5

5 32

32

32

32

32

325

R
D

11

5

32

5 5

AIn2 DOut2

Instruction
Register

RS1

RS2

RD

Reg[RS1]

Reg[RS2]

SL

Write-
Back
Stage

SR
R

L

32

PC

+1

D Q

clock

OPC DEC D Q

clock

6

OPC SL, SR
OPC = SL selects port L
OPC = SR selects port R

ALU
Stage

RF
Stage

Instruction Memory
Stage

2

OPC = SL or SR produces WE = 1 for the RF

WE

D Q

clock

Fig. 6.14 SL and SR instruction data-paths

6.1 Fixed-Point Unit 263

O P C R S 1 R S 2 N O T U S E D
015162021252631

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

In
st

ru
ct

io
n

M
em

or
y

R
eg

is
te

r
Fi

le

AI
n1

D
O

ut
1

AI
n3

D
In

cl
oc

k

AI
n

D
O

ut
32

5 5
3232

32
5

R D
11

5

5
5

AI
n2

D
O

ut
2

In
st

ru
ct

io
n

R
eg

is
te

r

R
S1

R
S2

R
D

R
eg

[R
S1

]

R
eg

[R
S2

]

SH
IF

TC
in

0
1

01

S/
A

AN
D

N
AN

D

O
R

N
O

R

XO
R

XN
O

R

SH

0
1

32
32

SL
, S

R

W
rit

e-
Ba

ck
St

ag
e

R
eg

[R
S1

]
 O

PC

R
eg

[R
S2

]
32

PC

+1

D
Q

cl
oc

k

O
PC

 D
EC

D
Q

cl
oc

k

6

O
PC

O
PC

 =
 A

D
D

, S
U

B
se

le
ct

s
S/

A
po

rt,

O
PC

 =
 A

N
D

, N
AN

D
, O

R
, N

O
R

, X
O

R
, X

N
O

R
 s

el
ec

t t
he

 c
or

re
sp

on
di

ng
 p

or
ts

,
O

PC
 =

 S
L,

 S
R

 s
el

ec
t S

H
 p

or
t

10

AL
U

St
ag

e
R

F
St

ag
e

In
st

ru
ct

io
n

M
em

or
y

St
ag

e

Al
l O

PC
s

pr
od

uc
e

W
E

=
1

fo
r t

he
 R

F

W
E

D
Q

cl
oc

k
O

PC
 =

 S
U

B
se

le
ct

s
po

rt
1

O
PC

 =
 S

U
B

se
le

ct
s

po
rt

1

Fi
g
.
6.
15

C
om

bi
ne
d
re
gi
st
er
-t
o-
re
gi
st
er

A
L
U

in
st
ru
ct
io
n
da
ta
-p
at
hs

264 6 Central Processing Unit

The next category of register-register-type instructions are the Set instructions used in
decision-making situations where two source register values are compared with each other prior to a
branch statement in a program.

The Set-Greater-than-or-Equal (SGE) instruction below describes setting the contents of RD to
0x0000001 if the contents of RS1 are found to be greater than or equal to the contents of RS2. The
data in RS1 and RS2 registers are considered unsigned integers. If the comparison fails, then the
contents of RD are set to 0x0000000. The field format of this instruction is given in Fig. 6.16.

SGE RS1, RS2, RD
If Reg[RS1] � Reg[RS2] then 1 ! Reg[RD] else 0 ! Reg[RD]

The data-path for the SGE instruction in Fig. 6.17 tests if the contents of RS1 are greater than or
equal to the contents of RS2 using a subtractor in the ALU. Again, the data in RS1 and RS2 registers
are considered unsigned integers. To perform this test, Reg[RS1] is subtracted from Reg[RS2], and
the sign bit of the result is used to make the decision. If Reg[RS1] is greater than or equal to Reg
[RS2], the sign bit becomes zero. The complemented sign bit is then forwarded to the 2-1 MUX at the

31
SGE RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.16 Fixed-point Set-Greater-than-or-Equal (SGE) instruction field format

O
P
C

R
S
1

R
S
2

N
O
T

U
S
E
D

0

15
16

20
21

25
26

31

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut1

AIn3 DIn

clock

AIn DOut
32

5

5 32

32

32

32

5

R
D

11

5

1

5 5

AIn2 DOut2

Instruction
Register

RS1

RS2

RD

Reg[RS1]

Reg[RS2]

Sign Bit

Sign Bit = 1 selects port 1

Write-Back
Stage

32

PC

+1

D Q

clock

OPC DEC D Q

clock

6

OPC SGE
OPC = SGE selects
the fixed-point subtractor in the ALU

0 1

0..00 0..01
32 32

ALU
Stage

RF
Stage

Instruction Memory
Stage

Fig. 6.17 SGE instruction data-path (WE signal to RF is not shown for clarity)

6.1 Fixed-Point Unit 265

write-back port of the RF to store 0x00000001 in the destination register. If the subtraction yields a
negative number, the complemented sign bit selects 0x00000000 to be stored in the RD.

The Set-Greater-Than (SGT) instruction is another instruction that tests if Reg[RS1] is greater than
Reg[RS2]. If the comparison is successful, the instruction stores 0x00000001 in the RD. Otherwise,
the instruction stores 0x00000000 as described below.

SGT RS1, RS2, RD
If Reg[RS1] > Reg[RS2] then 1 ! Reg[RD] else 0 ! Reg[RD]

The data-path of the SGT instruction is shown in Fig. 6.18. In this figure, two tests are performed
in the ALU stage. The first test checks if Reg[RS1] is greater than or equal to Reg[RS2] using the sign
bit of the subtractor as it was applied to the SGE instruction. The second test checks if Reg[RS1] is
not equal to Reg[RS2] using 32 sets of two-input XNOR gates followed by a single 32-input NAND
gate. The condition, Reg[RS1] 6¼ Reg[RS2], is then logically isolated from the condition, Reg[RS1]
� Reg[RS2], in the form of a two-input AND gate to determine if the final condition, Reg[RS1] >
Reg[RS2], is met. If Reg[RS1] > Reg[RS2], then port 1 of the 2-1 MUX is selected to store
0x00000001 in RD. Otherwise, port 0 is selected to store 0x00000000.

Similar to the SGE and SGT instructions, there are four other set instructions that compare the
contents of the two source registers in a variety of different ways to set or reset the destination
register. The instructions, Set-Less-than-or-Equal (SLE), Set-Less-Than (SLT), Set-Equal (SEQ) and
Set-Not-Equal (SNE), and how they operate inside the CPU are listed below.

SLE RS1, RS2, RD
If Reg[RS1] � Reg[RS2] then 1 ! Reg[RD] else 0 ! Reg[RD]

SLT RS1, RS2, RD
If Reg[RS1] < Reg[RS2] then 1 ! Reg[RD] else 0 ! Reg[RD]

SEQ RS1, RS2, RD
If Reg[RS1] = Reg[RS2] then 1 ! Reg[RD] else 0 ! Reg[RD]

SNE RS1, RS2, RD
If Reg[RS1] 6¼ Reg[RS2] then 1 ! Reg[RD] else 0 ! Reg[RD]

All Set instructions require four clock cycles to write the result to the RF like all the other
register-to-register-type instructions.

266 6 Central Processing Unit

O P C R S 1 R S 2 N O T U S E D
015162021252631

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

In
st

ru
ct

io
n

M
em

or
y

R
eg

is
te

r
Fi

le

AI
n1

D
O

ut
1

AI
n3

D
In

cl
oc

k

AI
n

D
O

ut
32

5 5
3232

32

5

R D
11

5

1

5
5

AI
n2

D
O

ut
2

In
st

ru
ct

io
n

R
eg

is
te

r

R
S1

R
S2

R
D

R
eg

[R
S1

]

R
eg

[R
S2

]

Th
e

co
m

pl
em

en
te

d
si

gn
 b

it
te

st
s

G
TE

 c
on

di
tio

n

0
1

0.
.0

0

Th
is

 b
it

se
le

ct
s

po
rt

1
if

SG
T

co
m

pa
ris

on
 is

 s
uc

ce
ss

fu
l

el
se

 it
 s

el
ec

ts
 p

or
t 0

32

W
rit

e-
Ba

ck
St

ag
e

32

PC

+1

D
Q

cl
oc

k

O
PC

 D
EC

D
Q

cl
oc

k

6

O
PC

SG
T

O
PC

 =
 S

G
T

se
le

ct
s

th
e

fix
ed

-p
oi

nt
 s

ub
tra

ct
or

 in
 th

e
AL

U

0.
.0

1
32

32

32

AL
U

St
ag

e
R

F
St

ag
e

In
st

ru
ct

io
n

M
em

or
y

St
ag

e

Th
is

 b
it

te
st

s
N

ot
 E

qu
al

 c
on

di
tio

n

si
gn

 b
it

Fi
g
.
6.
18

SG
T
in
st
ru
ct
io
n
da
ta
-p
at
h
(W

E
si
gn

al
to

R
F
is
no

t
sh
ow

n
fo
r
cl
ar
ity

)

6.1 Fixed-Point Unit 267

Immediate Type ALU Instructions

Immediate ALU instructions allow user data to be included in the instruction. However, these
instructions still fetch register data from the RF to be combined with the user data.

The Add-Immediate instruction (ADDI) adds the contents of RS to the user-supplied 16-bit
immediate value and returns the result to RD in the RF. This instruction and how it operates in the
CPU are shown below. The field format of this instruction in the instruction memory is given in
Fig. 6.19.

ADDI RS, RD, Imm Value
Reg[RS] + Immediate Value ! Reg[RD]

The ADDI instruction data-path is shown in Fig. 6.20. In this figure, the contents of the instruction
are transferred from the instruction memory to the instruction register at the end of the first clock

31
ADDI RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.19 Fixed-point ADD Immediate (ADDI) instruction field format

O
P
C

R
S

R
D

I
m
m

V
a
l
u
e

0

15
16

20
21

25
26

31

D Q

clock D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut

AIn2 DIn

clock

AIn DOut
32

5

5

32

325

5 5

Instruction
Register

RS

RD

Reg[RS]
Reg[RS] + Imm Value

32 32

D Q

clock

SEXT

Imm Value

32

16

16

Write-Back
Stage

32

PC

+1

D Q

clock

OPC DEC D Q

clock

6

OPC ADDI

OPC = ADDI selects
the fixed-point adder
in the ALU

ALU
Stage

RF
Stage

Instruction Memory
Stage

OPC = ADDI produces WE = 1 for the RF

WE

D Q

clock

Fig. 6.20 ADDI instruction data-path

268 6 Central Processing Unit

cycle. In the second clock cycle, the 16-bit immediate value in the instruction is sign extended to 32
bits while the contents of RS are fetched from the RF. In the third clock cycle, the two values are
added in the ALU. At the end of the fourth cycle, the processed data is written back to the RF at the
address RD. Therefore, the ADDI instruction requires only four clock cycles to execute.

The Subtract-Immediate instruction (SUBI) behaves similar to the ADDI, but it subtracts the
immediate value from the contents of RS, and returns the result to RD as illustrated below.

SUBI RS, RD, Imm Value
Reg[RS] − Immediate Value ! Reg[RD]

There are also immediate logical instructions that operate with the user data. The AND-Immediate
(ANDI) instruction, for example, bitwise ANDs the contents of RS with the immediate value and
returns the result to RD as shown below. The field format of this instruction is given in Fig. 6.21.

ANDI RS, RD, Imm Value
Reg[RS] & Immediate Value ! Reg[RD]

The ANDI instruction uses a similar data-path as the ADDI, but replaces the fixed-point adder with
32 two-input AND gates as shown in Fig. 6.22. The contents of RS and the sign-extended immediate
value are combined using the AND gates, and the result is returned to RD in the RF.

Similar to the ANDI instruction, the ORI, XORI, NANDI, NORI, and XNORI instructions operate
with the immediate data and follow the same data-path as the ANDI instruction. These instructions
and how they operate inside the CPU are listed below.

ORI RS, RD, Imm Value
Reg[RS] | Immediate Value ! Reg[RD]

XORI RS, RD, Imm Value
Reg[RS] ^ Immediate Value ! Reg[RD]

NANDI RS, RD, Imm Value
Reg[RS] *& Immediate Value ! Reg[RD]

NORI RS, RD, Imm Value
Reg[RS] *| Immediate Value ! Reg[RD]

31
ANDI RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.21 Fixed-point AND Immediate (ANDI) instruction field format

6.1 Fixed-Point Unit 269

XNORI RS, RD, Imm Value
Reg[RS] *^ Immediate Value ! Reg[RD]

All logical immediate instructions require four cycles to form the result.
The Shift Left Immediate (SLI) and Shift Right Immediate (SRI) instructions use the same

functional units as the SL and SR instructions in the ALU.
The SLI instruction fetches the contents of RS from the RF, shifts it to the left by an immediate

value, and stores the result in RD as indicated below. Figure 6.23 shows the field format of this
instruction.

SLI RS, RD, Imm Value
Reg[RS] << Immediate Value ! Reg[RD]

O
P
C

R
S

R
D

I
m
m

V
a
l
u
e

0

15
16

20
21

25
26

31

D Q

clock D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut

AIn2 DIn

clock

AIn DOut
32

5

5

32

325

5 5

Instruction
Register

RS

RD

Reg[RS]
Reg[RS] & Imm Value

32 32

D Q

clock

SEXT

Imm Value

32

16

16

Write-Back
Stage

32

PC

+1

D Q

clock

OPC DEC D Q

clock

6

OPC ANDI

OPC = ANDI selects the outputs
of 32 two-bit AND gates
in the ALU

ALU
Stage

RF
Stage

Instruction Memory
Stage

OPC = ANDI produces WE = 1 for the RF

WE

D Q

clock

Fig. 6.22 ANDI instruction data-path

31
SLI RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.23 Fixed-point SL Immediate (SLI) instruction field format

270 6 Central Processing Unit

Similar to the SLI instruction, the SRI instruction shifts the contents of RS to the right by an
amount equal to the immediate value, and stores the result in RD as shown below.

SRI RS, RD, Imm Value
Reg[RS] >> Immediate Value ! Reg[RD]

The SLI and SRI instruction data-paths in Fig. 6.24 still require the left and right linear shifters in
the ALU stage. In these instructions, one shifter input receives an immediate data that specifies the
number of bits to be shifted to the left or to the right while the other input receives the contents of RS.

Figure 6.25 combines all the immediate ALU instructions examined so far in one schematic. These
include the ADDI, SUBI, SLI, SRI, ANDI, ORI, XORI, NANDI, NORI and XNORI instructions
with their common sign-extended inputs. The port selection process at the ALU MUX is as follows. If
the OPC is ADDI or SUBI, the adder/subtractor output is routed through the S/A port. For the SLI
and SRI OPCs, the shifter outputs are routed through the SH port. For all other OPCs, the processed
data is routed through the corresponding MUX port, carrying the same OPC name, and becomes the
ALU output.

O
P
C

R
S

R
D

I
m
m

V
a
l
u
e

0

15
16

20
21

25
26

31

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut

AIn2 DIn

clock

AIn DOut
32

5 32

32

5

5 5

Instruction
Register

RS

RD

Reg[RS]

32

5

0

16

Imm Value

SEXT

32

16

Write-Back
Stage

SR

SL

R

L

32

32

PC

+1

D Q

clock

OPC DEC D Q

clock

6

OPC SLI, SRI OPCs
OPC = SRI selects port R
OPC = SLI selects port L

ALU
Stage

RF
Stage

Instruction Memory
Stage

OPC = SRI or SLI produce WE = 1 for the RF

WE

D Q

clock

Fig. 6.24 SLI and SRI instruction data-paths

6.1 Fixed-Point Unit 271

O P C R S R D I m m V a l u e

015162021252631

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

In
st

ru
ct

io
n

M
em

or
y

R
eg

is
te

r
F

ile

A
In

1
D

O
ut

1

A
In

3
D

In

cl
oc

k

A
In

D
O

ut
32

5 5

32

32
5

5
5

In
st

ru
ct

io
n

R
eg

is
te

r

R
S

R
D

R
eg

[R
S

]

R
eg

[R
S

]
O

P
C

 I
m

m
 V

al
ue

S
H

IF
TC

in
0

1

01

S
/A

A
N

D

N
A

N
D

O
R

N
O

R

X
O

R

X
N

O
R

S
H

0
1

32
32

O
P

C
 =

 S
LI

, S
R

I

D
Q

cl
oc

k

S
E

X
T

Im
m

 V
al

ue

32

16

16

W
rit

e-
B

ac
k

S
ta

ge

32

P
C

+1

D
Q

cl
oc

k

O
P

C
 D

E
C

D
Q

cl
oc

k

6

O
P

C

O
P

C
 =

 A
D

D
I,

S
U

B
I s

el
ec

t p
or

t S
/A

O
P

C
 =

 S
LI

, S
R

I s
el

ec
t p

or
t S

H
O

P
C

 =
 A

N
D

I,
N

A
N

D
I,

O
R

I,
N

O
R

I,
X

O
R

I,
X

N
O

R
I s

el
ec

t
th

e
po

rt
s

w
ith

 th
e

sa
m

e
na

m
e

in
 th

e
A

LU
 M

U
X

10

A
LU

S
ta

ge
R

F
S

ta
ge

In
st

ru
ct

io
n

M
em

or
y

S
ta

ge

A
ll

O
P

C
s

pr
od

uc
e

W
E

 =
 1

 fo
r t

he
 R

F

W
E

D
Q

cl
oc

k
O

P
C

 =
 S

U
B

I s
el

ec
ts

 p
or

t 1
O

P
C

 =
 S

U
B

I s
el

ec
ts

 p
or

t 1

Fi
g
.
6.
25

C
om

bi
ne
d
im

m
ed
ia
te

A
L
U

in
st
ru
ct
io
n
da
ta
-p
at
hs

272 6 Central Processing Unit

The immediate-set instructions compare the contents of RS with an immediate value for setting or
resetting the register RD.

The Set-Greater-than-or-Equal-Immediate (SGEI) instruction sets the contents of RD if the in-
struction finds the contents of RS to be greater than or equal to the immediate value. This instruction
and how it operates inside the CPU is shown below. The field format is given in Fig. 6.26.

SGEI RS, RD, Imm Value
If Reg[RS] � Immediate Value then 1 ! Reg[RD]

The SGEI instruction data-path in Fig. 6.27 tests the relative magnitudes of Reg[RS] and the
sign-extended immediate value to make a decision about the contents of RD. If Reg[RS] is larger than
the immediate value or equal to it, the sign bit of the ALU result becomes zero, which in turn, stores
0x00000001 in RD. Otherwise, RD becomes 0x00000000.

31
SGEI RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.26 Fixed-point SGE Immediate (SGEI) instruction field format

O
P
C

R
S

R
D

I
M
M

0

15
16

20
21

25
26

31

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

Instruction
Memory

Register
File

AIn1 DOut1

AIn2 DIn

clock

AIn DOut
32

5

16

32

32

32

55

1

5 5

DOut2

Instruction
Register

RS

RD

Reg[RS]

Imm Value

Sign Bit

Sign Bit = 1 selects port 1

SEXT

32

16

Write-Back
Stage

32

PC

+1

D Q

clock

OPC DEC D Q

clock

6

OPC SGEI
OPC = SGEI selects
the fixed-point subtractor in the ALU

32

0 1

0..00 0..01
32 32

ALU
Stage

RF
Stage

Instruction Memory
Stage

Fig. 6.27 SGEI instruction data-path (WE = 1 to RF is not shown for clarity)

6.1 Fixed-Point Unit 273

Similarly, the formats for Set-Greater-Than-Immediate (SGTI), Set-Less-than-or-Equal-Immediate
(SLEI), Set-Less-Than-Immediate (SLTI), Set-Equal-Immediate (SEQI), Set-Not-Equal-Immediate
(SNEI) instructions, and how they operate inside the CPU are given below.

SGTI RS, RD, Imm Value
If Reg[RS] > Immediate Value then 1 ! Reg[RD] else 0 ! Reg[RD]

SLEI RS, RD, Imm Value
If Reg[RS] � Immediate Value then 1 ! Reg[RD] else 0 ! Reg[RD]

SLTI RS, RD, Imm Value
If Reg[RS] < Immediate Value then 1 ! Reg[RD] else 0 ! Reg[RD]

SEQI RS, RD, Imm Value
If Reg[RS] = Immediate Value then 1 ! Reg[RD] else 0 ! Reg[RD]

SNEI RS, RD, Imm Value
If Reg[RS] 6¼ Immediate Value then 1 ! Reg[RD] else 0 ! Reg[RD]

All Set Immediate instructions require four clock cycles to store the result in RD.

Data Movement Instructions

The first data movement instruction that relocates data from the data memory to a register in the RF is
the Load (LOAD) instruction. This instruction first adds the contents of RS to a user-defined im-
mediate value to form an effective data memory address. It then fetches the data at this address and
moves it to a destination register, RD, in the RF. This instruction and how it operates inside the CPU
is shown below. The term, Reg[RS] + Imm Value, defines the effective data memory address, and
mem {Reg[RS] + Imm Value} corresponds to the data at this address. The field format of this
instruction while it is in the instruction memory is given in Fig. 6.28.

LOAD RS, RD, Imm Value
mem {Reg[RS] + Immediate Value} ! Reg[RD]

The LOAD instruction data-path in Fig. 6.29 adds the contents of RS to the sign-extended im-
mediate value and uses this sum as an address for the data memory. The OPC selects the adder in the
ALU to calculate the effective data memory address and enables the data memory for read. The data
from the data memory is subsequently written back to the RF at the address, RD. This instruction
requires five clock cycles to complete, and it traces through all five stages of the CPU.

31
LOAD RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.28 Fixed-point LOAD instruction field format

274 6 Central Processing Unit

O P C R S R D I m m V a l u e

015162021252631

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

S
E

X
T

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

R
eg

is
te

r
F

ile

A
In

D
O

ut

A
In

1
D

O
ut

A
In

2
D

In

cl
oc

k

A
In

D
O

ut
32

5

16

5

32

16

32

32 32

32
32

32

32
5

In
st

ru
ct

io
n

R
eg

is
te

r

R
S

R
eg

[R
S

]

Im
m

 V
al

ue

R
eg

[R
S

] +
 Im

m
m

em
 {R

eg
[R

S
] +

 Im
m

}

R
D

32

5
5

5

32

P
C

+1

D
Q

cl
oc

k

O
P

C
 D

E
C

D
Q

cl
oc

k

6

O
P

C
LO

A
D

O
P

C
 =

 L
O

A
D

 s
el

ec
ts

th

e
ad

de
r i

n
th

e
A

LU

W
rit

e-
B

ac
k

S
ta

ge
A

LU
S

ta
ge

R
F

S
ta

ge
In

st
ru

ct
io

n
M

em
or

y
S

ta
ge

D
at

a
M

em
or

y
S

ta
ge

D
Q

cl
oc

k

R
E

W
E

D
Q

cl
oc

k

O
P

C
 =

 L
O

A
D

 p
ro

du
ce

s
W

E
 =

 1
 fo

r t
he

 R
F

Fi
g
.
6.
29

L
O
A
D

in
st
ru
ct
io
n
da
ta
-p
at
h

6.1 Fixed-Point Unit 275

The Store (STORE) instruction moves data in the opposite direction of the LOAD instruction. This
instruction uses the contents of RD and the immediate value to form a data memory address, and
moves the contents of RS to this address as described below. Figure 6.30 shows this instruction’s
field format.

STORE RS, RD, Imm Value
Reg[RS] ! mem {Reg[RD] + Immediate Value}

The data-path for the STORE instruction is shown in Fig. 6.31. In this figure, the OPC selects the
adder in the ALU to perform an add operation between the sign-extended immediate value and
Reg[RD]. The contents of RS are then written to the data memory at this calculated address. The
STORE instruction needs only four clock cycles to complete.

31
STORE RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.30 Fixed-point STORE instruction field format

276 6 Central Processing Unit

O P C R S R D I m m V a l u e

015162021252631

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

S
E

X
T

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

R
eg

is
te

r
F

ile

A
In

A
In

1
D

O
ut

1

A
In

2

cl
oc

k

A
In

D
O

ut
32

5

16

5

32

16

32

32

32

32
32

D
Q

cl
oc

k

D
Q

cl
oc

k

32

32
D

In
D

O
ut

2

In
st

ru
ct

io
n

R
eg

is
te

r

R
S

R
D

R
eg

[R
S

]

R
eg

[R
D

]

Im
m

 V
al

ue

R
eg

[R
D

] +
 Im

m
 V

al
ue

32

P
C

+1

D
Q

cl
oc

k

O
P

C
 D

E
C

6

O
P

C

W
E

O
P

C
 =

 S
T

O
R

E
 s

el
ec

ts
 th

e
ad

de
r i

n
th

e
A

LU
D

Q

cl
oc

k

D
Q

cl
oc

k

A
LU

S
ta

ge
R

F
S

ta
ge

In
st

ru
ct

io
n

M
em

or
y

S
ta

ge
D

at
a

M
em

or
y

S
ta

ge

O
P

C
 =

 S
T

O
R

E
 p

ro
du

ce
s

W
E

 =
 1

 fo
r D

at
a

M
em

or
y

S
T

O
R

E

Fi
g
.
6.
31

ST
O
R
E
in
st
ru
ct
io
n
da
ta
-p
at
h

6.1 Fixed-Point Unit 277

The Move (MOVE) instruction does not interact with the data memory. Nevertheless, it moves
data from one register to another in the RF. The instruction and how it operates inside the CPU are
given below. The field format for MOVE instruction is shown in Fig. 6.32.

MOVE RS, RD
Reg[RS] ! Reg[RD]

The Move Immediate (MOVEI) instruction moves an immediate value to a destination register,
RD, in the RF as shown below. The field format of this instruction is given in Fig. 6.33.

MOVEI Imm Value, RD
Immediate Value ! Reg[RD]

The schematic in Fig. 6.34 combines the data-paths of LOAD, STORE and MOVE instructions.
The data memory address is configured by adding the sign-extended immediate value to either
Reg[RS] or Reg[RD] depending on the OPC. The write-back stage selects either the contents of RS
for the MOVE instruction or the contents of data memory for the LOAD instruction, and writes the
result back to the RF.

31
MOVE RS RD Not Used

26 25 21 20 16 15 0

Fig. 6.32 Fixed-point MOVE instruction field format

31
MOVEI Not Used RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.33 Fixed-point MOVEI instruction field format

278 6 Central Processing Unit

O P C R S R D I m m V a l u e

015162021252631

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

S
E

X
T

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

R
eg

is
te

r
F

ile

A
In

D
O

ut

A
In

1
D

O
ut

1

A
In

3
D

In

cl
oc

k

A
In

D
O

ut
32

5

16

5

32

16

32

32

32

32
32

32

32
5

In
st

ru
ct

io
n

R
eg

is
te

r

R
S

R
eg

[R
S

]

Im
m

 V
al

ue

R
D

32

5
5

D
Q

cl
oc

k

32R
eg

[R
D

]

D
Q

cl
oc

k
32

32

D
In

32

O
P

C
 =

 S
T

O
R

E

1 0

D
Q

cl
oc

k

O
P

C
 =

 M
O

V
E

1 0

32

A
In

2
D

O
ut

2

32

P
C

+1

D
Q

cl
oc

k

O
P

C
 D

E
C

6

O
P

C

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

W
rit

e-
B

ac
k

S
ta

ge
A

LU
S

ta
ge

R
F

S
ta

ge
In

st
ru

ct
io

n
M

em
or

y
S

ta
ge

D
at

a
M

em
or

y
S

ta
ge

O
P

C
 =

 M
O

V
E

 s
el

ec
ts

 p
or

t 1
A

ll
ot

he
r O

P
C

s
se

le
ct

 p
or

t 0

O
P

C
 =

 L
O

A
D

 s
el

ec
ts

 p
or

t 1
O

th
er

s
se

le
ct

 p
or

t 0

O
P

C
 =

 L
O

A
D

 a
nd

 S
T

O
R

E

se
le

ct
 th

e
ad

de
r i

n
th

e
A

LU

W
E

O
P

C
 =

 M
O

V
E

 o
r L

O
A

D
 p

ro
du

ce
s

W
E

 =
 1

 fo
r t

he
 R

F

LO
A

D
 O

P
C

D
Q

cl
oc

k

D
Q

cl
oc

k

W
E

O
P

C
 =

 S
T

O
R

E
 p

ro
du

ce
s

W
E

 =
 1

 fo
r D

at
a

m
em

or
y O

P
C

 =
 L

O
A

D

Fi
g
.
6.
34

D
at
a
m
ov

em
en
t
in
st
ru
ct
io
n
da
ta
-p
at
hs

(M
O
V
E
,
L
O
A
D

an
d
ST

O
R
E
)

6.1 Fixed-Point Unit 279

Program Control Instructions

To be able to make decisions in a program, we need program control instructions.
The Branch (BRA) instruction is one of the most essential instructions in a program as it controls

direction of the program flow. This instruction first compares the contents of RS with a five-bit RS
value specified by the user. If the comparison is successful, the BRA instruction redirects the program
to fetch an instruction from a different PC address as shown below. This new PC address is calculated
by incrementing the old PC address by an immediate value specified by the user. If the comparison is
not successful, the program skips the next instruction but executes the instruction after. This in-
struction’s field format is shown in Fig. 6.35.

BRA RS, RS Value, Imm Value
If Reg[RS] = RS Value then PC + Immediate Value ! PC
else PC + 2 ! PC

The BRA instruction usually depends on a previously stored data value in the RF as a result of a
Set or Set-Immediate instruction. To be able to carry out the BRA instruction, first the contents of RS
is compared with the RS Value. The comparator in Fig. 6.36 is composed of 32 two-input XNOR

31
BRA RS RS Value Immediate Value

26 25 21 20 16 15 0

Fig. 6.35 Fixed-point BRANCH instruction field format

O
P
C

R
S

R
S
V
a
l
u
e

I
m
m

V
a
l
u
e

0

15
16

20
21

25
26

31

Instruction
Memory

Register
File

AIn DOut

clock

AIn DOut
32

5

16

32

Instruction
Register

RS Reg[RS]

Imm Value

SEXT

32

16

D Q

clock

32

32

PC + Imm Value

32

32

SEXT

27
5

32

+1

D Q

clock

01

PC

OPC DEC
6

OPC OPC = BRA

32

Successful comparison between the RS Value and Reg[RS] selects port 1 else port 0

Instruction Memory
Stage

RF
Stage

Fig. 6.36 BRA instruction data-path

280 6 Central Processing Unit

gates to perform a bitwise comparison between Reg[RS] and the sign-extended RS Value. All 32
XNOR outputs are then fed to a 32-input AND gate to make a decision for the new PC value. If the
comparison is successful, the current PC value is replaced with (PC + Imm Value). If the comparison
is unsuccessful, however, the PC value is incremented by (PC + 2). The reason for (PC + 2) is
because the BRA data-path has to transverse two flip-flop boundaries by the time a new PC value
forms. In actuality, a hazard forms when the PC increments to (PC + 1), and the compiler either
inserts a No Operation (NOP) instruction right after the BRA instruction or finds an unrelated
instruction in the program and inserts it into this slot in order to remove the hazard.

Unconditional decisions in the program do not need a comparison. The programmer can simply
change the flow of the program by using a jump-type instruction.

The first unconditional jump-type instruction is the Jump (JUMP) instruction which simply
replaces the current PC value with an immediate value as shown below. Its field format is shown in
Fig. 6.37.

JUMP Imm Value
Immediate Value ! PC

The data-path for the JUMP instruction is shown in Fig. 6.38. In this data-path, the 26-bit jump
value is an unsigned (positive) integer extended to 32 bits before being forwarded to the PC.
However, the PC value has already incremented twice and equals to (PC + 2) right before it is
replaced by a jump value. Therefore, this instruction also creates a control hazard when the PC is at
(PC + 1) and requires compiler’s intervention to remove the hazard.

31
JUMP Immediate Value

26 25 0

Fig. 6.37 Fixed-point JUMP instruction field format

6.1 Fixed-Point Unit 281

The second unconditional jump-type instruction is the Jump Register (JREG) instruction, which is
similar to the JUMP instruction, but uses the contents of RS to replace the current PC value as shown
below. Figure 6.39 describes this instruction’s field format.

JREG RS
Reg[RS] ! PC

The data-path for the JREG instruction is shown in Fig. 6.40. This instruction reads the contents of
RS and loads it to the PC as the jump value. The program control hazard also exists for this
instruction. The hazard can be removed either by inserting a NOP instruction or another unrelated
instruction in the program after the JREG instruction.

O
P
C

I
m
m

V
a
l
u
e

0

25
26

31

Instruction
Memory

clock

AIn DOut
32

26 32

Instruction
Register

Imm Value

000000

6

32

+1

D Q

clock

01

OPC
DEC

OPC = JUMP selects
port 1 else port 0

6

OPC

Extended Imm Value = {000000, Imm Value}

PC

Fig. 6.38 JUMP instruction data-path

31
JREG RS Not Used

26 25 21 20 0

Fig. 6.39 Fixed-point Jump Register (JREG) instruction field format

282 6 Central Processing Unit

The Jump-And-Link (JAL) instruction is the third unconditional jump-type instruction, and it
requires two steps to operate. In the first step, the PC address, (PC + 2), following the JAL instruction
is stored in the register R31. In the second step, the current PC value is replaced with an immediate
value as shown below. Its field format is given in Fig. 6.41.

JAL Imm Value
(PC + 2) ! Reg[R31] followed by Immediate Value ! PC

The last unconditional jump-type instruction is the Jump-And-Link Register (JALR) instruction.
This instruction also requires a two-step process. In the first step, the PC address, (PC + 2), is stored

O
P
C

R
S

N
O
T

U
S
E
D

0

20
21

25
26

31

Instruction
Memory

Register
File

AIn DOut

clock

AIn DOut
32

5 32

Instruction
Register

RS Reg[RS]

32

+1

D Q

clock

OPC DEC
5

OPC
OPC = JREG selects
port 1 else port 0

01

PC

Fig. 6.40 JREG instruction data-path

31
JAL Immediate Value

26 25 0

Fig. 6.41 Fixed-point Jump-And-Link (JAL) instruction field format

6.1 Fixed-Point Unit 283

in the register R31. In the second step, the PC is loaded with the contents of RS as shown below. The
field format of this instruction is shown in Fig. 6.42.

JALR RS
(PC + 2) ! Reg[R31] followed by Reg[RS] ! PC

The Return instruction (RET) works with the JAL or JALR instruction. It retrieves the old program
address stored in the register R31, and replaces the current PC value with the contents of R31 in order
to go back to the original program location as described below. This instruction’s field format is given
in Fig. 6.43.

RET
Reg[R31] ! PC

6.2 Stack Pointer and Subroutines

Subroutines

A subroutine is a small program within the main program. Its structure is shown in Fig. 6.44. In this
figure, the JAL 10 instruction first stores the (PC + 2) = 5 in R31 (the instruction at PC = 4 must be
either a NOP or an unrelated instruction to the JAL instruction due to the Jump-type hazard), then

31

JALR RS Not Used
26 25 21 20 0

Fig. 6.42 Fixed-point Jump-And-Link Register (JALR) instruction field format

31
RET Not Used

26 25 0

Fig. 6.43 Fixed-point Return (RET) instruction field format

PC Main program

1 Instruction 1
2 Instruction 2
3 JAL 10
4 Instruction 3
5 Instruction 4
6 Instruction 5

PC Subroutine

10 Instruction 1
11 Instruction 2
12 Instruction 3
13 Instruction 4
14 RET

Fig. 6.44 Subroutine (function call) structure

284 6 Central Processing Unit

jumps to the instruction at PC = 10. Once there, the program continues to execute the subroutine until
it reaches the RET instruction. The RET instruction retrieves the return value in R31 and jumps back
to PC = 5 to resume the rest of the program.

Although storing the return value in R31 works in small programs which execute one subroutine at
a time, this strategy will not work in bigger programs which may contain numerous “nested” sub-
routines (one subroutine inside another). To solve this dilemma, programs use the stack architecture.

The Stack and the Stack Pointer

The stack is part of the data memory dedicated to store the return values of (nested) subroutines in a
user program. This process is shown in Fig. 6.44. The operation of the stack somewhat resembles to
First-In-Last-Out (FILO) memory.

Suppose there are three data values, A, B and C, which need to be pushed onto the data stack.
Assuming that the top of the stack is empty, PUSH A instruction stores data A in the stack with
nothing else on top of it as shown in the first column of Fig. 6.45.

PUSH B and PUSH C instructions further push data values B and C on top of data A as shown in
the second and third columns. POP instruction operates the opposite way. POP C instruction removes
data C from the top of the stack as shown in the fourth column. POP B and POP A instructions
remove the remaining data in the stack, leaving the stack empty.

Top of Stack (TOS)

AStack Empty

Push A

TOS
A

Push B

B
TOS

A

Push C

B

C
TOS

A

Pop C

B
TOS

A

Pop B

TOS

Pop A

Stack Empty

Fig. 6.45 Operation of PUSH and POP instructions

6.2 Stack Pointer and Subroutines 285

Once a number of data packets are stored in the stack by PUSH instructions, the removal of the
data by POP instructions has to follow the reverse order. In other words, issuing a POP A instruction
while the stack has data values A, B and C as in the third column in Fig. 6.45 cannot remove data A
from the bottom of the stack. Therefore, data C has to be removed first, data B second and data C third
in order to successfully empty the stack as mentioned above.

Data values are pushed and popped onto the data stack or from the stack by the Stack Pointer (SP),
which acts as an address pointer. R31 can be defined to store the stack address and named as the Stack
Pointer.

To activate the stack operation, a variety of PUSH and POP instructions can be added on top of the
integer-point instructions. These instructions either push or pop the contents of data memory or the
contents of RF as shown below:

PUSH f
mem [f] = Imm. Value → mem [SP] = mem {Reg [R31]}
SP + 1 → SP

PUSH RS
Reg [RS] → mem [SP] = mem {Reg [R31]}
SP + 1 → SP

POP f
SP 1 → SP
mem [SP] → mem [f]

POP RD
SP 1 → SP
mem [SP] → Reg [RD]

–

–

Here, RS and RD stand for a source and destination register addresses in the RF, and f corresponds
to an address in the data memory.

Example 6.1 Assume the contents of the data memory and the RF are shown in Fig. 6.46 before
PUSH 800 instruction.

700

-
-

800
801

950
951

608
.
.
.

R1

.

.

950 SP = R31SP

RFData memory

-
R00

Fig. 6.46 Contents of the data memory and the RF before PUSH 800 instruction

286 6 Central Processing Unit

After executing PUSH 800 instruction, and pushing the contents of the data memory at the
address, 800, onto the stack, the data memory and the RF become:

mem [800] = 700 ! mem [SP] = mem [950]
SP + 1 ! SP

This is shown in Fig. 6.47.

Example 6.2 Assume the contents of the data memory and the RF are shown in Fig. 6.48 before
PUSH R1 instruction.

After executing PUSH R1 instruction, and pushing the contents of R1 onto the stack, the data
memory and the RF become:

Reg[R1] = 180 ! mem [SP] = mem [950]
SP + 1 ! SP

This is shown in Fig. 6.49.

700

700
-

800
801

950
951

608
.
.
.

SP

RFData memory

R1

.

.

951 SP = R31

-

R00

Fig. 6.47 Contents of the data memory and the RF after PUSH 800 instruction

700

230
-

800
801

950
951

608
.
.
.

R1

.

.

950 SP = R31SP

RFData memory

180

R00

Fig. 6.48 Contents of the data memory and the RF before PUSH R1 instruction

6.2 Stack Pointer and Subroutines 287

Example 6.3 Assume the contents of the data memory and the RF are shown in Fig. 6.50 before
POP 800 instruction.

After executing POP 800 instruction, and popping the contents of the stack to a destination
address, 800, in the data memory, the data memory and the RF become:

SP – 1 = 951 – 1 = 950 ! SP then
mem [SP] = mem [950] = 180 ! mem [800]

This is shown in Fig. 6.51.

700

180
200

800
801

950
951

608
.
.
.

SP

RFData memory

R1

.

.

951 SP = R31

-

R00

Fig. 6.50 Contents of the data memory and the RF before POP 800 instruction

700

180
-

800
801

950
951

608
.
.
.

SP

RFData memory

R1

.

.

951 SP = R31

180

R00

Fig. 6.49 Contents of the data memory and the RF after PUSH R1 instruction

180

180
200

800
801

950
951

608
.
.
.

SP

RFData memory

R1

.

.

950 SP = R31

-
R00

Fig. 6.51 Contents of the data memory and the RF after POP 800 instruction

288 6 Central Processing Unit

Example 6.4 Assume the contents of the data memory and the RF are shown in Fig. 6.52 before
POP R1 instruction.

After executing POP R1 instruction, and popping the contents of the stack to a destination address,
R1, at the register file, the data memory and the RF become:

SP − 1 = 951 − 1 = 950 ! SP then
mem [SP] = mem [950] = 180 ! Reg [R1]

This is shown in Fig. 6.53.

Call and Return Instructions and the Use of Data Stack

As opposed to using different versions of the Jump-And-Link instructions discussed earlier, it may be
more prudent to replace them with a CALL instruction that includes a label or a register address as the
target value. The CALL instruction shown below eliminates the need for retracing and renumbering
the operand value for each JAL and JALR instruction every time an instruction is added to the
program or a modification is made. The CALL instruction functions the same as the JAL or JALR
instruction, and stores the return address in the data stack before branching to a target address. The
format of this instruction is shown below.

700

180
200

800
801

950
951

608
.
.
.

SP

RFData memory

R1

.

.

951 SP = R31

-
R00

Fig. 6.52 Contents of the data memory and the RF before POP R1 instruction

700

180
200

800
801

950
951

608
.
.
.

SP

RFData memory

R1

.

.

950 SP = R31

180
R00

Fig. 6.53 Contents of the data memory and the RF after POP R1 instruction

6.2 Stack Pointer and Subroutines 289

CALL <target>

The RET instruction acts the opposite way of the CALL instruction, and returns the program to its
original location after executing a subroutine call. The format of this instruction is shown below.

RET

The following describes the operation of the CALL and RET instructions that use the data stack.

CALL <label>
PC + 2 (return address) → mem [SP]
SP + 1 → SP
<label> → PC where SP = Reg [R31]

RET
SP 1 → SP
mem [SP] → PC where SP = Reg [R31]

–

Example 6.5 The program in Fig. 6.54 contains three subroutine calls which need to interact with
the stack. Determine the contents of the data memory and the RF at each step. Assume that SP is
initialized at the address 900.

Address Instruction

200 CALL sub-a
201 NOP
202 instruction 1
. .
. .

sub-a:
260 instruction 2
261 CALL sub-b
262 NOP
263 instruction 3
264 RET
. .
. .

sub-b:
300 instruction 4
301 CALL sub-c
302 NOP
303 instruction 5
304 RET
. .
. .

sub-c:
500 instruction 6
501 instruction 7
502 RET

Fig. 6.54 An arbitrary program with three subroutine calls

290 6 Central Processing Unit

Before CALL sub-a, the contents of the stack and R31 are shown in Fig. 6.55.

After CALL sub-a:

PC + 2 = 200 + 2 = 202 ! mem [SP] = mem [900] (return address is stored)
SP + 1 = 900 + 1 = 901 ! SP = Reg [R31]
sub-a = 260 ! PC

Thus, the contents of the stack and R31 become as in Fig. 6.56.

The program then executes instruction 2.
After CALL sub-b:

PC + 2 = 261 + 2 = 263 ! mem [SP] = mem [901] (return address is stored)
SP + 1 = 901 + 1 = 902 ! SP = Reg [R31]
sub-b = 300 ! PC

Thus, the contents of the stack and R31 become as in Fig. 6.57.

-900

900 R31

.

.

.

SP

Fig. 6.55 Contents of the stack before the first CALL instruction

202900

901 R31

.

.

.

SP-901
-902

Fig. 6.56 Contents of the stack after the first CALL instruction

6.2 Stack Pointer and Subroutines 291

The program then executes instruction 4.
After CALL sub-c:

PC + 2 = 301 + 2 = 303 ! mem [SP] = mem [902] (return address is stored)
SP + 1 = 902 + 1 = 903 ! SP = Reg [R31]
sub-c = 500 ! PC

Thus, the contents of the stack and R31 become as in Fig. 6.58.

The program then executes instructions 6 and 7.
After the first return, 502 RET:

SP − 1 = 903 − 1 = 902 ! SP = Reg [R31]
mem [SP] = mem [902] = 303 ! PC

Thus, the contents of the stack and R31 become as in Fig. 6.59.

202900

902 R31

.

.

.

SP
263901

-902

Fig. 6.57 Contents of the stack after the second CALL instruction

202900

903 R31

.

.

SP

263901
303902

-903

Fig. 6.58 Contents of the stack after the third CALL instruction

292 6 Central Processing Unit

The program then executes instruction 5.
After the second return, 304 RET:

SP − 1 = 902 − 1 = 901 ! SP = Reg [R31]
mem [SP] = mem [901] = 263 ! PC

Thus, the contents of the stack and R31 become as in Fig. 6.60.

The program then executes instruction 3.
After the third and final return, 264 RET:

SP − 1 = 901 − 1 = 900 ! SP = Reg [R31]
mem [SP] = mem [900] = 202 ! PC

Thus, the contents of the stack and R31 become as in Fig. 6.61.

202900

902 R31

.

.

SP
263901
303902

-903

Fig. 6.59 Contents of the stack after the first RET instruction

202900

901 R31

.

.

SP263901
303902

-903

Fig. 6.60 Contents of the stack after the second RET instruction

6.2 Stack Pointer and Subroutines 293

6.3 Fixed-Point Design Examples

Example 6.6 Design a fixed-point CPU data-path to execute an instruction set whose opcodes are
listed below:

ADD, LOAD, STORE and MOVE

The first step of the design process is to start with a single instruction in the instruction list and
build its data-path. Each new instruction brings new hardware requirements to the design, and they
are added incrementally to the existing data-path. Once the data-path reaches its final form so that it is
able to execute a set of instructions, the second step is to build the OPC decoders to control each
pipeline stage and guide the data.

In this design, we start with the data-path for the ADD instruction as shown in Fig. 6.7. The next
step is to introduce additional hardware for the LOAD instruction. To accommodate this requirement,
the first modification is to place a 2-1 MUX in the ALU stage to select between the immediate value
required by the LOAD instruction and Reg[RS2] required by the ADD instruction as shown in
Fig. 6.62. The second modification is to add a bypass path in the data memory stage so that the adder
result bypasses the data memory if the OPC is ADD, or it is used as an effective address for the data
memory if the OPC is LOAD. Finally, a third modification is to place a 2-1 MUX in the write-back
stage in order to select either the contents of the data memory for the LOAD instruction or the adder
output for the ADD instruction before writing the result back to the destination register, RD.

202900

900 R31

.

.

SP
263901
303902

-903

Fig. 6.61 Contents of the stack after the third RET instruction

294 6 Central Processing Unit

01516202125

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

SE
XT

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

R
eg

is
te

r
Fi

le

AI
n

D
O

ut

AI
n1

D
O

ut
1

AI
n3

D
In

cl
oc

k

AI
n

D
O

ut
32

5

16

5

32

16

32

32

32
32

32

32
5

In
st

ru
ct

io
n

R
eg

is
te

r

IR
[2

5:
20

] =
 R

S/
R

S1

Im
m

 V
al

ue

IR
[2

0:
16

] =
 R

D
/R

S2
32

5
5

D
Q

cl
oc

k

AI
n2

D
O

ut
2

5

IR
[1

5:
0]

IR
[1

5:
11

]

1 0

O
PC

 =
 A

D
D

se

le
ct

s
po

rt1

el
se

 p
or

t 0

0

1
0

O
PC

 =
 A

D
D

 s
el

ec
ts

 p
or

t1
 e

ls
e

po
rt

0

32 32

5

32

O P C
2631

D
Q

cl
oc

k

32
1

O
PC

 D
EC

D
Q

cl
oc

k

6

O
PC

O
PC

 =
 A

D
D

 a
nd

 L
O

AD

se
le

ct
 th

e
ad

de
r i

n
th

e
AL

U
D

Q

cl
oc

k

D
Q

32

PC

+1

D
Q

cl
oc

k

O
PC

 =
 A

D
D

 s
el

ec
t p

or
t 1

el

se
 p

or
t 0

2

Fi
g
.
6.
62

C
PU

da
ta
-p
at
h
w
ith

A
D
D

an
d
L
O
A
D

in
st
ru
ct
io
ns

(W
E
=
1
to

th
e
R
F
an
d
D
at
a
M
em

or
y
ar
e
om

itt
ed

fo
r
cl
ar
ity

)

6.3 Fixed-Point Design Examples 295

When the STORE instruction is introduced as a third instruction, it prompts a change in the
calculation of the data memory address from {Reg[RS] + Imm Value} to {Reg[RD] + Imm Value}.
This change requires a secondary 2-1 MUX to be placed in the ALU stage to guide the effective
memory address to the AIn port of the data memory, and an additional path to transfer Reg[RS] to the
DIn port of the data memory as shown in Fig. 6.63. The modifications for the STORE instruction,
however, should not alter the existing data-paths for the ADD and LOAD instructions. If the ADD
and LOAD instruction data-paths are individually traced after adding the hardware to support the
STORE instruction, both Reg[RS1] + Reg[RS2] and the memory contents at {Reg[RS] + Imm
Value} should still be available to write back to a destination register in the RF.

Introducing the MOVE instruction requires another write-back path to be integrated with the three
existing write-back paths in the architecture. Therefore, a 3-1 MUX needs to placed in the write-back
stage to pass the contents of RS to the RF as shown in Fig. 6.64. While the MOVE and the LOAD
instructions use port 0 and port 1 of the 3-1 MUX, respectively, the rest of the instructions use port 2
for the write-back path.

296 6 Central Processing Unit

01516202125

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

SE
XT

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

R
eg

is
te

r
Fi

le

AI
n

D
O

ut

AI
n1

D
O

ut
1

AI
n3

D
In

cl
oc

k

AI
n

D
O

ut
32

5

16

5

32

16

32

32

32
32

32

32
5

In
st

ru
ct

io
n

R
eg

is
te

r

IR
[2

5:
20

] =
 R

S/
R

S1

Im
m

 V
al

ue

IR
[2

0:
16

] =
 R

D
/R

S2
32

5
5

D
Q

cl
oc

k

D
Q

cl
oc

k

32
32

D
In

AI
n2

D
O

ut
2

5

IR
[1

5:
0]

IR
[1

5:
11

]

1 0 1 0

1

1
0

32 32 32

5

32

O P C
2631

D
Q

cl
oc

k

32
0

O
PC

 D
EC

6

O
PC

O
PC

 =
 L

O
AD

32

PC

+1

D
Q

cl
oc

k

O
PC

 =
 A

D
D

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

W
E

O
PC

 =
 S

TO
R

E

O
PC

 =
 L

O
AD

 o
r A

D
D

 s
el

ec
t

po
rt

1
el

se
 p

or
t 0

O
PC

 =
 L

O
AD

 s
el

ec
ts

po

rt
1

el
se

 p
or

t 0

O
PC

 =
 A

D
D

 s
el

ec
ts

 p
or

t 1
 e

ls
e

po
rt

0

W
rit

e-
Ba

ck
St

ag
e

AL
U

St
ag

e
R

F
St

ag
e

In
st

ru
ct

io
n

M
em

or
y

St
ag

e
D

at
a

M
em

or
y

St
ag

e

O
PC

 =
 A

D
D

 s
el

ec
ts

po

rt
1

el
se

 p
or

t 0

O
PC

 =
 L

O
AD

, S
TO

R
E,

AD

D
 s

el
ec

t t
he

 a
dd

er

Fi
g
.
6.
63

C
PU

da
ta
-p
at
h
w
ith

A
D
D
,
L
O
A
D

an
d
ST

O
R
E
in
st
ru
ct
io
ns

(W
E
=
1
to

th
e
R
F
an
d
D
at
a
M
em

or
y
ar
e
om

itt
ed

fo
r
cl
ar
ity

)

6.3 Fixed-Point Design Examples 297

01516202125

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

SE
XT

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

R
eg

is
te

r
Fi

le

AI
n

D
O

ut

AI
n1

D
O

ut
1

AI
n3

D
In

cl
oc

k

AI
n

D
O

ut
32

5

16

5

32

16

32

32

32
32

32

32
5

In
st

ru
ct

io
n

R
eg

is
te

r

IR
[2

5:
20

] =
 R

S/
R

S1
R

eg
[R

S]

Im
m

 V
al

ue

IR
[2

0:
16

] =
 R

D
/R

S2
32

5
5

D
Q

cl
oc

k

R
eg

[R
D

]

D
Q

cl
oc

k

32
32

D
In

D
Q

cl
oc

k

O
PC

 =
 M

O
VE

se

le
ct

s
po

rt
0

32

AI
n2

D
O

ut
2

5

IR
[1

5:
0]

IR
[1

5:
11

]

1 0 1 0

10

1
0

O
PC

 =
 A

D
D

 s
el

ec
ts

 p
or

t 1

32 32 32

5

32

O P C
2631

D
Q

cl
oc

k

32
2

O
PC

 D
EC

6

O
PC

32

PC

+1

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

O
PC

 =
 A

D
D

O
PC

 =
 L

O
AD

O
PC

 =
 M

O
VE

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

O
PC

 =
 S

TO
R

E

W
E

LO
AD

 o
r A

D
D

 s
el

ec
t p

or
t 1

el

se
 p

or
t 0

 is
 s

el
ec

te
d

O
PC

 =
 A

D
D

 s
el

ec
ts

po

rt
1

el
se

 p
or

t 0

W
rit

e-
Ba

ck
St

ag
e

AL
U

St
ag

e
R

F
St

ag
e

In
st

ru
ct

io
n

M
em

or
y

St
ag

e
D

at
a

M
em

or
y

St
ag

e

O
PC

 =
 L

O
AD

, S
TO

R
E

an
d

AD
D

 s
el

ec
t t

he

ad
de

r

O
PC

 =
 L

O
AD

se

le
ct

s
po

rt
1

Fi
g
.
6.
64

C
PU

da
ta
-p
at
h
w
ith

A
D
D
,
L
O
A
D
,
ST

O
R
E
an
d
M
O
V
E
in
st
ru
ct
io
ns

(W
E
=
1
to

th
e
R
F
an
d
D
at
a
M
em

or
y
ar
e
om

itt
ed

fo
r
cl
ar
ity

)

298 6 Central Processing Unit

The controller for each stage of the data-path is OPC-dependent and completely combinational as
shown in Fig. 6.65. Since the OPC propagates from one stage to another with the data, it can
effectively be used as a control input to guide data and to activate the required hardware in each stage.
Four instructions need only two input bits stemming from the instruction register, IR[27:26], to
design the OPC decoder in Fig. 6.65. The more significant four OPC bits, IR[31:28], are considered
zero for an instruction set of four.

To generate the ADD selector input, both IR[27] and IR[26] are complemented and then ANDed
according to the table in Fig. 6.65. The selector inputs for LOAD, STORE and MOVE instructions
are also generated using the same OPC table.

The STORE selector input is connected to Write Enable (WE) bit for the data memory since the
STORE instruction is the only instruction that writes data to the data memory. All other instructions

IR[27] IR[26]OPC

ADD
LOAD
STORE
MOVE

0 0
0 1
1 0
1 1

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

OPC = ADD

OPC = STORE

OPC = MOVE

IR[27]

IR[26]

RF Stage

ALU
Stage

Data Memory
Stage

Write-Back
Stage

OPC = LOAD
D Q

clock

D Q

clock

D Q

clock

D Q

clock

OPC = MOVE
selects port 0 and
produces WE =1 for RF

OPC = LOAD
selects port 1 and
produces WE = 1 for RF

OPC = STORE produces WE = 1
for the Data Memory

OPC = LOAD,
STORE and
ADD select
the adder

D Q

clock

D Q

clock

OPC = ADD
produces WE = 1 for RF

Fig. 6.65 OPC table for ADD, LOAD, STORE and MOVE instructions and the control circuitry

6.3 Fixed-Point Design Examples 299

write back the results to the RF, and therefore the WE input to the RF should be enabled. However,
this signal is not shown in Figs. 6.64 or 6.65 to avoid complexity.

Example 6.7 Design a fixed-point CPU data-path to execute an instruction set whose opcodes are
listed below:

ADD, LOAD, STORE, MOVE, SLI, SRI, JUMP and BRA

The design methodology used in this example is the same as in the previous example. First, as
additional instructions are introduced to the design, new hardware for each instruction is incre-
mentally added to the existing data-path. Second, an OPC truth table should be constructed from the
instruction set. Third, controller outputs should be generated from the OPC truth table to guide the
data in each CPU stage.

We start with the ADD instruction data-path given in Fig. 6.7 to form the base platform. The SLI
and SRI instructions are implemented next. Both of these instructions require left and right linear
shifters in the ALU stage where each shifter can individually be selected by the SLI or SRI inputs as
shown in Fig. 6.66. These instructions also require a bypass path in the RF stage that connects IR
[15:0] to the ALU input as explained earlier.

When the LOAD instruction is introduced as the fourth instruction, the existing 32-bit adder in the
ALU is used to calculate the effective address for the data memory. The 2-1 MUX in the write-back
stage is replaced by a 3-1 MUX to be able to write the contents of the data memory back to the RF.

The STORE instruction is the fifth instruction added to this design. This instruction requires two
separate paths to calculate the data memory address and to write the contents of RS to the data
memory. The STORE instruction also necessitates a secondary 2-1 MUX in the ALU stage so that an
immediate value is added to the contents of RD instead of RS.

The MOVE instruction is the sixth instruction which requires a continuous bypass path to the RF,
bypassing both the ALU and the data memory. This path passes through port 0 of the 3-1 MUX in the
write-back stage to transfer the contents of RS back to the RF.

The BRA instruction is the seventh instruction in this set and requires a path to compare Reg[RS]
with RS Value, IR[20:16]. The bitwise comparison is done by 32 two-input XNOR gates followed by
a single 32-input AND gate, and produces a single bit that selects between (PC + Imm Value) and
(PC + 2). The selected target address is loaded to the PC to redirect the program to a different PC
address. This instruction also requires a special 32-bit adder in the RF stage to calculate (PC + Imm
Value) as shown earlier.

The JUMP instruction simply forwards the jump value, IR[25:0], extended to 32 bits to the PC. It
requires a second 2-1 MUX that decides between (PC + 2) and the jump value before loading the
result to the PC. The ALU adder is selected by the ADD, LOAD and STORE instructions. However,
this selection is not shown in Fig. 6.66 to avoid complexity.

Once the data-path for all eight instructions is complete, the OPC truth table in Fig. 6.67 is formed.
Since there are eight instructions in this set, only IR[28:26] are used for designing the OPC decoder.
The upper three bits of the OPC field become equal to zero.

300 6 Central Processing Unit

O P C

015162021252631

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

S
E

X
T

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

R
eg

is
te

r
Fi

le

A
In

D
O

ut

A
In

1
D

O
ut

1

A
In

3
D

In

cl
oc

k

A
In

D
O

ut
32

5

16

5

32

16

32

32

32

32
32

32
5

In
st

ru
ct

io
n

R
eg

is
te

r

R
S

/R
S

1
R

eg
[R

S
]

Im
m

 V
al

ue

R
D

/R
S

2

5
5

D
Q

cl
oc

k

32

R
eg

[R
D

]

D
Q

cl
oc

k

32
32

D
In

O
P

C
 =

 L
O

A
D

 o
r A

D
D

 o
r S

LI
 o

r S
R

I s
el

ec
ts

 p
or

t 1

A
In

2
D

O
ut

2

5

IR
[1

5:
0]

IR
[2

5:
0]

IR
[1

5:
11

]

00
00

0026

6

S
H

IF
T

1 0 1 0

O
P

C
 =

 A
D

D

se
le

ct
s

po
rt

1

10

1
0

O
P

C
 =

 S
LI

 o
r S

R
I s

el
ec

ts
 p

or
t 1

S
LI

D
Q

cl
oc

k

R
S

 V
al

ue

10

10

OPC = JUMP selects port 1

32

32 32 32

32

32

5

P
C

32

P
C

 +
 Im

m
 V

al
ue

32

32

S
E

X
T

5
27

32

S
R

I
D

Q

cl
oc

k

32

32

D
Q

cl
oc

k

O
P

C
 =

 M
O

V
E

 s
el

ec
ts

 p
or

t 0

32

10

D
Q

cl
oc

k

32
2

O
P

C
 =

 L
O

A
D

 s
el

ec
ts

 p
or

t 1

B
R

A

32

+1

D
Q

cl
oc

k

P
C

O
P

C
 D

E
C

6

O
P

C
D

Q

cl
oc

k

D
Q

cl
oc

k

D
Q

cl
oc

k

A
D

D
, L

O
A

D
S

TO
R

E
, M

O
V

E
B

R
A

, J
U

M
P

S
LI

, S
R

I
8

W
E

O
P

C
 =

 S
TO

R
E

ac

tiv
at

es
 W

E

6
8

A
D

D
, L

O
A

D
S

TO
R

E
, M

O
V

E
S

LI
, S

R
I

LO
A

D
, S

TO
R

E
M

O
V

E

B
R

A
 s

el
ec

ts
 p

or
t 1

O
P

C
 =

 A
D

D
 s

el
ec

ts
 p

or
t 1

Fi
g
.
6.
66

C
PU

da
ta
-p
at
h
w
ith

A
D
D
,
L
O
A
D
,
ST

O
R
E
,
M
O
V
E
,
SL

I,
SR

I,
JU

M
P
an
d
B
R
A

(W
E
=
1
fo
r
R
F
an
d
D
at
a
M
em

or
y
ar
e
om

itt
ed

fo
r
cl
ar
ity

)

6.3 Fixed-Point Design Examples 301

To generate the ADD selector input (used in the RF and ALU stages), the first row of the OPC
table is implemented. This requires IR[28], IR[27] and IR[26] to be complemented and ANDed.
The LOAD, STORE, MOVE, SLI, SRI, JUMP and BRA selector inputs are also generated similarly
using the same OPC table. The ALU stage requires the ADD, LOAD, SLI and SRI selector inputs to
be ORed to select Reg[RS] for the adder input. Similarly, SLI and SRI inputs are ORed to select the
shifter outputs. The STORE selector input is connected to the WE input of the data memory since
STORE instruction is the only instruction in the instruction set that writes data to the data memory.
The WE for the RF is omitted to avoid complexity.

D Q

clock

D Q

clock

D Q

clock

D Q

clock

OPC = ADD

OPC[28]

OPC[27]

D Q

clock

D Q

clock

OPC[26]

D Q

clock

D Q

clock

A
D

D

D Q

clock

LO
A

D

S
LI

S
R

I

OPC = ADD or
LOAD or SLI or SRI

OPC = SLI or SRI

IR[27] IR[26]OPC

ADD
LOAD
STORE
MOVE

0 0
0 0
0 1
0 1

0
1
0
1

IR[28]

SLI
SRI
JUMP
BRA

1 0
1 0
1 1
1 1

0
1
0
1

RF Stage

ALU
Stage

Data Memory
Stage

Write-Back
Stage

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

OPC = LOAD

OPC = STORE

OPC = MOVE

OPC = SLI

OPC = SRI

OPC = JUMP

OPC = BRA

OPC = LOAD selects port 1
and produces WE = 1 for RF

OPC = MOVE selects port 0
and produces WE = 1 for RF

OPC = STORE
produces WE = 1
for Data Memory

D Q

clock

OPC = ADD produces WE = 1
for RF

D Q

clock

D Q

clock

OPC = SLI produces WE = 1 for RF

D Q

clock

D Q

clock

OPC = SRI produces WE = 1 for RF

Fig. 6.67 OPC table for ADD, LOAD, STORE, MOVE, SLI, SRI, JUMP and BRA and the control circuitry

302 6 Central Processing Unit

6.4 Fixed-Point Hazards

Structural Hazards

When instructions are fetched from the instruction memory and introduced to the CPU pipeline, they
follow each other by one clock cycle as shown in Fig. 6.68. In this figure, when the first instruction
transitions to the RF stage in cycle 2, the second instruction starts its instruction fetch cycle. In cycle
3, the first instruction enters the ALU stage, the second the RF stage, and the third the instruction
fetch stage.

The fourth cycle in Fig. 6.68 should be viewed with a particular importance because it creates a
structural hazard. In this cycle, the first instruction accesses the data memory while the fourth
instruction is fetched from the instruction memory. If there is only one memory block with a single
port (to read instructions and to store data), this configuration will create a structural hazard because
the first and the fourth instructions will try to access the memory in the same cycle. This is the
primary reason to have separate instruction and data memories in a RISC CPU.

Cycles 5 and 6 create another type of structural hazard. In both of these cycles, data has to be read
from the RF and written to the RF in the same cycle. If the data read from the RF depends on the data
written to the RF, this condition will create a hazard because the write needs to take place before the
read in order to produce correct results. Therefore, RF should be designed in such a way that all the
writes have to take place at the high phase of the clock and all the reads at the low phase.

Data Hazards

Data hazards create a situation where the required data is unavailable when it is needed by an
instruction. There are four common data hazards in this architecture. The examples below illustrate
each data hazard type and propose solutions in the CPU architecture to avoid them.

The first type of data hazard is shown in the example in Fig. 6.69. In this example, the ADD
instruction adds the contents of R1 and R2, and then writes the result to a destination register, RD.

INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

INSTRUCTION 4

INSTRUCTION 5

CYCLES

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

1 2 3 4 5 6 7 8 9

Fig. 6.68 Structural hazards in a five-stage CPU

6.4 Fixed-Point Hazards 303

The second, third and fourth instructions all require the contents of RD to proceed. The only
hazard-free case here is the data exchange between the ADD and OR instructions since the RF
permits writes during the high phase of the clock and reads during the low phase. However, the SUB
and AND instructions need to fetch the contents of RD before they become available. Therefore,
executing any of these instructions without any protection in the CPU pipeline would produce two
separate hazards. In order to circumvent this problem, a technique called “data-forwarding” is applied
to the CPU pipeline. This method requires a special data route in the CPU data-path so that partially
processed data is immediately transferred from a particular pipeline stage to the next when it is
needed. Figure 6.70 shows the two forwarding paths to remove the data hazards associated with the
SUB and AND instructions. The first path transfers data from the ALU output to the ALU input when
the SUB instruction needs the ADD instruction’s ALU result to proceed. The second path transfers
data from the output of the data memory to the ALU input when the AND instruction needs the ADD
instruction’s ALU output.

Figure 6.71 shows the first forwarding path from the ALU output to the ALU input to remove the
data hazard caused by the ADD-SUB instruction pair in Fig. 6.69. In this figure, the source RF
address of the SUB instruction is compared with the destination RF address of the ADD instruction. If
there is a match, then the ALU output to ALU input forwarding path(s) is activated by selecting port 1
of the 2-1 MUX at the input of the ALU.

The second forwarding path shown in Fig. 6.72 feeds back the output of the data memory stage to
the input of the ALU and removes the data hazard caused by the ADD-AND instruction pair in
Fig. 6.69. Again, the source RF address of the AND instruction is compared against the destination
RF address of the ADD instruction. The path that connects the data memory output at the end of the
bypass path to the ALU input is activated by selecting port 1 of the 2-1 MUX if there is a match.

I R A D W

I R A D W

I R A D W

I R A D W

ADD

SUB

AND

OR

R1, R2, RD

, R3

, R5

, R7

, R4

, R6

, R8

RD

RD

RD

Fig. 6.69 Data hazard: a register-type instruction followed by other register-type instruction(s)

I R A D W

I R A D W

I R A D W

I R A D W

ADD

SUB

AND

OR

R1, R2, RD

, R3

, R5

, R7

, R4

, R6

, R8

RD

RD

RD

Fig. 6.70 Forwarding paths to remove the data hazards caused by a register-type instruction followed by other
register-type instruction(s)

304 6 Central Processing Unit

D Q

clock

D Q

clock

D Q

clock

Data
Memory

AIn DOut

32

32 32 32 32

DIn

D Q

clock

1

0

1

0

1

0

A
L
U

32

32

32

D Q

clock

D Q

clock

32

D Q

clock

32

1

0

1

0

select port 1
for ALU to ALU path 1

select port 1
for ALU to ALU path 2

Fig. 6.71 ALU output to ALU input forwarding path (ALU to ALU path 1 or path 2 depends on if the forwarded data
needs to replace Reg[RS1] or Reg[RS2], respectively)

D Q

clock

D Q

clock

D Q

clock

Data
Memory

AIn DOut

32

32 32 32 32

DIn

D Q

clock

1

0

1

0

1

0

A
L
U

32

32

32

D Q

clock

D Q

clock

32

D Q

clock

32

1

0

1

0

select port 1
for Dmem Bypass
to ALU path 1

select port 1
for Dmem Bypass
to ALU path 2

Fig. 6.72 Data memory bypass output to ALU input forwarding path (Data memory bypass to ALU path 1 or path 2
depends on if the forwarded data needs to replace Reg[RS1] or Reg[RS2], respectively)

6.4 Fixed-Point Hazards 305

Another type of data hazard is shown in Fig. 6.73. This hazard originates from an instruction that
requires the contents of the data memory in the next clock cycle. A forwarding path that connects the
output of the data memory to the input of the ALU may not be sufficient to remove this data hazard as
shown in Fig. 6.74. However, if a No Operation (NOP) instruction is inserted between the LOAD and
ADD instructions, the one cycle delay created by this instruction can avoid this hazard as shown in
Fig. 6.75. With the NOP instruction in place, the LOAD instruction can now forward the contents of
the data memory as a source operand for the ADD instruction as it enters the ALU stage.

Figure 6.76 shows the hardware implementation to remove the particular data hazard in Fig. 6.73.
The data memory output to the ALU input path is activated by implementing a logic block that
compares the destination RF address of the LOAD instruction with the source RF address of the ADD
instruction, and enables port 1 of the 2-1 MUX.

LOAD R1,

, R2, R3

, Imm

ADD RD

RD I R A D W

RI DA W

Fig. 6.73 Data hazard created by the LOAD instruction followed by a register-type instruction

LOAD R1,

, R2, R3

, Imm

ADD RD

RD I R A D

RI WA D

W

Fig. 6.74 A forwarding path to remove the data hazard caused by the LOAD instruction followed by a register-type
instruction

NOP

LOAD R1,

, R2, R3

, Imm

ADD RD

RD I R A D W

I R A D W

I R A D W

Fig. 6.75 A forwarding path and a NOP instruction to remove the data hazard caused by the LOAD instruction
followed by a register-type instruction

306 6 Central Processing Unit

The final data hazard shown in Fig. 6.77 stems from a LOAD instruction followed by a STORE
instruction. Here, the destination RF address of the LOAD instruction is the same as the source RF
address of the STORE instruction. This results in a situation where the data written back to the RF has
to be stored in the data memory within the same clock cycle. A forwarding path that connects the
output of the data memory to the input of the data memory removes this hazard as shown in
Figs. 6.78 and 6.79. Once again, we need a comparator that compares the contents of the destination
RF address of the LOAD instruction against the source RF address of the STORE instruction to
activate this forwarding path.

LOAD R1,

, R2, Imm2

, Imm1

STORE RD

RD I R A D

DI WAR

W

Fig. 6.77 Data hazard: a STORE instruction followed by a register-type instruction

D Q

clock

D Q

clock

D Q

clock

Data
Memory

AIn DOut

32

32 32 32 32

DIn

D Q

clock

1

0

1

0

1

0

A
L
U

32

32

32

D Q

clock

D Q

clock

32

D Q

clock

32

1

0

1

0

select port 1
for Dmem to ALU path 1

select port 1
for Dmem to ALU path 2

Fig. 6.76 Data memory output to ALU input forwarding path (Data memory output to ALU path 1 or path 2 depends
on if the forwarded data needs to replace Reg[RS1] or Reg[RS2], respectively)

LOAD R1,

, R2, Imm2

, Imm1

STORE RD

RD I R A D

I WAR

W

D

Fig. 6.78 A forwarding path to remove the data hazard caused by a STORE instruction followed by a register-type
instruction

6.4 Fixed-Point Hazards 307

Figure 6.80 shows the combination of all four forwarding paths to remove the common data
hazards from the CPU pipeline as discussed above. The selector inputs in this figure originate from
individual comparators that compare the destination RF address of an instruction with the source RF
address of the subsequent instruction.

D Q

clock

D Q

clock

D Q

clock

Data
Memory

AIn DOut

32

32 32 32 32

DIn

D Q

clock

1

0

1

0

1

0

A
L
U

32

32

32

D Q

clock

D Q

clock

32

1 0

D Q

clock

32

select port 1 for
Dmem to Dmem path

Fig. 6.79 Data memory output to data memory input forwarding path

D Q

clock

D Q

clock

D Q

clock

Data
Memory

AIn DOut

32

32 32 32 32

DIn

D Q

clock

1

0

1

0

1

0

A
L
U

32

32

32

D Q

clock

D Q

clock

32

10

D Q

clock

32

select port 1 for
Dmem to Dmem path

select port 1
for Dmem Bypass to ALU path 1

3

0

select port 2
for Dmem to ALU path 1

select port 0
for ALU to ALU path 1

1
2
3

3
2
1
0

select port 1
for Dmem Bypass to ALU path 2
select port 2
for Dmem to ALU path 2

select port 0
for ALU to ALU path 2

3

Fig. 6.80 CPU schematic containing all data hazard corrections

308 6 Central Processing Unit

Program Control Hazards

Branch and jump instructions also create hazards. In the program shown in Fig. 6.81, the earliest time
for the BRA instruction to produce a branch target address is when this instruction is at the RF stage.
Therefore, the instruction following the BRA instruction cannot be fetched from the instruction
memory in the next clock cycle but it requires one cycle delay. This delay can be implemented either
by inserting an unrelated instruction to the branch, or using a NOP instruction following the branch
instruction (branch delay slot) as shown in Fig. 6.82.

Similar to the BRA instruction, the jump-type (JUMP, JREG, JAL and JALR) instructions also
create control hazards since they can only define the address of the next instruction when they are in
the RF stage as shown in Fig. 6.83. Inserting a NOP instruction or an unrelated instruction following
the jump-type instruction (jump delay slot) removes the pending control hazard as shown in
Fig. 6.84.

BRA R1,

R3,

Imm

ADD

I R A D

I WAR

W

D

RSValue,

R2, R4

Fig. 6.81 Control hazard: a BRA instruction

NOP

Unrelated instruction

Delay slot

BRA R1,

R3,

Imm

ADD

I R A D

I WAR

W

D

RSValue,

R2, R4

I WDR A

BRA R1,

R3,

Imm

ADD

I R A D WRSValue,

R2, R4

I WDR A

BRA R1,

R3,

Imm

ADD

I R A D WRSValue,

R2, R4

I WDR A

I WAR D

I WAR D

Fig. 6.82 Removal of BRA control-hazard using an unrelated instruction in the program or a NOP instruction

6.4 Fixed-Point Hazards 309

Even though the jump-type and branch-type instructions update the contents of the PC, the branch
instruction requires a comparator and a special adder in the RF stage to calculate the target address.

Example 6.8 Construct an instruction chart and write a small program according to the flow chart in
Fig. 6.85. Show how to handle data and control hazards for a five-stage RISC CPU using forwarding
paths. Use NOP instruction(s) when forwarding paths become insufficient to remove a particular
hazard.

JREG R1

R3,

Imm

ADD R2, R4

JUMP I R A D W

I WDR A

R3,ADD R2, R4

I R A D W

I WDR A

Fig. 6.83 Control hazard: JUMP and JREG instructions

NOP

Unrelated instruction

Delay slot

ImmJUMP

R3,ADD R2, R4

I R A D W

I R A D W

I R A D W

ImmJUMP

R3,ADD R2, R4

I R A D W

I R A D W

I R A D W

ImmJUMP

R3,ADD R2, R4

I R A D W

I R A D W

I R A D W

Fig. 6.84 Removal of JUMP and JREG control-hazards using an unrelated instruction in the program or a NOP
instruction

310 6 Central Processing Unit

Figure 6.85 describes the flow chart of a small program and shows the contents of the instruction
memory before this program is executed. Data A in the flow chart is read from the memory address
100. Data Y, Z and W are stored at the memory addresses 200, 201 and 202, respectively.

After Y is stored, the flow chart comes to a decision box where the value of A is compared against
one. At this point, the program splits into two where each branch performs calculations to determine
the values of Z and W before they are stored in the data memory.

Now, let us convert this flow chart into a program. The instruction, LOAD R0, R1, 100, in Fig. 6.86
adds the contents of R0, which contains only zero, to 100 to calculate the data memory address. It then
fetches data A from the data memory address, 100, and writes it to the RF address, R1.

The SLI R1, R2, 1 instruction shifts the contents of R1 to the left by one digit to produce 2A, and
writes the result, Y = 2A, to R2. The ADD R1, R2, R3 and SRI R1, R4, 1 instructions compute the
values 3A and 0.5A, respectively. Both values will be used later in the program.

The BRA R1, 1, 5 instruction compares the contents of R1, which currently holds A, with the RS
Value = 1. If the comparison is successful, the program branches off to fetch the next instruction at
the instruction memory location, PC = 4 + 5 = 9, to execute the SUBI R3, R5, 1 that computes
Z = 3A – 1. Otherwise, the program fetches the next instruction, ADDI R3, R5, 1 at PC = 4 + 2 = 6
to compute Z = 3A + 1.

READ A

Y = 2A

STORE Y

Z = 3A - 1

W = 0.5A + 1

Z = 3A + 1

W = 0.5A - 1

STORE Z, W

A : 1

A = 1

ELSE

A

Y

Z

W

LOADED

TO BE
STORED

100

200

201

202

Data Memory

Fig. 6.85 Flow-chart of an example program and data memory contents

6.4 Fixed-Point Hazards 311

The STORE R2, R0, 200 instruction is an unrelated instruction to the branch. Therefore, it is used
in the branch delay slot following the branch instruction. This instruction stores the contents of R2,
which contains 2A, to the data memory location 200 in Fig. 6.85.

The JUMP 11 instruction at PC = 8 changes the value of the PC with an immediate value of 11.
Therefore, the program skips both the SUBI and ADDI instructions following the JUMP instruction
to execute the STORE R5, R0, 201 and STORE R6, R0, 202 instructions. As a result, the values of Z
and W are stored at the data memory addresses 201 and 202, respectively, regardless of the branch
outcome.

Figure 6.87 shows the instruction chart of the program in Fig. 6.86. The LOAD R0, R1, 100
instruction causes a data hazard as explained in Fig. 6.73, but it is corrected by a combination of a
NOP instruction and a forwarding path from the data memory stage (D) of the LOAD instruction to
the ALU stage (A) of the SLI instruction.

The ADD R1, R2, R3 instruction also requires data forwarding from the A stage of the SLI
instruction to the A stage of the ADD instruction.

The target address in the branch instruction has changed from (PC+5) to (PC+2) according to the
new branch instruction, BRA R1, 1, 2, in Fig. 6.87 which computes the branch target while it is in the
RF (R) stage. An instruction unrelated to the branch instruction, such as STORE R2, R0, 200 is used
in the branch delay slot so that the CPU has enough time to fetch ADDI R3, R5, 1 if the branch
comparison is unsuccessful or SUBI R3, R5, 1 if the comparison is successful.

0 LOAD R0, R1, 100 A Reg [R1]

1 SLI R1, R2, 1 2A Reg [R2]

2 ADD R1, R2, R3 3A Reg [R3]

3 SRI R1, R4, 1 0.5A Reg [R4]

4 BRA R1, 1, 5 If A = 1 then PC + 5 PC

5 STORE R2, R0, 200 2A mem [200]

6 ADDI R3, R5, 1 Z = 3A + 1 Reg [R5]

7 SUBI R4, R6, 1 W = 0.5A - 1 Reg [R6]

8 JUMP 11 11 PC

9 SUBI R3, R5, 1 Z = 3A - 1 Reg [R5]

10 ADDI R4, R6, 1 W = 0.5A + 1 Reg [R6]

11 STORE R5, R0, 201 Z mem [201]

12 STORE R6, R0, 202 W mem [202]

PC Instruction Comments

Fig. 6.86 Instruction memory contents of the example and explanation of each instruction

312 6 Central Processing Unit

From this point forward, the program follows two separate instruction charts. The first chart shows
the case where the branch comparison is unsuccessful, and contains two forwarding paths required by
two STORE instructions. However, this section does not contain any JUMP instruction because the
program has two separate copies after the branch instruction. The second chart follows the case where
the branch comparison is successful, and also contains two forwarding paths required by the STORE
instructions. Both of these forwarding paths direct data from the D stage of the immediate ALU
instructions to the A stage of the STORE instructions to avoid data hazards.

The entire program takes 15 clock cycles to complete whether the branch is successful or
unsuccessful.

LOAD R0, R1, 100

SLI R1, R2, 1

ADD R1, R2, R3

SRI R1, R4, 1

BRA R1, 1, 2

STORE R2, R0, 200

ADDI R3, R5, 1

SUBI R4, R6, 1

SUBI R3, R5, 1

ADDI R4, R6, 1

STORE R5, R0, 201

STORE R6, R0, 202

NOP

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

STORE R5, R0, 201

STORE R6, R0, 202

I R A D W

I R A D W

I R A D W

Delay Slot

Branch TAKEN

Branch NOT TAKEN

I R A D W

I R A D W

I R A D W

I R A D W

PC Instruction

0

1

2

3

4

5

6

7

8

9

10

7

8

9

10

Instruction Chart

Fig. 6.87 Five-stage CPU instructional chart

6.4 Fixed-Point Hazards 313

Can the program in Fig. 6.86 be executed more efficiently in a shorter amount of time and with
fewer forwarding paths if the number of pipeline stages is reduced? To answer this question, two
additional CPU pipelines are implemented: one with four pipeline stages and the other with three.

Example 6.9 Construct an instruction chart for the same flow chart in Fig. 6.85. This time, show
how to handle data and control hazards for a four-stage RISC CPU using forwarding paths. Use NOP
instruction(s) when forwarding paths become insufficient to remove a particular hazard.

Figure 6.88 shows a four-stage RISC CPU where the ALU and data memory stages are combined
into a single stage.

If the instructional chart is reconstructed to execute the program in Fig. 6.86 in a four-stage CPU,
it will produce a chart in Fig. 6.89.

The first observation in this figure is that there are fewer NOP instructions. For example, the NOP
instruction that follows LOAD R0, R1, 100 is eliminated because the memory contents become
available during the combined ALU/Data Memory stage (AD). Also, the forwarding paths from the
immediate ALU to the STORE instructions in Fig. 6.87 are eliminated because the write-back stage
(W) of the immediate ALU instruction lines up with the RF access stage (R) of the STORE
instruction in this new CPU pipeline.

PC Instruction
Memory

Register
File

OPC Dec

A
L
U

Data
Memory

Instruction Memory Stage RF Stage ALU/Data Memory Stage Write-Back Stage

1st flip-flop
boundary

2nd flip-flop
boundary

3rd flip-flop
boundary

Fig. 6.88 Four-stage fixed-point CPU data-path

314 6 Central Processing Unit

Branch-related hazard still exists in the chart in Fig. 6.89, and it is removed by inserting STORE
R2, R0, 200 instruction in the branch delay slot.

The new CPU pipeline executes the program in a shorter time: 13 clock cycles whether the branch
is successful or unsuccessful.

Example 6.10 Reconstruct the instruction chart for the flow chart in Fig. 6.85, and show how the
data and control hazards in a three-stage RISC CPU are handled using forwarding paths. Use NOP
instruction(s) when forwarding paths become insufficient to remove a particular hazard.

Can there be a continuing improvement in the program efficiency and the overall execution time if
the number of pipeline stages is reduced further? To answer this question, the CPU pipeline in
Fig. 6.88 is repartitioned into three stages. Its third stage combines the ALU, data memory and
write-back stages in a single stage shown in Fig. 6.90.

LOAD R0, R1, 100

SLI R1, R2, 1

ADD R1, R2, R3

SRI R1, R4, 1

BRA R1, 1, 2

STORE R2, R0, 200

ADDI R3, R5, 1

SUBI R4, R6, 1

SUBI R3, R5, 1

ADDI R4, R6, 1

STORE R5, R0, 201

STORE R6, R0, 202

I R AD W

STORE R5, R0, 201

STORE R6, R0, 202

Delay Slot

Branch TAKEN

Branch NOT TAKEN

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

I R AD W

PC

0

1

2

3

4

5

6

7

8

9

Instruction Instruction Chart

6

7

8

9

Fig. 6.89 Four-stage CPU instructional chart

6.4 Fixed-Point Hazards 315

When the instructional chart is reconstructed for the three-stage CPU in Fig. 6.90, we see an
immediate improvement of this new CPU configuration for reducing the number of forwarding paths
to one. This is shown Fig. 6.91. However, the combined ALU, Data Memory and Write-Back stages
(AW) create a practical engineering problem: calculating the data memory address, accessing the data
memory, and writing the results back to the RF may not fit in half a clock cycle.

For the SLI R1, R2, 1 and ADD R1, R2, R3 instruction pair, half a cycle may be sufficient to shift
the contents of R1, and store the result in R2 before the ADD instruction accesses this data. Therefore,
no NOP instruction is inserted between the SLI and ADD instructions.

Branch-related delay slot still cannot be avoided in Fig. 6.91. STORE R2, R0, 200 is inserted in
the branch delay slot just as in Figs. 6.87 and 6.89.

PC Instruction
Memory

Register
File

OPC Dec

A
L
U

Data
Memory

Instruction Memory Stage RF Stage ALU/Data Memory/Write-Back Stage

1st flip-flop
boundary

2nd flip-flop
boundary

Fig. 6.90 Three-stage fixed-point CPU data-path

316 6 Central Processing Unit

The three-stage CPU executes the program in 12 clock cycles whether the branch is successful or
unsuccessful. Therefore, there is almost no gain in speed compared to the four-stage CPU. However,
this may not be true for larger programs, which are likely to contain more branch instructions or
instructions that access data memory.

6.5 Floating-Point Unit

Floating-Point Instructions

This RISC instruction set contains six floating-point (FP) instructions: floating-point add (ADDF),
floating-point subtract (SUBF), floating-point multiply (MULF), floating-point divide (DIVF),
floating-point load (LOADF) and floating-point store (STOREF). The ADDF, SUBF, MULF and
DIVF instructions use the IEEE single-precision floating-point format which specifies the most
significant bit to be the sign, the lesser eight most significant bits to be the exponent and the least

LOAD R0, R1, 100

SLI R1, R2, 1

ADD R1, R2, R3

SRI R1, R4, 1

BRA R1, 1, 2

STORE R2, R0, 200

ADDI R3, R5, 1

SUBI R4, R6, 1

SUBI R3, R5, 1

ADDI R4, R6, 1

STORE R5, R0, 201

STORE R6, R0, 202

STORE R5, R0, 201

STORE R6, R0, 202

Delay Slot

Branch TAKEN

Branch NOT TAKEN

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

I R AW

PC

0

1

2

3

4

5

6

7

8

9

Instruction Instruction Chart

6

7

8

9

Fig. 6.91 Three-stage CPU instructional chart

6.4 Fixed-Point Hazards 317

significant 23 bits to be the fraction. The LOADF and STOREF use the same integer field format as
the fixed-point LOAD and STORE instructions, and they require a secondary register file (besides the
fixed-point register file) to store floating-point data.

The ADDF instruction adds two single precision floating-point numbers at the registers, FS1 and
FS2, and returns the result to the register FD as described below. The bit field format of this
instruction is given in Fig. 6.92.

ADDF FS1, FS2, FD
Reg[FS1] + Reg[FS2] ! Reg[FD]

The SUBF instruction subtracts the contents of FS2, Reg[FS2], from the contents of FS1, Reg
[FS1], and returns the result to FD as described below. The bit field format of the instruction is shown
in Fig. 6.93.

SUBF FS1, FS2, FD
Reg[FS1] − Reg[FS2] ! Reg[FD]

The MULF instruction multiplies two floating-point numbers in registers FS1 and FS2, and returns
the result to FD as shown below. This instruction’s field format is described in Fig. 6.94.

MULF FS1, FS2, FD
Reg[FS1] * Reg[FS2] ! Reg[FD]

The DIVF instruction divides two floating-point numbers in registers FS1 and FS2, and returns the
result to FD as shown below. This instruction’s field format is described in Fig. 6.95.

DIVF FS1, FS2, FD
Reg[FS1]/Reg[FS2] ! Reg[FD]

31
ADDF FS1 FS2 FD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.92 Floating-point add (ADDF) instruction field format

31
SUBF FS1 FS2 FD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.93 Floating-point subtract (SUBF) instruction field format

31
MULF FS1 FS2 FD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.94 Floating-point multiply (MULF) instruction field format

318 6 Central Processing Unit

The LOADF instruction loads the contents of register FD, Reg[FD], from the data memory to the
floating-point register file. The data memory address is calculated by adding the contents of RS,
Reg[RS], to the immediate value. This instruction’s field format is described in Fig. 6.96.

LOADF RS, FD, Imm. Value
mem {Reg[RS] + Imm. Value} ! Reg[FD]

Similar to the LOADF instruction, the STOREF instruction stores the contents of register FS,
Reg[FS], to the data memory. The data memory address is calculated by adding the contents of RD,
Reg[RD], to the immediate value. This instruction’s field format is described in Fig. 6.97.

STOREF FS, RD, Imm. Value
Reg[FS] ! mem {Reg[RD] + Imm. Value}

Floating-Point Bit Field Formats

Single and double-precision floating-point bit field formats are designed to operate with 32 or 64-bit
buses, respectively, and each format consists of the sign, exponent and fraction entries.

An IEEE single-precision (SP) floating-point number shown in Fig. 6.98 has an eight-bit field for
the exponent and 23-bit field for the fraction. The most significant bit constitutes the sign bit for the
fraction.

31
DIVF FS1 FS2 FD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.95 Floating-point divide (DIVF) instruction field format

31
LOADF RS FD Immediate Value

26 25 21 20 16 15 0

Fig. 6.96 Floating-point load (LOADF) instruction field format

31
STOREF FS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.97 Floating-point store (STOREF) instruction field format

S E7………………….E0 F1…………………………..F23
1 8 bits 23 bits

2-1 2-23

SI
G

N

EXP FRACTION

Fig. 6.98 IEEE single-precision floating-point format

6.5 Floating-Point Unit 319

Mathematically, a single-precision floating-point number is expressed as follows:

Single-precision FP number = (−1)S � (1 + F1 � 2−1 + F2 � 2−2 + ��� + F23 � 2−23) 2REXP

Here, s = 1 indicates the fraction is negative, and s = 0 indicates the fraction is positive. F1 to F23
are the 23 fraction bits that range from the most significant to the least significant bit positions of the
fraction field as shown in Fig. 6.98, respectively.

Since the exponent field does not possess a sign bit, a biasing system is employed to distinguish
the negative exponents from the positive ones. The biased exponent (EXP) field shown in Fig. 6.98 is
the combination of the real exponent (REXP) and the BIAS as shown below.

EXP = REXP + BIAS

The BIAS is calculated by substituting the lowest and the highest eight-bit numbers in the EXP
field to calculate the most negative and the most positive real exponent values. The most negative
REXP is equal to −MAX when EXP is at its minimum value of zero. Thus,

0 = −MAX + BIAS

Similarly, when EXP reaches its maximum value of 255, the most positive REXP becomes
+MAX. Thus,

255 = MAX + BIAS

Hence substituting MAX = BIAS into 255 = MAX + BIAS yields:
BIAS = 127 for single-precision numbers.

Example 6.11 Represent −0.7510 as a single-precision floating-point number.

−0.7510 = −0.112 = (−1)S (1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F23 � 2−23) 2REXP

−1.1 � 2−1 = (−1)S (1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F23 � 2−23) 2REXP

Thus,

s = 1
F1 = 1
F2 through F23 = 0
REXP = −1 = EXP − BIAS = EXP − 127
EXP = 127 − 1 = 126

Filling the fraction and the exponent fields in Fig. 6.99 yields:

320 6 Central Processing Unit

Example 6.12 Represent −527.510 as a single-precision floating-point number.

−527.510 = (−1)1 (1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F23 � 2−23) 2REXP

The closest real exponent to 527.5 is 512 = 29. Thus,

−527.510 = (−1)1 (1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F23 � 2−23) 29

where,

(1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F23 � 2−23) = 527.5/512 = 1.0302710
� 1.000012 = 1.0312510

Error in the fraction =
1:03125� 1:03027

1:03125
= 0.01%

The biased exponent is calculated as follows:

REXP = 9 = EXP − BIAS = EXP − 127

EXP = 127 + 9 = 136

After entering the fraction and exponent fields in Fig. 6.98, the single-precision floating-point
number for −527.510 produces the format as shown in Fig. 6.100.

SI
G

N

EXP FRACTION

1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 8 bits 23 bits

27 20 2-1 2-23

Fig. 6.100 Single-precision floating-point number in Example 6.12

1 0 1 1 1 1 1 1 0 1 0 0 0 0

1 8 bits 23 bits

27 20 2-1 2-23

SI
G

N

EXP FRACTION

Fig. 6.99 Single-precision floating-point number in Example 6.11

6.5 Floating-Point Unit 321

Example 6.13 Convert the single-precision floating-point number in Fig. 6.101 to a decimal
number.

Here, s = 1 corresponds to a negative fraction. The fraction and biased exponent fields yield 0.25
and 129, respectively. Thus,

REXP = 129 − 127 = 2

The decimal number = (−1)1 (1 + 0.25) 22 = −1.25 � 4 = −5

Example 6.14 Convert the single-precision floating-point number in Fig. 6.102 to a decimal
number.

Here, s = 0, which corresponds to a positive fraction. The fraction field yields approximately 1.
The biased exponent produces EXP = 255. Therefore,

REXP = 255 − 127 = 128

The decimal number = (−1)0 (1 + 1) 2128 = 2 � 1038

The IEEE double-precision (DP) floating-point number in Fig. 6.103 has 11 bits for the exponent
and 52 bits for the fraction for better accuracy. Once again, the most significant bit corresponds to the
sign bit for the fraction.

SI
G

N

EXP FRACTION

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 8 bits 23 bits

27 20 2-1 2-23

Fig. 6.102 Single-precision floating-point number in Example 6.14

S E10……………….E0 F1…………………………..F52
1 11 bits 52 bits

2-1 2-52

SI
G

N

EXP FRACTION

Fig. 6.103 IEEE double-precision floating-point format

SI
G

N
EXP FRACTION

1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

1 8 bits 23 bits

27 20 2-1 2-23

Fig. 6.101 Single-precision floating-point number in Example 6.13

322 6 Central Processing Unit

The double-precision floating-point number is expressed as follows:

Double-precision FP Number = (−1)S � (1 + F1 � 2−1 + F2 � 2−2 + ��� + F52 � 2−52) 2REXP

Here, s = 1 corresponds to a negative, and s = 0 corresponds to a positive fraction. Bits F1 to F52
are the 52 fraction bits from the most significant bit position to the least significant bit position,
respectively.

The bias system to represent single-precision floating-point exponents can also be applied to the
double-precision numbers. Thus,

EXP = REXP + BIAS

Here, EXP is the 11-bit biased exponent field in Fig. 6.103, and REXP is the real exponent. The BIAS
is calculated by substituting the lowest and the highest biased exponents in the equation, respectively.

Therefore, for the most negative real exponent of −MAX, EXP becomes equal to zero:

0 = −MAX + BIAS

Similarly, EXP value becomes 2047 for the most positive real exponent of +MAX:

2047 = MAX + BIAS

Substituting MAX = BIAS into 2047 = MAX + BIAS yields BIAS = 1023 for double-precision
floating-point numbers.

Example 6.15 Represent −0.7510 as a double-precision floating-point number.

−0.7510 = −0.112 = (−1)S (1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F52 � 2−52) 2REXP

−1.1 � 2−1 = (−1)S (1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F52 � 2−52) 2REXP

Thus,

s = 1
F1 = 1
F2 through F52 = 0
REXP = −1 = EXP − BIAS = EXP − 1023
EXP = 1023 − 1 = 1022

Therefore, entering the fraction and the exponent fields in Fig. 6.104 yields:

SI
G

N

EXP FRACTION

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0

1 11 bits 52 bits

210 20 2-1 2-52

Fig. 6.104 Double-precision floating-point in Example 6.15

6.5 Floating-Point Unit 323

Example 6.16 Represent 4.010 as a double-precision floating-point number.

410 = (−1)0 (1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F52 � 2−52) 2REXP

The closest exponent to 4 is 4 = 22. Thus,

410 = (−1)0 (1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F52 � 2−52) 22

where,

(1 + F1 � 2−1 + F2 � 2−2 + F3 � 2−3 + ��� + F52 � 2−52) = 1.02

Therefore,

F1 through F52 = 0
REXP = 2 = EXP−BIAS = EXP − 1023
EXP = 1025

Thus, entering the fraction and exponent fields in Fig. 6.105 yields:

Example 6.17 Convert the double-precision floating-point number in Fig. 6.106 to a decimal
number.

Here, s = 1, which corresponds to a negative fraction. The fraction and biased exponent fields
yield 1 and 0, respectively. Therefore,

REXP = 0 − 1023 = −1023

Thus, the decimal number = (−1)1 (1 + 1) 2−1023 = −2 � 10−308.

SI
G

N

EXP FRACTION

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 11 bits 52 bits

210 20 2-1 2-52

Fig. 6.105 Double-precision floating-point in Example 6.16

SI
G

N

EXP FRACTION

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 11 bits 52 bits

210 20 2-1 2-52

Fig. 6.106 Double-precision floating-point in Example 6.17

324 6 Central Processing Unit

Floating-Point Adder

Floating-point addition requires equating the exponents before adding the fractions. There are two
ways to equate exponents. The first method is to shift the fraction of the floating-point number with
greater exponent to the left until both exponents become equal. The second method is to shift the
fraction of the floating-point number with lesser exponent to the right until the exponents are equal.

S1 EXP1 FRAC1

 0 1

S2 EXP2 FRAC2

 1 0 1 0

 SHIFT RIGHT

NORMALIZE
FRACTION

ROUND FRACTION

S EXP FRACTION

OVERFLOW /
UNDERFLOW

VALIDATE

NO

YES
(TO EXCEPTIONS)

select
BIG EXP

select
SMALL FRAC

SIGN

1.000 -1.110

-1.110

+1

-0.111 1.000

0.001SIGN

INCREMENT / DECREMENT

1.000

1.000

select
BIG FRAC

BIASED=126

126 125

EXP=126

EXP = 123

BIASED=125

ΔEXP

Fig. 6.107 A floating-point adder implementation

6.5 Floating-Point Unit 325

The floating-point adder in Fig. 6.107 implements the second method. The first step of this method
is to determine which of the two floating-point numbers has a smaller exponent. This leads to
subtracting the two exponents from each other and examining the sign bit of the result. In the
schematic in Fig. 6.107, the second number’s exponent, EXP2, is subtracted from the first number’s
exponent, EXP1, to obtain the difference, DEXP = EXP1 − EXP2. If the sign bit of DEXP becomes
zero, it indicates EXP1 is larger than EXP2. Therefore, the fraction of the second number, FRAC2, is
shifted to the right by an amount equal to DEXP before adding the fractions. If, on the other hand, the
sign bit of DEXP becomes one, FRAC1 is shifted to the right by DEXP before adding FRAC1 to
FRAC2.

The numerical example in Fig. 6.107 describes the process of adding the fraction fields of two
floating-point numbers according to DEXP. In this figure, 126, 1.000, 125 and −1.110 are assigned to
the EXP1, FRAC1, EXP2 and FRAC2 fields, respectively. Initially, EXP2 is subtracted from EXP1,
which yields DEXP = +1. The sign of DEXP becomes zero, and routes the larger exponent,
EXP1 = 126, to an adder that calculates the real exponent. The sign bit also directs the fraction field
of the larger exponent, FRAC1 = 1.000, to a separate adder to compute the fraction field.

FRAC2 = −1.110, on the other hand, is moved to the input of the right shifter which shifts this
value by DEXP = 1, and produces −0.111. This shifted fraction, −0.111, is then added to
FRAC1 = 1.000, producing 0.001 while the exponent stays at 126. The normalization mechanism
takes place next. During this process, the result, 0.001, is shifted to the left until the binary value, 1, in
the 0.001 field is detected. The normalizer output becomes 1.000, but the shifted amount, −3, is added
to the current exponent, 126, yielding 123 at the output of the adder that computes the exponent.

The normalized fraction goes through a rounding process and truncates the fraction field to 23 bits.
The result is stored in a 23-bit register at the output of the floating-point adder. The output of the
exponent adder is similarly stored in an eight-bit register along with the sign bit for further processing
in the CPU.

This floating-point adder also deals with overflow and underflow conditions in case the exponent
values become higher than 255 or smaller than 0, both of which generate exceptions for the CPU.

Floating-Point Multiplier

The processing complexity of comparing two exponent fields in the floating-point adder does not take
place in the floating-point multiplier. The algorithm of multiplying two floating-point numbers simply
consists of multiplying the fractions and adding the exponents.

The floating-point multiplier architecture in Fig. 6.108 computes the fraction and the exponent
fields with a numerical example. In this example, 126, 1.000, 125 and 1.110 values are assigned to the
EXP1, FRAC1, EXP2 and FRAC2 fields of the multiplier, respectively.

326 6 Central Processing Unit

The first step of the multiplication process is to calculate the real exponent values of the two
floating-point numbers. Therefore, both EXP1 = 126 and EXP2 = 125 are subtracted from the
single-precision bias, 127, yielding −1 and −2, respectively. The real exponents are then added,
producing −3, which becomes the input of an adder that increments or decrements the real exponent
after multiplying the fractions. The fractions, FRAC1 = 1.000 and FRAC2 = 1.110, are multiplied,
producing 1110000. The floating point is assigned immediately after locating the leading 1 in the
1110000 field which results in 1.11000. This result is subsequently truncated to 1.110. Since no
normalization needs to be performed on 1.110, this step effectively produces a zero
increment/decrement value, and the fraction is stored in the output register after rounding takes place.
The real exponent, −3, on the other hand, is added to the bias, 127, and the result is also stored in the
output register. Finally, sign bits of the two floating-point numbers are XORed and stored in the same
register.

As in the floating-point adder, the underflow and overflow conditions in the exponent field of the
floating-point multiplier cause the CPU to generate exceptions.

S1 EXP1 FRAC1 S2 EXP2 FRAC2

NORMALIZE
FRACTION

ROUND FRACTION

S EXP FRACTION

OVERFLOW /
UNDERFLOW

VALIDATE

-1 -2

NO

1.110

INCREMENT / DECREMENT

-3 0

BIAS = 127

TRUNCATE
FRACTION

FIND THE FLOATING PT

-3

124

YES
(TO EXCEPTION)

1.000

01110000

1.11000

1.110

1.110

1.110124

0 1

1

1

BIASED = 126 BIASED = 125

-127
-127

Fig. 6.108 A floating-point multiplier implementation

6.5 Floating-Point Unit 327

RISC CPU with Fixed and Floating-Point Data-Paths

The floating-point adder, FP Adder, and the floating-point multiplier, FP Multiplier, can be included
in the existing fixed-point five-stage CPU data-path as shown in Fig. 6.109. In this figure, the
fixed-point register file outputs are connected to the fixed-point ALU, and the floating-point register
file outputs are connected to the floating-point adder and the multiplier, forming two completely
isolated data-paths from each other. The OPC field for the ADDF (SUBF) instruction selects port 1 of
the 2-1 MUX, and routes the floating-point adder (subtractor) result back to the floating-point register
file. Similarly, the OPC field of the MULF instruction selects port 0 of the 2-1 MUX, and routes the
floating-point multiplier output to the floating-point register file.

Figure 6.110 shows four distinct data-paths that belong to the fixed and floating-point load and
store instructions, namely LOAD, STORE, LOADF and STOREF. These data-paths are deliberately
avoided from Fig. 6.109 to prevent complexity in this figure. LOAD and STORE instruction
data-paths in this figure have already been described earlier in this chapter. For LOADF instruction,
the contents of RS from the fixed-point register file and the sign-extended immediate value from the
instruction are added in the ALU stage, forming an effective address for the data memory. The data at
this address is subsequently routed back to the floating-point register file at the address FD. Similarly,
the STOREF instruction calculates the data memory address by adding the sign-extended immediate
value to the contents of RD, and stores the contents of FS to this address.

D Q

clock
A
L
U

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

RF Fixed

AIn1 DOut1

AIn3 DIn

5

5 32

32

3255

5 5 5

AIn2 DOut2

Instruction
Register

RS1/RS/FS1

RS2/RD/FS2

RD/Imm[15:11]/FD

Reg[RS1/RS]

Reg[RS2/RD] 32

0

1

1

0

Imm

SEXT

16

16

32

sel 1 for Fixed-pt.
Reg-Reg OPCs

Data
Memory

AIn DOut

D Q

clock

D Q

clock

D Q

clock

5

Fixed-pt. OPCs

sel 1 if OPC = ADDF
sel 0 if OPC = MULF

0

1

FP Adder

FP Multiplier

se
l 0

 if
 O

PC
 =

 L
O

AD

32

32
O
P
C

I
M
M

0

15
16

20
21

25
26

31

PC

Instruction
Memory

clock

clock

AIn DOut
32 32

11

RF Float

AIn1 DOut1

AIn3 DIn

AIn2 DOut2

Imm[15:0]

0

1

D Q

clock

D Q

clock

D Q

clock

32

32

Reg[FS1]

Reg[FS2]

32 32

D Q

clock

D Q

clock

D Q

clock

sel 1 for Fixed-pt.
Reg-Reg OPCs

Fig. 6.109 Floating and fixed-point execution data-paths

328 6 Central Processing Unit

In reality, Figs. 6.109 and 6.110 must be combined together to form a single figure to enable a
RISC CPU to execute all fixed and floating point-ALU instructions except DIVF.

Floating-Point Data Hazards

There are three types of floating-point hazards, all culminating from variable execution times in the
floating point data-path.

The first hazard is Read After Write (RAW)-type hazard. This hazard is shown as an example in
Fig. 6.111, illustrating its mechanics. In this example, all floating-point instructions go through three
stages of execution: Instruction Fetch (I), Execution (E) and Write-back (W) stages. Both the ADDF
and SUBF instructions are assumed to take only one cycle in the E stage, whereas MULF takes eight
consecutive cycles to produce a result. In the instruction chart in Fig. 6.111, the FPU produces the
MULF result in the ninth cycle, and writes it to the floating-point register file in the tenth cycle.
Instead of waiting for the result from the MULF operation, the SUBF instruction prematurely fetches
an old value of F2 and combines it with its other source operand in the fourth cycle, producing an
invalid data for F7 in the fifth cycle. Therefore, this scenario outlines the case where a latter
instruction (SUBF) reads an invalid data entry “before” an earlier instruction (MULF) is able to
produce valid data, creating a RAW hazard.

D Q

clock +

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

RF Fixed

AIn1 DOut1

AIn3 DIn

5

5

32

5

AIn2 DOut2

Instruction
Register

RS/FS

RD/FD

Reg[RS]

32

0

1

Imm

SEXT

16

16

32

sel 1 if OPC = STORE
sel 0 if OPC = STOREF

Data
Memory

AIn DOut

5

32

O
P
C

I
M
M

0

15
16

20
21

25
26

31

PC

Instruction
Memory

clock

clock

AIn DOut
32 32

RF Float

AIn1 DOut1

AIn3 DIn

AIn2 DOut2

Imm[15:0]

0 1

D Q

clock

32

Reg[FS]

32

32

Reg[RD]

DIn

D Q

clock

D Q

clock

D Q

clock

D Q

clock

sel 1 if OPC = LOAD
sel 0 if OPC = STORE

Fig. 6.110 LOAD, STORE, LOADF and STOREF instruction data-paths

6.5 Floating-Point Unit 329

The next floating-point hazard is the Write After Read (WAR)-type. Again, this hazard is shown as
an example in Fig. 6.112, explaining how it forms. In this instruction chart, MULF produces a result,
Reg[F2], in the ninth cycle, and forwards it as an operand to the ADDF instruction in the tenth cycle. In
the same cycle, instead of fetching the original operand from the register F3, the ADDF instruction
fetches the operand produced by a latter instruction, SUBF, in the fifth cycle, and uses it to produce
Reg[F4], resulting in an invalid data. In other words, a latter instruction (SUBF) writes data to the
register file “before” an earlier instruction (ADDF) is able to read and execute, creating a WAR hazard.

The last floating-point hazard, Write After Write (WAW), is illustrated as an example in
Fig. 6.113. In this example, a latter instruction, ADDF, writes to the register address, F2, in the fourth
cycle while an earlier instruction, MULF, writes to the same register address in the sixth cycle,
overwriting the valid data entry by ADDF. The final instruction, SUBF F2, F11, F12, uses the data
written by the earlier instruction (MULF) instead of using the data from the latter instruction (ADDF),
resulting in invalid data in F12. In other words, a latter instruction (ADDF) writes data to the register
file “before” an earlier instruction (MULF) is able to write, causing a WAW hazard.

1 2 3 4 5 6 7 8 9 10

MULF F0, F1, F2

ADDF F3, F4, F5

SUBF F2, F6, F7

Clock cycles

SUBF fetches old F2 value
instead of the one created
by MULF

F2 is written

I E E E E E E E E W

I E W

I E W

Fig. 6.111 A RAW hazard

1 2 3 4 5 6 7 8 9 10 11

MULF F0, F1, F2

ADDF F2, F3, F4

SUBF F5, F6, F3

Clock cycles

F3 is written

I E E E E E E E E W

I I I I I I I I E W

I E W

F2, F3 are read

New F3 created by SUBF is
used in ADDF instead of the
original F3 before MULF

Fig. 6.112 A WAR hazard

330 6 Central Processing Unit

Figure 6.114 presents many forms of floating-point hazards in one program. The RAW hazard
indicates if a source operand is prematurely read before an earlier instruction has a chance to write it
back to the register file. In this figure, MULF reads the contents of F8 in cycle 4 before SUBF
completes the operation in cycle 5. Therefore, forwarding the contents of F8 becomes necessary from
the E-stage of SUBF to the first E-stage of MULF to eliminate the hazard.

1 2 3 4 5 6 7 8

MULF F0, F1, F2

ADDF F3, F4, F2

SUBF F2, F5, F6

Clock cycles

F2 is written
I E E E E

I E W

W

I E W

SUBF F2, F11, F12 uses F2
created by MULF instead of
the one created by ADDF

SUBF F2, F7, F8 I E W

SUBF F2, F9, F10 I E W

F2 is written

F2 is read

SUBF F2, F11, F12 I E W

Fig. 6.113 A WAW hazard

1 2 3 4 5 6 7 8 9 10 11

DIVF F2, F4, F0

ADDF F0, F8, F6

SUBF F10, F14, F8

Clock cycles

F0

MULF F10, F8, F6

F8

WAR

WAW

RAW

12 13

I E E E E E E E E E E W

I I I I I I I I I I E W

I E W

I E E E E E W

ADDF writes to F6, replacing the value in this register
that MULF is supposed to write, creating a WAW hazard

F0 is available

ADDF uses this new F8 calculated
by SUBF, creating a WAR hazard

Fig. 6.114 Mixture of RAW, WAW and WAR hazards

6.5 Floating-Point Unit 331

AWAR hazard also presents itself between the ADDF and SUBF instructions in this program. The
SUBF instruction writes the contents of F8 in cycle 5 while an earlier instruction, ADDF, tries to use
this operand in cycle 12. Therefore, the ADDF instruction will most likely read the contents of F8
written by the SUBF instruction instead of an earlier instruction.

The last hazard in this program is a WAW hazard between the ADDF and MULF instructions. In
this case, the MULF instruction writes the contents of F6 in cycle 10 while an earlier instruction,
ADDF, writes the same operand much later in cycle 13, creating this hazard.

Out-of-Order Execution and the Need for Register-Renaming

Executing floating-point instructions may require quite a number of clock cycles if instructions are
executed in order. The instruction chart in Fig. 6.115 removes potential RAW, WAR and WAW
hazards from the program in Fig. 6.114 by deliberately delaying the execution stages of the ADDF,
SUBF and MULF instructions, and executes all four floating-point instructions in order. However, the
penalty from the delays adds six more clock cycles to the chart compared to Fig. 6.114.

Fortunately, there are ways to reduce the number of clock cycles to complete the program while
having a hazard-free instruction chart. One of these methods is called register-naming shown in
Fig. 6.116 where the subsequent instructions following DIVF can be executed out of order.
According to this figure, the destination registers in the ADDF and SUBF instructions are renamed as
X and Y instead of F6 and F8, respectively. Also, the source register for MULF is changed to Y to be
able to forward data to this instruction properly. The resultant program requires only 13 clock cycles
instead of 19 and free of any floating-point hazards.

In this new chart, the ADDF instruction fetches F8 along with the forwarded F0 from the DIVF
instruction, and writes the result to a renamed register, X, which is physically a different register than
F6. This mechanism removes the possibility of the WAW hazard between the ADDF and MULF
instructions in Fig. 6.114 because the former writes to X and the latter writes to F6.

In a similar fashion, the SUBF instruction uses F10 and F14, and writes the result to a renamed
register, Y. Having this separate destination register for SUBF prevents the ADDF instruction to use
this register as a source register much later, preventing a potential WAR hazard.

1 2 3 4 5 6 7 8 9 10 11

DIVF F2, F4, F0

ADDF F0, F8, F6

SUBF F10, F14, F8

F0

MULF F10, F8, F6

12 13

F6 is updated, eliminating
a WAW hazard

F8

14 15 16 17 18 19

I E E E E E E E E E E W

I I I I I I I I I I

I I I I I I I I I I E W

I I I I I I I I I I E E E E W

E W

E

 Clock cycles

F6 is computed with the original F8

Original F8 is updated

Fig. 6.115 Hazard-free program from Fig. 6.114, executing in-order

332 6 Central Processing Unit

The MULF instruction, on the other hand, uses F10 and the forwarded Y operands, and writes the
result to the register, F6, which is physically a different register than register, X, as mentioned above.

In the end, the program contains true values in registers, F0, F6, X and Y, which are ready to be
used by subsequent programs.

Effects of Tomasula Algorithm on Floating-Point Hazards

To be able to obtain hazard-free instruction charts where programs can be executed in minimum
number of clock cycles, we need to examine a special algorithm, called Tomasula algorithm, which
brings forth a new CPU architecture. To simplify matters in this architecture, assume both the
fixed-point and floating-point instructions go through three stages in a CPU pipeline: Instruction
Fetch (I), Execution (E), and Write-Back (W) as outlined earlier. The instruction fetch stage is also
the stage where the register file is accessed and the instruction is decoded. Similarly, the execution
stage is where the instruction combines its source operands according to the opcode, and the length of
this process can vary from one cycle to many cycles. This stage also combines data memory access if
the opcode is a fixed or floating-point load or a store. Finally, the write-back stage is where the result
from the execution stage is written back to the fixed or floating-point register file.

The process of partitioning typical fixed and floating point instructions in each stage of this new
CPU is shown in Fig. 6.117.

In this figure, the LOADF instruction requires the memory address calculation to be complete and
in the Load Address Buffer in the I-stage, the data to be extracted from the data memory and loaded to
the Floating-Point Input Register in the E-stage and written back to the floating-point register file in
the W-stage. Similarly, the STOREF instruction calculates the data memory address and writes it to
the Store Address Buffer in the I-stage, fetches data from the floating-point register file and writes it to
the Store Data Buffer in the E-stage, and transfers this data from the Store Data Buffer to the data
memory in the W-stage. However, STORE and STOREF instructions can also be executed in two
cycles. In the first cycle, a data memory address is calculated and written to the Store Address Buffer
while the corresponding data is fetched from the register file and written to the Store Data Buffer.
These two events can be accomplished in the same clock cycle because the address and data paths in
the Tomasula CPU are independent of each other. In the second cycle, the data in the Store Data
Buffer is simply written to the address in the data memory.

1 2 3 4 5 6 7 8 9 10 11

DIVF F2, F4, F0

ADDF F0, F8, X

SUBF F10, F14, Y

Clock cycles

F0

MULF F10, Y, F6

Y

NO
WAR

NO
WAW

12 13

Writes to X ≠ F6

Writes to Y ≠ F8

I E E E E E E E E E E W

I I I I I I I I I I E W

I E W

I E E E E E W Writes to F6.
At this point, we have separate
data in X, F6, F8 and Y.

F0 is available

Fig. 6.116 Hazard-free program from Fig. 6.114, executing out-of-order

6.5 Floating-Point Unit 333

R
eg

 [R
S]

 +
 Im

m
 →

 L
oa

d
Ad

dr
es

s
Bu

ffe
r

R
eg

 [R
D

] +
 Im

m
 →

 S
to

re
 A

dd
re

ss
 B

uf
fe

r

R
eg

 [R
S1

],
R

eg
 [R

S2
] →

 R
es

. S
ta

tio
n

R
eg

 [F
S1

],
R

eg
 [F

S2
] →

 R
es

. S
ta

tio
n

D
at

a
M

em
or

y
→

 F
ix

ed
 R

F
R

eg

R
eg

 [F
S]

 →
 S

to
re

 D
at

a
Bu

ffe
r

Fi
xe

d
R

F
R

eg
 →

 R
eg

 [R
D

]

R
eg

 [R
S]

 +
 Im

m
 →

 L
oa

d
Ad

dr
es

s
Bu

ffe
r

D
at

a
M

em
or

y
→

 F
lo

at
 R

F
R

eg
Fl

oa
t R

F
R

eg
 →

 R
eg

 [F
D

]

St
or

e
D

at
a

Bu
ffe

r →
 D

at
a

M
em

or
y

R
eg

 [R
D

] +
 Im

m
 →

 S
to

re
 A

dd
re

ss
 B

uf
fe

r
R

eg
 [R

S]
 →

 S
to

re
 D

at
a

Bu
ffe

r
St

or
e

D
at

a
Bu

ffe
r →

 D
at

a
M

em
or

y

R
eg

 [R
S1

] +
 R

eg
 [R

S2
] →

 F
ix

ed
 R

F
R

eg
Fi

xe
d

R
F

R
eg

 →
 R

eg
 [R

D
]

R
eg

 [R
S1

] +
 R

eg
 [R

S2
] →

 F
lo

at
 R

F
R

eg
Fl

oa
t R

F
R

eg
 →

 R
eg

 [F
D

]

LO
AD

 R
S,

 R
D

, I
m

m

LO
AD

F
R

S,
 F

D
, I

m
m

ST
O

R
E

R
S,

 R
D

, I
m

m

ST
O

R
EF

 F
S,

 R
D

, I
m

m

AD
D

 R
S1

, R
S2

, R
D

AD
D

F
FS

1,
 F

S2
, F

D

In
st

ru
ct

io
n

Ty
pe

In
st

ru
ct

io
n

Fe
tc

h
/ R

F
A

cc
es

s
St

ag
e

Ex
ec

ut
io

n
/ D

at
a

M
em

or
y

A
cc

es
s

St
ag

e
W

rit
e-

B
ac

k
St

ag
e

R
eg

 [R
S]

 →
 R

es
. S

ta
tio

n
R

eg
 [R

S]
 +

 Im
m

 →
 F

ix
ed

 R
F

R
eg

Fi
xe

d
R

F
R

eg
 →

 R
eg

 [R
D

]
AD

D
I R

S,
 R

D
, I

m
m

Fi
g
.
6.
11

7
Pa
rt
iti
on

in
g
ty
pi
ca
l
fi
xe
d
an
d
fl
oa
tin

g-
po

in
t
in
st
ru
ct
io
ns

of
a
th
re
e-
st
ag
e
C
PU

fo
r
a
si
m
pl
ifi
ed

T
om

as
ul
a
al
go

ri
th
m

334 6 Central Processing Unit

A typical floating-point instruction, such as ADDF, accesses the contents of source operands, FS1
and FS2, in the I-stage, adds the contents of these registers and stores the result in a general area,
called the Reservation Station, in the E-stage, and writes the result back to the floating-point register
file at a destination address in the W-stage. As mentioned earlier, some floating-point instructions
may take more than one clock cycle to execute, and the result may not be immediately available for
the write-back. In these instances, the subsequent instructions, which are dependent on this result,
usually wait in the Reservation Station until the result becomes available.

The sample instruction chart in Fig. 6.118 explains the usage and functionality of the Reservation
Station where subsequent instruction(s) wait and use the result of a particular instruction(s).

In this chart, the second instruction, LOADF R2, F2, 20, normally writes the data fetched from the
data memory address, Reg[R2] + 20, to the floating-point register file in cycle 4 according to
Fig. 6.117. However, the two subsequent instructions, MULF F2, F3, F4 and SUBF F1, F2, F5, also
need Reg[F2] in cycle 4. Therefore, the data, waiting to be written to F2, but presently residing at the
data memory output in cycle 3, is immediately forwarded to the Reservation Station so that the
subsequent instructions, MULF F2, F3, F4 and SUBF F1, F2, F5, can use this data in cycle 4 when
they are in the E and I-stages, respectively.

The fourth instruction, SUBF F1, F2, F5, also forwards the floating-point subtraction result to the
Reservation Station at the end of cycle 5 because the sixth instruction, ADDF F5, F2, F6, uses the
contents of F5 in its I-stage during cycle 6.

Not all cases need to be forwarded to the Reservation Station. For example, the sixth instruction,
ADDF F5, F2, F6, forwards the floating-point adder result to the Store Data Buffer instead of the
Reservation Station at the end of cycle 7 so that STOREF F6, R0, 10 can use it during cycle 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 43 44 45

LOADF R1, F1, 10

LOADF R2, F2, 20

MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

ADDF F5, F2, F6

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

Clock cycles

Memory address waiting in the Store Address Buffer

Forward F5 to the Res. Station

Forward F2 to the Res. Station

46 47

I E W

I E W

I E E E E E E E E E E W

I E W

I E E E E E E E E E E E E E E W

I E W

I E W

I I I I I I I I I I I I E W

I E W

I I I I E W

Forward F4 to the Store Data Buffer

Forward F6 to the Store Data Buffer

Forward F2 to the Res. Station

Forward F0 to the Store Data Buffer

Memory address waiting in the Store Address Buffer

Fig. 6.118 A sample program executing the Tomasula algorithm

6.5 Floating-Point Unit 335

There are also instances in the program where an instruction forwards the result to the Reservation
Station only to be used by a subsequent instruction scheduled many instructions later. Such a case
occurs to the third instruction, MULF F2, F3, F4. At the end of its floating-point multiplication stage,
the result is forwarded to the Reservation Station in cycle 13. This result is subsequently used by the
tenth instruction, STOREF F4, R0, 40, in cycle 14. Another example is the fifth instruction, DIVF F3,
F1, F0. According to the instruction chart, the floating-point division result is available in the register
file in cycle 46. But, the eighth instruction, STOREF F0, R0, 20, also needs the division result in
cycle 46. In order to avoid a potential data hazard, the DIVF instruction simply forwards its result to
the Store Data Buffer at the end of cycle 45 so that the STOREF instruction can use it in cycle 46.

The program in Fig. 6.118 and similar floating-point-based programs require the CPU architecture
in Fig. 6.119 where instructions are queued initially, and then separated into two different data-paths
while they are in execution stage.

F0

F1

F2

F31

Floating-Point
Registers

Instruction
Queue

Fixed-Point
Registers

R0

R1

R31

Address Dispatcher

Load
Buffer

Store
Buffer

Reservation
Station for
FP Adders

Reservation
Station for
FP Multipliers

Load/Store Bus

From Instruction Memory

Operand Bus

Opcode Bus

R2

FP Adders FP Multipliers

clock clock clock clock clock

Float RF
Input Register

Common Data Bus

Address

Data
Memory

Address

Address In

Data In

Data Out

Data

Fixed RF
Input Register

clock clock

Fig. 6.119 A three-stage Tomasula CPU with floating-point execution and load/store units

336 6 Central Processing Unit

The data movement instructions, such as LOADF and STOREF, fetch the operand values for data
memory address from the fixed-point register file, form an effective address, and place this address in
the Load or Store Address buffers, respectively. This constitutes the I-stage activities of these two
instructions shown in Fig. 6.117. In the E-stage, the LOADF instruction downloads contents of the
data memory, and stores this data in the Floating-Point Input Register file. The STOREF instruction,
on the other hand, fetches the source operand, FS, from the floating-point register file, and places it in
the Store Data Buffer. In the W-stage, the LOADF instruction stores the data memory contents to the
destination register, FD, in the floating-point register file. The STOREF instruction stores the contents
of FS in the data memory.

In this architecture, there are two Reservation Stations to hold temporary data for the floating-point
add (subtract) and multiply (divide) operations. The data at the memory output can be moved either of
these Reservation Stations in case a subsequent floating-point instruction(s) requires this data
immediately. Because of this need, a path exists between the data memory and the Reservation
Stations. There are two examples in the instruction chart in Fig. 6.118 to relate this case. The first
instance is between LOADF R2, F2, 20 and MULF F2, F3, F4 where the MULF instruction needs the
contents of F2 in the E-stage. The second instance is between LOADF R2, F2, 20 and SUBF F1, F2,
F5 where the SUBF instruction requires the contents of F2 in its I-stage.

The floating-point arithmetic instructions, such as ADDF, SUBF, MULF and DIVF, fetch their
source operands from the floating-point register file and place them in the Reservation Station during
the I-stage of execution. In the E-stage, the source data are sent to respective floating-point unit(s) to
start execution, and the result is stored either in the Floating-Point RF Input Register or in the
Reservation Station(s) in case a subsequent instruction requires this data immediately. The latter
necessitates a feedback path between the floating point adder/multiplier outputs and the Reservation
Station. The association between ADDF F5, F2, F6 and SUBF F1, F2, F5 in Fig. 6.118 where the
ADDF instruction uses the contents of F5 in the I-stage proves this need. In the W-stage, the result is
simply written back to the floating-point register file.

The results of floating-point arithmetic instructions may also be needed immediately by a sub-
sequent STOREF instruction, and therefore a path becomes necessary between the floating-point
add/multiply units and the Store Data Buffer. There are three such instances in Fig. 6.118. In the first
instance, STOREF F6, R0, 10 uses the contents of F6 produced by ADDF F5, F2, F6 in the E-stage.
In the second instance, STOREF F0, R0, 20 uses the contents of F0 produced by DIVF F3, F1, F0 in
the E-stage. Finally in the third instance, STOREF F4, R0, 40 uses the contents of F4 produced by
MULF F2, F3, F4 in the E-stage.

Figure 6.120 through Fig. 6.129 explains how the data flows for each instruction in the program in
Fig. 6.118. These figures contain three floating-point adders and two floating-point multipliers. There
is a dedicated register for each floating-point unit, containing the Opcode and the source Operand
entries.

Figure 6.120 shows the data activity of the first instruction, LOADF R1, F1, 10, while it enters the
I-stage. In this cycle, LOADF R1, F1, 10 is fetched from the Instruction Queue, and separated into
opcode and operand fields. The opcode, LOADF, is loaded to the Opcode bus. The contents of R1
from the fixed-point register file and the immediate value, 10, are loaded to the Operand bus, and then
added in order to calculate an effective memory address. This address is subsequently loaded to the
Load Address Buffer.

6.5 Floating-Point Unit 337

0

30

40

Waiting

5.13

40

FP Multiplier 1
FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Instruction
Queue

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Store
Buffer

Reservation
Station for
FP Adders

Reservation
Station for
FP Multipliers

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20
MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Operand Bus

Opcode Bus = LOADF

F5

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

F6

LOADF R1, F1, 10

Reg[R1]+10 = 40

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Address

Data
Memory

Address

Address In

Data In

Data Out

Data

Fig. 6.120 Tomasula FPU starts executing LOADF R1, F1, 10

338 6 Central Processing Unit

Figure 6.121 shows the data activity of the second instruction, LOADF R2, F2, 10. Similar to the
events which took place in the previous clock cycle, the CPU calculates another memory address by
adding the contents of R2 to 20, and stores this value in the Load Address Buffer.

The memory contents at address, 40, now become available at the output of the data memory due
to the first LOADF instruction. This data, 0.83, is subsequently stored in the Floating-Point RF Input
Register.

0

30

40

Waiting

Waiting

5.13

60

40

FP Multiplier 1
FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Instruction
Queue

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Store
Buffer

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20
MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Operand Bus

Opcode Bus = LOADF

F5

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

F6

LOADF R2, F2, 20

Reg[R2]+20 = 60

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

mem[40] = 0.83 � Float RF Input Reg.

Reservation
Station for
FP Multipliers

Address

Data
Memory

Address

Address In

Data In

Data Out

40

Data

Fig. 6.121 Tomasula FPU starts executing LOADF R2, F2, 20

6.5 Floating-Point Unit 339

Figure 6.122 shows the data activity of the third instruction, MULF F2, F3, F4. In this clock cycle,
the Opcode bus changes its value to the new opcode, MULF. The contents of the first source operand,
Reg[F3] = 5.13, are assumed to be available in the Floating-Point Register File, and directly routed to
the Reservation Station. The contents of the second source operand, Reg[F2] = 1.23, on the other
hand, do not reside in the Floating-Point Register File, but available at the output of the data memory.
This value is also written to the Reservation Station for the MULF instruction. Because the next
instruction, SUBF F1, F2, F5, also uses F2 as the source operand, the CPU forwards the contents of
F2 to the Reservation Station as well.

In the same cycle, the contents of F1, Reg[F1] = 0.83, due to LOADF R1, F1, 10 is transferred
from the Floating-Point RF Input Register to the Floating-Point Register File.

0

30

40

0.83

Waiting

5.13

Waiting

60

40

1.23 1.23MULF 5.13

FP Multiplier 1

FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Store
Buffer

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20

MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Operand Bus

Opcode Bus = MULF

F5

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

F6

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Reservation
Station for
FP Multipliers

mem[60] = 1.23 Float RF Input Reg.

Instruction
Queue

Float RF Input Reg. F1

F3 = 5.13

Address

Data
Memory

Address

Address In

Data In

Data Out

60

Data

Fig. 6.122 Tomasula FPU starts executing MULF F2, F3, F4

340 6 Central Processing Unit

Similar to the data activity of MULF, the SUBF instruction, SUBF F1, F2, F5, follows a similar
path in Fig. 6.123. This instruction starts the instruction fetch cycle by loading the Opcode bus with
SUBF and the Operand bus with the contents of Reg[F1] = 0.83. Both of these values are subse-
quently stored in the Reservation Station. The second operand, Reg[F2] = 1.23, was already written
to the Reservation Station a cycle before, therefore the MULF instruction starts its first execution
stage in the floating-point multiplier, which will last another nine cycles according to Fig. 6.118.

The third event in this cycle is writing the contents of the Floating-Point RF Input Register back to
F2 in the Floating-Point Register File.

0

30

40

0.83

1.23

5.13

Waiting

60

40

0.83SUBF 1.23 1.23MULF 5.13

FP Multiplier 1
FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Store
Buffer

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20
MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Operand Bus

Opcode Bus = SUBF

Waiting F5

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

F6

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Reservation
Station for
FP Multipliers

Float RF Input Reg.

F1 = 0.83

1st MULF
exec. cycle

Instruction
Queue

Address

Data
Memory

Address

Address In

Data In

Data Out

Data

F2

Fig. 6.123 Tomasula FPU starts executing SUBF F1, F2, F5

6.5 Floating-Point Unit 341

The next instruction, DIVF F3, F1, F0, starts its I-stage according to Fig. 6.124. The Opcode bus is
updated with DIVF. The Operand bus is loaded with the contents of F3, Reg[F3] = 5.13, and the
contents of F1, Reg[F1] = 0.83, which are stored in the Reservation Station.

In this cycle, two other events take place. In the first event, the floating-point multiplier enters the
second execution stage. In the second event, the floating point adder completes the subtraction
operation due to SUBF, and routes the result to the Floating-Point RF Input Register and
the Reservation station. The latter is for the ADDF instruction which needs the contents of F5,
Reg[F5] = −0.4, in its E-stage, and is scheduled next.

0

30

40

Waiting

0.83

1.23

5.13

Waiting

60

40

0.83

-0.4

SUBF 1.23 1.23

5.13

MULF

DIVF

5.13

0.83

FP Multiplier 1

FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Store
Buffer

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20

MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Operand Bus

Opcode Bus = DIVF

Waiting F5

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

F6

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Reservation
Station for
FP Multipliers

Instruction
Queue

F3 = 5.13

2nd MULF
exec. cycle

1st SUBF
exec. cycle

FP Adder 1 = 0.83 – 1.23 = -0.4 � Float RF Input Reg / Res. Station

Address

Data
Memory

Address

Address In

Data In

Data Out

Data

F1 = 0.83

Fig. 6.124 Tomasula FPU starts executing DIVF F3, F1, F0

342 6 Central Processing Unit

In Fig. 6.125, the CPU starts executing ADDF F5, F2, F6. In this cycle, the Opcode bus changes to
ADDF. The contents of the first source operand, Reg[F2] = 1.23, is fetched from the Floating-Point
Register File and directed to the Reservation Station. The contents of the second source operand, Reg
[F5] = −0.4, has already been stored in the Reservation Station in the previous clock cycle, and
therefore ready to be used.

Within the same cycle, three other events take place. In the first event, the CPU transfers the
contents of the Floating-Point RF Input Register, −0.4, to F5 in the Floating-Point Register File. In
the second event, the floating point-multiplier enters the third execution stage for MULF. In the last
event, the DIVF instruction starts its first execution cycle in the second floating-point multiplier.
There will be 39 more clock periods until the DIVF instruction determines the floating point quotient
according to Fig. 6.118 since the floating-point division algorithm successively approximates a
quotient value by using the floating-point multiplier at each approximation.

0

30

40

Waiting

0.83

1.23

5.13

Waiting

60

40

0.83

-0.4

SUBF

ADDF

1.23

1.23

1.23

5.13

MULF

DIVF

5.13

0.83

FP Multiplier 1
FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Store
Buffer

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20
MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Operand Bus

Opcode Bus = ADDF

-0.4 F5

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

Waiting F6

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Reservation
Station for
FP Multipliers

F2 = 1.23

3rd MULF
exec. cycle

Instruction
Queue

1st DIVF
exec. cycle

Float RF Input Reg. F5

Address

Data
Memory

Address

Address In

Data In

Data Out

Data

Fig. 6.125 Tomasula FPU starts executing ADDF F5, F2, F6

6.5 Floating-Point Unit 343

In this cycle, the CPU executes the first floating-point store instruction, STOREF F6, R0, 10,
according to the program in Fig. 6.118. All data activities are shown in Fig. 6.126. The address
dispatcher calculates the store address, Reg[R0] + 10 = 10, and writes it to the Store Address Buffer
while the Opcode bus is loaded with the STOREF opcode.

Three other data activities take place in this cycle. In the first event, the floating-point adder
completes executing the ADDF instruction, and the CPU transfers the result, 0.83, to the
Floating-Point RF Input Register. In the second and third events, the first floating-point multiplier,
executing the MULF instruction, now enters its fourth execution stage while the second multiplier,
executing the DIVF instruction, starts the second execution stage.

0

30

40

Waiting

0.83

1.23

5.13

Waiting

60

4010

0.83

-0.4

SUBF

ADDF

1.23

1.23

1.23

5.13

MULF

DIVF

5.13

0.83

FP Multiplier 1
FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Store
Buffer

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20
MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Operand Bus

Opcode Bus = STOREF

-0.4 F5

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

Waiting F6

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Reservation
Station for
FP Multipliers

4th MULF
exec. cycle

Instruction
Queue

2nd DIVF
exec. cycle

1st ADDF
exec. cycle

STOREF F6, R0, 10

FP Adder 1 = -0.4 + 1.23 = 0.83 Float RF Input Reg

Reg[R0] + 10 = 10

Address

Data
Memory

Address

Address In

Data In

Data Out

Data

Fig. 6.126 Tomasula FPU starts executing STOREF F6, R0, 10

344 6 Central Processing Unit

The second floating-point store instruction, STOREF F0, R0, 20, in the program starts in this
cycle. All data activities are shown in Fig. 6.127. According to this figure, the address dispatcher
calculates a new store address, Reg[R0] + 20 = 20, and stores it in the Store Address Buffer. The
Opcode bus keeps the STOREF opcode.

In the same cycle, the floating point multipliers enter the fifth and the third execution cycles for the
MULF and DIVF instructions, respectively.

Lastly, the result from the first floating-point adder is transferred to the Store Data Buffer because
the first STOREF instruction, STOREF F6, R0, 10, needs to store this data at the data memory
address of 10 according to Fig. 6.118.

0

30

40

Waiting

0.83

1.23

5.13

Waiting

60

40

20

100.83

0.83

-0.4

SUBF

ADDF

1.23

1.23

1.23

5.13

MULF

DIVF

5.13

0.83

FP Multiplier 1
FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Address

Store
Buffer

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20
MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Operand Bus

Opcode Bus = STOREF

-0.4 F5

Address

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

0.83 F6

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Reservation
Station for
FP Multipliers

5th MULF
exec. cycle

Instruction
Queue

3rd DIVF
exec. cycle

STOREF F0, R0, 20

Float RF Input Reg. F6

FP Adder 1 = -0.4 + 1.23 = 0.83 Store Data Buffer

Reg[R0] + 20 = 20

Data
Memory

Address In

Data In

Data Out

Data

Fig. 6.127 Tomasula FPU starts executing STOREF F0, R0, 20

6.5 Floating-Point Unit 345

In this cycle, the third floating-point store instruction, STOREF F5, R0, 30, enters its instruction
fetch stage according to Fig. 6.128. The store address, Reg[R0] + 30 = 30, is calculated and stored in
the Store Address Buffer. The Opcode bus still contains the STOREF opcode. The floating-point
multipliers enter their sixth and fourth execution stages for the MULF and DIVF instructions,
respectively.

Two other operations take place in this clock cycle. In the first operation, the CPU transfers the
contents of F0 from the Floating-Point Register File to the Store Data Buffer. However, since the CPU
is still waiting for the results of the DIVF instruction to determine the contents of F0, this transfer
does not actually materialize. Instead, the operation goes into a pending stage where the data entry in
the Store Data Buffer is tagged with WAIT F0. In the second operation, the contents of F6,
Reg[F6] = 0.83, is written to the data memory address, 10, due to the first STOREF instruction,
STOREF F6, R0, 10.

0

30

40

Waiting

0.83

1.23

5.13

Waiting

60

40

30

20

10

WAIT F0

0.83

0.83

-0.4

SUBF

ADDF

1.23

1.23

1.23

5.13

MULF

DIVF

5.13

0.83

FP Multiplier 1
FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Address

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20
MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Data
Memory

Operand Bus

Opcode Bus = STOREF

-0.4 F5

Address

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

0.83 F6

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Reservation
Station for
FP Multipliers

6th MULF
exec. cycle

Instruction
Queue

4th DIVF
exec. cycle

STOREF F5, R0, 30

Reg[R0] + 30 = 30

Store
Buffer

0.83 mem [10]

Address In

Data In

Data Out

Data

10

Fig. 6.128 Tomasula FPU starts executing STOREF F5, R0, 30

346 6 Central Processing Unit

The data activities in this cycle are pretty much the same as in the previous clock period. The
fourth floating-point store instruction, STOREF F4, R0, 40, enters its instruction fetch stage as shown
in Fig. 6.129. A new store address, Reg[R0] + 40 = 40, is calculated and stored in the Store Address
Buffer. The floating-point multipliers enter their seventh and fifth execution stages for the MULF and
DIVF instructions, respectively.

Two other operations take place in this clock period. In the first one, the CPU moves the contents
of F5, Reg[F5] = −0.4, from the Floating-Point Register File to the Store Data Buffer due to the
STOREF F5, R0, 30 instruction. In the second, the CPU transfers the contents of F0 from the Store
Data Buffer to the data memory at the address of 20. However, since the CPU is still waiting for a
valid data entry for F0, the actual write to the data memory does not materialize. Instead, this
operation stays in the pending stage to be executed later when the DIVF instruction finishes its
execution stage.

0

30

40

Waiting

0.83

1.23

5.13

Waiting

60

40

40

30

20

10

-0.4

WAIT F0

0.83

0.83

-0.4

SUBF

ADDF

1.23

1.23

1.23

5.13

MULF

DIVF

5.13

0.83

FP Multiplier 1
FPAdder 1

F0

F1

F2

F3

F4

F31

Floating-Point
Registers

Fixed-Point
Registers

R0

R1

R2

R3

Address Dispatcher

Load
Buffer

Address

Reservation
Station for
FP Adders

Load/Store

From Instruction Memory

LOADF R1, F1, 10

ADDF F5, F2, F6

LOADF R2, F2, 20
MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

FPAdder 2

FPAdder 3

FP Multiplier 2

Data
Memory

Operand Bus

Opcode Bus = STOREF

-0.4 F5

Address

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

0.83 F6

clock
clock

clock

clock

clock

clock

Float RF
Input Register

Fixed RF
Input Register

Reservation
Station for
FP Multipliers

7th MULF
exec. cycle

Instruction
Queue

5th DIVF
exec. cycle

STOREF F4, R0, 40

Reg[R0] + 40 = 40

Store
Buffer

WAIT F0 [20]

Address In

Data In

Data Out

Data

F5

 mem

 Store Data Buffer

20

Fig. 6.129 Tomasula FPU starts executing STOREF F4, R0, 40

6.5 Floating-Point Unit 347

A curious reader may question how the CPU knows when to forward an operand from the output
of the floating-point adder, multiplier or data memory to either the Store Data Buffer or the Reser-
vation Station. There may be several implementation schemes to realize these data transfers. But, the
simplest scheme may reside inside the compiler. This scheme may include a “virtual” instruction
chart that compares the source and destination register addresses for each instruction in the program
such as in Fig. 6.130. In this chart, the first LOADF instruction has no data dependency, so it is
tagged with a “No” tag. The second LOADF instruction has data two data dependencies: one with the
MULF instruction scheduled in the next clock cycle, and the other with the SUBF instruction
scheduled two cycles later as shown in Fig. 6.118. Therefore, this LOADF instruction is tagged with
a “Yes” tag, and it will forward the data both to the Reservation Station for the floating-point adder
and to the Reservation Station for the floating-point multiplier as soon as the data memory contents
become available. The subsequent instructions, MULF, SUBF, DIVF and ADDF, also show where
the floating-point data needs to be forwarded from the floating-point adder/multiplier output(s). For
the STOREF instructions, the destination register is R0, which always is zero. Therefore, these four
instructions have “Invalid” tags for data dependency.

This chart may also include other entries depending on how sophisticated the compiler needs to be
for specific applications. For example, additional tags may indicate which subsequent instruction’s
source operand is dependent on the destination operand, and when the subsequent instruction is
scheduled to be executed in case the Reservation Station(s) or the Store Data Buffer has a limited
capacity to sustain long programs and cannot hold operand values for long periods of time.

Figure 6.131 contains the same Tomasula floating-point topology shown in Fig. 6.120 with two
separate register files and dedicated Reservation Stations for the fixed and floating-point units. The
inclusion of the reservation station to the fixed point unit eliminates the forwarding hardware between
the ALU output and the ALU input, and between the data memory output and the ALU input as
discussed earlier in this chapter.

Both fixed-point and floating-point instructions go through three stages of execution in this archi-
tecture: the combined instruction fetch and register file access stage (I), the execution or data memory

F1

MUL Res. Stat.

F2

- - -

ADD Res. Stat.

-

F4 - -

F5 - -

F0 - -

F6 - -

R0 - - - - -

Store Data Buf.

R0 - - - - -

R0 - - - - -

R0 - - - - -

Dest. match? N Y IProg. Instructions

LOADF R1, F1, 10

LOADF R2, F2, 20

MULF F2, F3, F4

SUBF F1, F2, F5

DIVF F3, F1, F0

ADDF F5, F2, F6

STOREF F6, R0, 10

STOREF F0, R0, 20

STOREF F5, R0, 30

STOREF F4, R0, 40

Fig. 6.130 Virtual instruction chart

348 6 Central Processing Unit

FP
 M

ul
tip

lie
r 1

FP
Ad

de
r 1

Fi
xe

d
Pt

. R
F

R
0

R
1

R
2

R
31

Lo
ad

Bu
ffe

r
St

or
e

Bu
ffe

r
R

es
er

va
tio

n
St

at
io

n
fo

r
FP

 A
dd

er
s

R
es

er
va

tio
n

St
at

io
n

fo
r

FP
 M

ul
tip

lie
rs

Im
m

ed
ia

te

FP
Ad

de
r 2

FP
Ad

de
r 3

FP
 M

ul
tip

lie
r 2

Fl
oa

t-P
t.

O
pe

ra
nd

 B
us

O
pc

od
e

Bu
s

C
om

m
on

 D
at

a
Bu

s

LO
AD

/S
TO

R
E

O
pe

ra
nd

 B
us

Ad
dr

es
s

PC

cl
oc

k
Ad

dr
es

s

Fi
xe

d
Pt

. O
pe

ra
nd

 B
us

 /
R

eg
is

te
r D

at
a

AL
U

Fl
oa

tin
g

Pt
. R

F

F0F1F2F3
1

D
at

a

clock

clock

D
at

a
O

ut

O
pc

od
e

Bu
s

clock

clock

R
es

er
va

tio
n

St
at

io
n

fo
r

Fi
xe

d
Pt

. A
LU

clock

Immediate

Register Data

Register Data

D
at

a
In

D
at

a
In

clock

Data memory → Store Data Buffer

Data memory → Res. Station

ALU → Res. Station

Fi
xe

d
R

F
In

pu
t R

eg
is

te
r

AL
U

 →
 F

ix
ed

 R
F

In
pu

t R
eg

D
at

a
m

em
or

y
→

 F
lo

at
 R

F
In

pu
t R

eg
is

te
r

Ad
dr

es
s

In
D

at
a

M
em

or
y

D
at

a
In

Fl
oa

t R
F

In
pu

t R
eg

is
te

r

clock

In
st

ru
ct

io
n

M
em

or
y

R
eg

[R
S]

 →
 S

to
re

 D
at

a
Bu

ffe
r

R
eg

[F
S]

 →
 S

to
re

 D
at

a
Bu

ffe
r

FP
U

 O
ut

 →
 S

to
re

 D
at

a
Bu

ffe
r

FPU Out → Res. Station

FP
U

 O
ut

 →
 F

lo
at

 In
pu

t R
F

R
eg

is
te

r

Fi
g
.
6.
13

1
A

th
re
e-
st
ag
e
T
om

as
ul
a
C
PU

w
ith

fi
xe
d
an
d
flo

at
in
g-
po

in
t
ex
ec
ut
io
n
an
d
lo
ad
/s
to
re

un
its

6.5 Floating-Point Unit 349

access stage (E) and the write-back stage (W). Although the execution stage of a floating-point add or
subtract may take as little as one clock cycle, a floating-point multiply or divide operation may take as
many as ten clock cycles or more as demonstrated in the sample program in Fig. 6.118.

6.6 Increasing Program Execution Efficiency

Static Versus Dynamic Pipelines

In the previous sections of this chapter, we described a CPU architecture that issued fixed and
floating-point instructions into a single pipeline without any consideration of parallelism to reduce the
overall program execution time. Program instructions, however, can be separated from each other and
guided into several pipelines, each pipeline specializing to handle certain types of instructions, so that
different segments of the program can be executed simultaneously. To demonstrate this approach, con-
sider a program with fixed-point instructions in Fig. 6.132. From the instruction chart, this program is
assumed to be executed in a four-stage pipeline where the ALU and data memory stages are combined.

LOAD R0, R1, 100

LOAD R0, R2, 110

ADD R1, R2, R3

ADDI R1, R4, 100

STORE R3, R0, 120

STORE R4, R0, 130

LOAD R0, R5, 140

LOAD R0, R6, 150

SUBI R5, R8, 200

STORE R7, R0, 160

STORE R8, R0, 170

SUB R5, R6, R7

R1 written

R2 written

R3 written

R4 written

R5 written

R6 written

R7 written

R8 written

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

Data Hazard

Data Hazard

Fig. 6.132 A single-issue program with fixed-point instructions

350 6 Central Processing Unit

During the program execution, instructions may present data dependencies with one another and
create data hazards. To eliminate a data hazard, the CPU may use existing forwarding path(s) and/or
choose to stall the pipeline by adding NOP instruction(s), but it always keeps the program instructions
in order. This type of CPU is called the static-issue CPU.

Two data hazards exist in the instruction chart in Fig. 6.132. The first one is between LOAD R0,
R2, 110 and ADD R1, R2, R3 where the ADD instruction needs the contents of R2, but cannot get it
immediately. The second one is between LOAD R0, R6, 150 and SUB R5, R6, R7 where the LOAD
instruction cannot supply the contents of R6 to the SUB instruction on time.

Therefore, the CPU has two choices to eliminate these hazards. The first choice is to issue two
NOP instructions: one NOP is placed before the ADD instruction and the other one before the SUB
instruction. This way, both the ADD and the SUB instructions will have time to fetch their operands
from the corresponding LOAD instructions properly. However, this approach increases the overall
CPU execution time by two clock cycles, and not optimal. The second choice is to employ two

LOAD R0, R1, 100

LOAD R0, R2, 110

ADD R1, R2, R3

ADDI R1, R4, 100

STORE R3, R0, 120

STORE R4, R0, 130

LOAD R0, R5, 140

LOAD R0, R6, 150

SUBI R5, R8, 200

STORE R7, R0, 160

STORE R8, R0, 170

SUB R5, R6, R7

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

R2

R6

Fig. 6.133 Hazard-free single-issue program from Fig. 6.132

6.6 Increasing Program Execution Efficiency 351

LO
AD

 R
0,

 R
1,

 1
00

LO
AD

 R
0,

 R
2,

 1
10

AD
D

 R
1,

 R
2,

 R
3

AD
D

I R
1,

 R
4,

 1
00

ST
O

R
E

R
3,

 R
0,

 1
20

ST
O

R
E

R
4,

 R
0,

 1
30

LO
AD

 R
0,

 R
5,

 1
40

LO
AD

 R
0,

 R
6,

 1
50

SU
BI

 R
5,

 R
8,

 2
00

ST
O

R
E

R
7,

 R
0,

 1
60

ST
O

R
E

R
8,

 R
0,

 1
70

SU
B

R
5,

 R
6,

 R
7

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

N
O

P

N
O

P

N
O

P

I
R

A
W

I
R

A
W

I
R

A
W

I
R

A
W

R
2

R
6

LO
AD

/S
TO

R
E

PI
PE

LI
N

E
AL

U
 P

IP
EL

IN
E

N
O

P
R

3

R
4

N
O

P

N
O

P

N
O

P

N
O

P

I
R

A
W

R
7

I
R

A
W

I
R

A
W

R
8

I
R

A
W

Fi
g
.
6.
13

4
Sc
he
du

lin
g
th
e
st
at
ic

du
al
-i
ss
ue

pr
og

ra
m

in
Fi
g.

6.
13

3
fo
r
tw
o
pi
pe
lin

es

352 6 Central Processing Unit

forwarding paths as shown in Fig. 6.133. The first forwarding path moves the contents of R2 from the
ALU output to the ALU input, and the second path repeats the same process for R6.

Now, let us take the hazard-free program in Fig. 6.133, and create two static-issue pipelines
instead of one as shown in Fig. 6.134. In this new design, the first pipeline is designated to handle
only the load/store operations, and the second pipeline operates only on the ALU-type
register-to-register or immediate instructions. Because the pipeline is assumed static, there should be
no deviation from the original program order shown in Fig. 6.133. This means that the load/store
pipeline schedules LOAD R0, R1, 100 first and STORE R8, R0, 170 last to match the program order
in Fig. 6.133. In a similar fashion, the ALU pipeline schedules ADD R1, R2, R3 first and SUBI R5,
R8, 200 last, again according to Fig. 6.133. Because the first data dependency occurs between LOAD
R0, R2, 110 and ADD R1, R2, R3, the CPU issues two NOP instructions prior to the ADD instruction
in the ALU pipeline, and forwards the contents of R2 from the load/store pipeline to the ALU
pipeline. Next, the CPU issues a NOP instruction in the load/store pipeline instead of scheduling
STORE R3, R0, 120 because the STORE instruction needs the contents of R3 from the ADD
instruction to proceed. The CPU issues five more NOP instructions and employs four more data
forwarding paths to eliminate all the data hazards in each pipeline before the program comes to an
end. As a result, the CPU executes the entire program in 13 clock cycles using two static pipelines
instead of 15 with a single pipeline.

This time, let us remove the static-issue restriction, and allow the compiler to change the program
order in order to avoid forwarding paths and/or NOP penalties. With this new approach, we introduce
a dynamic behavior to the program and execute the instructions out of order. After the compilation
phase is complete, the original program in Fig. 6.132 becomes hazard-free, needing no forwarding
paths for a single-issue CPU as shown in Fig. 6.135. In this new program, the compiler reschedules
two instructions: the ADDI instruction is scheduled before the ADD instruction; the SUBI instruction
is moved in front of the SUB instruction. Since the W and R-stages can take place in the same clock
cycle, overlapping these two stages do not impose any data hazard as shown in the figure.

As a second step, let us also allow the compiler to distribute these instructions between the same
load/store and the ALU pipelines in such as way that the resultant instruction chart contains minimum
number of forwarding paths and NOP instructions. With these new rules, the instruction chart in
Fig. 6.136 no longer follows the original program order in Fig. 6.132, but rather contains four
instructions to be executed simultaneously in both pipelines. As a result, the program finishes in 11
clock cycles with two forwarding paths compared to 13 clock cycles and six forwarding paths as in
Fig. 6.134.

6.6 Increasing Program Execution Efficiency 353

The resultant dual-issue, fixed-point CPU architecture is shown in Fig. 6.137, containing all four
stages to match the instruction charts in Figs. 6.134 or 6.136, regardless the program instructions are
executed in-order or out-of-order formation. In this new architecture, the CPU dispatches the com-
piled instructions to either the load/store or the ALU pipelines according to the opcode. The dis-
patcher hardware is not shown in this figure, but it is a part of the RF access-stage. Since there may be
two simultaneous write-backs from the LOAD and the ALU instructions within the same clock cycle,
the register file has two sets of write-back ports. Note that the forwarding paths between the load/store
and the ALU pipelines in this figure are also not shown to avoid complexity.

LOAD R0, R1, 100

LOAD R0, R2, 110

ADD R1, R2, R3

ADDI R1, R4, 100

STORE R3, R0, 120

STORE R4, R0, 130

LOAD R0, R5, 140

LOAD R0, R6, 150

SUBI R5, R8, 200

STORE R7, R0, 160

STORE R8, R0, 170

SUB R5, R6, R7

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

Fig. 6.135 Reordering the program instructions in Fig. 6.132 and achieving an out-of-order program execution

354 6 Central Processing Unit

LOAD R0, R1, 100

LOAD R0, R2, 110

ADD R1, R2, R3

ADDI R1, R4, 100

STORE R3, R0, 120

STORE R4, R0, 130

LOAD R0, R5, 140

LOAD R0, R6, 150

SUBI R5, R8, 200

STORE R7, R0, 160

STORE R8, R0, 170

SUB R5, R6, R7

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

NOP

NOP

NOP

NOP

I R A W

I R A W

I R A W

I R A W

R2

R6

LOAD/STORE PIPELINE ALU PIPELINE

Fig. 6.136 Scheduling the out-of-order execution program in Fig. 6.135 for two pipelines

D Q

clock

RF

AIn DOut

AIn DIn

5

5

32

32

5

AIn DOut

Instruction
Register

RS

RD

R
eg

[R
S]

Reg[RD]

0

1

Imm

SEXT

16

32
Data

Memory

AIn DOut
32

32

O
P
C

PC

Instruction
Memory

clock

AIn DOut
32 32

Sel 1 if OPC = LOAD
Sel 0 if OPC = STORE

D Q

clock

DIn

D Q

clock

D Q

clock

D Q

clock

O
P
C

clock

I
M
M

clock

AIn

AIn

DOut

DOut

D Q

clock

D Q

clock

AL
U D Q

clock

AIn DIn

0

1

D Q

clock

D Q

clock

Imm

Reg[RS2]

Sel 1 if OPC = Reg-Reg Type
Sel 0 if OPC = Imm Type

SEXT

32

32

Reg[RS1]

532 32

16

5

5

RS1

RS2

5

RD

OPC = LOAD/STORE

OPC = Reg-Reg/Imm

5

RD

OPC = Reg-Reg or Imm

32

32

Fig. 6.137 Dual-issue, four-stage CPU (forwarding paths are not shown for clarity)

6.6 Increasing Program Execution Efficiency 355

We can use the same argument in the dual-issue CPU and install more pipelines to achieve even
more parallelism. For example, the single-issue program in Fig. 6.138 contains three types of
instructions: the load/store, the fixed-point and the floating-point. Each instruction type can be
branched to an associated pipeline and executed simultaneously to reduce the overall execution time.
This approach is used in Fig. 6.139 where instructions are separated from each other according to

LOAD R0, R1, 100

LOAD R0, R2, 110

ADDI R1, R4, 100

ADD R1, R2, R3

STORE R4, R0, 310

STORE R3, R0, 300

STORE R5, R0, 320

STORE R6, R0, 330

STOREF F3, R0, 400

STOREF F5, R0, 420

STOREF F4, R0, 410

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A A

I R A W

LOADF R0, F1, 200

LOADF R0, F2, 210

SUBI R4, R6, 100

SUB R3, R2, R5

ADDF F1, F2, F3

MULF F1, F2, F5

SUBF F1, F2, F4

A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

R1 written

R2 written

F1 written

F2 written

R3 written

R4 written

R5 written

R6 written

F3 written

F4 written

F5 written

Fig. 6.138 Single-issue program with fixed and floating-point instructions

356 6 Central Processing Unit

their opcodes types, compiled and scheduled for execution. In the process, the instruction order is
changed in the load/store and the fixed-point ALU pipelines compared to the instruction order in
Fig. 6.138 to make sure that the entire program is free of data hazards, and maximum parallelism is
achieved among instructions. According to this new chart, the distributed program executes in 14
clock cycles instead of 21 as in Fig. 6.138.

Figure 6.140 shows the triple-issue CPU architecture with a three-stage floating-point multiplier to
match the instruction chart in Fig. 6.139. Both the fixed and the floating-point register files have two
write-back ports to accommodate LOAD/LOADF and fixed (or floating-point) instructions in the
same cycle. The address and data forwarding paths are omitted from this figure for clarity.

LOAD R0, R1, 100

LOAD R0, R2, 110

ADD R1, R2, R3

ADDI R1, R4, 100

STORE R3, R0, 300

STORE R4, R0, 310

STORE R6, R0, 330

STORE R5, R0, 320

STOREF F3, R0, 400

STOREF F5, R0, 420

STOREF F4, R0, 410

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A A

I R A W

LOADF R0, F1, 200

LOADF R0, F2, 210

SUB R3, R2, R5

SUBI R4, R6, 100

ADDF F1, F2, F3

MULF F1, F2, F5

SUBF F1, F2, F4

A W

I R A W

I R A W

I R A W

I R A W

I R A W

I R A W

LOAD/STORE PIPELINE FIXED PT. ALU PIPELINE FLOAT. PT. FPU PIPELINE

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

Fig. 6.139 Scheduling the program in Fig. 6.138 for three pipelines, each operating in out-out-order fashion

6.6 Increasing Program Execution Efficiency 357

D
 Q

cl
oc

k

Fi
xe

d
Pt

. R
F

AI
n

 D

O
ut

D
In

5 5

3232

AI
n

 D

O
ut

In
st

ru
ct

io
n

R
eg

is
te

r

R
S

R
D

R
eg

[R
S]

R
eg

[R
D

]01

Im
m

SE
XT

16

32

D
at

a
M

em
or

y

AI
n

D
O

ut

32

32

O P C

PC

In
st

ru
ct

io
n

M
em

or
y

cl
oc

k

AI
n

 D

O
ut

32
32

se
l 0

 if
 O

PC
 =

 S
TO

R
E/

ST
O

R
EF

se
l 1

 if
 O

PC
 =

 L
O

AD
/L

O
AD

F

D
 Q

cl
oc

k

D
In

D
 Q

cl
oc

k

O P C

cl
oc

k

I M M

cl
oc

k

AI
n

AI
n

D
O

ut

D
O

ut

D
 Q

cl
oc

k

D
 Q

cl
oc

k

ALU

D
 Q

cl
oc

k

D
In

01

Im
m

R
eg

[R
S2

]

Se
l 1

 if
 O

PC
 =

 R
eg

-R
eg

 T
yp

e
Se

l 0
 if

 O
PC

 =
 Im

m
 T

yp
e

SE
XT

3232

R
eg

[R
S1

]

32
32

16

5 5R
S1

R
S2

O
PC

 =
 L

O
AD

/S
TO

R
E

O
PC

 =
 R

eg
-R

eg
/Im

m
 A

LU
O

PC
 =

 R
eg

-R
eg

 o
r I

m
m

 A
LU

32

32

D
 Q

cl
oc

k

D
 Q

cl
oc

k

Float ADD

32

Float MUL

Fl
oa

t.
Pt

. R
F

D
In

D
O

ut

AI
n

D
O

ut

AI
n

D
In

O P C

cl
oc

k

5 5FS
/F

S1

FS
2

O
PC

 =
 A

D
D

F/
SU

BF
/M

U
LF

D
 Q

cl
oc

k

Float MUL

D
 Q

cl
oc

k

32

Float MUL

D
 Q

cl
oc

k

32

0 1

R
eg

[F
S] 32

D
 Q

cl
oc

k

D
In

32

R
eg

[R
D

]

R
eg

[F
S1

]

R
eg

[F
S2

]

R
eg

[F
D

]

R
eg

[F
D

]

se
l 0

 if
 O

PC
 =

 A
D

D
F/

SU
BF

se
l 1

 if
 O

PC
 =

 M
U

LF

se
l 0

 if
 O

PC
 =

 S
TO

R
E

se
l 1

 if
 O

PC
 =

 S
TO

R
EF

0
1

Fi
g
.
6.
14

0
T
ri
pl
e-
is
su
e
fo
ur
-s
ta
ge

C
PU

(a
dd

re
ss

an
d
fo
rw

ar
di
ng

pa
th
s
ar
e
no

t
sh
ow

n
fo
r
cl
ar
ity

)

358 6 Central Processing Unit

Loop Unrolling

The second method to shorten the overall program execution time is to unroll a loop when the
program encounters a loop function. The only drawback in this method is that the user needs to
duplicate the program segment contained in the loop at every iteration. However, a compiler can also
be designed to duplicate the instructions in a loop, assigning index(s) to each instruction if necessary,
and rescheduling them properly for execution.

The flow chart in Fig. 6.141 moves the data memory contents to F0, Reg[F0], at the index, i (the
index corresponds to an address in data memory, and initially assumed to be greater than zero), adds
Reg[F0] to the contents of F2, Reg[F2], to form the contents of F4, Reg[F4], and stores this result
back to the data memory at the same index, i. The program repeats the same operations until the
index, i, decrements to zero.

The instruction chart in Fig. 6.142 is formed based on the flow chart in Fig. 6.141, and it is
assumed to have five CPU stages.

mem(i) 0

F0 + F2

F4 (i)

i : 0

next instruction

i = 0

i > 0

→ i

→ mem

→ F

4→ F

Fig. 6.141 Flow chart of a load/store program with memory address decrementer

6.6 Increasing Program Execution Efficiency 359

The first instruction, LOADF R1, F0, 0, assumes the index, i, is stored in the register, R1.
Therefore, the CPU uses Reg[R1] to access the data memory, and downloads its contents to the
register, F0, in the floating-point register file. The second instruction, ADDF F0, F2, F4, adds the
contents of F0 to the contents of F2, forming the contents of F4. However, the data from the memory
becomes available in clock cycle four. Therefore, the CPU immediately forwards the memory con-
tents from the memory-stage (D) to the ALU-stage (A) after inserting a NOP instruction (or stalling
the pipeline for one cycle as shown by the bold letter, S) in order to prevent a potential data hazard.
The floating-point addition in this example is assumed to take three clock cycles; therefore, the CPU
forwards the floating-point adder result to the ALU-stage of the floating-point store instruction,
STOREF F4, R1, 0, to store the result at the memory address, Reg[R1]. In the process, the CPU stalls
the pipeline twice prior to the STOREF instruction in order to avoid a second data hazard.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

BRA R1, 0, 5

JUMP 0

Next instruction

Clock cycles

F0

F4

I R A D W

I R A A A D WS

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

PC

0

1

2

3

5

6

8

NOP I R A D W7

NOP I R A D W4

S S

Fig. 6.142 Program instructions of the flow chart in Fig. 6.141

360 6 Central Processing Unit

The branch instruction, BRA R1, 0, 5, compares the index value in the register, R1, with zero, and
branches the program to the next instruction at PC = 8 if the compare is successful. If the compare is
not successful, the index is decremented by one by SUBI R1, R1, 1, and the program counter goes
back to the LOADF instruction.

In this instruction chart, the CPU needs to insert two NOP instructions to prevent control-related
hazards: one after the BRA instruction and the other after the JUMP instruction.

The instruction chart in Fig. 6.143 includes only three iterations, and shows how the loop
instructions in Fig. 6.141 are executed in each iteration. At the PC values, 5, 13 and 21, the contents
of R1 is decremented by one, updating the index value, i. However, the instructions in the loop do not
change their nature and perform the same tasks as mentioned earlier. According to this chart, the CPU
completes executing all 24 instructions in 29 clock cycles.

1

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

Clock cycles

F0

F4

PC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

mem {Reg[R1] 1} → Reg[F0]

I R A D W

I R A A A D W

I R A D W

S

mem {Reg[R1] 2} → Reg[F0]

SUBI R1, R1, 1

BRA R1, 0, 5

JUMP 0

I R A D W

I R A D W

I R A D W

I R A D W

NOP I R A D W

NOP I R A D W

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

BRA R1, 0, 5

JUMP 8

NOP

F0

F4
I R A A A D W

I R A D W

S

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

NOP

18

19

20

21

22

23

I R A D WLOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

BRA R1, 0, 5

JUMP 16

NOP

F0

F4
I R A A A D W

I R A D W

S

I R A D W

I R A D W

I R A D

I R A

I R A D W

NOP

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

S S

S S

S S

24 mem {Reg[R1] _ 3} → Reg[F0] I R A D WLOADF R1, F0, 0

_

_

Fig. 6.143 First three iterations of the program in Fig. 6.142 with the BRA and JUMP instructions

6.6 Increasing Program Execution Efficiency 361

When the loop is unrolled, and the branch and jump instructions are eliminated from Fig. 6.143,
the program shortens almost by half of its original size as shown in Fig. 6.144. However, this does
not mean that the number of clock cycles after the first three iterations also decrease by half as shown
in this figure. The end savings in the overall execution time is only three clock cycles from 29 to 26,
which is hardly a gain. However, as user programs become larger, containing many more loop
functions, each employing larger number of iterations, the end savings in program execution time that
uses loop unrolling technique will be significant.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

Clock cycles 17 18 19 20 21 22 23 24 25

F0

F4

R1

PC

0

1

2

3

4

5

6

7

8

9

10

11

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

F0

F4

R1

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

F0

F4

I R A D W

I R A D W

I R A D W

I R A D W

I R A A A D W

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

S

I R A A A D WS

I R A A A D WS

mem {Reg[R1] – 1} Reg[F0]

mem {Reg[R1] – 2} Reg[F0]

S S

S S

S S

12

R1

LOADF R1, F0, 0 I R A D Wmem {Reg[R1] – 3} Reg[F0]

26

→

→

→

Fig. 6.144 First three iterations of the unrolled loop in Fig. 6.142 without the BRA and JUMP instructions

362 6 Central Processing Unit

Figure 6.145 illustrates a modified flow chart where the decrementing index has been relocated
from the path that signifies an unsuccessful branch to the main body of the program after memory
contents are downloaded to the register, F0. The resultant program in Fig. 6.146 now decrements
after the LOADF instruction, and effectively uses the SUBI instruction instead of stalling the pipeline
for one clock cycle. The rest of the instructions, including the BRA and the JUMP instructions exactly
remain the same as in Fig. 6.142. This instruction chart, therefore, produces exactly the same results
as the earlier chart in Fig. 6.142, but gains one clock cycle as expected.

mem(i) → F0

F0 + F2 → F4

F4 → mem(i)

i : 0

next instruction

i = 0

i > 0

(i – 1) → i

Fig. 6.145 Relocating (i − 1) ! i in the flow chart in Fig. 6.141

6.6 Increasing Program Execution Efficiency 363

Whenwe unroll the loop function in the instruction chart in Fig. 6.146, but still keep the BRA and the
JUMP instructions inside the loop in each iteration, we end up producing the chart in Fig. 6.147 after the
first three iterations. This chart also updates the contents of R1 three times at the PC values, 1, 9 and 17,
and completes the program in 29 clock cycles.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1
F0

F4

I R A D W

I R A D W

I R A A A D W

S S I R A D W

 Clock cyclesPC

0

1

2

3

4 BRA R1, 0, 4

JUMP 0

Next instruction

I R A D W

I R A D W

I R A D W

I R A D W

6

7 NOP

8

NOP I R A D W5

Fig. 6.146 Program instructions of the flow chart in Fig. 6.145 with the SUBI instruction relocated

364 6 Central Processing Unit

However, if we unroll the loop, and eliminate BRA and JUMP instructions for duration of three
iterations, we observe the number of instructions in the resultant program is reduced by half as shown
in Fig. 6.148. The number of clock cycles is also reduced from 29 to 23. Again, this is not a
considerable time savings in this example, but as programs get larger and contain many more loops,
each loop controlled by a large index, then we may expect a dramatic reduction in the overall program
execution time if we use this technique.

Clock cyclesPC

12

13

14

15

16

17

mem {Reg[R1] – 1} Reg[F0]

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

F0

F4

I R A D W

I R A D W

I R A A A D W

S S I R A D W

0

1

2

3

4 BRA R1, 0, 4

JUMP 0

I R A D W

I R A D W

I R A D W

6

7 NOP

8

NOP I R A D W5

F0

F4

I R A D W

I R A D W

I R A A A D W

S S I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

mem {Reg[R1] – 2} Reg[F0]

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

BRA R1, 0, 4

JUMP 8

NOP

NOP

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

mem {Reg[R1] – 3} Reg[F0]

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1
F0

F4

I R A D W

I R A D W

I R A A A D W

S S I R A D W

18

19

20 BRA R1, 0, 4

JUMP 16

I R A D W

I R A D W

I R A D

22

23 NOP

24

NOP I R A D W21

I R A D WLOADF R1, F0, 0

23 24 25 26 27 28 29

→

→

→

Fig. 6.147 First three iterations of the program in Fig. 6.146 with the BRA and JUMP instructions

6.6 Increasing Program Execution Efficiency 365

The instruction chart in Fig. 6.149 employs a different technique than the previous two loop
unrolling techniques to shorten the overall execution time even further. In this case, the reduced index
values are distributed to three different registers, R1, R2 and R3 (the register, R4, is also included in
this chart to supply an index for the fourth LOADF instruction in Fig. 6.148) instead of keeping them
in one register, and data memory contents are also kept in three separate floating-point registers, F0,
F1 and F3, instead of only F0. After three floating-point add operations, the results are stored in the
floating-point registers, F4, F5 and F6, and written back to the data memory at the addresses, Reg
[R1], Reg[R2] and Reg[R3], respectively. Even though the number of instructions did not change too
much in this chart compared to the one in Fig. 6.148, the overall CPU execution time is reduced from
23 cycles to 16. Even though this technique produces a gain of seven clock cycles for such a small
program, it is not efficient because it tends to occupy large number of registers in both the fixed and
floating-point register files. However, for programs with small index values, this method is preferable
compared to the two loop unrolling methods described earlier.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

Clock cycles 17 18 19 20 21 22 23PC

0

1

2

3

4

5

6

7

8

9

10

11

mem {Reg[R1] - 1} Reg[F0]

mem {Reg[R1] - 2} Reg[F0]

12 mem {Reg[R1] - 3} Reg[F0]

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R1, 1

LOADF R1, F0, 0

F0

F4

I R A D W

I R A D W

I R A A A D W

S S I R A D W

F0

F4

I R A D W

I R A D W

I R A A A D W

S S I R A D W

F0

F4

I R A D W

I R A D W

I R A A A D W

S S I R A D W

I R A D W→

→

→

Fig. 6.148 First three iterations of the unrolled loop in Fig. 6.146 without the BRA and JUMP instructions

366 6 Central Processing Unit

Static and Dynamic Branch Prediction

The third method to reduce the program execution time is to predict if the branch will take place while
the instruction is at the instruction memory stage rather than waiting until it arrives at the RF stage.
We know that every time the program encounters a branch (or a jump) instruction, the overall
program execution time increases by one clock cycle. Employing a branch (or a jump) instruction in a
program loop becomes especially expensive if the loop index is set to a high value.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOADF R1, F0, 0

ADDF F0, F2, F4

STOREF F4, R1, 0

SUBI R1, R2, 1

Clock cycles

R2

PC

0

1

2

3

4

5

6

7

8

9

10

11

LOADF R2, F1, 0

SUBI R2, R3, 1

R3

LOADF R3, F3, 0

R2

SUBI R3, R4, 1

R3

ADDF F1, F2, F5

ADDF F3, F2, F6

STOREF F5, R2, 0

STOREF F6, R3, 0

F4

F5

F6

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

I R A A A D W

I R A A A D W

I R A A A D W

I R A D W

I R A D W

I R A D W

mem {Reg[R1] – 1} Reg[F0]

mem {Reg[R1] – 2} Reg[F0]

mem {Reg[R1] – 3} Reg[F0]

→

→

→

Fig. 6.149 First three iterations of the unrolled loop in Fig. 6.146 with rescheduling and renaming

6.6 Increasing Program Execution Efficiency 367

Static and dynamic-issue CPUs use different types of branch prediction mechanisms to eliminate
the branch (or jump) delay slot in case the compiler cannot find an unrelated instruction to the branch
(or jump), and it ends up issuing a NOP instruction.

In static-issue CPUs, the simplest method to combat against the clock loss when the program
encounters a branch instruction is to assume the branch is taken. This approach especially applies to
programs with loops. Another method is to construct a branch history profile that belongs to earlier
program runs, and predict if the branch will be taken according to the accumulated history.

In dynamic-issue CPUs, the branch prediction mechanisms are more involved. One method is to
use a buffer in the instruction fetch stage that stores the branch history. The buffer may be addressed
by the lower portion of the branch address in the instruction. Buffer contents at each address also
contain a bit to indicate if the branch is recently taken or not. However, if there are two branch
instructions whose lower address bits are equal to each other, this bit may produce prediction in the
wrong direction. To improve the accuracy of this method, a two-bit system may be employed in the
Branch History Buffer as shown in Fig. 6.150. In this system, the branch prediction must miss twice
before an assignment is made to indicate if the next branch is taken or not.

The state machine employed in the two-bit prediction scheme is shown in Fig. 6.151. According to
this figure, the state of the branch predictor starts with the state 00, indicating branch is “Not Taken”.
If the next branch is taken, the state transitions to 01, but still keeps the “Not Taken” prediction status.
This means that the next branch instruction fetched from the instruction memory will still be classified
as not taken, and the program counter value will be incremented by one as shown in Fig. 6.150. Only
the second taken branch will be able to transition the current state to 11, and change the prediction
status to “Taken”. While in the state 01, a “Not Taken” branch switches the prediction decision back
to the state 00, and starts building the branch history one more time from the beginning. Similarly,
there have to be two consecutive “Not Taken” branches from the state 11 in order to change the
prediction decision to “Not Taken”.

Lower
Imm. bits

PC BRA RS RS val Imm. val

Decoder
Prediction
bits (2 bits)

0 1

PC
 +

 1

PC
 +

 Im
m

Instruction Memory Branch History Buffer

Taken?

BRA

Fig. 6.150 Simplified dynamic branch prediction data-path

368 6 Central Processing Unit

Compared to the one-bit prediction scheme with 50–50 chance in making branch decisions, the
two-bit system in Fig. 6.151 is more robust in deciding if the next branch will take place or not.

6.7 Multi-core Architectures and Parallelism

We can quantify parallelism both in software and hardware by examining four different computing
platforms as shown in Fig. 6.152.

1. Single instruction input stream, single data output stream (SISD)

This category belongs to a single CPU at the top part of Fig. 6.152.

2. Single instruction input stream, multiple data output streams (SIMD)

This type corresponds to a single instruction executed by multiple processors to create different
data outputs as shown in the middle part of Fig. 6.152. SIMD computers exploit data-level paral-
lelism by applying the same operations to produce multiple data in parallel. Each processor has its
own data memory, but the system contains a single instruction memory from which instructions are
fetched and dispatched to the rest of the pipeline. CPUs specializing in multimedia extensions
produce a form of SIMD parallelism where a single instruction can produce multiple forms of image
data. Vector processors used in pixel manipulation and creation is another application of SIMD
approach. SIMD protocols are virtually used in every arena of graphics where performance is a
priority to create three dimensional, real-time virtual environments.

Predict
Taken

10

Predict
Taken

11

Predict
NOT Taken

00

Predict
NOT Taken

01

Taken

Taken

NOT Taken

Taken

NOT Taken

NOT Taken

Taken
NOT Taken

Fig. 6.151 Dynamic branch prediction state-diagram

6.6 Increasing Program Execution Efficiency 369

3. Multiple instruction input streams, single data output stream (MISD)

No commercial application is available for this type of architecture.

4. Multiple instruction input streams, multiple data output streams (MIMD)

In this category, each processor fetches its own instructions and uses on its own data. MIMD
computers exploit parallelism mostly in hardware since multiple tasks must run in independent CPU
pipelines connected in parallel as shown at the bottom part of Fig. 6.152.

In a MIMD environment, each processor is assigned to execute a code composed of multiple
processes. A “process” is a segment of the code that may run independently, and each process is

Instruction CPU Data

Single Instruction Single Data (SISD)

Single Instruction Multiple Data (SIMD)

Instruction CPU 1 Data 1

CPU 2 Data 2

CPU N Data N

Multiple Instruction Multiple Data (MIMD)

Instruction 1 CPU 1 Data 1

Instruction 2 CPU 2 Data 2

Instruction N CPU N Data N

Fig. 6.152 Multi-core architectures

370 6 Central Processing Unit

typically independent of the other processes. It is useful to be able to have multiple processors
executing a single program. Multiple processes share the same program and address space, and they
are often called “threads”. A thread may also refer to multiple programs running on different pro-
cessors, even when they do not share the same address space. Therefore, it is possible to mold a
multi-threaded architecture into a form that allows either simultaneous execution of multiple pro-
cesses with separate address spaces or multiple threads that share the same address space. Because
MIMD structures can generally promote parallelism in hardware, they are considered the architecture
of choice for general-purpose multiprocessor platforms explained in this chapter. MIMD platforms
also offer flexibility and execute one application when high performance is needed, or they can run
multiple tasks simultaneously. MIMD structures either employ a single centralized main memory
shared by every CPU, or contain a distributed memory architecture where each CPU has it own
memory.

The first group with centralized, shared memory architecture has usually much less than a few
dozen CPU cores as shown in Fig. 6.153. For multiprocessors with small processor counts, it is
possible to share a single centralized memory without increasing the waiting period to access the
memory and/or decreasing the memory bandwidth.

The second group consists of multiprocessors with distributed memories as shown in Fig. 6.154.
To support larger processor counts, the entire system memory must be distributed among the pro-
cessors. Otherwise, the single memory system will not be able to support the memory bandwidth
demand from a large group of CPUs, and as a result it will produce excessively long memory access
times. However, in recent years with rapid advancements in processor performance and memory
bandwidth, the need for the multi-processor system with distributed memories has shrunk. Larger
number of processors in MIMD platforms also raises the need for high bandwidths in interconnection
networks.

CPU 1

Cache
1

Interconnection network

CPU 2

Cache
2

CPU N

Cache
N

Main
Memory

Fig. 6.153 Centralized shared memory architecture

6.7 Multi-core Architectures and Parallelism 371

Memory Coherency in Multi-core Architectures

One of the most challenging issues in systems with multiple CPU cores is to keep the central memory
(or distributed memories) coherent with each CPU's cache memory. In a single CPU system, we go to
great lengths to maintain the data coherency between the cache and the main memory in the shortest
possible time. To reach this goal, we often formulate different types of cache architectures from
write-through to write-back to minimize a read or a write cycle, and use many types of data
replacement policies to be able to preserve the same data in both memories.

Multiple CPU cores take this challenge to the next level. A simple explanation of memory
coherency is illustrated in Fig. 6.155. Let us assume that the main memory contains data A at the
address X in a single memory system. When a single CPU writes data B to this address, it will read
the same data back at a later time as shown at the bottom left hand side of Fig. 6.155. However, in a
system with two CPUs complications arise rather quickly if precautions are not taken in the data
exchange policy as shown at the bottom right hand side of Fig. 6.155. Suppose CPU 2 writes data A
at the address X initially, and wants to read it back when the program calls for it. If CPU 1 writes a
new data B at this address before CPU 2 reads the data, CPU 2 will read data B instead of data A,
resulting in a computation error. So, how do we maintain data coherency while we deal with multiple
CPUs to employ parallelism? We need to approach this problem in two ways: (1) by designing smart
compilers to detect data hazards caused by multiple CPUs, (2) by employing fail-safe data exchange
algorithms for memories.

CPU 1

Cache
1

Shared
Distributed
Memory 1

CPU 2

Cache
2

Shared
Distributed
Memory 2

CPU N

Cache
N

Shared
Distributed
Memory N

Interconnection network

Fig. 6.154 Distributed shared memory architecture

372 6 Central Processing Unit

Parallelism in Software

One good example to understand how parallelism in software works is through image processing.
Suppose the image composed of black and white pixels in Fig. 6.156 is modified such that the
resultant image must contain the original pixels and the interstitial pixels as a result of averaging the
black and white pixels.

CPU 1
Write B

CPU 2 is destined to read A,
but instead it reads B

CPU 2

Multiple CPUs referencing a single address

B Addr XCPU
Write B

CPU reads B

A single CPU referencing a single address

B Addr X

A Addr X

Initial Address X containing data A

Main memory

Fig. 6.155 Memory coherency

Fig. 6.156 Unmodified image

6.7 Multi-core Architectures and Parallelism 373

If we employ a single CPU to complete this process, we obtain the image in Fig. 6.157. In this
image, every gray interstitial pixel is the result of averaging neighboring black and white pixels in
Fig. 6.156.

However, if we employ four independent processors working simultaneously on each quadrant of
Fig. 6.157, the time that takes to complete the final image shortens considerably. The result is shown
in Fig. 6.158.

Fig. 6.157 Modified image

CPU 1: CPU 2:

CPU 3: CPU 4:

Fig. 6.158 Partitioning the work among four CPU cores

374 6 Central Processing Unit

Once each quadrant of Fig. 6.158 is complete, then one of the four processors can be assigned to
produce the pixels at the quadrant boundaries, resulting in an image shown at the top portion of
Fig. 6.159. If the total processing time is still a concern, the task can again be divided among the four
processors shown at the bottom part of Fig. 6.159. Finally, to form the final pixel in the middle can be
assigned to any one of the four processors (here it is assigned to CPU 1).

To produce the quadrants in Fig. 6.158, each of the four processors executes the algorithm shown in
Fig. 6.160 simultaneously. In this algorithm, the original pixels in Fig. 6.156 are defined as op(x, y),
and the interstitial ones created by the algorithm are defined as p(i, j). The first loop in Fig. 6.160
creates the pixels in the first row of the quadrant as long as x < 2. When x � 2, the algorithm goes
into the second loop and creates the pixels in the next row. This process continues until the pixels in the
third row are created as long as y < 2. When y � 2, the algorithm first goes into the third, and then
into the fourth loop, creating the pixels between row 0 and row1, and between row 1 and row 2. The
process ends when the algorithm detects the row value, j, to be greater than or equal to 4.

CPU 1: CPU 2:

CPU 4:

CPU 1:

OPTION 1:
CPU 1 completes
the entire task

CPU 3:

OPTION 2:
Four segments are again partitioned
among four CPUs, and the final pixel
is formed by CPU 1, completing
the entire task

Fig. 6.159 Evaluating pixels at boundaries

6.7 Multi-core Architectures and Parallelism 375

x = 0, y = 0, i = 0, j = 0

op(x, y) = p(i, j)
op(x+1, y) = p(i+2, j)

op(x, y) + op(x+1, y)
2

= p (i+1, j)

x : 2 x = x +1
i = i + 2

x < 2

x ≥ 2

y : 2

x = 0
i = 0

y = y +1
j = j + 2

y < 2

y ≥ 2

i = 0, j = 0

p(i, j) + p(i, j+2)
2

= p (i, j+1)

i : 4

i ≥ 4

i = i + 1
i < 4

i = 0
j = j + 2

j : 4
j < 4

END

j ≥ 4

Fig. 6.160 Pixel averaging algorithm

376 6 Central Processing Unit

Multi-core Systems with a Central Memory and Parallelism in Hardware

In order to understand the basic principles of multi-processor systems with a central memory or
distributed memories, the reader should have “some” familiarity in cache memory operation and its
interaction with the main memory under different conditions. Fundamental terms, such as cache miss
and cache hit during a memory read or a write, will often be mentioned in this section with a central
memory, and also in the next section with distributed memories. Therefore, in case of insufficient
background or understanding, it is important for the reader to refer to the section in this chapter about
cache memories before studying multi-core systems and parallelism in hardware.

To be able to realize parallelism in systems with multiple CPU cores, one method is to have all
CPU cores share the same memory. This platform, however, cannot sustain high-speed data rate if the
number of cores exceeds a few dozen as mentioned earlier. It also assumes that every CPU has its
own cache memory that has to be coherent with a central main memory in an interconnection network
as shown in Fig. 6.153.

The basic idea behind this platform is to have a broadcasting system to invalidate data in all CPU
cache memories as soon as one of the CPU cores updates its cache (and the main memory). This
approach produces a unique cache controller design for every CPU to manage data and be coherent
with the central memory. In this new design, the local cache controller needs to define the data state in
its own cache in one of the three forms depending on a transaction involving another CPU.

The invalid state is the first data state in this design. This state describes a case where the data is
either present in the cache, but in invalid form, or not in the cache. The shared state describes a situation
where the data is in a local cache (perhaps in the other caches as well), but also resides in the main
memory. Finally, the modified state describes a state where the data resides only in a local cache, but
not in other caches, and not in the main memory. The local cache controller transitions between these
three states according to the transactions taking place in the local CPU as well as in other CPUs.

In the following section, we will examine the types of event(s) that make the local cache controller
stay in its current state or transition to another state.

Case 1: Transition from the Invalid to the Invalid state

The local cache controller stays in the Invalid state if a remote CPU issues an address where the data
at this address is initially invalid (or does not exist) in the local cache according to the state diagram
above. This can be triggered by one of the two independent events:

(a) A remote processor write

This event is shown on the left hand side of Fig. 6.161 and goes through the following steps:

• A remote processor places a write request on the bus for other processors to snoop, and issues a
write address.

• Assume this address produces a write miss for the remote CPU. This scenario prompts the remote
cache controller to look for an address match in all other cache memories, including the local
cache. If the remote cache controller finds an address match in the local cache with an invalid data
entry, then it aborts the write.

• Thus, the local cache controller stays in the Invalid state.

6.7 Multi-core Architectures and Parallelism 377

(b) A remote processor read

This event is shown on the right hand side of Fig. 6.161 and goes through the following steps:

• A remote processor places a read request on the bus for other processors to snoop, and issues a
read address.

• Assume this address produces a read miss for the remote CPU. Therefore, the remote cache
controller searches an address match in all other cache memories, including the local cache. If the
remote cache controller finds an address match in the local cache with an invalid data entry, then it
aborts the read.

• Thus, the local cache controller stays in the Invalid state.

Case 2: Transition from the Invalid to the Modified state

INVALID MODIFIED
Local processor write

The local cache controller transitions from the Invalid to the Modified state if the local CPU issues
an address, which resides in the local cache, but has an invalid data entry. This scenario causes a write
hit, which prompts the local processor to write data in its own cache, changing the current state to the
Modified state, according to the state diagram above.

This event is shown in Fig. 6.162, and goes through the following steps:

• The local processor places a write request on the bus for other processors to snoop, and issues a
write address.

• Assume this address produces a write hit for the local CPU, and enables the local cache controller
to write data directly to its own local cache.

• Since the written data does not exist anywhere else in the system, the local processor invalidates
all data entries in every remote cache at this address.

• The local cache controller changes its state from Invalid to Modified due to this written block
while the remote cache controller changes its state to Invalid at this address.

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

0 0 1 -

M S I

Addr X 0 0 0 -Addr X

M S I

Write req.Snoop

ABORT!

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

0 0 1 -

M S I

Addr X 0 0 0 -Addr X

M S I

Read req.Snoop

ABORT!

Fig. 6.161 Transitions from the Invalid to the Invalid state

378 6 Central Processing Unit

Case 3: Transition from the Invalid to the Shared state

INVALID SHARED
Local processor read

The local cache controller transitions from the Invalid to the Shared state if the local CPU issues an
address where the data entry at this address is originally invalid, and causes a read miss. Thus, the
local cache controller fetches data from the main memory, changing the current state from Invalid to
Shared according to the state diagram above.

This event is shown in Fig. 6.163, and goes through the following steps:

• The local processor places a read request on the bus for other processors to snoop, and issues a
read address.

• Assume this address produces a read miss for the local CPU due to an invalid entry. Therefore, the
local cache controller searches an address match in all other caches and the main memory.

• When the local cache controller cannot find an address match in other cache memories, it fetches
this data from the main memory as shown in Fig. 6.163. It then updates the state of this data block
from Invalid to Shared because the data exists both in the local cache and the main memory.

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

0 0 1

M S I

Addr X 0 0 0 -Addr X

M S I

1 0 1

Write req. Snoop

Fig. 6.162 Transition from the Invalid to the Modified state

6.7 Multi-core Architectures and Parallelism 379

After integrating these three cases above, we finally obtain Fig. 6.164, showing all possible state
transitions from the Invalid state.

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

0 0 1

M S I

Addr X 0 0 0 -Addr X

M S I

1 0

Read req. Snoop

Addr X

Fig. 6.163 Transition from the Invalid to the Shared state

INVALID

MODIFIED

SHARED
Remote processor
read OR write

Lo
ca

l p
ro

ce
ss

or
 w

rit
e

Local processor read

Fig. 6.164 Transitions from Invalid to Shared and Modified states

380 6 Central Processing Unit

Case 4: Transition from the Modified to the Modified state

The local cache controller stays in the Modified state if additional addresses issued by the local
CPU result in write or read hits according to the state diagram above.

(a) A local processor write

This event is shown on the left hand side of Fig. 6.165, and goes through the following steps:

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

001

M S I

Addr X 0 0 0 -Addr X

M S I

Write req. Snoop
Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

001

M S I

Addr X 0 0 0 -Addr X

M S I

Read req. Snoop

Fig. 6.165 Transition from the Modified to the Modified state

• The local processor places a write request on the bus for other processors to snoop, and issues a
write address.

• Assume this address produces a write hit for the local CPU, and enables the cache controller to
overwrite new data on top of the existing data at this address.

• Since the block is already in modified form in the local cache, any additional write(s) only updates
the data contents, but does not alter the state.

• Therefore, the local cache controller stays in the Modified state.

(b) A local processor read

This event is shown on the right side of Fig. 6.165, and goes through the following steps:

• Local processor places read request on the bus for other processors to snoop and issues a read
address.

• Assume this address produces a read hit for the local CPU, and enables the local cache controller
to read directly from its own cache.

6.7 Multi-core Architectures and Parallelism 381

• Since the block is already in modified form in the local cache, any additional read(s) from the
same address does not affect its state.

• Therefore, the local cache controller stays in the Modified state.

Case 5: Transition from the Modified to the Invalid state

INVALIDMODIFIED
Remote processor write

The local cache controller transitions from the Modified to the Invalid state according to the state
diagram above if a remote CPU issues an address, which results in a write hit for the remote cache.

This event is shown in Fig. 6.166, and goes through the following steps:

• The remote processor places a write request on the bus for other processors to snoop, and issues a
write address.

• Assume address matches an existing address in the remote cache, and produces a write hit. The
remote cache controller is now enabled to overwrite data on top of the existing data at this address.
The state in the remote cache changes to Modified because the data exists only in the remote cache
but nowhere else.

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

001 -

M S I

Addr X 0 0 0Addr X

M S I

Write req.Snoop

10

Valid block

step 3

step 2

step 1
1

Fig. 6.166 Transition from the Modified to the Invalid state

382 6 Central Processing Unit

• The remote cache controller, therefore, invalidates all data entries in all other caches at this
address.

• Since the addressed block in the local cache is still valid, the local cache controller preserves the
data block by writing it to the main memory (step 1).

• The remote processor then proceeds with writing data to its own cache (step 2).
• The local cache controller changes the state of the data block from Modified to Invalid, and

invalidates the data block at this address (step 3).

Case 6: Transition from the Modified to the Shared state

MODIFIED SHARED
Remote processor read

The local cache controller transitions from the Modified to the Shared state if a remote CPU issues
a read address, but misses the remote cache. If this read address matches one of the addresses in the
local cache, the local cache controller first transfers the block of data to the main memory for the
remote processor to read, and then updates its state from Modified to Shared according to the state
diagram above since this data block exists more than one place.

This event is shown in Fig. 6.167, and goes through the following steps:

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

001

M S I

Addr X 0 0 0Addr X

M S I

Read req.Snoop

10step 3

step 2

st
ep

 1

st
ep

 2

1

Fig. 6.167 Transition from the Modified to the Shared state

6.7 Multi-core Architectures and Parallelism 383

• The remote processor places read request on the bus for other processors to snoop, and issues a
read address.

• Assume this address produces a read miss for the remote CPU, but the remote cache controller is
able to locate the data in the local cache in modified form.

• Therefore, the local CPU first transfers the data block to the main memory (step 1).
• Then the remote CPU fetches this data from the main memory, and brings it to its own cache (step 2).
• The local cache controller changes the state from Modified to Shared (step 3).

Therefore, after integrating the cases from 4 to 6 above, we finally obtain Fig. 6.168, showing all
possible state transitions from the Modified state.

Case 7: Transition from the Shared to the Shared state

The local cache controller stays in the Shared state if the local or a remote CPU issues a read,
which results in a hit as shown by the state diagram above. This can be triggered by one of the two
independent events:

(a) A local processor read

This event is shown on the left side of Fig. 6.169, and goes through the following steps:

INVALID

MODIFIED

SHARED

Local processor
read OR write

R
em

ot
e

pr
oc

es
so

r w
rit

e

Rem
ote

 pr
oc

es
so

r r
ea

d

Fig. 6.168 Transitions from Modified to Invalid and Shared states

384 6 Central Processing Unit

• Local processor places read request on the bus for other processors to snoop, and issues a read
address.

• This address produces a read hit for the local cache. Since this data is shared, additional reads from
the same address does not affect the cache state.

• As a result, the local cache controller stays in the Shared state.

(b) A remote processor read

This event is shown on the right side of Fig. 6.169, and goes through the following steps:

• The remote processor places read request on the bus for other processors to snoop, and issues a
read address.

• This address produces a read hit for the remote cache. Since the data is already shared with other
CPUs and the main memory, additional reads from the same address does not affect the cache state
of the remote CPU, and it certainly does not change the shared state of the local cache at this
address.

• Therefore, the local cache controller stays in the Shared state.

Case 8: Transition from the Shared to the Invalid state

INVALIDSHARED
Remote processor write

The local cache controller transitions from the Shared to the Invalid state if a remote CPU
produces a write hit, modifies the data in its own cache, and invalidates the data entry at this address
in all other caches, including the local cache, as shown by the state diagram above. This event is
shown in Fig. 6.170, and goes through the following steps:

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

00 1

M S I

Addr X 0 0 0 -Addr X

M S I

Read req. Snoop
Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

00 1

M S I

Addr X 0 1 0- Addr X

M S I

Read req.Snoop

Addr X Addr X

Fig. 6.169 Transition from the Shared to the Shared state

6.7 Multi-core Architectures and Parallelism 385

• The remote processor places write request on the bus for other processors to snoop, and issues a
write address.

• Assume this address produces a write hit for the remote cache. Therefore, the remote cache
controller writes the data to its own cache, and invalidates the data entries in all other caches at this
address.

• Thus, the local cache controller changes its cache state from Shared to Invalid at this address while
the remote cache controller changes the state from Shared to Modified.

Case 9: Transition from the Shared to the Modified state

MODIFIEDSHARED
Local processor write

The local cache controller transitions from the Shared to the Modified state if the local CPU issues
a write, which results in a hit, and modifies the data entry in its own cache as shown in the state
diagram above. This event is shown in Fig. 6.171, and goes through the following steps:

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

00 1

M S I

Addr X 0 1 0- Addr X

M S I

Write req.Snoop

-Addr X

010 1

Fig. 6.170 Transition from the Shared to the Invalid state

386 6 Central Processing Unit

• The local processor places write request on the bus for other processors to snoop, and issues a
write address.

• Assume this address produces a write hit for the local cache. Therefore, the local cache controller
is now enabled to write new data to its own cache, invalidating the data entries in all other caches
at this address.

• Since this new data block only exists in the local cache but nowhere else, the local cache controller
changes the cache state from Shared to Modified while all remote cache controllers change their
state to Invalid at this address.

Therefore, after grouping the cases 7, 8 and 9, we obtain Fig. 6.172, showing all possible state
transitions from the Shared state.

Now, if we further integrate the state transitions from Figs. 6.164, 6.168 and 6.172, we obtain the
final form of the state machine for the local cache controller in Fig. 6.173 that manages the data
coherency in multi-core CPUs with a single, centralized memory.

Local
CPU

Remote
CPU

Cache
Local

Main memory

Interconnection bus

Cache
Remote

00 1 -

M S I

Addr X 0 1 0Addr X

M S I

Write req. Snoop

-Addr X

0 101

Fig. 6.171 Transition from the Shared to the Modified state

6.7 Multi-core Architectures and Parallelism 387

Multi-core Systems with Distributed Memories and Parallelism in Hardware

When the number of CPU cores approaches to 100 and over, it may be prudent not to use a single,
central main memory, but allow each CPU to have its own individual memory as shown in Fig. 6.174.

In this platform, every cache is still controlled by a local cache controller, often referred as the MSI
controller (after Modified, Shared and Invalid states), and each distributed memory is managed by a
directory controller. Individual directories contain a set of entries, called Sharers’ IDs, indicating
which CPU core(s) shares the local data block at a particular address.

INVALID

MODIFIED

SHARED
Remote processor
read OR write

Local OR remote
processor read

Local processor
read OR write

Remote processor write

Lo
ca

l p
ro

ce
ss

or
 w

rit
e

R
em

ot
e

pr
oc

es
so

r w
rit

e

Local processor read

Lo
ca

l p
ro

ce
ss

or
 w

rite

Rem
ote

 pr
oc

es
so

r r
ea

d

Fig. 6.173 Cache controller state machine for Snooper-based multi-core CPUs

INVALID

MODIFIED

SHARED
Local OR remote
processor read

Remote processor write

Lo
ca

l p
ro

ce
ss

or
 w

rite

Fig. 6.172 Transitions from Shared to Invalid and Modified states

388 6 Central Processing Unit

Each distributed memory is also managed by a directory system shown in the same figure. Each
directory contains a set of entries, called Sharers’ IDs, indicating which CPU core(s) shares the data
block at a particular address.

The properties of this directory system are as follows:

• For each block in the local memory, there is a corresponding Sharers’ ID entry in the directory.
• This entry lists all possible outcomes after a data transfer: (1) if a data block is shared by other

CPU cores (the Shared state), (2) if a data block only exists in a local memory but nowhere else
(the Modified state), (3) if a data block does not exist in a local memory (the Uncached state).

• On a cache miss, the directory controller searches and locates the wanted data block, and updates
the Sharers’ ID after each read/write operation.

There are basically three CPU cores that involve in every data transaction. Each CPU core in a
transaction is named differently and called a “node”.

• The CPU core that issues an address and requests data from other CPU core(s) is called the
Requesting node.

• The CPU core that contains this issued address in its memory is called the Home node.
• The CPU core that actually has the requested data in its memory is called the Owner node.

Figure 6.175 shows these CPU nodes and their function. Assume there are three CPU cores
connected to a network shown in this figure. In the first step, the requesting node generates an address
and a read/write request. In the second step, the home node locates and fetches the data from the
owner node, and it updates its directory. Finally, in the third step the home node forwards the data to
the requesting node, completing the data transfer.

Directory
controller

Sharers CPU ID

Directory 1

I S

M

Cache

CPU 1
Cache

controller

Shared
Distributed
Memory 1

Interconnection Network

Directory
controller

Sharers CPU ID

Directory N

I S

M

Cache

CPU N

Shared
Distributed
Memory N

Cache
controller

Fig. 6.174 Directory-based system with distributed memory

6.7 Multi-core Architectures and Parallelism 389

The cache controller (the MSI controller) of each CPU node is very similar to the cache controller
for the snooper-based multi-core systems in Fig. 6.173, and is shown in Fig. 6.176.

Invalid Shared

Modified
Read hit
OR
Write hit

Write miss +
Write back block

Rea
d m

iss
 + W

rite
 ba

ck
 bl

oc
k

W
rite

 hi
t +

 S
en

d i
nv

ali
da

te
mes

sa
ge

W
rite

 m
iss

 + S
en

d w
rite

 m
iss

 m
es

sa
ge

In
va

lid
at

e
+

W
rit

e
ba

ck
 b

lo
ck

W
rit

e
m

is
s

+
S

en
d

w
rit

e
m

is
s

m
es

sa
ge

Read miss + Send read miss message

Invalidate

Read hit
OR
Read miss

Fig. 6.176 Cache (MSI) controller in directory-based systems

Directory

Requesting
CPU

Interconnection Network

Home
CPU

Distributed
Memory

Owner
CPU

Sends home node address
Sends Read/Write request

Finds data and forwards it to the requesting CPU
Updates the directory

Owns the data for the requesting CPU
Provides data to the home node

Distributed
Memory

Distributed
Memory

Home
node
address

Data

Directory Directory

Step 1

Step 2Step 3

Fig. 6.175 CPU nodes in directory-based system with distributed memory

390 6 Central Processing Unit

In this figure, the transition from the Invalid state to the Shared state is due to a read request from a
local processor. The local processor (or the requesting node) cannot locate the data in its own cache,
which results in a read miss. At this point, the local processor sends a read miss message, and
transitions to the Shared state because eventually the home node will find the data, and forward it to
the requesting node. The transition from the Invalid state to the Modified state is because of a write
request from a local processor, which results in a write miss. The local processor will eventually write
the data to its own cache and transition to the Modified state because this data is unique and exists
only in the local processor’s cache.

Once in the Shared state, the local cache controller stays in this state whether the local processor’s
read request results in a read hit or a miss. While in the Shared state, if a remote processor issues a
write request, and it results in a write hit, this scenario invalidates the data entry in the local cache,
causing the local cache to transition to the Invalid state. Similarly, a local write causes the cache state
to transition from Shared to Modified because the modified data exists only in the local cache.

A read hit or a write hit while the local cache is in the Modified state keeps the cache in the
Modified state. A write miss while in the Modified state, on the other hand, means that the local cache
controller needs to write data to its own cache and local memory. However, before this event takes
place, the old data block, which is still valid in the local cache, is written back to the local memory.
Then the local cache controller writes the new data to the local cache, transitioning the cache state
from Modified to Modified. Finally, a read miss while in the Modified state causes the cache
controller to locate and bring back the data to the local cache, transitioning the current cache state to
Shared since the data will reside in more than one place. But, before this transaction takes place, the
old data block, which is still valid in the local cache, has to be written back to the local memory.

Similar to the cache controller design in Fig. 6.176, the directory controller has also three distinct
states. The Uncached state represents a block of data that does not yet exist in the directory-based
system. The Modified state represents a block of data that exists only in one of the distributed
memories, but nowhere else. Finally, the Shared state represents the same block of data existing in
more than one distributed memory. The directory controller of the requesting node transitions among
these three states depending on the nature of event(s) between the local memory and remote mem-
ories, and updates the Sharers’ ID every time a data transaction is completed.

Case 1: Transition from the Uncached to the Shared state

In the first case, the directory controller transitions from the Uncached state to the Shared state as a
result of a read miss shown in the state diagram above and in Fig. 6.177, and it goes through the
following steps:

6.7 Multi-core Architectures and Parallelism 391

• The requesting node places a read miss on the bus because the address that it needs to read from is
not in the local memory.

• The home node finds the data either from its own memory or fetches it from some other CPU node
(owner node), and forwards it to the requesting CPU.

• The directory controller changes the state of the requesting directory to Shared.
• The directory controller also updates the sharers’ ID with CPU 1 and CPU 2, corresponding to the

requesting node and the home node, respectively.

Case 2: Transition from the Uncached to the Modified state

In the second case, the directory controller transitions from the Uncached state to the Modified
state as a result of a write miss as shown in the state diagram above and in Fig. 6.178, and it goes
through the following steps:

-

Directory

CPU 1
(req)

Interconnection Network

CPU 2
(home)

1 2S -

Directory

1 2S

Produce home node address
Read miss

Fig. 6.177 Transition from the Uncached to the Shared state

392 6 Central Processing Unit

• The requesting CPU places a write miss on the bus because the address it needs to write to is not in
the local memory.

• The home node locates the data, and writes it directly to the requesting CPU’s memory.
• Because this data exists only in the requesting CPU’s memory, the directory controller changes the

state of the local memory to Modified, and invalidates the data in all other memories at this
address.

• The directory controller updates the sharers’ ID with CPU 1, signifying the data exists at the
requesting node only.

Case 3: Transition from the Shared to the Shared state

SHARED
Read hit
OR
Read miss

In the third case, the directory controller stays in the Shared state as a result of a read hit or a read
miss as shown in the state diagram above and in Fig. 6.179, and it goes through the following steps:

3

Directory

CPU 1
(req)

Interconnection Network

CPU 2
(home)

CPU 3
(owner)

Home
node
address

Data1 2S 3

Directory

1 2S 3

Directory

1 2S

Hit Miss (step 3)

Produce home node
address

Miss (step 2) Miss (step 1)

Fig. 6.179 Transition from the Shared to the Shared state

-

Directory

CPU 1
(req)

Interconnection Network

CPU 2
(home)

1 -M -

Directory

- -I

Produce home node address
Write miss

Fig. 6.178 Transition from the Uncached to the Modified state

6.7 Multi-core Architectures and Parallelism 393

• If a block of data is in Shared state, it must reside in more than one memory in the system,
including the requesting CPU’s own memory.

• In case the data resides in another node and misses the local memory, the requesting CPU places a
read miss on the bus while pointing the home node.

• Since the requested data is shared, the home node finds and fetches the data from the owner node,
and forwards it to the requesting CPU (steps 1, 2 and 3).

• The directory controller keeps the state of the requesting CPU’s memory in Shared.
• The directory controller also updates the sharers’ ID with CPU 1, CPU 2 and CPU 3, corre-

sponding to the requesting, home and owner nodes, respectively. However, the sharers’ ID would
only contain CPU 1 and CPU 2 if the data were located at the home node and only CPU 1 if it
were at the requesting node.

Case 4: Transition from the Shared to the Modified state

In the fourth case, the directory controller transitions from the Shared state to the Modified state as
a result of a write miss or a write hit as shown in the state diagram above and in Fig. 6.180, and it
goes through the following steps:

• If the block of data is in the Shared state, it must reside in more than one memory in the system,
including the requesting CPU’s own memory.

• When the requesting CPU produces a write hit and writes the data to its own memory, the
directory controller changes the state of the memory to Modified, and updates the sharers’ ID with
CPU 1, indicating the data exists only in the local memory.

• When the requesting CPU misses, however, this time the home node fetches the data from the
owner node, and forwards it to the requesting node (steps 1 and 2). The local directory controller
changes the state of the memory to Modified while invalidating the data in all other memories. It
also updates the sharers’ ID with CPU 1.

-

Directory

CPU 1
(req)

Interconnection Network

CPU 2
(home)

CPU 3
(owner)

Home
node
address

Data1 -M -

Directory

- -I -

Directory

- -I

Hit

Produce home node address
Write miss

Miss (step 2) Miss (step 1)

Fig. 6.180 Transition from the Shared to the Modified state

394 6 Central Processing Unit

Case 5: Transition from the Modified to the Modified state

MODIFIED

Write miss
OR
Write hit
OR
Read hit

In the fifth case, the directory controller stays in the Modified state as a result of a write miss, a
write hit or a read hit as shown by the state diagram above and in Fig. 6.181, and it goes through the
following steps:

• If the requesting node produces a write hit, and writes new data directly to its own memory, the
state of the memory remains in the Modified state. The directory controller keeps CPU 1 in the
Sharers’ ID after this event.

• If the requesting node produces a read hit, and reads directly from its own memory, the state of the
memory again remains in the Modified state. The directory controller does not change the current
entry in Sharers’ ID, but keeps it at CPU 1 after this event.

• If the requesting node misses the write while in the Modified state, this time the home node fetches
the data from the owner node, and forwards it to the requesting CPU (steps 1 and 2).

• The directory controller keeps the state of the requesting CPU’s memory at the Modified state, and
invalidates the data in all other memories at this address.

• The directory controller also keeps the sharers’ ID at CPU 1.

Case 6: Transition from the Modified to the Shared state

In the sixth and final case, the directory controller transitions from the Modified state to the Shared
state as a result of a read miss as shown in the state diagram above and in Fig. 6.182, and it goes
through the following steps:

-

Directory

CPU 1
(req)

Interconnection Network

CPU 2
(home)

CPU 3
(owner)

Home
node
address

Data1 -M -

Directory

- -I -

Directory

- -I

Produce home node address
Write miss

Miss (step 2) Miss (step 1)

Fig. 6.181 Transition from the Modified to the Modified state

6.7 Multi-core Architectures and Parallelism 395

• While in the Modified state if the requesting CPU tries to read data from its own memory but
misses, it places a read miss on the bus while the home node fetches the requested data from the
owner node and writes it to the requesting CPU’s memory (steps 1 and 2).

• The requesting CPU then proceeds with reading the data from its own memory (step 3).
• Since this data is now shared among the requesting, home and owner nodes, the directory

controller changes the state of the requesting CPU’s memory to Shared.
• The directory controller also updates the sharers’ ID with CPU 1, CPU 2 and CPU 3.

When the state transitions from case 1 to case 6 are integrated, we obtain the state machine in
Fig. 6.183 for the local directory controller.

Uncached Shared

Modified

Read miss Read hit
OR
Read miss

Write miss
OR
Write hit
OR
Read hit

W
rit

e
m

is
s

Write
 m

iss
 O

R W
rite

 hi
t

Rea
d m

iss

Fig. 6.183 Directory controller for the multi-core distributed memory system

3

Directory

CPU 1
(req)

Interconnection Network

CPU 2
(home)

CPU 3
(owner)

Data1 2S 3

Directory

1 2S 3

Directory

1 2S

Miss (step 3)

Produce home node address
Read miss

Miss (step 2) Miss (step 1)

Fig. 6.182 Transition from the Modified to the Shared state

396 6 Central Processing Unit

6.8 Caches

Cache Topologies

Cache is a local memory to the CPU where the temporary blocks of data is kept until it is permanently
stored in the system memory. No other bus master but the CPU is allowed to access the cache
memory.

There are three types of cache architectures in modern CPUs: fully-associative, set-associative and
direct-mapped.

Fully-associative cache protocol allows a block of data to be written (or read) anywhere in the
cache as shown in Fig. 6.184. In this type of cache architecture, a block of data is searched in the
entire cache before it is read. The range of cache memory addresses to store a block of data is called a
set. In Fig. 6.184, the entire cache containing N number of blocks belongs to a single set.

Set-associative cache protocol, in contrast, allows a block of data to be written (or read) only to a
limited set of addresses in the cache. The top figure of Fig. 6.185 shows a two-way set-associative
cache where a block of data from the main memory is written only to two possible cache addresses,
which defines a set. Conversely, when data needs to be read from a two-way set-associative cache,
data is searched only within a given set. Therefore, the time to search and locate data is reduced by a
factor of 2/N in a two-way set associative cache compared to a fully-associative cache containing N
number of blocks where N is assumed much greater than two.

SET

Fully-Associative CacheMain Memory

Block X

Block 0
Block 1
Block 2
Block 3

Block (N-2)
Block (N-1)

Block (N-4)
Block (N-3)

Block 4
Block 5
Block 6
Block 7

Fig. 6.184 Fully-associative cache topology

6.8 Caches 397

Similar to the two-way set-associative cache, a block of data is searched in four possible addresses
in a set when the CPU issues a cache read in a four-way set-associative cache as shown at the bottom
part of Fig. 6.185. If data needs to be written to the cache, only four possible cache addresses in a set
are considered according to the cache protocol.

The third cache type is the direct-mapped cache as shown in Fig. 6.186. Its organization is similar
to an SRAM, and it maintains a one-to-one addressing scheme with the main memory. In other words,
a block of data in the main memory can only be written to a specific location in the cache memory or
vice versa.

SET 0

2-Way Set Associative CacheMain Memory

SET 1

SET (K-1)

Block X

Block 0
Block 1
Block 2
Block 3

Block (N-2)
Block (N-1)

SET 0

4-Way Set Associative CacheMain Memory

SET 1

SET (K-1)

Block (N-4)
Block (N-3)

Block 4
Block 5
Block 6
Block 7

Block X

Block 0
Block 1
Block 2
Block 3

Block (N-2)
Block (N-1)

Block (N-4)
Block (N-3)

Block 4
Block 5
Block 6
Block 7

SET 2

SET 3

SET (K-2)

Fig. 6.185 Two-way and four-way set-associative cache topologies

398 6 Central Processing Unit

All stored data blocks in the cache memory are tagged. Consequently, all data transactions
between the cache and the main memory (or the CPU) require validation of the tag field before
performing a cache read or write operation. Physically, tag fields are stored in a different memory
block in the same cache structure. However, both the cache and tag memories retain one-to-one
association with each other as shown in Fig. 6.187. In addition, the tag memory comes with valid bits.
Each bit specifies if a block of data residing in the cache has an identical twin in the main memory or
not. A valid bit equal to logic 0 means that the contents of the main memory have not been updated
with the block of data residing in the cache at a certain address. When updating is complete and there
is complete data coherency between the cache and main memories, the valid bit becomes logic 1.

The CPU address that references the cache memory consists of three separate fields as shown at the
bottom section of Fig. 6.187: tag, index and block offset. The index field specifies the set address
where the data block resides. Since a data block may contain many words, block offset selects the
word in the block. Therefore, before a cache-related operation takes place, the tag field in a CPU
address is compared against all the tag fields in a given set. If the tag comparison is successful, the
block of data at the specified set address is transferred out of the cache memory or vice versa.

SET 0

Direct-Mapped CacheMain Memory

Block X

Block 0
Block 1
Block 2
Block 3

Block (N-2)
Block (N-1)

Block (N-4)
Block (N-3)

Block 4
Block 5
Block 6
Block 7

SET 1
SET 2
SET 3
SET 4
SET 5
SET 6
SET 7

SET (N-4)
SET (N-3)
SET (N-2)
SET (N-1)

Fig. 6.186 Direct-mapped cache topology

6.8 Caches 399

Cache Write and Read Data-Paths

Cache write operation starts with comparing the tag field of the CPU address with all the tag fields of
the addressed set in the tag memory. If the comparison is successful, this creates a hit signal, and
prompts the CPU to write data to the specified set (and block offset) address in the cache memory.

Figure 6.188 shows the cache write operation to a 32-bit, four-way set-associative cache. This
cache contains 22-bit tag fields, 256 sets due to the eight-bit index field, and four words in a block due
to the two-bit block offset field. The write process starts with identifying the set address using the
eight-bit index field. All four tag fields at this set address are individually compared against the CPU
tag using XNOR-gates as shown at the output stage of the tag memory in Fig. 6.188. If one of the tags
at the set address compares successfully with the CPU tag, it creates a hit signal for the CPU to write a
block of data to the corresponding set address. The CPU data is routed through the tri-state buffers
placed at the input stage of the cache memory, and written to the designated address via the index
field and the block offset field.

The cache read operation is similar to the cache write operation except that the cache and the tag
memories are accessed simultaneously to shorten the cache read access period.

Figure 6.189 shows the same four-way set-associative cache structure shown in Fig. 6.188. With
the eight-bit index field defining the set address, four tag blocks from the tag memory and four data

Cache Memory

Block 0V
Block 1V
Block 2V
Block 3V

Block (N-2)V
Block (N-1)V

Tag 0
Tag 1
Tag 2
Tag 3

Tag (N-2)
Tag (N-1)

Tag MemoryValid Bits

TAG INDEX BLOCK OFFSET

BLOCK ADDRESS

SET
selection

TAG
comparison

WORD
selection

CPU ADDRESS:

Fig. 6.187 Cache structure

400 6 Central Processing Unit

Bl
oc

k
3

Ta
g

0
Ta

g
1

TA
G

IN
D

EX
BL

O
C

K
O

FF
SE

T

BL
O

C
K

AD
D

R
ES

S

H
it

3

C
PU

 A
D

D
R

ES
S:

Bl
oc

k
2

Bl
oc

k
3

Bl
oc

k
2

Bl
oc

k
1

Bl
oc

k
0

Bl
oc

k
1

Bl
oc

k
0

Bl
oc

k
3

Bl
oc

k
2

Bl
oc

k
3

Bl
oc

k
2

Bl
oc

k
1

Bl
oc

k
0

Bl
oc

k
1

Bl
oc

k
0

Ta
g

2
Ta

g
3

Ta
g

0
Ta

g
1

Ta
g

2
Ta

g
3

Ta
g

0
Ta

g
1

Ta
g

2
Ta

g
3

Ta
g

0
Ta

g
1

Ta
g

2
Ta

g
3

SE
T

0

SE
T

1

SE
T

25
5

SE
T

25
4

BO
ff

=
3

22
22

22
22

H
it

3
H

it
2

H
it

1
H

it
0

C
PU

 T
ag

Fr
om

 C
PU

C
PU

 In
de

x
C

PU
 In

de
x

22
 b

its
8

bi
ts

2
bi

ts

32
32

32
32

H
it

3
BO

ff
=

2
H

it
3

BO
ff

=
1

H
it

3
BO

ff
=

0

H
it

0
32

32
32

32

H
it

0

H
it

0

H
it

0

BO
ff

=
3

BO
ff

=
2

BO
ff

=
1

BO
ff

=
0

22
22

22
22

Fi
g
.
6.
18

8
C
ac
he

w
ri
te

da
ta
-p
at
h
an
d
op

er
at
io
n

6.8 Caches 401

Bl
oc

k
3

Ta
g

0
Ta

g
1

TA
G

IN
D

EX
BL

O
C

K
O

FF
SE

T

BL
O

C
K

AD
D

R
ES

S

H
it

3

C
PU

 A
D

D
R

ES
S:

Bl
oc

k
2

Bl
oc

k
3

Bl
oc

k
2

Bl
oc

k
1

Bl
oc

k
0

Bl
oc

k
1

Bl
oc

k
0

Bl
oc

k
3

Bl
oc

k
2

Bl
oc

k
3

Bl
oc

k
2

Bl
oc

k
1

Bl
oc

k
0

Bl
oc

k
1

Bl
oc

k
0

Ta
g

2
Ta

g
3

Ta
g

0
Ta

g
1

Ta
g

2
Ta

g
3

Ta
g

0
Ta

g
1

Ta
g

2
Ta

g
3

Ta
g

0
Ta

g
1

Ta
g

2
Ta

g
3

SE
T

0

SE
T

1

SE
T

25
5

SE
T

25
4

12
8

12
8

12
8

12
8

12
8

32

H
it

2
H

it
1

H
it

0

3
2

1
0

C
PU

 B
lo

ck
 O

ffs
et

2

22
22

22
22

H
it

3
H

it
2

H
it

1
H

it
0

C
PU

 T
ag

To
 C

PU

C
PU

 In
de

x
C

PU
 In

de
x

22
 b

its
8

bi
ts

2
bi

ts

22
22

22
22

Fi
g
.
6.
18

9
C
ac
he

re
ad

da
ta
-p
at
h
op

er
at
io
n

402 6 Central Processing Unit

blocks from the cache memory are read out simultaneously. Each tag is individually compared with
the 22-bit tag field in the CPU address, and hit signals are generated by 22 sets of two-bit XNOR
gates followed by a 22-bit AND gate. These hit signals are subsequently used as selector inputs for
the 4-1 MUX at the output of the cache memory to select one of the cache blocks. The word from the
chosen block is selected by the two-bit block offset field and directed to the CPU.

Example 6.18 Examine the memory transactions in Fig. 6.190 to understand the operation of a
direct-mapped cache.

Each CPU address in this example contains a five-bit word with three-bit index field and a two-bit
tag field. Therefore, the cache structure consists of eight sets.

Assume that the CPU issues cache reads from the following addresses: 10101, 10010, 10101,
01010, 10000, 10110, 10000, 10100 and 11111. Initially, the valid bit, the tag and the data fields of
the cache memory are all zero. The index column in Fig. 6.190 is not an actual part of cache memory.
Its sole purpose is simply to indicate the set address.

When the CPU issues the first read from the address 10101, the tag memory contents 00 at the set
address 101 are compared against the tag field contents of 10 in the CPU address. Since the two
values are different from each other, the cache controller issues a cache miss, fetches the data,
mem(10101), from the main memory address of 10101, delivers this data to the CPU, and stores the
same data in the cache. It also updates the tag contents with 10, and issues valid bit = 1.

Next, the CPU issues the second read from the address 10010. This time, the tag memory contents
00 at the set address 010 are compared with the tag field of 10 in the CPU address. The comparison
fails and produces another miss. The cache controller fetches the data, mem(10010), from the main
memory, writes this data to the set address 010 of the cache memory, delivers the same data to the
CPU, updates the tag memory with 10, and produces valid bit = 1.

The CPU reissues another read from the address 10101. The tag contents 10 at the set address 101
compare successfully with the CPU tag field of 10. As a result, the cache controller issues a hit. The
data, mem(10101), at the set address 101 is transferred directly from the cache memory to the CPU.

The next CPU address 01010 accesses the set, 010, in the tag memory, but finds the tag memory
contents of 10 at this address is different from the tag field contents of 01 in the CPU address.
Therefore, the cache controller issues a miss, fetches mem(01010) from the main memory, and
delivers this data to the CPU and the cache memory. It also updates the tag contents with 01, and
issues valid bit = 1.

The fifth address 10000 produces a fourth miss because the tag contents of 00 at the set address
000 do not compare with the tag contents of 10 in the CPU address. The cache controller transfers
mem(10000) from the main memory to the set address 000 of the cache, delivers the same data to the
CPU, updates the tag contents with 10, and produces valid bit = 1.

When the CPU issues the sixth address 10110, the cache controller finds the tag contents of 00 at
the set address 110 to be different from the tag field contents of 10 in the CPU address, and issues a
miss. Consequently, the cache controller fetches mem(10110) from the main memory, delivers it to
the CPU and the cache memory. It also updates the tag memory with 10, and assigns valid bit = 1.

Next, the CPU reissues the address 10000. This time, the CPU and the tag memory contents
match, and produce a cache hit. The cache controller simply delivers mem(10000) from the set
address 000 of the cache to the CPU.

The next address 10100 creates another cache miss. The cache controller updates the set address
contents with mem(10100), and delivers the same data to the CPU. It also updates the tag memory
with a value of 10 and issues valid bit = 1.

When the last CPU address 11111 is issued, the cache controller finds the tag field contents of 11
in the CPU address to be different from the tag memory contents 00 at the set address 111, and issues
a miss. Subsequently, it delivers mem(11111) to both the CPU and the cache. It updates the tag
memory with 11 and assigns valid bit = 1.

6.8 Caches 403

TAG
2 bits 3 bits 0 bits

INDEX BOFFCPU Address:

(3) After the MISS at address 10010 (4) After the HIT at address 10101

INDEX TAG DATA

000
001
010

011
100
101
110
111

V

0
0
1

0
0
1
0
0

00
00
10

00
00
10
00
00

0
0

0
0

mem (10101)
0
0

mem (10010)

INDEX TAG DATA

000
001
010

011
100
101
110
111

V

0
0
1

0
0
1
0
0

00
00
10

00
00
10
00
00

0
0

0
0

mem (10101)
0
0

mem (10010)

(5) After the MISS at address 01010

INDEX TAG DATA

000
001
010

011
100
101
110

111

V

0
0
1

0
0
1
0

0

00
00
01

00
00
10
00

00

0
0

0
0

mem (10101)
0

0

mem (01010)

(6) After the MISS at address 10000

INDEX TAG DATA

000
001
010

011
100
101
110

111

V

1
0
1

0
0
1
0

0

10
00
01

00
00
10
00

00

0

0
0

mem (10101)
0

0

mem (01010)

mem (10000)

(7) After the MISS at address 10110

INDEX TAG DATA

000
001
010

011
100
101
110
111

V

1
0
1

0
0
1
1

0

10
00
01

00
00
10
10

00

0

0
0

mem (10101)

0

mem (01010)

mem (10000)

mem (10110)

(8) After the HIT at address 10000

INDEX TAG DATA

000
001
010

011
100
101
110
111

V

1
0
1

0
0
1
1

0

10
00
01

00
00
10
10

00

0

0
0

mem (10101)

0

mem (01010)

mem (10000)

mem (10110)

(9) After the MISS at address 10100

INDEX TAG DATA

000
001
010

011
100
101
110
111

V

1
0
1

0
1
1
1

0

10
00
01

00
10
10
10

00

0

0

0

mem (10101)

mem (01010)

mem (10000)

mem (10110)

mem (10100)

(10) After the MISS at address 11111

INDEX TAG DATA

000
001
010

011
100
101
110
111

V

1
0
1

0
1
1
1

1

10
00
01

00
10
10
10

11

0

0

mem (10101)

mem (01010)

mem (10000)

mem (10110)

mem (11111)

mem (10100)

INDEX TAG DATA

000
001
010

011
100
101
110
111

V

0
0
0

0
0
0
0
0

00
00
00

00
00
00
00
00

0
0
0

0
0
0
0
0

(1) Initial state of the cache

INDEX TAG DATA

000
001
010

011
100
101
110
111

V

0
0
0

0
0
1
0
0

00
00
00

00
00
10
00
00

0
0
0

0
0

mem (10101)
0
0

(2) After the MISS at address 10101

Fig. 6.190 A direct-mapped cache operation

404 6 Central Processing Unit

Write-Through and Write-Back Cache Structures in Set Associative Caches

It is very common to see two types of cache structures when analyzing set-associative caches:
write-through caches and write-back caches.

In write-through caches, the cache controller maintains data coherency between the cache and the
main memory before issuing a new data transaction.

In write-back caches, the wait time for data coherency is an essence. For example, if the trans-
action requires writing to the main memory as well as the cache, the cache controller temporarily
stores the data in the write-back buffer instead of waiting to write it to the main memory, and starts a
new task. When the bus arbiter grants the bus access, the cache controller resumes transferring this
data from the write-back buffer to the main memory.

Example 6.19 Examine the data transactions between the CPU and a two-way set-associative
write-through cache in Fig. 6.191 to understand how write-through caches operate. The initial con-
tents of the main memory are shown in the same figure. Each transaction is specified by a CPU
address, the type of transaction and data.

Transaction No CPU Address Read/Write CPU Data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

010101

110001

100000

100011

110000

010011

000110

001110

110000

100000

100100

100100

111100

000000

Read

Read

Read

Read

Read

Read

Read

Write

Write

Write

Write

Write

Write

Write

-

-

-

-

-

-

0x0B

0x1B

0x2B

0x3B

0x0C

0x1C

0x2C

-

0x3F

0x3A

0x0A

0x0E

0x0F

0x2A

0x1A

000000

010011

010101

100000

100011

110000

110001

MAIN MEMORY
(Word Addressable)

Fig. 6.191 A two-way set-associative write-through cache pending transactions and initial data memory contents

6.8 Caches 405

The CPU address in this example consists of six bits: the most significant four bits define the tag
address; the least significant two bits indicate the set address as shown in Fig. 6.192. There are no bits for
block offset, which indicates every data block consists of a single word with six bits of data. Since this is a
two-way set-associative cache, the memory is organized as two adjacent data blocks for every set. The tag
memory also consists of two adjacent tag fields with valid bits at every set as shown in Fig. 6.192.

Fig. 6.192 A two-way set-associative write-through cache, tag and data memory contents after the sixth, tenth, twelfth
and fourteenth transactions

406 6 Central Processing Unit

The data from the main memory can either go to the most significant (WAY 1) or the least
significant (WAY 0) block position of the two-way set-associative cache. Therefore, a data
replacement policy must be defined when designing set-associative cache architecture. In this
example, let us assume that the data replacement policy replaces old data with smaller number of
memory references (the total number of reads and writes) with new data. If the number of memory
references is the same at a particular set, the block of data at the most significant cache position is
replaced with new data.

The first transaction reads from the memory address 010101. In this transaction, the cache con-
troller compares the tag field contents 0101 in the CPU address with the tag memory contents 0000 at
the set address 01, and issues a miss. Next, the cache controller fetches 0x0A from the main memory
address of 010101, and delivers it to the CPU. Since the number of memory references at the most
and the least significant cache positions are both zero at this point, the cache controller places 0x0A at
the most significant cache position as the result of the data replacement policy. It also updates the tag
memory with 0101, and assigns valid bit = 1.

The next five read transactions result in five consecutive cache misses. By the end of the sixth
transaction, six new data entries from the main memory are written to both the cache and the tag
memories as shown in Fig. 6.192.

The seventh CPU transaction is a write. The CPU issues to write 0x0B to the main memory
address 000110. As for the read operations, the cache controller compares the tag memory contents of
0000 at the set address 10 with the tag field contents of 0001 in the CPU address, and issues a miss.
The data, 0x0B, is written to both the main memory address 000110 and the most significant cache
position at the set address 10. The tag memory is also updated with 0001, and valid bit = 1.

In the eight transaction, the cache controller again issues a miss for the set address 10 because the
tag field comparison fails. Consequently, the cache controller stores the CPU data, 0x1B, in the main
memory address 001110, and also writes this data to the least significant cache position at the set
address 10. The tag memory is updated with 0011, and valid bit = 1.

The next write compares the tag field entry 1100 in the CPU address with the tag memory entries
at the set address 00. Since the least significant tag memory contents are identical to the CPU tag
entry, the cache controller issues a hit, but still replaces the contents of the main memory at the
address 110000 and the contents of the cache memory at the set address 00 with 0x2B. This is
because the architecture of this cache is a write-through which requires the cache and the main
memory contents to be the same before the cache controller starts a new task. Therefore, there is
really no difference between a cache write miss and cache write hit when it comes to updating the
cache and the main memory contents. However, the tag memory contents require no updating in a
cache write hit.

The tenth transaction is another CPU write which results in a cache hit. Like the previous write
transaction, the cache controller has to replace the contents of the main memory at the address 100000
and the contents of the cache memory at the set address 00 with 0x3B. At the end of the tenth
transaction, the cache and the tag memory contents are shown in Fig. 6.192 with two memory
references for the set address 00, and one memory reference for the remaining set addresses.

The eleventh transaction creates a cache miss, and causes the cache controller to replace the data,
0x3B, at the most significant cache position with the CPU data, 0x0C, at the set address 00. The most
significant tag entry 1000 is also replaced with 1001 at the same set address.

The twelfth transaction creates a cache hit because the CPU tag field 1001 compares successfully
with the tag memory contents at the set address 00. However, the cache controller replaces 0x0C at
the main memory address 100100 and at the set address 00 with the new CPU data, 0x1C.

In the thirteenth transaction, the CPU address 111100 causes a cache miss. The CPU data, 0x2C, is
written to both the main memory address 111100 and the least significant cache position at the set
address 00 per data replacement policy. The least significant tag memory contents at the set address
00 are also updated with 1111.

6.8 Caches 407

The fourteenth transaction is a memory read and causes another miss. The cache controller delivers
0x3F from the main memory address, 000000, to the CPU and writes the same data to the least
significant cache position at the set address 00.

Example 6.20 Examine the data transactions between the CPU and a two-way set-associative
write-back cache in Fig. 6.193 to understand how write-back caches operate. The initial contents of

Two-Way Set-Associative Tag Memory

Transaction No CPU Address Read/Write CPU Data

1

2

3

4

10001000

10000000

10000001

10000010

10000011

10000000

10000001

10000010

10000011

11000000

Read

Write

Write

Write

Write

Write

Write

Write

Write

Read

-

0xE0

0xE1

0xE2

0xE3

0xF0

0xF1

0xF2

0xF3

-

0xA010001000

MAIN MEMORY
(Word Addressable)

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

Two-Way Set-Associative Cache Memory

0xC2 0xC1 0xC0

11 10 01 00

WAY 0

11 10 01 00

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1011

D TAG

0xB3 0xB2 0xB1 0xB0

1

V

0

WAY 0

1010

D TAG

1

V

0xA110001001

0xA210001010

0xA310001011

0xB010101000

0xB110101001

0xB210101010

0xB310101011

0xC010111000

0xC110111001

0xC210111010

0xC310111011

0xD011000000

0xD111000001

0xD211000010

0xD311000011

Write-Back Buffer
Block 1 Block 0

CPU Address

4 bits

BOFFINDEXTAG

2 bits 2 bits

Fig. 6.193 A two-way set-associative write-back cache pending transactions and initial data memory

408 6 Central Processing Unit

the main memory are shown in the same figure. Each transaction is specified by a CPU address, the
type of transaction and data.

The CPU address in this example has eight bits. The most significant four bits are reserved for the
tag field. The two-bit index field indicates that there are four sets in the cache memory. The two-bit
block offset field signifies that there are four eight-bit wide words in each data block. The cache
memory consists of two adjacent blocks at WAY 1 and WAY 0 positions, each of which contains
four words at a given set. The tag memory has also two adjacent tag entries with valid bits, and each
tag represents a data block in the cache memory. The data replacement policy in the cache memory
assumes to replace the block of data with the least number of memory references. If the number of
memory references is the same at a particular set, then the policy dictates to replace the old data at the
least significant cache position with new data.

Since this is a write-back cache, its architecture enables the cache controller to store CPU data
temporarily in a buffer to be written back to the main memory at a later time. Every time a block of data
is written to this buffer, the dirty bit associated with this block becomes logic 1, designating that this
block is waiting to be written to the main memory. Therefore, the cache coherency mechanism that
presides over write-through caches is not applicable to write-back caches. Instead, the dirty bit attached
to each tag entry determines if the same block of data exists in both the cache and the main memories.

Initially, identical data reside in both the main memory and the cache, and therefore both valid bit
entries at the set address 10 in the tag memory are equal to logic 1. Since there is no data in the
write-back buffer waiting to be written back to the main memory, the dirty bits at the set address 10
are equal to logic 0.

The first CPU transaction is to read data from the memory address, 10001000. The cache con-
troller compares the tag entry 1000 in the CPU address with all the tags at the set address 10 and
issues a miss. It then transfers the block of data from the main memory address 10001000 (0xA0,
0xA1, 0xA2 and 0xA3) to replace the old block (0xB0, 0xB1, 0xB2 and 0xB3) at the least significant
cache position. The cache controller also updates the corresponding tag contents with 1000 as shown
at the top portion of Fig. 6.194.

6.8 Caches 409

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

0xC2 0xC1 0xC0

11 10 01 00

WAY 0

11 10 01 00

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1011

D TAG

0xA3 0xA2 0xA1 0xA0 1

V

0

WAY 0

1000

D TAG

1

V

Write-Back Buffer
Block 1 Block 0

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory

AFTER THE 1st TRANSACTION

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

0xC2 0xC1 0xC0

11 10 01 00

WAY 0

11 10 01 00

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1011

D TAG

0xE3

0xA3

0xE2

0xA2

0xE1

0xA1

0xE0

0xA0 1

V

1

0

WAY 0

1000

1000

D TAG

1

1

V

Write-Back Buffer
Block 1 Block 0

0xE00xE10xE20xE3----

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory

AFTER THE 2nd TRANSACTION

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

0xC2 0xC1 0xC0

11 10 01 00

WAY 0

11 10 01 00

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1011

D TAG

0xF3

0xA3

0xF2

0xA2

0xF1

0xA1

0xF0

0xA0 1

V

1

0

WAY 0

1000

1000

D TAG

1

1

V

Write-Back Buffer
Block 1 Block 0

0xF00xF10xF20xF3----

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory

AFTER THE 3rd TRANSACTION

0xD3

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

0xD2

0xC2

0xD1

0xC1

0xD0

0xC0

11 10 01 00

WAY 0

11 10 01 00

0

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1100

1011

D TAG

0xF3

0xA3

0xF2

0xA2

0xF1

0xA1

0xF0

0xA0

1

1

V

1

0

WAY 0

1000

1000

D TAG

1

1

V

Write-Back Buffer
Block 1 Block 0

0xF00xF10xF20xF3----

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory

AFTER THE 4th TRANSACTION

Fig. 6.194 A two-way set-associative write-back cache with tag and write-back buffers

410 6 Central Processing Unit

The next CPU transaction is a write, which results in a cache miss. Consequently, the cache
controller writes the contents of the CPU block that consists of 0xE0, 0xE1, 0xE2 and 0xE3 to the
least significant cache position at the set address 00, and updates the tag memory contents with 1000.
The cache controller also stores this block in the write-back buffer, and assigns dirty bit = 1 for the
block because it exists only in the cache but not in the main memory. For this transaction, the valid bit
is set at logic 1 because this block is considered a valid block from the CPU, not yet updated in the
main memory. When the block is transferred to the main memory, the cache controller assigns dirty
bit = 0, but still keeps the valid bit at logic 1.

The third CPU transaction is a write and results in a cache hit. The cache controller simply writes
the new block of data, 0xF0, 0xF1, 0xF2 and 0xF3, to the least significant block position of the cache
memory, replacing the old block, 0xE0, 0xE1, 0xE2 and 0xE3. It also writes the same data to the
write-back buffer. Since this transaction does not require transferring the old block from the
write-back buffer to the main memory, the write-back scheme creates a distinct speed advantage over
the write-through scheme.

The last CPU transaction is a memory read that results in a miss. Consequently, the data block,
0xD0, 0xD1, 0xD2 and 0xD3, that resides at the main memory address 11000000 is transferred to the
most significant block position of the cache memory at the set address 00 since this position has zero
memory references compared to the least significant block position. The tag memory contents at this
set address are updated with 1100 with the valid bit is set to logic 1, and the dirty bit is set to logic 0.

Exploring the Least-Recently-Used (LRU) Replacement Algorithm

In the previous sections, we proposed a simple algorithm to replace data blocks with minimum
number of references to help the reader understand how the cache controller works when a cache miss
occurs. The real-life data replacement policy in caches, however, is based on a slightly different
algorithm than what we have proposed. The Least-Recently-Used (LRU) algorithm is based on a
policy to replace a data block with least amount of usage and not referenced recently in a set.

Example 6.21 Examine the example in Fig. 6.195 to understand the LRU algorithm for
write-through caches.

6.8 Caches 411

TAG
6 bits

SET
1 bit

BOFF
5 bits

TAG1 TAG0V1 V0LRU
SET0
SET1

WAY1
SET0
SET1

WAY0

WAY1 WAY0

Tag memory

Cache memory

 Transaction No CPU Address TAG SET BOFF

1
2

3

4

5

6

7

8
9

0x070

0x080

0x068

0x190

0x084

0x178

0x08C

0xF00
0x064

000001

000010

000001

000110

000010

000101

000010

111100
000001

1

0

1

0

0

1

0

0
1

10000

00000

01000

10000

00100

11000

01100

00000
00100

Fig. 6.195 A two-way set-associative write-through cache with LRU and pending transactions

This cache is assumed to be a two-way set-associative, write-through cache with a total memory
capacity of 128 bytes. It has 32-byte block size and communicates with the CPU using a 12-bit
address bus.

Therefore, we can determine the following entries in the CPU address:

Block offset = 5 bits to signify each byte of a 32-byte block size
Set = 128 total bytes/(32 bytes per block � 2 ways) = 128/64 = 2 sets
Tag = 12 − (5 + 1) = 6 bits

The most significant six bits in the CPU address are reserved for the tag field. The one-bit index
field indicates that there are only two sets in the cache as shown above. The least significant five bits
represent the block offset field. The cache memory consists of two adjacent blocks in WAY 1 and
WAY 0 positions, each of which contains 32 words. The tag memory has also two adjacent tag entries
with valid bits and a LRU bit for each set.

Since this example concentrates on how the LRU mechanism works, only the tag memory is
shown after each transaction in Fig. 6.196, skipping the contents of the cache memory.

The first CPU transaction delivers a CPU address, 0x070, which produces a tag, 000001 and a
block offset, 10000, referencing set 1. Since this first CPU tag does not match with the current tag of
000000, a miss occurs, and the least significant tag is replaced with 000001. This is because the LRU
bit is initially set at zero, which shows the least significant tag position. The LRU bit in this set
transitions to logic 1, signifying to replace the most significant tag contents next time another miss
occurs.

412 6 Central Processing Unit

The second transaction produces a tag value of 000010 with a block offset, 00000, pointing set 0.
Just like the first transaction, this transaction produces a miss and replaces the least significant tag
contents in set 0 with 000010. The LRU bit for this set is also set to logic 1.

The third transaction points set 1 with a tag value of 000001. This is a hit, and therefore no change
takes place in the tag memory. The cache memory contents, however, would change if this transaction
were a write.

The fourth transaction produces a new tag value, 000110, targeting set 0, and it creates a miss. The
new tag is stored in the most significant tag position according to the current LRU bit, which
promptly transitions to logic 0, indicating the least significant tag to be replaced next time a miss
occurs.

0 0 - 0 -
TAG1 TAG0V1 V0LRU

1 0 - 1 000001
SET0
SET1

Transaction 1: Cache miss

This bit indicates which
block to replace next time

1 0 - 1 000010
TAG1 TAG0V1 V0LRU

1 0 - 1 000001
SET0
SET1

Transaction 2: Cache miss

1 0 - 1 000010
TAG1 TAG0V1 V0LRU

1 0 - 1 000001
SET0
SET1

Transaction 3: Cache hit

0 1 000110 1 000010
TAG1 TAG0V1 V0LRU

1 0 - 1 000001
SET0
SET1

Transaction 4: Cache miss

0 1 000110 1 000010
TAG1 TAG0V1 V0LRU

1 0 - 1 000001
SET0
SET1

Transaction 5: Cache hit

0 1 000110 1 000010
TAG1 TAG0V1 V0LRU

0 1 000101 1 000001
SET0
SET1

Transaction 6: Cache miss

0 1 000110 1 000010
TAG1 TAG0V1 V0LRU

0 1 000101 1 000001
SET0
SET1

Transaction 7: Cache hit

1 1 000110 1 111100
TAG1 TAG0V1 V0LRU

0 1 000101 1 000001
SET0
SET1

Transaction 8: Cache miss

1 1 000110 1 111100
TAG1 TAG0V1 V0LRU

0 1 000101 1 000001
SET0
SET1

Transaction 9: Cache hit

Fig. 6.196 A two-way set-associative write-through cache during transactions

6.8 Caches 413

Transaction five produces another hit and does not change the tag contents. Transaction six stores a
new tag value of 000101 in the most significant tag position in set 1, producing LRU = 0. Transaction
seven is another hit just like transactions three and five, and does not change the tag contents. Transaction
eight creates a miss and points at set 0. The new tag value in this set, 111100, replaces the old value,
000010, switching the LRU bit to logic 0. The last transaction is another hit, and the tag contents remain
the same.

Example 6.22 Examine the data transactions between the CPU and a set-associative write-back
cache to understand how the LRU-based write-back cache operates.

Assume the following four-way set associative cache with a write back buffer in Fig. 6.197. This
cache has four sets, and each set contains two eight-bit words which define the data block size. The
CPU address is, therefore, divided into three segments as discussed before. The most significant five
bits in the address field belongs to the tag. The index or the set is shown by the middle two bits
followed by the block offset bit at the least significant bit position.

Assume the CPU carries out 15 data transactions with the main memory. The transactions details
and the main memory contents prior to these transactions are shown in Fig. 6.198.

TAG
5 bits

SET
2 bits

BOFF
1 bit

CPU Address

TAG3URL V
SET0
SET1

WAY3

Tag memory

D TAG2VD TAG1VD TAG0VD

SET2
SET3

WAY2 WAY1 WAY0

5 bits 5 bits 5 bits 5 bits

Cache memory

SET0
SET1
SET2
SET3

BOFF = 1 BOFF = 0

WAY3

BOFF = 1 BOFF = 0

WAY2

BOFF = 1 BOFF = 0

WAY1

BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Write-back buffer

BOFF = 1 BOFF = 0

WAY3

BOFF = 1 BOFF = 0

WAY2

BOFF = 1 BOFF = 0

WAY1

BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Fig. 6.197 A four-way set-associative write-back cache with LRU

414 6 Central Processing Unit

 Transaction No

1

CPU Address

00001100

10000100

R/W

R

R

R

R

R

R

R

R

W

W

2

3

4

5

6

7

8

9

10

W

W

11

12

W13

W

W

14

15

11000100

11111100

00001110

10100110

11100110

00010110

00010100

00010101

11110100

11110101

11110100

11110101

00001100

00001101

11011100

11011101

11111100

11111101

11110100

11110101

0xA1

0xA0

0xB1

0xB0

CPU Data

0xC1

0xC0

0xD1

0xD0

0xE1

0xE0

0xF1

0xF0

0xF3

0xF2

0X11

0X81

0X80

0X10

0X51

0X50

0X21

0X20

0X61

0X60

0X31

0X30

0X71

0X70

0X41

0X40

CPU
Address

00001100

00001101

00001110

00001111

00010110

00010111

10000100

10000101

10100110

10100111

11000100

11000101

11100110

11100111

11111100

11111101

Main
Memory

Fig. 6.198 Pending CPU transactions (left) and main memory contents (right)

6.8 Caches 415

The first two read transactions result in two consecutive cache misses. The cache controller,
therefore, retrieves the data block, 0x11 and 0x10, from the main memory address, 00001100, and
then the data block, 0x21 and 0x20, from the main memory address, 10000100, and brings them to
the cache. The contents of the tag and the cache memory are shown in Fig. 6.199.

The next six read transactions also end up with cache misses. The cache controller brings the
blocks, 0x31 and 0x 30, 0x41 and 0x40, 0x51 and 0x50, 0x61 and 0x60, 0x71 and 0x70, and finally
the block, 0x81 and 0x80, from the main memory, and places them in the cache. The updated tag and
cache memory contents are shown in Fig. 6.200.

0 0 -
TAG3VLRU

0 0 -
SET0
SET1

WAY3

Tag memory

0
D

0
0 -

TAG2V

0 -
0
D

0
0 -

TAG1V

0 -
0
D

0
0 -

TAG0V

0 -
0
D

0
2 0 -
0 0 -

0
0

0 -
0 -

0
0

1 10000
0 -

0
0

1 00001
0 -

0
0

SET2
SET3

WAY2 WAY1 WAY0

5 bits 5 bits 5 bits 5 bits

-
-

Cache memory

-
-

-
-

-
-

SET0
SET1
SET2
SET3

BOFF = 1 BOFF = 0

WAY3

-
-

-
-

-
-

-
-

BOFF = 1 BOFF = 0

WAY2

-
-

-
-

0x20
-

0x21
-

BOFF = 1 BOFF = 0

WAY1

-
-

-
-

0x10
-

0x11
-

BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

-

Write-back buffer

-
BOFF = 1 BOFF = 0

WAY3

- -
BOFF = 1 BOFF = 0

WAY2

- -
BOFF = 1 BOFF = 0

WAY1

- -
BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Fig. 6.199 After the second transaction

416 6 Central Processing Unit

The first two write transactions also result in two cache misses as shown in Fig. 6.201. After the
first write miss, the cache controller places the block, 0xA1 and 0xA0, at the least significant cache
position (WAY 0) because the LRU bit was equal to zero at the end of the eighth transaction. Once
the cache controller replaces the old block, the LRU bit increments by one, and the dirty bit is set to
logic 1 because the new data block, 0xA1 and 0xA0, does not yet exists in the main memory. This
block is also written to the write-back buffer.

The next block, 0xB1 and 0xB0, is similarly placed at the WAY 1 position in the cache and in the
write-back buffer because the LRU bit was equal to one after the ninth transaction. Since this block

0 0 -
TAG3VLRU

0 0 -
SET0
SET1

WAY3

Tag memory

0
D

0
0 -

TAG2V

0 -
0
D

0
0 -

TAG1V

0 -
0
D

0
0 -

TAG0V

0 -
0
D

0
0 1 11111
0 1 00010

0
0

1 11000
1 11100

0
0

1 10000
1 10100

0
0

1 00001
1 00001

0
0

SET2
SET3

WAY2 WAY1 WAY0

5 bits 5 bits 5 bits 5 bits

-
-

Cache memory

-
-

0x40
0x80

0x41
0x81

SET0
SET1
SET2
SET3

BOFF = 1 BOFF = 0

WAY3

-
-

-
-

0x30
0x70

0x31
0x71

BOFF = 1 BOFF = 0

WAY2

-
-

-
-

0x20
0x60

0x21
0x61

BOFF = 1 BOFF = 0

WAY1

-
-

-
-

0x10
0x50

0x11
0x51

BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

-

Write-back buffer

-
BOFF = 1 BOFF = 0

WAY3

- -
BOFF = 1 BOFF = 0

WAY2

- -
BOFF = 1 BOFF = 0

WAY1

- -
BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Fig. 6.200 After the eighth transaction

6.8 Caches 417

does not exist in the main memory, the associated dirty bit is also set to logic 1. The LRU bit
increments by one after this transaction, and equals to two as shown in this figure.

In transaction 11, the CPU attempts to write the block, 0xC1 and 0xC0, to the main memory as
shown in Fig. 6.202. However, one of the tag values in set 2 matches the CPU tag of 11110 in this
transaction, resulting a write hit. Consequently, the cache controller overwrites the new block, 0xC1
and 0xC0, on top of the old one, 0xB1 and 0xB0, both in the cache and the write-back buffer.

Note that the LRU bit stays at two because there was no data replacement in the cache.

0 0 -
TAG3VLRU

0 0 -
SET0
SET1

WAY3

Tag memory

0
D

0
0 -

TAG2V

0 -
0
D

0
0 -

TAG1V

0 -
0
D

0
0 -

TAG0V

0 -
0
D

0
2 1 11111
0 1 00010

0
0

1 11000
1 11100

0
0

1 11110
1 10100

1
0

1 00010
1 00001

1
0

SET2
SET3

WAY2 WAY1 WAY0

5 bits 5 bits 5 bits 5 bits

-
-

Cache memory

-
-

0x40
0x80

0x41
0x81

SET0
SET1
SET2
SET3

BOFF = 1 BOFF = 0

WAY3

-
-

-
-

0x30
0x70

0x31
0x71

BOFF = 1 BOFF = 0

WAY2

-
-

-
-

0xB0
0x60

0xB1
0x61

BOFF = 1 BOFF = 0

WAY1

-
-

-
-

0xA0
0x50

0xA1
0x51

BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

-

Write-back buffer

-
BOFF = 1 BOFF = 0

WAY3

- -
BOFF = 1 BOFF = 0

WAY2

0xB0 0xB1
BOFF = 1 BOFF = 0

WAY1

0xA0 0xA1
BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Fig. 6.201 After the tenth transaction

418 6 Central Processing Unit

In transactions 12 and 13, the CPU again attempts to write two new blocks to the main memory.
Both of these writes result in cache misses as shown in Fig. 6.203. The first block, 0xD1 and 0xD0, is
placed at the WAY 2 position of the cache because the LRU bit was equal to two at the end of the
eleventh transaction. The second block, 0xE1 and 0xE0, is similarly placed at the WAY 3 position of
the cache because the LRU bit was incremented to three at the end of the twelfth transaction.

0 0 -
TAG3VLRU

0 0 -
SET0
SET1

WAY3

Tag memory

0
D

0
0 -

TAG2V

0 -
0
D

0
0 -

TAG1V

0 -
0
D

0
0 -

TAG0V

0 -
0
D

0
2 1 11111
0 1 00010

0
0

1 11000
1 11100

0
0

1 11110
1 10100

1
0

1 00010
1 00001

1
0

SET2
SET3

WAY2 WAY1 WAY0

5 bits 5 bits 5 bits 5 bits

-
-

Cache memory

-
-

0x40
0x80

0x41
0x81

SET0
SET1
SET2
SET3

BOFF = 1 BOFF = 0

WAY3

-
-

-
-

0x30
0x70

0x31
0x71

BOFF = 1 BOFF = 0

WAY2

-
-

-
-

0xC0
0x60

0xC1
0x61

BOFF = 1 BOFF = 0

WAY1

-
-

-
-

0xA0
0x50

0xA1
0x51

BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

-

Write-back buffer

-
BOFF = 1 BOFF = 0

WAY3

- -
BOFF = 1 BOFF = 0

WAY2

0xC0 0xC1
BOFF = 1 BOFF = 0

WAY1

0xA0 0xA1
BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Fig. 6.202 After the eleventh transaction

6.8 Caches 419

In the fourteenth and the fifteenth transactions, the CPU attempts to write two more data blocks,
0xF1 and 0xF0, and then, 0xF3 and 0xF2, to the main memory, respectively.

The first transaction results in a cache miss, and forces the cache controller to replace the old data
block at the WAY 0 position because the LRU bit was set to zero after the last transaction in
Fig. 6.204. Since the old block, 0xA1 and 0xA0, is a valid data block and has no duplicate in the
main memory, the cache controller first transfers this block to the main memory. Once this transfer is
complete, the cache controller writes the new block, 0xF1 and 0xF0, on top of the old one, 0xA1 and
0xA0, both in the cache and the write-back buffer. At the end of this transaction, the LRU bit
increments by one, and the dirty bit is also set to logic 1 because the new block does not exist in the
main memory.

0 0 -
TAG3VLRU

0 0 -
SET0
SET1

WAY3

Tag memory

0
D

0
0 -

TAG2V

0 -
0
D

0
0 -

TAG1V

0 -
0
D

0
0 -

TAG0V

0 -
0
D

0
0 1 11011
0 1 00010

1
0

1 00001
1 11100

1
0

1 11110
1 10100

1
0

1 00010
1 00001

1
0

SET2
SET3

WAY2 WAY1 WAY0

5 bits 5 bits 5 bits 5 bits

-
-

Cache memory

-
-

0xE0
0x80

0xE1
0x81

SET0
SET1
SET2
SET3

BOFF = 1 BOFF = 0

WAY3

-
-

-
-

0xD0
0x70

0xD1
0x71

BOFF = 1 BOFF = 0

WAY2

-
-

-
-

0xC0
0x60

0xC1
0x61

BOFF = 1 BOFF = 0

WAY1

-
-

-
-

0xA0
0x50

0xA1
0x51

BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

0xE0

Write-back buffer

0xE1
BOFF = 1 BOFF = 0

WAY3

0xD0 0xD1
BOFF = 1 BOFF = 0

WAY2

0xC0 0xC1
BOFF = 1 BOFF = 0

WAY1

0xA0 0xA1
BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Fig. 6.203 After the thirteenth transaction

420 6 Central Processing Unit

The last write transaction ends up with a write hit because the CPU tag matches one of the tag
entries in set 2. As a result, the block, 0xF3 and 0xF2, is written both to the WAY 1 position of the
cache memory and the write-back buffer as shown in the same figure.

Writing to Cache Memory After a Cache Hit

This section explains how to write data blocks to different types of cache structures, which can be
often confusing to a new reader.

In the first example, we will write to a direct-mapped cache with eight sets (index = 3) with no
block offsets if the transaction produces a hit.

Let us assume that the CPU produces a memory address of 11010110, and attempts to write a
decimal value of 21700 to the set, 110 (the least significant three bits of the memory address). Also
assume the tag memory contents at this address are already 11010 (the most significant five bits of the
memory address) as shown in Fig. 6.205, and a decimal value of 42000 is stored both in the cache and
the main memory, producing the valid bit, V = 1.

0 0 -
TAG3VLRU

0 0 -
SET0
SET1

WAY3

Tag memory

0
D

0
0 -

TAG2V

0 -
0
D

0
0 -

TAG1V

0 -
0
D

0
0 -

TAG0V

0 -
0
D

0
1 1 11011
0 1 00010

1
0

1 00001
1 11100

1
0

1 11110
1 10100

1
0

1 11111
1 00001

1
0

SET2
SET3

WAY2 WAY1 WAY0

5 bits 5 bits 5 bits 5 bits

-
-

Cache memory

-
-

0xE0
0x80

0xE1
0x81

SET0
SET1
SET2
SET3

BOFF = 1 BOFF = 0

WAY3

-
-

-
-

0xD0
0x70

0xD1
0x71

BOFF = 1 BOFF = 0

WAY2

-
-

-
-

0xF2
0x60

0xF3
0x61

BOFF = 1 BOFF = 0

WAY1

-
-

-
-

0xF0
0x50

0xF1
0x51

BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

0xE0

Write-back buffer

0xE1
BOFF = 1 BOFF = 0

WAY3

0xD0 0xD1
BOFF = 1 BOFF = 0

WAY2

0xF2 0xF3
BOFF = 1 BOFF = 0

WAY1

0xF0 0xF1
BOFF = 1 BOFF = 0

WAY0

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Fig. 6.204 After the fifteenth transaction

6.8 Caches 421

If the cache organization is a write-through type as shown in Fig. 6.206, the CPU data, 21700, is
simply written to the cache and the main memory at the same time following a hit.

However, if the cache is a write-back type, the CPU data, 21700, is first written to the cache
memory and its write-back buffer to shorten the wait time to complete the write process as shown in
Fig. 6.207. To signify that the new data only exists in the cache, the dirty bit transitions to logic 1.
The cache controller transfers the data from the write-back buffer to the main memory only when the
CPU tries access data (read or write) at the same cache address, but misses as shown by dashed lines.
Until this event takes place, the cache and the main memory will have different data values. After the
data transfer, the dirty bit transitions back to logic 0, completing the write cycle.

0 - -000
0 - -001
0 - -010
0 - -011
0 - -100
0 - -101
1 11010 21700110
0 - -111

Tag CachexednI V

2170011010110

Main memoryCPU

Fig. 6.206 Writing data to a write-through type cache following a hit

0 - -000
0 - -001
0 - -010
0 - -011
0 - -100
0 - -101
1 11010 42000110
0 - -111

Tag CachexednI V

4200011010110

Main memory

Fig. 6.205 Initial contents of a cache, tag and main memory prior to writing data

422 6 Central Processing Unit

The second example in Fig. 6.208 clarifies the write-back operation when the cache misses a read
transaction.

In this example, assume that the set, 110, has a tag value of 11010 and a cache value of 21700,
which also resides in the write back buffer due a prior write miss. Also assume that the CPU wants to
read from the memory location, 10001110, corresponding to the same set, 110. Since the CPU tag,
10001, does not match the existing tag, 11010, in the cache memory, the cache controller issues a
read miss. Now, the data, 12000, that resides at the memory address, 10001110, has to be fetched
from this location and brought to the cache. But, before this transfer takes place the cache controller
first transfers the valid data, 21700, from the write-back buffer to the main memory address,
11010110, overwriting the existing data, 42000. Once this step is complete, then the cache controller
copies the data, 12000, from the memory address, 10001110, and overwrites it over 21700 in the
cache.

0 - -000
0 - -001
0 - -010
0 - -011
0 - -100
0 - -101
1 11010 21700110
0 - -111

Tag CachexednI V

4200011010110

Main memoryCPU

-
-
-
-
-
-

21700

Write-back buffer

0
0
0
0
0
0
1
0

D

This move happens later on when the cache miss
occurs at the same address, and the cache
controller is forced to update the main memory.
But, until then the cache and the main memory will
have different data values (D = 1).

Fig. 6.207 Writing data to a write-back type cache following a hit

6.8 Caches 423

Writing to Cache Memory After a Cache Miss

How does the CPU write a block of data to the cache after a miss?
To answer this question, let us assume the cache has eight sets with no block offsets as in the

previous examples, and the initial values in the tag and the cache memories are 00010 and 36000 at
the set 110, respectively. Let us also assume that the CPU intends to write the data, 21700, to the
memory address, 11010110, but produces a write miss due to tag mismatch.

If this is a write-through cache, the cache controller first writes the new data, 21700, to the main
memory address, 11010110, and then transfers the same data to the set location, 110, in the cache as
shown in Fig. 6.209. The data transfer from the CPU to the main memory and the cache may also
take place simultaneously depending on the cache architecture as shown in the same figure. This style
of writing is called write allocate protocol.

0 - -000
0 - -001
0 - -010
0 - -011
0 - -100
0 - -101
1 11010 21700 to 12000110
0 - -111

Tag CachexednI V

42000 to 2170011010110

Main memory

-
-
-
-
-
-

21700

Write-back buffer

0
0
0
0
0
0
0
0

D

1200010001110

Step 1

Step 2

Fig. 6.208 Write-back action in sequence

424 6 Central Processing Unit

0 - -000
0 - -001
0 - -010
0 - -011
0 - -100
0 - -101
1 00010 to 11010 36000 to 21700110
0 - -111

Tag CacheVIndex

42000 to 2170011010110

Main memory

3600000010110

Step 2Step 1

CPU

0
0
0
0
0
0
1
0

D

-
-
-
-
-
-

21700
-

Write-back buffer

This step takes place later on when there is
a cache miss at the same set address. At
that point, the dirty bit transitions from logic 1
to logic 0.

Fig. 6.210 Writing data to a write-back type cache following a miss with write-allocate protocol

0 - -000
0 - -001
0 - -010
0 - -011
0 - -100
0 - -101
1 00010 to 11010 36000 to 21700110
0 - -111

Tag CachexednI V

42000 to 2170011010110

Main memory

3600000010110

Step 2

Step 2
OR

Step 1

CPU

Fig. 6.209 Writing data to a write-through type cache following a miss with write-allocate protocol

6.8 Caches 425

If the cache is a write-back cache, the first step of the write-allocate protocol after a miss consists of
writing the new tag, 11010, to the set address, 110, and at the same time writing the CPU data, 21700, to
the cache and the write-back buffer as shown in Fig. 6.210. Updating the main memory, and therefore
overwriting the old data, 42000, at the address 11010110 takes place later on when there is a cache miss
at the same set. Until that point, the data memory and the cache retain different values with the dirty bit
set to logic 1. When the write-back buffer contents are finally transferred to the main memory, the dirty
bit transitions from logic 1 to logic 0, completing the write cycle.

The write-around protocol is a different approach to reduce the amount of data storage in the cache
memory. According to this protocol, the CPU updates only the main memory in a write-through
cache, but skips updating the cache altogether following a miss. Therefore, the CPU writes the new
data, 21700, over the old data, 42000, at the main memory address 11010110 as shown in Fig. 6.211,
but no cache update takes place.

0 - -000
0 - -001
0 - -010
0 - -011
0 - -100
0 - -101
1110
0 - -111

Tag CachexednI V CPU

11010110

Main memory

3600000010110

00010

42000 to 21700

36000
No cache update!

Fig. 6.211 Writing data to a write-through type cache following a miss with write-around protocol

To protect the cache memory from filling up too quickly, some processors with write-allocate type
caches are equipped with special store instructions to activate the write-around mechanism. The
for-loop function below fills up the cache memory rather quickly.

for (i = 0; i < n; i ++)
x[i] = i;

Here, n is assumed to be a large integer. Therefore, to prevent congesting the cache, the CPU
instruction set may offer a store instruction to omit updating the cache.

Appendix: Iterative Fixed-Point Multiplication

The MUL instruction and its operational equation shown earlier in this chapter is rewritten below:

MUL RS1, RS2, RD1, RD2
Reg[RS1] * Reg[RS2] ! {Reg[RD2], Reg[RD1]}

426 6 Central Processing Unit

According to the equation above, the contents of the source registers, RS1 and RS2, are multiplied
by a 32-bit fixed-point multiplier, and the 64-bit result is divided into two parts. The most significant
32-bit of the result is returned to RD2, and the least significant 32-bit result to RD1.

The iterative method suggests an algorithm that uses only SLI and ADD instructions. This
algorithm does not require any additional hardware for the CPU; however, it takes many clock cycles
to complete. The algorithm for a four-bit multiplication is shown in Figs. 6.212 and 6.213. The same
method can be extended to 32 bits.

c3 c2 c1 c0

r3 r2 r1 r0

c0 r0c1 r0c2 r0c3 r0

c0 r1c1 r1c2 r1c3 r1

c0 r2c1 r2c2 r2c3 r2

c0 r3c1 r3c2 r3c3 r3

s3 s2 s1 s0s7 s6 s5 s4

c

r

pp0

pp1

pp2

pp3

result

i = 0

If r0 = 1 then c3 c2 c1 c0 = pp0 → pp
If r0 = 0 then 0 0 0 0 = pp0 → pp

i = 1

If r1 = 1 then c3 c2 c1 c0 = pp1
If r1 = 0 then 0 0 0 0 = pp1

STEP 1

STEP 2 pp1 << 1 → pp1 thus: c3 c2 c1 c0 0 = pp1 if r1 = 1
0 0 0 0 0 = pp1 if r1 = 0

STEP 3 pp1 + pp → pp thus, if r1 = 1 c3 c2 c1 c0 0
0 p3 p2 p1 p0pp →

0 0 0 0 0
0 p3 p2 p1 p0pp →

if r1 = 0

s4 s3 s2 s1 s0

s4 s3 s2 s1 s0

Fig. 6.212 An iterative fixed-point multiplication algorithm

Appendix: Iterative Fixed-Point Multiplication 427

Assume that the quantities, r = {r3 r2 r1 r0} and c = {c3 c2 c1 c0}, represent a four-bit multiplier
and a four-bit multiplicand, respectively. Also assume that the term, pp, corresponds to a partial
product sum that adds a newly generated partial product to the old partial product in each iteration.
The variable, i, represents the iteration index bounded by 0 and (n-1) where n signifies the number
multiplier and multiplicand bits.

The first iteration (i = 0) generates the partial product pp0, which is equal to pp0 = {c3 c2 c1 c0}
if r0 = 1; otherwise, pp0 becomes equal to {0 0 0 0} as shown in Fig. 6.212.

The second iteration is composed of three steps. The first step evaluates pp1 much like pp0. If
r1 = 1, then pp1 = {c3 c2 c1 c0} else pp1 = {0 0 0 0}. In the second step, pp1 is shifted one bit to the
left before adding it to pp0. This step produces pp1 = {c3 c2 c1 c0 0} if r1 = 1; otherwise, pp1 = {0

i = 2

If r2 = 1 then c3 c2 c1 c0 = pp2
If r2 = 0 then 0 0 0 0 = pp2

STEP 1

STEP 2 pp2 << 2 → pp2 thus: c3 c2 c1 c0 0 0 = pp2 if r2 = 1
0 0 0 0 0 0 = pp2 if r2 = 0

STEP 3 pp2 + pp → pp thus, if r2 = 1 c3 c2 c1 c0 0 0
0 p4 p3 p2 p1 p0pp →

0 0 0 0 0 0
pp →

if r2 = 0
0 p4 p3 p2 p1 p0

i = 3

If r3 = 1 then c3 c2 c1 c0 = pp3
If r3 = 0 then 0 0 0 0 = pp3

STEP 1

STEP 2 pp3 << 3 → pp3 thus: c3 c2 c1 c0 0 0 0 = pp3 if r3 = 1
0 0 0 0 0 0 0 = pp3 if r3 = 0

STEP 3 pp3 + pp → pp thus, if r3 = 1 c3 c2 c1 c0 0 0 0
0 p5 p4 p3 p2 p1 p0pp →

0 0 0 0 0 0 0
pp →

if r3 = 0
0 p5 p4 p3 p2 p1 p0

s5 s4 s3 s2 s1 s0

s5 s4 s3 s2 s1 s0

s6 s5 s4 s3 s2 s1 s0

s6 s5 s4 s3 s2 s1 s0

Fig. 6.213 An iterative fixed-point multiplication algorithm

428 6 Central Processing Unit

0 0 0 0}. The third step adds pp1 to the old partial product, pp0, and forms the partial product sum,
pp = {s4 s3 s2 s1 s0}, as mentioned earlier.

The third and fourth iterations are also composed of three steps as shown in Fig. 6.213. The
difference between them is that pp2 and pp3 are shifted to the left by two bits and three bits,
respectively. This way, they will be in the correct bit position before they are added to the old partial
product.

Finally, generating, left shifting and adding steps of partial products result in a compact flow chart
shown in Fig. 6.214. Note that each r-term in this figure is indexed by the variable i. Therefore,
r = {r0 r1 r2 r3} is identical to {r[0] r[1] r[2] r[3]}. Similarly, each pp-term uses indexed repre-
sentations. Therefore, pp = {pp0, pp1, pp2, pp3} is identical to {pp[0], pp[1], pp[2], pp[3]}.

i = 0
pp = 0

r[i]

c → pp[i]0 → pp[i]

pp[i] << i → pp[i]

r[i] = 1

r[i] = 0

pp[i] + pp → pp

i = i + 1

r[i]
i ≤ n

display result

i > n

Fig. 6.214 The flow chart as a result of the iterative fixed-point multiplication algorithm

Appendix: Iterative Fixed-Point Multiplication 429

Review Questions

1. A 32-bit RISC CPU organized in Big Endian format has three pipeline stages to execute only the
following two instructions:

Draw the detailed ALU and the CPU schematic that executes these two instructions. Label all
interconnections, bus widths and control signals.

2. The following specification is given for implementing a 32-bit RISC processor that executes only
integer multiply-add (MADD) and add (ADD) instructions:

(i) Data, a, b, c and d are read at the same time from DOut1, DOut2, DOut3 and DOut4 ports of
a 32-bit RF with 32 general purpose registers.

(ii) There are four stages in the processor. The ALU consists of two stages.
(iii) Multiplication is the first ALU stage for the MADD instruction between a and b, and

between c and d. It takes one clock cycle to produce results which are eventually written to
DinH (for higher 32 data input bits) and DinL (for lower 32 data input bits) ports of the RF
simultaneously. This stage can be bypassed if addition is performed between a and c.

(iv) Addition is the second ALU stage, and it also takes one clock cycle to produce results.
(v) For MADD instruction, RS1 is the first source address that contains a, RS2 is the second

source address that contains b, RS3 is the third source address that contains c, and RS4 is the
fourth source address that contains d. RD1 is the first destination address that stores the lower
32 bits of the result, and RD2 the second destination address that stores higher 32 bits. For
the ADD instruction, RS1 is the first source address that contains a, RS3 is the second
address that contains c, and RD1 is the destination address that stores the result.

(a) This CPU executes only these two instructions. Draw the instruction bit field format,
indicating the opcode and operand fields for MADD and ADD instructions.

(b) Draw the architectural diagram of the processor that executes ADD and MADD, indicating
all the necessary hardware such as the required memories, the RF, the detailed ALU with
all the port names and bit widths. Show how the opcode decoder enables multiplexers and
other hardware in each stage.

Note: The reader should also attempt to implement the hardware that executes the integer multiply
(MUL) instruction and superimpose it on top of the data-path that executes ADD and MADD
instructions.

430 6 Central Processing Unit

3. The area under y = x is calculated until the area equals 18. Here, x increments by one as shown in
the figure below.

The incremental area is calculated by the flow chart given below.

(a) Assuming Reg[R0] = 0, write a program using the instruction set given in Chapter 6. Make
comments next to each instruction in the program.

(b) Form an instruction chart for this program, executing in a five-stage CPU, and show all the
data dependencies that require forwarding loops. Stall the pipeline using the NOP instruction
if necessary. Consider the branch or jump delay penalty to be 1 cycle.

4. A RISC CPU computes the following:

X = 2 A2 +1

A is located at the data cache address 100. X needs to be stored at the address 200. All instructions
take one cycle except multiply, which takes three cycles. The RF contains only R0 and R1. Reg
[R0] = 0.
Make sure to have only 16-bit values in source registers, RS1 and RS2, in order to avoid the overflow
condition in the destination register, RD, when the MUL instruction is used.

Appendix: Iterative Fixed-Point Multiplication 431

(a) Write an assembly code to compute and store the value of X. Make sure to write comments
next to each instruction to keep track of the register values.

(b) Rewrite the assembly code with an instruction chart. Indicate all stalls caused by NOP
instructions and forwarding loops on this chart.

5. Design a four-way set-associative write-through cache for an eight-bit CPU. The cache is orga-
nized in Little Endian format. It has four sets, and each data block in the set contains two eight-bit
words.

The replacement policy on a cache miss is as follows:

(i) An entire block of data is transferred between the CPU and the cache
(ii) The block of with the fewest amount of references is replaced
(iii) The least significant block is replaced if all the memory references are the same in a set

The CPU transactions and the contents of the main memory before these transactions are shown
below:

432 6 Central Processing Unit

Transaction no. CPU Address Data Write/Read

1

2

3

4

5

6

7

8

9

10

11

12

10000010

10000110

01111100

00100010

00001010

00001100

10001000

10001010

10000000

00001010

11011010

11011011

11111010

0xAB

R

R

R

R

R

R

R

R

W

W

W

W

R

10000001 0xCD W

00001011 W

0xAB

0xCD

0xAB

0xCD

-

-

-

-

-

-

-

-

-

0x3300001010

0x4400001011

0x5500001100

0x6600001101

0x1100100010

0x2200100011

0xEE01111100

0xFF01111101

0x0010000000

0x0010000001

0xAA10000010

0xBB10000011

0xCC10000110

0xDD10000111

0x7710001000

0x8810001001

0x0010001010

0x9910001011

0x0011011010

0x0011011011

0xAB11111010

0xCD11111011

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7 0

Appendix: Iterative Fixed-Point Multiplication 433

(a) Draw the block diagram of the cache and tag memories. Show the field format of the CPU
address in terms of tag, index and block offset.

(b) Show the cache and tag memory contents after the eighth, tenth and twelfth transactions by
individually drawing the cache and tag contents. Update the main memory contents if there is
any change.

6. A 32-bit, five-stage RISC CPU organized in Little Endian format executes the flow chart below.
The CPU contains an integer RF with 32 registers where Reg[R0] = 0. The integer values, such
as SUM = 0, are stored at the data memory address 100, i = 1 is stored at 101, and the compare
value of 100 for i is stored at 102. The final SUM value needs to be stored in the data memory
address of 200.

SUM = 0
at mem (100)

i = 1
at mem (101)

SUM = SUM + i

i : 100 i = i + 1

STORE
SUM at mem (200)

i < 100

i = 100

434 6 Central Processing Unit

(a) Write an assembly program using the following instruction set. Accompany each instruction
in the program with register data and comments.

(b) Draw the CPU schematic that executes the instructions in the flow chart above.

7. The function,Y ¼ 5ðA� BÞ
32

, needs to be executed using the instruction set below.

A is located at the memory address 100.
B is located at the memory address 101.
Y needs to be stored at the memory address 102.
Reg[R0] = 0.

(a) Write a program to compute Y.
(b) This program executes in a six-stage CPU. Two clock cycles are required to access data

memory for a LOAD operation. Rewrite the program to accommodate this requirement.
Show all forwarding loops and include all the necessary NOPs in the instruction chart.

(c) Indicate the minimum number of clock cycles to execute the program in part (b).

Appendix: Iterative Fixed-Point Multiplication 435

8. A 32-bit CPU organized in Big Endian format has 32 general purpose registers (R0 is also a
general purpose register whose contents are not zero). This CPU executes the following flow
chart:

436 6 Central Processing Unit

The instruction set and the bit-field format for each instruction are shown below.

The CPU maintains the following rules:

(i) Every instruction is executed in a different number of clock cycles
(ii) No NOP instruction is allowed
(iii) LOAD does not have an ALU cycle but requires two data memory cycles
(iv) INVERT does not have a data memory cycle but requires one ALU cycle
(v) MUL does not have a data memory cycle but requires three ALU cycles
(vi) ADD does not have a data memory cycle but requires two ALU cycles
(vii) STORE does not have an ALU cycle but requires one data memory cycle

Construct the instruction chart to execute the flow chart above. Show all the necessary forwarding
loops and possible data hazards. Show the cases in which there may be structural hazards and indicate
how to prevent them.

9. The following instruction set needs to be executed in a 32-bit RISC CPU organized in Little
Endian format. The CPU has three pipeline stages where the ALU and write-back stages are
combined. The CPU is capable of executing the integer (ADDI, SLI and SRI) and floating-point
(ADDF and MULF) instructions. The CPU stores the fixed and floating-point numbers in two
separate register files, each containing 32 registers.

In the instruction set below, RS and RD are defined as the source and destination addresses for the
integer registers, and FS1, FS2 and FD are the source and destination addresses for the floating-point
registers, respectively.

ADDI RS, RD, Imm Value

ADDF FS1 FS2 FD Not used

Reg[RS] + Imm Reg[RD]

Reg[RD]

Reg[RD]

Instruction Set Instruction Definition Instruction Bit Field

516102125213 62 011 10

SLI RS, RD, Imm Value SLI RS RD Imm Value
13 62

Reg[RS] << Imm
25 21 20 16 15 0

SRI RS, RD, Imm Value SRI RS RD Imm Value
13 62

Reg[RS] >> Imm
25 21 20 16 15 0

ADDI RS RD Imm Value
516102125213 62 0

ADDF FS1, FS2, FD Reg[FS1] + Reg[FS2] Reg[FD]

MULF FS1, FS2, FD Reg[FS1] * Reg[FS2] Reg[FD] MULF FS1 FS2 FD Not used
516102125213 62 011 10

Appendix: Iterative Fixed-Point Multiplication 437

Show a detailed data-path of this CPU, indicating all internal bus widths and port names. Include
only the necessary functional units.

Projects

1. Implement a 32-bit four-stage RISC CPU that executes only ADD instruction using Verilog. On a
timing diagram, trace through the data and control signals at the output ports of the instruction
memory, RF, ALU and write-back stages.

2. Implement ADD, SUB, AND, NAND, OR, NOR, XOR, XNOR, SL and SR instructions in a
32-bit four-stage RISC CPU, and perform complete verification using Verilog.

3. Implement a 32-bit five-stage RISC CPU that executes LOAD, STORE, MOVE and MOVEI
instructions using Verilog. Trace through the data and control signals at the output ports of the
instruction memory, RF, ALU, data memory and write-back stages in a timing diagram.

4. Implement a 32-bit four-stage RISC CPU that executes only the BRA instruction using Verilog.
Trace through the data and control signals at the output ports of the instruction memory and RF
stages on a timing diagram.

5. Implement and verify the 32-bit floating-point adder using Verilog. Verify the validity of data at
the outputs of every major stage using timing diagrams and perform functional verification for the
entire adder.

6. Implement and verify the 32-bit floating-point multiplier using Verilog. Verify the validity of data
at the outputs of every major stage using timing diagrams, and perform functional verification for
the entire multiplier. Use behavioral Verilog to mimic the exponent adder and the integer
multiplier.

438 6 Central Processing Unit

7System Peripherals

When the host processor or one of the co-processors executes a user program, it either exchanges data
with system memories such as SRAM, SDRAM or Flash, or communicates with system peripherals
using serial, and in some instances, parallel buses to perform various tasks.

A conventional computing system may consists of one or more CPU cores, co-processors such as
hardware accelerators to perform specialized tasks, a Direct Memory Access (DMA) unit to do
routine data transfers from one memory to another, a display adaptor to support a screen, and an
interrupt controller to manage I/O-generated or user-generated interrupts. In most cases, data con-
verters in charge of converting external analog signals into digital form or digital signals into analog
form, timers to control the length of an event, and SPI or I2C transceivers in charge of serially
transmitting and receiving peripheral data are all interrupt-driven units and connected to the interrupt
controller. The interrupt controller manages all event-driven or program-driven tasks through a series
of Interrupt Service Routines (ISR) that reside inside the program memory.

7.1 Overall System Architecture

A basic system architecture containing essential bus masters and slaves is shown in Fig. 7.1. In this
figure, the CPU is a bus master that executes user programs. The Direct Memory Access (DMA) is
another bus master in charge of transferring data between different system memories. Bus slaves are
generally the system memories such as SRAM, SDRAM and Flash memory. However, other system
devices that reside on the high speed bus such as the display adaptor or peripheral buffer memories
connected to the low speed I/O bus are also considered bus slaves.

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7_7

439

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-00223-7_7

The display adaptor is considered an essential high-speed peripheral that displays the results of a
running program or application on the screen. Because of its bandwidth, this unit is usually connected
to the parallel port of the CPU. However, there are times when the display adaptor can also be
connected to the low speed I/O bus. This choice very much depends on how often the monitor needs
to be used when running an application program.

Each type of memory mentioned in Chap. 5 serves a different purpose in a system. SRAM usually
holds immediate data generated by the CPU or stores temporary data during a DMA transfer. Larger
blocks of data are stored in SDRAM since this memory is many orders of magnitude larger in
capacity compared to SRAM. Flash memory usually stores permanent data such as the Built-In
Operating System (BIOS).

A bus adaptor translates commands, address and data signals between the parallel bus which operates
at a high clock frequency and the low speed I/O bus which operates at a much lower clock frequency.

Sensors, electro-mechanical devices, human interface devices etc. that reside outside the main
system commonly use SPI and I2C bus protocols, and considered I/O devices. Ultimately, they are all
connected to the interrupt controller, and memory-mapped due to their capability to store incoming or
outgoing data.

The system can also be connected to other systems (or CPUs) with a network adaptor. The
simplest connection protocol is Ethernet where many systems are serially connected to the same bus.

7.2 Direct Memory Access Controller

The CPU assigns routine memory-to-memory data transfer operations to the Direct Memory Access
(DMA) controller. Most of these transfers take place between two system memories or between the
buffer memory of a peripheral device and a system memory. This section shows how to design the
basic architecture of a DMA controller that transfers data from a source to a destination memory.

The DMA interface in Fig. 7.2 shows the I/O port description of a typical DMA controller. In this
figure, the DMA controller interacts with the CPU through handshake signals, ReqM and AckM.

Cache

CPU

DMA SDRAM

Display
Adaptor

Display

Bus
Adaptor

SRAM

Network
Adaptor

Network

Flash
Memory

Interrupt
Controller

Timers Data
Converters

Serial
I/O devices

Low speed I/O bus

High speed parallel bus

Fig. 7.1 A typical system architecture

440 7 System Peripherals

http://dx.doi.org/10.1007/978-3-030-00223-7_5

When the CPU initiates a DMA data transfer, it issues a request, ReqM, to the DMA controller. If the
controller is not busy with another transfer, it then generates a request, ReqD, to the bus arbiter to use
the bus. When the arbiter acknowledges the request by AckD, then the controller informs the CPU
that it is ready to initiate the transfer by AckM, and at the same time it sends out its first address and
control signals to the source memory. While the source memory is delivering data, the DMA con-
troller issues the address and control signals for the destination memory within the same clock cycle.
In order to accomplish this task, a direct data channel must exist between the source and the
destination memories. This new configuration modifies the original bus structure in Fig. 5.1 in which
all bus masters are assumed to have individual write data ports to be able to write data directly to a
slave.

Figure 7.3 shows a typical data transfer between the source and the destination memory until the
last data packet, D4, is transmitted. The sequence starts with the DMA controller issuing Sta-
tus = START and AddrS = AS1, indicating the beginning of the data transfer and the first source
memory address, respectively. Since both memories are ready (ReadyS = ReadyD = 1) in the first
clock cycle, the controller continues the data transfer by issuing Status = CONT, AddrS = AS2 (the
second source memory address), and AddrD = AD1 (the first destination memory address) in the
second cycle. In this cycle, the source memory also delivers the first data, D1, to the destination
memory. The same process takes place in the third cycle, during which the DMA controller generates

CPU
(Bus Master)

DMA
(Bus Master)

Bus
Arbiter

Destination
Memory

Source
Memory

ReqM

AckM

ReqD

AckD

Address

Controls

RDataD

RDataS

R
eadyD

From Decoder

RData

Rs

Rd

R
eadyS

Fig. 7.2 The block diagram including a DMA, source and destination memories

7.2 Direct Memory Access Controller 441

http://dx.doi.org/10.1007/978-3-030-00223-7_5

AddrS = AS3, AddrD = AD2, and writes D2 to the destination memory. In the fifth clock cycle, as
the DMA controller generates the last destination memory address, AddrD = AD4, and writes the last
data, D4, to AD4. In this cycle, it also changes its status to Status = IDLE, indicating the end of the
data transfer.

Any time one of the Ready signals from the source or the destination memories transition to logic 0,
the DMA controller stalls the data transfer by repeating the control and address signals as long as
ReadyS or ReadyD is at logic 0. Figure 7.4 shows a typical data transfer in which the destination
memory is busy in the third cycle, and prompts the DMA controller to repeat AddrS = AS3 and
AddrD = AD2 in the next cycle. The DMA controller stalls the bus again in the sixth cycle when it
detects the source memory not ready in the fifth cycle.

Status

AddrS

AddrD

Data

clock

START CONT CONT CONT IDLE

AS1 AS2

AD1

D1

AD2

D2

AS3

AD3

D3

AS4

AD4

D4

ReadyS

ReadyD

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Fig. 7.3 Timing diagram showing a DMA-assisted data transfer

Status

AddrS

AddrD

Data

clock

START CONT CONT CONT CONT

AS1 AS2

AD1

D1

AS3

ReadyS

ReadyD

CONT IDLE

AS4

AD4

D4

AD2 AD3

D2 D3

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Fig. 7.4 DMA-assisted data transfer with varying Ready signals from memories

442 7 System Peripherals

A basic DMA controller is shown in Fig. 7.5. There are three modules in this architecture. The first
module is the DMA register file that stores the initial and incremental source address values, Ini-
tAddS, StepAddrS. Two other registers, InitAddrD and StepAddrD, store the initial and incremental
destination addresses, respectively. This section also includes Size and Burst registers to store the data
width and the burst length. A program data bus is used to store all six register entries before regular
operations take place.

The second section of the DMA controller manages the handshake mechanism with the CPU and
the bus arbiter. This section also provides the internal control signals to the DMA data-path to guide
the data flow.

In the third section, the DMA data-path produces source and destination addresses, AddrS and
AddrD, and the bus master control signals, Status, Size, Burst, WED (write-enable for the destination
memory) and RES (the read-enable for the source memory).

To be able to implement this architecture, three elements need to be examined in the design phase
simultaneously: a timing diagram describing an entire data transfer process including the stall periods,
a data-path that fully complies with the timing diagram, and a control logic that manages the data flow
on the data-path.

InitAddrS

StepAddrS

InitAddrD

StepAddrD

Burst

Size

DMA REGISTERS

AddrS

AddrD

Size

Burst

Status
DMA

DATAPATH

DMA CONTROLLER

R
eq

M

R
eq

D

Ac
kD

Ac
kM

CPU Arbiter

WED

Internal control signals

ReadyS ReadyD

RES

Program Data

Fig. 7.5 A typical DMA architecture

7.2 Direct Memory Access Controller 443

As pointed out in previous chapters, the design always starts with forming a timing diagram that
describes the complete data-flow in a logic block. The timing diagram generally includes a single
clock (multiple clock domains or asynchronous event signals are also common but not relevant for a
basic DMA design), address, data and control signals with respect to this clock. In order to generate
an accurate timing diagram, a corresponding data-path must be developed simultaneously. The
data-path generally consists of registers and logic gates. However, it can also contain mega cells such
as complex arithmetic units or memories. As the design develops and more details are added to the
original data-path, the corresponding timing diagram becomes more complex to accommodate the
changes in the hardware. The design of the controller to govern the data flow is the last step in the
design process. This step does not start until every internal and external control signal is defined, and
the complete block functionality, including all corner cases, is described on the timing diagram.

A detailed timing diagram describing a typical DMA transfer is shown in Fig. 7.6. As we men-
tioned earlier in the memory-to-memory example in Chap. 2, this diagram is also developed in two

clock

AddrS AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8

AD1 AD2 AD3 AD4 AD5 AD6 AD8AD7AddrD

D1 D2 D3 D4 D5 D6 D8D7Data

ReqM

AckM

ReqD

AckD

8 7 6 5 4 3 02CountOut 10

Status START CONT CONT CONT CONT CONT CONT CONT IDLE

ReadyS &
ReadyD
WriteD

WED

ReadS

RES

SetAddrS

SetAddrD

IncAddrS

IAS

IncAddrD

IAD

SetSTART

SetCONT

SetIDLE

SetCount

DecCount

DC

IDLE REQD ACKD
SET
SRC

SET
DEST INCR INCR INCR INCR INCR INCR INCR INCR

END
SRC

END
DEST

END
COUNT

END
REQD IDLE

Fig. 7.6 Detailed timing diagram of a DMA transfer

444 7 System Peripherals

http://dx.doi.org/10.1007/978-3-030-00223-7_2

phases. In the first phase, the main DMA signals, namely the handshake signals with the CPU and the
arbiter (ReqM, AckM, ReqD and AckD), the source and the destination memory addresses (AddrS
and AddrD), the data (Data), the bus master control signals (Status, Burst, Size, WriteD and ReadS),
and the slave response signals (ReadyS and ReadyD) are included in the timing diagram. In the
second phase, all internal control signals that support the address and data movement in the timing
diagram are brought into the picture. This section also includes the control signals for an internal
down-counter to keep track of the number of data packets transferred from one memory to the next.

In Fig. 7.6, the CPU initiates a DMA-assisted data transfer by issuing a request to the DMA
controller, ReqM, in clock cycle 1. This request enables the DMA controller to generate a subsequent
request, ReqD, to the arbiter in order to use the system bus in cycle 2. An acknowledgment from the
arbiter, AckD, may come in the third cycle or many cycles later depending on the bus traffic and the
other pending requests from higher priority bus masters. However, as soon as the DMA controller
receives the acknowledgement from the arbiter, it notifies the CPU by issuing an acknowledgement
signal, AckM, in cycle 4. This cycle also prepares the DMA for an upcoming data transfer by setting
the SetAddrS and SetSTART signals to logic 1. That way, the first source memory address, AS1, can
be fetched from the InitAddrS register and delivered to the AddrS port in Fig. 7.7, and similarly the
START code can be produced at the Status port in cycle 5. The port selection guide for each 3-1
MUX in Fig. 7.7 is shown in Table 7.1. In cycle 5, the first data read command from AS1 is issued by
ReadS = 1. This cycle also sets the control signals, SetAddrD, IncrAddrS and SetCONT, to logic 1,
so that the first destination memory address can be retrieved from the InitAddrD register and
transferred to the destination address port, AddrD, the second source memory address, (Ini-
tAddrS + StepAddrS), can be formed at the AddrS output, and the status code can be changed from
START to CONT in the next clock cycle. Still in cycle 5, the down-counter, responsible for counting
the number of data packets delivered to the destination memory, is set with an initial value from the
burst register by SetCount = 1. Therefore, when clock cycle 6 starts, the second source memory
address, AS2, is formed at the AddrS port along with the first destination address, AD1, at the AddrD
port. The Status output displays the CONT code, specifying the ongoing data transfer. In this cycle,
the first data, D1, is transferred from the address, AS1, to the address, AD1, with an active-high
WriteD signal, and subsequently written to the destination memory. The CountOut output also shows
the initial value from the burst register, defining the number of data packets to be written to the
destination memory. This cycle sets the control signals, IncrAddrS, IncrAddrD and DecCount, to
logic 1 in order to prepare the next source and destination addresses, and to decrement the CountOut
by one in the next cycle.

Table 7.1 3-1 MUX port assignments in Fig. 7.7

SetAddrS = 1 set

ReadyS = 1
ReadyD = 1
IncrAddrS = 1

incr

ELSE stall

PORTINPUT

SetAddrD = 1 set

ReadyS = 1
ReadyD = 1
IncrAddrD = 1

incr

ELSE stall

PORTINPUT

SetCount = 1 set

ReadyS = 1
ReadyD = 1
DecCount = 1

decr

ELSE stall

PORTINPUT

IAS IAD DC

7.2 Direct Memory Access Controller 445

Se
tS

TA
R

T

Status

st
al

l
st

ar
t

START Code

CONT Code

IDLE Code

co
nt

id
le

Se
tC

O
N

T
Se

tID
LE

InitAddrS

StepAddrS

InitAddrD

StepAddrD

Size

Burst

st
al

l
se

t
in

cr

cl
oc

k

D Q

Se
tA

dd
rS

IncrAddrS
ReadyD
ReadyS

AddrS

st
al

l
se

t
in

cr

cl
oc

k

D Q

Se
tA

dd
rD

IncrAddrD
ReadyD
ReadyS

AddrD

Burst

cl
oc

k

D Q

DMA
REGISTERS

st
al

l
se

t
de

cr

cl
oc

k

D Q

Se
tC

ou
nt

DecCount
ReadyS
ReadyD

CountOut

- 1

2

2

2

32

32

32

32

4

32

32

2

32

WriteD
ReadyS
ReadyD

WED

IAS

IAD

Size

2

ReadS
ReadyS
ReadyD

RES

SetAddrS
SetAddrD
IncrAddrS
IncrAddrD
SetSTART
SetCONT
SetIDLE

DecCountD
M

A
C

O
N

TR
O

LL
ER

WriteD
ReadS

SetCount

R
eq

M

Ac
kM

Ac
kD

R
eq

D

DC

Program Data

Fig. 7.7 Internal DMA architecture showing its data-path and controller

446 7 System Peripherals

The routine data transfer continues until either the source or the destination Ready signal transi-
tions to logic 0. When this happens, the entire data transfer stalls, disabling any write process taking
place at the destination memory. The previous source and destination address values are repeated at
the AddrS and AddrD ports as long as one of the Ready signals stays at logic 0. The down-counter is
also forced to stall, and it displays the remaining number of data packets to be written to the
destination memory.

The data transfer resumes when the ReadyS and ReadyD signals become logic 1. CountOut = 2
defines the end of the data transfer. In this cycle, the IncrAddrS signal also transitions to logic 0,
indicating that there will be no more new source address generation at the AddS port. Similarly, the
SetIDLE signal goes to logic 1, changing the bus master status code from CONT to IDLE in the next
cycle. When CountOut = 1 in the following cycle, the last data is written to the destination address.
From this point forward, the DMA handshakes with the CPU and the arbiter to terminate the data
transfer. ReqD = 0 forces the arbiter to lower the acknowledge signal, AckD. AckM = 0 prompts the
CPU to lower its DMA request signal, ReqM.

The controller design is a direct outcome of the timing diagram in Fig. 7.6. The first step in the
controller design is to assign a name to each clock cycle in the timing diagram that produces a
different set of outputs from the previous clock cycle. In other words, each clock cycle that produces a
different set of outputs has to be labeled with a new state in the controller state diagram.

Cycle 1 is named as the IDLE state, producing ReqD = 0 and AckM = 0 in Fig. 7.8. When
ReqM = 1 is received in cycle 1, ReqD switches from logic 0 to logic 1 in cycle 2, producing a new
state, REQD. ReqD = 1, on the other hand, prompts AckD = 1 in cycle 3 which creates the ACKD
state in this cycle. Cycle 4 also creates a new state, SET SRC, because a different set of control signals
(AckM = 1, SetAddrS = 1 and SetSTART = 1) emerges in this cycle. The next cycle generates a
new set of outputs (ReadS = SetAddrD = IncrAddrS = SetCONT = SetCount = 1) compared to the
previous clock cycles, and therefore it is labeled as the SET DEST state. Between cycles 6 and 13, the
controller outputs remain the same. Therefore, all these cycles can be grouped together under the
same state name, INCR. In cycle 14, the IncrAddrS signal transitions to logic 0 and the SetIDLE
signal transitions to logic 1. This new set causes the creation of a new state, END SRC. Cycle 15
changes the controller output values once more with respect to the previous cycle, and it is labeled as
the END DEST state. In cycle 16, the down-counter output finally reaches zero, and all the controller
outputs except the AckM and ReqD signals become logic 0. Therefore, this cycle is named as the
END COUNT state. The controller lowers the AckM and ReqD signals to logic 0, which creates a
new state, END REQD in cycle 17. In the next cycle, AckM = ReqD = 0 prompts the CPU and the
arbiter to lower ReqM and AckD signals to logic 0, respectively, and the controller transitions to the
IDLE state.

7.2 Direct Memory Access Controller 447

7.3 Interrupt Controller

There are numerous events that may interrupt the normal flow of program execution. External events are
created by I/O devices that operate under specific utility programs. These programs are configured such
that an I/O devicemay deliver or require data from theCPU. There are also internal events within the CPU
that result from occurances encountered when executing user programs, such as divide-by-zero or
overflow conditions, which create exceptions. All these hardware-related external and software-related
internal events are managed by the interrupt controller.

ACKD

SET
SRC

SET
DEST

INCR END
SRC

END
DEST

END
COUNT

CountOut > 3
AckD = 1

ReqD = 1
AckM = 0

ReqD = 1
AckM = 1

SetAddrS = 1
SetSTART = 1

ReqD = 1
AckM = 1

ReadS = 1
SetAddrD = 1
IncrAddrS = 1
SetCONT = 1
SetCount = 1

ReqD = 1
AckM = 1

WriteD = 1
ReadS = 1

IncrAddrS = 1
IncrAddrD = 1
DecCount = 1

ReqD = 1
AckM = 1

WriteD = 1
ReadS = 1

IncrAddrD = 1
SetIDLE = 1

DecCount = 1

ReqD = 1
AckM = 1
WriteD = 1
ReadS = 1
DecCount = 1

ReqD = 1
AckM = 1

END
REQD

IDLEREQD

ReqM = 0
ReqM = 1
AckD = 0

ReqD = 0
AckM = 0

ReqD = 1
AckM = 0

ReqM = 1
AckD = 1

ReqM = 1
AckD = 1

ReqM = 1
AckD = 1

ReqM = 1
AckD = 1

ReqM = 1
AckD = 1
CountOut = 3

ReqM = 1
AckD = 1

ReqD = 0
AckM = 0

ReqM = 1
AckD = 1

ReqM = 1
AckD = 1

ReqM = 1
AckD = 1

ReqM = 1
AckD = 0

Fig. 7.8 DMA controller state diagram (control signals equal to logic 0 are omitted for simplicity)

448 7 System Peripherals

There are four types of interrupts according to their priority. The interrupt for resetting the CPU
takes the precedence over all other interrupts because when reset occurs, the data in each CPU register
needs to be preserved in a special memory to be restored later on. Internal interrupts take the second
priority after the CPU reset. These interrupts generally originate from errors encountered in user
programs or may result from breakpoints installed in a user program. Software interrupts take the
third place in the priority list. These interrupts are actually vectored subroutine calls that stem from
software emulation routines. Floating-point division produces one such example. Hardware interrupts
are placed last in the priority list. Even though prioritizing hardware interrupts is completely
user-programmable, the operating system may also manage the hardware priority list and commu-
nicate with a specific device though device drivers.

In this chapter, we will examine the sequence of events that take place to handle a hardware
interrupt, and design a simple interrupt controller interface that serves up to 256 external I/O devices.

The interrupt process begins when one or more I/O devices submit interrupt requests to the
interrupt interface in Fig. 7.9. In this figure, the interrupt interface is designed to handle up to 256
interrupt inputs, INTR0 through INTR255. Interrupt controller is a programmable state machine that
prioritizes all pending interrupts, selects a highest priority device according to a priority list, and
communicates with the CPU using the INTR output as shown in Fig. 7.9. When the acknowledge-
ment signal, INTA, is received from the CPU, the interrupt interface transmits the device ID,
INTRID, causing the interrupt on an eight-bit wide bus.

The interrupt ID in Fig. 7.9 matches the interrupt number at the input of the interface, and ranges
between 0 and 255. Each interrupt ID correlates to a specific address in the Interrupt Address Table,
IAT, in Fig. 7.10. Each address stored in IAT points the starting address of a particular Interrupt
Service Routine (ISR) residing in the instruction memory. Therefore, when the interrupt interface
generates an INTRID and accesses a specific memory address in the IAT, the contents at this address
is immediately loaded to the Program Counter (PC). This prompts the CPU to pause executing the
normal user program, and jump to the starting ISR address in the instruction memory to execute the
corresponding ISR instructions. This basically translates to jumping from Instr3 of the user program
to Intr1 of the ISR in the example in Fig. 7.10. While in the ISR, a return instruction, RET, indicates
the end of interrupt service routine. At this point, the program returns to the address, ARET, to
execute the rest of the user program.

CPU

INTR0

INTR1

INTR255In
te

rru
pt

 In
te

rfa
ce

INTRID

INTR

INTA

8

Fig. 7.9 Hardware interrupt interface input/output description

7.3 Interrupt Controller 449

To convert the block diagram in Fig. 7.10 into a detailed data-path, each step of the interrupt
service routine outlined above should be translated into a timing diagram. Creating a timing diagram,
on the other hand, is usually accomplished in two steps. The first step includes all primary, bus-level
signals such as handshake control signals, data and address in the timing diagram. The second step
generates the necessary control signals to manage the data-flow.

To achieve the first step, let us consider the signals, INTRx (INTR0 to INTR255), INTR, INTA,
INTRID, DOutIAT and PCOut, in Fig. 7.10 and the corresponding timing diagram in Fig. 7.11. The
signals, INTRx, INTR and INTA, are not bus-level signals; but, they are considered as the primary
I/O signals that indicate the start of an interrupt. Therefore, they will be grouped together with the
other bus-level signals to show the complete interrupt sequence. In Fig. 7.11, an I/O device issues an
interrupt, INTRx = 1, to the interrupt interface in clock cycle 1. In response, the interrupt interface
generates INTR = 1 in cycle 2, for the Interrupt Control Unit (ICU) in charge of the handshake
signals. In cycle 3, the ICU generates INTA = 1, and prompts the interrupt interface to transmit an
eight-bit INTRID to the IAT in the following cycle. As mentioned earlier, the INTRID signal is also

PC

INTR0
INTR1

INTR255In
te

rru
pt

 In
te

rfa
ceINTRID

INTR

INTA

Interrupt Address Table (IAT)

Interrupt Address

31 0

8
255

0

31 0

Intr1

IntrN

Interrupt
Service
Routine (ISR)

Instr3

Instruction Memory

RET

InstrRET

Other
Interrupt
Service

Subroutines

Instr2
Instr1

Instr4

A1
A2
A3
ARET
A4

I1

IN
IRET

ICU
REIAT

WEIAT

DOutIAT

PCOut

32

Fig. 7.10 A block diagram describing an interrupt

450 7 System Peripherals

cl
oc

k

IN
TR

x

IN
TR

IN
TA

IN
TR

ID

R
EI

AT

D
O

ut
IA

T

Se
lIA

T

PC
O

ut

St
al

lP
C

D
In

R
F

Se
lP

C

Ad
dr

R
F

W
ER

F

Se
lR

31

D
O

ut
R

F

Se
lR

F

In
te

rru
pt

 ID

la
te

nc
y

=
4

la
te

nc
y

=
4

la
te

nc
y

=
4

AR
ET

 w
rit

te
n

in
to

 R
31

O
PC

 d
ec

od
er

 g
en

er
at

es

th
es

e
pu

ls
es

AR
ET

A2
A3

A1
AR

ET
I1

I2
I3

AR
ET

A4
A5

W
BA

1
W

BA
2

W
BA

3
AR

ET
W

BA
3

W
BI

1
W

BI
2

W
BI

3
W

BI
N

Va
lid

 W
B

Ad
dr

es
s

R
31

Va
lid

 W
B

Ad
dr

es
s

R
31

N
ew

 A
rb

itr
at

io
n

W
BR

ET

A6

St
ar

tin
g

In
te

rru
pt

 A
dd

re
ss

 =
 I1

IF
R

F
AL

U
/D

$
W

B

C
yc

le
1

C
yc

le
2

C
yc

le
3

C
yc

le
4

C
yc

le
5

C
yc

le
6

C
yc

le
7

C
yc

le
8

C
yc

le
9

C
yc

le
10

C
yc

le
11

C
yc

le
12

C
yc

le
13

C
yc

le
(N

+3
)

C
yc

le
(N

+4
)

C
yc

le
(N

+5
)

C
yc

le
(N

+6
)

C
yc

le
(N

+7
)

C
yc

le
(N

+8
)

C
yc

le
(N

+9
)

W
BI

N
-3

W
BN

-2
W

BI
N

-1

C
yc

le
N

C
yc

le
(N

+1
)

C
yc

le
(N

+2
)

I4
I5

IN
IR

ET

ID
LE

ID
LE

IN
TA

IN
TR

ID
IN

TR
AD

D
R

LA
ST

W
B

ST
O

R
E

AR
ET

FE
TC

H
I1

FE
TC

H
I2

FE
TC

H
I3

IN
TR W
B

IN
TR W
B

IN
TR W
B

IN
TR W
B

IN
TR

EN
D

IN
TR

EN
D

IN
TR

EN
D

IN
TR

EN
D

AC
C

ES
S

R
31

LO
AD

AR
ET

FE
TC

H
AR

ET
ID

LE
ID

LE
ID

LE

Ex
te

rn
al

 in
te

rru
pt

 =
 IN

TR
0

to
 IN

TR
25

5

C
PU

 k
no

w
s

ab
ou

t I
N

TR

In
te

ru
pt

 c
on

tro
lle

r g
en

er
at

es
 o

nl
y

th
is

 p
ul

se
O

PC
 d

ec
od

er
 g

en
er

at
es

 th
es

e
pu

ls
es

O
PC

 d
ec

od
er

ge
ne

ra
te

s
th

es
e

pu
ls

es

Fi
g
.
7.
11

D
et
ai
le
d
tim

in
g
di
ag
ra
m

of
an

in
te
rr
up

t
se
qu

en
ce

7.3 Interrupt Controller 451

an address for the IAT. The data stored at this address is actually the starting address of an ISR in the
instruction memory. Therefore, the interrupt controller simply reads the contents of the address,
INTRID, from the DOutIAT port in cycle 5, and waits for the interrupt service routine to begin. In the
mean time, at the beginning of cycle 3 when the ICU is aware of a pending interrupt by means of the
INTR signal, it immediately stalls the CPU pipeline by stopping the PC from incrementing. However,
the PC has already incremented to A3 at this point, and there are uncompleted instructions from the
A1 and A2 addresses in the CPU pipeline. We know that from the onset of PC address generation to
the end of the write-back cycle, a normal instruction takes four clock cycles to complete (latency = 4)
according to the simplified CPU data-path in Fig. 7.12. Therefore, the PC output stays at the A3
address until the end of cycle 6 when the instructions, Instr1, Instr2 and Instr3, are completely flushed
out of the CPU pipeline and written back to the CPU’s register file (RF). However, this software
interaction with the CPU adds the RF block and all the corresponding hardware to the interrupt
controller’s block diagram in Fig. 7.10, transforming this diagram into a more detailed architecture in
Fig. 7.13.

After the last write-back is completed in cycle 6, the PC is incremented by one, and the return
address, ARET, is stored in a special register, R31, in the RF as shown in cycle 7. This step assumes
that there must not be any Jump-and-Link (JAL) or Jump-and-Link-Register (JALR) instruction in the
CPU instruction set because the return address following the ISR will simply be overwritten by one of
these instructions. Before the CPU starts executing the interrupt service routine, it copies the contents
of the entire register file into a temporary “shadow” memory identical to the register file. This step is
called “context switching”, and it is omitted from the timing diagram in Fig. 7.11 to maintain

P
C I-Cache D-CacheRFI

R

A
L
U

A1

A2

AO

DO

WB-stageALU/D$-stageRF-stageIF-stage

SelPC

PCOut

IF-stage RF-stage ALU/D$-stage WB-stage

Cycle 1 Cycle 2 Cycle 3 Cycle 4

data
at IR

data
at A1/A2

data
at DO/AO

data
at RF

data
at PC

DInRF

1 0

OPC

Fig. 7.12 A four-stage CPU employed with the interrupt sequence in Fig. 7.11

452 7 System Peripherals

In
te

rru
pt

C
on

tro
l U

ni
t

R
F

PC

+
1

IN
TR

0

IN
TR

1

IN
TR

25
5

Interrupt Interface

IN
TR

ID

IN
TR

IN
TA

R
EI

AT

W
EI

AT

In
te

rru
pt

 A
dd

re
ss

 T
ab

le

D
O

ut
IA

T

D
In

IA
T

31
0

8

25
5 0

32

D
O

ut
R

F

D
In

R
F

R
31

Ad
dr

R
F

31
0

In
tr1

In
trN

In
st

r1

In
st

ru
ct

io
n

M
em

or
y

Se
lR

311 0

Se
lP

C
1

0

D
at

a
fro

m
W

rit
eb

ac
k

St
ag

e

Se
lR

F
Se

lIA
T

I
R

S
St

al
lP

C

PC
O

ut

Ad
dr

es
s

fro
m

W
rit

eb
ac

k
St

ag
e

SelR31

SelIAT

SelRF

StallPC

SelPC

W
ER

F

31
0

In
st

r2

In
st

r3

In
st

rR
ET

In
st

r4

R
ET

A1 A2 A3
AR

ET A4 I1 IN

IR
ET

C

cl
oc

k

cl
oc

k

In
te

rru
pt

Se

rv
ic

e
R

ou
tin

e
(IS

R
)

In
st

r0
0

St
al

lP
C

S-
po

rt

4-
1

M
U

X
co

nf
ig

ur
at

io
n

Se
lR

F
Se

lIA
T

I-p
or

t
R

-p
or

t

Pr
og

ra
m

 C
ou

nt
er

El
se

C
-p

or
t

cl
oc

k

D
In

D
O

ut

AI
n

AI
n

D
O

ut

AI
n

Fi
g
.
7.
13

In
te
rr
up

t
in
te
rf
ac
e
da
ta
-p
at
h
pr
od

uc
in
g
th
e
tim

in
g
di
ag
ra
m

in
Fi
g.

7.
11

7.3 Interrupt Controller 453

simplicity. Once the steps of handling an ISR is fully explained, a more complex interrupt controller
architecture, including the context switching process, will be introduced at the end of this section.

In cycle 8, the interrupt controller starts executing the instructions in the interrupt service sub-
routine. In this cycle, the first interrupt instruction address, I1, at the output of the IAT is loaded to the
PC. Once loaded to the CPU data-path, it takes four clock cycles to execute the first interrupt
instruction due to the CPU’s write-back latency. The remaining interrupt instructions are similarly
fetched from the instruction memory addresses I2 to IN, executed and written back to the RF until the
end of cycle (N + 3). In cycle (N + 4), the register R31 is accessed. In the following cycle, the return
address, ARET, is fetched from R31. This cycle also completes the interrupt service routine and
prompts the ICU to transfer the control over to the CPU to execute the remaining user instructions. In
cycle (N + 6), the ICU lowers the INTA signal to logic 0, and the interrupt controller loads the
contents of the ARET to the PC. In response to the INTA, the interrupt interface also lowers the INTR
signal to logic 0 and invalidates the INTRID in cycle (N + 7). New interrupt arbitration will take
place in cycle (N + 8) to service the next interrupt.

Up to this point, we only explained how the address and data bus values changed once an interrupt
signal is received from the interrupt interface. Now, we are ready to explain the second part of the
timing diagram that includes the control signals to manage the data-flow. After examining the detailed
data-path in Fig. 7.13, the control signals can be grouped into three categories. The first group
supports the PC input control and contains the StallPC, SelIAT and SelRF signals. The StallPC signal
simply routes the output of the PC, PCOut, to its input through the S-port of the 4-1 MUX to stall the
PC. The SelIAT signal routes the output of the IAT, DOutIAT, to the input of the PC through the
I-port of the 4-1 MUX so that an interrupt address can be loaded. The SelRF signal enables the R-port
and connects the output of the RF, DOutRF, to the input of the PC to load the return address, ARET,
once the ISR is over. If none of these control signals are generated, then the PC increments through
the C-port. The second group controls the address and data inputs to the RF and consists of the
SelR31 and SelPC inputs. The SelR31 input selects the register R31 to be the address for the RF at the
AddrRF port. The SelPC input selects the contents of the PC to be the data for the RF at the DInRF
port. The third group controls the read and the write enable signals, REIAT and WEIAT, for the IAT,
respectively. Writing to the IAT does not take place during a routine interrupt service. However, the
WEIAT signal is used to reprogram the IAT with a new set of ISR addresses.

All three groups of controls manage the proper data flow in Fig. 7.13. The StallPC signal tran-
sitions to logic 1 at the beginning of cycle 3 and stays there until cycle 6 to stop the PC from
incrementing so that the CPU completes writing the instructions, Instr1, Instr2 and Instr3, back to the
RF. Because of these write-backs, the write-enable signal for the RF, WERF, is also kept at logic 1
from cycle 4 to cycle 6. The read-enable signal for the IAT, REIAT, is kept high in cycle 4 because
the first interrupt instruction address, I1, needs to be fetched from the IAT following a valid INTRID.
Cycle 7 is a special cycle to load the register R31 with the program return address, ARET. Therefore,
the signals, SelR31, SelPC and WERF, all become logic 1 during this cycle. The SelIAT signal is also
kept at logic 1 during cycle 7 in order to load the first interrupt address, I1, to the PC in cycle 8.
The WERF signal is kept at logic 1 from cycle 11 to cycle (N + 3) to be able to complete all
interrupt-related write-backs to the RF. The StallPC signal is kept at logic 1 from cycle (N + 1) to
cycle (N + 4) to stall the value of PCOut at IRET. Cycle (N + 5) is dedicated to retrieving the
program return address, ARET, from the RF. Therefore, the SelRF signal is kept at logic 1 in this
cycle to load the PC with the contents of ARET in the following cycle. The WERF signal transitions
to logic 1 in cycle (N + 9) in order to write the result of the instruction, InstrRET, back to the RF.

Figure 7.14 shows the resultant state diagram for the interrupt controller. In this schematic, the
control signals with zero values are omitted from the state machine to avoid congestion and improve
readability. The name of each state in the state machine comes from the labels on top of the timing

454 7 System Peripherals

diagram in Fig. 7.11. The machine starts with the IDLE state where there is no INTR signal.
Therefore, this state generates INTA = 0. When a valid INTR is received, the state machine transi-
tions to the INTA state and produces two outputs, INTA = 1 and StallPC = 1. This state corresponds
to cycle 3 of the timing diagram. As INTR = 1 continues, the machine goes though the INTRID,
INTR ADDR, LAST WB and STORE ARET states, which correspond to cycles 4, 5, 6 and 7,
respectively. These are the preparation states prior to an ISR. The FETCH I1 state indicates the first
interrupt instruction fetch, which corresponds to cycle 8. The interrupt controller goes though the
FETCH I2 and FETCH I3 states where it fetches the second and third interrupt instructions. These are
indicated in cycles 9 and 10, respectively. A cycle later the machine enters the INTR WB state where
it starts writing the results of interrupt instructions back to the RF. The interrupt controller stays at this
state until the interrupt address reaches its last value, IN. When the last interrupt address is fetched,
the machine transitions to the INTR END state where it performs three additional interrupt
write-backs, and it stalls the PC at IRET until the last interrupt write-back, WBIN, completes. This
state continues during cycles (N + 1), (N + 2) and (N + 3) in the timing diagram. Following the last
interrupt write-back, the interrupt controller prepares the system to finish the current interrupt service
before receiving another interrupt. The closing states are the ACCESS R31, LOAD ARET and

INTA

INTRID

INTR
ADDR

LAST
WB

STORE
ARET

FETCH
I1

FETCH
I2

FETCH
ARET

LOAD
ARET

ACCESS
R31

INTR
END

FETCH
I3

IDLE

INTR = 0

INTA = 0

INTR = 1INTA = 1
StallPC = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTA = 1
StallPC = 1
REIAT = 1

INTA = 1
StallPC = 1

INTA = 1

INTA = 1
SelIAT = 1

SelR31 = 1
SelPC = 1
WERF = 1

INTA = 1
StallPC = 1

INTA = 1
StallPC = 1
SelR31 = 1

INTA = 1
SelRF = 1

INTA = 0

INTR = 1
WBI(N-3) < WBIx < WBIN

INTA = 1

INTA = 1

INTA = 1

INTR = 1

INTA = 1

INTR
WB INTA = 1INTR = 1

WBIx < WBI(N-3)

INTR = 1

INTR = 1
WBIx = WBI(N-3)

INTR = 1
WBIx = WBIN

Fig. 7.14 Interrupt controller state diagram (control signals equal to logic 0 are omitted for simplicy)

7.3 Interrupt Controller 455

FETCH ARET states, which correspond to cycles (N + 4), (N + 5) and (N + 6) in the timing dia-
gram, respectively. The interrupt controller goes back to the IDLE state in cycle (N + 7) where the
INTRID becomes no longer valid.

However, a crucial problem arises when implementing this state machine. The interrupt controller
needs to know the end of an ISR. Somehow the number of instructions in the interrupt service routine
must be determined in advance in order to continue the state transitions in the state machine. The
states INTR WB and INTR END are the examples of this problem. The interrupt controller needs to
stay in the INTR WB state from the first to the (N − 4)th interrupt write-backs, and similarly in the
INTR END state from the (N − 3)th to the (N − 1)th interrupt write-backs during an ISR. Since the
number of instructions varies in an ISR program, this state machine’s implementation becomes
impossible for the ICU design, necessitating a change in the original timing diagram which will affect
the data-path in Fig. 7.13 and the state diagram in Fig. 7.14.

Figure 7.15 shows a slightly modified version of the interrupt controller data-path to circumvent
this problem. In this figure, a decoder is added between the output of the instruction register, IROut,
and the interrupt controller in order to detect the return opcode, RET, at the last interrupt address,
IRET. This, however, creates an additional input, DetIRET, for the ICU. Therefore, when the return
opcode is decoded in cycle (N + 2) in the new timing diagram in Fig. 7.16, the DetIRET signal
becomes logic 1 and prompts the ICU to make preparations to end the current ISR. In this figure, the
StallPC signal is also lowered to logic 0 between cycles (N + 1) and (N + 4) because not stalling the
PC during this interval will simply generate invalid addresses at the PCOut port, which may be
counterproductive for the operation of the interrupt controller prior to retrieving the return address,
ARET, from R31 in cycle (N + 6).

This modification leads to a number of changes in the ICU’s state diagram shown in Fig. 7.17.
After transitioning to the INTR WB state in cycle 11, the state machine stays in this state until it
detects DetIRET = 1. This input forces the ICU to move to the WBIN state to complete the last
interrupt write-back. At this point, the machine goes through three more states, ACCESS R31,
LOAD ARET and FETCH ARET, to load the user program return address back to the PC in order to
resume the original program.

Besides the absence of context switching, the architecture in Fig. 7.15 also suffers from providing
sufficient register space for both the regular program and the ISR. In other words, the compiler needs
to allocate some register space for the main program and some for the ISR, and it should not let the
instructions in the ISR overwrite the register values that belong to the main program if some of the
registers in the main program and the ISR are named the same.

The inclusion of context switching, and therefore a shadow register file, brings forth a new
architecture with a new timing diagram. These are shown in Figs. 7.18, 7.19 and 7.20. The initial
steps of the timing diagram in Fig. 7.18 are basically the same as the timing diagram in Fig. 7.16.

456 7 System Peripherals

In
te

rru
pt

C
on

tro
l U

ni
t

R
F

PC

+
1

IN
TR

0

IN
TR

1

IN
TR

25
5

Interrupt Interface

IN
TR

ID

IN
TR

IN
TA

R
EI

AT

W
EI

AT

In
te

rru
pt

 A
dd

re
ss

 T
ab

le

D
O

ut
IA

T

D
In

IA
T

31
0

8

25
5 0

32

D
O

ut
R

F

D
In

R
F

R
31

Ad
dr

R
F

31
0

In
tr1

In
trN

In
te

rru
pt

Se

rv
ic

e
R

ou
tin

e
(IS

R
)

In
st

r1

In
st

ru
ct

io
n

M
em

or
y

Se
lR

311 0

Se
lP

C
1

0

D
at

a
fro

m
W

rit
eb

ac
k

St
ag

e

Se
lR

F
Se

lIA
T

I
R

S
St

al
lP

C

PC
O

ut

Ad
dr

es
s

fro
m

W
rit

eb
ac

k
St

ag
e

SelR31

SelIAT

SelRF

StallPC

SelPC

W
ER

F

31
0

In
st

r2

In
st

r3

In
st

rR
ET

In
st

r4

R
ET

A1 A2 A3
AR

ET A4 I1 IN

IR
ET

C

In
trR

ET
 D

ec
od

er

D
et

IR
ET

cl
oc

k

IR
O

ut

cl
oc

k

In
st

ru
ct

io
n

R
eg

is
te

r

cl
oc

k

St
al

lP
C

S-
po

rt

4-
1

M
U

X
co

nf
ig

ur
at

io
n

Se
lR

F
Se

lIA
T

I-p
or

t
R

-p
or

t

Pr
og

ra
m

 C
ou

nt
er

El
se

C
-p

or
t

In
st

r0
0

cl
oc

k

D
In

D
O

ut

AI
n

AI
n

D
O

ut

AI
n

D
O

ut

Fi
g
.
7.
15

M
od

ifi
ed

in
te
rr
up

t
in
te
rf
ac
e
da
ta
-p
at
h

7.3 Interrupt Controller 457

ID
LE

ID
LE

IN
TA

IN
TR

ID
IN

TR
AD

D
R

LA
ST

W
B

ST
O

R
E

AR
ET

FE
TC

H
I1

FE
TC

H
I2

FE
TC

H
I3

IN
TR W
B

IN
TR W
B

IN
TR W
B

IN
TR W
B

AC
C

ES
S

R
31

LO
AD

AR
ET

FE
TC

H
AR

ET
ID

LE
ID

LE
ID

LE

cl
oc

k

IN
TR

x

IN
TR

IN
TA

IN
TR

ID

R
EI

AT

D
O

ut
IA

T

Se
lIA

T

PC
O

ut

St
al

lP
C

D
In

R
F

Se
lP

C

Ad
dr

R
F

W
ER

F

Se
lR

31

D
O

ut
R

F

Se
lR

F

In
te

rru
pt

 ID

la
te

nc
y

=
4

la
te

nc
y

=
4

La
te

nc
y

=
4

AR
ET

 w
rit

te
n

in
to

 R
31

AR
ET

A2
A3

A1
AR

ET
I1

I2
I3

AR
ET

W
BA

1
W

BA
2

W
BA

3
AR

ET
W

BA
3

W
BI

1
W

BI
2

W
BI

3
W

BI
N

Va
lid

 W
B

Ad
dr

es
s

R
31

Va
lid

 W
B

Ad
dr

es
s

R
31

N
ew

 A
rb

itr
at

io
n

W
BR

ET

St
ar

tin
g

In
te

rru
pt

 A
dd

re
ss

 =
 I1

IF
R

F
AL

U
/D

$
W

B

C
yc

le
1

C
yc

le
2

C
yc

le
3

C
yc

le
4

C
yc

le
5

C
yc

le
6

C
yc

le
7

C
yc

le
8

C
yc

le
9

C
yc

le
10

C
yc

le
11

C
yc

le
12

C
yc

le
13

C
yc

le
(N

+3
)

C
yc

le
(N

+4
)

C
yc

le
(N

+5
)

C
yc

le
(N

+6
)

C
yc

le
(N

+7
)

C
yc

le
(N

+8
)

C
yc

le
(N

+9
)

W
BI

N
-3

W
BN

-2
W

BI
N

-1

C
yc

le
N

C
yc

le
(N

+1
)

C
yc

le
(N

+2
)

I4
I5

IN

D
et

IR
ET

IR
ET

In
va

lid
 A

dd
re

ss

R
ET

IR
O

ut

En
d

of
 in

te
rru

pt
 s

er
vi

ce
 ro

ut
in

e

R
ET

U
R

N
 In

st
ru

ct
io

n

IN
TR W
B

IN
TR W
B

IN
TR W
B

W
BI

N

A4
A5

A6

O
PC

 d
ec

. g
en

er
at

es
 th

es
e

pu
ls

es

Ex
te

rn
al

 in
te

rru
pt

 =
 IN

TR
0

to
 IN

TR
25

5

In
te

rru
pt

 c
on

tro
lle

r g
en

er
at

es

on
ly

 th
is

 p
ul

se

C
PU

 k
no

w
s

ab
ou

t I
N

TR

O
PC

 d
ec

od
er

 g
en

er
at

es
 th

es
e

pu
ls

es

Fi
g
.
7.
16

T
im

in
g
di
ag
ra
m

of
th
e
m
od

ifi
ed

in
te
rr
up

t
in
te
rf
ac
e
in

Fi
g.

7.
15

458 7 System Peripherals

As long as INTR = 0 there is no activity in the interrupt controller as before. The arrival of the
interrupt (INTR = 1) starts the process and transitions INTA = 1. Generating INTA = 1 may take one
cycle or many cycles after INTR = 1. However, when INTA = 1 (shown in cycle 3), the interrupt ID
becomes available in cycle 4, and this input enables the IAT to generate a starting interrupt address at
the DOutIAT node in cycle 5. But, before the ISR starts three steps must be completed. The first step
is to write back the results of the instructions from the main user program, which ends at the end of
cycle 6. The second step is to preserve the return address, ARET, in R31, which takes place in cycle
7. And, the third step is to finish the context switching, or transferring the contents of registers, R1 to
R31, from the RF to the shadow register file, RFS, during cycles 8–37. In this process, no transfer is
done on R0 since its contents are assumed zero. In this time interval, the address pointer for the RF,
AddRF, is incremented by one while reading each register value. Every time the register data, DR1 to
DR31(ARET), becomes available at the DOutRF node of the RF, it is promptly written to the
corresponding shadow register from R1S to R31S. Cycle 38 signifies the end of the context switching
where ARET is written to RFS31.

INTA

INTRID

INTR
ADDR

LAST
WB

STORE
ARET

FETCH
I1

FETCH
I2

FETCH
ARET

LOAD
ARET

ACCESS
R31

WBIN

FETCH
I3

IDLE

INTR = 0

INTA = 0

INTR = 1INTA = 1
StallPC = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTA = 1
StallPC = 1
REIAT = 1

INTA = 1
StallPC = 1

INTA = 1

INTA = 1
SelIAT = 1

SelR31 = 1
SelPC = 1
WERF = 1

INTA = 1
SelR31 = 1

INTA = 1
SelRF = 1

INTA = 0

INTA = 1

INTA = 1

INTA = 1 INTA = 1

INTR
WB

INTR = 1
DetIRET = 0

INTR = 1

INTR = 1

INTR = 1
DetIRET = 1

INTA = 1

INTR = 1

INTA = 1

Fig. 7.17 Modified interrupt controller state diagram (control signals equal to logic 0 are omitted for simplicity)

7.3 Interrupt Controller 459

In cycle 39, the initial interrupt address routed through the I port of the 4-1 MUX shown in
Fig. 7.20 becomes available at the output of the PC, and the first interrupt instruction is fetched from
the address I1. Similarly, cycles 40 to 42 fetch interrupt instructions I2 to I4, respectively. The first
interrupt write-back also takes place in cycle 42.

The process of fetching, processing and writing-back the results of ISR instructions to the RF
continues for N number of cycles where N is an arbitrary number as shown in Fig. 7.19. In cycle
(N + 39), the last interrupt instruction is fetched from the instruction memory. This is followed by
fetching the return instruction, IRET, in cycle (N + 40). The contents of the return instruction, RET,
is ultimately decoded in cycle (N + 41), and ends the active ISR. In cycle (N + 42), the contents of
the last interrupt instruction, and in cycle (N + 43) the contents of the return instruction, RET, are
written back to the RF (in actuality, RET instruction ends at the OPC decode stage, and nothing from

clock

INTRx

INTR

INTA

INTRID

DOutIAT

PCOut

IROut

DInRF

AddrRF

AddrRFS

DOutRF

DOutRFS

WERF

StallPC

SelPC

SelR31

SelA

IncAddr

WERFS

IncAddrS

SelIAT

SelD

SelRF

DetIRET

A1 I1

WBA1 WBA2 WBA3 ARET

R31 R1 R2 R31R3

R1S R2S R30S

DR1 DR2 ARET

1 2 3 4 5 6 7 8 9 10 37 38 39 40 41

A3

Starting interrupt address

ARET (to be stored in R31)

42

WBI2

R31S

DR30

CPU knows about INTR and holds the PC until regular instructions are written back to RF

R0 R1
R31

= ARET

R0S R1S R2S R31S

Context switching begins

I2 I3

LATENCY = 4

A2

LATENCY = 4

WBI1

IDLE IDLE INTA INTRID
INTR
ADDR

LAST
WB

STOR
ARET
IN RF

CXSW
R1

CXSW
R2-R30

CXSW
R31

CXSW
R2-R30

STOR
ARET

IN RFS
FETCH

I1
FETCH

I2
FETCH

I3
INTR
WB

INTR
WB

External interrupt = INTR0 to INTR255

Intr. controller generates only this pulse

OPC decoder generates these pulses OPC decoder
generates
these pulses

REIAT

Interrupt ID

I4

Fig. 7.18 Interrupt controller timing diagram with context switching

460 7 System Peripherals

this particular instruction is written to the RF). In these last two cycles, the contents of instructions
beyond IRET also become available at the IROut node and sent to the rest of the CPU pipeline.
However, they are never written back to the RF because the RF is busy, retrieving the original register
contents of the user program between cycles (N + 44) and (N + 74). In cycle (N + 44), the “reverse
context switching” starts, and the contents of the shadow register file, RFS, are sequentially trans-
ferred back to the regular RF. For this process, the address pointer, AddrRFS, is incremented by one
from R1S to R31S. Every time shadow register data, DR1 to DR31 (ARET), becomes available at
the DOutRFS node, it is routed through the D port of the 3-1 MUX in Fig. 7.20 and written
sequentially to the regular RF at addresses from R1 to R31, respectively. This process is shown
between cycles (N + 44) and (N + 74) in Fig. 7.19. The retrieval of the return address, ARET, from
R31 takes place in cycles (N + 75) and (N + 76). In cycle (N + 77), ARET is finally restored at the

clock

INTRx

INTR

INTA

INTRID

DOutIAT

PCOut

IROut

DInRF

AddrRF

AddrRFS

DOutRF

DOutRFS

WERF

StallPC

SelPC

SelR31

SelA

IncAddr

WERFS

IncAddrS

SelIAT

SelD

SelRF

DetIRET

IN IRET A4

WBIN

R31R31

R1S

ARET

Starting interrupt address

WBA5

R0 R1

R0S R1S R2S R31S

A5 A6

N+40

RET

WBRET

N+39

ARET WBARET WBA4

ARET A7

ARET

New arbitration

R2 R31

Stall the PC until reverse context switching finishes

DR1

R1 R2

R2S

DR2

DR1 DR2

R31S

INTR
WB

INTR
WB

REV
CXSW
RS1

REV
CXSW
RS0

REV
CXSW

RS2-RS30

REV
CXSW
RS31

INTR
WB

RESTOR
ARET

ACC
R31 IDLE IDLE IDLE IDLE IDLE IDLE

Intr. cont. generates these pulsesOPC decoder generates these pulses OPC decoder generates
these pulses

REIAT

WBIN-2 WBIN-1

N+41 N+42 N+43 N+44 N+73 N+74 N+75 N+76 N+77 N+78 N+79 N+80 N+81 N+82

INTR
WB

LOAD
ARET

Fig. 7.19 Continuation of the interrupt controller timing diagram in Fig. 7.18

7.3 Interrupt Controller 461

In
te

rru
pt

C
on

tro
l U

ni
t

R
F

PC

+
1

IN
TR

0

IN
TR

1

IN
TR

25
5

Interrupt Interface

IN
TR

ID

IN
TR

IN
TA

R
EI

AT

W
EI

AT

In
te

rru
pt

 A
dd

re
ss

 T
ab

le

D
O

ut
IA

T

D
In

IA
T

31
0

8

25
5 0

32

D
O

ut
R

F D
In

R
F

R
31

Ad
dr

R
F

31
0

In
tr1

In
trN

In
te

rru
pt

Se

rv
ic

e
R

ou
tin

e
(IS

R
)

In
st

r1

In
st

ru
ct

io
n

M
em

or
y

SelR31

Se
lP

C
P

D

D
at

a
fro

m
W

rit
eb

ac
k

St
ag

e

Se
lR

F
Se

lIA
T

I
R

P
St

al
lP

C

PC
O

ut

Ad
dr

es
s

fro
m

W
rit

eb
ac

k
St

ag
e

SelR31

SelIAT

SelRF

StallPC

SelPC

W
ER

F

31
0

In
st

r2

In
st

r3

R
et

ur
n

In
st

r

In
st

r4

R
ET

A1 A2 A3
AR

ET A4 I1 IN

IR
ET

C

In
trR

ET
 D

ec
od

er

D
et

IR
ET

cl
oc

k

IR
O

ut

cl
oc

k

In
st

ru
ct

io
n

R
eg

is
te

r

cl
oc

k

clock clockW

Sh
ad

ow
R

F
W

ER
FS

31
0

DOutRFSD
In

D
In

D
O

ut

D
O

ut

Ad
dr

 C
ou

nt
er

cl
oc

k
In

cA
dd

r

Ad
dr

S
C

ou
nt

er

cl
oc

k
In

cA
dd

rS

Ad
dr

R
FS

R A W

St
ar

tin
g

in
te

rru
pt

ad

dr
es

s

In
st

r0
0

AI
n

AI
n

SelA

Se
lD

Se
lR

31
R

-p
or

t

3-
1

M
U

X
co

nf
ig

ur
at

io
n

Se
lA

A-
po

rt

Ad
dr

R
F

El
se

W
-p

or
t

Se
lP

C
P-

po
rt

3-
1

M
U

X
co

nf
ig

ur
at

io
n

Se
lD

D
-p

or
t

D
In

R
F

El
se

W
-p

or
t

St
al

lP
C

P-
po

rt

4-
1

M
U

X
co

nf
ig

ur
at

io
n

Se
lR

F
Se

lIA
T

I-p
or

t
R

-p
or

t

Pr
og

ra
m

 C
ou

nt
er

El
se

C
-p

or
t

AI
n

D
O

ut

AI
n

D
O

ut

SelA

IncAddr
IncAddrS

WERF
WERFS

SelD

Fi
g
.
7.
20

In
te
rr
up

t
co
nt
ro
lle
r
ar
ch
ite
ct
ur
e
w
ith

co
nt
ex
t
sw

itc
hi
ng

462 7 System Peripherals

PCOut node. In this cycle, INTA also transitions to logic 0, informing the CPU to start servicing the
next interrupt.

The Interrupt Control Unit (ICU) for the new architecture in Fig. 7.20 is shown in Fig. 7.21. In
this figure, the ICU stays in the IDLE state while INTR = 0. When INTR = 1, the state machine
transitions to the INTA state in cycle 3 where it generates INTA = 1 and StallPC = 1 as shown in
Fig. 7.18. Note that all control outputs that stay at logic 0 are not shown in Fig. 7.21 for simplicity.

IDLE

INTAINTRID

INTR
ADDR

LAST
WB

STOR
ARET
IN RF

CXSW
R1

CXSW
R2-R30

CXSW
R31

STOR
ARET

IN RFS

FETCH
I1

FETCH
I2

FETCH
I3

INTR
WB

REV
CXSW
RS0

REV
CXSW
RS1

REV
CXSW

RS2-RS30

REV
CXSW
RS31

RESTOR
ARET

ACC
R31

LOAD
ARET

INTR = 0

IN
TR

 =
 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1 INTR = 1 INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1

INTR = 1
DetIRET = 0

INTR = 1
DetIRET = 1

INTA = 1
StallPC = 1

INTA = 1
StallPC = 1
REIAT = 1

INTA = 1
StallPC = 1

INTA = 1

INTA = 1
StallPC = 1
SelPC = 1

SelR31 = 1
IncAddr = 1
WERF = 1

INTA = 1
StallPC = 1

SelA = 1
IncAddr = 1

IncAddrS = 1

INTA = 1
StallPC = 1

SelA = 1
IncAddr = 1

IncAddrS = 1
WERFS = 1

INTA = 1
StallPC = 1

SelA = 1
IncAddrS = 1
WERFS = 1

INTA = 1
WERFS = 1
SelIAT = 1

INTA = 1 INTA = 1

INTA = 1

INTA = 1

INTA = 1
StallPC = 1
IncAddrS = 1

INTA = 1
StallPC = 1
IncAddr = 1
IncAddrS = 1

INTA = 1
StallPC = 1
SelA = 1
IncAddr = 1
IncAddrS = 1
SelD = 1
WERF = 1

INTA = 1
StallPC = 1
SelA = 1
IncAddr = 1
SelD = 1
WERF = 1

INTA = 1
StallPC = 1
SelA = 1
SelD = 1
WERF = 1

INTA = 1
StallPC = 1
SelR31 = 1

INTA = 1
SelRF = 1

Fig. 7.21 Interrupt controller state machine with context switching (control signals equal to logic 0 are omitted for
simplicy)

7.3 Interrupt Controller 463

As long as INTR stays at logic 1 the state machine first transitions to the INTRID state in cycle 4,
generating INTA = 1, StallPC = 1 and REIAT = 1, then to the INTR ADDR state with INTA = 1
and StallPC = 1 in cycle 5, and finally to the LASTWB state with only INTA = 1 in cycle 6. This
completes all the write-backs from the main program. In cycle 7, the ICU transitions to the state
STOR ARET IN RF where two separate events take place. The first event is to store the return
address, ARET, in R31 by activating the P port of the 3-1 data MUX by SelPC = 1 and the R port of
the 3-1 address MUX by SelR31 = 1. The second event is to start incrementing the address counter
for the RF by IncAddr = 1. In this state, INTA and StallPC still stay at logic 1. In cycle 8, the state
machine enters the CXSW R1 state where the context switching starts. In this state, the ICU activates
the A port of the 3-1 address MUX by Sel A = 1 so that the output of the address counter connects to
the address input of the RF, AddrRF. Also, both IncAddr and IncAddrS signals become logic 1 to
generate the next address values for the RF and RFS while INTA = StallPC = 1. Cycles 9 to 36
represent the CXSW R2-R30 state where contents of each register in the RF are written to the
corresponding register in RFS. In this state, Sel A is still at logic 1 to enable the A port of the 3-1
address MUX in order to receive address values generated by the address pointer, WERFS = 1 to
write each register value from the RF to the corresponding register in the RFS, and finally
IncAddr = IncAddrS = 1 to keep incrementing addresses for the RF and RFS while INTA =
StallPC = 1. In cycle 37, the ICU transitions to the CXSW R31 state. In this state, Sel A = 1 sends
the last address value, R31, to the AddrRF port, IncAddrS = 1 increments the RFS address to R31S,
and WERFS = 1 stores DR30 in R30S in the RFS. Cycle 38 produces the STOR ARET IN RFS state
and ends the context switching process. In this state, WERFS = 1 stores ARET in R31S, and
SelIAT = 1 allows the starting interrupt address, I1, to be at the output of the PC in the next cycle.
The states, FETCH I1, FETCH I2, FETCH I3, are generated to fetch the interrupt instructions, I1, I2
and I3, in cycles 39, 40 and 41, respectively. Interrupt instruction write-backs start in cycle 42 where
the ICU enters the INTR WB state. The state machine stays in this state until it detects the return
opcode, RET, in the form of DetIRET = 1 from the opcode decoder. The ICU leaves the INTR WB
state in cycle (N + 41) and enters a new state, the REV CXSW RS0 state, in cycle (N + 42) to start
the reverse context switching process in order to transfer the contents of each register from the RFS to
the RF in sequential order. The REV CXSW RS0 state produces IncrAddrS = 1 to generate the first
RFS address, RS1, in the next clock cycle. This state is followed by the REV CXSW RS1 state in
cycle (N + 43) where IncAddr = IncrAddrS = 1 to increment both address pointers for the RF and
RFS. This trend continues from cycle (N + 44) to cycle (N + 73) where the ICU stays in the
REV CXSW RS2-RS30 state. During this interval, Sel A = 1 selects the A port of the 3-1 address
MUX to propagate the addresses generated by the address pointer to the AddrRF node of the RF, Sel
D = 1 activates the D port of the 3-1 data MUX to transfer each register data from the RFS to the
DInRF port of the RF, and WERF = 1 writes each transferred register value to the RF while
incrementing both address pointers by IncAddr = IncAddrS = 1. Cycle (N + 73) corresponds to the
REV CXSW RS31 state where DR30 is written to R30 by SelA = SelD = WERF = 1 while the
address pointer to the RF is incremented one last time by IncAddr = 1. The next cycle, (N + 74),
corresponds to the RESTOR ARET state and restores the return address, ARET, in the RF. In this
state, ARET is written to R31 by SelA = SelD = WERF = 1. In cycle (N + 75), the state machine
transitions to the ACCR31 state where SelR31 = 1 selects the R port of the 3-1 address MUX to
propagate R31 to the AddrRF node. In cycle (N + 76), the register value at R31, ARET, is read out
from the RF to the DOutRF node, and the ICU activates the R port of the 4-1 MUX to allow this value
to be loaded to the PC. This corresponds to the LOAD ARET state in Fig. 7.21. Finally, in cycle
(N + 77), the state machine enters the IDLE state where the return address, ARET, is produced at the
PC output, and the main program resumes.

464 7 System Peripherals

7.4 Serial Transmitter Receiver Interface

There are times when the CPU needs to use its serial I2C or SPI interface in order to communicate
with an I/O device. The serial interface consists of a transmitter to send serial data to an I/O device,
and a receiver to receive serial data from the same device on a one-bit bus. The following section
describes the basic structure of a transceiver composed of a transmitter and a receiver to handle
one-bit serial data.

Transmitter

Figure 7.22 shows the data-path of a transmitter where an incoming 32-bit data from the CPU is
received at the TXIn[31:0] port, and stored in one of the two buffers before being serially sent out
from the TXOut port. Each buffer is essentially a shift register. Once a 32-bit data packet is loaded
into a shift register, the bits start shifting from the least significant bit position to the most significant
bit position until all 32 bits are sent out. Transmitting serial data in the reverse order is also possible
depending on the bus protocol the I/O device uses at the receiving end.

TXBuf0

TXBuf1

ShiftTXBuf0 LoadTXBuf0

32
TXOutTXIn[31:0]

1

0

PassTXBuf

CSTX

TX
Controller

fuBXTssaP

f uBXTdaoL
1 1f uBXTtfi hS
0f uBXTtfi hS

f uBXTdaoL
0

ValidTXData

LoadTXBuf1
LoadTXBuf0 TXBufEmpty

TX Counter

TXCount

DecTXCount
LoadTXCount

31

ShiftTXBuf1 LoadTXBuf1

Fig. 7.22 Transmitter data-path

7.4 Serial Transmitter Receiver Interface 465

This design uses a dual buffer scheme to overcome the difficulties of bus traffic such as long
waiting times when accessing system’s main memory. A single buffer may also be sufficient for this
particular architecture provided that every time data is needed for a specific buffer there will be an
associated waiting period before data arrives from the main memory. Once the main memory is
accessed, storing a 32-bit data in one of the transmitter buffers takes only a cycle. Streaming all 32
bits from a particular buffer, on the other hand, takes 32 consecutive clock cycles. The clock used to
send serial data may also be a slower clock depending on the design constraints. Therefore, the
transmitter uses all 32 clock periods to request, wait and receive data to its secondary buffer while it
streams bits out of the first buffer. When the first buffer becomes empty, the transmitter immediately
starts streaming data out of its secondary buffer while it fills the first buffer.

PassTxBuf input in Fig. 7.22 is a control signal for the 2-1 MUX that determines when to switch
buffer outputs. LoadTxBuf0 and LoadTXBuf1 inputs determine when to load the first and the second
buffers, respectively. ShiftTXBuf0 and ShiftTXBuf1 inputs control the beginning and the end of the
serial data shift from buffer 0 and buffer 1, respectively. The CSTX is a Chip-Select input port for the
transmitter, and it stays at logic 1 as long as the system uses the transmitter.

The timing diagram in Fig. 7.23 shows how data is stored and streamed out of the data buffers. It is
constructed while the transmitter data-path in Fig. 7.22 is being developed. Once again, the top part
of this diagram shows the bus-level data signals that describe the data-flow while the bottom part
contains the control signals that govern this data-flow.

The transmitter wakes up when it receives an active-high CSTX signal from the CPU in cycle 1. In
cycles 2 and 3, the 32-bit data packets, Buf0 and Buf1, fill the first and second transmitter buffers,
TXBuf0 and TXBuf1, respectively. Once the first buffer is full in cycle 2, single bits start emerging
from the least significant bit position of the buffer (the shifting mechanism can also be configured in
the reverse order such that the buffer emits bits from the most significant bit position) in cycle 3. The
first bit that comes out of TXBuf0 in cycle 3 is Bit0 which is the least significant bit of the data
packet. This is followed by Bit1 through Bit31 between cycles 4 and 34, respectively. When the first
buffer becomes empty, the transmitter immediately switches to its second buffer and starts streaming
bits from TXBuf1. In the mean time, the transmitter fills TXBuf0 with a new 32-bit of data in cycle 35
as long as there is no bus traffic. Emptying the second buffer takes until cycle 66 when Bit31 is sent
out from the TXOut terminal. When TXBuf1 is empty, the transmitter starts streaming out data from
TXBuf0 in cycle 67 while filling TXBuf1. The process of filling one buffer while streaming bits out of
the second continues as long as the data stored in the main memory is fully exhausted. Figure 7.23
shows how data packets from the main memory become available when the transmitter switches from
its empty buffer to its full buffer, ignoring any delay associated with accessing the main memory. In
reality, when the transmitter starts streaming data out of the full buffer, it immediately generates an
interrupt for its empty buffer to fetch data from the main memory. The waiting period is 31 clock
cycles. In the 32nd clock cycle, the empty buffer must be full. Otherwise, the transmitter stalls, and no
new data can be transmitted.

466 7 System Peripherals

Pa
ss

TX
Bu

f

TX
In

[3
1:

0]

Sh
ift

TX
Bu

f0

Sh
ift

TX
Bu

f1

C
ST

X

Lo
ad

TX
Bu

f1

TX
O

ut

cl
oc

k

Bi
t0

Bi
t1

Bi
t2

Bi
t0

Bi
t3

1
Bi

t1
Bi

t2

Bu
f0

Bu
f0

Bi
t3

1
Bi

t1
Bi

t2
Bi

t3
1

Bi
t0

Bi
t1

Bu
f1

Bi
t0

Bu
f0

Lo
ad

TX
Bu

f0

Bi
t2

Bu
f1

Va
lid

TX
D

at
a

C
yc

le
1

C
yc

le
2

C
yc

le
3

C
yc

le
4

C
yc

le
5

C
yc

le
34

C
yc

le
35

C
yc

le
36

C
yc

le
37

C
yc

le
66

C
yc

le
67

C
yc

le
68

C
yc

le
69

C
yc

le
98

C
yc

le
99

C
yc

le
10

0
C

yc
le

10
1

TX
C

ou
nt

31
30

29
31

0
30

29
0

30
29

0
31

30
31

29

D
ec

TX
C

ou
nt

Lo
ad

TX
C

ou
nt

ID
LE

PR
EL

O
AD

BU
F0

LO
AD

BU
F1

EM
PT

Y
BU

F0

EM
PT

Y
La

st
 B

it
BU

F0
LO

AD
BU

F0
EM

PT
Y

BU
F1

EM
PT

Y
La

st
 B

it
BU

F1
LO

AD
BU

F1

Fi
g
.
7.
23

T
ra
ns
m
itt
er

tim
in
g
di
ag
ra
m

7.4 Serial Transmitter Receiver Interface 467

The control signals that govern the data-flow in Fig. 7.22 constitute the second part of the timing
diagram. Once the active-high CSTX signal is received, the LoadTXBuf0 signal transitions to logic 1
to load the first 32-bit data packet, Buf0, to TXBuf0 in cycle 2. In cycle 3, the second 32-bit data
packet, Buf1, is loaded to TXBuf1, which requires the LoadTXBuf1 signal to be at logic 1. From
cycle 3 until cycle 33, TXBuf0 works as a shift register to stream bits from 0 to 31. Therefore, the
ShiftTXBuf0 signal stays at logic 1 during this period. In cycle 34, the last bit is shifted out of
TXBuf0, and therefore, all data-flow controls for this buffer transition to logic 0. In cycle 35, the
LoadTXBuf0 signal transitions to logic 1 to fill the empty buffer, TXBuf0. The ShiftTXBuf1 signal
also transitions to logic 1 in the same cycle to shift bits from 0 to 31 until cycle 66. Cycle 35 is also
the time to switch the buffer outputs. Therefore, the PassTXBuf signal becomes logic 1 in this cycle
until cycle 67 when all the data in TXBuf1 is streamed out. Cycle 66 is the cycle to deliver the last bit
out of TXBuf1. Cycles 67 through 98 are exact replicas of cycles 3 to 34 when TXBuf1 is filled while
bits are emitted from TXBuf0. The ValidTXData signal validates bits for external use as they are
streamed out of the transmitter. Therefore, this signal stays at logic 1 from cycle 3 until the last
transmitter bit.

Figure 7.24 shows the state diagram of the controller unit to load and shift data in each buffer, to
switch buffer outputs, and to validate bits out of the transmitter. The state names in this figure follow
the names depicted at the top of the timing diagram in Fig. 7.23. When there is no activity in CSTX
signal, the state machine stays in the IDLE state. When CSTX = 1, the controller transitions to the
PRELOAD BUF0 state where it produces LoadTXBuf0 = 1 to load TXBuf0, and LoadTXCount = 1
to load the TXcounter in Fig. 7.22 with the value of 31. This state is associated with cycle 2 in the
timing diagram. Note that the TXCounter is a five-bit counter which is used to detect the end of the
serial data stream, and it is essential for the controller to be able to make a transition to the next state.
As long as CSTX = 1, the state machine transitions to the LOAD BUF1 state where it produces
LoadTXBuf1 = ShiftTXBuf0 = ValidTXData = 1. This state corresponds to cycle 3 in the timing
diagram. This state is also the beginning of the count-down stage where the TXCounter output starts
decrementing from 31 towards 0 by DecTXCount = 1. Next, the state machine goes to the EMPTY
BUF0 state, and stays in this state as long as the output of the TXCounter, TXCount, is greater than
one. This state corresponds to cycles 4 through 33 in the timing diagram. When TXCount = 1, the
controller goes to the EMPTY Last Bit BUF0 state where Bit31 is shifted out of TXBuf0. This state is
equivalent to cycle 34 in the timing diagram when the TXCounter is reloaded with the value of 31 to
start another count-down. As long as CSTX = 1, the state machine first transitions to the LOAD
BUF0 state in cycle 35, and then to the EMPTY BUF1 state as the TXCounter decrements towards 1
from cycle 36 to cycle 65. When TXCount = 1, the state machine transitions to the EMPTY Last Bit
BUF1 state in cycle 66 when the last bit of TXBuf1 is shifted out. From cycle 67 onwards, the state
machine goes back to the LOAD BUF1 state, and traces through the previous five states since the
control outputs generated in each state are identical to the ones in the timing diagram in each clock
cycle. The state diagram in Fig. 7.24 does not show the transitions from an arbitrary state to the IDLE
state when CSTX = 0 to improve readability. The case when the transmitter exhausts all of its valid
data from both of its buffers and forced to stall is not shown in Fig. 7.24 either. If heavy bus traffic is
expected, the reader should employ an additional STALL state in case new data is not yet loaded to
TXBuf0 or TXBuf1 before the state machine transitions to the LOAD BUF0 or LOAD BUF1 states,
respectively.

468 7 System Peripherals

Receiver

Figure 7.25 shows the data-path of a receiver where incoming data bits are serially received by the
RX buffer, RXBuf, at the RXIn port before being packed as 32-bit data packets and sent to the CPU
from the RXOut[31:0] port. This architecture can also be accomplished with multiple buffers in case
the receive clock frequency is much higher than the processor clock frequency, or the CPU bus is
often occupied by other data transactions.

CSTX = 0

LoadTXBuf1 = 1
ShiftTXBuf0 = 1

ValidTXData = 1
DecTXCount = 1

LoadTXBuf0 = 1
LoadTXCount = 1

IDLE

PRELOAD
BUF0

LOAD
BUF1

EMPTY
BUF0

EMPTY
Last Bit
BUF0

LOAD
BUF0

EMPTY
BUF1

EMPTY
Last Bit
BUF1

CSTX = 1

CSTX = 1

CSTX = 1

CSTX = 1
TXCount = 1

CSTX = 1

CSTX = 1

CSTX = 1

ShiftTXBuf0 = 1
ValidTXData = 1
DecTXCount = 1

ValidTXData = 1
LoadTXCount = 1

LoadTXBuf0 = 1
ShiftTXBuf1 = 1
PassTXBuf = 1
ValidTXData = 1
DecTXCount = 1

ShiftTXBuf1 = 1
PassTXBuf = 1
ValidTXData = 1
DecTXCount = 1

PassTXBuf = 1
ValidTXData = 1
LoadTXCount = 1

CSTX = 1
TXCount > 1

CSTX = 1
TXCount > 1

CSTX = 1
TXCount = 1

Fig. 7.24 Transmitter controller state diagram (control signals equal to logic 0 are omitted for simplicity)

7.4 Serial Transmitter Receiver Interface 469

Figure 7.26 summarizes the operation of the receiver in a timing diagram. Once the receiver is
activated by CSRX = 1 in cycle 1, any incoming data bit is ignored until the ValidRXDIn signal
transitions to logic 1. In other words, this external signal validates the data bit at the RXIn port, and
indicates when to start latching data bits into the RX buffer. As a result, Bit0 is stored in RXBuf in
cycle 2 and Bit31 in cycle 33 (the reverse bit order storage to this buffer is also possible provided that
the I/O device sends the most significant bit, Bit31, first and the least significant bit, Bit0, last).
In cycle 34, a new Bit0 is fetched by the receive buffer. This cycle is also the time period to pack all
32 bits, and send them out of the RXOut[31:0] port. The 32-bit data is accompanied by the
ValidRXDOut signal for validation. In order to determine in which clock cycle the ValidRXDOut
signal transitions to logic 1, a five-bit counter is used. This counter starts decrementing as soon as the
DecRXCount or the LatchRXData signal goes to logic 1. When the counter reaches 0, the RX
Controller produces ValidRXDOut = 1 in the following cycle to validate the 32-bit word at the
RXOut[31:0] port. From cycle 34 to 67, the receiver keeps latching new valid bits into RXBuf. There
may be a period where the serial bit stream may not be valid (ValidRXDIn = 0) such as the cycles 38
and 39. During this period, both the latching action at the RXIn port and the count-down mechanism
at the RX Counter instantaneously stop by LatchRXData = 0 and DecRXCount = 0, respectively.
The normal receiver operation resumes as soon as the ValidRXDIn signal transitions to logic 1 in
cycle 40.

RXOut[31:0]RXIn

LatchRXData

RX
Controller ValidRXDOutRX Counter RXCount

DecRXCount

RXBuf
1 32

ValidR
XD

In
C

SR
X

Fig. 7.25 Receiver data-path

470 7 System Peripherals

R
XI

n

R
XO

ut
[3

1:
0]

cl
oc

k

W

Bi
t0

Bi
t3

0
Bi

t1

Bi
t0

la

tc
he

d
Bi

t3
1

la
tc

he
d Bi

t0
Bi

t3
Bi

t1
Bi

t4
Bi

t3
0

Bi
t5

W

Bi
t2

Bi
t3

1
N

O
T

VA
LI

D
Bi

t3
1

C
SR

X

Va
lid

R
XD

In
Bi

t0

la
tc

he
d

Bi
t3

1
la

tc
he

d

C
yc

le 1
C

yc
le 2

C
yc

le 3
C

yc
le 4

C
yc

le
32

C
yc

le
33

C
yc

le
34

C
yc

le
35

C
yc

le
36

C
yc

le
37

C
yc

le
38

C
yc

le
39

C
yc

le
40

C
yc

le
41

C
yc

le
42

C
yc

le
66

C
yc

le
67

C
yc

le
68

31
1

30
31

28
30

1
26

29
0

27
0

31

D
ec

R
XC

ou
nt

R
XC

ou
nt

Va
lid

R
XD

O
ut

La
tc

hR
XD

at
a

C
O

U
N

T
D

O
W

N
C

O
U

N
T

D
O

W
N

VA
LI

D
D

O
U

T
VA

LI
D

D
O

U
T

ID
LE

Fi
g
.
7.
26

R
ec
ei
ve
r
tim

in
g
di
ag
ra
m

7.4 Serial Transmitter Receiver Interface 471

The RX controller is a simple state machine with three distinct states as shown in Fig. 7.27.
The IDLE state is the state when CSRX = 0 or ValidRXDIn = 0. Even when the CSRX signal goes
to logic 1, the controller stays in this state as long as ValidRXDIn = 0. This translates to cycles 1 and
2 in Fig. 7.26. When the CSRX and ValidRXDIn signals both go to logic 1, the controller moves to
the COUNT DOWN state to fill RXBuf. The controller stays in this state until the RXCount signal
reaches 0. This state covers the cycles from 3 to 33 in the timing diagram. In the next cycle, the state
machine goes to the VALID DOUT state where it stays for only one clock cycle and produces
ValidRXDOut = 1 for the 32-bit data at the RXOut[31:0] port. Following the VALID DOUT state,
the controller goes back to the COUNT DOWN state where it starts filling the receive buffer again. As
long as valid bits arrive at the RXIn port, the state machine rotates between the COUNT DOWN and
the VALID DOUT states in Fig. 7.27. When CSRX = 0 or ValidRXDIn = 0, the state machine
transitions either from the COUNT DOWN or the VALID DOUT state to the IDLE state. These
transitions are omitted in Fig. 7.27 to maintain simplicity.

7.5 Timers

Every digital system contains programmable timers to handle a multitude of tasks. If an external event
needs to be monitored, it calls for a timer. Periodic internal system tasks are also managed by timers.
Timers can also be used to generate square waveforms or pulses with adjustable pulse widths such as
Pulse Width Modulation (PWM) signals to control output devices or perform periodic tasks.

A basic system timer is shown in Fig. 7.28. This timer essentially consists of a counter, a compare
unit and two registers. The first register stores the entire timer period after which the counter receives
an automatic reset, and the other divides the clock frequency of the counter. The period and the divide
by N registers are fully programmable. The compare unit is simply a subtractor which subtracts the
counter output from the period value. As the counter starts incrementing from zero and ultimately

IDLE

COUNT
DOWN

VALID
DOUT

CSRX = 0
or
ValidRXDIn = 0

CSRX = 1
ValidRXDIn = 1

CSRX = 1
ValidRXDIn = 1
RXCount = 0CSRX = 1

ValidRXDIn = 1
RXCount ≠ 0

ValidRXDout = 1

Fig. 7.27 Receiver controller state diagram (control signals equal to logic 0 are omitted for simplicity)

472 7 System Peripherals

reaches the value stored in the period register, the output of the subtactor and its sign bit become all
zero. These bits are subsequently decoded by the compare unit which produces logic 1 at the timer
output as shown in this figure.

The counter in Fig. 7.28 has an automatic reset. However, some counters do not have this feature,
and they simply increment until all their output bits become logic 1. In the next clock cycle, the
counter resets and starts counting up from zero again.

The basic timer configuration can be molded into various topologies. However, all modifications
still contain a counter, a register that stores the cut-off period, and a comparator that compares the
counter output against the value in the period register. The comparison can be achieved by a
subtractor/decoder scheme as in Fig. 7.28.

Divide by N

C
O

M
PA

R
E

Reset

Output

Fclock

Cutoff period

Counter period

time

time

Output (t)

clock division, N

PERIOD

COUNTER

Fclock
N

Counter (t)

Program Data

Program Data

Fig. 7.28 Simplified timer block diagram

7.5 Timers 473

The following section presents many different forms of timers, each of which can still be modified
and converted into various other forms that can produce additional features and functionality. The
basic timers in this section are configured to produce a one-time pulse such as a one-shot timer, a
periodic waveform with adjustable duty cycle such as a rate generator, a square waveform with fully
programmable period, or a step function with an adjustable delay such as interrupt generator. There
are subtle differences and incremental enhancements from one timer circuit to another, but in the end
each timer uses a counter, a register and a comparator as pointed out before.

One-Shot Timer

The one-shot timer, as its name suggests, generates a single, non-repetitive pulse whose pulse width is
programmed by the user. Figure 7.29 shows the micro-architecture of a typical one-shot timer.

The pulse width is stored in the OneShot register via a program bus. Once programmed, the data in
this register is routed through the L-port of the 3-1 MUX by LoadOneShot = 1, and it provides an
initial value for the down-counter. This is shown as OneShotOut = 4 in the timing diagram in Fig. 7.30
during cycle 1 as a numerical example. In cycle 2, the RData[31:0] node becomes 4. Since this value is
different from 0, the decoder placed at the RData[31:0] node (a 32-input AND gate with an inverter)
produces logic 1 at the OneShot output. This, in turn, activates the D-port of the 3-1 MUX and routes
the decremented RData value, (RData – 1) = 3, to the input of the down-counter. In cycle 3, the RData

- 1

32

Idle L D

clock

D
Q

LoadOneShot

OneShot

32

32

RData[31:0]

Program Data

OneShot Reg

OneShotOut

se
le

ct
s

D
-p

or
t

Fig. 7.29 Block diagram of the one-shot timer

474 7 System Peripherals

[31:0] node becomes 3, and the OneShot output stays at logic 1, keeping the D-port of the 3-1 MUX
active. The decremented RData value, (RData – 1) = 2, is fed back to the timer input again. The D-port
of the 3-1 MUX stays active until cycle 6 when the RData[31:0] node becomes zero. From this point
forward, the Idle-port of the 3-1 MUX becomes active, and the timer output stays at zero. The timer
stays in this state until it is reprogrammed with a new value.

Rate Generator

The rate generator is another type of timer which periodically generates single pulses separated by a
programmable time duration. Once a desired rate is stored in the RateGen register via program bus, it
is routed through the L-port of the 2-1 MUX to the input of the timer by LoadRateGen = 1 as shown
in Fig. 7.31. This step is shown in cycle 1 of the timing diagram in Fig. 7.32 with RateGenOut = 4 as
an example. In cycle 2, the RData[31:0] node becomes four, and the RateGen terminal becomes zero.
Because neither the RateGen port nor the LoadRateGen input is at logic 1, the D-port of the 2-1 MUX
becomes automatically active to allow the decremented RData, (RData – 1) = 3, to become the input
of the down-counter. In cycle 3, RData[31:0] becomes equal to three, which keeps the D-port active
because both RateGen and LoadRateGen are zero. The decremented RData, (RData – 1) = 2, is again
routed to the input of the timer. This path stays active until RData[31:0] = 1. At this point, RateGen
output becomes equal to one, and selects the L-port of the 2-1 MUX. The value in the RateGen
register is reloaded to the input of the down-counter. This is shown in cycle 5 of the timing diagram.
In cycle 6, RData[31:0] becomes four, and the RateGen output becomes zero. The cycles 7 through
9 are the exact replicas of the cycles 3 through 5. The RData node keeps decrementing until it reaches
to one, at which point the RateGen output becomes one. Therefore, periodic single pulses are
generated once in every four consecutive cycles at the RateGen output once the RateGen register is
programmed with a value of four.

clock

4

4 3 2 1

LoadOneShot

OneShotOut

RData[31:0]

OneShot

Cycle
1

Cycle
2

Cycle
3

Cycle
4

Cycle
5

Cycle
6

Cycle
7

Cycle
8

Cycle
9

0 0

Fig. 7.30 Timing diagram of the one-shot timer (OneShot register in Fig. 7.29 is programmed with a value of 4 as an
example)

7.5 Timers 475

- 1

32

L D

clock
D

Q

LoadRateGen

RateGen

32

32

RData[31:0]

Program Data

RateGen Reg

RateGenOut

se
le

ct
s

L-
po

rt

Fig. 7.31 Block diagram of the rate generator

clock

4

4 3 2 1 4 3 2 1 4

LoadRateGen

RateGenOut

RData[31:0]

RateGen

Cycle
1

Cycle
2

Cycle
3

Cycle
4

Cycle
5

Cycle
6

Cycle
7

Cycle
8

Cycle
9

Cycle
10

Fig. 7.32 Timing diagram of the rate generator (RateGen register in Fig. 7.31 is programmed with a value of 4 as an
example)

476 7 System Peripherals

Square Wave Generator

Square waveforms can also be generated by the timer as shown in Fig. 7.33. The pulse duration of the
square wave is initially stored in the SqWave register through a program bus. Once the programming
is finished, LoadSqWave = 1 loads the value of the Sqwave register through the L-port of the
2-1 MUX to the input of the down counter. This is shown in cycle 1 of the timing diagram in
Fig. 7.34 with SqWaveOut = 3 as a numerical example. In cycle 2, RData[31:0] = 3, and Rate-
Out = 0 since the 32-input AND gate can produce logic 1 only when RData[31:0] = 1. The decre-
mented RData value, (RData – 1) = 2, is routed through the active D-port of the 2-1 MUX to the
input of the down-counter. In cycle 3, the RData[31:0] node becomes two, but the RateOut node still
stays at zero. When RData[31:0] = 1 in cycle 4, the 32-input AND gate produces RateOut = 1, and
activates the L-port of the 2-1 MUX. As a result, the down-counter is reloaded with the value in the

SqWaveD Q

RateOut

- 1

32

L D

clock

D
Q

LoadSqWave

32

32

RData[31:0]

Program Data

SqWave Reg

SqWaveOut

se
le

ct
s

L-
po

rt

Fig. 7.33 Block diagram of the Square Wave Generator

7.5 Timers 477

SqWave register. From this point forward, the circuit repeats the same pattern, producing a pulse in
every three cycles at the RateOut node. Although the rate generator and the square wave circuits look
identical, the square wave generator contains an additional state machine whose clock is controlled by
the RateOut node. Therefore, at every positive edge of the RateOut signal, the value at the SqWave
port alternates. If the SqWave output initially produces logic 0 between cycles 1 and 3, the positive
edge of the RateOut signal in cycle 4 switches the value at the SqWave output from logic 0 to logic 1.
Similarly, the RateOut pulse in cycle 7 changes the value of the SqWave output back to logic 0.
Therefore, the circuit in Fig. 7.33 creates a square waveform whose frequency is fully programmable
by the SqWave register.

Interrupt Generator

One of the most useful timer functions is to have a timer generate a predetermined interrupt signal for
the system. If an external event needs to be observed at a specific time or if periodic sampling needs
to be employed for an event, the system must have the means to generate an interrupt. It achieves this
by using the circuit in Fig. 7.35. This circuit is composed of a basic down-counter whose output is
configured to make a transition from logic 0 to logic 1 when the count-down reaches zero.

clock

3

3 2 1 3 2 1 3 2 1 3 2 1 3

LoadSqWave

SqWaveOut

RData[31:0]

RateOut

SqWave

Cycle
1

Cycle
2

Cycle
3

Cycle
4

Cycle
5

Cycle
6

Cycle
7

Cycle
8

Cycle
9

Cycle
10

Cycle
11

Cycle
12

Cycle
13

Cycle
14

Fig. 7.34 Timing diagram of the square wave generator (SqWave register in Fig. 7.33 is programmed with a value of
3 as an example)

478 7 System Peripherals

As with the other timers, the count-down period is programmed in the GenInt register using a
program bus as shown in Fig. 7.35. Once programming is finished, the L-port of the 3-1 MUX is
activated by LoadGenInt = 1 to allow the value in the GenInt register to be loaded to the
down-counter. This scenario is shown by GenIntOut = 4 in cycle 1 of the timing diagram in Fig. 7.36
as an example. In cycle 2, the contents of the down-counter input are transferred to the RData[31:0]
node. Therefore, RData[31:0] = 4 produces logic 1 at the Decrement node, which activates the D-port
of the 3-1 MUX, and allows the decremented value of RData, (RData – 1) = 3, to be loaded to the
input of the down-counter. In cycle 3, RData[31:0] = 3, but the Decrement node stays at logic 1,
keeping the D-port active for the rest of the count-down process. When the RData[31:0] node finally
reaches one in cycle 5, the Set node in Fig. 7.35 transitions to logic 1, and turns on the S-port of the
second 3-1 MUX. In cycle 6, the GenInt output transitions from logic 0 to logic 1 after four cycles of
count-down. Because the LoadGenInt input and the Decrement node are both at logic 0, the Idle port
of the 3-1 MUX automatically becomes active. As a result, RData[31:0] = 0 keeps circulating back to

- 1

Program Data

32

Idle L D

clock

D
Q

LoadGenInt

se
le

ct
s

D
-p

or
t 32

3232

S R Idle

1 0

clock

D
Q

Reset

GenInt

RData[31:0]

GenInt Reg

GenIntOut

Set

D
ec

re
m

en
t

Fig. 7.35 Block diagram of the interrupt generator

7.5 Timers 479

the timer input until another value is loaded to the GenInt register. The GenInt output needs to be
reset by the active-high Reset signal in Fig. 7.35 in order to generate another interrupt signal.

7.6 Display Adaptor

The display is one of the most crucial peripherals in a system because it establishes a clear link
between the user and the system. The format in all modern LCD or LED displays is composed of an
active image area bounded by vertical (and horizontal if any) blanking region(s). The size of the
blanking regions is adjusted according to the response time of a particular display. Slower displays
require larger vertical (and horizontal if any) blanking regions to sync with active images that need to
be displayed at a frame rate of 30 to 60 frames per second. Pixels of an active image are fetched from
a system memory and displayed on a non-interlaced screen as shown in Fig. 7.37. In this section, we
will assume there are vertical and horizontal blanking sections surrounding the active image area
when constructing the architecture of the display unit.

clock

4

4 3 2 1

LoadGenInt

GenIntOut

RData[31:0]

GenInt

Cycle
1

Cycle
2

Cycle
3

Cycle
4

Cycle
5

Cycle
6

Cycle
7

Cycle
8

Cycle
9

0 0

Fig. 7.36 Timing diagram of the interrupt generator (GenInt register in Fig. 7.35 is programmed with a value of 4 as
an example)

Vertical Blanking

H
or

iz
on

ta
l B

la
nk

in
g

Active Image

Line 0

Line 1023

Pi
xe

l 0

Pi
xe

l 1
02

3

Fig. 7.37 Non-interlaced frame format of an active image consisting of 1024 pixels by 1024 lines

480 7 System Peripherals

Vertical and horizontal blanking areas are made out of black pixels. On the other hand, each pixel
in the active image is composed of eight-bit wide Red (R), Green (G) and Blue (B) components. The
basic operation consists of fetching 24-bit pixels from the system memory and placing them in the
active image area. Usually each display has a frame buffer to store pixels from the system memory.
When the data in the frame buffer is exhausted, the display controller requests another block of data to
be transferred from the system memory. As the system complexity increases, the bus activity between
the main memory, the CPU and the system peripherals also increases. This produces a scenario where

Buf0

0x
00

8
8

SelR0
8 8 8

Buf1

Program Data

8

Vertical Blanking

H
or

iz
on

ta
l B

la
nk

in
g

1 2 N0 Line Counter

Pixel Counter
10

10

23 23 00
RE0
WE0

RE1
WE1

Addr0 Addr1
20 20

In
cP

x
In

cL
in

e

R
es

et
Px

R
es

et
Li

ne

Display Controller

R
E1

W
E0

R
E0

Se
lG

0

Se
lR

0

W
E1

Se
lB

0

PxOut

LineOut

Active Image

SelBuf0
SelBlank

2 1 0

B0 B1BK

Vertical Blank Reg

VBOut

Horizontal Blank Reg

HBOut

10

10

SelG0
SelB0

8

SelR1
8 8 8

SelG1
SelB1

SelBuf1

Act Image Line Reg

AILOut

Act Image Pixel Reg

AIPOut

10

10
Se

lG
1

Se
lR

1

Se
lB

1

Se
lB

uf
0

Se
lB

la
nk

Se
lB

uf
1

In
cP

x
R

es
et

Px

In
cL

in
e

R
es

et
Li

ne

2 1 0

AI
LO

ut

AI
PO

ut

Px
O

ut

Li
ne

O
ut

VB
O

ut

H
BO

ut

10 10 10 10 10 10

FrameIn

Addr0 Counter Addr0
20

IncAddr0
ResetAddr0

Addr1 Counter Addr1
20

In
cA

dd
r0

R
es

et
Ad

dr
0

In
cA

dd
r1

R
es

et
Ad

dr
1

IncAddr1
ResetAddr1

C
SD

is
pl

ay

Bu
f0

Em
pt

y

Bu
f1

Em
pt

y

32
WData[31:0]

Sy
nc

VB

Sy
nc

H
B

3-1 Frame MUX

Fig. 7.38 Data-path of the display unit

7.6 Display Adaptor 481

the display unit may have to wait for many clock cycles before any data arrives at its buffer. However,
this is not an acceptable solution since this situation also creates choppy images for the user.
Therefore, dual, quadruple or even higher number of frame buffers need to be used in the display unit
to maintain continuous stream of images on the monitor without any interruption. A dual frame buffer
implementation is shown in Fig. 7.38 where image data is displayed from one frame buffer while the
other buffer is being filled.

Prior to image processing, the Horizontal Blank register, Vertical Blank register, Active Image Pixel
register and Active Image Line register are programmed using a separate program bus as shown in
Fig. 7.38. This bus can even be in the form of a serial bus because register programming will take place
during system booting when the image processing speed is not a critical factor. The reader should refer
to the design examples and review questions in Chap. 5 to devise a serial interface to program these
registers. The data stored in these four registers define the normal operational parameters of the display
unit. The image data, on the other hand, is continuously fed to the display buffers, Buf0 and Buf1, by a
32-bit wide system bus, WData[31:0], as shown in Fig. 7.38. Even though the bus width is 32 bits, only
the lower 24 bits are used in this architecture to transfer pixels to each buffer. The display controller first
places the incoming pixels from the system bus to both Buf0 and Buf1, and then transfers pixels from
one of these buffers to the image frame. The controller also generates two timing attributes, SycnHB and
SyncVB, to indicate the start of the horizontal blanking and the start of the vertical blanking sections of
the frame, respectively. This is done in order to synchronize the display adaptor with the monitor.

To illustrate the operation of the display unit, an active image composed of five pixels wide by nine
lines tall (white area) is considered in Fig. 7.39 as an example. This image is surrounded by two lines of
vertical blanking and three pixels of horizontal blanking sections (shaded area) in the same figure. The
numbers in each box represents a pixel component, R, G or B, whether it belongs to the active image or
the blanking section. Therefore, component numbers 0, 1 and 2 constitute the first blank pixel in
the vertical blanking section whereas component numbers 57, 58 and 59 correspond to the first pixel of
the active image. The blank pixels have no values and equal to 0x00 as shown in Fig. 7.38. The active
image pixels, however, are fetched from one of the image buffers in Fig. 7.38 and placed in the active
frame in ascending order. For example, the component 57 is fetched first and placed at the upper left
corner of the image frame, and the component 263 is fetched last and placed at the lower right corner.

0 1 2 3 4 5 6 7 8

PIXEL 0 PIXEL 1 PIXEL 2

9 10 11 12 13 14 15 16 17

PIXEL 3 PIXEL 4 PIXEL 5

18 19 20 21 22 23

PIXEL 6 PIXEL 7

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

72 80 81 95

96 119

143

167

191

215

239

263

Vertical Blank
2 LINES

Horizontal Blank
3 PIXELS

Active Image
9 LINES

Active Image
5 PIXELS

105

129

153

177

201

225

249

120

144

168

192

216

240

104

128

152

176

200

224

248

Fig. 7.39 An image frame composed of active image and blanking components

482 7 System Peripherals

http://dx.doi.org/10.1007/978-3-030-00223-7_5

1
2

3
4

5
6

7
20

21
22

23
24

25
26

27
28

29
30

31
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

00
00

00

0

00
00

00

1

00
00

00

6

00
00

00

7

00
00

00

0

00
00

00

1

00
00

00

6

00
00

00

7

00
00

00

0

00
00

00

1

00
00

00

2

R
G

B

0

R

0
1

0

cl
oc

k

Fr
am

eI
n

Px
O

ut

Li
ne

O
ut

C
SD

is
pl

ay

Se
lR

0

Se
lG

0

Se
lB

0

Se
lB

uf
0

Se
lB

uf
1

Se
lB

la
nk

R
E0

R
E1

Ad
dr

0

In
cA

dd
r0

R
es

et
Ad

dr
0

In
cP

x

R
es

et
Px

In
cL

in
e

R
es

et
Li

ne

Se
lR

1

Se
lG

1

Se
lB

1

Ad
dr

1

In
cA

dd
r1

R
es

et
Ad

dr
1

1

1

VE
R

TI
C

AL
 B

LA
N

K
H

O
R

IZ
O

N
TA

L
BL

AN
K

AC
TI

VE
 IM

AG
E

0

Sy
nc

VB

Sy
nc

H
B

0

Fi
g
.
7.
40

T
im

in
g
di
ag
ra
m

of
th
e
di
sp
la
y
un

it
in

Fi
g.

7.
38

7.6 Display Adaptor 483

The display unit is activated by CSDisplay = 1 as shown in cycle 1 of the timing diagram in
Fig. 7.40. This figure shows data-path signals in the upper rows and control signals in the lower rows.
Once active, the first component of the blanking pixel 0, 0x00, arrives at the frame in cycle 2. Within
the same cycle, the SycnVB signal becomes logic 1, indicating the start of the vertical blanking for
the frame. In cycles 3 and 4, the other two components of the blanking pixel 0 arrive at the frame. The
first line of the vertical blanking completes in cycle 25. The second blanking line follows the same
pattern as the first one: the first component of the blanking pixel 0 arrives at the frame in cycle 26, and
the last component of the blanking pixel 7 arrives in cycle 49. Cycle 49 is also the cycle that resets the
line counter by ResetLine = 1 because the next line is the start of an active image. In cycle 50,
SycnHB becomes logic 1, signifying the start of horizontal blanking. From cycle 50 to cycle 58, the
first line of horizontal blanking is formed prior to the active image. Cycle 58 also defines the border
between the horizontal blanking and the active image. In this cycle, the read enable signal for Buf0,
RE0, becomes logic 1 in order to read the first image pixel from this buffer. Blanking pixels are
supplied to the frame from the BK-port of the 3-1 MUX as shown in Fig. 7.38, and delivered to the
frame through FrameIn input.

The timing diagram in Fig. 7.41 is the continuation of Fig. 7.40 and focuses on the active image
pixel delivery. The R-component of the first image pixel comes to the image frame in cycle 59
followed by the G and B components in cycles 60 and 61, respectively. Since the image data comes
from the first display buffer, Buf0, the port assignment in the 3-1 MUX must be changed from port
BK to port B0 by SelBuf0 = 1 from cycle 59 onwards. Therefore, after the first image pixel is
delivered to the frame, the address pointer for buffer 0, Addr0, is incremented by one in cycle 61 to be
able to fetch the R-component of the next pixel from Buf0 in cycle 62 (one cycle memory read
latency). From cycle 59 to cycle 73, the first line of the active image is delivered to the frame by
incrementing Addr0 from 0 to 4. Cycle 73 also indicates the start of the second horizontal blanking
line. In this cycle, RE0 transitions to logic 0, and Addr0 stops incrementing because pixel flow from
Buf0 needs to be interrupted in order to start delivering blank pixels to the frame. To accommodate
this, the port assignment in the 3-1 MUX is changed from port B0 to port BK. After completing the
delivery of horizontal blanking pixels, the second line of the active image is delivered between cycles
83 and 97. Addr0 is incremented from 5 to 9 during this period to fetch pixels from Buf0 and form the
second active image line. The rest of the image is delivered to the frame by the end of cycle 265. In
cycle 266, a new frame is formed with SyncVB = 1. As in the previous frame, pixels that constitute
the vertical blanking are followed by pixels that form the horizontal blanking and the active image.
The new active image pixels are delivered from Buf1. In this example, both Buf0 and Buf1 are
assumed to contain only 45 pixels, and therefore each buffer has 45 bytes of image data as opposed to
the architecture in Fig. 7.38 that shows 1024 � 1024 = 1,048,576 active image pixels in each buffer.

Figure 7.42 shows the display controller design to manage the data-flow in Fig. 7.38. The state
machine in Fig. 7.42 is a Moore-type composed of a string of states, each responsible for delivering
blank or active image pixels to the frame. The state machine needs to keep track of the pixel and line
numbers in the frame, and be able to define the boundaries between the blanking and the active image
regions. Therefore, its functionality largely depends on the output values of the pixel and line
counters in Fig. 7.38.

484 7 System Peripherals

59
60

61
62

R
G

B

0

R
G

B

1

R
G

B

4

1
0

cl
oc

k

Fr
am

eI
n

Px
O

ut

Li
ne

O
ut

C
SD

is
pl

ay

Se
lR

0

Se
lG

0

Se
lB

0

Se
lB

uf
0

Se
lB

uf
1

Se
lB

la
nk

R
E0

R
E1

Ad
dr

0

In
cA

dd
r0

R
es

et
Ad

dr
0

In
cP

x

R
es

et
Px

In
cL

in
e

R
es

et
Li

ne

Se
lR

1

Se
lG

1

Se
lB

1

Ad
dr

1

In
cA

dd
r1

R
es

et
Ad

dr
1

63
64

65
66

67
68

69
70

71
72

73
74

R
G

B

2

R
G

B

3

R
G

B

4

00
00

00

0

R
G

B

4

00
00

00

0

00
00

00
00

00

0

00
00

00

1
6

0
8

2

4
0

AC
TI

VE
 IM

AG
E

75
76

95
96

97
24

2
24

3
24

4
26

3
26

4
26

5
26

6
26

7
26

8
26

9
27

0
27

1
28

4
28

5

VE
R

TI
C

AL
 B

LA
N

K
AC

TI
VE

 IM
AG

E
AC

TI
VE

 IM
AG

E
H

O
R

. B
LA

N
K

H
O

R
. B

LA
N

K

0
1

2
3

4
9

44

Sy
nc

VB

Sy
nc

H
B

Fi
g
.
7.
41

C
on

tin
ua
tio

n
of

th
e
di
sp
la
y
un

it’
s
tim

in
g
di
ag
ra
m

in
Fi
g.

7.
40

7.6 Display Adaptor 485

ID
LE

C
SD

is
pl

ay
 =

 0 VB
0

R VB
0

G VB
0

B

R
es

et
 V

B0
R

R
es

et
 V

B0
G

R
es

et
 V

B0
B

H
B0 R H
B0 G H
B0 B

R
es

et
 H

B0
R

R
es

et
 H

B0
G

R
es

et
 H

B0
B

R
0

G
0

B0

R
es

et
 R

0

R
es

et
 G

0

R
es

et
 B

0

PxOut < (HBOut + AIPOut - 2)

Li
ne

O
ut

 <

(V
BO

ut
 -

1)

PxOut < (HBOut - 2)

PxOut = (HBOut + AIPOut - 2)

Se
lB

la
nk

 =
 1

In
cP

x
=

1
Se

lB
la

nk
 =

 1

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

R
es

et
Px

 =
 1

In
cL

in
e

=
1

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

In
cP

x
=

1
Se

lB
la

nk
 =

 1

PxOut = (HBOut - 2)

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

R
es

et
Px

 =
 1

Se
lB

la
nk

 =
 1

R
E0

 =
 1

PxOut < (AIPOut - 2)

PxOut = (AIPOut - 2)

LineOut < (AILOut - 2)

Se
lR

0
=

1
Se

lB
uf

0
=

1
R

E0
 =

 1

Se
lG

0
=

1
Se

lB
uf

0
=

1
R

E0
 =

 1
In

cA
dd

r0
 =

 1

In
cP

x
=

1
Se

lB
0

=
1

Se
lB

uf
0

=
1

R
E0

 =
 1

Se
lR

0
=

1
Se

lB
uf

0
=

1
R

E0
 =

 1

Se
lG

0
=

1
Se

lB
uf

0
=

1
R

E0
 =

 1

R
es

et
Px

 =
 1

In
cL

in
e

=
1

Se
lB

0
=

1
Se

lB
uf

0
=

1

La
st

 H
B0

R

La
st

 H
B0

G

La
st

 H
B0

B

R
es

et

La
st

 H
B0

R

R
es

et

La
st

 H
B0

G

R
es

et

La
st

 H
B0

B

La
st

 R
0

La
st

 G
0

La
st

 B
0

R
es

et

La
st

 R
0

R
es

et

La
st

 G
0

R
es

et

La
st

 B
0

PxOut < (HBOut - 2)

Se
lB

la
nk

 =
 1

In
cP

x
=

1
Se

lB
la

nk
 =

 1

PxOut = (HBOut - 2)

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

R
es

et
Px

 =
 1

Se
lB

la
nk

 =
 1

R
E0

 =
 1

PxOut < (AIPOut - 2)

PxOut = (AIPOut - 2)

Se
lR

0
=

1
Se

lB
uf

0
=

1
R

E0
 =

 1

Se
lG

0
=

1
Se

lB
uf

0
=

1
R

E0
 =

 1
In

cr
Ad

dr
0

=
1

In
cP

x
=

1
Se

lB
0

=
1

Se
lB

uf
0

=
1

R
E0

 =
 1

Se
lR

0
=

1
Se

lB
uf

0
=

1
R

E0
 =

 1

Se
lG

0
=

1
Se

lB
uf

0
=

1
R

E0
 =

 1
R

es
et

Ad
dr

0
=

1

R
es

et
Li

ne
 =

 1
R

es
et

Px
 =

 1
Se

lB
0

=
1

Se
lB

uf
0

=
1

LineOut = (AILOut - 2)

C
SD

is
pl

ay
 =

 1

ST
AR

T1

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

Bu
f0

Em
pt

y
=

1
Sy

nc
VB

 =
 1

Sw
itc

h0
VB

-to
-H

B

R
es

et
Px

 =
 1

R
es

et
Li

ne
 =

 1
Se

lB
la

nk
 =

 1

Li
ne

O
ut

 =

(V
BO

ut
 -

1)

ST
AR

T0
Se

lB
la

nk
 =

 1
Bu

f1
Em

pt
y

=
1

Sy
nc

VB
 =

 1

Se
lB

la
nk

 =
 1 Sy

nc
H

B0 A

Sy
nc

H
B

=
1

Se
lB

la
nk

 =
 1

Sy
nc

H
B0

Sy
nc

H
B

=
1

Se
lB

la
nk

 =
 1

Sy
nc

H
B0 B

Sy
nc

H
B

=
1

Se
lB

la
nk

 =
 1

Fi
g
.
7.
42

T
he

co
nt
ro
lle
r
of

th
e
di
sp
la
y
un

it
fo
r
B
uf
0
(c
on

tr
ol

si
gn

al
s
eq
ua
l
to

lo
gi
c
0
ar
e
om

itt
ed

fo
r
si
m
pl
ic
ity

)

486 7 System Peripherals

The state machine stays in the IDLE state until it is externally activated by CSDisplay = 1, which
corresponds to cycle 1 of the timing diagram in Fig. 7.40. Once activated, the R-component of the
first blank pixel enters the frame through the BK-port of the 3-1 MUX, and requires SelBlank = 1 in
cycle 2. This refers to the START0 state in Fig. 7.42. In cycle 3, the G-component of the first blank
pixel is delivered to the frame. This is shown as the VB0-G state in the state diagram. In this state,
SelBlank = 1 in order to transmit the G-component of the first blank pixel to the frame. The
B-component of the first blank pixel arrives in cycle 4, which corresponds to the VB0-B state. During
this cycle, SelBlank = 1 and IncPx = 1 to increment the pixel counter by one. At this point, the
controller checks if the end of the first vertical blanking line has been reached by forming
PxOut = (HBOut + AIPOut – 2). Here, PxOut corresponds to the output of the pixel counter, HBOut
corresponds to the number of horizontal blanking pixels at the output of the Horizontal Blanking
register, and AIPOut corresponds to the number of active image pixels at the output of the Active
Image Pixel register in Fig. 7.38. If the end has not been reached, the machine keeps circling around
the VB0-R, VB0-G and VB0-B states until PxOut becomes equal to (HBOut + AIPOut – 2). This
period translates from cycle 5 to cycle 22 in the timing diagram in Fig. 7.40. During this period, every
time the B-component of a blank pixel is delivered to the frame, the pixel counter increments by one.
When the end point is detected, the state machine goes to the Reset VB0-R state where it delivers the
R-component of the last blanking pixel that belongs to the first blanking line. This state corresponds
to cycle 23 in the timing diagram. The controller delivers the remaining G and B-components of the
last blanking pixel in cycles 24 and 25, which translate to the Reset VB0-G and Reset VB0-B states,
respectively. In cycle 25, the pixel counter is reset by ResetPx = 1, and the line counter is incre-
mented by IncLine = 1 in order to produce the next vertical blanking line. However, the contents of
the Vertical Blanking register, VBOut, needs to be checked prior to the start of the next vertical
blanking line in case this register is programmed to have only one vertical blanking line. Therefore,
while in the Reset VB0-G state, the line counter output, LineOut, is compared against (VBOut – 1). If
the line counter output is less than (VBOut – 1), then the state machine first goes to the Reset VB0-B
state and then back to the VB0-R state in order to generate another blanking line as described in
cycles 26 to 49 in the timing diagram. If LineOut is equal to (VBOut – 1), the state machine goes to
the Switch0 VB-to-HB state where it generates SelBlank = 1, ResetPx = 1 and ResetLine = 1 in
order to terminate the vertical blanking and start the first line of the horizontal blanking.

Cycle 50 starts the beginning of horizontal blanking region, and delivers the R-component of the
first horizontal blanking pixel to the frame. This cycle translates to the Sync HB0-A state because
SyncHB = 1 is also generated in this state. The state machine moves through the HB0-G and HB0-B
states in cycles 51 and 52, and checks if the end of the horizontal blanking region has been reached by
comparing the PxOut with (HBOut – 2). If PxOut < (HBOut – 2), then more R, G and B blanking
pixel components are brought to the frame through the BK-port of the 3-1 MUX. However, if
PxOut = (HBOut – 2), then the state machine enters the Reset HB0-R state to deliver the
R-component of the last horizontal blanking pixel in cycle 56 as this condition indicates the end of
horizontal blanking. In cycles 57 and 58, the machine traverses through the Reset HB0-G and the
Reset HB0-B states. The latter state resets the pixel counter by ResetPx = 1, and enables Buf0 by
RE0 = 1 to start reading active image pixels.

In cycle 59, the state machine enters the R0 state to deliver the R-component of the first active
image pixel from Buf0. In this state, port 0 of the 3-1 MUX at the output of Buf0 becomes active by
SelR0 = 1, and port B0 of the 3-1 frame MUX becomes active by SelBuf0 = 1. The read enable input
for Buf0 also stays at logic 1 by RE0 = 1. In cycle 60, the state machine goes to the G0 state where it
delivers the G-component of the first active image pixel to the frame. This cycle requires SelG0 = 1
to turn on port 1 of the 3-1 MUX at the output of Buf0 while keeping SelBuf0 = 1 and RE0 = 1.
Addr0 is also incremented in this state by IncAddr0 = 1. In cycle 61, the controller reaches the B0

7.6 Display Adaptor 487

VB
1

R VB
1

G VB
1

B

R
es

et
 V

B1
R

R
es

et
 V

B1
G

R
es

et
 V

B1
B

H
B1 R H
B1 G H
B1 B

R
es

et
 H

B1
R

R
es

et
 H

B1
G

R
es

et
 H

B1
B

R
1

G
1

B1

R
es

et
 R

1

R
es

et
 G

1

R
es

et
 B

1

PxOut < (HBOut + AIPOut - 2)

Li
ne

O
ut

 <

(V
BO

ut
 -

1)

PxOut < (HBOut - 2)

PxOut = (HBOut + AIPOut - 2)

Se
lB

la
nk

 =
 1

In
cP

x
=

1
Se

lB
la

nk
 =

 1

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

R
es

et
Px

 =
 1

In
cL

in
e

=
1

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

In
cP

x
=

1
Se

lB
la

nk
 =

 1

PxOut = (HBOut - 2)

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

R
es

et
Px

 =
 1

Se
lB

la
nk

 =
 1

R
E1

 =
 1

PxOut < (AIPOut - 2)

PxOut = (AIPOut - 2)

LineOut < (AILOut - 2)

Se
lR

1
=

1
Se

lB
uf

1
=

1
R

E1
 =

 1

Se
lG

1
=

1
Se

lB
uf

1
=

1
R

E1
 =

 1
In

cA
dd

r1
 =

 1

In
cP

x
=

1
Se

lB
1

=
1

Se
lB

uf
1

=
1

R
E1

 =
 1

Se
lR

1
=

1
Se

lB
uf

1
=

1
R

E1
 =

 1

Se
lG

1
=

1
Se

lB
uf

1
=

1
R

E1
 =

 1

R
es

et
Px

 =
 1

In
cL

in
e

=
1

Se
lB

1
=

1
Se

lB
uf

1
=

1

La
st

 H
B1

R

La
st

 H
B1

G

La
st

 H
B1

B

R
es

et

La
st

 H
B1

R

R
es

et

La
st

 H
B1

G

R
es

et

La
st

 H
B1

B

La
st

 R
1

La
st

 G
1

La
st

 B
1

R
es

et

La
st

 R
1

R
es

et

La
st

 G
1

R
es

et

La
st

 B
1

PxOut < (HBOut - 2)

Se
lB

la
nk

 =
 1

In
cP

x
=

1
Se

lB
la

nk
 =

 1

PxOut = (HBOut - 2)

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

R
es

et
Px

 =
 1

Se
lB

la
nk

 =
 1

R
E1

 =
 1

PxOut < (AIPOut - 2)

PxOut = (AIPOut - 2)

Se
lR

1
=

1
Se

lB
uf

1
=

1
R

E1
 =

 1

Se
lG

1
=

1
Se

lB
uf

1
=

1
R

E1
 =

 1
In

cr
Ad

dr
1

=
1

In
cP

x
=

1
Se

lB
1

=
1

Se
lB

uf
1

=
1

R
E1

 =
 1

Se
lR

1
=

1
Se

lB
uf

1
=

1
R

E1
 =

 1

Se
lG

1
=

1
Se

lB
uf

1
=

1
R

E1
 =

 1
R

es
et

Ad
dr

1
=

1

R
es

et
Li

ne
 =

 1
R

es
et

Px
 =

 1
Se

lB
1

=
1

Se
lB

uf
1

=
1

LineOut = (AILOut - 2)

ST
AR

T0

Se
lB

la
nk

 =
 1

Se
lB

la
nk

 =
 1

Bu
f1

Em
pt

y
=

1
Sy

nc
VB

 =
 1

Sw
itc

h1
VB

-to
-H

B

R
es

et
Px

 =
 1

R
es

et
Li

ne
 =

 1
Se

lB
la

nk
 =

 1

Li
ne

O
ut

 =

(V
BO

ut
 -

1)

ST
AR

T1
Se

lB
la

nk
 =

 1
Bu

f0
Em

pt
y

=
1

Sy
nc

VB
 =

 1

Se
lB

la
nk

 =
 1 Sy

nc
H

B1 A

Sy
nc

H
B

=
1

Se
lB

la
nk

 =
 1

Sy
nc

H
B1

Sy
nc

H
B

=
1

Se
lB

la
nk

 =
 1

Sy
nc

H
B1 B

Sy
nc

H
B

=
1

Se
lB

la
nk

 =
 1

Fi
g
.
7.
43

T
he

co
nt
ro
lle
r
of

th
e
di
sp
la
y
un

it
fo
r
B
uf
1
(c
on

tr
ol

si
gn

al
s
eq
ua
l
to

lo
gi
c
0
ar
e
om

itt
ed

fo
r
si
m
pl
ic
ity

)

488 7 System Peripherals

state where it increments the pixel counter by IncPx = 1, selects port 2 of the 3-1 MUX at the output
of Buf0 by SelB0 = 1, and maintains both SelBuf0 = 1 and RE0 = 1. In this state, the controller
checks if the end of active image has been reached by comparing PxOut against (AIPOut – 2). If the
controller finds PxOut < (AIPOut – 2), it goes back to the R0 state to retrieve more image pixels from
Buf0. This scenario corresponds to cycles 62 to 70 of the timing diagram in Fig. 7.41. If the controller
finds PxOut = (AIPOut – 2), it moves to the Reset R0 state in cycle 71 to deliver the last
R-component of the image pixel, and generates SelR0 = 1, SelBuf0 = 1 and RE0 = 1. The state
machine then moves to the Reset G0 state in cycle 72 and the Reset B0 state in cycle 73. In the Reset
B0 state, the controller resets the pixel counter by ResetPx = 1, increments the line counter by
IncLine = 1, selects port 2 of the 3-1 Buf0 MUX by SelB0 = 1, and keeps SelBuf0 = 1. While in this
state, the controller checks to see if the active image is more than a single line or not, and compares
the output of the line counter, LineOut, against (AILOut – 2). If the controller finds that Line-
Out < (AILOut – 2), it first moves to the Sync HB0 state to generate SyncHB = 1, and then back to
the HB0-G state to start fetching horizontal blanking pixels for the next line. However, if the
controller finds that LineOut = (AILOut – 2), it realizes that it will be processing the last line of the
current frame. First, it goes to the Sync HB0-B state and generates SyncHB = 1, and then to the Last
HB0-G state to deliver the G-component of a horizontal blanking pixel.

The states from Last HB0-R to Reset Last-B0 are the exact replicas of the states from HB0-R to
Reset B0 except that in the Reset Last-G0 state, Buf0 address pointer is reset by ResetAddr0 = 1, and
in the Reset Last-B0 state, the line counter is reset by ResetLine = 1. Once the controller exhausts all
the active image pixels in Buf0, it switches to Buf1 to construct the next image frame as shown in the
state diagram of Fig. 7.43. In this figure, the states controlling the blanking and the image pixel
delivery from Buf1 is exactly the same as in Buf0. Once all the pixels are delivered to the frame from
Buf1, the state machine in Fig. 7.43 hands over the control of the display adaptor to the state machine
in Fig. 7.42.

7.7 Data Converters

Analog-to-Digital Converter (ADC)

All analog domains interface with digital systems through Analog-to-Digital (ADC) or Digital-to-
Analog Converters (DAC) as shown in Fig. 7.44. In this figure, analog signal from a sensor is
amplified to a certain level before sampling takes place in the sample-and-hold circuit inside the
ADC. The sampled analog signal is then converted into digital form and directed to the CPU for
processing according to an embedded program.

Sensor Sample
Hold

Analog To
Digital

Converter

Micro-
controllerAMP

Small Analog Signal

Amplified Analog Signal Digital Input

Sampled Analog Signal

Digital To
Analog

Converter
Analog Signal

Digital Output

Fig. 7.44 Typical analog-digital and digital-analog converter data-paths

7.6 Display Adaptor 489

The signal resolution is an important factor to consider in an ADC design. It simply means
dividing a sampled analog signal by 2N number of voltage levels to represent its value where N is the
number of bits in digital domain. The second important consideration is the range of analog values an
ADC can capture and process.

Figure 7.45 describes the ADC resolution in a numerical example where an analog signal changes
between 0 and 5 V. The bit resolution is only three bits. Therefore, the ADC divides the range of an
analog signal into 23 = 8 levels between its maximum and minimum value, and identifies each analog
level with three output bits.

For example, an analog signal of 2.501 V is identified by a digital output of 100. If the analog
signal increases to 3.124 V, the digital output that represents this voltage value still stays at 100. In
other words, in a three-bit ADC there is no difference between 2.501 and 3.124 V in terms of their
digital representation. The 0.625 V step size is the natural occurring error in a three-bit ADC, but this
error can be easily reduced by increasing the number of bits in the ADC. In general, increasing the
number of ADC bits by one halves the error. Therefore, designing a four-bit ADC instead of a
three-bit ADC reduces the quantization error by 0.3125 V.

0.
62

5

1.
25

0

1.
87

5

2.
50

0

0.
00

0

3.
12

5

3.
75

0

4.
37

5

5.
00

0

Analog Signal (V)

000

001

010

011

100

101

110

111

D
ig

ita
l O

ut
pu

t

23 Levels

Maximum Digital Output

Reference Voltage

Step Size =
Reference Voltage – Minimum Voltage

2ADC Bit Size
=

5 - 0

23
= 0.625V

Fig. 7.45 Input-output description of a three-bit ADC (power supply voltage is 5 V)

490 7 System Peripherals

Reference voltage in an ADC is generally determined by the maximum voltage level of the analog
signal, and it is used to calculate the step size. In this three-bit ADC example in Fig. 7.45, the
reference voltage is 5 V because the amplified analog voltage at the input of the ADC is limited not
go beyond 5 V.

ADC samples non-periodic analog signals in regular time intervals as described in Fig. 7.46. The
time interval between sampling points is called the sampling period. The sampling period is adjusted
according to the processing speed of the ADC in order to generate accurate digital outputs.

Once sampled, the analog voltage at the input of an ADC is held steady throughout the sampling
period while the conversion takes place as shown in Fig. 7.47. The shape of the converted signal may
be quite different from the original analog signal due to the ADC resolution and the time duration
between samples. In a three-bit ADC, sampling takes place in 0.625 V increments. Therefore, each
sampling point becomes subject to a dynamic quantization error which changes between 0 and
0.625 V. For example, a three-bit ADC samples 3.4 V according to its closest sampling level of
3.125 V, and produces a 0.275 V error. Arbitrary signals that change with a frequency faster than the
sampling frequency are subject to much larger dynamic errors. When converted back to their analog
form, these signals can exhibit large deviations from their original outlines.

0.625

1.250

1.875

2.500

0.000

3.125

3.750

4.375

5.000

Sampling Period Time (sec)

Si
gn

al
 (V

)

Sampling Point

Fig. 7.46 Sampling a continuous analog signal

7.7 Data Converters 491

A basic sample-and-hold circuit consists of an NMOS transistor and a capacitor as shown in
Fig. 7.48. The control input simply turn on an N-channel MOSFET for a short period of time, called
sampling width, during which the analog voltage level at the input is stored on the capacitor. When
the transistor is turned off, this analog value is held constant until the next sampling point.

Flash ADC

The simplest ADC is the flash-type as shown in Fig. 7.49. This three-bit ADC contains 23 = 8
operational amplifiers. The analog signal is applied to all eight positive input terminals. The reference
voltage is distributed to each negative input terminal via a voltage divider circuit. Each operational
amplifier acts as a differential amplifier and amplifies the difference between a continuously changing
analog signal and the portion of the reference voltage.

0.625

1.250

1.875

2.500

0.000

3.125

3.750

4.375

5.000

Sampling Period Time (sec)

Si
gn

al
 (V

)
Sampling Point

Quantization Error

Step
Size

Quantized Signal

Fig. 7.47 Sampling period, hold concept and regeneration of an analog signal

Control Input

Sampling Width

Analog Input

Capacitor

Quantized Signal

Fig. 7.48 A typical sample-and-hold circuit

492 7 System Peripherals

Out[7]

Reference Voltage

R
Out[6]

Out[5]

Out[4]

Out[3]

Out[2]

Out[1]

Out[0]

R

R

R

R

R

R

DOut[2]

DOut[1]

DOut[0]

FL
AS

H
 A

D
C

 E
N

C
O

D
ER

Analog Input

4.375V

3.750V

3.125V

2.500V

1.875V

1.250V

0.625V

R

0.0V

Fig. 7.49 Typical three-bit flash ADC schematic (power supply voltage is 5 V)

Figure 7.50 describes the operation of the three-bit flash ADC and its encoder in a truth table.
When the analog voltage is less than or equal to 0.625 V, only Out[0] becomes logic 1, all other
outputs from Out[1] to Out[7] become logic 0. When the analog signal exceeds 0.625 V but less than
1.25 V, only Out[0] and Out[1] become logic 1, and again all others become logic 0. Higher analog
voltages at the input successively produce more logic 1 levels as shown in Fig. 7.50. An encoder is

7.7 Data Converters 493

placed at the output stage of all operational amplifiers to transform the voltage levels at Out[7:0] into
a three-bit digital output, DOut[2:0]. The digital output is subject to an error of 0.625 V because only
three bits are used for conversion.

Ramp ADC

The ramp ADC uses only a single operation amplifier, but it employs an up-counter as well as a DAC
in a loop structure shown in Fig. 7.51. The digital output is obtained from the C[3:0] terminals in this
figure, and the result progressively forms within several clock cycles as opposed to being almost
instantaneous as in the flash ADC.

Out[7] Out[6] Out[5] Out[4] Out[3] Out[2] Out[1] Out[0]Analog Input DOut[2] DOut[1] DOut[0]

0.625 > VIN > 0.000

1.250 > VIN > 0.625

1.875 > VIN > 1.250

2.500 > VIN > 1.875

3.125 > VIN > 2.500

3.750 > VIN > 3.125

4.375 > VIN > 3.750

5.000 > VIN > 4.375

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Fig. 7.50 Three-bit flash ADC truth table describing its operation (power supply voltage is 5 V)

4-bit Counter

DAC

S/H

Analog Input

+VCC = 5V

-VCC = 0V

C[3] C[0]C[2] C[1]

Reset

DACOUT

SHOUT

INCR

Fig. 7.51 Typical four-bit ramp ADC schematic

494 7 System Peripherals

The top portion of Fig. 7.52 describes the output voltage assignments of a four-bit ramp ADC
using two different types of number-rounding schemes. The down-rounding scheme assigns a lower
analog value for each digital output compared to the up-rounding scheme. For example, the
down-rounding scheme produces a digital output of C[3:0] = 0100 for analog voltages between
1.0937 V and 1.4062 V at the input. If the up-rounding scheme is used, the same digital output is
produced by an analog voltage between 1.4062 V and 1.7187 V.

The middle table in Fig. 7.52 shows an example of the conversion process in this four-bit ADC if
the down-rounding mechanism is used. Prior to its operation, the four-bit up-counter is reset and
produces C[3:0] = 0000. Assuming an analog voltage of 2 V is applied to the input, which must be
kept constant until the conversion is complete, C[3:0] = 0000 forces the DAC output, DACOUT, to be
0 V according to the down-rounding scheme. Since this value is less than 2 V at the sample/hold
circuit output, SHOUT, the output of the differential amplifier, INCR, transitions to the positive
supply potential of the operational amplifier, +VCC = 5 V, which prompts the four-bit counter
to increment to C[3:0] = 0001. Consequently, the DAC generates DACOUT = 0.3125 V according to
the truth table in Fig. 7.52. However, this value is still less than SHOUT = 2 V. Therefore, the
differential amplifier produces another INCR = 5 V which prompts the counter to increment again to
C[3:0] = 0010. Up-counting continues until C[3:0] = 0111 or DACOUT = 2.1875 V. Since this last
voltage is greater than SHOUT = 2 V, the differential amplifier output switches back to its negative
supply voltage, −VCC = 0 V, and stops the up-counter from incrementing further. The digital output
stays steady at C[3:0] = 0111 from this point forward, representing 2 V analog voltage with a
dynamic error of 0.1875 V.

The table at the bottom part of Fig. 7.52 represents the conversion steps if the up-rounding
mechanism is used in this ADC. External reset still produces C[3:0] = 0000 initially. However, the
DAC output starts the conversion with an increased amount of 0.3125 V instead of 0 V. The counter
increments until C[3:0] = 0110, and produces 2.1875 V at the DACOUT node. At this value INCR
becomes 0 V, and the up-counter stops incrementing further. C[3:0] = 0110 becomes the ADC result
for 2 V.

Successive Approximation ADC

The third type ADC is based on the successive approximation technique to estimate the value of the
applied analog voltage. This type is a trade-off between the flash-type and the ramp-type ADCs in
terms of speed and the number of components used in the circuit. As a numerical example, a typical
four-bit successive approximation ADC is shown in Fig. 7.53. In this figure, the up-counter in the
ramp ADC is replaced by a control logic which successively converts an analog input to a digital form
by a trial-and-error method. The output of the ADC is obtained at the C[3:0] terminal.

7.7 Data Converters 495

C[3] C[2] C[1] C[0]
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0

Down-Round(V) Up-Round(V)
0.31250.0000
0.62500.3125
0.93750.6250
1.25000.9375
1.56251.2500
1.87501.5625
2.18751.8750

Step Size = 5/24 = 0.3125V

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0

2.81252.5000
3.12502.8125
3.43753.1250
3.75003.4375
4.06253.7500
4.37504.0625
4.68754.3750

0 1 1 1 2.1875 2.5000

1 1 1 1 5.00004.6875

C[3]

Analog Input = 2V with Up-Rounding Mechanism

C[2] C[1] C[0] DACOUT(V)Step INCR(V)
0 0 0 0 5.0
0 0 0 1

0.3125
5.0

0 0 1 0
0.6250

5.0
0 0 1 1

0.9375
5.0

0 1 0 0
1.2500

5.0
0 1 0 1

1.5625
5.0

0 1 1 0
1.8750

0.02.1875

1
2
3
4
5
6
7

Final output with quantization error of 0.3125V

C[3]

Analog Input = 2V with Down-Rounding Mechanism

C[2] C[1] C[0] DACOUT(V)Step INCR(V)
0 0 0 0 5.0
0 0 0 1 0.3125 5.0
0 0 1 0 0.6250 5.0
0 0 1 1 0.9375 5.0
0 1 0 0 1.2500 5.0
0 1 0 1 1.5625 5.0
0 1 1 0 1.8750 5.0

0.00001
2
3
4
5
6
7

Final output with quantization error of 0.3125V

0 1 1 1 2.1875 0.08

Fig. 7.52 Four-bit ramp ADC truth table describing its operation (power supply voltage is 5 V)

496 7 System Peripherals

The top portion of Fig. 7.54 shows the truth table to operate a four-bit successive approximation
ADC. Two numerical examples in this figure illustrate the down-rounding and the up-rounding
schemes used during conversion.

The first example in Fig. 7.54 illustrates the down rounding mechanism in a four-bit successive
approximation ADC. In this example, an analog voltage of 3.5 V is applied to the analog input of the
ADC. An external reset starts the converter at C[3:0] = 1000, which is considered a mid point
between C[3:0] = 0000, representing the minimum analog input of 0 V, and C[3:0] = 1111, repre-
senting the maximum analog input of 5 V for this ADC. For C[3:0] = 1000, the DAC generates an
initial analog voltage of 2.5 V at the DACOUT node. Since this value is less than the sampled analog
voltage of 3.5 V at the SHOUT node, the operational amplifier produces IN = 5 V, prompting the
control logic to try a slightly higher digital output. As a result, the control logic produces
C[3:0] = 1100 as its first trial, which is equivalent to a midway point between C[3:0] = 1000 and 1111.
DACOUT becomes 2.5 + (2.5/2) = 3.75 V. But, this new voltage is larger than SHOUT = 3.5 V, and
the operational amplifier produces IN = 0 V in return. The drop at IN node is an indication to the
control logic that its initial attempt of C[3:0] = 1100 was too large, and it must lower its output. This
time, the control logic tries C[3:0] = 1010, which is between C[3:0] = 1000 and 1100 and translates
to DACOUT = 2.5 + (2.5/4) = 3.125 V. This value is smaller than the applied voltage at SHOUT,
therefore the operational amplifier generates IN = 5 V, and prompts the control logic to try a slightly
higher output between C[3:0] = 1010 and 1100. In the third round, the control logic produces
C[3:0] = 1011. The DACOUT node becomes 2.5 + (2.5/4) + (2.5/8) = 3.4375 V and generates
IN = 5 V. This new input suggests the control logic to try even higher digital output, such as

Control Logic

DAC

S/H

Analog Input

C[3] C[0]C[2] C[1]

Reset

DACOUT

SHOUT

IN

At Reset C[3:0] = 1000

DONE

+VCC = 5V

-VCC = 0V

Fig. 7.53 Typical four-bit successive approximation ADC (power supply voltage is 5 V)

7.7 Data Converters 497

2.5 + (2.5/4) + (2.5/8) + (2.5/16) = 3.5937 V, in the fourth round. However, 2.5/8 = 0.3125 V is
the resolution limit for this four-bit ADC, and as a result, the controller stalls at C[3:0] = 1011,
revealing DACOUT = 3.4375 V. This voltage differs from SHOUT = 3.5 V by only 0.0625 V.

The second example in Fig. 7.54 explains the successive approximation technique if the
up-rounding scheme is employed. The conversion again starts at C[3:0] = 1000, but with an incre-
mented value of 2.5 + 0.3125 = 2.8125 V at the DAC output. Since this voltage is below

C[3] C[2] C[1] C[0]
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0

Down-Round (V) Up-Round (V)
0.31250.0000
0.62500.3125
0.93750.6250
1.25000.9375
1.56251.2500
1.87501.5625
2.18751.8750

Step Size = 5/24 = 0.3125V

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0

2.81252.5000
3.12502.8125
3.43753.1250
3.75003.4375
4.06253.7500
4.37504.0625
4.68754.3750

0 1 1 1 2.1875 2.5000

1 1 1 1 5.00004.6875

C[3]

Analog Input = 3.5V with Up-Rounding Mechanism

C[2] C[1] C[0] DACOUT(V)Step
1 0 0 0

1 1 0 0 4.0625

1 0 1 0 3.4375

2.81251

2

3

Final output with quantization error below 0.15625V

Control Logic In
3.5 > 2.8125
Thus try 2.8125 + (2.5/2) = 4.0625

START with (5.0/2) = 2.8125

3.5 < 4.0625
Thus try 2.8125 + (2.5/4) = 3.4375
3.5 > 3.4375
Stop at 3.4375 since the difference is below 0.15625V

C[3]

Analog Input = 3.5V with Down-Rounding Mechanism

C[2] C[1] C[0] DACOUT(V)Step
1 0 0 0

1 1 0 0 3.7500

1 0 1 0 3.1250

1 0 1 1 3.4375

2.50001

2

3

4

Final output with quantization error is below 0.15625V

Control Logic In
3.5 > 2.5000
Thus try 2.5 + (2.5/2) = 3.75

START with (5.0/2) = 2.5

3.5 < 3.7500
Thus try 2.5 + (2.5/4) = 3.125
3.5 > 3.1250
Thus try 2.5 + (2.5/4) + (2.5/8) = 3.4375
3.5 > 3.4375
Stop at 3.4375 since the difference is below 0.15625V

Fig. 7.54 Four-bit successive approximation ADC truth table describing down-rounding and up-rounding approx-
imation techniques (power supply voltage is 5 V)

498 7 System Peripherals

SHOUT = 3.5 V, IN node becomes 5 V and prompts the control logic to produce a larger digital
output. The control logic responds to this with a digital output of C[3:0] = 1100, which corresponds
to the analog voltage of 2.8125 + (2.5/2) = 4.0625 V at the DACOUT node. As a result, IN node
becomes 0 V and forces the control logic to lower its digital output. This time, the control logic tries
C[3:0] = 1010 which is equivalent to 2.8125 + (2.5/4) = 3.4375 at the DACOUT node. Due to the
resolution limit of this four-bit ADC, this step also becomes the end of successive approximation.

The control circuit of the four-bit ADC with down-rounding scheme is shown in Fig. 7.55. In this
figure, the approximation process starts at the midpoint, C[3:0] = 1000, corresponding to DACOUT =
2.5 V according to the table in Fig. 7.54. When the external reset is removed, and the difference
between SHOUT and DACOUT, Δv, is found to be greater than the 0.15625 V, the control logic either
goes to the state 1.25 and produces C[3:0] = 0100 (equivalent to 1.25 V), or to the state 3.75 and
produces C[3:0] = 1100 (equivalent to 3.75 V) at the first step of successive approximation. This
decision depends on the value of the control logic input, IN. If IN = 0, which translates to the analog
input to be less than 2.5 V, the next state becomes the state 1.25. However, if IN = 1, the analog input
is considered to be greater than 2.5 V, and the next state becomes the state 3.75. If Δv is less than
0.15625 V, on the other hand, the control logic cannot proceed any further and moves to the DONE
state. In the second step of successive approximation, the state 1.25 either transitions to the state
0.625 or to the state 1.875, depending on the value of the IN node. Similar transitions take place from
the state 3.75 to either the state 3.125 or to the state 4.375, again depending on the value of IN. After
this point, the state machine performs one last approximation to estimate the value of analog input
voltage and reaches the DONE state with an output value as shown in Fig. 7.55.

4.68754.0625

4.375

3.75

3.4375

3.125

2.81252.1875

2.5

1.5625

1.875

1.25

0.625

0.3125 0.9375

DONE

R
es

et
 =

 0
IN

 =
 0

,
Δv

 >
 0

.1
56

25
 R

eset = 0

IN
 = 1, Δv > 0.15625

Re
se

t =
 0

IN
 =

 0
,

Δv
 >

 0
.1

56
25

Reset = 0

IN = 1, Δv > 0.15625

Re
se

t =
 0

IN
 =

 0
,

Δv
 >

 0
.1

56
25

Reset = 0

IN = 1, Δv > 0.15625

Reset = 0
IN = 0, Δv > 0.15625

Reset = 0
IN = 1, Δv > 0.15625

Reset = 1

Reset = 0 Reset = 1

R
es

et
 =

 0
,

Δv
 <

 0
.1

56
25

R
es

et
 =

 0
IN

 =
 0

,
Δv

 >
 0

.1
56

25

R
eset = 0

IN
 = 1, Δv > 0.15625 R

es
et

 =
 0

IN
 =

 0
,

Δv
 >

 0
.1

56
25

R
eset = 0

IN
 = 1, Δv > 0.15625 R

es
et

 =
 0

IN
 =

 0
,

Δv
 >

 0
.1

56
25

R
eset = 0

IN
 = 1, Δv > 0.15625

R
es

et
 =

 0
,

Δv
 <

 0
.1

56
25

R
es

et
 =

 0
,

Δv
 <

 0
.1

56
25

R
es

et
 =

 0
,

Δv
 <

 0
.1

56
25

R
es

et
 =

 0
,

Δv
 <

 0
.1

56
25

DONE = 1

R
es

et
 =

 0
,

Δv
 <

 0
.1

56
25

R
es

et
 =

 0
,

Δv
 <

 0
.1

56
25

Fig. 7.55 Four-bit successive approximation control circuit

7.7 Data Converters 499

7.8 Digital-to-Analog Converter (DAC)

The most common DAC utilizes the weighted summation method of its digital inputs. A three-bit
DAC with a weighted binary adder is shown in Fig. 7.56 as an example.

This circuit is composed of two parts. The first part adds all three binary input bits, IN[2] (the most
significant bit), IN[1] and IN[0] (the least significant bit), and produces an output, ADDOUT = −(0.5
IN[2] + 0.25 IN[1] + 0.125 IN[0]) according to the equation in Fig. 7.57. The second part is an
analog inverter which forms OUT = −ADDOUT.

Therefore, the circuit in Fig. 7.56 generates OUT = 0.5 IN[2] + 0.25 IN[1] + 0.125 IN[0], where
each binary value of IN[2:0] input is multiplied by the coefficients, 2−1, 2−2 and 2−3, before they are
added to produce an output. For example, the combination of IN[2] = 1, IN[1] = 0 and IN[0] = 1,
with +5 V and 0 V logic levels generates OUT = 2.5 + 0.625 = 3.125 V. Similarly, all the other
analog outputs in Fig. 7.57 can be generated using the equation at the top part of this figure with a
maximum error of 0.625 V.

4R

R

OUT

2R

8R

IN[2]

IN[1]

IN[0]

Weighted Binary Adder Analog Inverter with Unity Gain

ADDOUT

R

R

Fig. 7.56 Three-bit DAC schematic with weighted binary adder

500 7 System Peripherals

ADDOUT
R

2R
=

R

4R

R

8R
IN[2] IN[1] IN[0]

0.5 IN[2] 0.25 IN[1] 0.125 IN[0]=

IN[2] = 1, IN[1] = 0, IN[0] = 1 with +5V/0V logic levels

ADDOUT = 2.5 0 0.625 = 3.125V

OUT = + 3.125V with 0.625V quantization error

IN[2] IN[1] IN[0] OUT(V)

OUT = ADDOUT = 0.5 IN[2] + 0.25 IN[1] + 0.125 IN[0]

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0.000
0.625
1.250
1.875
2.500
3.125
3.750
4.375

Example:

Fig. 7.57 Three-bit DAC operation with weighted binary adder (power supply voltage is 5 V)

7.8 Digital-to-Analog Converter (DAC) 501

Review Questions

1. A DMA controller transfers four words of data, D1, D2, D3 and D4, from SRAM 1 (source
memory) to SRAM 2 (destination memory) on a 32-bit wide bidirectional bus as shown below.
D1, D2, D3 and D4 are fetched from addresses, AS1, AS2, AS3 and AS4, in the source memory
and placed in the AD1, AD2, AD3 and AD4 addresses in the destination memory, respectively.
Since each SRAM memory has a single I/O port, address and data cannot exist in the same clock
cycle. Therefore, for the read operation, data becomes available at the SRAM I/O port a cycle after
a valid address is presented. For the write operation, data has to be present at the SRAM port a
cycle after the valid address. The active-high RE and WE enables the SRAM for read or write
operations when a valid address is available.
The DMA controller has two programming ports to program the initial address and the incre-
mented address values. It uses ProgAddrS and ProgIncrS control inputs to initialize and increment
the source address, and similarly ProgAddrD and ProgIncrD inputs to initialize and increment the
destination memory address. The active-high StartS produces the first address at AddrOutS. IncrS
input generates incremented addresses based on the initial address. Similarly, StartD produces the
first address at AddrOutD followed by the incremented addresses produced by the active-high
IncrD.
Capture1 and Capture2 inputs capture and store data from the bus temporarily in the Buf1 and
Buf2 data buffers respectively. All active-high enable inputs enable the tri-state buffers when they
are at logic 1. Otherwise, there will be no connection between the address pointers and the bus or
between the memories and the bus.

(a) Draw the schematic for the source and destination address pointers.
(b) Form a timing diagram to transfer four words of data from SRAM1 to SRAM2.

2. Below are the waveforms generated by two different timers.

(a) A rate generating timer produces an active-high pulse in every 128 cycles as shown below.
Design this timer and draw its schematic.

502 7 System Peripherals

(b) A one-shot timer produces a continuous pulse 100 cycles after the start signal as shown below.
Design this timer and draw its schematic.

3. An interrupt controller serving four hardware interrupts is connected to a 16-bit CPU, which
consists of 16-bit wide instruction memory, Imem, a data memory, Dmem, a program counter for
the Imem, PC, a program counter for the data memory, DC, the data registers A and B, and a
controller. This schematic is shown below.

7.8 Digital-to-Analog Converter (DAC) 503

The interrupt protocol in this schematic is as follows:

Step 1: The active-high interrupt, INTR, is generated by the interrupt controller to inform the CPU
about the presence of an interrupt. The interrupt controller must have a request from an
external device with an interrupt ID before generating INTR.

Step 2: The CPU acknowledges INTR with the active-high interrupt acknowledge, INTA.
Step 3: The interrupt controller produces an interrupt ID on the 16-bit bi-directional data bus.
Step 4: The interrupt ID is loaded to the PC to access the interrupt service routine (ISR) address.
Step 5: The ISR address is loaded to the PC.
Step 6: One of the four interrupt service instructions is fetched from the instruction memory for a

particular interrupt. The steps are as follows:

Step 6a: The first interrupt instruction specifies the data memory address to be loaded to
the DC.

Step 6b: The second instruction contains the value of A to be loaded to the A register.
Step 6c: The third instruction contains the value of B to be loaded to the B register.
Step 6d: The fourth instruction provides either the contents of the A register or the

contents of B register or the added results of both registers to be loaded to the
data memory at a DC address. This value will later be used in the program (the
related hardware is not shown in the schematic above).

Step 7: When the four-cycle interrupt service is complete, the CPU lowers INTA. In response, the
interrupt controller lowers INTR a cycle after INTA transitions to logic 0, and waits for the
next interrupt.

Note: Imem or Dmem have SRAM configurations. Storing data is achieved with WE = 1 within the
same clock cycle as the valid address. Reading data from a memory is achieved with RE = 1 with a
latency of two clock cycles (data is not read at the beginning of next clock cycle but the one after
that).

(a) If the priority scheme in the interrupt controller is such that device 0 has the highest priority
and device 3 has the lowest priority, design this controller with the I/O port description
shown on the schematic. Note that this controller can support only hardware interrupts.

(b) Show a timing diagram outlining the complete interrupt service from Step 1 to Step 7 above.
(c) Show the state diagram of the CPU controller including all the control inputs to operate

instruction and data memories, registers etc.

4. A display unit works on a unidirectional bus that transmits 24-bit video pixels. Each pixel is
comprised of eight-bit R, G and B components which occupy the least significant three bytes of
the write data bus (the most significant byte is always 0x0). The write bus fills a video buffer with
a frequency of 2f. Similarly, the frequency of fetching data from a buffer to fill a video frame is f
(buffer emptying rate). Assume the horizontal and the vertical blanking sections of the video frame
are both zero.

The display unit is the highest priority peripheral on the bus because of the fact that it requires a
minimum rate of 30 frames/s to process and display data. However, other peripherals in the system
also use the same bus in order to send or receive data between video bursts.

504 7 System Peripherals

Each timing diagram below contains three vital entries for a frame buffer. The top row indicates
the ID number of a flag associated with an empty buffer. The middle row indicates the ID number of
an empty buffer. The bottom row shows the ID number of a full buffer. The flag is a direct input to the
CPU, and points out which buffer in the display unit needs to be filled. Note that all buffers are
considered full before data transactions start. Each square in the timing diagram corresponds to filling
or emptying an entire buffer. Since filling a buffer takes half the time to empty it, the number of
squares doubles at the bottom row relative to the middle row.

Suppose you use a two buffer, a three buffer or a four buffer system in the video unit. The key
consideration in this design is to be able to supply continuous data to the display unit from the frame
buffers while other peripherals use the bus.

Once full, define the length of data burst from each buffer in each timing table below. Mark each
entry with buffer numbers, and use the letters E or F to indicate whether each buffer is empty or full,
respectively. The video unit empties buffers in the following order. In a two-buffer system, buffer 1
empties first, buffer 2 empties second. In a three-buffer system, buffer 1 empties first, buffer 2 s, and
buffer 3 third. In a three-buffer system, buffer 1 empties first, buffer 2 s, buffer 3 third, and buffer 4
fourth. Indicate the flag number for each empty buffer inside the circle.

2 buffer system:

3 buffer system:

4 buffer system:

5. A three-bit successive approximation ADC is given below. A sample-Hold circuit (S/H) samples a
varying voltage at the Analog Input port in periodic intervals and feeds the sampled voltage level
to the operational amplifier.

7.8 Digital-to-Analog Converter (DAC) 505

Use the empty timing diagram below, fill the blanks with analog or digital data for Analog
Input = 0.5 V with down-rounding mechanism.

6. A three-bit ramp ADC below operates with +VCC = 3 V and –VCC = 0 V. Input to this ADC can
take any value between 0 and 3 V.

506 7 System Peripherals

(a) Assume that DAC has an up-rounding scheme to generate analog outputs from digital inputs.
Apply 1.2 V to the Analog Input port, and draw the timing diagram that contains the clock,
Reset, counter output (COUNTOUT), DAC output (DACOUT) and operational amplifier output
(INCR). Show what happens to the timing diagram when the active-high Reset signal tran-
sitions to logic 1 after the ADC produces the desired digital output.

(b) Now apply 2.9 V to the Analog Input. Draw the timing diagram with the same inputs and
outputs listed above. Show what happens to the timing diagram when the active-high Reset
signal transitions to logic 1 after the ADC produces the desired digital output.

(c) Assume that the DAC rounding scheme is changed from up-rounding to down-rounding
scheme. Apply 1.2 V to the Analog Input, and generate the timing diagram with the input and
output signals listed above. Show what happens to the timing diagram when the active-high
Reset signal becomes logic 1 after the ADC produces the desired digital output. Do you see
any issues with the operation of this circuit?

(d) Now apply 2.9 V at the Analog Input port and generate the timing diagram with the input and
output signals listed above. Do you see any issues in the operation of this circuit?

7. The following circuit shows the block diagram of a simple transmitter-receiver. The transmission
protocol starts with the transmitter sending the request signal, Req, to the receiver. The receiver
acknowledges the request by producing an acknowledgement signal, Ack, and starts reading data
from the transmitter at the next positive edge of the clock following the Ack signal. Once the data
transmission ends, the transmitter keeps sending the last data packet on the Data bus.

7.8 Digital-to-Analog Converter (DAC) 507

(a) Assume the transmitter sends out three consecutive data packets, D0, D1, D2. Complete the
timing diagram below for the Ack and Data signals. Show which data the receiver actually
receives.

(b) Assume the transmitter sends out three consecutive data packets, D0, D1, D2. Complete the
timing diagram below for the Ack and Data signals. Show which data the receiver actually
receives.

clockTx

clockRx

Req

Ack

Data

clockTx

clockRx

Req

Ack

Data

508 7 System Peripherals

8. A black-and-white display supports 256 shades of gray, ranging from white to black. The physical
display frame has 100 pixels in the x-direction and 100 lines in the y-direction, and it requires a
frame rate of 100 frames/s. The display needs no horizontal or vertical blanking pixels to synch
with the display adaptor. The clock frequency of the display and the adaptor are set at 1 MHz. The
display adaptor is connected to an eight-bit wide high-speed bus operating at 10 MHz to receive
data. Once the adaptor recognizes that one of its buffers is empty, it immediately sends a request
signal to the bus arbiter to own the bus. The acknowledgement from the bus arbiter requires 18 ms
delay due to heavy bus traffic. Once the acknowledgment is received, the display adaptor fills all
of its buffers. Each buffer contains exact number of pixels to fill only one frame.

(a) With the timing specs defined above for the display unit and the high-speed bus, determine the
number of buffers used in this system with a timing table that shows how these buffers are
periodically emptied and filled following an 18 ms bus waiting period. Note that this is not a
timing diagram that includes the frame or the bus clocks or the propagation of data.

(b) Draw an architectural data-path of the display adaptor including the buffers, the gray-scale
frame and the related hardware (counters, multiplexers, controller etc.). Make sure to generate
all the internal I/O signals of the controller to operate the arbiter and maintain the proper data
flow in the display adaptor.

9. A display adaptor shown below has an overlay feature where an overlay image is mapped over the
active image area as long as the overlay image is smaller than the active image in size. The system
neither requires blanking space nor needs a dual buffering.

Assume pixels in the image and overlay buffers are not separated into RGB components, but fully
integrated when they are taken out of these buffers to feed the frame buffer. There is a certain
synchronization mechanism between the image and overlay address counters, and the pixel and line
counters. As soon as a pixel is fetched from an image or overlay buffer, that pixel is placed in the
frame buffer with the aid of the pixel and line counters.

There are no write-enable controls for data buffers as these buffers will not be replenished with
new pixels once exhausted. The image is displayed only once. The read-enables for both buffers are
also kept at logic 1 until the buffers are empty. Therefore, the only mechanism that transfers pixels out
of these buffers into the frame buffer is incrementing the address counters and switching the selector
inputs to the 2-1 buffer MUX.

After removing the external reset, the operation of the display unit starts as shown in the timing
diagram below. The address counter for the image data buffer does not have an increment control
input because this counter increments constantly as soon as the reset is removed from the circuit.

7.8 Digital-to-Analog Converter (DAC) 509

510 7 System Peripherals

7.8 Digital-to-Analog Converter (DAC) 511

(a) Build the register file. Indicate the programmable values in each register to support the
operation of this unit.

(b) Fill in each numbered box in the timing diagram (if there are no numbers, ignore the box),
and show how the control signals change. In this figure, there are six control signals:
selImage (to select the image buffer), selOL (to select the overlay buffer), IncrPix (to
increment the pixel counter), ResetPix (to reset the pixel counter to 0), IncrLine (to
increment the line counter) and IncrOL (to increment the overlay counter).

Use the following notation for the data buffers:

For the Image buffer, Image Data = Im[Image Buffer Address]
For the Overlay buffer, Overlay Data = Olay[OL Buffer Address]

10. An interrupt controller interfaced with a three-stage RISC CPU is shown below. Once an
external interrupt (INTR0 to INTR15) is generated, the interrupt interface selects the highest
priority interrupt and generates a single INTR bit for the Interrupt Control Unit (ICU). The ICU
acknowledges the interrupt by INTA, which prompts the interface to send a four-bit INTRID to
the Interrupt Address Table (IAT). A 32-bit interrupt address is then produced from the IAT
which causes the program counter (PC) to jump and execute an Interrupt Service Routine
(ISR) program in the instruction memory. Before the ISR is executed, the remains of the original
program in the CPU pipeline have to be to be executed and stored in the register file (RF). Also,
the address of the next instruction in the user program is stored in R31 in the RF. Upon the
completion of a particular ISR, the program returns to its original location by retrieving the
address stored in the register R31. The rest of the user program executes promptly.

In this particular case, INTR0 as the highest priority interrupt comes in and prompts the interrupt
interface to generate INTRID = 0. This is the beginning of a four instruction long ISR0 that starts at
address 100 as shown in the instruction memory.

Assuming there are a total of seven instructions in the user program, each instruction written back
to the RF is labeled as WUi. For example, Ins1 results are written back to the RF as WU1, Ins2 results
as WU2 etc. as shown in the timing diagram. Similarly, each ISR instruction written back to the RF is
labeled as WIi. For example, Intr1 results are written back to the RF as WI1, Intr2 results as WI2 etc.

Also, once the PC generates a value, each instruction produces an RF output as DUi. For example,
Ins1 produces DU1, Ins2 produces DU2 etc. Similarly, each interrupt instruction produces an RF
output as DIi. For example, Intr1 produces DI1, Intr2 produces DI2 etc.

Based on the inputs in the preceding paragraphs, fill the blanks in the rest of the timing diagram
below. Indicate when each write takes place to the RF with a little arrow as shown in the timing
diagram.

512 7 System Peripherals

7.8 Digital-to-Analog Converter (DAC) 513

11. A parallel bus operating at 1 GHz clock frequency (1 ns clock period) employs a single
peripheral, A, with two 100 byte buffers, A0 and A1. Each buffer requires 100 ns to fill. The
process starts when the peripheral fills its first buffer, A0, before filling the second buffer, A1.
The peripheral exhausts data from its buffer within 400 ns, and needs bus access to replenish it.
To maintain data continuity the peripheral immediately starts fetching data from its secondary
buffer.

(a) In the timing diagram below with 100 ns intervals, show when the peripheral needs bus
access to fill either of its buffers with solid squares (in other words, fill in the square).
Indicate when the peripheral starts fetching data from its buffer with crossed squares (in
other words, fill in the square with an “X” sign).

514 7 System Peripherals

(b) Now, assume that there are two peripherals, A and B. Peripheral A still has two buffers and
behaves exactly as described in part (a). Peripheral B, which has less priority than peripheral
A, has four buffers, B0, B1, B2 and B3. This peripheral, when it finds the bus is free of
activity, fills its B0 buffer first, followed B1, B2 and B3. Again, each buffer takes 100 ns to
fill. However, unlike peripheral A, peripheral B exhausts data from any of its four buffers
within 600 ns, and requires bus access to replenish the data in the exhausted buffer. In the
timing diagram below with 100 ns intervals, show when each peripheral needs bus access to
fill its buffers with solid squares, and when the peripheral starts fetching data from its buffers
with crossed squares.

12. Design an SPI (see Chap. 4 on serial bus) interface using an integrated transmitter and receiver
shown below. The eight-bit Shift Register at the interface transmits one-bit data from the SDO
port at the positive edge of SCK, and simultaneously receives one-bit data from the SDI port at
the following negative edge. The transmit data is first loaded to the SPI Register using an
eight-bit system bus. Subsequently, the contents of the SPI Register are loaded to the Tx Buffer
if the buffer is empty and then to the Shift Register when it requires new data. In a similar
fashion, when the Shift Register acquires new eight new bits through its SDI port, it transfers its
contents to Rx Buffer first and then to the SPI Register. When the transmit function is desired,
the received data is considered junk data. When the receive function is desired, the transmit data
is, in turn, assumed junk. The two flags, TxF and RxF, update the status register whether Tx
Buffer and Rx Buffer are empty or not.

Design the SPI data-path and the controller using timing diagrams. SCK is assumed a slower
clock, and it has a period eight times the clock period of the system clock. The designer should feel
free to add additional hardware or signals to implement this design in different way.

7.8 Digital-to-Analog Converter (DAC) 515

http://dx.doi.org/10.1007/978-3-030-00223-7_4

Projects

1. Implement and verify a DMA that supports two identical 32 � 64 SRAM memories using Verilog.
Produce its timing diagram and the controller.

2. Implement and verify an interrupt controller that supports 256 hardware interrupts using Verilog.
Include the hardware for context switching, i.e. transferring the contents of the entire register file
to a temporary buffer prior to executing interrupt service routine instructions.

3. Implement the one-shot timer using Verilog. Produce its timing diagram.
4. Implement the rate generator using Verilog. Produce its timing diagram.
5. Implement and verify the display adaptor unit that supports a screen with eight pixels, two

blanking lines and nine active image lines.

516 7 System Peripherals

8Special Topics

This chapter introduces two core topics that belong to a computing system. The first topic is a brief
introduction to programmable logic. The second topic is the architectural description of a data-driven
processor that operates with the arrival of new data.

When it comes to prototyping an application-specific digital block, the first thing that comes to
mind is the Field-Programmable-Gate-Array (FPGA) platform. This platform is flexible enough to
implement any combinatorial, sequential or asynchronous logic with ease. Using programmable
logic, we can create mega cells such as ALU blocks or simple memories, logic blocks that perform
specific functions, processors, and even an entire computing system using a Hardware Design
Language (HDL).

The second topic in this chapter describes a data-driven architecture that works with a cluster of
simple processors. Each processor in the cluster is designed to carry out specific task(s), and each
becomes active when valid data arrives from a neighboring processor. In a data-driven system, either
an individual processor carries out a specific task and transfers the result to the next processor or
every processor in the cluster simultaneously execute many different tasks all at once to produce a
single result.

8.1 Field-Programmable-Gate Array

The basic idea behind the Field-Programmable-Gate-Array (FPGA) architecture is the use of
Look-Up-Tables (LUT). A typical three-input LUT in Fig. 8.1 contains eight registers to store bits, an
8-1 MUX to select one of the eight register outputs, and a flip-flop at the output of the 8-1 MUX to
implement sequential logic. The programming phase consists of serially distributing the bit values of an
input data, In[7:0], to all eight registers through the ProgIn port when the Prog input is set to logic 1.
In order to achieve this, all eight LUT registers are connected in a shift register configuration, and
In[7:0] is serially shifted in from Bit[0] to Bit[7]. The bottom register at the Bit[7] position has another
output, ProgOut, connected to the ProgIn input of another LUT such that every LUT on the FPGA chip
can be serially programmed using a single wire to save wiring space.

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7_8

517

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00223-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-00223-7_8

1

0
D Q

clock

Prog

1

0
D Q

1

0
D Q

1

0
D Q

1

0
D Q

1

0
D Q

1

0
D Q

1

0
D Q

ProgOut

ProgIn (serial truth table entry port)

0

clock

Prog

clock

Prog

clock

Prog

clock

Prog

clock

Prog

clock

Prog

clock

Prog

Bit[0]

1
Bit[1]

2
Bit[2]

3
Bit[3]

4
Bit[4]

5
Bit[5]

6
Bit[6]

7
Bit[7]

1

0D Q

clock

bypass

LUTOut

LU
TI

n[
2]

LU
TI

n[
0]

LU
TI

n[
1]

Fig. 8.1 Three-input look-up-table (LUT) block diagram

518 8 Special Topics

In normal operation, bits stored in the LUT registers constitute the output values of the truth table
in Table 8.1. The inputs of the truth table, on the other hand, are the selectors of the 8-1 MUX, from
LUTIn[0] to LUTIn[2], in Fig. 8.1. Therefore, any arbitrary truth table can be produced simply by
programming the LUT registers, needing no other conventional logic gate. For example, when LUTIn
[2] = LUTIn[1] = LUTIn[0] = 0 in Fig. 8.1, the 8-1 MUX routes the value stored in Bit[0] to its
output. Similarly, LUTIn[2] = LUTIn[1] = LUTIn[0] = 1 combination routes Bit[7] to the output.
The 2-1 MUX is used to bypass the flip-flop output if a combinational logic implementation is
preferred.

The number of registers in a LUT is determined by the number of outputs in the truth table. For
example, if there are three inputs in the truth table, this combination generates 23 = 8 possible
outputs. Therefore, the LUT must contain eight registers. In general, N inputs require 2N registers in a
LUT.

In summary, in order to implement a logic function using FPGA, the inputs of a logic function
(truth table) must be applied to the MUX selectors, and the outputs must be stored in the LUT
registers according to Table 8.1.

To demonstrate how a combinational logic block is implemented in an FPGA platform, we will
design a four-bit Ripple-Carry-Adder (RCA) as shown in Fig. 8.2. The circuit consists of four full
adders all connected serially to propagate the carry bit from right to left. The sum, SUM0 to SUM3,
and the carry-out, Cout0 to Cout3, outputs have to be programmed in the LUT registers.

Table 8.1 Three-input LUT truth table (when bypass port is set to 1)

LUTIn[2] LUTIn[1] LUTIn[0] LUTOut

0 0 0 Bit[0]
0 0 1 Bit[1]
0 1 0 Bit[2]
0 1 1 Bit[3]
1 0 0 Bit[4]
1 0 1 Bit[5]
1 1 0 Bit[6]
1 1 1 Bit[7]

8.1 Field-Programmable-Gate Array 519

Figure 8.3 describes how a full adder sum output is stored in a three-input LUT. This process is the
same for generating each sum output from SUM0 to SUM3. In this figure, the LUT output value at
the first row is stored in the Bit[0] position, and the last output entry is stored in the Bit[7] position.
This bit arrangement in the LUT registers implements the SUM function for any combination of Cin,
A and B applied as the 8-1 MUX selector inputs. The bypass input at the output 2-1 MUX must also
be set to logic 1 to bypass the flip-flop stage since this design is not a sequential circuit.

The Cout function of the full adder is implemented similarly as shown in Fig. 8.4. The Cout
function in the last column of the truth table is programmed into the LUT registers while Cin, A and B
are connected to the selector inputs. The bypass bit is also set to logic 1 to bypass the flip-flop since
the implementation is purely combinational.

Figure 8.5 shows the FPGA implementation of the four-bit RCA in Fig. 8.2 after the programming
phase is complete. In this design, each FPGA cell, called a cluster, is assumed to contain two LUTs.
While A0, A1, A2, A3, B0, B1, B2, B3 and Cin0 are external input pins for the four-bit RCA, Cin1,
Cin2 and Cin3 inputs are all internally generated from Cout0, Cout1 and Cout2 function blocks, and
routed between clusters to maintain interconnectivity. All the bypass inputs, from bypass-Cout0 to
bypass-SUM3, have to be at logic 1 and stored in a separate LUT during the programming phase.

FA0

A0 B0

SUM0

FA1

A1 B1

SUM1

FA2

A2 B2

SUM2

FA3

A3 B3

SUM3

Cin0
Cout0Cout1Cout2Cout3

SUM0 = A0 + B0 + Cin0
SUM1 = A1 + B1 + Cin1
SUM2 = A2 + B2 + Cin2
SUM3 = A3 + B3 + Cin3

Cout0 = A0.B0 + Cin0.(A0 + B0)
Cout1 = A1.B1 + Cin1.(A1 + B1)
Cout2 = A2.B2 + Cin2.(A2 + B2)
Cout3 = A3.B3 + Cin3.(A3 + B3)

Fig. 8.2 Four-bit ripple-carry-adder

520 8 Special Topics

LUTIn[2] = Cin LUTOut[0] = SUM

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

LUTIn[1] = A LUTIn[0] = B

0
1
1
0
1
0
0
1

0 Bit[0]

1 Bit[1]

1 Bit[2]

0 Bit[3]

1 Bit[4]

0 Bit[5]

0 Bit[6]

1 Bit[7]

0

1

2

3

4

5

6

7

LUTIn[0] = B
LUTIn[1] = A
LUTIn[2] = Cin

1

0D Q

clock

bypass = 1

LUTOut[0] = SUM

ProgIn

ProgOut

Feed the truth table output into the LUT

Fig. 8.3 Programming the full adder SUM output with a three-input LUT

8.1 Field-Programmable-Gate Array 521

LUTIn[2] = Cin LUTOut[1] = Cout

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

LUTIn[1] = A LUTIn[0] = B

0
0
0
1
0
1
1
1

0 Bit[0]

0 Bit[1]

0 Bit[2]

1 Bit[3]

0 Bit[4]

1 Bit[5]

1 Bit[6]

1 Bit[7]

0

1

2

3

4

5

6

7

LUTIn[0] = B
LUTIn[1] = A
LUTIn[2] = Cin

1

0D Q

clock

bypass = 1

LUTOut[1] = Cout

ProgIn

ProgOut

Feed the truth table output into the LUT

Fig. 8.4 Programming the full adder Cout output with a three-input LUT

522 8 Special Topics

1

0

clock

D Q

bypass-SUM0 = 1

SUM0

Bit[0]

Bit[7]

A0 B0 Cin0

S0
 -

LU
T

1

0

clock

D Q

bypass-Cout0 = 1

Cout0

Bit[0]

Bit[7]

A0 B0 Cin0

C
ou

t0
 -

LU
T

1

0

clock

D Q

bypass-SUM1 = 1

SUM1

Bit[0]

Bit[7]

A1 B1 Cin1

S1
 -

LU
T

1

0

clock

D Q

bypass-Cout1 = 1

Cout1

Bit[0]

Bit[7]

A1 B1 Cin1

C
ou

t1
 -

LU
T

1

0

clock

D Q

bypass-SUM2 = 1

SUM2

Bit[0]

Bit[7]

A2 B2 Cin2

S2
 -

LU
T

1

0

clock

D Q

bypass-Cout2 = 1

Cout2

Bit[0]

Bit[7]

A2 B2 Cin2

C
ou

t2
 -

LU
T

1

0

clock

D Q

bypass-SUM3 = 1

SUM3

Bit[0]

Bit[7]

A3 B3 Cin3

S3
 -

LU
T

1

0

clock

D Q

bypass-Cout3 = 1

Cout3

Bit[0]

Bit[7]

A3 B3 Cin3

C
ou

t3
 -

LU
T

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Fig. 8.5 Four-bit ripple-carry-adder data-path in FPGA

8.1 Field-Programmable-Gate Array 523

A commercial FPGA cluster contains a multitude of multiplexers connected to the LUT inputs to
accomplish the maximum flexibility in logic configuration. Figure 8.6 shows one such cluster con-
figuration that contains two LUTs, each with three inputs. A cluster configured this way is able to
achieve maximum networking capability with other FPGA clusters in addition to implementing many
types of combinational and sequential logic circuits. Programming these LUTs is achieved simply by
connecting the ProgOut port of one LUT to the ProgIn port of the neighboring LUT, and distributing
the serial data to two LUTs from the ProgIn port as shown in the figure.

ProgIn

LUTIn2

LUTIn1

LUTIn0

LUTIn2

LUTIn1

LUTIn0

Out[1]

Out[0]

bypass1

bypass0

In0[0]

In0[1]

In0[2]

In1[0]

In1[1]

In1[2]

LUT 1

LUT 0

ProgOut

Fig. 8.6 A commercial FPGA cluster containing two LUTs per cluster

524 8 Special Topics

The detailed schematic in Fig. 8.7 shows the FPGA implementation of Cluster 0 in Fig. 8.5 but
uses a commercial FPGA architecture in Fig. 8.6. Each 3-1 MUX selector input from SelOut0[0] to
SelOut1[5] is stored in a 12-bit shift register (LUT2) in Fig. 8.7.

1

0

clock

D Q

bypass1 = 1

Out1 = SUM0

Bit[0]

Bit[7]

A0

B0

Cin0

LU
T1

 (f
or

 S
U

M
0)

in1[2] = Cin0

in1[1] = B0

in1[0] = A0

1

0

clock

D Q

Out0 = Cout0

Bit[0]

Bit[7]

A0

B0

Cin0

LU
T0

 (f
or

 C
ou

t0
)

in0[2] = Cin0

in0[1] = B0

in0[0] = A0

ProgIn

P
ro

gO
ut

P
ro

gI
n

P
ro

gO
ut

SelOut1[5] = 0
SelOut0[5] = 0

SelOut1[4] = 0
SelOut0[4] = 0

SelOut1[3] = 0
SelOut0[3] = 0

SelOut1[2] = 0
SelOut0[2] = 0

SelOut1[1] = 0
SelOut0[1] = 0

SelOut1[0] = 0
SelOut0[0] = 0

bypass0 = 1

SelOut1 [5]

LU
T2

 (f
or

 S
el

O
ut

)

SelOut0 [0]

12
 S

el
O

ut
 in

pu
ts

bypass1

LU
T3

 (f
or

 b
yp

as
s)

P
ro

gI
n

P
ro

gO
ut

ProgOut

P
ro

gI
n

bypass0

1
0

2

1
0

2

1
0

2

1
0

2

1
0

2

1
0

2

Fig. 8.7 Implementing SUM0 and Cout0 using a single cluster containing two LUTs

8.1 Field-Programmable-Gate Array 525

In this figure, SelOut1[i] = 0 and SelOut0[i] = 1 combination selects port 1 or Out0. Here, i
changes from 0 to 5. SelOut1[i] = 1 and SelOut0[i] = 0 combination selects port 2 or Out1. When
SelOut1 = SelOut0 = 0, the default port 0 is selected, and an external input becomes one of the
selector inputs for the 8-1 LUT MUX. The bypass pins, bypass0 and bypass1, are also stored in a
two-bit shift register (LUT3).

A Moore or Mealy type state machine can also be implemented using FPGA platforms. The state
diagram in Fig. 8.8 produces the transition table in Table 8.2, which includes two next state outputs,
NS0 and NS1, two present state inputs, PS0 and PS1, an external input, IN, and a present state output,
OUT[2:0], to produce integer values between one and four. For state assignments, only one bit is
allowed to change between neighboring states, i.e. S0 = 00, S1 = 01, S2 = 11 and S3 = 10. The
resultant circuit in Fig. 8.9 shows the locations of the present and next states, the input and the output.

Programming the NS0 function in Table 8.2 in a three-input LUT configuration is explained in
Fig. 8.10. In this figure, the NS0 column is distributed among eight LUT registers, storing the first bit
of NS0 at the Bit[0] position, and the last bit at the Bit[7] position. The inputs, PS0, PS1 and IN, that
generate NS0 are connected to the 8-1 MUX selector pins, LUTIn[0], LUTIn[1] and LUTIn[2],

S0

S1

S2

S3

IN = 0

IN = 1

IN
 =

1IN = 1

IN = 0

IN = 0

IN = 0
IN = 1

OUT = 1

OUT = 2OUT = 4

OUT = 3

Fig. 8.8 A moore machine

526 8 Special Topics

IN

NS1

NS0 PS0

PS1

OUT[2]

D Q

OUT[1]

OUT[0]

D Q

clock

clock

Fig. 8.9 The circuit diagram for the moore machine in Fig. 8.8

Table 8.2 The transition table for the moore machine in Fig. 8.8

PS0PS1

0

1

0

1

0

0

1

1

IN

0

0

0

0

NS0NS1 OUT[0]OUT[1]OUT[2]

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

1

0

0

0

1

1

0

1

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

1

0

8.1 Field-Programmable-Gate Array 527

0 Bit[0]

1 Bit[1]

0 Bit[2]

1 Bit[3]

1 Bit[4]

1 Bit[5]

1 Bit[6]

0 Bit[7]

0

1

2

3

4

5

6

7

LUTIn[0] = PS0
LUTIn[1] = PS1
LUTIn[2] = IN

1

0D Q

clock

bypass = 0

PS0

ProgIn

ProgOut

Feed the truth table output into the LUT

PS0PS1

0

1

0

1

0

0

1

1

IN

0

0

0

0

NS0

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

1

0

NS0 NS0 PS0

Fig. 8.10 Programming the PS0/NS0 output with a three-input LUT

528 8 Special Topics

respectively. Since the bypass input pin is set to logic 0, the NS0 node becomes the input of the
flip-flop, and the PS0 node becomes the output.

The NS1 functionality is implemented in a similar fashion as shown in Fig. 8.11. The NS1 column
in Table 8.2 is stored in the LUT registers. PS0, PS1 and IN inputs are connected to LUTIn[0],
LUTIn[1] and LUTIn[2] MUX selector pins, respectively. The bypass pin is set to logic 0 in order to
form NS1 node at the input of the flip-flop and PS1 node at the output.

0 Bit[0]

0 Bit[1]

1 Bit[2]

1 Bit[3]

0 Bit[4]

1 Bit[5]

0 Bit[6]

1 Bit[7]

0

1

2

3

4

5

6

7

LUTIn[0] = PS0
LUTIn[1] = PS1
LUTIn[2] = IN

1

0D Q

clock

bypass = 0

PS1

ProgIn

ProgOut

Feed the truth table output into the LUT

PS0PS1

0

1

0

1

0

0

1

1

IN

0

0

0

0

NS1

0

1

0

1

0

0

1

1

1

1

1

1

0

0

1

1

0

1

0

1

NS1 NS1 PS1

Fig. 8.11 Programming the PS1/NS1 output with a three-input LUT

8.1 Field-Programmable-Gate Array 529

The OUT[0], OUT[1] and OUT[2] outputs are also programmed in the LUT registers according to
Table 8.2, and shown in Fig. 8.12, Fig. 8.13 and Fig. 8.14, respectively. However, the bypass input
in each case must be set to logic 1 in order to bypass the flip-flop stage since these outputs are
completely combinational and do not require any clock in their paths.

1 Bit[0]

0 Bit[1]

0 Bit[2]

1 Bit[3]

1 Bit[4]

0 Bit[5]

0 Bit[6]

1 Bit[7]

0

1

2

3

4

5

6

7

LUTIn[0] = PS0
LUTIn[1] = PS1
LUTIn[2] = IN

1

0D Q

clock

bypass = 1

OUT[0]

ProgIn

ProgOut

Feed the truth table output into the LUT

PS0PS1

0

1

0

1

0

0

1

1

IN

0

0

0

0

OUT[0]

0

1

0

1

0

0

1

1

1

1

1

1

1

0

0

1

1

0

0

1

OUT[0] OUT[0]

Fig. 8.12 Programming the OUT[0] output with a three-input LUT

530 8 Special Topics

0 Bit[0]

1 Bit[1]

0 Bit[2]

1 Bit[3]

0 Bit[4]

1 Bit[5]

0 Bit[6]

1 Bit[7]

0

1

2

3

4

5

6

7

LUTIn[0] = PS0
LUTIn[1] = PS1
LUTIn[2] = IN

1

0D Q

clock

bypass = 1

OUT[1]

ProgIn

ProgOut

Feed the truth table output into the LUT

PS0PS1

0

1

0

1

0

0

1

1

IN

0

0

0

0

OUT[1]

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

0

1

0

1

OUT[1] OUT[1]

Fig. 8.13 Programming the OUT[1] output with a three-input LUT

8.1 Field-Programmable-Gate Array 531

0 Bit[0]

0 Bit[1]

1 Bit[2]

0 Bit[3]

0 Bit[4]

0 Bit[5]

1 Bit[6]

0 Bit[7]

0

1

2

3

4

5

6

7

LUTIn[0] = PS0
LUTIn[1] = PS1
LUTIn[2] = IN

1

0D Q

clock

bypass = 1

OUT[2]

ProgIn

ProgOut

Feed the truth table output into the LUT

PS0PS1

0

1

0

1

0

0

1

1

IN

0

0

0

0

OUT[2]

0

1

0

1

0

0

1

1

1

1

1

1

0

0

1

0

0

0

1

0

OUT[2] OUT[2]

Fig. 8.14 Programming the OUT[2] output with a three-input LUT

532 8 Special Topics

Figure 8.15 describes the implementation of the Moore machine in Fig. 8.9 after programming
each LUT in three different clusters. Cluster 0 generates NS0 and NS1 functions implicitly but also
produces PS0 and PS1 outputs. Cluster 1 and Cluster 2 implement OUT[2:0]. The IN port is the only
external input that goes to all three clusters to maintain the logic functionality. All the bypass inputs
from bypass-PS0 to bypass-OUT2 are stored in a separate LUT.

The schematic in Fig. 8.16 shows the implementation of Cluster 0 in Fig. 8.15 in a commercial
FPGA platform in Fig. 8.6. In this schematic, all 3-1 MUX selector inputs from SelOut0[0] to
SelOut1[5], are stored in LUT2. Similarly, the bypass inputs, bypass0 and bypass1, are stored in
LUT3 to be used during normal operation.

1

0

clock

D Q

bypass-PS0 = 0

PS0

Bit[0]

Bit[7]

IN

P
S

0
- L

U
T

Cluster 0

Cluster 1

Cluster 2

NS0

1

0

clock

D Q

bypass-PS1 = 0

PS1

Bit[0]

Bit[7]

IN

P
S

1
- L

U
T

NS1

1

0

clock

D Q

bypass-OUT0 = 1

OUT[0]

Bit[0]

Bit[7]

PS0
PS1

IN

O
U

T0
 -

LU
T

1

0

clock

D Q

bypass-OUT1 = 1
Bit[0]

Bit[7]

IN

O
U

T1
 -

LU
T

1

0

clock

D Q

bypass-OUT2 = 1
Bit[0]

Bit[7]

IN

O
U

T2
 -

LU
T

PS0
PS1

PS0
PS1

PS0
PS1

PS0
PS1

OUT[1]

OUT[2]

Fig. 8.15 Moore state machine data-path in FPGA

8.1 Field-Programmable-Gate Array 533

1

0

clock

D Q

bypass1 = 0

Out1 = PS1

Bit[0]

Bit[7]

PS0

PS1

IN

LU
T1

 (f
or

 P
S

1)

In1[2] = IN

SelOut1[5] = 0
SelOut0[5] = 0

In1[1] = dont care

In1[0] = dont care

SelOut1[4] = 1
SelOut0[4] = 0

SelOut1[3] = 0
SelOut0[3] = 1

1

0

clock

D Q

bypass0 = 0

Out0 = PS0

Bit[0]

Bit[7]

LU
T0

 (f
or

 P
S

0)

In0[2] = IN

In0[1] = dont care

In0[0] = dont care

SelOut1[5]

LU
T2

 (f
or

 S
el

O
ut

)

SelOut0[0]

12
 S

el
O

ut
 in

pu
ts

bypass1

LU
T3

 (f
or

 b
yp

as
s)

P
ro

gI
n

Pr
og

O
ut

ProgOutProgIn
P

ro
gO

ut
Pr

og
In

P
ro

gO
ut

P
ro

gI
n

bypass0

PS0

PS1

IN

NS1

NS0

2
1
0

2
1
0

2
1
0

2
1
0

2
1
0

2
1
0

SelOut1[2] = 0
SelOut0[2] = 0

SelOut1[1] = 1
SelOut0[1] = 0

SelOut1[0] = 0
SelOut0[0] = 1

Fig. 8.16 Implementing PS0 and PS1 using a single cluster containing two LUTs

534 8 Special Topics

8.2 Data-Driven Processors

Data-Flow Graphs

Programming data-driven processors is achieved by data-flow graphs. Each graph consists of a group
of functional nodes and communication paths, connecting the nodes. Each node in the flow-graph
executes two incoming data tokens when they arrive, and produces an output operand according to
the function defined in the node. The output operand is then forwarded to a neighboring functional
node where it becomes a data token for that node. Therefore, a node function can be defined by an
instruction for a processor. Each instruction representing a functional node contains an operation code
(OPC), input operand(s) (OPER), and output operand node addresses. All input-output paths among
functional nodes are connected with directed communication paths to guide the flow of data. With
this picture in mind, operands that flow into a functional node are executed according to the node’s
operation code. Once executed in the node, new operands form and flow out of the node to other
nodes. A simple example is given in Fig. 8.17. In this example, the operands, OPERS1 and OPERS2,
are executed by the node’s operation code, OPCS, when they arrive at the functional node, NS. After
the execution, a new operand forms and flows out of the node to two new destination nodes, ND0 and
ND1, where it meets with two other operands, OPERD0 and OPERD1, respectively. The data-flow
program stops when all operands are executed.

The parallel nature of data-flow architecture makes parallel processing tasks quite achievable in
data-driven machines. While conventional processors are set to be maximally serial to minimize
hardware, data-driven architectures can be maximally parallel with up to one processor per operation
to maximize performance. For the example in Fig. 8.17, two different data-driven processors can be
used simultaneously to perform OPCD0 and OPCD1 following the operation at the node NS.
Multi-processor platforms formed by a group of conventional processors may have limitations to
achieve certain parallel processing tasks. In contrast, data-driven processors can time-share the
processing load of several functional nodes, and therefore reduce the hardware requirement to
implement a data-flow graph.

L R

NS

OPERS1 OPERS2

OPCS

L R

ND0

OPCD0 OPCD1

ND1

L R

OPERD0 OPERD1

to (NK,L) to (NL,R)

Fig. 8.17 Sample flow graph for a data-driven machine

8.2 Data-Driven Processors 535

Data-Flow Node Types

The types of data-flow nodes used in this architecture are classified according to the number of input
operands fed into the functional nodes. Figure 8.18 illustrates this classification.

Functional nodes that accept no inputs are nodes with constants (CONS). The contents of this node
type do not change during programming. Functional nodes that accept one input are the unitary
(UNIT) nodes. This node type transforms an operand as soon as it arrives at its input. Invert (negate),
Set and Reset are the unitary nodes in this architecture that require a single input operand. Functional
nodes that accept two input operands are the combinatorial (COMB) nodes. This node type executes
incoming operands when they are both valid at the input. The operation of some combinatorial
functional nodes, such as subtract and shift, depends on the relative placement of the input operands.
This is called the operand polarity. It is reflected in the instruction format by defining input operands
as left or right input operands. In this architecture, operands with changing data values are directed to
the left side of a functional node, whereas constant operands or operands used as control signals are
placed on the right side of the functional node in a data-flow diagram.

While operands emanating from functional nodes are forwarded only to one destination address in
the earlier data-flow diagrams, this architecture offers the flexibility where the same operand can be
forwarded to two different destination addresses. This unique feature saves the number of nodes used
in the data-flow diagram as well as increases execution speed of the program.

Basic Data-Flow Program Structures

There are three basic programming structures in data-driven architectures when constructing
data-flow diagrams: sequential, conditional and recursive. Each structure is illustrated in Fig. 8.19.

Sequential programming constructs imply that the data-flow is unidirectional, from one functional
node to the next without any loops or paths related to a condition. The simple data-flow diagram in
Fig. 8.17 is one such example of the sequential programming structure. Another example composed
of multi-layer functional nodes is given at the top of Fig. 8.19.

L R

OPER1 OPER2

COMB

OPEROUT

L
OPER1

UNIT

OPEROUT

CONS

OPEROUT

Fig. 8.18 Functional node types

536 8 Special Topics

L R

N1

OPER1 OPER2

OPC1

L R

N2

OPC2 OPC3

N3

L
OPER3

OPC4

L
R

N4

OPER4

L R

N1

OPER1 OPER2

OPC

COMP CONS

N2

N3

L

R

GATE
L

R

N4

OPC GATE

N2 N3

CONS

L

start
N1

L

True
/False

OPER3

Sequential-Type
Data Flow Graph

Conditional-Type
Data Flow Graph

Recursive-Type
Data Flow Graph

Fig. 8.19 Data-flow programming structures

8.2 Data-Driven Processors 537

The conditional programming structure consists of a functional node that accepts a conditional
input besides a data input. If the condition is satisfied, a valid operand at the data input becomes a
valid operand at the output. If the condition is not satisfied, the operand at the output retains its old
value. The conditional input enters the node from the right side since it is considered to be a control
input as mentioned earlier. Gate and Compare instructions are considered conditional since the
data-flow produced at the output of the node depends on whether the condition is satisfied or not. The
output operand does not change its value until the condition is satisfied. An example of this type is
shown in Fig. 8.19.

The recursive programming structure contains looping constructs in the form of feedback around a
functional node as shown at the bottom of Fig. 8.19. The number of iterations in a loop continues
until all input operands are exhausted. The loop can be broken to allow a conditional node if needed,
otherwise the loop is activated on the arrival of new operands either from the right or the left sides of
the node.

A simple example in Fig. 8.20 combines all the programming structures mentioned above. This
example calculates the area under a straight line, Y = (X − 1), from X = 2 to X = 3. The increment in
the x-axis is defined to be DeltaX, which is equal to 0.1 in the flow chart.

The flow chart in Fig. 8.20 has been transformed into a data-flow graph shown in Fig. 8.21. All
the nodes with constants in the data-flow graph in Fig. 8.21 are zero-input nodes, which accept no

X : 3

SUMstart = 0
Xstart = 2
Ystart = 1
DeltaX = 0.1

SUMstart = SUM
Xstart = X
Ystart = Y

X = Xstart + DeltaX
Y = X - 1
Area = 0.05 (Y + Ystart)
SUM = SUMstart + Area

SUM to host

X < 3

else

Fig. 8.20 Flow chart integrating the area under Y = (X − 1)

538 8 Special Topics

operands. The only unitary functional node is the one with the SET operation code. Upon the arrival
of an operand to its single input, this node generates logic 1 at its output. Otherwise, its output stays at
logic 0.

There are two types of two-input functional nodes in the same data-flow diagram. The majority of
these nodes are conditional type: they either wait for a condition to arrive (GATE) or they have a
permanent condition attached at their right port in terms of a constant. Greater-Than-Or-Equal-To

ADC

C = 0.1

C = 0.05

C = 3C = 3

C = -1

ADC

ADD GATE

LT

ADC

ADD

GATE

MULC

SET

GE

GATE

GATER

Xstart

X

SUMstart

Ystart
Y

SUM

R

R

XX

X

SUM

to host

Area

#1 #2

#3 #4
#5

#6 #7

#8

#9

#11 #12

#10

L

LL
L

L

L

L

R

R

R

R

R

R

L

L

L
L

R

R

LL

R

#0

C = 0.1
Xstart

Y

Fig. 8.21 Data-flow graph integrating the area under Y = (X − 1)

8.2 Data-Driven Processors 539

(GE), Less-Than (LT), Add-with-Constant (ADC), and Multiply-with-Constant (MULC) functional
nodes belong to the latter category.

The rest of the two-input nodes are sequential such as Add node (ADD) where polarity infor-
mation is not important for data execution.

During the programming phase, the initial values of Xstart, Ystart and SUMstart are stored at the
proper arcs in Fig. 8.21. When program execution starts, Xstart = 2 is added to a floating-point
constant, C = 0.1, at the nodes 0 and 1, generating the first value of X. While X is compared against
C = 3 at the nodes 3 and 4, it is also directed to the node 2 for a Gate operation, and added to C = −1
at the node 5, producing Y. Subsequently, Y is directed to the node 6 to be added to Ystart = 1, and to
the node 7 for another Gate operation. The output of the node 6 multiplies with C = 0.05 at the node
8, producing the first incremental area value, and it is directed to the node 9 to be added with
SUMstart = 0. The output of the node 9, SUM, is then forwarded to the nodes 10 and 11 for two other
Gate operations. Depending on comparisons at the nodes 3 and 4, the SUM output will either be
forwarded outside of the processor or forwarded to the node 12 in order to set this node. If the node is
set, Gate operations at the nodes 2, 7 and 11 take place, replacing the old values of Xstart, Ystart and
SUMstart with X, Y and SUM, respectively. Iterations continue until the node 10 becomes active and
the result is delivered to the user.

Input Flags

An input operand to a functional node contains an operand flag to indicate whether or not the data
processing is complete. A high flag implies that the input operand is valid and ready to be processed.
The input operand flag goes to logic 0 as soon as the functional node processes the input operand.

Nodal Networks

Data-flow diagrams in this architecture can be structured in three different ways. The first is a direct
connection among functional nodes: data flows from one node to another freely in an unobstructed
fashion as shown at the top left corner of Fig. 8.22. The only control mechanism for processing data
at each functional node is that both input operand flags must be at logic 1. The second and third nodal
networks use programmable routers to send operands from the source to the destination nodes. The
simple router in Fig. 8.22 uses a local network to connect a group of functional nodes called a cluster.
Note that the inputs to a functional node in a cluster can come from any functional node in this
network. This decision is made by a simple arbitration scheme in the router, which dictates that any
node in the process of generating a new input operand for itself has priority over the other nodes in a
cluster. In other words, if a neighboring node produces an input operand for a particular node in a
cluster while this particular node is in the process of generating an input operand for itself, the arbiter
stalls any data processing in the neighboring node until the self-operand generation is complete. The
bottom structure of Fig. 8.22 illustrates the hierarchical organization of clusters where an inter-cluster
network manages many local cluster networks. While each cluster arbiter manages its own individual
cluster, all cluster-to-cluster communication is maintained by a separate inter-cluster arbiter.

Processor Design Overview

The processor implements the node functionality by reading the node instruction from the memory,
executing it, and writing the result back to the two destination node addresses specified in the

540 8 Special Topics

instruction. In order to implement this sequence, each processor needs to have a memory, an ALU
and a controller. The memory contains all nodal instructions. Each nodal instruction consists of two
input operands with their valid flags, an operation code and the two destination node addresses where
the results are sent as shown in Fig. 8.23.

L R

NA

OPERA OPERB

OPCA

L R

NB

OPCB OPCC

NC

L
OPERC

OPCD

R

ND

L

NA

OPCA

NZ

OPCZ

LOCAL CLUSTER NETWORK

L R L R

INTER-CLUSTER NETWORK

NA

OPCA

NZ

OPCZ

LOCAL CLUSTER NETWORK 1

NA

OPCA

NZ

OPCZ

L R L R L R L R

LOCAL CLUSTER NETWORK N

Fig. 8.22 Data-flow graphs without router, and with local and hierarchical cluster networks

OPC V0 N0 P0FROPERR V1 N1 P1

Destination
Address 0

Destination
Address 1

FLOPERL

Left
Operand

Flag

Right
Operand

Flag

161161511 7171

Fig. 8.23 Instruction format

8.2 Data-Driven Processors 541

Consider a processor implementing a single node. Initially, the processor is at idle. When both
operand flags in the instruction become valid, the controller starts. In the first step, the controller
generates a nodal address for the instruction that resides in the memory. In the second step, the
controller fetches the input operands and operation code from this instruction and forwards them to
the ALU. The ALU combines the input operands and generates an output operand. Subsequently, the
controller directs this operand to the first destination address. In the third step, the controller writes the
same output operand to the second destination address, sets the operand flag at the first destination
address, and clears input operand flags at the source address. In the fourth and final step, the controller
sets the operand flag at the second destination address.

If the processor needs to execute more than one node, then each nodal address in the flow graph
must be mapped to a physical address in the memory. This approach automatically transfers the left
and the right nodal operands, the operation code and the destination addresses of a particular node
from the flow graph to an instruction in the memory. However, during this process each operand flag
is stored in a separate tag memory to allow the controller to continuously search for valid operand
flags. If the controller finds a node with valid left and right operand flags, it sends the corresponding
operands to the ALU for execution. After the operands are processed and sent to the destination
addresses in the instruction, the controller points the next node to be processed. If there is no other
node with valid operand flags, the controller stalls the processor until an instruction with valid
operand flags emerges in the instruction memory.

The processing efficiency and speed in the processor can be increased by pipelining. After an
instruction is executed, sending the ALU result to a destination address can be overlapped with tasks
such as generating an address or fetching a different instruction. This can be achieved using a dual
port memory.

Instruction Format

In this architecture, the instruction format contains two 17-bit input operands, OPERL and OPERR,
two flags to validate the operands, FL and FR, one five-bit operation code, OPC, and two eight-bit
destination address fields. Each destination address is composed of a valid bit, V, a six-bit node
number, N, and a left-right polarity bit, P. The valid bits in the destination address fields, V0 and V1

indicate the validity of the corresponding nodal address. This instruction format is shown in Fig. 8.23.

Architecture and Operation

Figure 8.24 shows a simplified block diagram of a processor executing the simple program in
Fig. 8.17. Each node number in the data-flow graph in Fig. 8.17 corresponds to an address in the
instruction memory in Fig. 8.24.

The program execution starts when the controller detects an instruction with valid left and right
operand flags, such as the one at the memory location NS with FL = FR = 1. The controller reads out
the instruction and sends the operands, OPERS1 and OPERS2, and the operation code, OPCS, to the
ALU. The ALU executes the operands according to the OPCS, and the controller clears both operand
flags of the instruction, underlining the completion of this instruction. The controller subsequently
sends the ALU result to the first and second destination addresses, ND0 and ND1, as data tokens as
shown in Fig. 8.24. When the result is delivered to a valid destination address, the controller auto-
matically sets the operand flag to specify the validity of data for further processing. For example, the
right operand flag at ND0 is set when OPERA = OPERS1 (OPCS) OPERS2 is delivered to this address.

542 8 Special Topics

Similarly, the controller sets the left operand flag at ND1 when it delivers the same ALU result to this
address in the next cycle.

After executing the instruction at NS, the controller detects the next instruction with valid operand
flags at the memory location ND0. Once again, the controller extracts the operation code, OPCD0, and
the operands, OPERD0 and OPERA, from the instruction and sends them to the ALU for execution.
Subsequently, the controller clears the operand flags at ND0 and sends the ALU result as a left
operand to the memory address NK. This is shown as the third data token in Fig. 8.24. The controller
performs the same set of tasks for the instruction located at the address ND1 and forms the fourth data
token. The program execution stops when the controller can no longer find a pair of valid operand
flags in the tag memory.

Implementation

Figure 8.25 shows the implemented instruction field format. Besides the operation code and the input
operand fields, each destination address in Fig. 8.23 is now expanded to contain an additional
seven-bit processor ID, ProcID, and cluster ID, ClusID, to allow multiple processor communication in
a local network. In this architecture, we have the flexibility of choosing a network ranging from 128

OPC

RDataRIGHT

1st token

2nd token

3rd token

4th token

NS

ND0

OPCS 1 ND0 ROPERS1 1OPERS2 1 ND1 L1

OPCD0 1 NK LOPERD0 0- 0 - -1

OPCD1 1 NL R- 1OPERD1 0 - -0ND1

ALU

ND0 ROPERS1 (OPCS) OPERS2 = OPERA

ND1 LOPERA

NK LOPERD0 (OPCD0) OPERA

NL R

V0 V1FL FR

WData

RDataLEFT

OPERD1 (OPCD1) OPERA

Fig. 8.24 Processor architecture executing the program in Fig. 8.17

8.2 Data-Driven Processors 543

processors in a single cluster to two processors per cluster for 64 different clusters. The presence of
ClusID and ProcID enables independent but simultaneous networking activities to take place among
clusters and processors. In other words, the source processor can write the same ALU result to two
different destination processors within the same cluster or in different clusters.

Processor Micro-architecture

The simplified data-driven processor architecture shown in Fig. 8.24 is implemented in Fig. 8.26.
One of the essential elements in Fig. 8.26 is the presence of a dual-port RAM. While the controller
fetches an instruction from the first data port, it writes the ALU result of another instruction to the
second port to increase processor performance and programming efficiency.

In this architecture, all operand flags are stored in a separate tag memory in the processor. The left
and right operand flags at each tag address are AND-gated and connected to the node address
generator as inputs. When the operand flags that belong to a specific tag memory address become

ClusID0 ProcID0OPC V0 N0OPERROPERL FRFL P0 ClusID1 ProcID1 V1 N1 P1

511 7171
7

1 6 1
7

1 6 1

Fig. 8.25 Instruction format in the implementation

TAG
MEMORY

NODE
ADDRESS

GENERATOR

APort1

APort2

DPort1

DPort2

DUAL-PORT
SRAM

ALU

(NS, PS)

(VD, ND, PD)

WAddr0 WAddr1

RData

WAddress
[native]

WAddr
[from others]

Out
[native]

Out
 [from others]

NoSelect
[to the arbiter]

FL(0)

WAddr

RAddress

psel

OPC

hold

hold

NODE
RETAINER

FR(0)

FL(N)

psel

WData

WAddress

hold

Out

Source Address

Destination Address

OPERAND
RETAINER

WRITE ADDRESS
REGISTER

RDataRIGHT RDataLEFT

Node
 No

Select Address ALU REGISTER

FR(N)

Fig. 8.26 Processor data-path and micro-architecture

544 8 Special Topics

valid, the address generator uses this tag address as a read address, RAddress, to read the corre-
sponding instruction from the dual-port RAM. If there is more than one set of valid flags in the tag
memory, the node address generator selects a pair of flags with the lowest nodal address value, and
delivers this address to the memory. When there are no more valid flags, the address generator
produces a No Select signal for the network arbiter which, in turn, stalls the processor. From this
moment on, the processor suspends all its activity and waits for new operands to be delivered to the
instruction memory.

When a processor interacts with other processors in a network, it is quite possible that it may
receive a hold request from the network arbiter while attempting to write into a neighboring pro-
cessor. This hold signal is generated because the neighboring processor may be busy processing data
for itself or writing data to another processor as mentioned earlier. When the source processor
receives a hold signal, it stalls all its processing functions and retains its internal status and output data
values until the hold is removed. Therefore, RAddress is also stored in the node retainer to preserve
the node address, NS, and the source operand polarity, PS, for the tag memory in case the network
arbiter issues a hold.

Once the instruction at RAddress is read from the RData port of the dual-port memory, its right
and left operands are routed to the ALU along with the operation code for execution. The source
operands are also stored in the operand retainer in case the program execution is put on a momentary
hold by the network arbiter. Both of the destination addresses, WAddr0 and WAddr1, are buffered in
the write address register and used alternately to deliver the processed data at the Out terminal to
destination processors. The write address register also keeps old write addresses for the duration of
hold.

The processed data either produced locally or from other processors in a network is eventually
written to the dual-port RAM through the WData port. The destination address at the WAddress port
simply accompanies the newly arrived data. The destination address at this port is also directed to the
tag memory to update the corresponding operand flags.

Processor Programming

Prior to the program execution, instructions are loaded to the dual-port RAM through the WData port
in Fig. 8.26. While the program is loaded to the memory, operand flags of each instruction are also
stored in the tag memory.

Inter-processor Arbiter and Router

In a data-driven architecture, the organization of processors in a network is hierarchical. A group of
processors form a local cluster, in which each individual processor owns a processor ID, ProcID, to
communicate with other processors using a simple arbitration protocol.

A local cluster has also an identification number, ClusID, in a network. Only one processor in a
cluster can communicate with another processor in a different cluster at a given time.

The inter-processor router connects each processor’s destination address and data output to all
other processors with a massive multiplexing network as shown in Fig. 8.27. The arbiter is designed
to give address and data transfer privileges to a single processor while issuing a hold to all
lower-priority processors in a cluster. There are two general rules observed in the arbiter’s priority
scheme. The first rule states that if a processor issues a write to itself, it has the highest priority over
the other processors in a cluster. The second rule is that if two or more processors issue write requests
simultaneously to a processor at idle, the highest priority among these processors belongs to the one
with the lowest ProcID.

8.2 Data-Driven Processors 545

LOCAL CLUSTER ARBITER and ROUTER
Out[0]

psel[N:0] phold[N:0]

phold[0]

psel[0]
processor 0

psel[0] 0 N
W

Ad
dr

[0
]

W
Ad

dr
[N

]

O
ut

[0
]

O
ut

[N
]

Aport Dport

WAddr[0] NoSelect[0]

psel[0] 0 N

Out[N]

phold[N]

psel[N]
processor N

psel[N] 0 N

Aport Dport

WAddr[N] NoSelect[N]

psel[N] 0 N

W
Ad

dr
[0

]

W
Ad

dr
[N

]

O
ut

[0
]

O
ut

[N
]

Fig. 8.27 Inter-processor arbiter and router

546 8 Special Topics

Review Questions

1. The following sum of products (SOP) function is given:

out ¼ ACþABCþB

Implement this function using three-input LUTs only.

2. The following product of sums (POS) function is given:

out ¼ ðAþBÞ : ðBþCÞ : ðAþBþCÞ

Implement this function using two-input LUTs only.

3. The following truth table needs to be implemented in FPGA.

Assume the three-input LUT configuration is given below:

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A B C out

inputs

out

clock

bypass

Prog in

Prog out

0
1

2

3
4

5

6
7

D Q

1

0

8.2 Data-Driven Processors 547

(a) Implement the truth table only with three-input LUTs.
(b) Implement the same truth table only with four-input LUTs.
(c) Implement the same truth table only with two-input LUTs.

4. Implement the 3-1 multiplexer below using three-input LUTs only.
The definition of the MUX is given below:
If sel[1:0] = 00 or 11 then out = a
If sel[1:0] = 01 then out = b
If sel[1:0] = 10 then out = c

5. A simple Moore state machine that consists of two states is given below. After constructing the
state and transitional tables, implement this machine using minimal number of primitive gates and
flip-flops.
Use two-input LUTs. Program each two-input LUT to implement the Moore state machine in
FPGA. Assume that there are three LUTs, each with two inputs in a cluster. Draw the complete
architectural diagram of the FPGA, including interconnections.
Assign A = 0 and B = 1 in the state machine below.

sel [1:0]

out

a

1

2

2

b

c

0

A

B

IN = 0

IN = 0

IN = 1IN = 1

OUT = 1

OUT = 2

548 8 Special Topics

6. A three-bit counter is given below. The Hold input activates port 1 of the 2-1 MUX, thus retaining
the output value. Otherwise, the counter keeps incrementing by one.

Assume that the three-bit adder is simply a ripple-carry adder composed of three full-adders
(FA) with sum (Sum) and carry-out (Cout) outputs as shown below.

Sum i½ � ¼ A i½ � � B i½ � � Cin i½ �
Cout i½ � ¼ A i½ � : B i½ � þCin i� 1½ � : A i½ � þB i½ �ð Þ

To avoid the complexity of input MUXing, assume that this is a non-commercial FPGA platform.
Implement this circuit using three-input LUTs in an FPGA.

Projects

1. Implement and verify the three-input LUT using Verilog.
2. Implement the four-bit ripple-carry adder given as an implementation example in this chapter

using Verilog. Use the three-input LUTs from project 1 to create an FPGA implementation of the
adder. Perform functional verification on the entire unit.

3. Implement the Moore state machine given as an implementation example in this chapter using
Verilog. Use the three-input LUTs from project 1 to create an FPGA implementation. Perform
functional verification on the entire unit.

1

Hold

clk

3

3

MuxOut

Out [2:0]

D
Q

0 1

FA FA FA

A[2] B[2] A[1] B[1] A[0] B[0]

Sum[2]

Cin[0]=0
Cin[2] = Cout[1] Cin[1] = Cout[0]

Sum[1] Sum[0]

8.2 Data-Driven Processors 549

Appendix: An Introduction to Verilog
Hardware Design Language

A.1 Module Definition

A digital system in Verilog is defined in terms of modules as shown in Fig. A.1. Each module has
inputs and outputs with different bit widths. Modules can be integrated to form bigger digital blocks
as shown in Fig. A.2. In this figure, the top module contains four smaller modules, each of which has
inputs and outputs. They are interconnected with each other in such a way to produce much larger
system functionality and produce a new set of external input and output signals.

moduleinputs outputs

Fig. A.1 A typical module in Verilog

module 1
module 2

module 3
module 4

top module

input 1

input 2

output 1

output 2

Fig. A.2 Module integration to form a much larger system

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7

551

https://doi.org/10.<HypSlash>1007/�978-�3-�030-�00223-�7</HypSlash>

When creating a Verilog code to represent a digital block such as in Fig. A.3, the module name is
written first. The input and output names are written in parentheses next to the module name;
however, their order is not important. This is followed by separate input-output (I/O) statements and
the description of the module as shown below.

output out;
input [3:0] in;

/* module description here */

endmodule

module blockX (out, in);

For a more specific example let us write a small Verilog code for the two-input AND gate in
Fig. A.4.

module andgate (out, in1, in2);
output out;
input in1, in2;

/* module description here */

endmodule

Now, let us integrate blockX in Fig. A.3 with the two-input AND gate in Fig. A.4 to form a larger
digital block as shown in Fig. A.5.

blockXin[3:0] out
4

Fig. A.3 A Verilog module, blockX, with in[3:0] and out

in1
in2

out

Fig. A.4 Two-input AND gate

552 Appendix: An Introduction to Verilog Hardware Design Language

This new module, called blockY, has different I/O names due to the naming convention used in the
schematic in Fig. A.5. As a preference, the external port names in the module statement, and the
internal port names in each sub-module are declared as outputs first, inputs second. However, this is
not a requirement, but only a convention.

In addition, both the blockX and the two-input AND gate need to be instantiated inside the
blockY. This is achieved by using the “dotted” convention as shown below. In this program, the
sub-module port names are written outside the parentheses, and the I/O names used in the top module
are written inside the parentheses. The names, i1 and i2, are associated with each sub-module
instantiation, andgate and blockX, respectively.

module blockY (out1, out2, a, b, c);
output out1, out2;
input [3:0] a;
input b, c;

andgate i1 (.out(out2),
.in1(b),

 .in2(c));

blockX i2 (.out(out1),
.in[0](a[0]),
.in[1](a[1]),
.in[2](a[2]),
.in[3](a[3]));

/* the rest of the code here */

endmodule

blockX
in[3:0] out

4

in1

in2

out

a[3:0]

b
c

out1

out2

blockY

Fig. A.5 A Verilog module integrating blockX in Fig. A.3 and the two-input AND gate in Fig. A.4

Appendix: An Introduction to Verilog Hardware Design Language 553

Basic logic gates (or Verilog primitives) do not need instantiations. The two-input AND gate in
Fig. A.4 could have been written without any “dotted” instantiation in the top module above.

The Verilog primitives are the following gates:

AND, NAND, OR, NOR, XOR, XNOR, BUF, NOT.

Here, BUF corresponds to a buffer, and NOT corresponds to an inverter.

Example A.1: Let us implement one-bit full adder using Verilog.
In a full adder, the sum and carry-out functions are declared as:

sum = a ⊕ b ⊕ cin
cout = a . b + cin . (a + b)

In the functional equations above, cin corresponds to the carry-in input and cout corresponds to the
carry-out output of the full adder. The terms, a and b, are the two inputs to the full-adder.

The schematic to produce sum and carry-out functions are shown in Fig. A.6. The intermediate
nodes are named as node1, node2, node3 and node4 as interconnecting nodes.

The Verilog code below contains no “dotted” instantiations. This style of Verilog code is called
structural where only primitive gates are used.

a
b

cin

cout

sum
node1

node2

node3

node4

Fig. A.6 Hardware implementation of the full adder

554 Appendix: An Introduction to Verilog Hardware Design Language

module fulladder (sum, cout, a, b, cin);
output sum, cout;
input a, b, cin;

/* structural style module description */
xor (node1, a, b);
xor (sum, node1, cin);
and (node2, a, b);
or (node3, a, b);
and (node4, cin, node3);
or (cout, node2, node4);

endmodule

After the Verilog code is written, a test fixture needs to be produced to verify the module. For our
example of the one-bit full adder, Fig. A.7 illustrates the concept of building the test fixture.

In Fig. A.7, the outputs of the full adder must be declared as the inputs of the test fixture using
wire statement in Verilog. The outputs of the test fixture are the inputs for the full adder, and they
should generate all the verification vectors needed to test the full adder thoroughly. For each test input
to the full adder, the outputs of the test fixture must remain unchanged until a new set is introduced.
Therefore, each output needs to be stored in memory, which calls for the reg (register) statement in
Verilog. Also, the test fixture neither contains any I/O names in the module definition nor has any
input and output statements. Thus, the general structure of the test fixture becomes as follows:

sumin1 sum
fulladder

cout
carryout

a

in2
b

carryin
cin

testfixture

Fig. A.7 Test fixture formation to verify the functionality of the full adder

Appendix: An Introduction to Verilog Hardware Design Language 555

module testfixture;

/* all test fixture outputs are declared as reg statements */
/* all test fixture inputs are declared as wire statements */

/* module instantiation here */

/* verification vectors here */
/* display results here */

endmodule

The verification vectors are executed only once using the initial statement in Verilog. For a
combinational logic circuit such as a full adder, these vectors are simply the inputs of the truth table.
The outputs, on the other hand, need to be either displayed or stored in a file in order to be compared
against the “expected” outputs. Therefore, the Verilog code of the test fixture for full adder becomes:

module testfixture;

/* all test fixture outputs are declared as reg statements */
reg in1, in2, carryin;

/* all test fixture inputs are declared as wire statements */
wire sum, carryout;

/* module instantiation here */
fulladder i1 (.sum(sum),

.cout(carryout),

.a(in1),

.b(in2),

.cin(carryin));

/* verification vectors here are executed only once due to initial statement */
initial
begin

carryin = 0; in1 = 0; in2 = 0;
#10 in2 = 1;
#10 in1 = 1; in2 = 0;
#10 in2 = 1;
#10 carryin = 1; in1 = 0; in2 = 0;
#10 in2 = 1;
#10 in1 = 1; in2 = 0;
#10 in2 = 1;
end

/* display results here */
endmodule

556 Appendix: An Introduction to Verilog Hardware Design Language

The “#” sign used in almost every statement inside the initial block indicates a delay function. For
example, the code waits for 10 time units after the first three statements, cin = 0, in1 = 0, in2 = 0, are
executed before the value of in2 is changed from logic 0 to logic 1 in the forth statement. Since in1,
in2 and cin are all reg statements, their values are retained until changed.

Monitoring the simulation results are achieved by the $time and $monitor statements. $time
displays the current simulation time. $monitor constantly observes the program variables and records
any change in their value during simulation.

For example, $monitor ($time, output, input1, input2) statement displays simulation time and the
values of output, input1 and input2. On the other hand, $monitor ($time, ,“output=%h input=%b”,
out, in \n) statement displays the simulation time, leaves a space between the simulation time and
“output” because of the extra comma, displays “output” in hexadecimal format and “input” in binary
format. After each set of simulation time, input and output, a new line starts for the second set due to
carriage return, “\n”, entry. One can also use “\t” to insert a tab between terms to achieve separation.

All Verilog files are stored with the “.v” extension after the file name, such as fulladder.v. When
executing the Verilog command to simulate multiple files, including the test fixture, the command line
should include the top module last and all the remaining modules inside the top module first.

In this full adder example, we need to write fulladder.v first and then testfixture.v because the test
fixture contains the full adder module. Therefore, the command line becomes:

verilog fulladder.v testfixture.v

The notation for comments in Verilog is identical to the ones used in C-programming. For a single
line, a pair of slashes, “//”, is used for a single line comment. For multiple lines, the comment starts
with a slash and a star, “/*”, and ends with a star and a slash, “*/”.

A.2 Numbers in Verilog

The numbers in Verilog are represented by three distinct terms:

SIZE `BASE VALUE

Note that the tick mark, “`”, attached to the BASE entry is not apostrophe.
As an example, 32`h3C represents a 32-bit hexadecimal number, 0x0000003C. Similarly, 8`b1

represents an eight bit binary number, 00000001. Any time the size entry is omitted, the size defaults
to 32 bits. For example, `h8A corresponds to 0x0000008A. The base entry to represent high impe-
dance or floating wire is “`z”. For example, 8`bz means an eight-bit bus with all its eight bits are
floating or zzzzzzzz. Similarly, don’t care bits are shown by “`x”. For example, 4`bx means four wires
are either at logic 0 or logic 1, and represents xxxx.

A.3 Time Directives for Compiler

To mimic propagation delays in Verilog simulation, a timing directive is used. The directive,
`timescale, is preceded by a tick mark to enable the compiler to delay the execution of a Verilog
statement by the amount following the pound mark, “#”.

The `timescale directive is the first line in a Verilog code. The statement does not end with a
semicolon and contains two entries separated by a “/” sign. The first entry corresponds to the actual
delay. The second entry represents the simulation resolution.

Appendix: An Introduction to Verilog Hardware Design Language 557

For example, `timescale 10 ns / 100 ps means each time the compiler sees a “#” sign in a Verilog
statement, it delays the execution of the statement by multiplies of 10 ns, depending on the number
that follows the “#” sign. The resolution is 100 ps. Therefore, for a delay of 10 ns, the simulation
accuracy is 1:100.

Let us consider the following structural Verilog code as an example.

`timescale 1ns / 100ps
module inverter (out, in);
output out;
input in;
not #2 (out, in); //2 ns delay between input and output
endmodule

This is a module that represents a single inverter. The propagation delay in the inverter is 2 ns
because the number following the “#” sign in the “not” gate is 2, and this number is multiplied by
1 ns in the timescale directive. The simulation resolution is 100 ps. Therefore, there is 1:20 accuracy
when generating a delay function for the inverter.

Other common compiler directives are the `define and `include statements, and neither ends with a
semicolon. The `define statement defines a variable for the Verilog code. For example, in the fol-
lowing Verilog code a variable called inv_delay corresponds a delay of 30 ps with 1 ps simulation
resolution.

`timescale 10ps / 1ps
`define inv_delay #3
module inverter (out, in);
output out;
input in;
not inv_delay (out, in); //30ps delay between input and output
endmodule

The `include statement fetches smaller modules from various directories and includes them into a
bigger module for simulation. For example, the following Verilog code instantiates the full_adder.v
module located in the verilog_modules directory to be used in bigger_module.v.

A.4 Parameters

Parameters are used to replace numbers for enhancing the readability of Verilog code. The parameter
statement is not a compiler directive. Therefore, it is ended with a semicolon. The statement has only
one entry, which attaches a name to a number.

558 Appendix: An Introduction to Verilog Hardware Design Language

parameter name = value;

Assume the following example:

module alu (out,in1,in2);
output [31:0] out;
input [31:0] in1,in2;

…
…

endmodule

The value, 31, can be replaced by the name, BUS, using the parameter statement to enhance
readability of the Verilog code. Thus,

module alu (out,in1,in2);
parameter BUS=31;
output [BUS:0] out;
input [BUS:0] in1,in2;

…
…

endmodule

A.5 Basics of Structural Verilog Modeling

Structural modeling was introduced earlier in this chapter to describe how basic logic gates are used
in a Verilog code. Structural Verilog eliminates the dotted convention when instantiating Verilog
primitives. The logic gates supported by Verilog are:

AND NAND
OR NOR
XOR XNOR
BUF NOT

For example, a three-input NOR gate with inputs, in1, in2 and in3, is represented by:

nor (out, in1, in2, in3);

As another example, a buffer with a single input, in, is written as:

buf (out, in);

In each structural statement, the output of the logic gate is listed first followed by its inputs.
Tri-state buffers and inverters are represented by conditional structural statements. The statement

bufif1 represents a tri-state buffer with an active-high enable as shown in Fig. A.8.

Appendix: An Introduction to Verilog Hardware Design Language 559

This gate behaves like a buffer when enable = 1, and becomes an open circuit when enable = 0.
The structural Verilog statement for the tri-state buffer becomes:

bufif1 (out, in, enable);

A tri-state buffer with an active-low enable signal shown in Fig. A.9 makes this logic gate behave
like a buffer when enable = 0, and an open-circuit when enable = 1.

The structural Verilog statement for this gate uses a bufif0 statement:

bufif0 (out, in, enable);

Tri-state inverters use the same active-high or active-low enable signals. To represent a tri-state
inverter with an active-high signal in Fig. A.10, the notif1 statement is used.

notif1 (out, in, enable);

The tri-state inverter with an active-low enable signal in Fig. A.11 uses the notif0 statement as
shown below.

notif0 (out, in, enable);

in out

enable

Fig. A.8 Tri-state buffer with active-high enable

in out

enable

Fig. A.9 Tri-state buffer with active-low enable

in out

enable

Fig. A.10 Tri-state inverter with active-high enable

in out

enable

Fig. A.11 Tri-state inverter with active-low enable

560 Appendix: An Introduction to Verilog Hardware Design Language

A.6 Behavioral Modeling

There are two types of procedural blocks in behavioral Verilog coding. The first one is called the
“initial” statement. Each Verilog statement included in the initial statement is executed only once. The
procedural block below shows the general form of the initial statement. The statements in an initial
block are enveloped with the “begin” and “end” clauses. The initial statement may or may not come
with a condition(s) listed in parentheses after the symbol “@”. If the initial statement comes with a
condition, the statement is executed when the condition occurs. Otherwise, the program omits the
initial statement.

initial @ (condition)
 begin
 statement 1; // all statements within the initial statement are executed only once
 statement 2;

…
…
end

As an example, let us consider a test fixture that verifies the functionality of a module with two
inputs, in1 and in2, and three outputs, a, b and c. The test vectors applied to this module need to be
executed only once. The form of the initial statement will be as follows:

reg input1, input2;
wire outa, outb, outc;
testmodule i1 (.in1(input1),
 .in2(input2),

.a(outa),
 .b(outb),
 .c(outc))
initial

begin
input1 = 0; input2 = 0;

#10 input2 = 1;
#10 input1 = 1; input2 = 0;
#10 input2 = 1;
end

endmodule

module test;

The second type of procedural block is the “always” statement. This statement may also come with
a condition in parentheses. Unlike the initial statement, the always statement is executed repeatedly. If
the always statement comes with a condition, the execution of statements within the always statement
takes place only when the condition is encountered. Otherwise, the program skips over the always
statement. The general form of the always statement is shown below.

Appendix: An Introduction to Verilog Hardware Design Language 561

always @ (condition)
 begin
 statement 1; // all statements within the always statement are executed repeatedly
 statement 2;

…
…
end

Example A.2: Implement a flip-flop with two inputs, d and clock, and two outputs, q and qbar
with the following Verilog code.

`timescale 10ps / 1ps
module flip_flop (q, qbar, d, clock);
output q, qbar; // qbar is the inverted output, q
input clock, d;
reg q, qbar;
always @ (posedge clock)
 begin

#2 q = d;
#1 qbar = ~d;
end

endmodule

In the Verilog code above, the logical value at the flip-flop output, q, becomes equal to the logical
value at the input, d, 20 ps after the rising edge of the clock. The logical value at the qbar output waits
for the completion of the first statement, and becomes equal to the inverted d input 10 ps after the first
statement. This waiting period from one statement to the next arises because these two statements are
the blocking type. In other words, when the statement uses a “=” sign for an assignment, the statement
becomes a blocking statement, which blocks the execution of the next statement until it is fully
executed.

The same Verilog code can be rewritten as:

`timescale 10ps / 1ps
module flip_flop (q, qbar, d, clock);
output q, qbar;
input clock, d;
reg q, qbar;
always @ (posedge clock)
 begin

#2 q <= d;
#3 qbar <= ~d;
end

endmodule

In this program, the first and the second statements in the always block become non-blocking type
due to the “<=” sign, and they are executed simultaneously. Therefore, the output, q, becomes equal
to the input, d, 20 ns after the positive edge of the clock. Similarly, the output, qbar, becomes equal to
the inverted input, *d, 30 ps after the positive edge of the clock.

562 Appendix: An Introduction to Verilog Hardware Design Language

More than one condition can be included in an initial or always procedural block. For example, a
flip-flop with an asynchronous active-low reset input can be modeled as follows:

`timescale 10ps/1ps
module flip_flop (q, qbar, d, clock, reset);
output q, qbar;
input d, clock, reset;
reg q, qbar;
always @ (posedge clock or negedge reset)

begin
if (reset == 0)

 begin
#2 q <= 0;
#2 qbar <= 1;
end

else
 begin

#4 q <= d;
#5 qbar <= ~d;
end

end
endmodule

If the program encounters an active-low reset before the positive edge of clock, both q and qbar
outputs become logic 0 20 ps after the negative edge of reset. Otherwise, without any reset, the
flip-flop operates normally, and the output, q, becomes equal to the input, d, 40 ps after the positive
edge of the clock. At the same time, the output, qbar, becomes equal to the inverted input, *d, 50 ps
after the positive edge of the clock due to the non-blocking nature of these assignments.

A.7 Arithmetic and Logical Operators in Verilog

There are two types of operators used in Verilog: arithmetic and logical. The arithmetic operators
simply add, subtract, multiply or divide the variables used in a program. The symbol for each
operation is given below:

Add +
Subtract -
Multiply *
Divide /

The logical operators execute all the logic functions, comparisons, bit-shifting and concatenation.
The symbol for each operation is given below:

Appendix: An Introduction to Verilog Hardware Design Language 563

Bitwise AND &
Bitwise NAND ~&
Bitwise OR |
Bitwise NOR ~|
Bitwise XOR ^
Bitwise XNOR ~^
Bitwise NOT ~
Less than <
Greater than >
Greater than or equal >=
Less than or equal <=
Equal ==
Logical left shift <<
Logical right shift >>
Conditional ? :
Concatenation { }

For example, if the variables, X and Y, are equal to 4’b0110 and 4’b1011, respectively, the logical
operations on X and Y become as follows:

~Y = 0100
X & Y = 0010
X ~| Y = 0000

As another example, let us assume A = 4’b1101 and B = 8’b01110101. Shifting B one bit to the
left becomes:

B << 1 = 11101010
A & (B << 1) = 00001101 & 11101010 = 00001000

A.8 Conditional Statement

Conditional statements are equivalent to the “if-then” statements in C-programming. They follow the
same format in C-language but enveloped between the begin and end clauses.

564 Appendix: An Introduction to Verilog Hardware Design Language

The simplest form of a conditional statement is given below:

begin
if (condition1)
 if (condition2)
 if (condition3)
 statement 1;

…
 else

statement 2;
…

 else
statement 3;
…

else
statement 4;
…
end

Conditions may also be combined using logical operators. For example, the Verilog code below
AND-gates all three conditions, condition 1, condition 2 and condition 3, and produces a single
condition for the if-clause.

begin
if ((condition1) && (condition 2) && (condition 3))

statement 1;
…

else
statement 2;
…

end

The condition may also include several operators as shown in the example below.

begin
if (a > 0)
 if (x <= 0)
 y = 1;
 else // x > 0 is implied
 y != 2;
else if (a == 0)
 if (x < = 0)
 y = 3;
 else // x > 0 is implied
 y != 4;
else // no if statement, thus a < 0 is implied
 if (x <= 0)
 y = 5;
 else // x > 0 is implied
 y != 6;
end

Appendix: An Introduction to Verilog Hardware Design Language 565

A.9 Case Statement

Conditional statements can be grouped in a compact form using the case statement.

Example A.3: Implement an 8-1 multiplexer in Fig. A.12 using a case statement.

The case statement for this MUX can be written as follows:

`define sel_value0 3’b000
`define sel_value1 3’b001
`define sel_value2 3’b010
`define sel_value3 3’b011
`define sel_value4 3’b100
`define sel_value5 3’b101
`define sel_value6 3’b110
`define sel_value7 3’b111
module mux (out, sel, in0,in1, in2, in3, in4, in5, in6, in7);
output out;
input in0, in1, in2, in3, in4, in5, in6, in7;
input [2:0] sel;
reg out;
always @ (sel or in0 or in1 or in2 or in3 or in4 or in5 or in6 or in7)
begin

case (sel)
`sel_value0 : out = in0;
`sel_value1 : out = in1;
`sel_value2 : out = in2;
…
`sel_value7 : out = in7;
default: out = in0;
endcase

end
endmodule

in0
in1
in2

in7

out

0
1
2

7

sel [2:0]

3

Fig. A.12 8-1 MUX

566 Appendix: An Introduction to Verilog Hardware Design Language

In this code, the case statement is executed if any of the inputs, in0 to in7, or the select input, sel
[2:0], changes. Once inside the case statement, the output of the MUX, out, becomes equal to one of
the MUX inputs according to the input select signal, sel_value0 to sel_value7. The output of the
MUX also needs to be declared with a reg statement because it needs to retain its current value until
changed. The case statement is enclosed between the case and encase clauses. Since the case state-
ment is in a procedural block it also needs the begin and end clauses enveloping the case statement.

Example A.4: Implement a 4-1 MUX in Fig. A.13 using case statement.

module mux (out, sel, in0, in1, in2, in3);
output out;
input in0, in1, in2, in3;
input [1:0] sel;
reg out;
always @ (sel or in0 or in1 or in2 or in3)
begin

case (sel)
2’b00 : out = in0;
2’b01 : out = in1;
2’b10 : out = in2;
2’b11 : out = in3;
default: out = in0;
endcase

end
endmodule

The case statement can also be used to implement an Arithmetic Logic Unit (ALU) as shown in
Fig. A.14 because the ALU output is accompanied by a multiplexer.

in0

in1

in2

in3

out

0

1

2

3

sel [1:0]

2

Fig. A.13 4-1 MUX

Appendix: An Introduction to Verilog Hardware Design Language 567

`define XOR 2’b00
`define SHIFT 2’b01
`define ADD 2’b10
`define SUB 2’b11
module alu (out, opcode, a, b);
output [7:0] out;
input [7:0] a, b;
input [1:0] opcode;
reg [7:0] out;
always @ (opcode or a or b)
begin

case (opcode)
`XOR: out = a ^ b;
`SHIFT: out = a << b;
`ADD: out = a + b;
`SUB: out = a - b;
default: out = a + b;
endcase

end
endmodule

A.10 Looping Statements

There are two useful looping statements in Verilog, the for statement and the while statement. Both
statements have to be included in a procedural block.

Example A.5: Implement the for-loop given below.
In this example, the variable, i, starts from 0, and stops at 10, incrementing by 1. The variable, j, is

defined in terms of the variable, i. The array simply determines a[j] in terms of a[i]. Thus,

out

0

1

2

3

opcode [1:0]

2

a b

a << b

a + b

a - b

8

8

8

8

8

⊕

Fig. A.14 A simple ALU

568 Appendix: An Introduction to Verilog Hardware Design Language

for (i = 0; i <= 10; i ++)
begin

 j = i + 1;
 a[j] = a[i] + 1;

end

The while-loop waits for the occurrence of an event. When the event takes place, the statements in
the while-loop are executed. In the for-loop below, the variable, x[i], is determined in terms of a[i]
and b[i] as long as the variable, sum, is not equal to 0.

while (sum != 0)
begin

 for (i = 0; i < 10; i++)
 begin
 x[i] = a[i] - b[i];

end
end

A.11 State Machine Implementations

There are two types of state machines: Mealy-type and Moore-type. Both types can easily be
implemented in Verilog using case statements.

The present state of a state machine is defined by flip-flop outputs. The next state is defined by
flip-flop inputs because at the positive edge of clock the next state becomes the present state.

A.12 Mealy Machine

The present state outputs of the Mealy machine stems from the present state and present state inputs.
Therefore, if present state inputs change during the clock period, this change affects the present state
outputs and the next state instantaneously as shown in Fig. A.15.

clock

Combinational
Logic

Present StateNext State

Present State
Outputs

Present State
Inputs

PS

NS

Present State Outputs
Present State Inputs

QD

Fig. A.15 Block diagram and state representation of Mealy machine

Appendix: An Introduction to Verilog Hardware Design Language 569

Example A.6: Implement the Mealy-type state machine with four states in Fig. A.16.

When implementing this state machine in Verilog, it is best to divide the overall circuit topology
into two sections as shown in Fig. A.17.

S0

S1

S2

S3

IN = 0
OUT = 3

IN = 0
OUT = 1

IN = 0
OUT = 2

IN = 0
OUT = 4

IN = 1
OUT = 2

IN = 1OUT = 2

IN
 =

1
OUT

= 3

IN = 1OUT = 4

Fig. A.16 State diagram of a Mealy machine with four states (reset not shown for simplicity)

570 Appendix: An Introduction to Verilog Hardware Design Language

The first section is purely combinational: its inputs are the present state and the present state
inputs; its outputs are the next state and the present state outputs. Since both the outputs and the next
state are functions of the inputs and the present state, this section can conveniently be implemented
with a multiplexer. The second section is sequential and consists of flip-flop inputs and outputs. This
section, as we will see below, is implemented with an always statement.

The Verilog code below first implements the combinational section of the state machine then the
sequential part. The numeric values corresponding to each of the four present states in Fig. A.16 are
assigned to the parameters, s0, s1, s2 and s3, using parameter statement because this simplifies the
observation of the input and output values at a particular state.

The combinational part of the state machine is implemented by a case statement inside an always
procedural block, and executed if one of the multiplexer inputs, in and pstate, changes. Here, the
input, in, corresponds the only input, IN, in Fig. A.17, and the input, pstate, corresponds to the
present state. If the pstate input is assumed to be the selector input to a multiplexer, the case statement
then lists the multiplexer output as a function of all possible combinations of pstate. The default in the
case statement always corresponds to the initial state of the state machine. In each statement inside the
case statement, the output assignments are always non-blocking type because in real hardware the
outputs are produced concurrently and independent of each other.

The sequential part of the state machine is implemented by an always statement, which becomes
active only at the positive edge of the clock and the negative edge of the reset.

// Mealy machine with asynchronous reset
module mealy (out, reset, in, clock);
output [2:0] out;
input reset, in, clock;
reg [2:0] out;
reg [1:0] nstate, pstate;

parameter s0=2’b00, s1=2’b01, s2=2’b10, s3 =2’b11;

clock

Combinational
Logic

Present StateNext State

Present State
Outputs

Present State
Inputs

QD

State assignment part

Combinational logic part

reset

Fig. A.17 Segmentation of the Mealy machine (with asynchronous reset)

Appendix: An Introduction to Verilog Hardware Design Language 571

always @ (in or pstate)
begin

case (pstate)

s0: begin
 if (in == 0)
 begin
 out <= 1;
 nstate <= s0;

end
 else
 begin
 out <= 2;
 nstate <= s1;

end
end

572 Appendix: An Introduction to Verilog Hardware Design Language

s3: begin
 if (in ==0)
 begin
 out <= 4;
 nstate <= s3;

end
 else
 begin
 out < = 2;
 nstate <= s1;

end
end

default: begin
 out <=1;
 nstate <= s0;

end
endcase

end

always @ (posedge clock or negedge reset)
begin

if (reset == 0)
 pstate <= s0;
 else
 pstate <= nstate;
end
endmodule

A.13 Moore Machine

Implementing the Moore machine is not any different from the Mealy machine except the formation
of present state outputs. Figure A.18 shows the present state outputs of the Moore machine to be a
function of the present state, but totally independent of the present state inputs.

Combinational
Logic

Combinational
Logic

Present StateNext State Present State
Outputs

Present State
Inputs

PS

NS

Present State
Outputs

Present State
Inputs

Next State
Outputs

cl
oc

k

QD

Fig. A.18 Block diagram and state representation of Moore machine

Appendix: An Introduction to Verilog Hardware Design Language 573

Example A.7: Implement a four-state Moore state machine in Fig. A.19.

The Verilog implementation of this state machine requires combining the two combinational
sections of the circuit in Fig. A.20 with case statements, and separately implementing the sequential
part using an always statement.

S0

S1

S2

S3

IN = 0

IN
= 1

IN
 =

1IN
= 1

IN = 0

IN = 0

IN = 0
IN = 1

OUT = 1

OUT = 2OUT = 4

OUT = 3

Fig. A.19 State diagram of a Moore machine with four states (reset not shown for simplicity)

Combinational
Logic

Combinational
Logic

Present StateNext State
Present State
Outputs

Present State Inputs

cl
oc

k

QD

State assignment part

Combinational logic part

reset

Fig. A.20 Segmentation of the Moore machine (with asynchronous reset)

574 Appendix: An Introduction to Verilog Hardware Design Language

Implementing the combinational parts is accomplished by a multiplexer: the first input of the state
machine, in, is assigned as the input of the multiplexer, and the second input, pstate, is assigned as the
selector. Implementing the sequential section, on the other hand, requires a complete picture of what
happens to the flip-flop outputs if any of the flip-flop inputs change.

The code below assigns numeric values to all four states with a parameter statement. The first
always statement includes a case statement to show what happens to the multiplexer outputs if one of
the selector inputs changes. Again, all multiplexer outputs form concurrently. Therefore, all output
assignments are defined to be non-blocking type. As opposed to the Mealy machine, the present state
outputs of the Moore machine are solely generated from the present state. Therefore, for each state
from s0 to s3 the output assignments are written first, independent of any present state input.

The sequential part is implemented by an always statement which includes the edge dependency of
the clock and the reset. This statement is executed only if the indicated edges of these two inputs take
place. Otherwise, it is ignored.

// Moore machine with asynchronous reset
module moore_async (out, reset, in, clock);
output [2:0] out;
input reset, in, clock;
reg [2:0] out;
reg [1:0] nstate, pstate;
parameter s0=2’b00, s1= 2’b01, s2= 2’b10, s3= 2’b11;

always @ (in or pstate)
begin

case (pstate)
 s0: begin
 out <= 1;
 if (in == 1)

nstate <= s1;
 else

nstate <= s0;
end

 s1: begin
 out <= 2;
 if (in == 1)

nstate <= s2;
 else

nstate <= s1;
end

Appendix: An Introduction to Verilog Hardware Design Language 575

 s2: begin
 out <= 3;
 if (in == 1)

nstate <= s3;
else
nstate <= s2;

end
 s3: begin
 out <= 4;
 if (in == 1)

nstate <= s1;
else
nstate <= s3;

end
default: begin

 out <= 1;
 nstate <= s0;

end
endcase

end

always @ (posedge clock or negedge reset)
 begin
 if (reset == 0)

pstate <= s0;
 else

pstate <= nstate;
end

endmodule

The Verilog code below implements the Moore machine with a synchronous reset. This time, reset
is not an isolated input to the flip-flops as in Fig. A.20, but instead it is applied to the combinational
logic block along with the other present state inputs.

576 Appendix: An Introduction to Verilog Hardware Design Language

//Moore machine with synchronous reset
module more_sync (out, reset, in, clock);

output [2:0] out;
input reset, in, clock;
reg [2:0] out;
reg [1:0] nstate, pstate;
parameter s0= 2’b00, s1= 2’b01, s2 =2’b10, s3 = 2’b11;

always @ (in or reset or pstate)
begin

case (pstate)
 s0: begin
 out <= 1;
 if (reset == 0)

nstate <=s0;
 else

begin
if (in == 1)
nstate <= s1;
else
nstate <= s0;
end

end

Appendix: An Introduction to Verilog Hardware Design Language 577

end

always @ (posedge clock)
 begin
 pstate <= nstate;

end
endmodule

A.14 Principles of Register-Transfer-Logic Type Coding

The Register-Transfer-Logic (RTL) style of Verilog coding inherits many C-program constructs and
implements the intended hardware with ease. Although structural or behavioral Verilog coding may
be necessary for certain types of logic blocks, RTL is still the most common coding style to build
hardware.

A.15 Wire Assignment

The most common RTL statement is the wire statement. This statement is either accompanied with an
assign statement or declared by itself, and it resides outside of a procedural block. In the first example
below, the inputs, a and b, form an XOR gate with an output, out. Separate wire and assign statements
are used to implement the XOR gate.

wire out;
assign out = a ^ b;

However, the two statements can be combined to form a single wire statement.

578 Appendix: An Introduction to Verilog Hardware Design Language

wire out = a ^ b;

If the implementation requires multiple wires in the form of a bus, then the statements for the node,
out, can be written as follows:

wire [7:0] out;
assign out = a ^ b;

or
wire [7:0] out = a ^ b;

A.16 Conditional Operator

Another useful RTL construct is the conditional operator. Assume a tri-state buffer in Fig. A.21.

The wire statement that includes the conditional operator can be written as follows:

wire out;
assign out = enable ? in : 1’bz;

The “?” sign in the above statement signifies the condition for the input, enable, to be logic 1 or
not. If enable is logic 0, then the output, out, becomes an open circuit. Since out is only one bit, the
high impedance state is shown as 1’bz.

The wire and assign statements can also be combined to produce a single statement.

wire out = enable ? in : 1’bz;

Example A.8: Implement a 3-1 MUX in Fig. A.22 using conditional operator.

in out

enable

Fig. A.21 Tri-state buffer implemented by conditional operator

a

b

c

out

0

1

2

sel [1:0]

2

Fig. A.22 A 3-1 MUX implemented by conditional operator

Appendix: An Introduction to Verilog Hardware Design Language 579

wire out;
assign out = (sel == 2’b00) ? a : (sel == 2’b01) ? b : c;

In this statement, if sel [1:0] = 00 then the output, out, becomes a. If sel [1:0] = 01 then out
becomes b. For all the other values of sel, out becomes c.

The same statement can also be written without the assign statement as:

wire out = (sel == 2’b00) ? a : (sel == 2’b01) ? b : c;

If this is a 3-1 MUX with multiple inputs and outputs as in Fig. A.23, then the wire statement
needs to have a proper dimension.

wire [7:0] out = (sel == 2’b00) ? a : (sel == 2’b01) ? b : c;

The dimension of the inputs, a, b, c and sel, should be declared in the input statements prior to the
wire statement as shown below.

input [7:0] a, b, c;
input [1:0] sel;

wire [7:0] out = (sel == 2’b00) ? a : (sel == 2’b01) ? b : c;

A.17 Memory Declaration

Memory is declared by a reg statement in Verilog. Assume an SRAM-like (x+1)-bit wide memory
with (y+1) rows shown in Fig. A.24. This memory is declared as follows:

reg [x:0] fifo [y:0];

Here, “fifo” is the name of the memory with a dimension of [x:0] by [y:0].

a

b

c

out

0

1

2

sel [1:0]

2

8

8

8

8

Fig. A.23 An eight-input 3-1 MUX implemented by conditional operator

580 Appendix: An Introduction to Verilog Hardware Design Language

A.18 Memory Addressing

Following the memory declaration, a memory address statement should be included in the program to
read or to write to a specific location in the memory.

Example A.9: Implement an eight-bit wide memory with 16 rows in Fig. A.25 using Verilog.

In order to access the most significant bit (msb) and the least significant bit (lsb) of this memory at
any row, an address needs to be formed in the Verilog code.

input [3:0] address;
reg [7:0] mem [15:0];
reg [7:0] row;
reg msb, lsb;
row = mem [address];
msb = row [7];
lsb = row [0];

x 0
y

0

y-1

Fig. A.24 (x+1) wide (y+1) deep memory

7 0
15

0

lsbmsb

address [3:0]

Fig. A.25 An 8 � 16 memory

Appendix: An Introduction to Verilog Hardware Design Language 581

In this example, the reg statement, reg [7:0] mem [15:0], declares a 8 � 16 memory with a name,
mem.

If the memory address is externally supplied to the memory, this input needs to be declared in the
input statement. Each bit in a row can be declared with a second reg statement, reg [7:0] row. The
most and least significant bits are declared as the third reg statement, reg msb, lsb.

Therefore, each bit in an arbitrary row can be accessed by the statement, row = mem [address], in
the Verilog code above. Accessing the most and the least significant bits are accomplished by msb =
row [7] and lsb = row [0], respectively.

A.19 Memory Modeling

Different types of memory require different styles of memory modeling.

Example A.10: Implement the simple SRAM memory with a single bidirectional data port in
Fig. A.26 with a clock input.

In this memory, the data is written to an arbitrary row or read from an arbitrary row at the positive
edge of the clock signal once the memory address is specified.

Since the data port is bidirectional, it needs to be declared as an inout statement. Therefore, the
Verilog code can be written as follows:

7 0
15

0

14

address [3:0]

WERE

clock

data [7:0]
8

Fig. A.26 An 8 � 16 single port, bidirectional memory

582 Appendix: An Introduction to Verilog Hardware Design Language

module mem (data, address, WE, RE, clock);
inout [7:0] data;
input [3:0] address;
input WE, RE, clock;
reg [7:0] SRAM [15:0];
reg [7:0] data;
reg [1:0] read_write_state;

always @ (posedge clock)
begin

read_write_state = {WE, RE}; // curly brackets are for concatenating WE and RE
case (read_write_state)
2’b00: data = 8’bz;
2’b01: data = SRAM [address];
2’b10: SRAM [address] = data;
2’b11: $display (“error”); // WE and RE cannot be at logic 1 simultaneously
default: data = SRAM [address]; // SRAM needs to be in the read mode when idling
encase

end
endmodule

In the example above, the case statement is formed in a procedural block because both read and
write takes place at the positive edge of clock. When neither RE nor WE is at logic 1, the bidirectional
data port must be at a high impedance state, data = 8’bz. When a read takes place, data is read out
from a specified memory address and directed to the bidirectional bus, data [7:0]. When a write takes
place, data from the bidirectional bus is written to a specified address, SRAM [address]. When both
WE and RE are at logic 1, this should be indicated as an error.

If statements can also be used to replace the case statement except the case statement is more
compact and includes all the possible cases to model a memory.

Example A.11: Implement a unidirectional, byte addressable memory shown in Fig. A.27 with
two data ports.

Appendix: An Introduction to Verilog Hardware Design Language 583

The input port, DataIn [31:0], is assumed byte-addressable and configured to write up to four bytes
of data to a specified memory address when WE = 1. The output port, DataOut, is not
byte-addressable, and it is used to read all 32 bits of data from the memory.

Thus,
module mem (DataOut, DataIn, address, clock, ByteEn, WE, RE);
output [31:0] DataOut;
input [31:0] DataIn;
input [3:0] address, ByteEn;
input clock, RE, WE;
reg [31:0] SRAM [15:0];
reg [31:0] temp;

always @ (posedge clock)
begin
if (WE == 1 && RE == 0)

begin
case (ByteEn)
4’b0000: temp [31:0] = 32’bz;
4’b0001: temp [7:0] = DataIn [7:0];
4’b0010: temp [15:8] = DataIn [15:8];
4’b0011: temp [15:0] = DataIn [15:0];
4’b0100: temp [23:16] = DataIn [23:16];
4’b0101: begin

temp [23:16] = DataIn [23:16];
temp [7:0] = DataIn [7:0];
end

4’b0110: temp [23:8] = DataIn [23:8];

31 0
15

0

address [3:0]

WE

RE

clock

DataOut [31:0]

byte3 byte0
8

ByteEn [3:0]

DataIn [31:0]
8
8
8

32

32

Fig. A.27 A 32 � 16 dual port, unidirectional memory

584 Appendix: An Introduction to Verilog Hardware Design Language

4’b1111: temp [31:0] = DataIn [31:0];
default: begin

temp [31:0] = 32’bz;
$display (“no bytes are enabled”);
end

endcase
 SRAM [address] = temp;

end
else if (RE == 1 && WE == 0)
 DataOut = SRAM [address];
else if (RE == 0 && WE == 0)

DataOut = 32’bz;
else

display (“Error - RE and WE are enabled”);
end

endmodule

A.20 Few Words on Functional Verification

Functional verification is a very critical step in logic design and needs to cover every possible corner
case and input combination to a Verilog module. However, when the circuit is not purely combi-
national but contains sequential components, the difficulty in functional verification increases.
A proper process is to isolate the sequential components from the combinational sections of the
circuit, and verify each section individually prior to overall system verification.

When a combinational circuit goes through a formal functional verification, the best method is to
apply the inputs of the entire truth table as test vectors to the module, store the circuit’s response in an
output file, and then compare this output file with the one that contains the expected outputs (the
outputs of the truth table) as shown in Fig. A.28.

Appendix: An Introduction to Verilog Hardware Design Language 585

However, if the circuit is sequential, each state-to-state transition needs to be examined in the state
machine when the inputs to the state change. Furthermore, the outputs from each state need to match
the expected output values.

It may be sufficient to do functional check using timing diagrams if the size of the circuit is small.
However, for bigger circuits, including many combinational and sequential modules, the verification
process is applied to each individual module, and then to the entire system. Both types of verification
are essentially a file matching process as shown in Fig. A.28.

stimuli
(input file) module.v output file

compare

expected
output file

Fig. A.28 Formal functional verification process

586 Appendix: An Introduction to Verilog Hardware Design Language

Index

0–9
2-LUT, 520, 524, 525, 534, 547, 548
3-LUT, 517, 519–522, 526, 528–532, 547–549
2-1 Multiplexer (MUX), 18–20, 32, 36–38, 58
4-1 Multiplexer (MUX), 20–22
2s complement addition, 37, 38
5-stage CPU, 255, 303, 313, 328, 431
2-way set-associative cache, 397, 398, 406, 407
4-way set-associative cache, 398, 400

A
Activating a bank, 614
Acknowledge, 447, 504
Active image, 480–482, 484, 487, 489, 509
ADDF instruction, 318, 330, 332, 337, 342, 344
ADDI instruction, 268, 269, 353
ADD instruction, 257, 258, 294, 300, 303, 304, 306, 312,

316, 351, 353, 430
Address, 119, 120, 123–130, 133, 138, 139, 141,

143–150
Address decoder, 86–89, 152, 153, 182, 183, 190, 230
Address enable signal, 182
Address input, 185
Address mode register, 161–163, 168, 173, 175
Analog-to-Digital Converter (ADC), 489–499, 505–507
AND-gate, 2, 4, 10, 11, 21
ANDI instruction, 269, 270
AND instruction, 260–262, 304
Arbiter, 119, 120, 129–133, 148
Arbitration, 130–132, 138
Architecture, 517, 525, 535, 536, 540, 542–545
Arithmetic Logic Unit (ALU), 253, 255–260, 262–266,

268–274, 276, 294, 296, 300, 302–307, 312,
314–316, 328, 329, 348, 353, 354, 357, 360, 430,
437

Array multiplier, 41, 42
Asynchronous circuit, 101, 102, 108, 116, 117
Asynchronous Clock Methodology, 110

B
Barrel shifter, 1, 38–40
Basic data-flow program structure, 536

Bidirectional bus, 119–121, 144, 145, 147
Block, 303, 306, 378, 381–384, 387, 389, 391, 394,

397–400, 403, 406, 407, 409, 411, 412, 414,
416–421, 424, 432, 434

Block address, 402–404
Block diagram, 76, 79, 89
Block erase, 223
Block offset, 399, 400, 403, 406, 409, 412–414, 434
Block protect, 230–232
Boolean algebra, 7
Booth multiplier, 1, 41, 43, 48, 49, 51
BRA instruction, 280, 281, 300, 309, 361
Buffer, 4, 6, 7
Burst, 120, 122, 123, 129, 138, 143
Burst stop, 171, 172
Bus interface, 249
Bus master, 119–124, 126–135, 138–143, 145–148, 150
Bus master interface, 121
Bus slave, 119, 123, 138, 139, 147
Bus slave interface, 123
Bypass port, 519

C
Cache, 251, 372, 377–379, 381–391, 397–400, 403, 405,

407–409, 411–414, 416–426, 431, 432, 434
Cache read data-path, 402
Cache topology, 397, 399
Cache write data-path, 401
Call instruction, 289, 291, 292
Carry-look-ahead adder, 1, 30, 32, 35–37
Carry-select adder, 1, 27, 31, 32, 36
C-element, 110–115, 117
Centralized memory, 371, 387
Central Processing Unit (CPU), 251–255, 262, 263, 266,

268, 269, 273, 274, 278, 294, 295, 297, 298, 300,
301, 303, 304, 308, 310, 312–317, 326–329, 333,
334, 336, 339, 340, 343, 344, 346–348, 350, 351,
353–358, 360, 361, 366, 369–372, 374, 375,
377–379, 381–386, 388–390, 392–400, 403,
405–409, 411, 412, 414, 415, 418–424, 426, 427,
430–432, 434–438

Chip erase, 193, 197, 198, 237
Chip hibernate, 240

© Springer Nature Switzerland AG 2019
A. Bindal, Fundamentals of Computer Architecture and Design,
https://doi.org/10.1007/978-3-030-00223-7

587

https://doi.org/10.<HypSlash>1007/�978-�3-�030-�00223-�7</HypSlash>

Chip Select (CS), 161, 468
Chip select signal, 162, 166
Cluster, 517, 520, 524, 525, 533, 534, 540, 541,

543–545, 548
Column address, 166, 167, 170, 177, 178, 181, 241, 244,

246
Column Address Strobe (CAS), 161, 173, 175, 177, 181,

244, 249
Combinational logic, 1, 9, 12, 22, 23, 30
Command enable signal, 182
Command input, 184–186
Complemented logic gate, 4
Context switching, 452, 454, 456, 459–464
Controller design, 82, 89, 92
Counter, 74, 75, 82–85, 89, 90, 92, 95, 96, 100
Counter-decoder design, 84

D
Data, 119, 120, 122–136, 138–150
Data converter, 439, 489
Data dependency, 348, 353
Data driven processor, 517, 535, 544
Data-flow, 162, 215
Data-flow graph, 535, 538, 539, 542
Data-flow node, 538
Data hazards, 251, 303, 304, 308, 313, 351, 353, 357,

437
Data input, 161, 185
Data memory, 253, 255, 257, 274, 276, 278, 285–290,

294–308, 311, 312, 314–317, 319, 328, 333, 335,
337, 339, 340, 345–348, 350, 359, 360, 366, 369,
405, 406, 408, 426, 434, 435, 437

Data movement instructions, 337
Data output (read), 186
Data-path, 61, 66, 69, 89–92, 95, 100
Decoder, 1, 23, 24
Destination address, 445, 447, 502
D flip-flop, 64–66
Digital-to-Analog Converter (DAC), 495, 497, 498, 500,

501, 507
Direct-mapped cache, 398, 399, 403, 404, 421
Direct Memory Access (DMA), 439–448, 502
Dirty bit, 409, 411, 417, 418, 420, 422, 426
Display adapter, 439, 480, 482, 509
Distributed memories, 371, 372, 391
DIVF instruction, 318, 332, 336, 343, 344, 346, 347
D latch, 61–63
Down-rounding, 495, 497–499, 506, 507
Dual-issue, 352, 354–356
Dynamic branch prediction, 251, 368, 369
Dynamic pipeline, 251, 350

E
E2 PROM cell, 183, 184
Electrically Erasable Programmable Read Only Memory

(E2PROM), 151, 181–186, 189, 230, 246
Enable signal, 182

Encoder, 1, 22, 45, 51–53, 59
Equivalent class table, 106
Exclusive NOR-gate, 261
Exclusive OR-gate, 3

F
Fast write, 193, 195, 199–212, 214, 229, 242, 243
Fast write interface, 203, 205, 206, 211, 229
Fast write reset, 199–201, 208, 212
Fast write set, 199, 201, 208, 212
Field-Programmable-Gate-Array (FPGA), 517, 519, 520,

523–526, 533, 547–549
Fixed-point, 251, 256–260, 262, 265, 268–270, 273, 274,

276, 278, 280–284, 294, 300, 314, 316, 318, 328,
333, 337, 348, 350, 354, 356, 357, 427

Flash ADC, 493, 494
Flash memory, 151, 181, 189–191, 193, 195, 198, 199,

202–208, 211–215, 217, 218, 220, 222–224,
229–232, 234–238, 240, 242, 247–249

Flash memory commands, 194
Floating-point, 251, 317–337, 339–350, 356, 357, 360,

366, 437
Floating-point adder, 251, 325–328, 335, 344, 345, 348,

360
Floating-point data hazards, 329
Floating-point multiplier, 326–328, 341–344, 348, 357
Flow chart, 201, 202, 215, 222, 242, 243, 247, 310, 311,

314, 315, 359, 360, 363, 364, 429, 431, 434–437
Forwarding loop, 431, 432, 435, 437
Forwarding path, 304–308, 312, 351, 353
Full adder, 24, 27, 32, 42
Full-page erase, 188, 189
Full-page-read, 188
Full-page write, 186, 187
Fully-associative cache, 397
Fundamental-Mode Circuit, 102

G
Gate, 1–7, 21, 29, 35, 41

H
Half adder, 27
Handover, 133, 134
Handshake, 129, 130
Hazard-free, 109, 113
Hazards, 251, 304, 309, 310, 314, 315, 329, 331, 332,

351, 361
Hibernate, 183, 240
High impedance, 192
Hit, 384, 386, 391, 400, 403, 407, 411, 413, 414,

421–423
Hi-Z, 192
Hold time, 64, 67
Hold violation, 68, 70, 71, 97
Hold-slack, 601–603
Home node, 389, 391, 392, 394–396

588 Index

Horizontal blanking, 481, 482, 484, 487, 489

I
I2C block erase interface, 223
I2C fast write interface, 249
I2C interface, 203, 213, 217–219, 229
I2C Read interface, 213, 216, 221
I2C start condition, 127
I2C stop condition, 140
ID read, 193, 195
IEEE double-precision format, 322
IEEE single-precision format, 317, 319
Image frame, 482, 484, 489
Immediate type instructions, 268
Immediate value, 252, 268–271, 273, 274, 276, 278, 280,

281, 283, 294, 300, 312, 319, 328, 337
Implication table, 102, 104–106, 116, 117
Index, 359–361, 363, 365–367, 399, 400, 403, 409, 412,

414, 421, 428, 434
In-order execution, 332, 354
Input, 61, 64, 66, 74, 78, 84, 85, 87, 89
Input flag, 540
Instruction, 251–258, 260–262, 264–266, 268–270,

272–274, 276, 278–294, 296, 299, 300, 302–304,
306–319, 328–333, 335–337, 339–342, 346–348,
350, 351, 353, 354, 356, 357, 359–361, 363, 364,
366–370, 426, 430–432, 435, 437

Instructional chart, 313–317
Instruction format, 536, 541, 542, 544
Instruction memory, 252–258, 268, 274, 303, 309, 311,

312, 368, 369
Inter Integrated Circuit (I2C), 138–142, 150
Inter-processor arbiter, 545, 546
Interrupt address table, 449, 512
Interrupt controller, 439, 440, 449, 452, 454–456,

459–463, 503, 504, 512
Interrupt generator, 474, 479, 480
Interrupt sequence, 450–452
Invalid state, 377, 378, 380, 382, 385, 386, 391
Inverter, 4, 6, 7, 21
I/O port, 192, 195, 204, 208, 212, 220, 224, 242, 245,

249
Iterative fixed-point multiplication, 427–429

J
JAL instruction, 283
JALR instruction, 284, 289
JREG instruction, 282, 283
JUMP instruction, 281, 282, 300, 312, 313, 361

K
Karnaugh map, 1, 12
K-map, 12–19, 22, 23, 25

L
Latency, 161, 168–170, 173, 181, 241, 244, 245, 249
LCD display, 480
Least Recently Used (LRU), 411–414, 417–420
LED display, 480
Linear SDRAM addressing, 163
Linear shifter, 38, 39
LOADF instruction, 319, 328, 333, 337, 339, 348, 361,

363, 366
LOAD instruction, 274–276, 278, 294, 296, 300, 306,

307, 312, 351
Logic gate, 1, 4, 6, 7, 9
Look-Up-Table (LUT), 517–522, 524, 526, 528–533,

547, 548
Loop unrolling, 251, 362, 366

M
Main Flash memory modes, 190
Master, 119, 120, 124–130, 133–136, 138–143, 150
Master-In-Slave-Out (MISO), 134
Master-Out-Slave-In (MOSI), 134
Master status, 122, 127
Mealy machine, 79–82
Memory, 61–63, 86–94
Memory coherency, 372, 373
Micro-architecture, 544
Minimization, 1, 12, 15, 51
Minimization tables, 101, 106
Miss, 368, 389, 403, 407–409, 411–414, 420, 424–426,

432
Modes of operation, 139
Modified state, 377–379, 381, 382, 384, 386, 387, 389,

391–396
Moore machine, 75–79, 81, 95
MOVEI instruction, 278
MOVE instruction, 278, 296, 300
MSI controller, 388, 390
Mueller elements, 110
MULF instruction, 318, 328, 332, 333, 337, 340, 341,

344, 348
MUL instruction, 258, 426, 431
Multi-core architecture, 369, 370, 372
Multiple Instruction Multiple Data (MIMD), 370,

371
Multiple read cycles, 171
Multiple write cycles, 169
Multiplier, 1, 41, 51

N
NAND-gate, 4, 5, 21, 58
NANDI instruction, 269, 271
NAND instruction, 261, 263, 438
Next state, 75, 77, 79
Nodal network, 540
Non-interlaced display, 480
Non-pipelined CPU, 254

Index 589

590 Index

NOP instruction, 282, 306, 309, 310, 312, 314, 315, 351,
353, 360, 368, 431, 437

NOR-gate, 5
NORI instruction, 269, 271
NOR instruction, 261–263
Normalization, 326, 327

O
One bit full adder, 24–27
One-bit half adder, 26, 27
One-shot timer, 474, 475, 503
Opcode, 256, 261, 263, 333, 337, 340–346, 354, 430
Operand, 251–253, 255, 256, 306, 329–332, 337,

340–343, 348, 430
OR-gate, 2, 3
ORI instruction, 269, 271
OR instruction, 261–263, 304, 438
Out-of-order execution, 354, 355
Output, 61, 62, 64, 65, 71, 73–77, 80, 82–86, 95
Output flow table, 103, 104, 106, 107, 109, 112, 113,

116, 117
Output mask, 173
Owner node, 389, 392, 394–396

P
Page address, 181, 185, 198, 222–226, 235
Page erase, 193, 198, 222–228, 236
Page write, 235, 236
Parallel bus, 119
Parallelism, 350, 356, 357, 369–373, 377
Parallelism in programs, 373
Pipeline, 255, 258, 262, 294, 303, 304, 308, 314, 315,

333, 350, 351, 353, 356, 360, 363, 369, 430, 431,
437

Pipelined CPU, 255, 256
Pixel averaging, 376
POP instruction, 285, 288, 289
Precharging a bank, 166
Processor design, 542
Present state, 75–77, 79, 80, 92, 95
Primitive state table, 103
Product Of Sums (POS), 11
Program control hazards, 251
Program control instructions, 280
Program counter, 252, 253, 361, 368
Programming, 517, 519–522, 524, 526, 528–533,

535–538, 540, 544
Protect bank, 242, 243
PUSH instruction, 286, 287

Q
Quantization error, 490, 491

R
Racing condition, 101, 102, 108–110
Ramp ADC, 494–496, 506
Rate generator, 474–476, 478
RAW hazard, 330, 331
Read, 119, 123, 124, 126, 127, 134, 136, 139–149
Read enable, 86
Read enable signal, 178, 182, 186, 191
Read hit, 381, 385, 391, 393, 395
Reading from a bank, 170
Read miss, 378, 379, 384, 391, 393–396, 423
Read transfer, 126, 127
Ready signal, 123, 125–127, 143, 144, 146, 147
Receiver, 465, 469–472, 507, 508, 515
Receiver buffer, 469, 470, 472, 515
Reduced Instruction Set Computer (RISC), 251, 252,

254–256, 303, 310, 314, 315, 317, 329, 430, 431,
434, 437

Reference voltage, 491, 492
Register, 61, 71–74, 86, 87, 89, 100
Register file, 251, 318, 319, 328–331, 333, 335–337, 340,

341, 343, 346–348, 354, 360
Register-renaming, 332
Register-to-register type instructions, 252, 262, 266
Reordering, 354
Request, 441, 445, 447, 466, 504, 507, 509
Requesting node, 389, 391–395
RET instruction, 285, 290, 293, 294
Ripple-carry adder, 1, 27, 28, 31
Router, 540, 541, 545
Row address, 166, 167, 175, 177, 181, 185, 241, 244
Row Address Strobe (RAS), 161, 166

S
Sample-and-hold, 489, 492
Sampling, 478, 489, 491, 492
Sampling width, 492
Scheduling, 352, 353, 355, 357
SCK, 134–137, 150
SCLK, 150, 613
S-clock, 134, 135
SDRAM, 160–168, 170, 173–181, 204, 241, 243–245,

249, 441, 442, 619
SDRAM address mapping, 175
SDRAM bus interface, 175, 176, 179, 180, 249
SDRAM cell, 162, 163
SDRAM core, 161, 166, 173, 177, 178
SDRAM modes of operation, 161
SDRAM operation cycles, 166
Self-refresh, 165
Sense amplifier, 152, 153, 160, 162, 190, 191
SEQI instruction, 274
SEQ instruction, 266
Sequential logic, 61, 89

Index 591

Sequential SDRAM addressing, 161, 162, 244
Serial bus, 119, 134
Serial flash memory, 151, 229–231, 233–240
Serial flash memory commands, 232
Serial Peripheral Interface (SPI), 134–138, 142, 150
Set, 251, 265, 266, 273, 274, 280, 294, 299, 300, 302,

317, 367, 389, 397–400, 403, 405–414, 417, 418,
420, 421, 423, 424, 426, 431, 432, 435, 437

Set-associative cache, 397, 407
Set-up slack, 71
Set-up time, 62, 64, 65, 67
Set-up violation, 67, 68
SGEI instruction, 273
SGE instruction, 265, 266
SGTI instruction, 274
SGT instruction, 266, 267
Shared memory, 371, 372
Shared state, 377, 379, 380, 383–385, 387, 389, 391–396
Shifter, 38, 39
Shift register, 73, 74
Single instruction input stream, multiple data output

streams (SIMD), 369
Single instruction input stream, single data output stream

(SISD), 369
Single-issue, 251, 350, 351, 353, 356
Size, 120, 122, 123, 129
Slave, 119–121, 124–130, 134–136, 138–143, 145–148,

150
Slave Select (SS) signal, 134
SLEI instruction, 274
SLE instruction, 266
SLI instruction, 270, 271, 312
SL instruction, 262
SLTI instruction, 274
SLT instruction, 266
SNEI instruction, 274
Snooper, 388, 390
Source address, 443, 447, 502
SPI mode 0, 136
SPI mode 1, 136
SPI mode 2, 137
SPI mode 3, 137
Square wave generator, 477, 478
SRAM, 151–160, 204, 249
SRAM bus interface, 155–159, 173, 174
SRAM cell, 151–153, 191
SRAM controller, 152, 153, 173
SRAM core, 152, 153
SRAM I/O, 153, 154, 182, 184, 191, 192
SRI instruction, 271
SR instruction, 263
S-R latch, 101
Stack, 285–294
Stack pointer, 286
Standby, 157, 159, 171, 182, 190, 192
State assignment, 101–103, 113, 114
State diagram, 75–77, 79, 80, 82–84
State machine, 61, 75, 78, 82, 83, 89, 92, 94–96, 99

State table, 77, 80, 84
Static pipeline, 353
Static Random Access Memory (SRAM), 151–160,

204
Status, 120, 123–130, 133, 143, 146
Status register, 186, 187, 231, 237–239
Status register read, 184, 186, 240
Step size, 490, 491
STOREF instruction, 319, 328, 329, 333, 336, 337, 345,

346, 360
STORE instruction, 276, 277, 296, 299, 300, 302, 307,

328, 344–347, 353, 360, 426
Structural hazards, 303, 437
SUBF instruction, 318, 329, 332, 337, 341, 348
SUBI instruction, 353, 363, 364
SUB instruction, 258, 260, 304, 351, 353
Subroutine, 284, 285, 290
Subtractor, 1, 37, 38
Successive approximation ADC, 495, 497, 498, 505
Sum of Products (SOP), 10
Synchronous Dynamic Random Access Memory

(SDRAM), 151, 160–168, 170, 173–181, 204,
241, 244, 245, 249

System architecture, 439, 440

T
Tag comparison, 399
Timer, 472–475, 477, 478, 480, 502, 503
Timing diagram, 63, 65, 67, 68, 71–75, 83–85, 89–91,

93–95, 97–99
Timing methodology, 63, 66
Timing table, 254–256
Timing violations, 66
Tomasula algorithm, 251, 333–335
Tomasula CPU, 333, 336, 349
Transceiver, 465
Transfer, 119, 120, 122–134, 138–143, 145, 148
Transition table, 77, 78, 80, 81, 84
Transmitter, 465–469, 507, 508, 515
Transmitter buffer, 466, 515
Triple-issue, 251, 357, 358
Tri-state, 6, 7
Truth table, 1–7, 9–14, 16, 19, 20, 22–25, 27, 39, 45, 51,

53, 54, 87

U
Uncached state, 391, 392
Unidirectional bus, 119, 120, 124, 133, 143, 146
Up-rounding, 495, 497, 498, 507

V
Valid bit, 399, 403, 407, 409, 411, 421
Variable clock, 111
Vertical blanking, 482, 484, 487, 504, 509
Virtual instruction chart, 348

592 Index

W
WAR hazard, 330, 332
WAW hazard, 331, 332
Weighted binary adder DAC, 500, 501
Write, 119, 120, 122–125, 127, 129, 133, 139, 141,

143–149
Write-allocate, 425, 426
Write-around, 426
Write-back cache, 408–410, 414, 426
Write burst, 168, 171, 177
Write Enable (WE), 71, 86, 153, 155–157, 159, 161, 175,

182, 190, 192, 238
Write enable signal, 153, 155, 161, 175, 182, 192
Write hit, 378, 381, 382, 385–387, 391, 394, 395, 407,

418, 421

Write miss, 377, 391–395, 407, 417, 424
Write resume, 196, 202
Write suspend, 196
Write-through cache, 405, 406, 412, 413, 424, 426, 432
Write transfer, 124, 125, 129, 133, 139, 146
Writing into a bank, 168

X
XNOR-gate, 5, 6, 58
XNORI instruction, 269, 271
XNOR instruction, 262
XOR-gate, 3–5, 30, 58
XORI instruction, 269, 271
XOR instruction, 261–263, 438

	Preface
	Contents
	About the Author
	1 Review of Combinational Logic Circuits
	1.1 Logic Gates
	1.2 Boolean Algebra
	1.3 Designing Combinational Logic Circuits Using Truth Tables
	1.4 Combinational Logic Minimization—Karnaugh Maps
	1.5 Basic Logic Blocks
	1.6 Combinational Mega Cells

	2 Review of Sequential Logic Circuits
	2.1 D Latch
	2.2 Timing Methodology Using D Latches
	2.3 D Flip-Flop
	2.4 Timing Methodology Using D Flip-Flops
	2.5 Timing Violations
	2.6 Register
	2.7 Shift Register
	2.8 Counter
	2.9 Moore Machine
	2.10 Mealy Machine
	2.11 Controller Design: Moore Versus Counter-Decoder Scheme
	2.12 Memory
	2.13 A Design Example Using Sequential Logic and Memory

	3 Review of Asynchronous Logic Circuits
	3.1 S-R Latch
	3.2 Fundamental-Mode Circuit Topology
	3.3 Fundamental-Mode Asynchronous Logic Circuits
	3.4 Asynchronous Timing Methodology

	4 System Bus
	4.1 Parallel Bus Architectures
	4.2 Basic Write Transfer
	4.3 Basic Read Transfer
	4.4 Bus Master Status Change
	4.5 Bus Master Handshake
	4.6 Arbiter
	4.7 Bus Master Handover
	4.8 Serial Buses

	5 Memory Circuits and Systems
	5.1 Static Random Access Memory
	5.2 Synchronous Dynamic Random Access Memory
	5.3 Electrically-Erasable-Programmable-Read-Only-Memory
	5.4 Flash Memory
	5.5 Serial Flash Memory
	Review Questions
	References

	6 Central Processing Unit
	6.1 Fixed-Point Unit
	Instruction Formats
	CPU Data-Path
	Register-to-Register Type ALU Instructions
	Immediate Type ALU Instructions
	Data Movement Instructions
	Program Control Instructions

	6.2 Stack Pointer and Subroutines
	Subroutines
	The Stack and the Stack Pointer
	Call and Return Instructions and the Use of Data Stack

	6.3 Fixed-Point Design Examples
	6.4 Fixed-Point Hazards
	Structural Hazards
	Data Hazards
	Program Control Hazards

	6.5 Floating-Point Unit
	Floating-Point Instructions
	Floating-Point Bit Field Formats
	Floating-Point Adder
	Floating-Point Multiplier
	RISC CPU with Fixed and Floating-Point Data-Paths
	Floating-Point Data Hazards
	Out-of-Order Execution and the Need for Register-Renaming
	Effects of Tomasula Algorithm on Floating-Point Hazards

	6.6 Increasing Program Execution Efficiency
	Static Versus Dynamic Pipelines
	Loop Unrolling
	Static and Dynamic Branch Prediction

	6.7 Multi-core Architectures and Parallelism
	Memory Coherency in Multi-core Architectures
	Parallelism in Software
	Multi-core Systems with a Central Memory and Parallelism in Hardware
	Multi-core Systems with Distributed Memories and Parallelism in Hardware

	6.8 Caches
	Cache Topologies
	Cache Write and Read Data-Paths
	Write-Through and Write-Back Cache Structures in Set Associative Caches
	Exploring the Least-Recently-Used (LRU) Replacement Algorithm
	Writing to Cache Memory After a Cache Hit
	Writing to Cache Memory After a Cache Miss

	Appendix: Iterative Fixed-Point Multiplication

	7 System Peripherals
	7.1 Overall System Architecture
	7.2 Direct Memory Access Controller
	7.3 Interrupt Controller
	7.4 Serial Transmitter Receiver Interface
	Transmitter
	Receiver

	7.5 Timers
	One-Shot Timer
	Rate Generator
	Square Wave Generator
	Interrupt Generator

	7.6 Display Adaptor
	7.7 Data Converters
	Analog-to-Digital Converter (ADC)
	Flash ADC
	Ramp ADC
	Successive Approximation ADC

	7.8 Digital-to-Analog Converter (DAC)

	8 Special Topics
	8.1 Field-Programmable-Gate Array
	8.2 Data-Driven Processors

	Appendix: An Introduction to VerilogHardware Design Language
	Index

