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Preface

Thermodynamics has a long history. The most well-known founding thermody-
namists include: Sadi Carnot, William Thomson, Rudolf Clausius, James Maxwell,
LudwigBoltzmann, andWillardGibbs, just to name a few. Theword “thermodynam-
ics” comes from twoGreek words: thermé (means heat) and dynamikos (means force
or power). One of the early definitions of thermodynamics is that thermodynamics is
the science that deals with relations between heat and work. This definition perhaps
reflects the origin of thermodynamics. In the early time, thermodynamics was devel-
oped to understand heat engines that absorb heat to produce work. It was in 1850 that
Rudolf Julius Clausius (1822~1888) formulated the First Law and the Second Law
of Thermodynamics and established the foundation of classical thermodynamics.

Nowadays, thermodynamics is considered as the science that deals with energy,
matter, and the laws governing their interactions. Thermodynamics studies the rela-
tionships among the properties of macroscopic systems and the restrictions on
permissible physical processes. Over the years, thermodynamics has developed into
a very important branch of modern science with wide applications not only in engi-
neering but also in physics, in chemistry as well as in life science and in social
science.

The theoretical foundation of modern analytical thermodynamics is developed by
Josiah Willard Gibbs (1839–1903). Gibbs was a theoretical physicist, chemist, and
mathematician. He was awarded the first American Ph.D. in engineering in 1863 at
Yale University. In 1901, Gibbs was granted the highest honor of his time, the Copley
Medal of the Royal Society of London, for being “the first to apply the second law
of thermodynamics to the exhaustive discussion of the relation between chemical,
electrical, and thermal energy and capacity for external work.” I still remember the
excitement I had many years ago when I first time read the book “The Scientific
Papers of J. Willard Gibbs, Volume One: Thermodynamics. Woodbridge, Conn.: Ox
Bow Pr., 1970”. At that time, I was a Ph.D. student at the University of Toronto. I
found this book at the basement of one of the university’s libraries. Immediately I
was amazed by the elegance and power of the theoretical structure of the analytical
thermodynamics presented in that book.
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vi Preface

Why is the analytical thermodynamics important? As we know, the foundation of
thermodynamics is several laws. Although thermodynamics’ laws cannot be proven,
they are correct, because they result from our observation. These laws are facts, the
summarized facts and the correctly generalized facts. All thermodynamic theories
are the logical development of these observation and generalization. That is, all
thermodynamics theories are the logical development of the thermodynamic laws.
The importance of analytical thermodynamics is the fact that the logical structure of
analytical thermodynamics has made it possible for us to predict the behavior of the
real world.

I have taught advanced thermodynamics courses to engineering graduate students
in theUniversity of Alberta (Canada), the University of Toronto (Canada), Vanderbilt
University (USA), and University ofWaterloo (Canada) for 30 years in my academic
career. Unfortunately, there are few textbooks of thermodynamics at graduate level.
This book represents a major part of the lecture notes that I have developed over
years. My philosophy is to make thermodynamics as easy to understand as possible.
Before taking my course, many students did not know that thermodynamics has
such an interesting side and is easy to learn (without using property tables and
charts, just modeling and analyzing). I sincerely hope that this book will be useful
to professors teaching advanced thermodynamics and to graduate students learning
thermodynamics.

This book is designed for an advanced thermodynamics course. Chapter 1 will
introduce the theory of analytical thermodynamics by using the postulation approach.
The content of Chaps. 2–4 are novel and unique. Chapters 2 and 3 serve two purposes.
One is to expand the horizon from what has been presented in Chap. 1. The other
purpose is to demonstrate how to apply the general principles of analytical ther-
modynamics to model and to solve problems by studying special systems under
external fields and systems of surfaces or interfaces. Chapter 4 provides an analytical
understanding of the second law of engineering thermodynamics.

It is very fortunate that I have the opportunity to learn and teach thermodynamics
in my life. Writing this book also brings me a lot of enjoyment. I wish everyone who
reads this book would appreciate it too.

Waterloo, Canada Dongqing Li
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Chapter 1
Basics of Analytical Thermodynamics

Abstract This chapter will introduce the theory and analytical methods of thermo-
dynamics. The key are the four postulates which are the foundation of the analytical
thermodynamics. Then the fundamental equations, Euler equation andGibbs-Duhem
equation are introduced. A fundamental equation contains all thermodynamic infor-
mation of a given system. Several thermodynamic potential functions are introduced
by using Legendre transformation. Knowing the fundamental equation, thermody-
namic equilibrium conditions can be readily determined by applying the entropy
maximum principle or the energy minimum principle. Several explicit forms of
the chemical potentials for simple and idealized systems are introduced. They are
very useful tools in determining the equilibrium conditions of coexisting phases.
As examples, the boiling point and the freezing point of ideal (dilute) solutions are
analyzed.

1.1 Definitions

System and surrounding: A thermodynamic system is defined as a quantity of
matter or a region in space that is chosen for study. In other words, the system is what
we want to study. The region outside the system is called the surroundings (i.e.,
Surroundings are physical space outside the system boundary). The real or imaginary
surface that separates the system from its surroundings is called the boundary. The
boundary of a system may be fixed or movable or deformable.

Closed System 
Mass 

Heat 

Work 

System 

Surroundings 

Boundary 

Systems can be further classified into several groups:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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2 1 Basics of Analytical Thermodynamics

A closed system consists of a fixed amount of mass and no mass may transfer
across the system boundary. A closed system may exchange energy such as heat and
work with surroundings.

An open system is a system that has mass as well as energy transfer across the
system’s boundary.

An isolated system is a system without any interactions with the surroundings
(i.e., no mass, heat or work may cross the boundaries).

Open System 

Heat Work 

Mass 

Isolated System 
Mass 

Work Heat 

Simple system: A simple system is a system that is homogeneous, isotropic,
uncharged, not subject to field interactions (e.g. electric, or gravitational fields), and
has no surface or boundary effects. In this book, all systems are considered as simple
systems unless specified otherwise.

Internal energy: Internal energy, U, of a thermodynamic system includes the
intrinsic energy of individual molecules, the energy of the random motion of
molecules, and the energy of molecular interactions. The internal energy U does
not include any kinetic energy and potential energy of the system.

Thermodynamic equilibrium state: A thermodynamic equilibrium state is a
state in which: (1) all properties are independent of time and are uniform everywhere
in the system; (2) the system maintains thermal, mechanical, phase and chemical
equilibrium.

More specifically, the system is in

(a) thermal equilibrium if it has constant and uniform temperature T.
(b) mechanical equilibrium if it has constant and uniform pressure P.
(c) phase equilibrium if it has no net phase change. For example, for a liquid-

vapor two phase system, the amounts of liquid water and water vapor remain
the same; and no net flow of molecules from one phase into another.

(d) chemical equilibrium if it has no chemical reactions.

Extensive properties are those that vary directly with size or mass of the system.
Some examples of extensive properties are: massm, total volumeV, and total internal
energy U.

Intensive properties are those that are independent of size or mass of the system.
Some examples of intensive properties are: temperature T, and pressure P.

Extensive properties per unit mass or per unit volume are intensive proper-
ties. For example, the specific volume v is defined as
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v = volume

mass
= V

m
(m3/kg)

and density ρ is defined as

ρ = mass

volume
= m

V
(kg/m3)

They are intensive properties.
Note v = 1/ρ.

What is a mole?Mole is a unit for expressing a quantity of a substance. Amole of
a substance is the amount that contains 6.022× 1023 particles (e.g., atoms,molecules,
ions) of that substance.

Mole number is the number of moles, and is defined as:

N = mass

molar mass
= m

M

where M is called the molar mass or molecular weight.
For example, MH2 = 2.0 kg

kmol , Mair = 28.97 kg
kmol .

That is, 1 kmol (1 kmol = 1000 mol) of air has a mass of 28.97 kg.
Note: m = N M .
Saturation state means the state when phase change starts. For example, a satu-

rated liquid is a liquid that is about to vaporize. A saturated vapor is a vapor that is
about to condense into liquid.

At a given pressure, the temperature at which a pure substance starts changing its
phase is called the saturation temperature. For example, at 1 atm,water’s saturation
temperature is 100 °C.

Process: Any change from one state to another is called a process.
Thermal Cycle: One or a series of connected processes with identical end states

is called a cycle. The Figure below is an example of a cycle composed of three
processes. The properties of the system at the end of the cycle are the same as at its
initial state.

P 

V

1 2 

3 

Heat (Thermal) Reservoir: A heat reservoir is a system that has infinite amount
of thermal energy (heat) and a constant temperature. A finite amount of heat transfer
into or from the heat reservoir will not change its temperature.
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A higher temperature heat reservoir from which heat is transferred is often called
a heat source. A lower temperature heat reservoir to which heat is transferred is
called a heat sink.

Heat Engine: A heat engine is a thermal cycle system.During the cycle, it receives
heat from a heat source, converts part of the heat into work and rejects the rest of the
heat to a heat sink.

Heat Pump (or refrigerator)

A heat pump or a refrigerator is a thermal cycle system that removes heat from a low
temperature body and delivers heat to a high temperature body. To do so, the heat
pump or refrigerator requires external work input.

1.2 Postulates

There are four postulates forming four fundamental pillars in the structure of
analytical thermodynamics theory. The entire analytical thermodynamics theory and
applications are the logic derivation of these four postulates.

I. Equilibrium State Postulate
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The equilibrium states of a simple system with r independent chemical species are
completely characterized by (r+ 2) extensive variables: internal energy U, volume
V, and mole numbers, N1, N2, … Nr , of the independent chemical species. In other
words, the equilibrium states of a simple systemwith r independent chemical species
are completely characterized by (r + 2) extensive variables, (U, V, N1, … Nr).

II. Entropy Maximum Postulate

For a simple thermodynamic system, there exists a function of extensive variables,
called entropy S,

S = S(U , V,Nl,N2 . . .Nr).

If the system is an isolated system, entropy S assumes its maximum value at an
equilibrium state. That is,

S = Smax at equilibrium.

Mathematically, S = S max at equilibrium requires

⎧
⎨

⎩

∂S
∂Xi

= 0 (Xi = U , V,N1, . . . ,Nr)

δS < 0, ∂2 S
∂ Xi ∂ Xj

< 0

In the above, the symbol δ means small variation from the maximum point.

III. Mathematical Properties of Entropy:

(1) The total entropy of a composite system is the sum of the entropies of all the
sub-systems.

S =
∑

i

Si

(2) Entropy function is continuous, differentiable and is amonotonically increasing
function of the energy. Mathematically these require satisfying the following
conditions:

(
∂n S

∂ X n
i

)

Xj

exists for n = 1, 2, . . .

(
∂S

∂U

)

V ,N1,...Nr

> 0
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(3) For a simple system, entropy S is a first-order homogeneous function of the
(r + 2) extensive variables. In mathematical language, this is expressed as:

S(λU, λV, λN1, . . . λNr) = λS(U,V,N1, . . .Nr)

where λ is an arbitrary constant. The above first order of homogeneous function
implies that if the size of the system increases by λ times, the total entropy of the
system will also increase by λ times.

(4) The above mentioned mathematics properties ensure the existence of the
following functions.

S = S(U,V,N1, . . .Nr) and U = U(S,V,N1, . . .Nr).

These two equations are the thermodynamic fundamental equations of a simple
system in entropy form and in energy form, respectively.

IV. Absolute Entropy

S = 0 at T = 0 K.

This postulate provides a base to calculate the absolute entropy at a given state.

1.3 Fundamental Equations

Thermodynamic fundamental equations contain all the thermodynamic infor-
mation of a system. Knowing the fundamental equation of a system, the equilibrium
conditions of this systemcanbederived analytically, aswill be shown in later sections.
In the form of internal energy, the fundamental equation is given by:

U = U (S, V,N1, . . .Nr)

If we use Xi (i = 1, 2, …, n = r + 2) to represent the extensive variables, S, V,
and Ni, the above fundamental equation can be written as:

U = U (X1,X2, . . .Xn) = U ({Xi})

The differential form of the fundamental equation is

dU =
∑

YidXi

where
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Yi =
(

∂U

∂ Xi

)

is the intensive variable corresponding to the extensive variable Xi. More specifi-
cally, consider a 3-D bulk phase as an example,

U = U (S, V,N1, . . .Nr)

dU =
(

∂U

∂S

)

V,Ni

dS +
(

∂U

∂V

)

S,Ni

dV +
∑

i

(
∂U

∂ Ni

)

S,V,Nj �=i

dNi

= TdS − PdV +
∑

μ
i
dN i

where the intensive variables are defined as

T =
(

∂U

∂S

)

V,Ni

, −P =
(

∂U

∂V

)

S,Ni

, μi =
(

∂U

∂ Ni

)

S,V,Nj �=i

In the above, T is the temperature, P is the pressure, and μi is the chem-
ical potential. The three terms in the differential form of the fundamental equation
represent thermal energy (TdS), mechanical work (PdV ) and chemical work (μi dNi),
respectively.

Similarly, for the entropy form of the fundamental equation, we have

S = S(U , V,N1, . . .Nr)

dS =
(

∂S

∂U

)

V,Ni

dU +
(

∂S

∂V

)

U ,Ni

dV +
∑

i

(
∂S

∂ Ni

)

U ,V,Nj �=i

dNi

= 1

T
dU + P

T
dV −

∑

i

μi

T
dN i

where

1

T
=

(
∂S

∂U

)

V,Ni

,
P

T
=

(
∂S

∂V

)

U ,Ni

, −μi

T
=

(
∂S

∂ Ni

)

U ,V,Nj �=i

Example 1: Is the following function

S = A(NVU )1/3

a fundamental equation? In this equation A is a constant.
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Solution

If this function is a fundamental equation, it must satisfy Postulate III and Postulate
IV. Let examine the given function against the conditions specified in Postulate III
and Postulate IV.

(1) Yes, this function is a continuous, differentiable function of N, V, and U. All
orders of partial derivatives exist.

(2)
(

∂S
∂U

)

V,N
= A

3
[NV ]1/3
U 2/3 > 0

That is, the is function S is a monotonically increasing function of energy
U.

(3) λS = A[(λN )(λV )(λU )] 1
3 = λA(NVU )1/3

It is a 1st-order homogeneous function.
(4) From the given function, we have

U = S3

A3NV
T =

(
∂U

∂S

)

V,N

= 3S2

A3NV

Clearly, when T → 0, S → 0.

Conclusion: This function satisfies all conditions in Postulate III and Postulate
IV. It is a fundamental equation.

Example 2: For a given function

S = A(NU/V)
2
3

where A is a constant, is it a fundamental equation?

Solution

Because

λS = A[(λN)(λU)/(λV)]
2
3

A[(λN)(λU)/(λV)]
2
3 = A(λ)

2
3 (NU/V)

2
3 �= λA(NU/V)

2
3

it is not a first-order homogeneous function. Therefore, it is not a fundamental
equation.

Example 3: For a given function

S = AV3/(NU )

where A is a constant, is it a fundamental equation?
Because entropy is a monotonically increasing function of energy, that is,
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(
∂S

∂U

)

V,N

> 0

However, for this given function,

(
∂S

∂U

)

V,N

= −AV 3

NU 2
< 0

Therefore, it is not a fundamental equation.

Home Works

(1) Determine if the following equation is acceptable as a fundamental equation.

U = AN V [1 + S/(NR)] exp(−S/NR)

where A and R are constant.
(2) For a system with r independent chemical components, show du = Tds −

Pdv + ∑r−1
j=1 (μj − μr)dxj where xj = Nj

N

1.4 Euler Equation and Gibbs–Duhem Equation

As introduced in the last section, a fundamental equation is a first-order homogeneous
function. By definition,

U(λX1 λX2 . . . λXn) = λU(X1,X2 . . .Xn)

where λ is an arbitrary real number and can be any value, and X i (i = 1, 2, … n) are
the extensive variables (i.e., S, V, N1…Nr). For convenience, the above equation is
re-written as:

U({λXi}) = λU({Xi})

Differentiating the above equation with respect to λ gives:

∑

i

∂U ({λXi})
∂(λXi)

∂(λXi)

∂λ
= U ({Xi})

∑ ∂U({λXi})
∂(λXi)

Xi = U({Xi})

Since λ is an arbitrary real number, if we choose λ = 1, the above equation
becomes
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∑ ∂U({Xi})
∂(Xi)

Xi = U({Xi})

Recall the intensive parameter is defined as

Yi =
(

∂U

∂ Xi

)

,

it follows that

∑

i

Yi Xi = U({Xi}).

The above equation can be rearranged as:

U({Xi}) =
∑

i

Yi Xi

This is the so-called Euler equation.
Let us see what the Euler equation means by the following example. Let us

consider a simple 3-D bulk phase system. The energy form of the fundamental
equation is given by

U = U(S,V,N1, . . .Nr)

The extensive variables in the energy form of the fundamental equation are:

S,V,N1, . . .Nr,

As defined in the last section, the corresponding intensive parameters are:

T =
(

∂U

∂S

)

V,Ni

, −P =
(

∂U

∂V

)

S,Ni

, μi =
(

∂U

∂ Ni

)

S,V,Nj �=i

According to the Euler equation, we will have

U =
∑

i

Yi Xi

where Xi is an extensive variable in the energy function U (i.e., S, V, Ni), and Yi is
the intensive parameter corresponding to Xi (i.e., T, P, μi). Therefore, the specific
form of the Euler equation for this case is:

U = TS − PV +
∑

i

μi Ni
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Clearly, Euler equation provides us with an explicit form of the internal energy
function, relating U with S, V, Ni, T, P and μi.

Similarly, we can prove that the Euler equation for the entropy form of the
fundamental equation is given by:

S({Xi}) =
∑

i

Yi Xi

where Xi is an extensive variable in the entropy function (i.e., U, V, Ni), and Yi is
the intensive parameter corresponding to Xi.

More specifically, for a simple 3-D bulk phase system,

S = S(U,V,N1, . . .Nr),

The extensive variables in the entropy form of the fundamental equation are:

U,V,N1, . . .Nr,

As defined in the last section, the corresponding intensive parameters are:

1

T
=

(
∂S

∂U

)

V,Ni

,
P

T
=

(
∂S

∂V

)

U ,Ni

, −μi

T
=

(
∂S

∂ Ni

)

U ,V,Nj �=i

According to the Euler equation for the entropy form of the fundamental equation:

S({Xi}) =
∑

i

Yi Xi

It follows that:

S = U

T
+ P

T
V −

∑

i

μi

T
Ni

Clearly, Euler equation provides us with an explicit form of the entropy function
(not only S is a function of U, V and mole numbers Ni).

Gibbs–Duhem Relation

By differentiating the Euler equation, U = � YiXi, we can have

dU =
∑

i

Yi dXi +
∑

i

Xi dYi

Also, the differential form of the fundamental equation gives us:



12 1 Basics of Analytical Thermodynamics

dU =
∑

i

Yi dXi

Combining the above two equations yields

∑

i

Xi dYi = 0

where Xi is an extensive variable in the energy function U (i.e., S, V, Ni), and Yi is
the intensive parameter corresponding to Xi (i.e., T, P,μi). This equation is called the
Gibbs–Duhem equation. As seen from the above equation, Gibbs–Duhem equation
provides a correlation among intensive parameters, Yi.

For a simple, bulk phase system,

U = U ({Xi}) = U (S, V,N1, . . .Nr)

and

dU =
∑

YidXi = TdS − PdV +
∑

μidNi

The Gibbs–Duhem equation for such a system is given by:

∑

i

Xi dYi = 0

That is,

SdT − VdP + � Ni dμi = 0.

This is an important equation. For a single component system, r = 1, the Gibbs–
Duhem equation becomes:

SdT − VdP + Ndμ = 0

Dividing both sides of this equation by the mole number leads to:

dμ = 1
N (−SdT + VdP)

Clearly, it indicates that μ = μ (T, P).
If T = constant and P = constant, from

SdT − VdP +
∑

Nidμi = 0

We have
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∑
Nidμi = 0

For a binary system, e.g., a solution consisting of component 1 and component 2,
the above equation gives:

N1dμ1 + N2dμ2 = 0

or

dμ1 = −N2

N1
dμ2

This equation shows how chemical potentials of different components are related
to each other.

Example of simple systems

For an ideal gas of a single component (r = 1), we know

PV = NRT

U = CNRT

}

or

{
Pv = RT

u = CRT

We would like to find the expressions for the specific entropy s (i.e., on per unit
mole basis) and the chemical potential μ.

According to the entropy form of the fundamental equation, we have

ds = 1

T
du + P

T
dv

In the above, we have considered that the mass of the ideal gas system is one
kilo-mole and fixed. Therefore, the fundamental equation does not have the (μ dN)
term, and entropy, internal energy and volume are on per unit mole basis (called
specific properties, and in small letters). Using the given relations yields:

ds = CR

u
du + R

v
dv

Integration yields

s = so +CR ln

(
u

uo

)

+ R ln

(
v

vo

)

= so +CR ln

(
T

To

)

+ R ln

(
TPo

To P

)

Recall that a fundamental equation is a function of extensive variables. The above
equation is not a fundamental equation because it is expressed in terms of intensive
variables. Using the given conditions,
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PV = NRT and U = CNRT

We can find correlations between T and U, P and UV. If we replace T/T0 by
U/U0, and P0/P by (U0V)/(UV0) in the above equation, and multiply both sides of
the equation by mole number N, then we can have an entropy form of fundamental
equation.

The expression of the chemical potential μ can be derived by using the Euler
equation and the derived expression for s, i.e.,

μ = u + Pv − Ts

= CRT + RT − Tso −TCR ln

(
T

To

)

− TR ln

(
TPo

T0P

)

= φ(T ) + RT ln P

Home work

A particular system has the following two equations of state:
T = 3A s2/v, and P = As3/v2 where A is a constant.
Find (a) μ as a function of s and v (hint: Gibbs–Duhem equation), (b) the

fundamental equation of the system (hint: Euler equation).

1.5 Simple Equilibrium

As we have introduced in the first section of this chapter, a thermodynamic equi-
librium state is a state in which: (1) All properties are independent of time and are
uniform everywhere in the system; (2) The system maintains thermal, mechanical,
phase and chemical equilibrium. In this book, we will not discuss equilibrium states
of chemical reactions. The focuswill be thermal equilibrium,mechanical equilibrium
and the equilibrium of phase change and mass exchange.

Thermal Equilibrium

Consider an isolated system consisting of subsystems 1 and 2, as shown in the figure
below.
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U1, V1, N1K

Subsystem 1 

U2, V2,  N2K

Subsystem 2 

The system is subject to the following constraints.

External constraints

U1 +U2 = constant

N1k +N2k = constant, k = 1, 2, . . . r

V1 +V2 = constant

Internal constraints

N1k = constant N2k = constant k = 1, 2, . . . r

V1 = constant V2 = constant

Comparing the above two sets of constraints, we see that all parameters are fixed,
except U1 and U2. This means that energy exchange between the two subsystems is
allowed.

According to the Entropy Maximum Postulate, the total entropy of the system
is maximum at equilibrium, i.e.,

S = S1 + S2 = maximum at equilibrium

Mathematically, it requires

dS = d(S1 +S2) = dS1 + dS2 = 0.

Because

dS = 1

T
dU + P

T
dV − �

μk

T
dNk

and from the constraints, we have

dNk = 0, dV = 0.
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Therefore,

dS1 = dU1

T1
, and dS2 = dU2

T2
,

dS = dU1

T1
+ dU2

t2

Using the constraint:

U1 + U2 = constant,

we have

dU1 = −dU2,

Therefore,

dS = dU2

(
1

T2
− 1

T1

)

= 0

This requires

T1 = T2 = T

This is the thermal equilibrium condition, i.e., all systems in a mutual thermal
equilibrium have the same temperature. From the above analysis, we see that as long
as the energy exchange between the subsystems is allowed, i.e., dU1 = –dU2, the
temperatures of the subsystems must be equal at the final equilibrium state.

The heat flow direction: Because the heat transfer is an irreversible processwhich
generates entropy, dS > 0. Therefore, according to the dS equation:

dS = dU2

(
1

T2
− 1

T1

)

> 0

If T1 > T2, it requires dU2 > 0. This means the energy (heat) transfers from
subsystem 1 to subsystem 2. If T1 < T2, it requires dU2 < 0. This means the energy
(heat) transfers from subsystem 2 to subsystem 1. In other words, heat always
transfers from a higher temperature place to a lower temperature place.

Mechanical Equilibrium

Consider an isolated system comprised of two subsystems 1 and 2, and the partition
separating the two subsystems can conduct heat and is movable.
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Subsystem 1 Subsystem 2 

U1, V1, N1k U2, V2, N2k

This isolated system is subject to the following constraints.

External constraints

U1 +U2 = constant

N1k +N2k = constant, k = 1, 2, . . . r

V1 +V2 = constant

Internal constraints

N1k = constant, N2k = constant k = 1, 2, . . . r.

Comparing the above two sets of constraints, we see that only mass exchange
between the two subsystems is not allowed.

The entropy maximum postulate requires the following, at an equilibrium state,

dS = d(S1 +S2) = dS1 + dS2 = 0

We know

dS = 1

T
dU + P

T
dV − �

μk

T
dNk

According to the constraints,

dN1k = 0 and dN2k = 0,

it follows

dS = dU1

T1
+ P1

T1
dV1 +dU2

T2
+ P2

T2
dV2

Using the constraints, we have

dU1 = −dU2, and dV1 = − dV2 .

Thus,
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dS =
(

1

T2
− 1

T1

)

dU2 +
(
P2
T2

− P1
T1

)

dV2 = 0.

Since dU2 and dV2 are arbitrary and independent, we conclude that

T1 = T2 = T and P1 = P2 = P.

Here

P1 = P2 = P

is the mechanical equilibrium condition. From the above derivation, we see that, as
long as energy exchange and volume exchange between subsystems are allowed,
the temperatures and pressures of the subsystems must be equal at equilibrium.

Mass Exchange Equilibrium

Consider an isolated system as shown in the figure below. The system is separated
by a partition into two chambers (subsystems); each contains a number of different
molecules. Assume the partition is a membrane that allows only type 1 molecules to
pass through it.

UA, VA, 
N1A, …. NrA

UB, VB, 
N1B, …. NrB

N1 N1
Subsystem A Subsystem B 

This composite system is subject to the following constraints.

External constraints

UA + UB = constant.

VA + VB = constant

NiA + NiB = constant. i = 1, 2, . . . r

Internal constraints
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VA = constant, VB = constant

N1A + N1B = constant.

(i.e., only type 1 molecules are allowed to exchange between the two subsystems)

NiA = constant.

NiB = constant

}

i = 2, 3, . . . r

Because the total entropy of the composite system is maximum at equilibrium,
i.e.,

dS = dSA + dSB = 0,

and

dS = 1

T
dU + P

T
dV − �

μk

T
dNk

and using the constraints of constant volume and constant mass,

dV = 0, and dNk = 0 (k = 2, 3, . . . r)

we have

dS = dUA

TA
− μ1A

TA
dN1A + dUB

TB
− μ1B

TB
dN1B = 0

Furthermore, the constraints of

UA + UB = constant

and

N1A + N1B = constant

lead to

dUA = −dUB and dN1A = −dN1B

Therefore,

dS =
[
1

TB
− 1

TA

]

dUB +
[
μ1A

TA
− μ1B

TB

]

dN1B = 0.
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It requires:

TB = TA = T and μ1A = μ1B

Here

μ1A = μ1B

is the equilibrium condition of mass exchange. From the above derivation, we see
that as long as the mass (molecules) exchange between two systems is allowed,
the chemical potential of those molecules in these two systems must be equal at
equilibrium.

Let us consider the mass transfer direction. Assume TA = TB = T . Thus,

dS = μ1A − μ1B

T
dN1B.

For an isolated system, because the mass transfer is an irreversible process which
generates entropy, i.e., dS > 0. Therefore, we see the following possibilities:

If μ1A > μ1B, → dN1B > 0, i.e., mass transfers from A to B.
If μ1A < μ1B, → dN1B < 0, i.e., mass transfers from B to A.

The above analysis shows that mass transfers from a place with a higher chemical
potential to a place with a lower chemical potential. That is, the chemical potential
difference is the driving force in mass transfer, just like the temperature difference
in energy (heat) transfer.

Home Work

A thin glass tube contains two liquid phases and one vapor phase, as illustrated in
the figure below. Liquid 1 is a pure liquid; liquid 2 is a different pure liquid; the
vapor phase contains both components (i.e., vapor of liquid 1 and vapor of liquid 2).
Consider the glass tube with these three fluid phases as an isolated system. Derive the
thermodynamic equilibrium conditions by using the entropy maximum principle.

Liquid 1 Liquid 2vapor
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1.6 Extreme Principles of Equilibrium States

From the previous examples of finding equilibrium conditions, we see that the
maximum entropy postulate leads to a general principle, the Entropy Maximum
Principle: For a simple, isolated system, the equilibrium value of any uncon-
strained internal parameters will maximize the entropy under the given value
of the total internal energy.

The “unconstrained internal parameters” in the above statement are the parameters
that are allowed to exchange between subsystems. For example, in the last section,
the internal energy U1 and U2 are the unconstrained internal parameters in the first
case of finding thermal equilibrium. In the left figure below, because the piston is free
to move, the volumes V1 and V2 are the unconstrained internal parameters. In the
right figure below, type-1 molecules are allowed to exchange across the membrane
partition. The mole numbers N1A and N1B are the unconstrained internal parameters.

Vi in this case.    N1,i in this case. 

V1 + V2 = constant N1A + N1B = constant 

V1 V2 
N1,A N1,B 

Mathematically, the Entropy Maximum Principle can be expressed as follows:

S = S(U,V,N1, . . .Nr)

For a given value of the total internal energy, i.e., UT = constant,

(
∂S

∂X

)

UT

= 0 and

(
∂2 S

∂ X2

)

UT

< 0

where X = V,N1, . . .Nr.
It can be shown that the entropy maximum principle is equivalent to the Energy

Minimum Principle: For a simple, isolated system, the equilibrium value of any
unconstrained internal parameters will minimize the energy under the given
value of the total entropy.

Mathematically, the Energy Minimum Principle can be expressed as follows:

U = U (S, V,N1, . . .Nr)

For a given value of the total entropy, i.e., ST = constant,
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(
∂U

∂X

)

ST

= 0 and

(
∂2 U

∂ X2

)

ST

> 0

where X = V, N1, … Nr.
Here a simple example will be used to demonstrate the equivalence of the energy

minimum principle and the entropy maximum principle.
For an isolated system consisting of two subsystems in thermal contact, we

have proved by using entropy maximum principle that the equilibrium condition is
T1 = T2 . Now, let’s use the energy minimum principle to find the equilibrium
condition.

Subsystem 1 Subsystem 2 

Recall

U = U(S,V,N1, . . . ,Nr) = TS − PV +
∑

μi Ni

dU = TdS − PdV +
∑

μi dNi

and the constraints for this system are:

V1 = constant V2 = constant

N1k = constant N2k = constant (k = 1, 2, . . . r)

and

S1 +S2 = constant.

The constraint conditions lead to

dVi = 0, and dNk = 0

Therefore,

dU = TdS
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dUtotal = dU1 + dU2 = T1 dS1 +T2 dS2

Using the constraint

S1 +S2 = constant,

dS2 = −dS1

we have

dUTotal = T1dS1 + T2dS2 = (T1 − T2)dS1

According to the energy minimum energy principle, at equilibrium state,

dUTotal = 0,

it follows that

T1 = T2.

This is the same conclusion as the equilibrium condition derived by using the
entropy maximum principle. Therefore, one can use either the entropy maximum
principle or the energy minimum principle to find the equilibrium conditions
of a thermodynamics system.

1.7 Legendre Transformations and Thermodynamic
Potentials

Legendre Transformation

Previously, we have shown that we can find the equilibrium conditions by using the
entropy maximum principle or energy minimum principle and by using one of the
following fundamental equations.

S = S(U,V,N1, . . .Nr) dS = 1

T
dU + P

T
dV − �

μi

T
dNi

U = U(S,V,N1, . . .Nr) dU = TdS − PdV + � μi dNi

These are the most basic approaches in thermodynamic analysis. In practice,
however, we will find that using these extensive variables (S, U, V, Ni) is not always
the most convenient way to model and to solve problems. We often need to use
different combinations of some intensive variables and some extensive variables.
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For example, for an isothermal process, it will be more convenient that if we can use
the intensive variable, temperature T, instead of the entropy S, with other extensive
variables to model such a process. Because T is a constant in this case and hence
such a model with this group of variables will reduce the number of independent
variables by one. In order to do so, a proper mathematical transformation of variables
is required. In other words, we need to transfer a function with one group of variables
into another function with a different group of variables.

(X,Y) domain
Transformation−−−−−−−−→ (ζ,η) domain

Let us consider a function Y given by:

Y = Y(X1, . . . ,Xn)

and let

Pk = ∂Y

∂Xk

It follows that

dY =
n∑

k=1

PkdXk

Let us define a new function:

ψ = Y −
n∑

k=1

Pk Xk

Differentiate the above equation,

dψ = dY − � Pk dXk −� Xk dPk

Recall dY = �PkdXk.
The above equation is reduced to

dψ = −
n∑

k=1

XkdPk

From this equation, we can conclude that the new function ψ is a function of
variables P1, P2, … Pn. That is,

ψ = ψ(P1,P2, . . . ,Pn)
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As seen from the above, we have transferred the function

Y(X1, . . . ,Xn)

into a new function

ψ(P1, . . . ,Pn)

with a new set of variables. This transform is referred to as the Legendre
Transformation.

Legendre transform can also bemade only for some of the variables. For example,
we want to keep a part of the original variables, X1, X2, …… Xk, and transfer Xk+1,
Xk+2, …… Xn into Pk+1, Pk+2, …… Pn. This can be realized in the following way.

Define a new function as:

ψ = ψ(X1,X2, . . . ,Xk,Pk+1, . . . ,Pn) = Y −
n∑

k+1

Pi Xi

where

Pi = ∂Y

∂Xi

This is called the partial Legendre transformation. Now let us apply the partial
Legendre transformation to the internal energy function U to derive some useful
thermodynamic functions.

Thermodynamic Potentials

Helmholtz Free Energy/Potential

Let us start with the energy form of the fundamental equation as given below

U = U(S,V,N1, . . . ,Nr) = TS − PV +
∑

μi Ni

dU = TdS − PdV +
∑

μi dNi

In the above fundamental equation, entropy S is not a directly measurable param-
eter and is often not convenient to use as an extensive variable, therefore we want
to replace S by the corresponding intensive variable, temperature T, while keeping
the rest of variables. It should be noted that here the internal energy U = U(S, V,
N1 · · · Nr) corresponds to the original function Y = Y(X1, · · · Xn) in the Legendre
transformation. According to
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ψ = Y −
n∑

k+1

Pi Xi and Pi = ∂Y

∂Xi

Performing the partial Legendre transformation to the internal energy U by
defining a new function F as follows:

F = U −
(

∂U

∂S

)

S = U − TS

This function is called Helmholtz free energy or Helmholtz potential. Recall

U = TS − PV +
∑

i

μi Ni

we have

F = −PV +
∑

μi Ni

Differentiating F = U – TS yields

dF = dU − d(TS)

= TdS − PdV +
∑

μi dNi −TdS − SdT

= −SdT − PdV +
∑

μi dNi

The above differential equation clearly indicates that

F = F(T,V, {Ni})

That is, Helmholtz free energy is a function of temperature T, volume V and mole
numbers Ni. Comparing it with

U = U(S,V, {Ni})

we see that T in the new functionF replace S in the original functionU. For a constant
temperature process, i.e., T = constant,

F = F(T = c,V, {Ni}),

dF = −PdV +
∑

μi dNi

For a process with both constant T and constant V,



1.7 Legendre Transformations and Thermodynamic Potentials 27

dF =
∑

μi dNi

Enthalpy

In some applications, we want to replace volume V in the internal energy func-
tion by the corresponding intensive variable, pressure P. Applying the Legendre
transformation

ψ = Y −
∑

Pi Xi

to the internal energy function

U = U(S,V, {Ni}) and U = TS − PV +
∑

i

μi Ni,

we define a new function.

H = U − (
∂U
∂V

)
V

H = U + PV = TS + ∑
μi Ni

The function H is called the enthalpy. Differentiating H function gives

dH = dU + PdV + VdP = TdS + VdP +
∑

μi dNi

It follows that

H = H(S,P, {Ni})

Comparing it with

U = U(S,V, {N1})

we see that P in the H function replaces V in the U function.
For a constant pressure process, i.e., P = constant,

dH = TdS +
∑

μi dNi

Gibbs Free Energy/Potential

Now we want to replace both S by T and V by P. Let us perform the Legendre
transformation

ψ = Y − �PiXi
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to U = (S, V, N1, N2, …, Nr) by defining a new function

G = U −
(

∂U

∂S

)

S −
(

∂U

∂V

)

V = U − TS + PV =
∑

μi Ni

The function G is called the Gibbs free energy or Gibbs potential. For a single
component system where r = 1,

G = μN ,

and

μ = G/N = g.

That is why the chemical potential sometimes is also called the specific Gibbs
free energy (i.e., Gibbs free energy per unit mole). The differential form of Gibbs
free energy is given below.

dG = dU − TdS − SdT + PdV + VdP = −SdT + VdP +
∑

μi dNi

This differential equation suggests that

G = G(T,P, {Ni})

that is, the Gibbs free energy is a function of temperature T, pressure P and mole
numbers Ni.

Comparing it with

U = U(S,V, {N1})

we see that T and P in the G function replace the S and V in the U function. For a
process with constant T and constant P, i.e., T = const. and P = const., we have

dG =
∑

μi dNi

For a process with Ni = constant, we have

dG = −SdT + VdP
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Grand Canonical Free Energy/Potential

For many applications, the system is subject to a constant temperature and a constant
chemical potential. Therefore, we want to define a new thermodynamic potential—
grand canonical potential (or grand canonical free energy) that includes T and μ in
the variables.

Recall

U = U(S,V,N1, . . . ,Nr) = TS − PV +
∑

μi Ni

dU = TdS − PdV +
∑

μi dNi

Apply the partial Legendre transformation to the internal energy function U,

ψ = Y −
n∑

k+1

Pi Xi and Pi = ∂Y

∂Xi

the grand canonical free energy function is defined as the following:

	 = U − TS −
∑

μi Ni = −PV

d	 = dU − d(TS) − d(
∑

μi Ni)

= −SdT − PdV −
∑

Ni dμi

As seen from the above equation, the grand canonical free energy is a function of
temperature T, volume V and chemical potentials μi,

	 = 	(T,V, {μi})

Comparing it with

U = U(S,V, {Ni})

we see that T and μi in the 	 function replace S and Ni in the U function. For a
process with constant T and μi (i.e., thermal and chemical equilibrium), the change
in the grand canonical free energy is the mechanical work,

d	 = −PdV = dW.

The specific grand canonical free energy per unit volume is defined as

ω = 	

V
= −P.
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1.8 Minimum Principles of Thermodynamic
Potentials/Free Energies

Helmholtz Free Energy Minimum Principle

Consider a system in contactwith a thermal reservoir as shown in the followingfigure.
The combined system (i.e., the system plus the reservoir) is an isolated system. The
properties of the reservoir are indicated by a superscript r. From the energy minimum
principle, we know that, at a given value of the total entropy, ST = S+ S r = constant,
the equilibrium state requires:

dUtotal = d
(
U + UT

) = 0

and

d2Utotal = d2
(
U + UT

)
> 0

where U is the internal energy of the system, and UT is the internal energy of the
thermal reservoir.

System  T 

Thermal Reservoir   T
r

A thermal reservoir is an idealized system that contains infinite amount of thermal
energy (heat) and has a constant temperature. Its sole function is to exchange heat
with any interacting system so that, at equilibrium, the interacting system will have
the same temperature as the thermal reservoir. The fundamental equation of a thermal
reservoir is given by:

UT = UT(Sr)

and

dUT = TrdSr.

The total internal energy of this combined isolated system is:



1.8 Minimum Principles of Thermodynamic Potentials/Free Energies 31

Utotal = U + UT

It follows that

dUtotal = d
(
U + UT

) = dU + dUT = dU + TrdSr

Because

ST = S + Sr = constant,

dSr = −dS

It follows that

dU total = d
(
U + UT

) = dU + dUT = dU + TrdSr = dU − TrdS

Realizing that the system is in contact with a thermal reservoir and reaches an
equilibrium state, Tr = T = constant, we have

dUtotal = d
(
U + UT

) = dU + dUT = dU + TrdSr = dU − TrdS

= dU − TdS = d(U − TS) = dF = 0

Similarly, we can show

d2UT = d
(
dUT

)
= d

(
TrdSr

) = d
(−TrdS

) = −Trd2S = −d2
(
TrS

) = −d2(TS)

d2Utotal = d2
(
U + UT

)
= d2U + d2UT = d2U − d2(TS) = d2(U − TS) = d2F > 0

As shown above, we have proved that the Helmholtz potential F will be minimum
at a stable equilibrium state, if the temperature is constant. The Helmholtz free
energy minimum principle can be stated as follows:

The equilibrium values of any unconstrained internal parameters of a system
in thermal contact with a thermal reservoir minimize the Helmholtz free energy
when T = Tr = constant.

Because T = constant, the unconstrained internal parameters are the volume, V,
and the mole numbers N i in F = F(T, V, {Ni}) function.

Gibbs Free Energy Minimum Principle

Consider a system in contact with a thermal reservoir and a pressure reservoir as
shown in the figure below. A pressure reservoir is an idealized system that has a
constant pressure. Its sole function is to exchange volumewith any interacting system
so that, at equilibrium, the interacting system will have the same pressure as the
pressure reservoir.
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System  T, P 

Thermal Reservoir   T
r

Pressure Reservoir   P
r

The fundamental equation for a thermal reservoir is:

UT = U (Sr) dUT = TTdSr

The fundamental equation for a pressure reservoir is:

UP = U(Vr), dUP = −Pr dVr

The total internal energy of the combined system is:

Utotal = U + UTr + UPr

At equilibrium state, the energy minimum principle requires

dUtotal = d
(
U + UTr + UPr ) = 0

and

d2Utotal = d2
(
U + UTr + UPr )

> 0

The constraints of the combined system (the system and the reservoirs) are

V + Vr = constant, S + Sr = constant.

or

dV = −dVr, dS = −dSr

Because, at an equilibrium state,

Tr = constant = T Pr = constant = P
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It follows

d(U + UTr +UPr) = dU + Tr dSr −Pr dVr

= dU − Tr dS + Pr dV

= d(U − TS + PV)

= dG

According to the energy minimum principle:

d(U + UTr +UPr) = 0

we have

dG = 0

Furthermore, we can show

d2 G = d2(U − TS + PV)

= d(dU − TdS + PdV)

= d(dU + TdSr − PdVr)

= d2(U + Tr Sr −Pr Vr)

= d2(U + UTr +UPr) > 0.

From the above equations, we have proved that the Gibbs free energy is minimum
at equilibrium if both temperature and pressure are kept constant. The Gibbs free
energy minimum principle can be stated as follows:

The equilibrium values of any unconstrained internal parameters in a system
in contact with a thermal reservoir and a pressure reservoir minimize the Gibbs
free energy when T = Tr = constant and P = Pr = constant.

Because T and P must be constant as the system is in contact with a thermal
reservoir and a pressure reservoir, the unconstrained internal parameters are the mole
numbers N i in G = G(T, P, {Ni}) function.

Grand Canonical Free Energy Minimum Principle

Consider a system in contact with a thermal reservoir and a mass reservoir as illus-
trated in the following figure. The mass reservoir is an idealized system that has
infinite amount of molecules and constant chemical potentials for each type of
molecules. Its sole function is to exchange molecules with the interacting system
so that, at equilibrium, the interacting system will have the same values of chem-
ical potentials as that of the mass reservoir. For the thermal reservoir and the mass
reservoir, the fundamental equations are:
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dUT = Tr dSr

dUM =
∑

μr
i dN

r
i

System T, i

Thermal Reservoir Tr

Mass Reservoir i
rµ

µ

The constraints for the combined system (i.e., the system and the reservoirs).

S + Sr = constant

Ni +Nr
i = constant (i = 1, 2, . . . r)

At equilibrium states, we know

T = Tr = constant
μi = μr

i = constant

Thus, the total internal energy of the combined system is:

d(U + UTr +UMr
) = dU + Tr dSr +

∑
μr
i dN

r
i

= dU − Tr dS −
∑

μr
i dNi

= d(U − Tr S −
∑

μr
i Ni)

= d(U − TS −
∑

μi Ni)

= d	

Because the combined system is an isolated system, the energyminimumprinciple
requires
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d(U + UTr +UMr
) = d	 = 0

Similarly, we can show

d2 	 = d2(U + UTr +UMr
) > 0

Thus, we have proved that 	 free energy/potential is minimum at equilibrium
states if the temperature and the chemical potentials are constant. The Grand
Canonical Free Energy Minimum Principle may be stated as follows:

The equilibrium values of any unconstrained internal parameters in a system
in contact with a thermal reservoir and a mass reservoir minimize the Grand
Canonical free energy when T = Tr = constant and µi = µi

r = constant.
The unconstrained internal parameter is V in 	 = 	(T, V, {μi}) function.
In summary, when you need to find thermodynamic equilibrium conditions by

using a thermodynamic potential,

• Use Helmholtz potential minimum principle if the system is in contact with a
thermal reservoir, i.e., temperature is constant.

• UseGibbs free energyminimumprinciple if the system is in contactwith a thermal
reservoir and a pressure reservoir, i.e., T = constant and P = constant.

• Use Grand Canonical free energy minimum principle if the system is in contact
with a thermal reservoir and amass reservoir, i.e., T= constant andμi = constant.

1.9 Applications of Minimum Principle of Thermodynamic
Potentials

Helmholtz Potential Minimum Principle

Consider a composite system consisting of two subsystems separated by a partition,
as illustrated in the figure below. In subsystem A (left side), there is a dilute aqueous
solution consisting of water and a salt (e.g., NaC1). There is only water in subsystem
B (right side). However, the water presents in two phases (i.e., liquid and vapor)
in subsystem B. Assume that the total volume and the total mass of the system are
constant. The system is surrounded by a thermal reservoir.
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A B 

Thermal Reservoir T r

Liquid water 

Vapor water 
Dilute Solution 
(H20 + NaCl) 

H2O H2O 

The constraints for the combined system (the system and the reservoir) are:

U + UR = constant
Ni = constant, i = 1, 2, . . . r
VTotal = constant

The internal constraints are (1) the subsystems are separated by a rigid partition so
that the volumes of the subsystems are constant. (2) The partition is semi-permeable,
and only water molecules can pass through the partition.

NAW + NL
BW + NV

BW = constant

Nsolute = constant,

VA = constant

VB = VBL + VBV = constant

where the subscripts A and B stand for the subsystem A and subsystem B; the
subscript W stands for water; and the subscript or superscripts L and V stand for
liquid and vapor, respectively.

We would like to find (1) what thermodynamic function should be used as the
thermodynamic potential to model this system, and (2) the equilibrium conditions
for this system.

Solution: To determine the equilibrium conditions that the intensive properties must
satisfy by using the minimum principle of thermodynamic potentials, the first ques-
tion is “Which thermodynamic potential should we use to model this system”? The
answer is determined by the constraints between the system and the reservoir. For
the system described above, since it is in contact with a thermal reservoir, the temper-
ature is constant. Under this condition, Helmholtz free energy or Helmholtz potential
will beminimum at equilibrium state, as demonstrated in the previous section. There-
fore, we will use Helmholtz potential as the thermodynamic potential to model this
system and find the equilibrium conditions.
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For this composite system, the total Helmholtz potential F is:

F = FA +FLB +FVB
dF = dFA + dFLB + dFLB

And individually,

dFA = −SA dT − PA dVA +μAW dNAW + μS dNS

dFLB = −SLB dT − PLB dV
L
B +μL

BW dNL
BW

dFVB = −SVB dT − PVB dVV
B +μV

BW dNV
BW

where the subscripts and superscripts W, S, L, V represent water, salt, liquid water
and vapor water, respectively. According to the given constraints, we have.

T = constant, VA = constant, and NS = constant.

This leads to:

dF = μAWdNAW − PLB dV
L
B +μL

BW dNL
BW −PVB dVV

B +μV
BW dNV

BW

Using the constraints:

NW = NA
W + NL

BW +NV
BW = constant, i.e., dNA

W = − dNL
BW − dNV

BW

VL
B +VV

B = constant, i.e., d VV
B = −d VL

B

We have

dF = (PVB −PLB) dVL
B +(μL

BW −μAW) dNL
BW +(μV

BW −μAW) dNV
BW

where dVL
B, dNBL

W and dNBV
W are unconstrained variables.

Because total Helmholtz potential F of this system must be minimum at
equilibrium states, i.e.,

dF = 0,

it follows that the equilibrium conditions are

PLB = PVB
μAW = μL

BW = μV
BW
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Gibbs Potential Minimum Principle

Consider a liquid–gas two-phase system enclosed in a piston-cylinder device in
contact with a thermal reservoir and a pressure reservoir, as shown below. The piston
is free tomovewithout any friction. Therefore, the pressure inside the piston-cylinder
devise is balanced with the pressure of the pressure reservoir. The liquid phase
contains two components (1 and 2) and the gas phase has only the component 2.
We want to find equilibrium conditions. For such a system, since T = constant,
P = constant, obviously, using Gibbs free energy or Gibbs potential to model the
composite system is the right choice.

Thermal and 
Pressure  
Reservoirs 
T, P Liquid 

N1L, N2L

Vapor  
N2g

G = Gg +GL,

Gg = μ2 N2g,

GL = μ1L N1L +μ2L N2L

Because the differential form of the Gibbs free energy is given by:

dG = −SdT + VdP +
∑

μi dNi

When dT = dP = 0,

dG =
∑

μidNi

For this given system, the total Gibbs free energy or total Gibbs potential is

G = GL + Gg
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Therefore,

dG = dGL + dGg = μ1LdN1L + μ2LdN2L + μ2gdN2g

Use the constraints:

N2g +N2L = constant, N1L = constant

dG = μ2g dN2g +μ2L dN2L = (μ2G −μ2L) dN2g

At equilibrium, the total Gibbs potential of this system must be minimum, i.e.,

dG = 0

it follows that the equilibrium condition is

μ2g = μ2L

In general, we can show that the condition

μα
i = μ

β

i = . . . = μ
γ

i (i = 1, 2, . . . r)

is true for amulti-component (i.e., r components) andmulti-phase (α, β, . . . γ) system
in equilibrium states, as long as the molecules exchange is allowed between two
neighboring phases.

1.10 Maxwell Relations

The mathematical properties, especially the continuity condition, of the fundamental
equations require the equalities of the mixed partial derivatives of fundamental equa-
tions (including various Legendre transformations of the fundamental equations, i.e.,
thermodynamic potentials).

Let

Z = Z({Xi})

be the general form of the fundamental equation U and the thermodynamic potential
functions, the equalities of the mixed partial derivatives are given in the following
form:

∂2 Z

∂Xi∂Xj
= ∂2 Z

∂Xj∂Xi
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where Z may be U, H, F, G, and 	. These equalities are called the “Maxwell
Relations”. For example, for a single-component system with constant mass, from

U = U(S,V,N = constant)

dU =
(

∂U

∂S

)

V

dS +
(

∂U

∂V

)

S

dV = TdS − PdV

the Maxwell relation requires

(
∂2 U

∂S∂V

)

=
(

∂2 U

∂V∂S

)

That is,

(
∂T

∂V

)

S

= −
(

∂P

∂S

)

V

Similarly, from

dH = TdS + VdP

dF = −SdT − PdV

dG = −SdT + VdP

the Maxwell relations require

(
∂T
∂P

)

S = (
∂V
∂S

)

p(
∂P
∂T

)

V = (
∂S
∂V

)

T(
∂V
∂T

)

P = − (
∂S
∂P

)

T

One of the important applications of Maxwell Relations is to express the deriva-
tives in thermodynamic relationships in terms of measurable parameters. Let’s first
introduce some thermodynamic parameters.

Coefficient of thermal expansion

α = 1

V

(
∂V

∂T

)

P

Isothermal compressibility

κ
T = − 1

V

(
∂V

∂P

)

T



1.10 Maxwell Relations 41

Adiabatic compressibility

κs = − 1

V

(
∂V

∂P

)

S

Molar heat capacities

CP = T

(
∂s

∂T

)

P

= T

N

(
∂S

∂T

)

P

CV = T

(
∂s

∂T

)

V

= T

N

(
∂S

∂T

)

V

The following are some useful mathematical relations:

(
∂X

∂Y

)

Z

= 1
(

∂Y
∂X

)

Z

(
∂X

∂Y

)

Z

=
(

∂X
∂W

)

Z(
∂Y
∂W

)

Z

(
∂X

∂Y

)

Z

= −
(

∂Z
∂Y

)

X(
∂Z
∂X

)

Y

or

(
∂X

∂Y

)

Z

(
∂Y

∂Z

)

X

(
∂Z

∂X

)

Y

= −1

The last relationship is called the chain rule.

Example 1: Prove the following equations for a simple compressible system:

(a)
[

∂ Cv
∂v

]

T
= T

[
∂
∂T

(
α
κT

)]

v

(b)
[

∂ Cp

∂P

]

T
= −T

[
∂
∂T (αv)

]

P

(c) CP − CV = α2 vT
κT

where α and κT are the coefficients of thermal expansion and the isothermal
compressibility respectively.

(a) Solution: Recall

α = 1

v

(
∂v

∂T

)

P

κ
T = −1

v

(
∂v

∂P

)

T

Cv = T

(
∂s

∂T

)

v
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Using the chain rule gives

(
∂P

∂T

)

v

(
∂T

∂v

)

P

(
∂v

∂P

)

T

= −1

we have

α

kT
=

1
V

(
∂V
∂T

)

P

− 1
V

(
∂V
∂P

)

T

=
(

∂V
∂T

)

P
1

( ∂P
∂T )V (

∂T
∂V )P

=
(

∂V

∂T

)

P

(
∂P

∂T

)

V

(
∂T

∂V

)

P

=
(

∂P

∂T

)

V

Inspecting the right-hand side of the above equation, we see that T and v are
variables. This leads us to think about the specific Helmholtz potential, f (T, v). From

df = −sdT − Pdv

Maxwell Relation in the df function is

(
∂P

∂T

)

v

=
(

∂s

∂v

)

T

That leads to:

α

κ
T

=
(

∂s

∂v

)

T

Then,

[
∂

∂T

(
α

κT

)]

v
=

[
∂

∂T

(
∂s

∂v

)

T

]

v
=

[
∂

∂v

(
∂s

∂T

)

v

]

T
=

[
∂

∂v

(
Cv

T

)]

T
= 1

T

(
∂ Cv

∂v

)

T

That is

T

[
∂

∂T

(
α

κ
T

)]

v

=
(

∂ Cv

∂v

)

T

(b) Solution: Because

αv =
(

∂v

∂T

)

p

inspecting the right-hand side of the above equation,we see thatT andP are variables.
This leads us to think of the specific Gibbs potential, g (T, P). From

dg = −sdT + vdP
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we have the following Maxwell relation:

(
∂v

∂T

)

P

= −
(

∂s

∂P

)

T

Thus
[

∂

∂T
(αv)

]

P

= −
[

∂

∂T

(
∂s

∂P

)

T

]

P

= −
[

∂

∂P

(
∂s

∂T

)

P

]

T

= −
[

∂

∂P

(
CP

T

)]

T

= − 1

T

(
∂ CP

∂P

)

T

Finally,

−T

[
∂

∂T
(αv)

]

P

=
(

∂ CP

∂P

)

T

(c) Solution: Because

Cp −Cv = T

[(
∂s

∂T

)

P

−
(

∂s

∂T

)

v

]

The differential of the specific entropy may be written as

ds =
(

∂s

∂T

)

v

dT +
(

∂s

∂v

)

T

dv

(
∂s

∂T

)

P

=
(

∂s

∂T

)

v

+
(

∂s

∂v

)

T

(
∂v

∂T

)

P

Therefore,

CP −Cv = T

(
∂s

∂v

)

T

(
∂v

∂T

)

P

From

df = −sdT − Pdv

we have
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(
∂s

∂v

)

T

=
(

∂P

∂T

)

v

It follows

CP −Cv = T

(
∂P

∂T

)

v

(
∂v

∂T

)

P

Using the partial differential identity:

(
∂P

∂T

)

v

= −
(

∂v
∂T

)

P(
∂v
∂P

)

T

we finally have

Cp −Cv = −T

(
∂v
∂T

)

P

(
∂v
∂T

)

P(
∂v
∂P

)

T

= Tvα2

κ
T

Example 2: Prove the following equations for a simple compressible system:

du = Cv dT +
[
αT
κ
T

− P

]

dv

Solution: Assuming u = u (T, v), we have

du =
(

∂u

∂T

)

v

dT +
(

∂u

∂v

)

T

dv

Using du = Tds − Pdv.
We have

(
∂u

∂T

)

v

= T

(
∂s

∂T

)

v

−P

(
∂v

∂T

)

v

= T

(
∂s

∂T

)

v

−0 = Cv

(
∂u

∂v

)

T

= T

(
∂s

∂v

)

T︸ ︷︷ ︸

−P = T

(
α

κ
T

)

− P

α

κ
T

=
(

∂s

∂v

)

T

Combining the above two equations with the 1st equation, we will have

du = Cv dT +
(
Tα

κ
T

− P

)

dv
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Example 3: Show
[

∂P
∂v

]

s
= −CP

Cv κT V .

Solution: For a simple system with a fixed mass, from

dF = −SdT − PdV

the Maxwell relations is
(

∂S

∂V

)

T

=
(

∂P

∂T

)

V

From

dG = −SdT + VdP

the Maxwell relations is

−
(

∂S

∂P

)

T

=
(

∂V

∂T

)

P

Recall

α = 1

V

(
∂V

∂T

)

P

κT = − 1

V

(
∂V

∂P

)

T

We will need to use the above relationships in the following derivation. Because

(
∂P

∂V

)

s,

=
(

∂P

∂T

)

s,

(
∂T

∂V

)

s,

(
∂T

∂V

)

s

= −
(

∂S
∂V

)

T(
∂S
∂T

)

V

= −
(

∂P
∂T

)

V
Cv
T

=
(

∂P
∂V

)

T
Cv
T

(
∂T
∂V

)

P

= − Tα

Cv κT

(
∂P

∂T

)

s

= −
(

∂S
∂T

)

P(
∂S
∂P

)

T

= −
Cp

T

− (
∂V
∂T

)

P

= CP

TVα

Finally,

(
∂P

∂V

)

s

=
[

CP

TVα

][ −Tα

Cv κT

]

= − CP

VCv κT
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1.11 Thermodynamic Characteristics of Dielectric Media

Application of Maxwell Relations

Dielectric materials include plastics, organic liquids, water (including aqueous elec-
trolyte solutions) and gases. A dielectric material is poor electrical conductor and
can be polarized by an applied electric field. Molecules of many dielectric mate-
rials are permanently polarized due to their asymmetrical molecular structure. A
simple example is HCl. The permanent dipoles will be aligned with the externally
applied electric field (dipole re-orientation). Dielectric materials containing symmet-
rical molecules or atoms can also become polarized when exposed to an electrical
field, resulting from the relative displacement of orbital electrons, such as the case
of He. That is, when a dielectric is under an electric field, electric charges will be
shifted a little from their equilibrium positions. Positive charges move towards the
negative electrode and negative charges move towards the positive electrode (local
charge migration). This is called the polarization. Therefore, in the presence of an
external electrical field, molecules of all dielectric materials have a dipole (i.e., are
polarized). When we consider a dielectric material in an applied electric field, we
must consider the electric work due to the interaction of the molecular dipole with
the applied electric field.

The differential form of the fundamental equation for a dielectric medium is:

dU = TdS − P0 dV + V

4π

⇀

E · d⇀

D

where
⇀

E is the applied electrical field strength,
⇀

D is the dielectric displacement, P0
is the pressure. It should be noted that

⇀

D = ⇀

E + 4π
⇀

P,

where
⇀

P is the polarization density per unit volume, and these properties (
⇀

D,
⇀

E and
⇀

P) are vectors. For simplicity, let us assume that
⇀

E and
⇀

P are in the same direction;
then we have

dU = TdS − P0 dV + Vd

(
E2

8π

)

+ VEdP

where P0 is the pressure, and P and E are the scalar polarization density and electric
field strength.

Define the Gibbs free energy function for such a dielectric material as:

G = U − TS + P0 V

dG = dU − TdS − SdT + P0 dV + VdP0
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It follows that

dG = −SdT + VdP0 +Vd

(
E2

8π

)

+ VEdP

Define a new parameter (P with a hat ˆ):

�

P = P0 + E2

8π
+ EP

d
�

P = dP0 +d

(
E2

8π

)

+ EdP + PdE

or

Vd
�

P = VdP0 +Vd

(
E2

8π

)

+ VEdP + VPdE

Thus dG equation can be rewritten as

dG = −SdT + Vd
�

P − VPdE

That is,

G = G(T,
�

P,E)

From the dG equation, we have the following Maxwell relations:

[
∂(VP)

∂
�

P

]

T,E

= −
(

∂V

∂E

)

T,
�
P

Note that because

⇀

D = ⇀

ε · ⇀

E (or D = εE) and
⇀

D = ⇀

E + 4π
⇀

P,
⇀

P = χ
⇀

E

whereχ is the electrical susceptibility and ε is the dielectric constant, therefore, when
E = constant,

P = constant and D = constant

and hence, from

d
�

P = dP0 +d

(
E2

8π

)

+ EdP + PdE,
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we have

d
�

P = dP0 at E = constant

Therefore, the above Maxwell relation becomes:

[
∂(VP)

∂ P0

]

T,E

= −
(

∂V

∂E

)

T,
�
P

The term on the right and side of the above equation,
(

∂V
∂E

)

T,
�
P
is called the elec-

trostriction, which means that a change of the volume occurs when an electric field

is applied. On the left hand side, (VP) is the total electric polarization, and
[

∂(VP)

∂P0

]

T,E
implies that the electric property changes when the applied pressure changes.

Another important Maxwell relation can be derived from

dG = −SdT + Vd
�

P − VPdE.

[
∂(VP)

∂T

]

�
P,E

=
(

∂S

∂E

)

T,
�
P

Using the chain rule, we have

(
∂S

∂E

)

T,
�
P

= −
(

∂S

∂T

)

E,
�
P

(
∂T

∂E

)

S,
�
P

Let us also define a molar heat capacity at both E and
�

P = constant as

C
E,

�
P

= T

(
∂S

∂T

)

E,
�
P

We know P = constant when E = constant. From the definition of
�

P, if
�

P =
constant also, then, P0 = constant. Therefore,

C
E,

�
P

= CE,P0

(
∂S

∂E

)

T,
�
P

= −CE,P0

T

(
∂T

∂E

)

S,
�
P

Finally, the second Maxwell relation becomes
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[
∂(VP)

∂T

]

E,P0

= −CE,P0

T

(
∂T

∂E

)

S,
�
P

The term on the left hand side of the above equation is called the Pyro-Electric
effect that means the thermal-electric effect. The right hand side term is called the
Electro-Caloric effect that means the change of the temperature by applying an
electric field.

1.12 Introduction to Thermodynamic Stability

As we have shown, we can use either the entropy maximum principles or the energy
minimum principle to find the equilibrium conditions of a thermodynamic system.
So far, we have discussed only about the equilibrium conditions. In this section, we
will explore the conditions required for a stable equilibrium.

For an isolated system in a stable equilibriumstate, the entropymaximumprinciple
requires

dS|U = 0 Equilibrium condition

�S|U < 0 Stable equilibrium condition

Consider that the entropy function at an equilibrium state is given by

S = S(X1,X2, . . .Xn) = S({Xi})

where the set of variables Xi specifies an equilibrium state. Applying the Taylor
expansion to the entropy function around such an equilibrium state, we have

S({Xi +�Xi}) = S({Xi}) + �
∂S

∂ Xi
�Xi +1

2
��

∂2 S

∂ Xi ∂ Xj
�Xi �Xj + · · ·

small variation equilibrium

from the original state

equilibrium state

Let �S = S({Xi +�Xi}) − S({Xi}).
The Taylor expansion can be rewritten as:

�S = �

(
∂S

∂ Xi

)

�Xi +1

2
��

(
∂2 S

∂ Xi ∂ Xj

)

�Xi �Xj + · · ·
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In the derivation below, let us assume that the higher order terms in the above
Taylor series are negligible, and we keep only the first-order derivatives and the
second-order derivatives in the Taylor series.

As we know, at a stable equilibrium state ({Xi}), there must be:

S|U = S({Xi})|U = Smaximum|U
and

�S = S({Xi +�Xi}) − S({Xi}) < 0

From the basic calculus, the above condition requires

Equilibrium condition

∑(
∂S

∂Xi

)

�Xi = 0

Stability condition

�S|U = 1

2
��

(
∂2 S

∂ Xi ∂ Xj

)

�Xi �Xj < 0.

For example, a simple system has

S = S(U,V)

The explicit form of the stability condition

�S = 1

2
��

(
∂2 S

∂ Xi ∂ Xj

)

�Xi �Xj < 0

is given by

�S = 1

2

{(
∂2 S

∂ U2

)

(�U )2 +
(

∂2 S

∂ V2

)

(�V )2 +2

[
∂2S

∂U∂V

]

�U�V

}

< 0

Mathematically, according to the theory of quadratic functions, we can show that
�S < 0 requires:
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(
∂2 S

∂ U2

)

V

< 0

(
∂2 S

∂ V2

)

U

< 0

(
∂2 S

∂ U2

)(
∂2 S

∂ V2

)

−
(

∂2 S

∂U∂V

)2

> 0

Using theMaxwell relations, we can find outwhat these stability conditions imply.

For example,
(

∂2 S
∂ U2

)

V
< 0 ⇒ −N

T2CV
< 0, ⇒ CV > 0.

Similarly, consider that the internal energy function at an equilibrium state is given
by

U = U(X1,X2, . . .Xn) = U({Xi})

where the set of variables Xi specifies an equilibrium state. Applying the Taylor
expansion to the energy function around such an equilibrium state and neglecting
high order terms, we have

U ({Xi +�Xi}) = U ({Xi}) + �
∂U

∂ Xi
�Xi +1

2
��

∂2 U

∂ Xi ∂ Xj
�Xi �Xj + . . .

small variation equilibrium

from the original state

equilibrium state

Let �U = U ({Xi +�Xi}) − U ({Xi}).
The Taylor expansion can be rewritten as:

�U = �

(
∂U

∂ Xi

)

�Xi +1

2
��

(
∂2 U

∂ Xi ∂ Xj

)

�Xi �Xj + · · ·

According to the energy minimum principle, the stable equilibrium conditions in
terms of energy are given by

dU |S = 0 Equilibrium condition

�U |S > 0 Stable equilibrium condition

The equilibrium condition requires:

∑(
∂U

∂Xi

)

�Xi = 0

The stable equilibrium condition requires:
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�U = 1

2
��

(
∂2 U

∂ Xi ∂ Xj

)

�Xi �Xj > 0

The above equation is a quadratic function of real variables, we can further
translate it as

�U = �� aij �Xi �Xj = {�Xi }T[A]{�Xj} = XT A X > 0

where

A = [aij] and aij =
(

∂2 U

∂ Xi ∂ Xj

)

X = {�Xi} (row vector), XT is the transpose row vector.

For a positive quadratic function (�U), it requires that

aii = ∂2 U

∂ X2
i

> 0

and the determinant

∣
∣
∣
∣
∣
∣

a11 . . . a1κ
. . . . . . . . .

aκ1 . . . aκκ

∣
∣
∣
∣
∣
∣
> 0 for all k = 1, 2, . . . n

For example: a simple system has U = U(S,V). The aii terms in the stability
conditions are (using the Maxwell relations):

∂2 U

∂ S2

∣
∣
∣
∣
V

= ∂T

∂S

∣
∣
∣
∣
V

= T

NCV

> 0, CV > 0

∂2 U

∂ V2

∣
∣
∣
∣
S

= − ∂P

∂V

∣
∣
∣
∣
S

= 1

VKS

> 0, KS > 0

.

The determinant term is

(
∂2 U

∂ S2

)(
∂2 U

∂ V2

)

−
(

∂2 U

∂S∂V

)2

= T

NCV

1

VKS

−
[(

TVα

NCP

)( −1

VKS

)]2

> 0.
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1.13 Phase Change and Clapeyron Equation

In this section, we will discuss the phase change phenomena involved in multi-
component and multi-phase systems, such as a solid–liquid-vapor three-phase
system. The phase changes examined here are the so-called first-order phase change,
because these phase changes involve latent heat Δh and the specific volume
change Δv. Why do we call this kind of phase change the first-order phase change?
We will explain it in a late section.

Chemical potential is the key parameter in the studies of phase change. Let us
consider a multi-component, two-phase (liquid–vapor) system in a piston-cylinder
arrangement, as illustrated in the figure below. The system undergoes phase change
and reaches an equilibrium at T = constant and P = constant. We use the Gibbs
potential to model this system.

G = GV + GL =
∑

μviNvi+
∑

μLiNLi

dG =
∑

μvidNvi+
∑

μLidNLi

T, P 

Liquid 

Vapor  

Because the total mass of this system is constant,

Nvi + NLi = constant

dNvi = −dNLi

dG =
∑

(μLi − μvi)dNLi
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At equilibrium, the Gibbs potential should be minimum, i.e.,

dG = 0.

It follows:

μLi = μvi (i = 1, 2, . . . r)

This is the phase change equilibriumcondition between amulti-components liquid
phase and a multi-components vapor phase.

Because the equilibrium condition of this phase change requires to minimize the
total Gibbs potential of the system, that is

dG < 0

If (μLi − μvi) > 0, it follows dNLi < 0.
This means: mass transfers from the phase of higher chemical potential μ (the

liquid phase in this case) to the phase of lower chemical potential μ (the vapor phase
in this case). That is, the liquid molecules are transferred into the vapor phase, when
μLi > μVi.

P 

T 

Solid 
phase 

Liquid 
phase 

Vapor 
phase 

Liquid-vapor two-phase  
Equilibrium line 

Solid-liquid two-phase  
Equilibrium line 

Solid-vapor two-phase  
Equilibrium line 

Triple point (solid-
liquid-vapor three 
phase coexisting state) 

The phase equilibrium states can be presented in terms of a phase diagram.
For example, the phase diagram of water is illustrated above. Each line in this
diagram represents two-phase equilibrium states or two-phase coexisting states. It
should be noted that the curves on the phase diagram are empirically measured.
Thermodynamics can predict only the slope of these curves.

Clapeyron Equation

Consider a single-component, liquid–vapor two-phase system at equilibrium.
Because μL = μv and dμL = dμv.
and we know
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dμL = −sLdT + vLdP

and

dμV = −sV dT + vV dP

We have (sV − sL)dT = (vV − vL)dP
or

dP

dT
= sV − sL

vV − vL

It should be realized that dP/dT in the above equation is the slope of the Liquid–
vapor two-phase equilibrium curve in the phase diagram illustrated above.

Because μ = u − Ts + Pv = h − Ts and μL = μv,

We have (h − Ts)L = (h − Ts)V
or

hV − hL = T (sV − sL)

By definition, the latent heat of evaporation is the difference between the enthalpy
of the saturated vapor and the enthalpy of the saturated liquid,

L = hV − hL

Therefore, from the above equation, we have

(sV − sL) = L

T

Finally,

dP

dT
= L

T (vV − vL)
∼= L

T vV
(Note here vL << vV ).

This equation is called the Clapeyron Equation.
The Clapeyron Equation indicates the dependence of equilibrium pressure on

temperature for liquid–vapor two-phase equilibrium.
If we assume that the vapor phase is an ideal gas, i.e., Pv = RT,

dP

dT
= LP

RT 2
→ dP

P
= L

RT 2
dT

We can show, after integration,
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P = C exp

[

− L

RT

]

C = P0 exp[−L/RT0]

where T0 and P0 are the temperature and pressure of the triple point.

Example: At one atmosphere pressure, i.e., P = 101.41 kPa, water boils at
T = 100 °C = 373.15 K. The latent heat of evaporation is L = 2256.4 kJ/kg, the
specific volume of water vapor is vv = 1.6720 m3/kg. From the Clapeyron equation,
we have.

dP

dT
= L

TvV
= 2256.4

373.15 × 1.672
= 3.616

The above equation may be approximated as:

�T ≈ �P

3.616

If the top of a mountain is 995 m above the sea level, and the air pressure at this
mountain top is about 90 kPa, the pressure drop in comparison with the pressure at
the sea level (P = 101.41 kPa) is 11.41 kPa. Using the above equation, it follows

�T ≈ �P

3.616
= −11.41

3.616
= −3.15 ◦C

This means that, if you boil water at the top of this mountain, the water will boils
at about 96.8 °C, instead of 100 °C.

Following a similar derivation, for the solid–liquid two-phase equilibrium, we can
show:

dP

dT
= Lmelting

T (vL − vS)

where Lmelting is the latent heat of ice melting. For water, vS = vice > vL, therefore,

dP

dT

∣
∣
∣
∣
ice−liquid

= Lmelting
T (vL − vS)

< 0

Example: Let us consider water as an example. Water freezes at 0 °C (273.15 K) and
1 atm pressure. At 0 °C (273.15 K) and 1 atm pressure, the latent heat of ice melting
is Lmelting = 334 kJ/kg, the specific volume of ice is vice = 0.00109 m3/kg, and the
specific volume of liquid water is vliquid = 0.00100 m3/kg.

dP

dT
= Lmelting

T (vL − vS)
= 334

273.15 × (0.00100 − 0.00109)
= −13586.3
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The above equation may be approximated as:

�T ≈ �P

−13586.3

From this equation, we see that, unless you apply enormous pressure (e.g., several
hundreds of atmosphere pressure), the ice-water equilibrium temperature or the
melting temperature of ice will not change appreciably.

1.14 Chemical Potentials

As we discussed previously, the chemical potential is a key parameter in determining
the phase equilibrium andmass transfer. In the following wewill first introduce some
explicit forms of the chemical potentials for simple and idealized systems. As will
be demonstrated later on, these simple explicit forms of the chemical potentials are
very useful tools in determining the equilibrium conditions of coexisting phases. We
will also analyze the boiling point and the freezing point of ideal (dilute) solutions
by using the expressions of chemical potentials in the next section.

Chemical potential of incompressible, pure liquids

Consider a single component, incompressible liquid. From the Gibbs–Duhem
equation,

dμ = −sdT + vdP

we have
[
∂μ

∂P

]

T

= v

For an incompressible liquid, the specific volume v is a constant. Integration of
the above equation while keeping T constant gives:

μL(T ,P) = vLP + f (T )

where f (T) is the integration constant, because the above integration is carried out
at a given temperature T, therefore, it is a function of temperature T.

Let P∝ be a reference pressure at the temperature T. The above equation leads to

μL(T ,P∞) = vLP∞ + f (T )

From this equation, we can determine the unknown function f (T ) as
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f (T ) = μL(T ,P∞) − vLP∞

Finally, the chemical potential of the incompressible, pure liquid at a given state
(T, P) can be expressed as:

μL(T ,P) = μL(T ,P∞) + vL(P − P∞)

In the above, the subscript L indicates the liquid.

Chemical potential of pure ideal gases

Consider a single component ideal gas. From the ideal gas law,

Pv = RT

whereR is the universal gas constant (R= 8.314 kJ/kmolK). From theGibbs–Duhem
equation,

dμ = −sdT + vdP

we have
[
∂μ

∂P

]

T

= v = RT

P

Integrating the above equation while keeping T constant yields

μg(T ,P) = RT lnP + g(T )

where the subscript g denotes gas, and g (T) is the integration constant.
Let P∝ be a reference pressure at the temperature T. The above equation leads to

μg(T ,P∞) = RT lnP∞ + g(T )

From this equation, we can determine the unknown function g(T) as

g(T ) = μg(T ,P∞) − RT lnP∞

Finally, the chemical potential of a pure ideal gas at a given state (T, P) can be
expressed as:

μg(T ,P) = μg(T ,P∞) + RT ln
P

P∞
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Chemical potential of dilute solutions

Consider a dilute solution of two components, and use the subscript 1 to denote the
solvent and the subscript 2 to denote the solute. Let the mole fraction be x, defined
as

x = N2

N1 + N2

where N1 and N2 are the mole numbers of the solvent and the solute, respectively.
For a dilute solution, x << 1, and N2 << N1, therefore, x ∼= N2

N1
.

Consider a dilute solution obeys Raoult’s law:

P2 = x P∗

Here P2 is the partial vapor pressure of the solute above the solution, x is its mole
fraction of the solute and P* (T) is the equilibrium vapor pressure of the pure solute
at the same temperature.

Realizing that the chemical potential of the solute in the liquid phase is equal to
the chemical potential of the solute in the vapor phase at equilibrium, and assuming
that the vapor phase behaviors as an ideal gas, we have

μ2(T ,P) = μ2(T ,P∞) + RT ln
P2

P∞

Substituting P2 by using Raoult’s law yields:

μ2(T ,P) = μ2(T ,P∞) + RT ln
xP∗

P∞
= μ2(T ,P∞) + RT ln

P∗

P∞
+ RT ln x

Group the 1st two terms together

ψ(T ) = μ2(T ,P∞) + RT ln
P∗(T )

P∞

The chemical potential of the solute in the dilute solution is given by:

μ2(T ,P) = ψ(T ) + RT ln x

where ψ(T ) is a property of the pure solute at the given state (T ).
Consider the vapor of the solvent is an ideal gas.

μ1(T ,P) = μ1(T ,P∞) + RT ln
P1

P∞

where P1 is the partial vapor pressure of the solvent in the vapor phase.
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In a mixture of gases, each gas component has a partial pressure which is the
assumed pressure of that gas if it alone occupied the volume of the gas mixture at
the same temperature. The partial pressure of a gas is the pressure exerted by a gas
component in the volume occupied by the gas mixture.

The vapor phase is a mixture, containing both the solvent vapor and the solute
vapor. The partial vapor pressure of the solvent is given by:

P1 =
(

N1

Ntotal

)

Ptotal =
(
Ntotal − N2

Ntotal

)

Ptotal = (1 − x)Ptotal

Let Ptotal = P∞,

μ1(T ,P) = μ1(T ,P∞) + RT ln
(1 − x)P∞

P∞
= μ1(T ,P∞) + RT ln(1 − x)

Because, when x << 1.

Ln(1 − x) ≈ −x

finally, the chemical potential of the solvent can be expressed as:

μ1(T ,P, x) = μ0
1(T ,P) − xRT

whereμ0
1(T ,P) is the chemical potential of the pure solvent at the given state (T, P),

R is the universal gas constant, T is the given temperature, and x is the mole fraction
of the solute in the dilute solution.

Example: Consider a composite system consisting of two subsystems, as illustrated
in the figure below. In subsystem A, there is a dilute aqueous solution consisting of
water and a salt (NaC1). There is only water in subsystem B. However, the water is
present in two phases (i.e., liquid and vapor) in subsystem B. Assume that the total
volume and the total mass of the system are constant. The system is surrounded by
a thermal reservoir. The constraints for the combined system (the system and the
reservoir) are:

U + UR = constant

Ni = constant, i = 1, 2, ...r

VTotal = constant

The internal constraints are

(1) The subsystems are separated by a rigid partition so that the volumes of the
subsystems are constant, i.e., VA = constant, VB = VBL + VBV = constant.

(2) The partition is semi-permeable, and only water molecules can pass through
the partition, i.e., NAW + NBW = constant.
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A B 

NWNW

Thermal Reservoir 

Liquid water 

Vapor water 
Dilute Solution 
(H20 + NaCl) 

In the above, the subscripts A and B stand for the subsystem A and subsystem
B; the subscript W stands for water; and the subscripts L and V stand for liquid and
vapor.

In a previous section, we have demonstrated that the equilibrium conditions for
this system are the following:

PLB = PVB
μAW = μL

BW = μV
BW

As seen from these equations, it seems that the equilibrium conditions did not
reveal any information about the pressure in the subsystem A. Now, we wish to
determine the pressure in the subsystem A, PA.

Solution: First, since the subsystem A and the subsystem B are separated by a
rigid partition, there is no volume exchange between the two subsystems, and hence
it seems that the pressure of the subsystem A is independent of the subsystem
B. However, it should be realized that the only connection between subsystem A
and subsystem B is the exchange of water molecules through the semi-permeable
partition. Therefore, we will use the chemical equilibrium condition

μAW = μL
BW = μV

BW

as the starting point.
Because

μAW = μL
BW

note that the chemical potential of pure liquid water in the subsystem B is:

μL
BW = μ0

W (T ,PL
B) = μ0

W (T ,P∞)
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where

PL
B = P∞ = Psaturation@T

is the equilibrium water vapor pressure at the given temperature (i.e., the thermal
reservoir’s temperature).

The chemical potential of water in the solution (i.e., subsystem A) is given by:

μAW = μ(T ,PA, x) = μ0
W (T ,PA) − RTx = μ0

W (T ,P∞) + vW (PA − P∞) − RTx

Using the chemical potential equality relationship,

μAW = μL
BW

we have

μ0
W (T ,P∞) + vW (PA − P∞) − RTx = μ0

W (T ,P∞)

This results in

vW (PA − P∞) = RTx

That is,

PA = RTx

vW
+ P∞

where vW is the specific volume of the liquid at the given temperature T, R is the
universal gas constant, x is the mole fraction of the solute in the solution, and

P∞ = PL
B = Psaturation@T

The pressure in the subsystem A is determined in this way. Clearly, one can see
from the above equation,

(1) PA is larger than the pressure in the subsystem B, P∞, and
(2) PA increases with the mole fraction, x, of the salt in the solution.

One may think about what will happen if the partition separating the two subsys-
tems is allowed to move. How will this affect the pressures in subsystem A and in
subsystem B?

If the above system is a biological cell, the separating membrane may have
a limited strength to sustain a high pressure difference (at a high x) across the
membrane. Let us evaluate the pressure difference across the cell membrane.
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Consider a cell suspended in an electrolyte solution, as shown in the figure below.
The mole fraction of the electrolyte inside the cell is xcell, and the mole fraction of
the electrolyte outside the cell is xsol.

Cell membrane 

T, Psol , xsol

Electrolyte 
solution 

T, Pcell , xcell

Inside of the cell 

Water 
molecules 

Water 
molecules 

Since the cell membrane allows water molecules to pass through, we will use the
chemical equilibrium condition:

μw−cell = μw−solution

or

μw−c = μw−s

to find the correlation between the pressure inside the cell and the pressure outside
the cell.

The chemical potentials of water molecules of the electrolyte solutions inside the
cell and outside the cell are given by:

μw−c = μw−c(T ,Pc, xc) = μo
w(T ,Pc) − RTxc = μo

w(T ,P∞) + vw(Pc − P∞) − RTxc

μw−s = μw−s(T ,Ps, xs) = μo
w(T ,Ps) − RTxs = μo

w(T ,P∞) + vw(Ps − P∞) − RTxs

In the above equations, the subscript c stands for the cell; the subscript s stands for
the solution outside the cell. Inserting these equations into the chemical equilibrium
condition yields:

vw(Pc − P∞) − RTxc = vw(Ps − P∞) − RTxs

(Pc − Ps) = RT

vw
(xc − xs)
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From the above equation, we see clearly that the pressure difference across the
membrane (also called the osmotic pressure), (Pc – Ps), is proportional to difference
of the mole fractions of the electrolyte across the membrane, (xc – xs). If the mole
fraction difference is small, the pressure difference is small. If the mole fraction
difference is large, the pressure difference is large. For a given mole fraction of the
electrolyte inside the cell, if the mole fraction of the electrolyte in the surrounding
liquid is low, (xc – xs) will be large. In the extreme case, the surrounding liquid is pure
water, i.e., xs = 0, this may result in a pressure difference too large to be tolerated by
the membrane. That is why one may see that a blood cell will burst in a pure water
environment.

Home work

1. A two-component gas is enclosed in a closed rigid cylinder. The fundamental
equation of a two-component gas is given by:

S = NA + NR ln
U 3/2V

N 5/2
− N1R ln

N1

N
− N2R ln

N2

N
N = N1 + N2

where A is a constant, R is the gas constant, N1, N2 are the mole numbers of
component 1 and component 2, respectively; N is the total mole number of
the gas; S and U are entropy and internal energy, respectively. The cylinder
with a volume of 10 L is divided into two chambers of equal volume by a
diathermal rigid membrane. The membrane is permeable to the 1st component
only. Chamber A initially has N1A = 0.5, N2A = 0.75, TA = 300 K. Chamber
B initially has N1B = 1.0, N2B = 0.5, TB = 250 K. After the equilibrium is
established, what are the values of T, N1A, N1B, PA and PB?

2. Consider a piston-cylinder arrangement that contains a vertical, small diameter
tube as shown in the figure below. The system is in contact with a thermal
reservoir. The tube contains a dilute solution with a non-volatile solute and
the mole fraction is x < < 1. The liquid phase and the vapor phase outside
the tube consist of only one component, the solvent. The wall of the tube is
permeable only to the solvent. Neglecting the surface tension effect, assuming
that vapor pressure is constant everywhere in the cylinder, and the density is
constant within each phase. Find

(1) Equilibrium conditions.
(2) The height of the liquid column in the tube above the liquid–vapor interface

outside the tube when the system is in equilibrium (hint: consider the chemical
potential equilibrium condition at the position of the liquid–vapor interface
across the tube).
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1.15 Boiling Temperature and Freezing Temperature
of Dilute Solutions

Question: At one atmosphere pressure, can you make water boil at a temperature
higher than 100 °C? Can youmake water freeze at a temperature well below 0 °C?
How and why?
Question: Two kettles have the same amount of water and are put on a stove to
make boiling water. If one puts a bit of salt in one kettle, which kettle will boil
first?
Question: Do you know why snow salt can melt snow?

Let us see if we can answer these questions by using the expressions of chemical
potentials given in the last section. Consider a dilute solution containing a solute in
equilibrium with its vapor phase. The liquid and the vapor are enclosed in a piston-
cylinder arrangement and in contact with a pressure reservoir, as illustrated below.
Consider the solute is non-volatile so that the vapor phase contains only the solvent
molecules. From the Gibbs–Duhem equation, the differential form of the chemical
potential of the vapor phase is given by:

dμv
1 = −sv1dT + vv1dP = −sv1dT as dP = 0



66 1 Basics of Analytical Thermodynamics

The chemical potential of the solvent in the solution (liquid phase) is given by:

μL
1(T ,P, x) = μ0L

1 (T ,P) − RTx

and

dμL
1 = dμ0L

1 − d(RTx) = −sL1dT + vL1dP − RxdT − RTdx

In the above, the subscript 1 and the subscript 2 represent the solvent and the
solute, respectively; the superscript L and v stand for the liquid phase and the vapor
phase, respectively; R is the universal gas constant, and x is the mole fraction of the
solute in the solution.

Because dP = 0, the differential form of the chemical potential of the solvent in
the solution is reduced to:

dμL
1 = −sL1dT − RxdT − RTdx

At the phase equilibrium, we must have:

μL
1 = μv

1 or dμL
1 = dμv

1

This leads to:

−sL1dT − RxdT − RTdx = −sv1dT

The above equation can be rearranged as
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(sv1 − sL1)dT = RxdT + RTdx

Note that the latent heat of evaporation is

L = T (sv1 − sL1),

thus,

L

T
dT = RxdT + RTdx

(
L

T
− xR

)

dT = RTdx

dT

dx
= RT

L
T − xR

It should be realized that we are dealing with the liquid–vapor phase equilib-
rium, the temperature involved in the above equations is the liquid–vapor two phase
equilibrium temperature, or the boiling temperature,

T = Tbp = Tvap-liq equilibrium

where the subscript bp stands for boiling point temperature.
Therefore, we may replace T by Tbp in the above equation, i.e.,

dTbp
dx

= RTbp
L
Tbp

− xR

Generally, L
Tbp

>> xR, thus the above equation can be approximated as

dTbp
dx

= RT 2
bp

L
> 0

This equation shows the dependence of the boiling temperature of a dilute solution
on the mole fraction of the solution. Since the right-hand side of the equation is
positive, it implies that Tbp increases with the increase of x. In other words, an
increase in the amount of the solute or impurity in a solution will increase the boiling
temperature of that solution. For example, at 1 atm pressure, pure water boils at
100 °C; however, tap water (with impurity) will boil at a temperature slightly higher
than 100 °C.

For freezing and melting phenomena, we can derive the dependence of freezing
temperature Tf on the solute mole fraction in a similar way. We can show
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dTf
dx

= −RT 2
f

Lhm
< 0

where Lhm is the latent heat of melting. It should be noted that there is a negative sign
on the right-hand side of this equation. Because the right-hand side of the equation
is negative, it implies that the freezing temperature Tf decreases with the increase
of x. In other words, an increase in the amount of the solute or impurity in a solution
will lower the freezing temperature of that solution. For example, at one atmosphere
pressure, pure water freezes at about 0–4 °C; however, if some solute such as alcohol
(e.g., methanol, or ethylene glycol) is added to water to form a solution, the solution
will freeze at a temperature lower than the normal freezing temperature of water.

Take water at 1 atm pressure as an example. L = 40,626 kJ/kmol, Lhm =
6030.87 kJ/kmol, the boiling point and the freezing point of pure water are:
T0

bp = 373 K, and T0
f = 273 K, respectively.

dTbp
dx

= RT 2
bp

L
= 8.314 × (373)2

40626
= 28.47

�Tbp
∼= 28.47 × �x

If we add some solute into the water and change the solute mole fraction from
initially zero to �x = 10% − 0 = 10%, we will have �Tbp ∼= 2.85 ◦C. That is, the
boiling temperature of the solution will be 2.85° higher than that of the pure water.

Similarly,

dTf
dx

= −RT 2
f

Lhm
= −8.314 × (273)2

6030.87
= −102.8

�T f
∼= −102.8 × �x

If we add some solute into the water and change the solute mole fraction from
initially zero to �x = 10% –0 = 10%, we will have �Tf ∼= −10.28 ◦C. That is, the
freezing temperature of the solution is approximately 10.3° lower than that of the
pure water.

Home Work

(1) A pure liquid is in equilibrium with its vapor phase initially at T0 and P0.
They are placed in a piston cylinder arrangement and in contact with a thermal
reservoir (T0).

(a) Prove that a thermodynamic potential functionmust beminimum in order
for equilibrium to exist.

(b) A small amount of nonvolatile solute is added to the liquid to form a
dilute solution (i.e., the mole fraction of the solute x << 1). Assume that
the vapor is an ideal gas. Find the relationship between the original and
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the new equilibrium vapor pressures as a function of the mole fraction of
the solute (hint: you may use the original vapor pressure as a reference
pressure in the chemical potential function).

(2) The boiling point of a liquid is defined as the temperature Tbp. Assume a liquid
phase is in contact with its vapor and both are contained in a cylinder that is
closed by a freely moving piston. The cylinder is surrounded by a pressure
reservoir.

(a) If the liquid contains a non-volatile solute component, derive and
show what conditions must the intensive properties satisfy in order for
equilibrium to exist?

(b) Assume the liquid is an ideal aqueous solutionwith one solute component
and the mole fraction is x << 1. Derive the expression of the boiling
temperature.

(c) If initially the cylinder contains only pure water at its boiling point and
then a non-volatile solute is added to the liquid.Whatwill be the direction
ofmass transport at the liquid–vapor interface?Whatwill be the direction
of energy transport at the cylinder-reservoir boundary?

Vapor 

Liquid 

P = 1 atm 

1.16 Gibbs Phase Rule

The equilibrium states of a multi-component, multi-bulk-phase system obey the
Gibbs phase rule. For a given number of coexisting phases, the phase rule predicts
the number of degrees of freedom or the number of independent intensive variables
required to describe the equilibrium state of the system. In other words, for a given
number of independent variables, the phase rule predicts the maximum number of
coexisting phases.
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The Gibbs phase rule is given by

f = r + 2 − n (or n = r + 2 − f )

where f is the number of degrees of freedom or the number of independent intensive
variables, r is the number of independent chemical components in the system, and n
is the number of coexisting phases in the system.

Generally, when a multiphase system is in equilibrium, every phase in the system
must reach equilibrium. However, equilibrium of a multiphase system requires
additional equilibrium conditions between the phases to be satisfied.

Now let us see how to derive the Gibbs phase rule. Because the number of degrees
of freedom is different for different systems, the general way to derive the phase rule
(or to count for the degrees of freedom) is:

The Number of degrees of freedom

= The number of variables − The number of constraints

First, let us consider a simple, single phase:
According to the postulate I, the equilibrium state of such a simple and single

phase can be completely characterized by (r + 2) independent extensive variables,
for example,

(S,V,N1, . . .Nr),

where r is the number of independent chemical components in the system.
Correspondingly, there are (r + 2) intensive variables,

(T,P,μ1, . . . μr)

However, not all these intensive variables are independent from each other; they
are related by the Gibbs-Duhelm equation:

SdT − VdP +
∑

Nidμi = 0

Therefore, one of these intensive variables can be expressed in terms of others.
Only (r + 1) intensive variables are independent for a simple, single phase.

Now, consider a system consisting of r components and n coexisting phases in
a mutual equilibrium state. Because each phase has (r + 1) independent intensive
variables, and there are n coexisting phases, the total number of intensive variables
is

n(r + 1).
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Because the n coexisting phases are in a mutual equilibrium state, the intensive
variables are constrained to satisfy the following conditions:

Thermal equilibrium conditions

T α = T β = · · · = Tn (n − 1) equations

Mechanical equilibrium conditions

Pα = Pβ = · · · = Pn (n − 1) equations

Chemical equilibrium conditions

μα
i = μ

β

i = · · · = μn
i r(n − 1) equations

(i = 1, 2, . . . r)

Therefore, the total number of constraint equations for the n (r + 1) intensive
variables is

(n − 1)(r + 2)

Thus, the number of degrees of freedom can be calculated as

f = n(r + 1) − (n − 1)(r + 2) = r + 2 − n

Example 1: Consider a two-phase (e.g., liquid–vapor) system has one component
only. r = 1, n= 2. According to the Gibbs phase rule, f = r + 2 – n= 1. This implies
that there is only one independent intensive variable, and once it is chosen, all other
properties are functions of this intensive variable. For example, for liquid water in
equilibrium with its vapor, if we choose temperature as the independent intensive
variable, the equilibrium pressure is determined by the temperature, P = P(T).

Example 2: Consider a two-phase (e.g., liquid–vapor) system has two components
(e.g., a solvent and a solute). r = 2, n = 2. Gibbs phase rule predicts f = r + 2 – n
= 2. This implies that two independent intensive variables are required to describe
the equilibrium state. For example, P = P(T, x), where x is the mole fraction, x =
N2/(N1 + N2).

Example 3: Consider a three-phase (e.g., ice-liquid–vapor) system has one compo-
nent. r = 1, n = 3. Gibbs phase rule predicts f = r + 2 – n = 0. This implies that
such a three phase co-existing equilibrium state can exist in only a fixed point in the
phase diagram, the triple point O. The three phase co-existing system cannot change.
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P

T 

S 
L 

V 
O 

It should be noted that the above phase rule is valid only for simple, bulk phase
systems under the following conditions: (1) There is no chemical reaction. (2) The
system has no interactions with external fields. (3) There are no surface/interfacial
effects.

1.17 Introduction to High-Order Phase Change

Previously, we mentioned first-order phase change. The characteristics of the first-
order phase change are the latent heat and the specific volume change, i.e., Δh �= 0,
and Δv �= 0. Liquid–vapor phase change and ice-liquid phase change of water are
typical examples of this type of phase changes.

However, there exist phase changes without latent heat and specific volume
change. For example, the phase transition between liquid Helium I and liquid Helium
II. Helium becomes liquid at 4.2 K and remains liquid form from 4.2 K to abso-
lute zero. However, at T = 2.2 K, liquid Helium undergoes a phase transition, i.e.,
becomes liquid Helium II. The liquid Helium II has very different properties from
liquid Helium I. For example, liquid Helium II has extremely high heat conductivity
and essentially zero viscosity. Interested readers may find other references about
Helium’s phase change in libraries.

Thermodynamically, different orders of phase change can be summarized as
follows:
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First order phase change

μα = μβ,

That is, the chemical potentials of the two phases (α and β) are equal, at
equilibrium.

But: sα �= sβ and vα �= vβ .
That is, other properties of the two phases are different in value, for instance, the

specific entropies and the specific volumes of the two phases are not equal.
From the Gibbs–Duhem equation, we have

s = −
(

∂μ

∂T

)
and v =

(
∂μ

∂P

)

We see that for the first-order phase change, the chemical potentials are equal,
but the first-order derivatives of the chemical potentials are not equal. Clearly, that
is why we have latent heat and specific volume change:

L = TΔs �= 0 and Δv �= 0

That is why we call this type of phase changes as the first-order phase change.

2nd order phase change

μα = μβ, sα = sβ and vα = vβ

For the second order phase change, the chemical potentials and the first-order
derivatives of chemical potentials are equal in all phases, and hence there are no
latent heat L = T�s and no specific volume change �v.

However, properties such as Cp, α and k are not equal in different phases.

Cα
P �= Cβ

P , αα �= αβ and kα �= kβ

Recall

CP = T
(

∂s
∂T

) = −T
(

∂2μ

∂T 2

)

α = 1
v

(
∂v
∂T

) = 1
v

(
∂2μ

∂T∂P

)

k = 1
v

(
∂v
∂P

) = 1
v

(
∂2μ

∂P2

)

That is, the 2nd-order derivatives of the chemical potentials are not equal. That is
why we call this type of phase changes as the 2nd-order phase change.
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In general, the nth-order phase change will have:

μα = μβ and
(

∂n−1μ

∂xn−1

)α =
(

∂n−1μ

∂xn−1

)β

(n = 1, 2, . . .)

However,

[
∂nμ

∂xn

]α

�=
[
∂nμ

∂xn

]β



Chapter 2
Modelling Homogeneous
and Heterogeneous Systems

Abstract So far, we have learned how to model “simple systems” and find equi-
librium conditions. A simple system is defined as a system that is homogeneous,
isotropic, uncharged, not subject to external interactions (e.g. electric, or gravita-
tional fields), and has no surface or boundary effects. In this chapter, we will show
how to establish a thermodynamic model for homogeneous non-simple systems, and
heterogeneous non-simple systems, and how to find their equilibrium conditions.

The fundamental equations for a simple system are given by:

S = S(U , V,N1, . . . . . .Nr)

U = U (S, V,N1, . . . . . .Nr)

A fundamental equation contains all thermodynamic information of the system.
Applying the entropymaximum principle or energyminimum principle to the funda-
mental equation, we can derive the thermodynamic equilibrium conditions of a given
system. Therefore, the key to model a thermodynamic system is to establish the
fundamental equation.

However, the fundamental equations as shown above are not applicable to many
thermodynamic systems that do not satisfy all conditions of a simple system.
Therefore, in this chapter, we will show how to establish a thermodynamic model
for two types of systems: homogeneous non-simple systems, and heterogeneous
non-simple systems.

For a homogeneous system, the properties of the system are uniform throughout
the system. The fundamental equation generally can be expressed as:

U = U(a set of extensive variables)
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It should be understood that an extensive variable represents a property of the
whole system. Therefore, in order to use extensive variables to characterize the
system, the system must be homogeneous, and the values of the properties of the
system are uniform throughout the system.

In order to establish the specific fundamental equation for a given homogeneous
system, we must understand the physics and chemical processes involved in the
system so that we know what extensive variables should be used to characterize the
system.

Generally, to characterize a system, we need several types of extensive variables:

(1) Thermodynamic variable, S (entropy).
(2) Chemical variables, Ni (mole number), i = 1, 2, …. r.
(3) Mechanical variables, V (volume) for a simple fluid phase or an ideal solid

phase;A (surface area) for a simple surface or interface phase; εij (strain tensor)
when elasticity must be considered.

(4) Electrical variables, such as Ni (mole number of the charged spices).
(5) ……

For simple fluid systems and simple solid systems, the set of extensive variables
used in the fundamental equations includes S, U, V and Ni as we have shown in
Chap. 1. In this chapter, we will demonstrate how to choose different extensive
variables to model two example systems: simple elastic solid and simple electrolyte
solutions.

With respect to heterogeneous systems, such as a fluid system in a gravita-
tional field or a centrifugal field, because the properties of such a system are not
uniform, changing from location to location, we cannot use the extensive variables
to characterize the whole system. Instead, we must use.

(1) the local properties,
(2) the local equilibrium approximation and
(3) integration.

to model such a non-uniform system. In this chapter, we will demonstrate how
to apply this approach to example systems: systems in gravitational field and in
centrifugal field.

2.1 Simple Elastic Solid

An elastic solid is a material that can resist deforming forces and can return to its
original size and shape when the forces are removed. When dealing with an elastic
solid, we must consider the relative deformation of the material under forces (such
as normal stress and shear stress). For example, an elastic band has a length L. If
one applies a force to stretch it from the two ends of the elastic band, the length
of the elastic band increases and becomes (L + �L). The ratio (�L / L) is the
relative deformation of this elastic band. Generally, such a relative deformation
is called strain. The strain produced in a body due to tensile force or compressive
force or shear force is called the tensile strain, or compressive strain or shear strain,
respectively. The relative change in the volume of a body to its original volume is
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called the volumetric strain. To model a simple elastic solid, the volumetric strain
will be used as the mechanical variable, instead of the volume V.

Generally, for a 3-D strain tensor (as the solid is a 3-D object), there are 9
components, as show below:

ε =
⎡
⎣

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎤
⎦

For simplicity, we will consider a simple elastic solid. For such a simple elastic
solid, the strain tensor will not only remain the same from position to position in
the solid, but also be symmetric. “Symmetric tensor” means the tensor components
are identical across the diagonal line of the matrix, i.e.,

ε12 = ε21, ε13 = ε31, ε23 = ε32

Therefore, among the 9 components, only 6 of them are independent, i.e.,

ε =
⎡
⎣

ε1 ε4 ε5

ε4 ε2 ε6

ε5 ε6 ε3

⎤
⎦

Knowing the above strain tensor for this case, the volumetric strain is the initial
unconstrained volume multiplying the strain tensor. The fundamental equation of
this simple, elastic solid system can be written as:

U = U (S, V0ε1, . . . ., V0ε6,N1, . . . .,Nr)

where V 0 is the unconstrained volume (i.e., the volume before deformation), and
εi (i = 1, 2, 3, 4, 5, 6) is the strain tensor component.

The differential form of the fundamental equation is given by

dU = TdS +
6∑

i=1

σi V0 dεi +
r∑

j=1

μi dNi

where

σi =
(

∂U
∂εi

)
s,εj,Ni

.
is the stress tensor component, corresponding to the strain tensor component, εi.
From the above fundamental equation, the Euler equation is:

U = T S +
6∑

i=1

σi V0 εi +
r∑

j=1

μi Ni
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Also, from the above fundamental equation, we can derive the following Gibbs–
Duhem equation:

SdT +
6∑

i=1

V0εidσi +
r∑

j=1

Nidμi = 0

For a single component elastic solid with a constant mass (i.e., N = constant), the
Gibbs–Duhem equation is given by:

SdT +
6∑

i=1

V0εidσi = 0

This implies

σi = σi(T )

and
[
∂σi

∂T

]

σj �=i

= − S

V0εi

or

S = −V0εi

[
∂σi

∂T

]

σj �=i

This means that the entropy of the simple elastic solid can be determined by
measuring the dependence of the stress on temperature.

The Helmholtz free energy of the simple elastic solid is given by:

F = U − TS =
6∑

i=1

σiV0εi +
r∑

j=1

μiNi

dF = −SdT +
6∑

i=1

σiV0dεi +
r∑

j=1

μidNi

An important Maxwell relation can be obtained from the above equation:

[
∂σi
∂εj

]
T ,Ni,εk �=j

=
[

∂σj

∂εi

]
T ,Ni,εk �=i

This is a correlation between different strain and stress tensor components. Here

Cij =
[

∂σi
∂εj

]
T ,Ni,εk �=j

is called the isothermal elastic stiffness coefficient.
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The Gibbs free energy of the simple elastic solid is given by:

G = U − TS −
6∑

i=1

σiV0εi =
r∑

j=1

μiNi

dG = −SdT −
6∑

i=1

V0εidσi +
r∑

j=1

μidNi

Another important Maxwell relation can be obtained from the above equation:

[
∂εi
∂σj

]
T ,Ni,σk �=j

=
[

∂εj

∂σi

]
T ,Ni,σk �=i

where Kij =
[

∂εi
∂σj

]
T ,Ni,σk �=j

is called the isothermal elastic compliance coefficient.

Consider a system consisting of two simple elastic solids in connected with each
other. The total internal energy is the sumof the internal energy of the two subsystems.

dUT = dU1 + dU2

The differential form of the fundamental equation is

dU = TdS +
6∑

i=1

σiV0dεi +
r∑

j=1

μidNi

Consider the system is an isolated system under a constant temperature, the total
entropy is constant, dS = d (S1 + S2) = 0, and the mass is fixed, dN i = 0. Therefore,
the differential of the total internal energy of the system (U = U1 + U2) becomes:

dUT =
6∑

i=1

σi1 V0 1 dεi1 +
6∑

i=1

σi2 V0 2 dεi2

In the above, the subscripts 1 and 2 represent the first elastic solid and the second
elastic solid, respectively.

Consider a simple case where

dεi1 = 0, and dεi2 = 0, i = 2, 3, 4, 5, 6

ε11 + ε12 = constant, or dε11 = −dε12

That is, the strain (relative deformation) is not zero only in the 1–1 direction, and
the strains are zero in all other directions.

The equilibrium condition (the energy minimum condition) requires:
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dUT = −σ11V0 1dε12 + σ12V0 2dε12 = [σ12V0 2 − σ11V0 1]dε12 = 0

σ12 V0 2 = σ11 V0 1

This is the mechanical equilibrium condition of the two connecting elastic solids.

2.2 Simple Electrolyte Solution Systems

Many science and engineering processes involve electrolytes. An electrolyte system
may be viewed as a solution having a lot of particles with electric charge (e.g., ions).
We are interested in the equilibrium conditions of such an electrolyte system under
the influence of an external electrical field.

For a simple electrolyte solution system, the fundamental equation in energy form
is given by:

dU = dU + dUe

where U is the total internal energy of the electrolyte solution; U = U(S, V, N1,
…., Nr) is the internal energy of the electrolyte solution without considering the
electric field effects; and Ue is the electrical part of the total internal energy, due
to the interaction of the charged particles with the applied electrical field. It can be
shown that

dUe = ψ dQ

where ψ is the electrical potential of the electrical field, and Q is the total charge of
ions.

Q = F
∑

ZiNi

where F is the Faraday constant; Zi is the electro-valence of the ith ionic species;
and Ni is the mole number of the ith ionic species. Thus,

dUe = Fψ
∑

ZidNi

Recall

dU = TdS − PdV +
∑

μidNi

Finally, the differential form of the fundamental equation can be written as:

dU = TdS − PdV +
∑

(μi + ZiFψ)dNi
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or

dU = TdS − PdV +
∑

μidNi

where

μi =
(

∂U
∂Ni

)
s,V,Nj

= μi + ZiFψ

.

is called the electro-chemical potential of the ionic component i. From the above
differential equations, we see that the fundamental equation of the electrolyte system
is given by:

U = U (S, V, {Ni})

The Euler equation is given by:

U = TS − PV +
∑

μiNi

The Gibbs free energy or potential function is:

G = U − TS + PV =
∑

μiNi

dG = −S dT + V dP +
∑

μidNi

For a multi-component (i = 1, 2, …… r) and multi-phase (k = α, β, . . . . . . λ)

electrolyte system, the general equilibrium conditions can be obtained by using, for
example, the energy minimum principle, i.e.,

dUTotal =
∑

dUk = 0

and by using the constraints:

∑
dSk = 0,

∑
dVk = 0, and

∑
dNi, k = 0

It can be shown that the equilibrium conditions are:

T α = T β = . . . . = T λ

Pα = Pβ = . . . . = Pλ

μα
i = μ

β

i = . . . . = μλ
i (i = 1, 2, . . . . . . r)
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In the following, we will show that the electrochemical potential equilibrium
condition can be used to determine ion distribution of an electrolyte solution in
electric field. Let us consider a charged solid surface surrounded by an electrolyte
solution in an equilibrium state. It should be realized that the charged solid surface
generates an electric field in the surrounding solution. Because the solid surface is
charged, it will attract the counter-ions (ion with opposite charges) in the electrolyte
solution to a region close to the charged surface, and repel the co-ions (ions with the
same charges) from the this region. The charge on the solid surface and the balancing
charge (counter-ions) in a thin liquid layer close to the surface is the so-called electric
double layer, as illustrated in the figure on the next page.

At equilibrium, the electrochemical potential of the ions must be constant
everywhere, i.e.,

grad μ̃i = 0

where electrochemical potential is μi = μi + ZiFψ . Note that the Faraday constant
is F = e NA, where e is the elementary charge of an electron, NA is the Avogadro
number (6.022 × 1023). If we divide the electrochemical potential by the Avogadro
number, it becomes the electrochemical potential per ion,

μi = μi + Zieψ

Charged 
Solid 
Surface

Shear 
Plane

Diffuse 
Layer 

(mobile ions) 
Compact layer 
(immobile ions)

Co-ions 

Counter-ions

Electrolyte 
solution 

Illustration of electric double layer formed near a charged solid surface
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Illustration of electric double layer formed near a charged solid surface.
The above equilibrium condition can be further written as:

grad μi = −zie grad ψ

The above equation is the equilibriumcondition and shows the balance of forces on
ions between the electrical force (as indicated by the gradient of electrical potential
ψ on the right-hand side of the above equation) and the diffusion (mass transfer)
force (as indicated by the gradient of chemical potential on the left-hand side of the
above equation.

For simplicity, let us consider a flat solid surface inserting vertically into an
infinitely larger electrolyte solution. For such a one-dimensional system, the above
equation can be re-written as:

Charged solid 
surface

Electrolyte 
solution

o x

dμi

dx
= −zie

dψ

dx

As the chemical potential of an ion species is given by:

μi = μ∞
i + kbT ln ni

where ni is the ion number density per unit volume of type i ions (i.e., positive ions
n + or negative ions n–), and μ∞

i is a function of T and P only. We have

d ln ni
dx

= 1

ni

dni
dx

= − zie

kbT

dψ

dx

Let us integrate this equation from a point in the bulk solution (far away from the
charged solid surface) to a point in the region very close to the charged solid surface
(i.e., the electric double layer region), and using the following boundary conditions:

In the bulk solution:
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x = ∞, ψ = 0, and ni = n∞
i , or n∞

+ = n∞
− = n∞,

where n∞
i is the bulk ionic number density per unit volume of type i ion in a position

far away from the charged solid surface (i.e., not influenced by the electric field of
the charged solid surface); n∞+ is the bulk ionic number density per unit volume of
positively charged ions, and n∞− is the bulk ionic number density per unit volume
of negatively charged ions. This means that at positions infinitely far away from the
charged solid surface the bulk solution is electrically neutral or has zero net charge
(i.e., n∞+ = n∞− ).

In the region very close to the charged solid surface (i.e., inside the electric double
layer):

x = x, ψ = ψ, and ni = ni.

Carrying out this integration, we will obtain the Boltzmann equation:

ni = n∞
i exp

[
− zieψ

kbT

]

Boltzmann equation describes the distribution of the ion number density near
the charged solid surface. Recall ψ is the electrical potential of the electrical field
generated by the charged solid surface, zie ψ represents the interaction energy of the
electric field with ions, kbT reflects the energy of thermal motion of ions. Boltzmann
equation indicates that, for a given temperature T, the ion number density is a function
of the potential ψ of the electrical field that in turn is a function of the distance from
the charged solid surface.

According to the theory of electrostatics, the relationship between the electrical
potential ψ and the local net charge density per unit volume ρe at any point in the
solution is described by the Poisson equation:

∇2ψ = − ρe

εε0

where ε is the relative dielectric constant of the solution, and ε0 is the dielectric
permittivity of vacuum.

Using the Boltzmann distribution equation, the number concentration of the type-i
ions in a symmetric electrolyte (symmetric electrolyte means ionic valence ratio zi:
zj = 1, for example, for NaCl, zi: zj = 1:1.) solution is of the form:

ni = ni∞ exp

(
− zieψ

kbT

)
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where ni∞ and zi are the bulk ionic concentration and the valence of type-i ions,
respectively, e is the charge of an electron, κb is the Boltzmann constant, and T is
the absolute temperature.

For example, for positive ions,

n+ = n+∞exp

[
z+eψ
kbT

]

and for negative ions,

n− = n−∞exp

[
z−eψ
kbT

]

In the bulk electrolyte, far away from the charged solid surface, the electrolyte
solution is electrically neutral. That is,

n+∞ = n−∞ = n∞

The net volume charge density ρe is proportional to the concentration difference
between symmetric cations and anions, via

ρe = ze(n+ − n−) = −2zen∞ sinh

(
zeψ

kbT

)

where n+ and n– are the number density of the positive ions and negative ions,
respectively.

Substituting this expression of net charge density into the Poisson equation leads
to the well-known Poisson–Boltzmann (P–B) equation.

∇2ψ = 2zen∞
εε0

sinh

[
zeψ

kbT

]

By defining the Debye–Huckel parameter k2 = 2z2e2n∞
εoε kbT

and the non-dimensional

electrical potential � = zeψ
kbT

, the Poisson–Boltzmann equation can be re-written as:

∇2� = k2 sinh�

Generally, by solving this equation with appropriate boundary conditions, the
electrical potential distribution ψ (x) of the electric double layer can be obtained.
Then using ψ (x), the local charge density distribution ρe (x) can be determined.

It should be noted that the Debye–Huckel parameter k2 = 2z2e2n∞/εεokbT is
independent of the solid surface properties and is determined by the liquid properties
(such as the electrolyte’s valence and the bulk ionic concentration) only. 1/k is
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normally referred to as the characteristic thickness of electric double layer and is
a function of the electrolyte concentration. For example, value of 1/k ranges from
9.6 nm at an ionic concentration of 10–3 M to 304.0 nm at an ionic concentration
of 10–6 M for a NaCl or KCl solution. When the ionic concentration is 10–6 M, the
solution is considered as the pure water. The thickness of the diffuse layer of the
electric double layer usually is about three to five times of 1/k, and hence may be
larger than one micron for pure water and pure organic liquids.

Let’s see an example of how to calculate 1/k. Consider pure water at T = 298 K
and use the following parameters: ε = 78.5, εo = 8.85 × 10–12 C2/Nm2, e = 1.602
× 10–19 C, kb = 1.381 × 10–23 J/K, and Na = 6.022 × 1023 /mol. Note that n∞
is the bulk ionic number concentration and is expressed in terms of the molarity M
(mole/liter) by:

n∞ = (
M mol

L

)(
1000 L

m3

)(
Na

1
mol

) = 1000NaM

Put all the above parameter values into

1

k
=

[
εεokbT

2z2e2n∞

]1/2

and we have

1

k
= 3.04

z
√
M

× 10−10 (m)

here M is the molarity of a symmetrical (z:z) electrolyte.
For example, let z = 1, we can calculate the dependence of 1/k on molarityM. As

seen from the table below,when the bulk ionic concentration increases,more counter-
ions are attracted to the region close to the charged solid surface to neutralize the
surface charge. Consequently, the electric double layer thickness is reduced, and it
seems like that the electric double layer is “compressed”.

M 1/k (nm)

10–6 304.0

10–4 30.4

10–2 3.0

For a flat surface inserted vertically in an infinitely large aqueous solution, if we
set the origin of the coordinate system on the wall, as illustrated in the figure below,
the Poisson–Boltzmann equation in dimensional form is given by

∂2ψ

∂ x2
= 2zen∞

εε0
sinh

(
z eψ

kbT

)
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with the boundary conditions:
x = 0, ψ = ψ0 ≈ ς (i.e., at the solid surface or at the shear plane)
x = ∞, ψ = 0 (i.e., infinitely far away from the solid surface)

o x

Electrolyte 
solution

Charged solid 
surface 

x) 

If we assume
(
z eψ
kbT

)
< 1, for example, when ψ < 25 mV at 20 °C; and use sinh(x)

≈ x, The above Poisson–Boltzmann equation is reduced to

∂2ψ

∂ x2
= 2zen∞

εε0

(
z eψ

kbT

)

This simplified equation can be solved under the above–listed boundary condi-
tions. The result is:

ψ = ψoe
−kx = ζ e−kx

In the above equation, ψo is the potential at the solid surface and usually is
approximated by a measurable electrokinetic potential at the shear plane, ς, which
is called zeta potential, that is, ψo ≈ ς.

Knowing the electrical field distribution, ψ (x), we can calculate the distributions
of the cations and the anions, and the net charge density distribution near the charged
solid surface by using the Boltzmann distribution equation.

ni(x) = ni∞ exp

(
− zi e ψ(x)

kbT

)
(i = + and −)

ρe(x) = ze(n+(x) − n−(x)) = −2zen∞ sinh

(
z e ψ(x)

kbT

)

Homework

Calculate and plot the distributions of the cations and the anions, and the net charge
density distribution near a charged solid surface for a KCl solution. The bulk KCl
concentration is: 1 × 10–6 M, 1 × 10–4 M, and 1 × 10–2 M. ζ = 25 mV.
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2.3 Systems in Gravitational Field and in Centrifugal Field

Let us consider a moving system subject to a gravitational field and a centrifugal
field. For example, a cylinder filled with a solution is spinning around a vertical
shaft, as illustrated in the figure below. Such a centrifugal device is often used in
industrial separation processes.

r

z

gSolution

ω

Because the presence of external fields (the gravitational field and the centrifugal
field in this case), the properties of the solution are no longer uniform. For example,
the pressure and the density of the solution are functions of position, i.e.,

P = P(r, z) and ρi = ρi(r, z)

Obviously, such a system is not a simple system; therefore, we cannot use the
fundamental equation for a simple system such as

U = U(S,V,N1, . . . .Nr)

to model such a system.

How to Model a System in a Gravitational Field
and in a Centrifugal Field

First, we will introduce a so-called “local equilibrium” approximation. That is,
we assume, although different elements of a system have different properties,
each element itself is a simple system at an equilibrium state, i.e., each element
has uniform properties throughout the element. Therefore, all thermodynamic
theories and equations for simple systems are applicable to each element.

For example, the left figure below illustrates a stationary cylinder containing a
solution or gas in a gravity field. It is not difficult to understand that different layers in
the cylinder along the height direction have different densities and different pressures.
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However, a layer with a differential thickness dz at a location z has essentially the
same density and the same pressure throughout the layer. Thus we can consider each
layer as a simple thermodynamic system.

g 

A unit mass 
element 

z

k

i

z 

dz 
i,   Pi

k,   Pk

Now let us consider a rotating cylinder containing a fluid in a gravity field. For
convenience, let us take a unit mass as an element of the system, as illustrated in the
right-hand side figure above. The total energy of the unit mass element is given by:

e = u + ke + pe (kJ/kg)

where e is the total energy density per unit mass (kJ/kg); u is the internal energy
density (the internal energy for the unit mass element) (kJ/kg); ke = V 2/ 2 (here V
is the velocity) is the kinetic energy of this unit mass element (kJ/kg); and pe = gz
(here g is the gravity acceleration constant, z is the variable to measure the elevation
from ground) is the potential energy of the unit mass element (kJ/kg).

It should be noted that the total energy density e is a function of the position of
the unit mass element, i.e., e= e (r, z), because the fluid is subject to both the gravity
field and the centrifugal field.

The total energy of the entire system can be obtained by integrating the energy
density over the volume of the system.

E =
∫

V

ρ e dV =
∫

V

e′dV

where ρ is the local density of the fluid (kg/m3), e is the local total energy density per
unit mass (kJ/kg), and e′ = ρ e is the local total energy density per unit volume
(kJ/m3).

Similarly, the total entropy of the entire system is

S =
∫

V

ρ s dV =
∫

V

s′dV
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where s is the local entropy density per unit mass (kJ/kgK) of the fluid, ρ is the
local density of the fluid (kg/m3), and s′ = ρ s is the local entropy density per unit
volume (kJ/m3K).

Now, let us consider an isolated fluid system consisting of r components in a
gravitational field. The system is stationary.

z

A volume 
element 

g 

For this system, the total entropy is

S =
∫

V

s′dV

and the total energy is given by:

E =
∫

V

e′dV

where

e′ = ρ(u + pe) = (
∑

niMi)(u + gz) = u′ +
∑

niMigz

ρ =
∑

niMi

pe = gz

ni and Mi are the mole density per unit volume (kmol/m3), and the molar mass of
the ith component (kg/kmol), respectively.

How to Determine the Equilibrium Conditions

As we have already known that finding thermodynamic equilibrium conditions
requires finding the maximum of the entropy function or the minimum of the energy
functions. Such a process involves a function of several variables which may be
related to each other by one or more constraint equations. For simple systems, these
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mathematical operations are straight forward aswe have demonstrated in the previous
chapter. However, for non-uniform systems, the total entropy and the total energy
of such a system often involves integration of local properties, and the mathemat-
ical analysis to find the maximum of the entropy function or the minimum of the
energy functions is relatively complex. Therefore, we need to introduce a method
of undetermined Lagrange multipliers.

For example, let us considerminimizing a function z= x2 + y2 where the variables
x and y are subject to a constraint equation: x y – 1 = 0. An intuitive approach may
be to solve the constraint equation first to get:

y = 1/x

Then substituting y with this equation into z = x2 + y2 yields:

z = x2 + 1/x2.

Differentiating this equation and setting it to zero (i.e., condition required for
minimum) gives:

dz

dx
= 2x − 2

x3
= 0

Solving this equation, one can find the minimum positions are (+1, + 1) and (–1,
–1).

However, the approach used in the above example may not be practical for
some more complicated equations. A more general approach is the method of
undetermined Lagrange multipliers, as outlined below.

Consider minimization or maximization of a function

F(x, y . . .)

under a set of constraint equations:

Ci(x, y, . . .) = 0 (i = 1, . . . n)

First, let us define a new Lagrange function

L = F +
n∑

i=1

λi Ci

where the constants λ1, λ2,…λn are called the undetermined Lagrange multipliers.
The conditions or positions of the minimization or maximization can be found by

solving the following sets of equations:
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∂L

∂x
= ∂L

∂y
= . . . = 0

Ci(x, y, . . .) = 0 (i = 1, . . . n)

Let us use the above example to illustrate this method.
The function is:

z = x2 + y2

.
The constraint is:

x y − 1 = 0

.
The first step of using the method of undetermined Lagrange multipliers is to

define:

L = F +
n∑

i=1

λi Ci = (x2 + y2) + λ (xy − 1)

The set of the equations to be solved are:

∂L

∂x
= 0 2x + λy = 0

∂L

∂y
= 0 2y + λx = 0

C(x, y) = 0 x y − 1 = 0

Solving this system of equations gives: λ = –2, and the minimum positions are
(+1, +1) and (–1, –1).

Now let us see how to apply the method of undetermined Lagrange multipliers to
find the equilibrium conditions for a system in a gravitational field and in a centrifugal
field.

First, let us consider an isolated, stationaryfluid systemconsistingof r components
in a gravitational field. If this isolated system is in a thermodynamic equilibrium state,
we know, from the entropy maximum principle,

S =
∫

V

s′dV ⇒ Maximum
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or

δS = 0

where δ is the mathematical symbol of small variation (students may see textbooks
of Calculus of Variations regarding δ), and can be approximated as the first order
derivative.

The entropy maximum is achieved under the following constraints:

E =
∫

V

e′dV = constant

or

δE = 0

(i.e., the total energy of an isolated system is constant), and

Ni =
∫

V

nidV = constant i = 1, 2, . . . ., r

or

δNi = 0

(i.e., the total mass of an isolated system is constant).
Mathematically, the task of finding the equilibrium conditions is to maximize the

total entropy under these constraint conditions, i.e.,

δS = 0 with constraints δE = 0 and δNi = 0.

Using the undetermined Lagrange Multipliers method as introduced above, this
entropy maximization problem can now be formulated as follows:

δL = δ(S − λ0E −
∑

λiNi) = 0

where the Lagrange function L is defined as

L = S − λ0E −
∑

λiNi
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where λ0 and λi are the to-be-determined Lagrange multipliers and are constant.
The above equation can be further written as:

δ

[∫
(s′ − λ0e

′ −
∑

λini)dV

]
= 0

Recall

e′ = u′ +
∑

niMigz,

and move the δ sign inside the integration, the above equation becomes:

∫
[δs′ − λ0(δu

′ +
∑

Mig z δni) −
∑

λiδni]dV = 0

The entropy density per unit volume is given by the following function:

s′ = s′(u′, {ni})

Similar to

ds = du

T
−

∑ (μi

T

)
dni

we have

δs′ = δu′

T
−

∑ (μi

T

)
δni

Substituting δs′ in the integration by the above equation, we have

∫ [(
1
T − λ0

)
δu′ +

r∑
i=1

(
−μi

T
− λ0Mig z − λi

)
δni

]
dV = 0

Because the integral must be equal to zero for all variations, it follows:

1
T = λ0 = constant (2.1)

μi

T
+ λ0Mi g z = −λi = constant (2.2)

These are the equilibrium conditions for the system in our consideration.
Combining Eq. (2.1) with Eq. (2.2) yields

λ0μi + λ0Mig z = −λi
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or

μi + Mig z = (−λi/λ0) = constant (2.3)

Therefore, the equilibrium conditions become:

T = constant (2.4)

μi + Migz = constant (2.5)

From Eq. (2.5), we can easily see that

μi = constant − Mig z

or

dμi = −Mig dz

That is, the chemical potential at equilibrium is no longer a constant; instead, it
is a function of the height (the gravitation effect),

μi = μi(z)

Consider the Gibbs–Duhem equation for a unit volume element,

s′dT − dP +
∑

nidμi = 0

Since T = constant,

dP =
∑

nidμi

Use dμi = −Migdz.
We have:

dP =
∑

ni(−Mig dz) = −
(∑

niMi

)
g dz

Realize that the density of the fluid is

ρ =
∑

niMi,

the above equation becomes:
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dP = −ρ g dz

Generally, the density of the fluid is a function of the position along the z axis,
ρ = ρ(z). Let us consider the following special cases:

(1) Assume ρ = ρaverage = ρ = constant, for example, an incompressible liquid.
Integrating dP = −ρ g dz gives:

P(z) = Pz=0 − ρ g z

z 

P 

Pz=0 

0 

(2) Assume the fluid is an ideal gas. ρ = P
RT

and dP = −ρ g dz becomes.

P 

Pz=0 

z

dP

P
= −g

RT
dz

Integration yields:

P(z) = Pz=0 exp

[−g z

R T

]
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The atmospheric pressure essentially follows the above equation.
Now, let us consider a cylinder filled with a fluid is rotating around a shaft at

a speed ω. Generally, such a system can be treated similarly to the systems in the
gravity field. Realize that, for a unit mass, the centrifugal field potential, peω, is:

peω(r) = − 1
2ω

2r2

(Compare it with the gravitational potential, peg(z) = gz),

r

L 

fluid

dr

A differential volume
element 

A volume element with thickness dr at a radial distance r from the axis of rotation
is shown in the figure above. The total energy of this volume element is:

e′ = u′ + ρ × peω(r) = u′ +
(∑

niMi

)(−1
2 ω2r2

)

Performing the similar analysis as we did for the system in gravity field, we can
show that the equilibrium conditions for a fluid system in a centrifugal field are given
by:

T = λ = constant

μi − 1
2Mi ω

2r2 = constant

or

μi = constant + 1

2
Miω

2r2

That is, the chemical potential at equilibrium is no longer a constant; instead, it
is a function of the radial distance r (the centrifugal effect), μi = μi (r).

It follows that

dμi = Mi ω
2r dr
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and from the Gibbs–Duhem equation for a volume element with dT = 0

∑
nidμi = dP

we have

dP =
∑

niMi ω
2r dr

Note that ρ = ∑
niMi.

The above equation becomes:

dP = ρ ω2r dr

If we assume the fluid is an incompressible liquid, i.e., ρ = constant,

P(r) = Pr=0 + 1
2ρ ω2r2

Home Work

(1) A fluid is placed in a rigid container and spun as indicated in the figure below.
The angular frequency of the rotation is ω (rad/s). The fluid fills the container
and has no energy exchange with the surroundings. Gravity effect is negligible
in this case.

r

Fluid 

R

(a) If the fluid contains more than one component, what conditions must the
intensive thermodynamic properties satisfy in order for equilibrium to
exist?

(b) The fluid is a dilute liquid solution of two components (One is dissolved
in the other). Assume that the properties of the solute are independent
of pressure. The total mole concentration n = n1 + n2 = constant (inde-
pendent of r). Find the mole concentration of the solute as a function of
the radial distance, i.e., n2 = n2(r).
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(2) A cylinder contains a pure, incompressible liquid, as illustrated in the figure
below. The cylinder is spun around its longitudinal (the vertical) axis at an
angular frequency ω. Neglect any effect due to the presence of vapor, curved
liquid–vapor surface and any energy exchange between the liquid and the
surroundings.Donot neglect gravity effect. Derive the equilibrium conditions
and the expression for the pressure as a function of position (r, z) in the liquid
phase. Let the pressure at the bottom and the center of the cylinder be P0.

Liquid 

Z 

r
O



Chapter 3
Thermodynamics of Interfaces
and Three-Phase Contact Lines

Abstract Up to now, all the thermodynamics theories we have discussed are the
theories for simple three dimensional (3D) bulk phase systems. The size of such a
system is measured by volume, and the mechanical work mode for these systems
is PdV type of work. One of the conditions for simple systems is that effects of
the boundaries of the bulk phases on the equilibrium states are not considered.
However, in a broad spectrum of applied science and engineering applications,
the bulk phase boundaries, such as an interface between a liquid droplet and its
vapor phase, play important roles in determination of the equilibrium states of the
system. In this chapter, wewill first show how to establish thermodynamicmodels for
2D surfaces/interfaces and for 1D three-phase contact lines. Then, we will demon-
strate how to find the equilibrium conditions of these systems by using the analyt-
ical methods explained in Chapter 1 and Chapter 2. The effects of the bulk phase
boundaries, i.e., surfaces/interfaces and three-phase contact lines, on the equilibrium
conditions will be discussed.

3.1 Introduction to Interfaces and Three-Phase Contact
Lines

Up to now, all the thermodynamics theories we have discussed are the theories for
simple three dimensional (3D) bulk phase systems. The size of such a system is
measured by volume, and the mechanical work mode for these systems is PdV type
of work. One of the conditions for simple systems is that effects of the boundaries
of the bulk phases on the equilibrium states are not considered. However, in a broad
spectrum of applied science and engineering applications, the bulk phase boundaries,
such as an interface between a liquid droplet and its vapor phase, play important roles
in determination of the equilibrium states of the system. Examples where surface or
interface effects are important include (bubble, droplet or ice) nucleation processes,
bubble flotation processes used in mineral and oil processing, two-phase (liquid–gas
or water–oil) transport phenomena in a porous medium, etc.

The boundaries between immiscible bulk phases include interfaces and three-
phase contact lines.An interface or a surface is the boundary between two immis-
cible bulk phases. A three-phase contact line is the mutual boundary of three
immiscible bulk phases or three surfaces.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Image of a water drop resting on a flat solid surface 

Air 

Water 

Solid 

Air-Water Interface 

Air-Water-Solid Three-
Phase Contact Line 

When dowe have to consider the effects of these boundaries?Generally, when the
dimension of the system is small enough and the energy associated with the surfaces
and lines is comparable to the energy associated with the volume of the bulk phase,
the effects of the surfaces and three-phase contact lines must be considered.

It should be realized that the systems with important surface or line effects are not
the “simple” systems as we defined before. In this chapter, we will show how to
apply the general thermodynamic theory we learned before to the two-dimensional
(2D) surfaces and the one-dimensional (1D) lines. The objectives in this chapter are
to learn.

(1) How to apply the thermodynamic theory to model systems involving surfaces
and lines, and

(2) How these boundaries will affect the equilibrium conditions.

Interfaces or Surfaces

• What is a surface or an interface?
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A water drop hanging from a needle tip .  

Let us look at the above image of a water drop hanging from the tip of a needle in
the air. The profile of the drop seems to indicate that the liquid–air interface is a sharp
surface. However, this impression is rather misleading. Generally speaking, when
two immiscible, uniform bulk phases are in contact, there is a very thin boundary
region between them. The phase properties change rapidly across this thin boundary
region, as illustrated in the figure below.

Phase  a

Phase  b 

Interphase Boundary

Phase  a

Phase  b 

density

a few molecular
diameters, e.g.,
1 nm

Consider an isolated system consisting of two immiscible bulk phases, a and b.
One of these phases is a liquid and the other phase may be either another liquid or
a gas. As illustrated in the figure above, there is a thin interfacial region or inter-
phase boundary between these two bulk phases. Usually the thickness of such an
interfacial region is about a few molecular diameters. The order of magnitude of
the thickness of this interfacial region generally is about 10 Å for ordinary liquid-
fluid pairs like water and air. Crossing this thin boundary region, the density and
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other physical properties of the fluids undergo a sharp transition from one bulk phase
to the other bulk phase, as illustrated in the figure above. Therefore, physically,
the interface or surface is a three-dimensional (i.e., with a finite thickness),
non-homogeneous (i.e., with varying properties) boundary region.

It is easy to understand that a molecule in a bulk liquid phase is subject to uniform
intermolecular forces from all directions. In other words, the forces exerting on a
molecule in the bulk liquid phase are balanced from all directions. However, the
molecules at the interfacial region experience unbalanced intermolecular forces.
This is because, generally, the densities of the bulk phases forming the interface are
different, and the molecules on the two sides of the interface may also be different.
Thus the attractive intermolecular force acting on a molecule in the interfacial region
is stronger from one side of the interface than that from the other side. For example,
consider a water–air interface. The density of liquid water is much higher than the
density of air. There are more molecules from the liquid water side to interact with
a molecule in the interfacial region. There are a fewer molecules from the air side
to interact with a molecule in the interfacial region. The net intermolecular force
acting on the interfacial molecules is from the liquid water side and tends to pull
the molecules into the bulk liquid phase. Therefore, the liquid molecules have a
tendency to stay inside the bulk liquid phase, not in the interfacial region. That is
why a liquid-fluid system always tries to minimize its interface area. If there
are no other external influences, a liquid drop always chooses a spherical shape
(the spherical shape has the minimum surface area for a given volume). In addition,
because the interfacial region has a lower molecular density, the separation distance
betweenmolecules is larger than themolecular equilibrium separation distance in the
bulk liquid phase. Hence the molecules in the interfacial region experience a stronger
attraction force among them. Mechanically, this attraction force manifests itself as
a measurable tensile force in all liquid-fluid interfaces; it is called the surface or
interfacial tension.

As discussed above, a surface or interface is a thin, 3D, non-homogeneous,
boundary layer between two bulk phases. There is a sharp change in the system
properties across this boundary layer. However, as the thickness of the interface
is very thin (say, about one nanometer), negligible in comparison with the interface’s
lateral dimensions (in millimeters or centimeters), we may approximately replace
the 3D interfacial region by a 2D mathematical surface (no thickness).

3.2 Thermodynamics of Surfaces

Following the thermodynamics approach we have learned so far, a surface or an
interface will be treated as:

1. A 2D phase as an approximation. This is based on the fact that the thickness of
the surface or interface is negligible in comparison with its lateral dimensions.
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2. A uniform phase, and all surface properties (U, S, N1, …. Nr) are considered
as the average values over the interfacial thickness. Because the properties of a
real interface is non-uniform only in the thickness direction.

In this way, a 3D, heterogeneous interfacial phase is approximated as a 2D, homo-
geneous, simple thermodynamic phase. All the thermodynamic principles and the
equations for simple systems are applicable to such a surface phase. For a 3D bulk
phase system, volume V is used to characterize the size of the system, and the
volume change is used to characterize the mechanical work (compression or expan-
sion). However, for a 2D surface phase, there is no volume, instead, the surface area
A is used to characterize the size of the system, and the surface area change is used to
characterize the mechanical work. Therefore, the fundamental equations of a surface
phase are given by:

SA = SA(UA,A,N1A, . . .NrA)

and

UA = UA(SA,A,N1A, . . .NrA)

In the above equations, the variable A is the surface area (m2), and the subscript
A indicates the surface phase.

Generally, surfaces or interfaces may not be flat and they are curved. It should
be mentioned that there are no curvature variables in these fundamental equations;
therefore, these fundamental equations are valid only for moderately curved inter-
faces where the curvature effects of the interface are negligible. What is a moder-
ately curved interface? Generally, when the radius of curvature of an interface is
comparable to the thickness of the interface, such an interface is highly curved. If the
radius of curvature is at least 100 times greater than the thickness of the interface,
such an interface is moderately curved. For a moderately curved interface, the only
geometrical variable required to describe the interface is the surface area. However,
for a highly curved interface, certain curvature variables are also required to describe
the interface, in addition to the surface area. This is because the energy associated
with the shape change (such as shape change due to bending or twisting) of the
interface is significant part of the total energy of the interface.

From

UA = UA(SA,A, {NiA}),

the differential form of the fundamental equation in terms of energy is given by:

dUA = TdSA + γ dA +
∑

μidNiA



106 3 Thermodynamics of Interfaces and Three-Phase Contact Lines

where two of the intensive properties, the temperature T and the chemical potential
μi, are defined similarly to that for bulk phases. The only new parameter here is the
surface tension γ, defined as:

γ = (
∂UA
∂A

)
SA,NiA

[
mJ/m2] or [mN/m]

In the last section, we have briefly described how surface tension is generated
in the interface. Surface tension as a mechanical force is a physical property of the
interface. It has a unit of force per unit length, mN/m (milli-Newton per meter). From
the above thermodynamics definition, the surface tension is defined as the change of
surface internal energy with respect to the surface area change. Therefore, it is also
energy of the surface per unit surface area, with a unit of energy per unit surface area,
mJ/m2 (milli-Joule per square meter).

From the differential formof the fundamental equation,we see that themechanical
work term is given by:

dWA = γ dA

This is called the surface work. The surface tension is therefore considered as the
work or energy required creating a unit new surface area.

The order of magnitude of the surface tension ranges from 10 to 72 mJ/m2

for most liquid-fluid interfaces at room temperature. The term “interfacial tension”
is applicable to all liquid–gas, liquid–liquid, solid–gas and solid–liquid interfaces.
However, in the literature, people prefer to use the term “surface tension” for liquid–
gas (vapor) and solid–gas (vapor) interfaces, and use the term “interfacial tension” for
liquid–liquid and solid–liquid interfaces. Generally, solid–fluid interfacial tensions
cannot be measured directly. However, there are many methods for measuring the
surface tensions of liquid-fluid interfaces. Some typical values of interfacial or surface
tensions are listed in Table 3.1.

Recall that the differential form of the fundamental equation in terms of energy
for a bulk phase is given by:

dUB = TdS − PdV +
∑

μidNi

Table 3.1 Typical values of
surface tensions

Liquid Temperature (oC) Surface tension (mN/m)

Mercury 20 484

Water 20 72.8

Glycerol 20 63.1

Ethylene glycol 20 47.7

n-Octane 20 21.8

Argon −183 11.9
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and the differential form of the fundamental equation in terms of energy for a surface
phase is given by:

dUA = TdSA + γ dA +
∑

μidNiA

From the above two equations, let us compare the definition of pressure P and the
definition of surface tension γ :

−P = (
∂UB
∂V

)
S,Ni

[
J/m3 = N/m2

]

γ = (
∂UA
∂A

)
SA,NiA

[
J/m2 = N/m

]

We see that the surface tension γ is the 2D analogy to the hydrostatic pressure P
for a 3D bulk phase. That is, γ is a mechanical property of a surface phase while P is
the mechanical property of a volume phase. In fact, if we simply replace (–P) by γ

and V by A, all the previously derived thermodynamic equations for bulk phases will
be transformed into equations for surface phases. The following summarizes some
of the key equations.

The Euler equation for a surface phase is:

UA = TSA + γA +
∑

μiNiA

The Gibbs–Duhem equation for a surface phase is:

SAdT + Adγ +
∑

NiAdμi = 0

Helmholtz potential or free energy for a surface phase is:

FA = UA − TSA = γA +
∑

μiNiA

dFA = −SAdT + γ dA +
∑

μidNiA

Gibbs potential or free energy for a surface phase is:

GA = UA − TSA − γA =
∑

μiNiA

dGA = −SAdT + Adγ +
∑

μidNiA

Grand canonical potential or free energy for a surface phase is:

�A = UA − TSA −
∑

μiNiA = γA
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The specific grand canonical free energy per unit surface area is:

ωA = �A
A = γ

That is why surface tension γ is also called the specific surface free energy
(mJ/m2).

d�A = −SAdT + γ dA −
∑

NiAdμi

When dT = 0 and dμi = 0, we have

d�A = γ dA or
(

∂�A
∂A

)
T ,μi

= γ

It should be noted that the Gibbs–Duhem equation for a surface

SAdT + Adγ +
∑

NiAdμi = 0

can lead to an important equation, called the Gibbs adsorption equation. Let’s
consider a liquid-fluid interface in a constant temperature process, i.e., dT = 0.
The above Gibbs–Duhem equation is reduced to

−Adγ =
∑

NiAdμi

or

−dγ =
∑ NiA

A
dμi =

∑
�idμi

where �i = NiA
A is called the surface mole density of the ith component. For a

two-component solution system, r = 2, the above equation becomes:

−dγ = �1dμ1 + �2dμ2

where the component 1 is the solvent and the component 2 is the solute.
From the above equation, we get:

�2 = −
(

∂γ

∂μ2

)

μ1

�2 is called the relative surface adsorption of the component 2. It is the surface
mole density of the component 2.
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At equilibrium, the chemical potential of a given component in the surface phase
is the same as the chemical potential of the same component in the bulk phase. Recall
that the chemical potential of the solute (component 2) in a dilute solution is given
by:

μ2(T ,P) = ψ(T ) + RT ln x

where ψ(T ) is a material constant at the given temperature; R is the universal gas
constant; and x is the mole fraction of the component 2 (solute) in the solution. Using
this relation, we have:

�2 = − x

RT

dγ

dx

This is the Gibbs adsorption equation.
Using this equation, one can determine the relative adsorption �2 on the surface

by measuring the surface tension change with respect to the mole fraction of the
solute. A typical γ ~ x curve is illustrated in the figure below. According to the above
Gibbs adsorption equation, the slope of the γ ~ x curve is the indication of the relative
adsorption of the component 2 at the interface.

3.3 Thermodynamics of Three-Phase Contact Lines

The mutual boundary of three immiscible bulk phases or the intersection of three
interfaces is called the three-phase contact line. For example, as illustrated in the
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figure below, a three-phase contact line is formed by a sessile drop on a solid substrate
surrounded by a vapor phase. As we have already known that each interface is a non-
homogeneous interfacial region with a finite thickness, the three-phase contact line
that is formed by the intersection of three interfaces is also a non-homogeneous
zone with a finite thickness. Material properties changes sharply through this line
zone from one bulk phase/interface phase to another. However, the thickness of the
three-phase contact zone is negligible in comparison with its length. Therefore, in
the surface thermodynamics, similar to the treatment of interfaces, the three-phase
contact line is treated as an one-dimensional, uniform linear phase.

Three-phase contact line 

Solid substrate 
Liquid 

Vapor 

Three-phase contact line 

The side view (upper figure) and the top view (lower figure) of a sessile drop
resting on a flat solid surface.

The fundamental equation in the energy form for a line phase is given by:

UL = UL(SL,L,N1L, . . .NrL)

where the variable L is the length of the line phase, and the subscript L indicates
the line phase. This equation is valid only for moderately-curved line phases, as no
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curvature variables are introduced in the fundamental equation. The differential form
of the fundamental equation is:

dUL = TdSL + σdL +
∑

μidNiL

where the new parameter σ is the line tension, defined by

σ = (
∂UL
∂L

)
SL,NiL

[μJ/m]

Comparing the definition of the line tension with the definitions of surface tension
and pressure, we see that σ is the one-dimensional analogy to γ in a 2D surface phase
and P in a 3Dbulk phase. Similar to surface tension γ , line tensionσ is themechanical
force operating in the three-phase contact line, it is also the energy required to create
a unit length of the three-phase contact line. There is no consensus on the order of
magnitude of line tension at the present time. For many solid–liquid-vapor systems,
σ has been reported to be of the order of 1 μJ/m at room temperature.

If we simply replace (–P) by σ and V by L, all the previously derived thermody-
namic equations for bulk phases will be transformed into equations for line phases.
For example, the grand canonical free energy of a line phase is given by:

�L = UL − TSL −
∑

μiNiL = σL

and

ωL = �L
L = σ [μJ/m]

That is why σ is also called the specific free energy of a line phase.
The line tension effects are especially important when the dimension of the

system is very small, for example, in the studies of heterogeneous nucleation. More
discussions will be given in later sections.

3.4 Equilibrium Conditions of Droplets and Bubbles

Consider an isolated system consisting of a liquid droplet surrounded by the liquid’s
vapor phase, as illustrated in the figure below.
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Vapor 

Liquid 

This system consists of two bulk phases: the liquid and the vapor, and one interface
phase: the liquid–vapor interface. The total entropy of this composite system is:

S = SL + SV + SLV

where the subscripts, L, V and LV represent the liquid phase, the vapor phase and the
liquid–vapor interface phase, respectively. The constraints for this isolated system
are the following:

Total energy is constant:

UL + UV + ULV = constant

Total mass is constant:

NiL + NiV + NiLV = constant (i = 1, 2, . . . . . . r)

Total volume is constant:

VL + VV = constant

As we know, at the equilibrium state, the total entropy of this isolated system will
be maximum. Applying the entropy maximum principle, dS = 0, we have:

dS = dSL + dSV + dSLV

= dUL
TL

+ PL
TL
dVL −

∑
μiL

TL
dNiL

+ dUV
TV

+ PV
TV
dVV −

∑
μiV

TV
dNiV

+ dULV
TLV

− γ

TLV
dA −

∑
μiLV

TLV
dNiLV

Using the constraints, we have:
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dULV = −dUL − dUV

dNiLV = −dNiL − dNiV

dVV = −dVL

Furthermore, it is not difficult to understand that the surface area of the droplet
depends on the volume of the droplet. Therefore,

A = A(VL)

and

dA =
(

dA

dVL

)
dVL

Using these differential constraint relations, the above dS equation becomes:

dS = dSL + dSV + dSLV

=
(

1
TL

− 1
TLV

)
dUL +

(
1
TV

− 1
TLV

)
dUV

+
[
PL
TL

− PV
TV

− γ

TLV

(
dA
dVL

)]
dVL

−
∑ (

μiL

TL
− μiLV

TLV

)
dNiL −

∑ (
μiV

TV
− μiLV

TLV

)
dNiV

= 0

Thus, the equilibrium conditions are:

TL = TV = TLV (3.4.1)

μiL = μiV = μiLV i = 1, 2, . . . r (3.4.2)

PL − PV = γ
(

dA
dVL

)
(3.4.3)

As we see from these equations, the thermal and chemical equilibrium conditions,
Eqs. (3.4.1) and (3.4.2), are the same as in the cases of bulk phase systems. The
mechanical equilibrium condition, however, is changed. Equation (3.4.3) is called
the Laplace Equation of Capillarity.

It can be shown that for a spherical droplet,

(
dA
dVL

)
= 2

R ,
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where R is the radius of the droplet. Therefore, for a spherical drop, the Laplace
equation can be written as:

PL − PV = 2γ
R

Clearly, because 2γ
R > 0, the liquid pressure (inside the curved liquid–vapor

interface) is higher than the vapor pressure (outside the curved liquid–vapor inter-
face), i.e., PL > PV . This is different from the mechanical equilibrium condition for
bulk phases (i.e., PL = PV ), because of the effects of the surface tension γ and the
curvature (1/R). If either γ = 0 (without considering the interface) or R = ∞(a flat
surface), the Laplace equation will revert to PL = PV .

If the system is a bubble surrounded by a liquid phase, we can derive the equi-
librium conditions by following the above procedure. The mechanical equilibrium
condition, i.e., the Laplace equation now is given by:

PV − PL = 2γ
R

It should be noted that, comparing with the Laplace equation for a liquid drop,
the positions of PL and PV are exchanged, and R is the radius of the bubble. This
means that the pressure inside the bubble is higher than the liquid pressure outside
the bubble.

Generally, we can show that

(
dA
dVL

)
= 1

R1
+ 1

R2
= J

where R1 and R2 are the principle radii of curvature at a point of a curved surface.
As shown in the figure below, two perpendicular planes go through the same point
on a curved surface. One plane has a larger radius of curvature, called the principle
radius of curvature, R1. The other plane has a smaller radius of curvature, called the
principle radius of curvature, R2.

J = 1
R1

+ 1
R2

is called the mean curvature.
Therefore, the Laplace equation in a more general form is given by:
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Obviously, for a spherical surface, R1 = R2 = R, and J = 2
R .

It should be noted that if the vapor phase is replaced by another fluid (a gas or
another immiscible liquid), the Laplace equations derived above remains valid. We
only need to replace PV by Pf (i.e., the fluid pressure) in the Laplace equations.

Home Work

1. As illustrated in the figure below, two bubbles are formed at the ends of a
capillary tube in two separate chambers. One bubble is smaller, and the other
bubble is larger. Initially, the valve at the middle of the tube is closed, and the
two bubbles of different sizes are stable. Assume that the temperature and liquid
pressure in the two chambers are the same and are constant. What will happen
if the valve is opened? Please use the Laplace equation of capillarity to support
your conclusion.

Vapor 

Liquid   T,   P Liquid   T,   P 

Vapor 

2. A paper-board boat of 50 g is floating on the surface of a still water pond. A slot
connects a small hole in the center of the boat to water surface at the back of
the boat, as shown below. If one deposits a few drops of oil in the hole, the oil
will migrate to the water surface at the back of the boat and the boat will start
move forward. Neglect the thickness of the boat.

(a) What causes the boat to move?
(b) Assume the boat moves slow enough and the oil spreads over the water

surface behind the boat, the surface tension of water is 72 mJ/m2 and the
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surface tension of oil is 36 mJ/m2. Find the acceleration and velocity of
the boat.

20 cm

3. A small amount of liquid is deposited into a capillary tube that is placed hori-
zontally, and a liquid column is formed in the capillary tube, as shown in the
figure below. The cross-section of the capillary tube is circular and the radius
of the capillary tube varies linearly in the length direction. The radii of the two
surfaces of the liquid column are r1 and r2, respectively. The capillary tube has
a finite length, and its two ends are open to the atmosphere.

(1) Will the liquid column stay in the position? Or move? Show why.
(2) If it moves, to which direction? What is the final equilibrium configura-

tion? Show why.

(Hint: Using the Laplace equation).

Liquid airair R2R1

3.5 Equilibrium Conditions of Sessile Drops

Introduction to Wetting Phenomena

From daily experience, we know that a drop of water deposited onto the surface of
a horizontal plastic plate will form a sessile drop. Also, we often see that water can
climb up to a certain height in a capillary tube and form a meniscus at the top. In
these phenomena, the angle formed between the tangential line of the liquid–vapor
interface and the tangential line of the liquid–solid interface at the three-phase contact
line is conventionally defined as the contact angle θ. Contact angle represents the
ability of a liquid to wet a solid surface. It is also sometime referred to as the wetting
angle.
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The contact angle defined above is the macroscopic contact angle that can be
observed by our eyes or by a regular optical microscope. It should be noted that, at
molecular level, the three immiscible bulk phases do not meet in a line; they meet
in a zone of small but finite dimensions in which the three interfacial regions merge.
Therefore, the microscopic contact angles may be different from the contact angles
measured by ordinary instruments, like a goniometer. However, discussion of such
microscopic contact angles is beyond the scope of this chapter. For our purpose, the
macroscopic contact angles will be considered; and the type of systems studied here
consists of three bulk phases: solid, liquid and vapor, and three interface phases: the
solid–liquid interface, the solid–vapor interface and the liquid–vapor interface.

The interest in wetting and contact angles is twofold: They play a major role in
a number of technological, environmental and biological processes. They are also a
manifestation of the surface tension of the solid onwhich the contact angle is formed.

When the contact angle is larger than 90°, we say that the liquid does not wet
the solid surface well, or the solid surface is partially not wettable by the liquid. In
the extreme case, when the contact angle is 180°, we say that the solid surface is
completely not wettable by the liquid. In this case, the liquid drop will form a sphere
with a point contact on the solid surface. On the other hand, when the contact angle
is less than 90°, we say that the liquid partially wets the solid surface. In the extreme
case, when the contact angle is 0°, we say that the solid surface is completely wetted
by the liquid. In this case, the liquid actually forms a film on the solid surface.
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Depending on the applications, the wetting phenomena can also be divided into
equilibrium wetting and dynamic wetting. In equilibrium wetting, there is no motion
of the solid–liquid-fluid three-phase contact line relative to the solid surface. The
contact angle is determinedby the intrinsic properties of the solid–liquid-fluid system,
such as the surface tensions and the roughness and heterogeneity of the solid surface.
In dynamicwetting, the three-phase contact linemoves and the contact angle changes
generally with time in the moving process. Because of the liquid motion, the liquid
viscosity plays an important role in the dynamic wetting processes. If there is no
external force involved, such as in the case of spontaneous spreading of a liquid drop
on a solid surface, the dynamic wetting is driven by the capillary forces (surface
tension) and moves towards the equilibrium wetting configuration. The final contact
angle will be the equilibrium contact angle of the system. If the dynamic wetting
involves external forces such as pressure and gravity force to drive the bulk liquid
flow, the wetting process is more complicated and the contact angle depends on both
the system’s intrinsic properties and the external forces.

In this chapter, we are interested only in equilibrium wetting and contact angle
phenomena. The objectives include (1) to understand the factors determining the
contact angles, and (2) to predict the equilibrium contact angle.

Surface Tension and Surface Stress

The wetting phenomena involve solid surfaces. We must understand the basic differ-
ence between the solid surfaces and the liquid-fluid interfaces. For most liquid-fluid
interfaces, the molecules at the interface have high mobility. That is, despite the
shape change of the interface, the molecules can always re-orient themselves to
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take the minimum energy configuration so that the surface tension remains constant.
However, at solid–liquid interfaces, the solid molecules are immobile. When the
shape of the solid surface changes, the intermolecular forces change and hence the
surface tension and the surface energy are changed. We must know the difference
between the surface stress and surface tension.

Generally, surface tension is the work required creating unit area of new surface.
Surface stress, however, is associated with the work involved in deforming a surface.
Consider a surface of area A is deformed and the corresponding surface area change
is dA. The area change dA can be expressed in terms of the change of strain tensor,
Δεij, by

dA = A
∑

�εij δij (i, j = 1, 2)

where

δij = 1, when i = j δij = 0, when i �= j

The amount of work associated with this deformation is given by

dW = A
∑

gij�εij (i, j = 1, 2)

where gij is the surface stress tensor.
Recall that the total surface (grand canonical) free energy is γA. Alternatively,

the work required for deforming the surface should be equal to the total surface free
energy change and can also be expressed as

dW = d(γA) = γ dA + Adγ = γA
∑

�εijδij + A
∑ (

∂γ

∂εij

)
�εij

Equating the above two expressions of dW, we have

gij = γ δij +
(

∂γ

∂εij

)
(i, j = 1, 2)

This is the relationship between the surface stress and the surface tension. Clearly,

the surface tension is only a component of the surface stress tensor. The term
(

∂γ

∂εij

)

reflects the change of surface tensionwith respect to the surface strain, i.e., the surface
tension dependence on the surface deformation. In other words, generally, surface
stress is different from surface tension and surface tension will change with the
surface deformation (area change, curvature change, etc.). For most simple liquid-
fluid interfaces where the atomic or molecular mobility is high and there is no long
range correlation in atomic or molecular positions, the surface tress will be isotropic



120 3 Thermodynamics of Interfaces and Three-Phase Contact Lines

with zero shear components, i.e.,
(

∂γ

∂εij

)
= 0, consequently, the surface stress and the

surface tension are numerically equal.
Without loss of generality, in this chapter, we will consider that the solid surfaces

are rigid and non-deformable, and their surface free energy is represented by the
surface tension.

Sessile Drop on a Flat Horizontal Surface

Consider a sessile drop resting on a solid surface in equilibrium with the liquid’s
vapor phase (or another fluid phase), as illustrated in the figure below. Please note
that the contact angle θ is defined as the angle inside the liquid between the tangent
line of the solid–liquid interface and the tangent line of the liquid–vapor interface at
the three-phase contact point.

Note that the surface tension is a tensile force, always tends tominimize the surface
area (just like the elastic force of a stretched rubber sheet) and hence to minimize
the total surface free energy. The direction of a surface tension of an interface in the
above figure is from the three-phase contact point towards to its own surface.

As we know, the thermal equilibrium conditions and the chemical equilibrium
conditions are the same for both bulk phase systems and surface systems. Our focus
of the equilibrium conditions will be on themechanical equilibrium conditions. It
should be mentioned here that the entropy maximum principle is the most general
principle and can be used in any cases. However, for the purpose of illustrating how to
use different thermodynamic approaches, we will derive the mechanical equilibrium
conditions by the energy minimum principle for the sessile drop system.

Also, it should be pointed out that we will consider the solid–liquid-vapor three-
phase contact line, i.e., the line phase (denoted by the subscript σ in the equations
below), in this model and hence its contribution to the mechanical equilibrium
condition.

For the sessile drop system illustrated in the figure above, there are a total of 7
phases: three bulk phases (solid, liquid and vapor), three surface phases (solid–vapor
interface, solid–liquid interface and liquid–vapor interface), and one line phase (the
three-phase contact line). As the bulk solid is rigid (no volume change) and has
constant mass, it can be easily proved that the bulk solid phase does not contribute
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to the equilibrium conditions. Hence we will not include the bulk solid phase in the
following thermodynamic model.

The total internal energy of the sessile drop system in differential form is given
by:

dU = dUL + dUV + dULV + dUSV + dUSL + dUσ

= TLdSL − PLdVL +
∑

μiLdNiL

+ TV dSV − PV dVV +
∑

μiV dNiV

+ TLV dSLV + γLV dALV +
∑

μiLV dNiLV

+ TSV dSSV + γSV dASV +
∑

μiSV dNiSV

+ TSLdSSL + γSLdASL +
∑

μiSLdNiSL

+ TσdSσ + σdL +
∑

μiσdNiσ

In the above equation, the subscripts L, V, LV, SV, SL and σ stand for the
liquid phase, vapor phase, liquid–vapor interface, solid–vapor interface, solid–liquid
interface and line phase, respectively.

As our interest here is to find the mechanical equilibrium conditions, we will
assume that the thermal and chemical equilibrium conditions are already reached.
That is, temperatures of different phases are equal, and chemical potentials of the
same component in different phases are also equal. It should be pointed out that
these equilibrium conditions are true and use of these conditions will not reduce the
generality of our results. In fact, we can carry all the terms in the above equation, use
the proper constraint conditions (total entropy constant, total mass constant, etc.),
and derive the same equilibrium conditions as below.

By considering the existence of the thermal and chemical equilibrium conditions,
the above equation is reduced to

dU = TdS +
∑

μidNi − PLdVL − PV dVV

+ γLV dALV + γSV dASV + γSLdASL + σdL

where S and Ni are the total entropy and the total mole number of component i,
respectively. Note that for a given system, the total internal energy will be minimum
at an equilibrium state under the following constraints:

Stotal = constant and Ni total = constant

Using these constraints, the above equation becomes:

dU = −PLdVL − PV dVV + γLV dALV + γSV dASV + γSLdASL + σdL
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Use the following geometry constrains:

ASV + ASL = constant and VL + VV = constant

The above equation can be rewritten as:

dU = (PV − PL)dVL + γLV dALV + (γSL − γSV )dASL + σdL

It should be noted that the surface area of the liquid–vapor interface of this sessile
drop depends on the volume of the drop and the area of the solid–liquid interface
(the wetted surface area under the drop); also, the length of the three-phase contact
line depends on the area of the solid–liquid interface. That is,

ALV = ALV(VL,ASL) and L = L(ASL)

dALV =
(

∂ALV
∂VL

)
dVL +

(
∂ALV
∂ASL

)
dASL

dL =
(

∂L
∂ASL

)
dASL

Therefore,

dU =
[
−(PL − PV ) + γLV

(
∂ALV
∂VL

)]
dVL

+
[
γLV

(
∂ALV
∂ASL

)
− (γSV − γSL) + σ

(
∂L

∂ASL

)]
dASL

Set dU = 0, we obtain the following equilibrium conditions:

Laplace Equation (PL − PV ) = γLV

(
∂ALV
∂VL

)

Young’s Equation γLV

(
∂ALV

∂ASL

)
+ σ

(
∂L

∂ASL

)
= γSV − γSL

The first equation of these two mechanical equilibrium conditions is the Laplace
equation, as we discussed before. It is the mechanical equilibrium condition for the
liquid-fluid interface, valid for every point at the interface. It governs the equilibrium
shape of the liquid-fluid interface.

The second equation in themechanical equilibrium condition is called theYoung’s
equation.

γLV

(
∂ALV
∂ASL

)
+ σ

(
∂L

∂ASL

)
= γSV − γSL
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Let us first evaluate the two derivatives in this equation. If we look at a small
region near the three-phase contact line, as illustrated in the figure below, we may
consider the profile of the liquid–vapor interface approximately a straight line, as
illustrated in the figure below.

Consider a small variation of the radius of the three-phase contact circle, dR, as
shown in the figure above. Assume that the contact angle remains the same during
such the small variation, and the corresponding change in the length of the liquid–
vapor interface profile is dS. Thus, we have

dASL = 2πRdR

dALV = 2πRdS

and

dS = dR cos θ

This yields

(
∂ALV
∂ASL

)
= dS

dR = cos θ

Also, using

dL = 2πdR and dASL = 2πRdR,

we have
(

∂L
∂ASL

)
= 1

R

Therefore, the Young’s equation becomes:

γLV cos θ = (γSV − γSL) − σ
R



124 3 Thermodynamics of Interfaces and Three-Phase Contact Lines

whereR is the radius of the three-phase contact circle. This equation is the equilibrium
condition of the three-phase contact line, valid at every point of the three-phase
contact line. It implies that the contact angle is a function of the surface tensions,
line tensions and the drop size.

It should be noted that the above Young’s equation is valid only for a drop on an
ideal solid surface. For a sessile drop resting on a non-ideal solid surface, the contact
angle will depends not only on the surface tensions and line tensions, but also on
surface conditions such as the surface roughness and heterogeneity. In such a case,
the three-phase contact line will not be a smooth circle. The Young equation will
take more complicated forms depending on surface’s conditions. More discussion
on this matter is beyond the scope of this chapter and can be found in the literature.

We may rearrange the above Young’s equation as follows:

cos θ = γSV −γSL
γLV

− σ
γLV

1
R

When the radius of the three-phase contact circle becomes infinitely large, R →
∞, i.e., an infinite large sessile drop, the above equation reduces to

cos θ∞ = γSV − γSL
γLV

In the above equation, θ∞ is the equilibrium contact angle of an infinitely large
sessile drop. This equation is referred to as the classical Young equation. It shows
that the contact angle of an infinite large sessile drop (or in the case of a straight
three-phase contact line) is determined by the three surface tensions of such a solid–
liquid-vapor system.

Combining the above two equations yields:

cos θ = cos θ∞ − σ
γLV

1
R

This equation is referred to as the modified Young’s Equation.
For a given solid–liquid-vapor system, the surface tensions are constant, hence

θ∞ or cos θ∞ is a constant. In addition, the line tension σ and the liquid surface
tension γLV are also constant. The modified Young equation implies that cos θ is
a linear function of the curvature of the three-phase contact circle, (1/R). In other
words, the modified Young equation predicts a drop size dependence of the contact
angle. If we consider line tension is a positive quantity as the liquid surface tension,
the contact angle will decrease as the drop size increases. As shown in the following

figure, the slope of the cos θ ∼ (1/R) line is
(

σ
γLV

)
. In this way, the line tension can

be determined by measuring the drop size dependence of contact angles.
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A Sessile Drop in a Crevice/Cavity

The Young’s equation derived previously is valid for contact angle formed on a
horizontal surface. In the studies of drop or bubble nucleation, the initial drop/bubble
nuclei are often found to form first in the crevices or cavities of a substrate. This is
because nucleation in such a place requires less energy and hence is easier to form
in comparison with the nuclei formed in the homogeneous fluid phase or on the
flat surface. More discussions on this aspect will be given in a later section about
nucleation. It should be pointed out here that the equilibrium contact angle plays
an important role in the nucleation. Therefore, we will show in this section how to
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derive the equilibrium condition of the three-phase contact line for a drop/bubble in
a crevice or a cavity.

Consider a drop siting in a conic crevice as shown in the above figure. The contact
angle is θ, the angle of inclination of the solid surface is β, and the radius of the
three-phase contact line is R. Assume the temperature and the chemical potentials
are constant. We will use the grand canonical potential minimum principle to derive
the equilibrium condition.

For system illustrated in the figure above, we will consider a total of 6 phases: two
bulk phases (liquid and vapor), three surface phases (solid–vapor interface, solid–
liquid interface and liquid–vapor interface), and one line phase (the three-phase
contact line).Wewill use subscripts L, V, LV, SV, SL and σ to indicate the liquid phase,
vapor phase, liquid–vapor interface, solid–vapor interface, solid–liquid interface and
the line phase, respectively.

The differential change of the total grand canonical potential of this system is
given by

d� = −PLdVL − PV dVV + γLV dALV + γSV dASV + γSLdASL + σdL

Using the constraints:

VV + VL = constant

ASV + ASL = constant

We have:

d� = −(PL − PV )dVL + γLV dALV − (γSV − γSL)dASL + σdL
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Assume the liquid is non-volatile and the liquid volume VL is constant, and set
dΩ = 0 at equilibrium, we have

γLV dALV − (γSV − γSL)dASL + σdL = 0

or

γLV
dALV

dASL
− (γSV − γSL) + σ

dL

dASL
= 0

Considering the geometry shown in the above figure and using trigonometry, the
following relationships can be derived:

dALV
dASL

= cos θ and dL
dASL

= cosβ

R

Substituting the above relationships into the equilibrium condition, we obtain the
general Young equation for a sessile drop in contact with a conic crevice:

γLV cos θ = (γSV − γSL) − σ cosβ

R

If the radius of the three-phase contact circle is infinitely large, R→ ∞, the above
equation is reduced to:

cos θ∞ = γSV − γSL

γLV

This leads to the following form of the equilibrium condition:

cos θ = cos θ∞ − σ
γLV

cosβ

R

This equation clearly shows that not only the radius of the three-phase contact
line but also the inclination angle of the solid surface affect the equilibrium contact
angle. Although derived from a conical crevice system, this equation is valid for a
three-phase contact line on any smooth and homogeneous surface of revolution. For
example, the three-phase line inside a conical capillary or around a cone.

If the inclination angle is zero, i.e., β = 0, the crevice becomes a flat surface.
Because cosβ =1 for this case, the above equilibriumconditionbecomes themodified
Young’s equation, as we derived previously:

cos θ = cos θ∞ − σ
γLV

1
R

If the inclination angle is β = 90°, the conic crevice becomes a vertical capillary
tube of a constant cross-section. In this case, cosβ = 0, the equilibrium condition
becomes
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cosθ = cosθ∞

It means the line tension and the size of the drop have no influence on the contact
angle of a liquid inside a vertical capillary tube.

Home Work

Contact angles of dodecane on FC721 surface are measured as a function of drop
size. The results include the following: θ∞ = 70°, γlv = 25.4 mJ/m2, and

dcosθ

d(1/R)
= −7.874 × 10−5m.

Use the modified Young’s Equation to find (a) the line tension value; (b) at what
value of the contact radius R the contact angle will approach θ = 180°? what does
this mean?

3.6 From Laplace Equation to Capillary Rise and Meniscus
Shape

Capillary Rise in a Vertical Capillary

Consider a capillary tube (with a radiusR) dipped vertically into a liquid, as illustrated
below. The liquid inside the capillary will climb up the tube to a certain height, if the
liquid partially wets the inner surface of the capillary tube, i.e., θ < 90°.

If the diameter of the capillary tube is small, we may assume that the liquid–
vapor interface is spherical and has a radius R’. According to the Laplace equation,
the pressure difference across the spherical liquid–vapor interface is given by:

�P = 2γ
R′
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Using the geometric relationship between R and R′: R = R’ cosθ, we have

�P = 2γ cos θ

R

Because this pressure difference is responsible to lift the liquid column to a height
h against the gravity, we have:

�P = �ρgh

where�ρ is the density difference between the liquid and fluid phases. Combining
the above two equations gives the capillary height:

h = 2γ
�ρg

cos θ
R

Example: If we are given γ = 70 mJ/m2, �ρ = 1000 kg/m3, g = 10 m/s2, and θ =
0°, we will find

h = 1.4×10−5

R (m)

If the radius of the capillary tube is R = 1 mm, the above equation predicts the
capillary height is h= 1.4mm. IfR= 1μm, it follows h= 14m. This example shows
the capillary rise dependence on the capillary size in the extreme case of complete
wetting, θ = 0°.

Capillary Rise at a Vertical Wall

In this part, we will see how to determine the meniscus profile and the capillary
height by the Laplace equation. Let us consider a solid plate vertically dipped into a
liquid. The liquid partially wets the solid surface (i.e., θ < 90°) and hence climbs up
and form a capillary rise meniscus, as illustrated in the figure below.

In this figure, the x-axis is at the same level as the horizontal liquid–vapor interface.
The origin of the z-axis is also at the horizontal liquid–vapor interface level. θ is the
contact angle, h is the height of the capillary rise, andφ is the angle between the z-axis
and the normal line at an arbitrary point P (x, z). Such a liquid–vapor interface is a
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cylindrical surface as it curved only in the plane of the paper (x–z plane), therefore,
one of the curvatures is zero, i.e., 1

R2
= 0. The Laplace equation for this surface is

�P = γ

R1
= γ

R

Consider a differential liquid column at an arbitrary point P (x, z) on the surface.
According to the force balance, the Laplace pressure difference should be equal to
the gravity force against lifting that liquid column. That is,

�P = �ρgz

and from calculus, we know

1
R = − d cosφ

dz

Thus the Laplace equation becomes:

�ρgz = −γ

(
d cosφ

dz

)

If we define a = �ρg
γ

as a material property of the system, the above equation can
be rearranged as:

− d cosφ

dz = az

Integrating the above equation gives:

− cosφ = az2

2 + b

Using the boundary condition: z = 0 at φ = 0, it can be shown that b = −1.
Therefore,

cosφ = − az2

2 + 1

This equation describes the meniscus profile in terms of the variables z and φ.
Using another boundary condition: z = h at φ = 90°–θ, the above equation gives:

h =
√

2γ
�ρg

√
1 − sin θ = c

√
1 − sin θ

where c =
√

2γ
�ρg is usually referred to as the capillary constant. The capillary

constant value indicates the capability of a liquid to climb up on a vertical wall when
θ = 0° (i.e., complete wetting), or the maximum height of the capillary rise. For
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example, at 20 °C, if the liquid is water, the vapor phase is the water vapor or air, the
liquid–vapor surface tension is approximately 73 mJ/m2. The capillary constant has
a value: c = 3.86 mm. At 20 °C, if the liquid is a soap solution, the vapor phase is air,
the liquid–air surface tension is approximately 32 mJ/m2. In this case, the capillary
constant has a value: c = 2.56 mm.

This equation relates the height of the capillary rise to material properties of the
fluids (i.e., the capillary constant) and the contact angle. We can rearrange the above
equation as:

sin θ = 1 − h2

c2

This is a very useful equation. It allows us to determine the contact angle by
measuring the height of the capillary rise at a vertical plate. Since the height (i.e.,
length) can be measured very accurately, the contact angle determined in this way
is also very accurate. The well-known Wilhelmy Plate method for contact angle
measurement is based on this equation and has an accuracy of 0.1 degree.

Capillary Rise and the Meniscus Shape with an Inclined Plate

Let us consider a tilted solid plate partially inserted in a liquid, as shown in the figure
below. Assume that both surfaces of the plate are the same and are partially wetted
by the liquid. The contact angle of the liquid on both sides of the solid plate is θ. The
liquid surface tension is γ, and the angle of inclination of the plate is β. The heights
of capillary rise on the two sides of the solid plate are different and are represented
by hL on the left-hand side and hR on the right-hand side, respectively.

For this system, we want to find (1) the equilibrium shape or the profile of the
liquid–vapor interfaces on both sides of the plate; and (2) the heights of the capillary
rise on both sides of the plate.

As we know, the equilibrium shape of any liquid-fluid interface is governed by
the Laplace equation of capillarity:

�P = γ

(
1

R1
+ 1

R2

)
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Since the liquid–vapor interfaces in this system are cylindrical surfaces,

1
R2

= 1
∞ = 0

the Laplace equation becomes

PV − PL = γ 1
R1

= γ

R (3.6.1)

At this point, in order to find the profile of the liquid–vapor interface, we need to
find how ΔP is related to 1/R in terms of variables that describe the profile of the
liquid–vapor interface. Let us consider the liquid–vapor interface on the left side of
the plate, as illustrated below.

First, we know that the bulk fluid phase pressures on both sides of the horizontal
liquid–vapor interface are equal. That is, PL = PV = P0. Using this pressure P0

as the reference, let us find the pressure difference at any point across the curved
liquid–vapor interface. At an arbitrary point A on the interface, the height above the
level of the horizontal liquid–vapor interface is y. In the above figure, φ is the angle
between the tangent line of the interface at the point A and the horizontal line.

Therefore, at point A, we have:

PV = P0 − ρV gy and PL = P0 − ρLgy

Thus

PV − PL = (ρL − ρV )gy (3.6.2)

Knowing the expression of the pressure difference in the Laplace equation at point
A, we need to evaluate the curvature (1/R) at point A, before we can find information
about the profile of the liquid–vapor interface. From the elementary calculus, we can
show (see the above figure):

1
R = δφ

δS
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and

δy = δS sin φ

Combining the above two relations gives:

1
R = sin φ

δφ

δy (3.6.3)

Bringing the above expressions forΔP and (1/R) into the Laplace equation yields:

�ρgy = γ sin φ
δφ

δy

or

�ρgyδy = γ sin φδφ

Integrating this equation with the boundary condition: φ = 0 at y = 0, we have:

y = 2

(
γ

�ρg

)1/2

sin φ

2 (3.6.4)

Equation (3.6.4) describes the equilibrium shape of the liquid–vapor interface on
the left side of the plate.

For the liquid–vapor interface on the right hand side of the plate, using the same
procedure and realizing the angle φ is negative, we can show the profile of the
liquid–vapor interface on the right side of the plate is given by the same equation,
Eq. (3.6.4).

Now let us evaluate the capillary heights of the left-side and right-side liquid–
vapor interfaces. The capillary height on the left side can be obtained by applying
the following boundary condition to Eq. (3.6.4):

y = hL, φ = β − θ

hL = √
2C sin β−θ

2 (3.6.5)

where the capillary constant C is defined as:

C =
√

2γ
�ρg .

Similarly, applying the boundary condition of the right side

y = hR, φ = π − β − θ
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to Eq. (3.6.4) yields:

hR = √
2C cos β+θ

2 (3.6.6)

Comparing Eq. (3.6.5) with Eq. (3.6.6), we see generally

hR �= hL

hL
hR

=
sin

(
β−θ

2

)

cos
(

β+θ

2

)

For example, β = 70°, θ = 30°, hL
hR

= 0.53 < 1. The capillary height on the right
side of the plate is higher than that on the left side.

Now let us consider an extreme case where β = 0°. For example, as illustrated
in the figure below, we may hang a plate horizontally on the liquid surface and then
pull the plate up to a height h0 above the undisturbed liquid level.

For this case, Eq. (3.6.6) gives:

h0 = √
2C cos θ

2 (3.6.7)

For a given liquid–vapor system, if the contact angle θ is specified, the above
equation will give the maximum height of the liquid column. If one lifts the plate
any further, i.e., h > h0, the liquid will detach from the plate, or the meniscus will
break. For example, consider water at T = 20 °C, from Eq. (3.6.7) we have:

θ = 0° h0 = 5.40 mm

θ = 30° h0 = 5.22 mm

θ = 60° h0 = 4.67 mm

θ = 90° h0 = 3.81 mm

θ = 120° h0 = 2.70 mm

θ = 180° h0 = 0.00 mm
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A Liquid Bridge between Two Parallel Plates

From our daily life experience, we know that a drop of water placed between two
clean and smooth glass plates may draw the two plates together, if the contact angle
θ < 90°. One may need to apply a considerable force in order to separate them.
However, if one places a non-wetting liquid (θ > 90°) between two closely spaced
plates, then a huge force may be required to push the two plates any closer to each
other.

As shown in the above figure, the contact angle between the liquid and the solid
surface is θ, and the separation distance between the two plates is d. Let us define:

AS as the solid–liquid contact area on each plate.
L as the length of the solid–liquid-vapor three-phase contact line on each plate.
The force acting to pull these two plates together is in the direction perpendicular

to the parallel plates and given by:

F = (PV − PL)AS + (γ sin θ)L

As we can see from this equation, the force F has two components:

(1) (PV −PL)AS is due to the Laplace pressure, caused by the surface tension and
the curvature of the liquid–vapor interface.

(2) (γ sin θ)L is the component of the surface tension in the direction perpendicular
to each plate.

Consider the plates are infinitely long in the direction perpendicular to the paper
plane. The meniscus can then be assumed to be cylindrical, i.e., (1/R2) = 0. The
Laplace equation in this case becomes

PV − PL = γ
(

1
R1

)
= γ

R
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Because the separation distance between the two plates is small, we can assume
that the shape of the liquid–vapor interface in the plane of the paper is spherical. By
inspecting the above figure, we have:

R cos θ = d
2 or R = d

2 cos θ

Therefore,

�P = 2γ cos θ

d

and

F = 2γ cos θ

d AS + γL sin θ

Usually, the 2nd term in the above equation is much smaller than the 1st term.
Therefore, the force is approximately given by:

F = 2γ cos θ

d AS

From this equation, we may conclude that:

(1) F increases as d decrease. F → ∞ as d → 0.
(2) F is attractive for θ < 90°, and repulsive for θ > 90°.

Example: The strong repulsive force between two surfaces is used to lubricate
moving metallic elements, for example, bearings. We can choose an oil as a lubri-
cant (liquid) and treat the metal surface so that θ > 90°, thus the metal surfaces are
repulsed and hence preventing them from sliding over each other directly causing
excessive friction wear. Let us assume that the contact angle is 120°. The force per
unit area can be evaluated using the above equation as follows:

θ= 120o γ= 30 mJ/m2 d = 1.0 μm F/AS = −0.3 atm

θ = 120o γ = 30 mJ/m2 d = 0.1 μm F/AS = −3.0 atm

θ = 120o γ = 50 mJ/m2 d = 0.1 μm F/AS = −5.0 atm

In the above table, the negative sign of the force indicates that the force is repulsive.
Clearly, the repulsive force increases significantly as the surface tension increases
and as the separation distance decreases.
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3.7 Curvature Effects on Equilibrium Pressure
and Temperature

Curvature Effect on Equilibrium Vapor Pressure Around a Drop

Consider a liquid drop in equilibrium with its vapor phase at a constant temperature.

   Liquid 

  Vapor 
T 

We know that at an equilibrium state, the chemical potentials of the liquid and the
vapor phases must be the same. That is,

μL = μV or dμL = dμV (3.7.1)

Under the condition that T = constant,

dμ = −sdT + vdP = vdP.

Therefore, the chemical equilibrium condition becomes

vLdPL = vV dPV (3.7.2)

Assume the drop surface is spherical. From the Laplace equation

PL − PV = 2γ

R

we have:

dPL = dPV + d

(
2γ

R

)
(3.7.3)

Using Eq. (3.7.3) to replace the dPL in Eq. (3.7.2), we have:

vLdPV + vLd

(
2γ

R

)
= vV dPV
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dPV (vL − vV ) = −vLd

(
2γ

R

)

Because vL << vV ,

dPV = vL

vV
d

(
2γ

R

)
(3.7.4)

Assume the vapor as an ideal gas: PV vV = RT , Eq. (3.7.4) can be rewritten as:

dPV

PV
= vL

RT
d

(
2γ

R

)

Using the boundary condition: R → ∞, PV = PV∞ (PV∞ is the equilibrium
vapor pressure over a flat liquid–vapor interface), and integrating the above equation
gives the well-known Kelvin Equation:

ln
PV

PV∞
= vL

RT

(
2γ

R

)
> 0 (3.7.5)

The Kelvin equation provides a relationship between the equilibrium vapor pres-
sure over a drop and the radius of the drop. As the right-hand side of Eq. (3.7.5) is
positive, it implies that

PV > PV∞

That is, a convex liquid–vapor interface (e.g., the drop surface) requires a higher
equilibrium vapor pressure than a flat liquid–vapor surface at the same temperature.
However, the curvature effect on the vapor pressure usually is small, i.e., PV

PV∞ ≈ 1,
unless the radius of the drop is sufficiently small, e.g., R < 1 μm. In the case of
drop nucleation, the initial size of a nucleus is very small, thus it requires very high
vapor pressure to form a stable nucleus. That is why drop nucleation (e.g., dropwise
condensation) is possible only in a supersaturated vapor environment.

Finally, it is worthwhile to point out that Eq. (3.7.4) is derived by using the chem-
ical equilibrium condition and the mechanical equilibrium condition (the Laplace
equation). The drop radius in this equation should be the radius required by a drop in
equilibrium with the vapor phase at the given temperature. Therefore, the radius in
the Kelvin equation is also called the equilibrium radius, Re, of a drop for a given
vapor pressure Pv. Rearranging Eq. (3.7.5) gives:

Re = vL

RT

2γ

ln
PV
PV∞

= f

(
T , γ,

PV

PV∞

)
(3.7.6)
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From this equation, it is obvious that the equilibrium radius of the droplet is
proportional to the surface tension of the liquid–vapor interface, γ. If the liquid is
water, its surface tension is approximately 72.8 mJ/m2 at 20 °C. It is well-known that
adding surfactant to water can reduce its surface tension significantly, for example,
close to zero at high concentration of surfactant. Therefore, one can expect that there
are only very small droplets in the presence of high concentration of surfactant in
water.

Curvature Effect on Equilibrium Pressure in a Bubble

Consider a bubble surrounded by its liquid phase. Using a similar approach to the
derivation of the Kelvin equation, we can show:

02ln >=∞
RTR

v
P
P L

V

V γ (3.7.7)Vapor

Liquid

Equation (3.7.7) implies that PV < PV∞, i.e., the equilibrium vapor pressure
inside a bubble is lower than that over a flat liquid–vapor interface at the same
temperature. In other words, a concave liquid–vapor surface requires a lower equi-
librium vapor pressure than a flat liquid–vapor surface at the same temperature. This
is the cause of the “capillary condensation” phenomenon. At a given temperature,
the partial vapor pressure in the air may be below the saturation pressure, and hence
no moisture condensation from air would be expected. However, vapor condensation
may be observed in some porous materials such as an insulation layer or soil. This is
because the menisci in the fine capillaries or crevices may be concave surfaces and
have very small radii of curvatures. According to Eq. (3.7.7), the smaller the R, the
smaller the ratio (PV /PV∞). Therefore, these menisci require much lower equilib-
rium vapor pressure, and hence the air near these menisci is saturated. Condensa-
tion will thus occur in these fine capillaries. Such a phenomenon is called capillary
condensation.

Similarly, the equilibrium radius of the bubble is given by:

Re = 2vL
RT

γ

lnPV∞
PV

This equation indicates that the equilibrium radius of the bubble is proportional
to the surface tension of the liquid–vapor interface, γ. As discussed previously for
droplets, if the surrounding liquid is water, and surfactant is added to water, the
surface tension of the water–vapor interface can be reduced significantly. Therefore,
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one can expect that there are only very small sized bubbles in the presence of high
concentration of surfactant in water.

Curvature Effect on Equilibrium Temperature

Consider a droplet in a vapor phase inside a piston-cylinder arrangement. The system
is in contact with a pressure reservoir so that the pressure of the vapor phase is
constant, PV = constant. From the Gibbs–Duhem equation,

dμV = −sV dT + vV dPV = −sV dT (3.7.8)

dμL = −sLdT + vLdPL (3.7.9)

Using the chemical equilibrium condition:

dμL = dμV (3.7.10)

we have:

(sV − sL)dT = −vLdPL (3.7.11)

liquid

vapor

P 

Note that

(sV − sL) = �hLV
T

where �hLV is the latent heat of evaporation, and

dPL = d

(
2γ

R

)
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(from the Laplace equation), Eq. (3.7.11) becomes:

�hLV
T

dT = −vLd

(
2γ

R

)
(3.7.12)

Assume �hLV , vL and γ are constant with respect to the curvature (1/R),
integrating Eq. (3.7.12) from R = ∞ to a finite value of R yields:

ln
T

T∞
= − vL

�hLV

2γ

R
< 0 (3.7.13)

This equation is called Thomson Equation (derived by Thomson in 1888). T∞
in this equation is the equilibrium temperature (i.e., phase equilibrium temperature)
of a bulk liquid phase with a flat liquid-vapor interface (R → ∞). Equation (3.7.11)
indicates that T < T∞. This means that, at a given vapor pressure, the equilibrium
temperature required for a droplet is lower than that required for a bulk liquid with
a flat liquid-vapor interface. In other words, at a given vapor pressure, it is easier
for a droplet to evaporate as it requires a lower equilibrium temperature or boiling
temperature. On the other hand, in order to have a vapor phase condensed into small
droplets, it is necessary to cool the vapor below the saturation temperature T∞ of the
bulk liquid at the same pressure.

Similarly, for a bubble in a liquid phase with PL = constant, we can show

(
1

T∞
− 1

T

)
= Ru

�hLV
ln

[
2γ

RPL
+ 1

]
> 0 (3.7.14)

where Ru is the universal gas constant. Equation (3.7.14) indicates that the equi-
librium temperature of the vapor inside a bubble is higher than the equilibrium
temperature of the vapor over a flat liquid–vapor interface, i.e., T (R) > T∞. That
means, it is necessary to raise the temperature above T∞ for a small vapor bubble to
exist in a saturated liquid under a given saturation pressure PL (T∞), In other words,
it requires a superheated liquid to generate small bubbles. From Eq. (3.7.14), we see
that the smaller the bubble, the greater the superheating (i.e., T − T∞) is required.
This conclusion is consistent with what we found about the curvature effect on equi-
librium vapor pressure inside a bubble. As an example, let us consider pure water at
1 atm. Using Eq. (3.7.14) we can find that the equilibrium temperature for a bubble
of 1 μm in radius is 126 °C (compare this with T∞ = 100oC for bulk liquid water
with a flat liquid–vapor interface)!

Home Work

(1) Consider a single component system that consists of a spherical liquid droplet
surrounded by vapor. The vapor and droplet are contained in a piston-
cylinder device. The liquid phase may be treated as incompressible and the
vapor phase is treated as an ideal gas.
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(a) If the cylinder is surrounded by a thermal reservoir, which function
behaves as the thermodynamic potential for the system? What condi-
tions must the intensive properties satisfy in order for equilibrium to
exist?

(b) Show the equilibrium radius of the drop is:

Re = 2γlv/[P∞ − Pv + (RuT/vL) ln(Pv/P∞)]

where P∞ is the equilibrium pressure of a bulk liquid or vapor phase at a given
temperature without surface effect; Ru is the universal gas constant.

(c) If the temperature of the reservoir is 100 °C, show a sketch of Re versus Pv,
if the liquid and vapor are water. The surface tension γlv is about 60 mJ/m2 at
100 °C.

(2) A spherical bubble of a liquid vapor is in equilibrium with a pure liquid phase
(liquid and the vapor are the same molecules) contained in a piston-cylinder
arrangement. The cylinder is in contact with a pressure reservoir and can freely
exchange thermal energy with the surrounding. Assume vapor in the bubble
behaves as an ideal gas.

(a) Find the boiling point (the equilibrium temperature) as a function of the
radius of the bubble, R. You may set P∞ = PL.

(b) Consider the liquid iswater and the liquid pressure PL =1 atm, the boiling
point in the case of a planar liquid–vapor interface T (R = ∞) = 373 K,
the latent heat L = 40.4 kJ/kmol, surface tension γ = 55.46 – 0.215
(T – 373) mJ/m2, find the boiling point value at R = 1 μm.

3.8 Solute Effect on Equilibrium Radius of Droplets

Consider a drop in equilibrium with its vapor phase at a constant temperature and
constant pressure. The liquid of the drop is a dilute solution of two components:
the solvent (component 1) and the solute (component 2 and nonvolatile). The mole
fraction of the solute is x. Because the solute is not volatile, the vapor phase contains
only component1 (the solvent).
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The chemical potential of the solvent is given by:

μ1L(T ,P, x) = μ0
1L(T ,P) − xRuT

dμ1L = dμ0
1L(T ,PL) − d(xRuT ) = −sLdT + vLdPL − d(RuTx) (3.8.1)

In the above equations, in order to distinguish from the drop radius R, we use Ru

to indicate the universal gas constant.
Assume the vapor phase contains only the component 1.

dμ1V = −sV dT + vV dPV (3.8.2)

We know that at an equilibrium state, the chemical potentials of the liquid and the
vapor phases must be the same. That is,

μL = μV or dμL = dμV (3.8.3)

Under the condition that T = constant, and PV = constant,

dμ1L = vLdPL − RuTdx

dμV = 0

Therefore, the chemical equilibrium condition becomes

vLdPL − RTdx = 0 (3.8.4)

Assume that the drop surface is spherical. From the Laplace equation

PL − PV = 2γ

R
(3.8.5)

we have:



144 3 Thermodynamics of Interfaces and Three-Phase Contact Lines

dPL = dPV + d

(
2γ

R

)
(3.8.6)

Using Eq. (3.8.6) to replace the dPL in Eq. (3.8.4), and noting dPV = 0, we have:

vLd

(
2γ

R

)
= RuTdx

dR

dx
= −RuT

vL

(
R2

2γ

)
(3.8.7)

This equation indicates that the equilibrium radius of the dropletwill decreasewith
the increase of the solute molar fraction. In other words, under the same conditions
(T and Pv), the equilibrium size of a solution droplet is smaller than the equilibrium
size of a pure water droplet.

Next, we will explore the possibility of finding an expression of the equilibrium
radius of the droplet as an explicit function of the mole fraction. The chemical
potentials of the solvent in the vapor phase and the liquid phase can be written as
follows:

μv(T ,Pv) = μv(T ,P∞) + RuT ln

(
Pv

P∞

)
(3.8.8)

μL(T ,PL, x) = μ0
1L(T ,PL) − RuTx

= [μL(T ,P∞) + vL(PL − P∞)] − RuTx (3.8.9)

In these equations, P∞ is the equilibrium pressure or the saturation vapor pressure
over a flat liquid–vapor interface at the given temperature T. PV is the equilibrium
vapor pressure in the system with a liquid drop. PL is the pressure inside the drop. x
is the mole fraction.

At equilibrium,

μl(T ,Pl, x) = μv(T ,Pv) (3.8.10)

and

μL(T ,P∞) = μV (T ,P∞).

From Eqs. (3.8.8) and (3.8.9), we have

vL(PL − P∞) − RuTx = RuTln

(
PV

P∞

)
(3.8.11)

From Laplace equation, we have
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PL = PV + 2γ

R

Equation (3.8.11) becomes:

vL

(
PV − P∞ + 2γ

R

)
− RuTx = RuTln

(
PV

P∞

)
(3.8.12)

If the drop radius is not too small, e.g., R > 1μm, the curvature effect on the vapor
pressure usually is very small, i.e., Pv

P∞ ≈ 1. In such a case, Eq. (3.8.12) is reduced
to:

vL

(
2γ

R

)
= RuTx

or

R = 2γ vL

RuTx

Clearly, as the mole fraction increases, the equilibrium radius of the droplet will
decrease. In other words, the equilibrium radius of the droplet is smaller if the mole
fraction of the solute in the liquid is higher.

3.9 Heterogeneous Nucleation

When a new thermodynamic phase is formed, nucleation is the first step. For example,
when a vapor is cooled to a temperature below its saturation temperature, nucleuses in
the form of tiny liquid droplets may form as the beginning of condensation process,
i.e., a new liquid phase is forming from the vapor. If liquid water is heated to a
temperature above its saturation temperature, nucleuses in the form of tiny bubbles
may form as the liquid water starts boiling or vaporizing, i.e., a new vapor phase is
forming.

Generally, there are two types of nucleation: homogeneous nucleation and hetero-
geneous nucleation. In homogeneous nucleation, nucleus forms in a uniform bulk
phase. For example, minute liquid droplets form in a vapor phase. In heterogeneous
nucleation, nucleus forms on a surface. For example, dew droplets form on leaves of
grass. As it will be demonstrated at the end of this section, the surface will reduce
the energy required to form a nucleus, and hence make the heterogeneous nucleation
easier than the homogeneous nucleation.

Consider the formation of a liquid droplet on a solid surface in contact with a
super-saturated vapor phase. In the initial state, the system has only a vapor phase
in contact with a solid surface. In the final state, a liquid droplet nucleus is formed
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on the solid surface. The process is illustrated in the figure below. We assume the
system is sufficiently large, forming one small droplet will not affect the temperature
and vapor pressure of the system, i.e., T1 = T2 = T, and P1V = P2V = PV.

Since this is an isothermal process, we use the Helmholtz potential to model the
system. Recall:

FB = U − TS = −PV +
∑

μiNi for a bulk phase

FA = U − TS = γA +
∑

μiNi for a surface phase

At state 1, the system has a vapor phase and a solid–vapor interface. The total free
energy of the system is:

F1,total =
∑

FB1 +
∑

FA1 = −P1vV1v + N1vμ1v + γsvAsv1 (3.9.1)

where the subscripts B and A stand for bulk phase and surface phase, respectively;
subscript 1 stands for the initial state 1, and subscripts v and sv stands for the vapor
phase and the solid–vapor interface, respectively.

At state 2, the system has a vapor phase, a liquid phase, a solid–vapor interface,
a solid–liquid interface and a liquid–vapor interface. The total free energy of the
system at state 2 is:

F2,total =
∑

FB2 +
∑

FA2

= [−P2vV2v + N2vμ2v] + [−P2lV2l + N2lμ2l]
+ γlvAlv + γsvAsv2 + γslAsl (3.9.2)
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where the subscript 2 stands for the final state 2, the subscript l represents the liquid
phase, the subscripts lv and sl represent the liquid–vapor interface and the solid–
liquid interface, respectively; and the subscripts v and sv stands for the vapor phase
and the solid–vapor interface, respectively.

In the above, we have assumed that the number of molecules in the surface phases
is negligible in comparison with that in the bulk phases. Therefore, all (μi Ni) terms
for surface phases are neglected.

Because T1 = T2 = T, and P1V = P2V = PV, it follows that

μ1v(T ,P1v) = μ2v(T ,P2v) = μv

From Eqs. (3.9.1) and (3.9.2), the free energy change of the nucleation process is
given by:

�F = F2,total − F1,total

= −(P2l − Pv)V2l + γlvAlv − (γsv − γsl)Asl + (μ2l − μv)N2l (3.9.3)

where the following constraints were used:

V1v = V2v + V2l

Asv1 = Asv2 + Asl

N1v = N2v + N2l

μ1v = μ2v = μv

If we assume that the tiny nucleus is a spherical cap on the solid surface, we have
the following geometrical relationships.
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In Eq. (3.9.3), (P2l − Pv), (γsv − γsl), V2l , Alv and Asl can be evaluated via the
above geometrical relations. The attention should be given to the chemical potential
term (μ2l − μv). From Chap. 1, we know that the chemical potentials of the vapor
phase and the liquid phase can be written as follows:

μv(T ,Pv) = μv(T ,P∞) + RuT ln

(
Pv

P∞

)

μ2l(T ,P2l) = μl(T ,P∞) + vl(P2l − P∞)

In these equations, P∞ is the equilibrium pressure or the saturation vapor pressure
over a flat liquid–vapor interface at the given temperature T. Pv is the super-saturated
vapor pressure in the system.Ru indicates the universal gas constant. When the liquid
phase and the vapor phase at equilibrium,

μL(T ,P∞) = μV (T ,P∞)

Therefore,

(μ2l − μv) = vl(P2l − P∞) − RuT ln

(
Pv

P∞

)
(3.9.4)

Putting Eq. (3.9.4) into Eq. (3.9.3), we have:

�F = − (P2l − Pv)V2l + γlvAlv − (γsv − γsl)Asl

+ N2lvl(P2l − P∞) − N2lRuT ln

(
Pv

P∞

)

It should be realized that V2l = N2l vl . Thus, the above equation of free energy
change of the nucleation process can be re-written as
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�F = (Pv − P∞)V2l − N2lRuT ln

(
Pv

P∞

)

︸ ︷︷ ︸
related to the bulk liquid phase

+ γlvAlv − (γsv − γsl)Asl︸ ︷︷ ︸
related to the surface phases

= �FB + �FA (3.9.5)

As we see, the first two terms on the right-hand side of this equation are related
to the newly formed bulk liquid phase (i.e., V2l and N2l). Let us call these two terms
the free energy change of the bulk phase, �FB. The last two terms on the right-hand
side of this equation are related to the three surfaces: the solid–vapor interface, and
the newly formed liquid–vapor interface and the solid–liquid interface. Let us call
these two terms the free energy change of the surface phases, �FA.

Let’s compare themagnitude of the two terms in�FB. If we assume that the liquid
is water at a room temperature (20 °C), and the nucleus’ size is R = 100 nm, using
the Kelvin equation yields:

(Pv − P∞)V2l

N2lRuT ln
(

Pv

P∞

) ∼= 7

1000

Thus, (Pv − P∞)V2l in Eq. (3.9.5) can be neglected for reasonably large nuclei
(i.e., R > 10 nm). The free energy of nucleation is reduced to

�F = −N2lRuT ln

(
Pv

P∞

)

︸ ︷︷ ︸
�FB

+ γlvAlv − (γsv − γsl)Asl︸ ︷︷ ︸
�FA

(3.9.6)

In the above equation,�F is the total free energy change required creating a single
nucleus. If �F is negative, it means that forming the nucleus will reduce the free
energy of the system and the system is moving towards an equilibrium state with
minimum energy. Such a nucleation process is thermodynamically favorable and can
occur spontaneously. However, if �F is positive, it means that forming the nucleus
requires increasing the free energy of the system. Increasing the system’s energy is
possible only by additional energy input from outside. Such a process cannot occur
naturally or spontaneously. The larger the positive �F, the more difficult to form a
nucleus.

From Eq. (3.9.6), one can see that the free energy change associated with the
creation of a new bulk liquid phase, ΔFB, is a negative value, and contributes to
reduce the total free energy of the system.However, the free energy change associated
with the creation of the new surfaces, ΔFA, is positive, and hence contributes to
increase the total free energy of the system. This will become more evident by the
next equation, Eq. (3.9.7), as shown below. These competing effects clearly depend
on the size of the nucleus.

Use the geometrical relations for a spherical cap and V2l = N2l vl , as well as the
Young’s equation, Eq. (3.9.6) becomes:
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�F = −πR3

3vl
(1 − cos θ)2(2 + cos θ)RuT ln

(
Pv

P∞

)

+ πR2γlv(1 − cos θ)2(2 + cos θ) (3.9.7)

In this equation, R is the radius of the spherical nucleus, Ru is the universal gas
constant, vl is the specific molar volume of the liquid, and θ is the contact angle.
Clearly, the first term in Eq. (3.9.7) is the free energy change caused by the formation
of the new bulk liquid phase, ΔFB, and is a negative quantity. The second term is
the free energy change required by the formation of the surface phases, ΔFA, and is
a positive quantity. The relative magnitudes of these two terms determine if the total
free energy change of the nucleation process is positive or negative.

From this equation, Eq. (3.9.7), we know that for a given solid–liquid-vapor
system at a given condition (T, Pv), the surface tension γ lv and the contact angle θ

are constant, therefore, the total free energy change �F will depend on the nucleus
size, R. If we plot �F vs R, we will have a figure as illustrated below.

As seen from the figure above, initially, as the radius of the nucleus increases,
the free energy change of nucleation is positive and increases too. This means that
a larger amount of energy is required to create a nucleus. According to Eq. (3.9.6)
or Eq. (3.9.7), this is because the free energy change is required by the formation
of the new surface phases, and ΔFA is dominant. Gradually, the total free energy of
nucleation reaches a maximum value, called the critical free energy of nucleation,
�Fcritical. The corresponding radius of the nucleus is called the critical radius of
nucleus, Rcritical. When the radius of the nucleus is larger than the critical radius,
the free energy change of nucleation decreases with the increase of the radius of
the nucleus. According to Eq. (3.9.6) or Eq. (3.9.7), this is because the free energy
change due to the formation of the new bulk liquid phase, ΔFB, becomes dominant.
Especially after the radius of the nucleus is larger than a certain value, we can see
from the curve in the above figure, the free energy change of nucleation becomes
negative. This indicates that the formation of such a nucleus will reduce the total
free energy of the system. In other words, such a nucleation is thermodynamically
favorable.
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Let us find the critical radius of a nucleus at a given condition (T, Pv). Because

∂(�F)

∂R
= 0

From Eq. (3.9.7), the above condition results in the critical radius as given by the
equation below:

RC = 2γlvvl

RuT ln(Pv/P∞)
(3.9.8)

It should be noted that Eq. (3.9.8) is just the Kelvin equation we derived in a
previous section from the chemical potential equilibrium condition, i.e.,

ln(Pv/P∞) = 2γlvvl

RTRe

Using Eq. (3.9.8), if we replace RuT ln(Pv/P∞) in Eq. (3.9.7) by 2γlvvl
RC

, we will
have the critical free energy of nucleation as:

�F(Rc) = 4π

3
R2
C γlv f (θ) (3.9.9)

where

f (θ) = (1 − cos θ)2(2 + cos θ)/4

0 ≤ f (θ) ≤ 1

In the above, the function f (θ) is referred to as the wetting function. f (θ) reflects
the substrate effect, i.e., the contact angle effect on the nucleation. Obviously, a
smaller value of f (θ) will reduce the critical free energy of nucleation, and hence
corresponds to a favorable condition for the nucleation. In the extreme cases, if
θ = π, f(θ) = 1. This means that a completely non-wettable surface has no effect
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(to reduce the �F) on the nucleation. Since the substrate surface has no effect on
the nucleation, the nucleation becomes the same as the homogeneous nucleation. In
fact, if we set θ = π = 180°, the previously derived Eq. (3.9.7) becomes the free
energy change of homogeneous nucleation. If θ = 0, f(θ) = 0. This means �F =
0, or there is no activation energy required for the nucleation on a surface that can
be completely wetted by the liquid. In such a case, vapor super-saturation will not
occur, because the vapor will spontaneously condense to form a liquid film on the
solid surface.

Generally, for a given solid surface, the contact angle increases with the liquid
surface tension. For a given liquid, liquid surface tension is fixed, if the solid–vapor
surface tension (γsv) decreases, the contact angle increases, i.e., the surface becomes
less wettable. From surface thermodynamics point of view, by changing the surface
free energy or surface tension of the solid substrate, for example, by using different
materials or by using different coating, the contact angle can be changed. Therefore,
the nucleation can be either enhanced or impaired. For instance, lowering the solid
surface tension is an important mechanism for anti-fog and anti-frost windows or
eye glasses. In the case of boiling heat transfer, lowering the liquid surface tension
γlv by adding some surfactants and hence lowering the contact angle can enhance
the nucleation heat transfer.

Home Work

Consider the effects of the three-phase contact line on the nucleation of a liquid
droplet on a planar solid surface from a vapor phase.

(1) Derive the free energy of nucleation, �Fhetero.
(2) Find the critical nucleation radius RC and the critical free energy of nucleation,

�FC.
(3) For pure water at T = 295 K, γ = 72 mJ/m2, σ = 0.1 μJ/m, θ∝ = π/4, plot �F

vs R for PV/PV∝ = 1.1 and 1.3.

3.10 Equilibrium Condition of a Bubble in a Uniform
Electric Field

Consider a spherical bubble of vapor is surrounded by an aqueous solution, as illus-
trated in the figure below. The system is subject to a uniform electric field and a
constant temperature.
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This system consists of two bulk phases: the liquid and the vapor, and one inter-
face phase: the liquid–vapor interface. If the bulk liquid phase is infinitely large in
comparison with the size of the bubble, we may consider the liquid phase as a mass
reservoir. Therefore, in additional to the constant temperature, the chemical potential
of this system is also constant. Therefore we can use the grand canonical free energy
to model this system.

If there is no applied electric field, the total grad canonical free energy of this
system is given by:

� = �L + �V + �LV = −(PV )L − (PV )V + γLV ALV

In the differential form,

d� = d�L + d�V + d�LV = −PLdVL − PV dVV + γLV dALV

However, in this case we have an applied electric field. The electric field will
induce surface charge on the surface of the bubble. Let us denote the applied electric
potential as �V, the total surface charge as Q, the surface charge density per unit
surface area as σ lv and the surface area of the bubble as Alv. The work done by the
applied electrical field to create surface charge on the bubble surface is given by:

We = �VQ = �VσlvAlv

Or, on per unit surface area basis,

We

Alv
= �Vσlv

Therefore, the total grand canonical free energy should include the work done by
the electric field, as:

d� = d�L + d�V + d�LV + dWe

= −PLdVL − PV dVV + γLV dALV + �VσlvdALV

At equilibrium state, according to the grand canonical free energy minimum
principle,
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d� = 0

The constraints for this bubble–liquid system are:

VL + VV = constant or dVV = −dVL

and the surface area of the bubble is dependent of the bubble’s volume,

ALV = f (VV ) or dALV = ∂ALV

∂VV
dVV

Using these constraints yields:

d� = −(PV − PL)dVV + γLV

(
∂ALV

∂VV

)
dVV + �Vσlv

(
∂ALV

∂VV

)
dVV

d� = −(PV − PL)dVV + (γLV + �Vσlv)

(
∂ALV

∂VV

)
dVV

From

d� = 0,

we have

(PV − PL) = (γLV + �Vσlv)

(
∂ALV

∂VV

)

For a spherical bubble, it can be shown that

(
∂ALV

∂VV

)
= 2

R

where R is the radius of the spherical bubble.
Finally, the mechanical equilibrium condition of such a spherical bubble in a

liquid phase and under an applied electric field is:

(PV − PL) = 2

R
(γ LV + �Vσlv)

In comparison with the Laplace equation of a bubble without the applied electric
field:

(PV − PL) = 2

R
γLV
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we see clearly that, because

�Vσlv > 0,

the effect of the applied electric field is to increase the pressure difference (PV − PL).
(γ LV +�Vσlv)may be considered as an apparent surface tension, or electro-surface
tension, that is,

∼
γLV= (γ LV + �Vσlv).

Although the equilibrium condition

(PV − PL) = 2

R
(γ LV + �Vσlv)

was derived for a spherical bubble suspended in an aqueous solution, it can be shown
that, similar to the derivation demonstrated in Sect. 3.5, this equation is valid as the
mechanical equilibrium condition for the liquid–vapor interface of a spherical-cap
shaped bubble attached on a solid surface. Of course, the mechanical equilibrium
condition involving the contact angle at the three-phase contact line will be more
complicated when the electric field effects on the solid–vapor surface and the solid–
liquid interface are considered.

Furthermore, we know that at an equilibrium state, the chemical potentials of the
liquid and the vapor phases must be the same. That is,

μL = μV or dμL = dμV

Under the condition of constant temperature, i.e., T = constant,

dμ = −sdT + vdP = vdP.

Therefore, the chemical equilibrium condition becomes

vLdPL = vV dPV

From the Laplace equation derived above for a bubble in a liquid phase and under
an applied electric field:

PV − PL = 2

R
(γlv + �Vσlv) = 2

R

∼
γ lv

Using the same procedure as shown in Sect. 3.7, we can demonstrate
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ln
PV∞
PV

= 2vL
RuT

∼
γ lv

R

where PV∞ is the equilibrium vapor pressure over a flat liquid–vapor interface; vL is
the mole specific volume of the liquid; and Ru is the universal gas constant.

Rearranging the above equation leads to the equilibrium radius of the bubble under
the electric field:

Re = 2vL
RuT

∼
γ lv

lnPV∞
PV

= 2vL
RuT

(γlv + �Vσlv)

lnPV∞
PV

Clearly, this equation indicates that the equilibrium radius of the bubble will
increase with the applied electrical voltage, �V.

3.11 Effects of Applied Electrical Field on Contact Angles

(Electro-Wetting Phenomenon)

So far, we know that the shape of a liquid drop on a solid surface, as indicated by
the contact angle, depends on the liquid properties (reflected by γlv), solid surface
properties (reflected by γsv, and γsl). When an electric potential is applied across a
liquid drop and a dielectric solid substrate, ions and dipoles will redistribute either
in the liquid, or in the solid or both, depending on the relative material properties.
This redistribution of charges can change the contact angle. This phenomenon, i.e.
change in the contact angle of a droplet on a solid surface by applying an electric
field between a conducting liquid and a solid substrate is called “electro-wetting”.

Figure below shows the schematic of an electro-wetting phenomenon. As seen
from the figure, there is a dielectric substrate between the electrode and the liquid.
The dielectric substrate between the electrode and the liquid is used to block the
electron transfer and prevent chemical oxidation and electrolysis. Additionally, the
dielectric substrate provides a hydrophobic surface that usually has a large initial
contact angle.
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When an electric field is applied as illustrated in the figure above, the electric
charge at the liquid–solid interface changes, which results in the change of total free
energy of the system and the spreading of the droplet over the solid surface. By
applying a voltage difference cross the liquid and the electrode, there is a charge
density σ l in the liquid phase at the solid–liquid interface, and an induced charge
density σm on the metal electrode. It should be noted that, across the dielectric layer,
there are surface charge on the solid–liquid interface and induced charge on the
surface of the metal electrode. This configuration acts like a parallel plate capacitor.
Meanwhile, the contact angle changes and consequently causes an increase in the
solid–liquid interfacial area (dA). This increase causes a change in the total free
energy of the system in terms of surface free energies (surface tensions) and additional
electric energies required to create the charge density in the liquid and on the electrode
(σl and σm).

Based on the above analysis, the differential form of the total grand canonic free
energy of the system can be written as:

dΩ = γsldAsl + γsvdAsv + γlvdAslcosθ + dΩde − dWe

where γ sl,γ sv, and γ lv are the surface tension of the solid–liquid, the solid–vapor
and the liquid–vapor interfaces; Asl and Asv are the surface area of the solid–liquid
and the solid–vapor interfaces; θ is the contact angle; Ωde is the energy stored in the
dielectric layer between liquid and electrode,We is the electrical field work to create
surface charge at the solid–liquid interface by the applied voltage.

It must be mentioned that, when deriving the Young’s equation in Sect. 3.5, we
have a figure illustrating the geometric relations at the three-phase contact line. Using
that figure, we have shown that

dAlv = dAslcosθ.

This relation can be used here.
SinceAsl +Asv = constant, dAsl = –dAsv = dA, the above equation can bewritten

as:
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dΩ = γsldA − γsvdA + γlvdAcosθ + dΩde − dWe (3.11.1)

Let’s first consider the case of no applied electric filed, i.e. d�de = dWe = 0. To
find the equilibrium conditions, free energy of the system should be minimized, i.e.

d�

dA
= 0.

Applying this principle to the above equation results in Young’s equation, as
expected:

γlvcosθ = γsv − γsl

Now, consider the case that an electric field is applied to the system. The elec-
trostatic energy in the dielectric layer can be considered as the electrostatic energy
stored in a parallel plate capacitor, and is given by:

�de = 1
2CV 2 = 1

2

(
Q
V

)
V 2 = 1

2
QV = 1

2
V (σlA)

where V is the electrical potential difference across the dielectric layer; σl is the
surface charge density on the liquid side of the dielectric layer; A is the solid surface
area covered by the drop, i.e., the area of the solid–liquid interface. On per unit
surface area basis,

�de

A
= 1

2
Vσl

Therefore, the change in electrostatic energy per unit area in the dielectric layer
upon increase of droplet base (dA) is given by:

d�de

dA
= 1

2
Vσl (3.11.2)

The work done by the applied electrical field to create surface charge (Q) at the
solid–liquid interface (droplet base) is given by:

WB = VQ = VσlA

or

dWB

dA
= Vσl (3.11.3)

Substituting Eqs. (3.11.3) and (3.11.2) into Eq. (3.11.1) gives:
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dΩ = γsldA − γsvdA + γlvdA cos θew +
(
1

2
Vσl − Vσl

)
dA

dΩ = γsldA − γsvdA + γlvdA cos θew − 1

2
VσldA

where θ ew is the contact angle in the presence of applied electric field.
To find the equilibrium conditions, let us set d�

dA = 0. This gives:

γlv cos θew = γsv − γsl+
1

2
Vσl (3.11.4)

As we consider the dielectric layer as a parallel plate capacitor, and the thickness
of the dielectric layer is δ, the surface charge density is given by:

σl = ε0εr
V

δ
.

where ε0 is the dielectric permittivity in vacuum and εr is the relative dielectric
constant of the liquid.

Substituting this relation back into Eq. (3.11.4) gives:

cos θew =
(

γsv − γsl

γlv
+ ε0εrV 2

2γlvδ

)
=

(
cos θ + ε0εrV 2

2γlvδ

)
(3.11.5)

In the above equation, θ is the contact anglewithout the applied electric field (given
by the Young’s equation), and θ ew is the contact angle with the applied electric field.
Because the second term on the right-hand side of Eq. (3.11.5) is a positive quantity,
Eq. (3.11.5) implies θ ew < θ .

The above equation indicates that an applied electric field can cause a decrease
in the contact angle value. This means that the applied electric field tends to make
the drop to spread on the solid surface. As the applied electrical potential increases,
the contact angle decreases more and more. However, the complete wetting of the
surface by the dropunder applied electric field has never been seen in the experimental
studies. This implies the equation derived above may be valid only under low applied
voltage. At high electric field, many other mechanisms such as electrolysis may have
to be considered in the model.

Home Work

Plot θew as a function of the applied voltage V, given the equilibrium contact angle
θ is 120 degrees, liquid surface tension is 72 mJ/m2, the dielectric film thickness is
10 μm, the dielectric constant is 4.
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3.12 Effects of Electric Double Layer on Contact Angle

When a charged surface in contact with an electrolyte solution, the electrostatic
charges on the surface will attract the counter-ions and repel the co-ions in the
liquid. This will result in more counter-ions than co-ions in a thin region of the liquid
near the charged surface. The net charge in this thin liquid region is to balance the
charge on the surface. The region with the net charge of counter-ions and the charged
surface are call the electric double layer. Generally, the solid–liquid interfaces for
all solid surfaces in contact with aqueous electrolyte solutions (including pure water)
have electric double layer. Interfaces between aqueous electrolyte solutions and their
vapor phases or air have electric double layer on the liquid side.

Recall that surface tension is the free energy required to create a unit area of a
surface or interface, additional electric energy is required to create electric double
layer at a surface. The electrostatic interaction energy between the charges on the
surface and the counter-ions in the liquid side of electric double layer is determined
by the electric potential of the charged surface and the total net counter-ion charge.
Because the net counter-ion charge in the liquid side of electric double layer is to
balance the charge on the surface, the total net counter-ion charge is equal to the total
charge on the surface. The electric interaction energy for a liquid–vapor interface is
given by

�EDL−lv = ψlvσlvAlv.

The electric interaction energy for a solid–liquid interface is given by

�EDL−sl = ψslσslAsl

In these equations,ψ is the electrostatic potential of the interface, σ is the surface
charge density of the interface, A is the surface area.

Consider a sessile drop resting on a solid surface in equilibrium with the liquid’s
vapor phase (or another fluid phase), as illustrated in the following figure. For
simplicity, we assumed the solid–vapor surface does not have any surface charge.
However, both the solid–liquid interface and the liquid–vapor interface have surface
charges and an electric double layer. From thermodynamic point of view, these
surfaces have additional electric energy. How will the electric double layers of the
solid–liquid interface and the liquid–vapor interface influence the equilibriumcontact
angle?

Aswe have demonstrated previously, the bulk phases (solid, liquid and vapor) will
not contribute to the equilibrium condition at the three-phase contact line, therefore,
we will consider only the surface phases in the following thermodynamic model.
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The differential form of the total grand canonical free energy change of the system
can be written as:

dΩ = γsldAsl + γsvdAsv + γlvdAlv + dΩEDL−lv + dΩEDL−sl

where γlv, γsv and γsl are interfacial tensions of the liquid–vapor interface, the solid–
vapor interface and the solid–liquid interface, respectively;ΩEDL-lv is the free energy
associatedwith creating the electric double layer of the liquid–vapor surface,Ω EDL-sl

is the free energy associated with creating the electric double layer of the solid–liquid
interface.

dΩ = γsldAsl + γsvdAsv + γlvdAlv + ψlvσlvdAlv + ψslσsldAsl

Use geometry constraint:

ASV + ASL = constant

we have:

d� = [
(γsl + ψslσsl) − γsv

]
dAsl + (γlv + ψlvσlv)dAlv

At the equilibrium state, the total free energy of this system should be minimum,
therefore,

dΩ = 0.

This leads to

[
(γsl + ψslσsv) − γsv

]
dAsl + (γlv + ψlvσlv)dAlv = 0

or
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[
(γsl + ψslσsl) − γsv

] = −(γlv + ψlvσlv)

(
dAlv

dAsl

)

If we look at a small region near the three-phase contact line, as illustrated
in the following figure, we may consider the profile of the liquid–vapor interface
approximately a straight line.

Consider a small variation of the radius of the three-phase contact circle, dR.
Assume that the contact angle remains the same during such a small variation, and
the corresponding change in the length of the liquid–vapor interface profile is dS.
Thus, we have

dASL = 2πRdR

dALV = 2πRdS

and

dS = dR cos θ

This yields

(
∂ALV
∂ASL

)
= dS

dR = cos θ

The equilibrium condition becomes:

[
(γsl + ψslσsl) − γsv

] = −(γlv + ψlvσlv) cos θ

Ifwe approximate the electrostatic potential of the interfaceψ by the zeta potential
of the electric double layer, ζ , the above equation becomes:

[
(γsl + ζslσsl) − γsv

] = −(γlv + ζlvσlv)cosθ

For a flat surface, the surface charge density is given by
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σ = 4n∞ze

k
sinh

(
zeζ

2kbT

)

where k = (
2noz2e2/εεokbT

)1/2
is the Debye–Huckel parameter, n∞ and z are the

bulk ionic concentration and the valence of ions, respectively, e is the charge of a
proton, εε0 is the dielectric constant of the liquid, κb is the Boltzmann constant, and
T is the absolute temperature. ζ is the zeta potential of the electric double layer.

Assuming weak zeta potentials and using the linear approximation (i.e., sinh(x)
≈ x, if x < 1)), we have

σ = 2n∞z2e2

kbTk
ς

Finally, we have

[(
γsl + 2n∞z2e2

kbTk
ς2
sl

)
− γsv

]
= −

(
γlv + 2n∞z2e2

kbTk
ς2
lv

)
cos θ

2n∞z2e2

kbTk

(
ζ 2
sl + ς2

lv cos θ
) = (−γlv cos θ + γsv − γsl)

If we assume the surface tensions, γ lv, γ sv and γ sl, are independent of the surface
charge,

γLV cos θ0 = (γSV − γSL)

where θ0 is the equilibrium contact angle without considering the electric double
layer effects.

2n∞z2e2

kbT k

(
ς2
sl + ς2

lv cos θ
) = γlv[cos θ0 − cos θ]

Generally, the values of the zeta potentials ζ sl and ζ lv are different; however, the
difference is not very large. In order to analyze the above equation qualitatively, we
assume that ζ sl and ζ lv have the same value, ζ . Under this assumption, the above
equation can be written as:

Aζ 2(1 + cosθ) = γlv(cosθ0 − cosθ)

where

A = 2n∞(ze)2

kBTK
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The above equation can be re-arranged as:

(cosθ0 − cosθ)

(1 + cosθ)
= A

γlv
ζ 2 > 0

If θ is less than 90°, cosθ is positive and decreases with θ. The above equation
implies that θ > θ0. That is, the presence of the zeta potential increases the contact
angle. The larger the zeta potential, the larger the increase of the contact angle.

3.13 Modelling Surface Processes by Using Surface Free
Energy

Surface Free Energy

Consider a column of amaterial with a cross-section areaA in a fluid (gas or liquid). If
we dowork to it by cutting it into two parts and separating these two parts sufficiently
far away from each other, two new surface areas, 2A, are created (see the figure
below). The work done to create these new surfaces is proportional to the created
surface area, that is,

W = γ(2A) (J)

The proportional coefficient γ is the surface tension. From this equation, we have

γ = W/2A
(
J/m2

)

That is why the surface tension is also called the free energy per unit surface
area. In addition, because the surface tension and the surface area are all positive
quantities, this work is a positive quantity. In other words, in order to create the new
surfaces, external work must be done.

1 

1 

1 

A 
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Cohesion

When the above process is reversed, that is, two columns of the same material
are brought into contact and form one column, two surfaces (surface area 2A) are
eliminated, as shown in the figure below. The free energy change of this process is:

Ω2 − Ω1 = 0 − γ (2A) = −2γA < 0

Because the free energy change of this process is negative, i.e., the system reduces
its free energy, such a process can occur spontaneously, without external work input.

The bonding of the same molecules or the alike-molecules is called the cohesion.
The free energy of cohesion is therefore given by:

�Ωcohesion = −2γA < 0

We can expect that two particles of the same material or two cells of the same
type in a fluid phase will always tend to attract and bind to each other.

1 

1 

1 

A 

A 

Adhesion

The bonding of different molecules or the dislike-molecules is called the adhesion.
Consider two columns of different materials in a fluid phase. If the two columns bind
to each other, two original surfaces are eliminated and a new interface is formed (see
the figure below). The free energy change of this process is given by:

�Ωadhesion = Ω2 − Ω1 = γ12A12 − (γ1A1 + γ2A2)

This free energy change may be positive or negative, depending on the interfacial
tension γ12, surface tensions γ1 and γ2, the new interfacial surface area A12, and the
two original surface areas, A1 and A2. In other words, whether these two columns
attach to each other or not, it depends on the values of these parameters.

If we assume A1 = A2 = A12 = A, the above equation can be simplified as

�Ωadhesion = (γ12 − γ1 − γ2)A
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1 

2 

A12

1 

2 

A1

A2

This principle can be applied to model the engulfment of a particle or droplet by
another droplet, or the engulfment of one cell by another cell.

A1

A2

A12

A2’

��engulf = �2 − �1 = γ12A12 + γ2A2′ − (γ1A1 + γ2A2)

or

��engulf = γ12A12 + γ2(A2′ − A2) − γ1A1

If the free energy change is negative, such an engulfment is thermodynamically
favorable, because the system always moves towards the minimization of its total
free energy.

Below are two examples of applying the free energy change to model interfacial
processes.

Merge of Two Oil Droplets in Water

Consider two oil droplets suspended in water under a constant temperature. When
they approach to each other, they merge and form one larger droplet, as shown in the
figure below.
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a1 a2

Water 

Drop 1 Drop 2 

a3

Water

Drop 3 

Let us use Helmholtz free energy to model this process.
For bulk phases,

Fbulk = −PV +
∑

μiNi

For surface or interface phases,

Fsurf = γA +
∑

(μiNi)A

In comparison with the mole numbers of the bulk phases, we may assume the
mole numbers of a surface phase is negligible:

NiA ≈ 0

Thus,

Fsurf = γA

Let us define state 1 as the initial state when the Drop 1 and Drop 2 are not in
contact, and state 2 as the final state after the Drop 1 and Drop 2 are merged and
Drop 3 is formed. At Sate 1, the system has two oil droplet bulk phases (Drop 1 and
Drop 2), two oil–water interface phases and the bulk water phase.

Fstate−1 = F1 + F1A + F2 + F2A + FW

= (−PV +
∑

μiNi)1 + γ1A1 + (−PV +
∑

μiNi)2

+ γ2A2 + (−PV +
∑

μiNi)W

In the above, we used subscripts 1 and 2 to indicate the bulk liquid of drop 1 and
the bulk liquid of drop 2, respectively; subscripts A and W to indicate surface and
bulk water, respectively.

At Sate 2, the system has one oil droplet bulk phase (Drop 3), one oil–water
interface phase and the bulk water phase.

Fstate−2 = F3 + F3A + FW

= (−PV +
∑

μiNi)3 + γ3A3 + (−PV +
∑

μiNi)W
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In the above equation, we used subscript 3 to indicate the bulk liquid of drop 3;
subscripts A and W to indicate surface and bulk water, respectively.

As the properties of the bulkwater phase do not change, theHelmholtz free energy
change of this process is given by:

Fstate−2 − Fstate−1 = (−PV +
∑

μiNi)3 + γ3A3

− [(−PV +
∑

μiNi)1 + γ1A1 +
(
−PV +

∑
μiNi)2 + γ2A2

]

In order to simplify the analysis, we assume that the two oil drops consist of one
and the same molecule. Therefore the above equation can be reduced to:

Fstate−2 − Fstate−1 =(−P3V3 + μ3N3) + γ3A3

− [
(−P1V1 + μ1N1) + γ1A1 + (−P2V2 + μ2N2) + γ2A2

]

=[P1V1 + P2V2 − P3V3] + [
γ3A3 − γ1A1 − γ2A2

]

+ [μ3N3 − μ1N1 − μ2N2]

Let us analyze the three [~] terms in the above equation.

[P1V1 + P2V2 − P3V3] = P1V1 + P2V2 − P3(V1 + V2)

= V1(P1 − P3) + V2(P2 − P3)

Here the volume constrain V1 + V2 = V3 is used.

[μ3N3 − μ1N1 − μ2N2] = N1(μ3 − μ1) + N2(μ3 − μ2)

Here the mass constrain N1 + N2 = N3 is used.
Recall the chemical potential of a pure liquid is given by:

μ(T ,P) = μ(T ,P∞) + v(P − P∞)

v = V

N

and assume the specific volume of the oil phase remains constant, v1 = v2 = v3, we
can show

[μ3N3 − μ1N1 − μ2N2] = N1(μ3 − μ1) + N2(μ3 − μ2)

= −V1(P1 − P3) − V2(P2 − P3)

Clearly, from the above analysis,

[P1V 1 + P2V2 − P3V3] + [μ3N3 − μ1N1 − μ2N2] = 0
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Consequently,

Fstate−2 − Fstate−1 = γ3A3 − γ1A1 − γ2A2 = γ (A3 − A1 − A2)

Here it is reasonable to consider the surface tension of the oil–water interface is
a constant.

If we assume that the droplets are spherical, we have

�F = Fstate−2 − Fstate−1 = 4πγ (a23 − a21 − a22)

For simplicity, let us we assume a1 = a2,

Note V1 + V2 = V3, 2a31 = a33, and hence 2a21 = a33
a1
.

�F = 4πγ
(
a23 − 2a21

) = 4πγ

(
a23 − a33

a1

)
= 4πγ a23(1 − a3

a1
)

Because

a3
a1

> 1

�F < 0

That is, this two-drop-merging process will reduce the total free energy of the
system. Such a process will occur spontaneously.

Film Breakage and Droplet Formation on a Solid Surface

The breakage of a thin liquid film on a solid surface is an interfacial phenomenon
that has important applications in industrial lubrication and coating processes. A
thin liquid film on a solid surface may lose its stability and break into many discrete
droplets on the solid surface. This interfacial phenomenon depends on the initial film
thickness, the liquid surface tension and the contact angle. Within the framework
of surface thermodynamics, this phenomenon can be modeled in terms of the free
energy change of this film breaking-drop forming process.

Solid 

Liquid H 

Initial state 
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It can be shown that surrounding gas vapor phase and the solid phase will not
contribute to this interfacial process. We will use the grand canonical free energy to
model this process. The grand canonical free energy of the system at the initial state
is given by:

�1 = −PL1VL1 + γlvAlv1 + γslAsl1

where PL1 and VL1 are the pressure and the volume of the liquid film at the initial
state, respectively; γlv and γsl are the surface tensions of the liquid–vapor interface
and the solid–liquid interface, respectively; Alv1 and Asl1 are the surface areas of the
liquid–vapor interface and the solid–liquid interface, respectively.

It should be noted that

Alv1 = Asl1 = A0

The grand canonical free energy of the system at the initial state can be written
as:

�1 = −PL1VL1 + (γlv + γsl)A0

In the final state, let us assume that there are n droplets formed on the solid surface
and all droplets have the same size. The grand canonical free energy of the system
at the final state is given by:

�2 = n[−PL2VL2 + γlvAlv2 + γslAsl2 + γsvAsv]

where n is the number of identical droplets formed on the solid surface; PL2 and VL2

are the pressure and the volume of each liquid drop at the final state, respectively;
γlv, γsv and γsl are the surface tensions of the liquid–vapor interface, the solid–vapor
surface and the solid–liquid interface, respectively; Alv2 andAsl2 are the surface areas
of the liquid–vapor interface and the solid–liquid interface of each drop, respectively;
Asv is the surface area of the solid–vapor surface around eachdropwithin the dash-line
boundary as indicated in the figure above.

There are the following constraints:

VL1 = A0H
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VL1 = nVL2

A0 = n(Asv + Asl2)

or

nAsv = A0 − nAsl2

The free energy change of this film-breaking-and-droplet-forming process can
then be written as:

�� = �2 − �1 =PL1VL1 − nPL2VL2 + γlv(nAlv2 − A0)

+ γsl(nAsl2 − A0) + nγsvAsv

= − (PL2 − PL1)VL1 + γlv(nAlv2 − A0)

+ (γsl − γsv)(nAsl2 − A0)

Using the two volume constraints, we have

n = A0H/VL2

The free energy change becomes:

�� = −(PL2 − PL1)A0H + γlv

(
A0H

VL2
Alv2 − A0

)
+ (γsl − γsv)

(
A0H

VL2
Asl2 − A0

)

On a unit solid surface area basis,

��

A0
= −(PL2 − PL1)H + γlv

(
H

VL2
Alv2 − 1

)
+ (γsl − γsv)

(
H

VL2
Asl2 − 1

)

In the initial state, the pressure of the flat thin liquid film should be the same as
the pressure of the vapor phase, that is,

PL1 = PV

Assumeall droplets are spherical andhave a radius ofR. From theLaplace equation
of capillarity, we have

(PL2 − PL1) = (PL2 − PV ) = 2

R
γlv

From the Young equation, we have
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(γ sv − γsl) = γlvcosθ

Considering a droplet on the solid surface as a spherical cap,

we have the following geometrical relations:

Asl2 = πR2sin2θ

Alv2 = 2πR2(1 − cosθ)

VL2 = πR3

3
(1 − cosθ)2(2 + cosθ)

The free energy change can be re-written as:

��

A0γlv
= − 2

R
H +

(
6

R(1 − cos θ)(2 + cos θ)
H − 1

)

− cos θ

(
3 sin2 θ

R(1 − cos θ)2(2 + cos θ)
H − 1

)

Clearly, the above equation indicates that the free energy change of such a process
is a function of the initial film thickness, H, the droplet radius, R, and the contact
angle, θ. Thermodynamically, if the free energy change is negative, such a film-
breakage-and-droplet-form process is favourable (Fig. 3.1).

As we can see from the figure above, the free energy change initially decreases
quickly with the radius of the formed droplets, and gradually reaches a constant
value when the radius is larger than 50 μm. For the two cases where the contact
angles are 10° and 30°, respectively, the free energy change is always positive. This
is because the small contact angles in these two cases indicate very good wettability
of the liquid to the solid surface, and hence the liquid tends to spread over the solid
surface as a thin liquid film. In other words, the film breaking and forming droplets
will increase the total free energy of the system, and it not a spontaneous process
or not thermodynamically favorable process. However, for the case of 60° contact
angle, the liquid does not wet the solid surface very well. If the thin liquid film breaks
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Fig. 3.1 Plot of ��
A0γlv

versus R for θ = 10o, 30o, 60o, and H = 10 μm

and form droplets with a radius larger than 25 μm, the free energy change becomes
negative. This means that he film breaking and forming relatively larger droplets is
thermodynamically favorable and may occur spontaneously (Fig. 3.2).

Fig. 3.2 Plot of ��
A0γlv

versus θ for R = 50, 100, 1000 μm, and H = 10 μm
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Fig. 3.3 Plot of ��
A0γlv

versus H for R = 50 μm, and θ = 60o

As seen from the above figure, the free energy change is positive or zero when
the contact angle is small (good wettability of the liquid), and becomes negative
when the contact angle is larger (i.e., wettability decreases). For the same contact
angle, for example, θ = 30°, the free energy change changes from a positive value
for small droplets (e.g., R = 50 μm) to a negative value for large droplets (e.g., R
= 1000 μm). This means that it is more likely to form larger droplets after the thin
liquid film breaks.

Figure 3.3 shows the free energy change of the film breaking process as a function
of the initial film thickness. Clearly, a thinner liquid film is preferable for breaking,
as the corresponding free energy change is negative; and thicker liquid film most
likely remains as a stable film on the solid surface.

Home Work

(1) Model and analyze if two bubbles of different sizes can merge into one bubble
in a bulk water phase. Under

(a) Constant gas volume assumption.
(b) Constant gas mass assumption. Why is this assumption different from

the above assumption? Physically, which assumption is more close to
reality?

(2) Consider a process of oil wetting a planar surface and the surface is initially in
contact with air. The oil contains no micro air bubbles. There are two possibili-
ties: In the first case, the oil wets the surface completely. In the second case, the
oil does not wet the surface completely and a bubble is formed on the surface.
The following two figures illustrate the two possible scenarios. Assume that the
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temperature and the pressures of the oil-air–solid surface system are the same
for both cases. Which case is thermodynamically possible? (Hint: compare the
Helmholtz free energies of these two cases).

Scenario 1   Scenario 2 

Air

Oil Oil

Air

bubble



Chapter 4
Second Law of Engineering
Thermodynamics

Abstract In standard engineering thermodynamics textbooks, the core of thermo-
dynamics is the first law of thermodynamics and the second law of thermody-
namics. However, comprehension of the second law of thermodynamics is not
simple. Particularly, the second law of thermodynamics is usually introduced to
readers as the Kelvin-Planck statement of the second law and the Clausius statement
of the second law. For students learning thermodynamics, the true meaning of these
statements may not be easy to understand. Apparently, these two statements are very
different. Why are both of them called the statement of the second law of thermo-
dynamics? What do these statements have to do with irreversibility and entropy? In
this chapter, we will answer these questions by providing analytical proof to show
that the Kelvin-Planck statement and the Clausius statement of the second law are
the results of the same thermodynamic principle—the second law (or the entropy
increase principle), and how they are related to the irreversibility and the entropy
generation.

In standard engineering thermodynamics textbooks, the core of thermodynamics
is the first law of thermodynamics and the second law of thermodynamics. While
the first law of thermodynamics, as the energy conservation principle, is easy to
understand, comprehension of the second law of thermodynamics is not simple.
Particularly, the second lawof thermodynamics is introduced to readers as theKelvin-
Planck statement of the second law and/or the Clausius statement of the second law.
The Kelvin-Planck statement of the second law is often articulated as:

It is impossible that a thermal cycle device receives heat from a single reservoir
and produces a net amount of work.

The Clausius statement of the second law is often expressed as:
It is impossible to build a thermal cycle device that transfers heat from a lower-

temperature body to a higher-temperature body without any work input.
For students learning thermodynamics for the first time, the meaning of these

statements may not be easy to understand. On the surface, these two statements are
very different, and talks about different things. Why are both of them called the
statement of the second law of thermodynamics? Particularly, a key question may
be: What do these statements have to do with irreversibility and entropy?
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In addition, in the studies of thermal cycles, students may ask: In a thermal cycle,
why do we have to reject heat to a heat sink? If there is no such a heat rejection, the
thermal cycle would convert all heat supply into work and the efficiency would be
100%. Would this be possible?

In this chapter, we shall try to answer these questions and provide analytical proof
to show that the Kelvin-Planck statement and the Clausius statement of the second
law are the results of the same thermodynamic principle—the second law, and how
they are related to the irreversibility and the entropy generation.

4.1 Irreversible Processes

In engineering thermodynamics, the interest is often about the performance of
processes. A process is the change of thermodynamic state, i.e., from state 1 to
state 2, for a given system. One would like to know, for example, what process can
produce the maximum work for a given energy supply. However, in the studies of
thermodynamic processes, one must realize that a natural or spontaneous process
moves only in a certain direction and cannot be reversed by itself, i.e., it is irre-
versible. Real processes in our daily life and in engineering practice are irreversible.
For example,

• Water flows down a waterfall.
• Gases expand from a high pressure place to a low pressure place.
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• Heat flows from a high temperature place to a low temperature place.
• Time passes, we are getting older.

Furthermore, it should be realized that a spontaneous process can be reversed;
but, it will not be reversed by itself spontaneously. External input and energy
must be provided to reverse the process. For example, a stone is released from
a certain height, and it falls to the ground. This is an irreversible process and the
stone will not move back to its original position spontaneously. To bring it back (to
reverse the process), one has to do work to pick it up. As another example, after
heat is transferred from a high temperature body to a low temperature body, the
heat will not flow back spontaneously from the low temperature body to the high
temperature body. The heat transfer is an irreversible process. In order to make heat
transfer back from the low temperature body to the high temperature body, one has
to use a refrigerator or a heat pump. However, this requires using additional energy,
for example, electricity to run the refrigerator or heat pump.

In order to understand the fact that all real processes are irreversible, let us also
define the reversible process. A reversible process is an idealized process (which
does not exist in reality). A reversible process is defined as a process that can be
reversed without leaving any impact on the surroundings. This means, at the end
of the reverse process, both the system and the surroundings are returned to their
initial states. There is nothing changed in the world. From thermodynamics point of
view, this is possible only if the net heat, network and mass exchange between the
system and the surroundings are zero for the combined processes (i.e., the original
process and the reverse process).

Because there are no reversible processes in real life, one cannot give you an
example of a reversible process. However, one can use some examples of irre-
versible processes to explain the meaning of the impact on the surroundings after
an irreversible process.
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20oC

80oC Cooling process

Impact to 
environment:

Released Q

Heating process

Impact to 
environment:

Burnt natural gas, 
produced CO2,
released Q

20oC

80oC

One example is the processes of heating and cooling water. Consider using a
natural gas oven to heat a kettle of water from 20 to 80 °C. This is a heating process.
Then, let the kettle of water to cool in the room from 80 to 20 °C. This is a cooling
process to reverse the heating process. Now the system (the kettle of water) is recov-
ered to its initial state. Is this a reversible process? No, because the surroundings
have changed significantly by these processes. Let us examine what impact of these
processes has left to the surroundings. (1) A certain amount of natural gas was burnt
with air, some new gases were produced in the air by the combustion, such as carbon
dioxide and water vapor. (2) A certain amount of heat was released into the air
(from the natural gas combustion and from cooling the hot water), and may raise the
temperature of the air in the room. Therefore, by definition, this (heating water) is
not a reversible process.

4.2 Limitation of First Law of Thermodynamics

The first law of thermodynamics is the principle of energy conservation. It states that
energy cannot be created and cannot be destroyed; it can only change forms.
Now we understand that all real processes are irreversible. However, the first law
of thermodynamics does not consider the irreversibility of the real processes, and
therefore has shortcomings. For example:

(1) As discussed above, spontaneous processes can proceed only in a particular
direction. The first law of thermodynamics gives no information about the
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direction of a spontaneous process. First law states only that when energy is
transferred or converted fromone form into another form, the quantity of energy
must remain the same. We know by experience that heat flows spontaneously
from a high temperature place to a low temperature place. But, heat transfer
from a low temperature place to a higher temperature placewithout expenditure
of external energy input to make the process take place would not violate the
first law.

TH TL
QH = 1 kJ Spontaneous, 

Satisfy 1st law

For example, the above figure shows that 1 kJ heat transfers out of the high
temperature (TH) body, and the low temperature (TL) body receives 1 kJ heat. This is
a spontaneous process and satisfies the first law of thermodynamics (i.e., the quantity
of heat is conserved).

Cannot occur 
naturally, but 
satisfy 1st law

TH TL
QL = 1 kJ

The above figure shows the reversed process. 1 kJ heat transfers out of the low
temperature (TL) body, and the high temperature (TH) body receives 1 kJ heat.
This process satisfies the first law of thermodynamics (i.e., the quantity of heat
is conserved). However, this is not a spontaneous process and cannot occur naturally.

In other words, the first law of thermodynamics does not give any information on
the permissible direction of a spontaneous process.

(2) The first law is concerned with conservation of energy during energy
transformation from one form to another. However, this also depends on
the directions of energy transformation. Joule’s experiments showed that
energy in the form of heat cannot be completely converted into work; however,
work (e.g., electricity) energy can be completely converted into heat (thermal
energy). Evidently, heat and work are not completely interchangeable forms
of energy.

(3) The 1st law efficiency analysis often fails to evaluate the true efficiency.
For example, the first law efficiency for a thermal cycle is defined by

ηI = W

QH

In this equation, the efficiency is determined only by the quantity of energy, i.e.,
the produced work (W ) and the heat supply (QH), and the efficiency does not depend
on the quality of the energy supply QH. However, the quality of the energy supply QH

is a key to determine the true efficiency. For example, if a power-generation thermal
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cycle is provided with an amount of heat at a higher temperature, say 1000 K. Such
a heat can produce superheated vapor to drive the turbine and consequently produce
a lot of work and the efficiency of the thermal cycle is high. However, if the same
thermal cycle is provided with the same amount of heat, but at a lower temperature,
say 350 K (~77 °C), the heat at this temperature cannot even boil water; of course,
the thermal cycle produces zero work and hence the efficiency is zero. Clearly, we
cannot find the true efficiency from a simple 1st law analysis.

(4) Whenenergy is transferred fromone formtoanother, apart of the supplied
energy always degrades into a less “useful” form. For example, in a steam
power plant, a part of the high temperature energy supplied by combustion
is converted into useful work, but a significant part of the supplied heat is
rejected to the atmosphere at a temperature close to atmospheric temperature.
This rejected heat has a low temperature, and is essentially impossible to be
used to generate any useful work (e.g., cannot boil water to generate vapor
to rotate the turbine!). Therefore, the quality (potential to produce work)
of this part of the input energy is degraded during the work production
process. This is the energy quality loss due to the irreversibility of the process.
1st law ignores energy’s quality.

It is important to recognize the quality of energy (not only the amount of
energy). For heat, the higher the temperature, the higher the quality. Low quality or
zero quality energy is useless to us. For example, we have practically infinite amount
of energy stored in the environment surrounding us at T ~ 300 K and P ~ 1 atm.
The problem is that, in order to utilize this energy source to produce useful work,
we have to have another energy sink that is at a lower temperature, T < 300 K and/or
a lower pressure, P < 1 atm. Unfortunately, such a “sink” does not exist naturally
or not accessible. Deep space has essentially zero temperature and zero pressure;
however, it is not accessible to us. A lower temperature space on earth can be created
at the expenses of work and electricity (such as using a refrigerator). Therefore, the
environment around us at T ~ 300 K and P ~ 1 atm is a “dead state”. The energy
in this environment or the dead state has zero quality, or zero potential to produce any
useful work and hence useless. We may use this environment at T0 ~ 300 K and
P0 ~1 atm as a mutual reference to evaluate the quality or work potential of any
energy systems. We will use T0 and P0 to represent the environmental temperature
and pressure.

As discussed above, real processes are irreversible, and the first law of ther-
modynamics does not consider the irreversibility. Therefore, we need another
law—the second law of thermodynamics to consider the irreversibility effects.
The irreversibility of a process is measured in terms of a thermodynamic
property—Entropy S.
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4.3 Second Law and Equations

For real processes, there is the principle of entropy increase. It is stated as:
The entropy of an isolated system during a process always increases because

of irreversibility. In the limiting case of a reversible process, entropy remains
constant.

This is the second law of thermodynamics. Mathematically, it is expressed by:

�Sisolated system = Sgen ≥ 0

where Sgen is the entropy generation of the system due to the irreversibility; “=” sign
holds for the idealized reversible process; and “>” sign holds for the irreversible
process.

Generally, for a non-isolated system (i.e., a system interactingwith surroundings),
the combined system, i.e., the systemplus the surroundings, forms an isolated system.
The 2nd law can apply to the combined system as:

�Sisolated combined system = �Ssys + �Ssurr = Sgen ≥ 0

The above equation states that the total entropy change for a process is the amount
of entropy generated during that process (Sgen), and it is equal to the sum of the
entropy changes of the system and the surroundings. It is not difficult to understand
that the entropy change of the system and the entropy change of the surroundings
individually do not have to be positive, however, the sumof them (equals to Sgen)must
be positive. That is, the sum of the entropy changes of the system and its surroundings
for an isolated system can never decrease, because of entropy generated during that
irreversible process, Sgen.

Let us further analyze the 2nd law equation:

Sgen = �Ssys + �Ssurr

Entropy change of a system

The entropy change of a system is the result of the process occurring within the
system.

Entropy change of the system = Entropy at final state − Entropy at initial state

�Ssystem = S f inal − Sinitial = S2 − S1

Entropy change of the surrounding

How to evaluate �Ssurr (or what is �Ssurr)? Let’s look at the entropy balance in a
process as illustrated in the figure below.
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System

ΔSsys

Sgen

Surroundings

Sout-sys = Sin-surSout-sur = Sin-sys

By inspecting the figure above, we have:

�Ssurr = Sin−sur − Sout−sur = Sout−sys − Sin−sys = (Sout − Sin)sys

Therefore, the 2nd law equation now can be written as:

ni sysoutsysgen SSSS )( −+Δ= (kJ/K)

(S2 – S1)       entropy transfer across the system boundary 

For a system with multiple boundaries, the 2nd law equation can be written as:

Entropy
generation 

Entropy change
of the system 

Net entropy transfer
across system’s boundaries

(kJ/K)ni sysoutsysgen SSSS )( −+Δ= å

It can also be expressed in the general time rate form (where the dot on top of
each symbol indicates the time rate, i.e., change per unit time) as:

rate of entropy
generation 

rate of entropy 
change  

of the system

rate of net entropy transfer
across system’s boundaries

(kW/K)ni sysoutsysgen SSSS )( −+Δ= å. . . .

Entropy transfer across the boundary

How to evaluate the entropy transfer across the system boundaries? Entropy can be
transferred to or from a system by two mechanisms: heat transfer and mass flow.
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Entropy transfer with mass flow

Mass carries entropy as well as energy, and the total entropy and the total energy
contents of a system are proportional to the mass.When a certain amount mass enters
or leaves a system, correspondingly, entropy associated with this mass also enters or
leaves the system. Let ṁ be the mass flow rate (kilogram per second, i.e., kg/s) and
s be the specific entropy of the mass (kJ/kgK), the time rate of entropy transfer with
mass transfer is given by:

ṡmass = ṁs

Entropy transfer associated with heat transfer

The entropy transfer associated with heat transfer is defined by the ratio of the heat
transfer Q at a location to the absolute temperature T at the same location, and is
given by:

SHeat = SQ = Q

T

where the temperature T is constant.
As indicated by the above equation, the direction of entropy transfer is the same

as the direction of heat transfer since the absolute temperature T is always a positive
quantity.

If the system has multiple boundaries and each boundary has a different temper-
ature, the entropy transfer associated with heat transfer across these boundaries can
be evaluated by:

Qi , Ti

Qj , Tj
Qk , Tk System

åQS
k
k

Q
T

=

When the temperature at the boundary is not constant, the entropy transfer asso-
ciated with the heat transfer across the boundary can be determined by integration
as:

SQ =
∫ 2

1

dQ

T

2nd Law equation for closed systems

For a closed system, by definition, there is no mass transfer across the system
boundary. The entropy transfer term for a closed system,

∑
(Sout − Sin), in the 2nd
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law equation will be associated with heat transfer only. The 2nd law equation for
closed systems is:

å ni sysout SS )( −

(kJ/k)k,in

j,out

j,out
å å
Q Q

T k,inTsysgenS (S2= S1 )

entropy transfer by heat transfer

2nd Law equation for open systems

The 2nd law equation for open systems differs from that for closed systems because
the entropy exchange due to mass flow must be included. In the time rate form we
have

Entropy transfer rate with mass transfer and heat transfer

k,in

k,inj,out

j,out
out outsysgen SS + +Δ= å å

å

å å
. . .

..

ni sysout SS )( −
. .

m s in in
.m s

Q Q

T T
(kW/k)

For a steady-state, steady-flow process, by definition, the system’s properties
are independent of time, therefore,

�Ṡsys = 0.
The second law equation is reduced to:

Ṡgen =
∑

ṁout sout −
∑

ṁinsin +
∑ Q̇ j,out

Tj,out
−

∑ Q̇k,in

Tk,in
(kW/k)

Fora single-stream (one inlet andone exit) steady-flow device, ṁout = ṁin = ṁ.
The second law equation becomes

Ṡgen = ṁ(sout − sin) +
∑ Q̇ j,out

Tj,out
−

∑ Q̇k,in

Tk,in
(kW/k)
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4.4 The 2nd Law Requirement on Thermal Cycles

From the above analysis, we conclude the following:

(1) The 1st law of thermodynamics requires that energy must be conserved in a
process.

(2) The 2nd law of thermodynamics states that the entropy generation must be
positive in a real process.

(3) A process cannot take place unless it satisfies both the 1st law and the 2nd
law.

Apply both the 1st law and the 2nd law to analyze a thermal engine cycle.
Consider a thermal engine cycle system working between two heat sources, as

illustrated in the figure below.

TH

QH

TL

QL

WHeat 
Engine 

In the above figure, the heat engine is a device that operates in a thermal cycle.
During the thermal cycle, the heat engine receives heat (QH) from a high temperature
(TH) heat reservoir, converts a part of the heat supply into work (W), and rejects the
rest of the heat (QL) to a low temperature (TL) heat reservoir (heat sink).

A thermal cycle is a closed system because the mass of the working fluid in the
thermal cycle is constant. The 1st law equation for the thermal cycle as a closed
system is given by:

Qnet − Wnet = �U

Because the starting state and the ending state are identical in a cycle, and hence
no change in the properties of the system on per cycle basis, therefore,

�U = 0 (per cycle)

and

Qnet = Qin − Qout = QH − QL

Therefore, the 1st law equation becomes:

Wnet = QH − QL (4.1)
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The 2nd law equation for the thermal cycle as a closed system is given by:

Sgen = �Scycle +
∑ Qk,out

Tk,out
−

∑ Qj,in

Tj,in
(kJ/K)

Again, because the starting state and the ending state are identical in a cycle, and
hence no change in the properties of the system on per cycle basis, therefore,

�Scycle = 0 (per cycle)

And note that in this thermal cycle,

Qin = QH and Qout = QL

the 2nd law equation becomes:

Sgen = QL

TL
− QH

TH
(4.2)

Multiplying the 2nd law equation, Eq. (4.2), by the environmental temperature
T0,

T0Sgen = T0

TL
QL − T0

TH
QH

and combining this equation with the 1st law equation, Eq. (4.1), yields

Wnet + T0Sgen = QH − QL + T0

TL
QL − T0

TH
QH

It can be rearranged into:

Wnet = QH

[
1 − T0

TH

]
− QL

[
1 − T0

TL

]
− T0Sgen (4.3)

The 1st term on the right-hand side of Eq. (4.3) is the maximum work that can be
produced from the heat supply QH. The 2nd term on the right-hand side of Eq. (4.3)
is the potential work associated with the rejected heat QL (if TL > T0). The last term
on the right-hand side is the work potential destroyed by the irreversibility involved
in the cycle.

The above equation can be further rearranged in the following form:

T0Sgen = QH

[
1 − T0

TH

]
− QL

[
1 − T0

TL

]
− Wnet (4.4)
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• Discussion of special case 1: 

Assume QL = 0, that is, no heat rejection to the heat sink.  

1 1 001 %==−==
H

L
th Q

Q
Q
W

H

η Is it possible?

TH 

HE

QH 

W

Under this assumption, the 1st law becomes:

Wnet = QH – QL = QH.

If so, from Eq. (4.3), we have:

T0Sgen = QH

[
1 − T0

TH

]
− Wnet

= QH

[
1 − T0

TH

]
− QH

= QH

[
− T0
TH

]
< 0

This implies Sgen < 0, and violates the 2nd law. Hence such a heat engine is not
possible. This is the Kelvin-Planck Statement of the Second Law:

It is impossible that a thermal cycle device receives heat from a single source
and produce a net amount of work.

The Kelvin-Planck statement of the second law of thermodynamics states that no
heat engine can produce a net amount of work while exchanging heat with a single
reservoir only. There must be heat rejection to a low temperature heat sink. In other
words, the maximum possible efficiency is always less than 100%.

Apply both the 1st law and the 2nd law to analyze a refrigeration cycle.

As illustrated in the figure below, a refrigerator or a heat pump is a device that operates
in a thermal cycle. During the thermal cycle, the refrigerator receives a work input
(W), extracts a certain amount of heat (QL) from a low temperature (TL) heat reservoir
(heat sink), and rejects heat (QH) to a high temperature (TH) heat reservoir.

For a refrigeration cycle, applying the 1st law and the 2nd law, we can derive an
equation similar to that (Eq. (4.3)) of the thermal engine. The 1st law equation for a
thermal cycle is given by:

Qnet − Wnet = �U

As explained before, because the starting state and the ending state are identical
in a cycle, and hence no change in the properties of the system on per cycle basis,
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therefore,

�U = 0 (per cycle)

The first law equation is reduced to.

Qnet − Wnet = 0.

For a refrigeration cycle,

and    

Wnet

Qnet Qin Qout QL QH

Wout Win Win

Wdone by system Wdone to system
TH

TL

QL

QH

Refrigerator Win

=

=

=

=

=

so that the 1st law equation becomes

−Win = QL − QH (4.1a)

The 2nd law equation for the thermal cycle as a closed system is given by:

Sgen = �Scycle +
∑ Qk,out

Tk,out
−

∑ Qj,in

Tj,in
(kJ/K)

Again, because the starting state and the ending state are identical in a cycle, and
hence no change in the properties of the system on per cycle basis, therefore,

�Scycle = 0

(cycle),
and for the refrigeration cycle, as shown in the figure above,

Qout = QHandQin = QL ,

The second law equation becomes:

Sgen = QH

TH
− QL

TL
(4.2a)

Multiplying the 2nd law equation, Eq. (4.2a), by the environmental temperature
T0 yields:
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T0Sgen = T0
TH

QH − T0
TL

QL

combining this equation with the 1st law equation, Eq. (4.1a), leads to:

T0Sgen = QL

[
1 − T0

TL

]
− QH

[
1 − T0

TH

]
+ Win (4.3a)

• Discussion of special case 2:

AssumeW in = 0, that is, no external work input to run the refrigerator. This implies
that the COP (Coefficient of Performance) of a refrigerator or heat pump is infinity.

∞= = =
0
L

in

L
R

Q
W
QCOP Is this possible?

In this case, the 1st law equation, Eq. (4.1a), becomes:  

QL = QH = Q. 

From Eq. (4.3a), we have:

TH

TL

QH

QL

Refrigerator

T0Sgen = QL

[
1 − T0

TL

]
− QH

[
1 − T0

TH

]

= Q

[
1 − T0

TL
− 1 + T0

TH

]

= QT0

[
1

TH
− 1

TL

]
< 0

This implies Sgen < 0, and violates the 2nd law. Hence such a refrigerator cannot
exist. This is the Clausius Statement of the Second Law:

It is impossible to construct a heat pump device that can transfer heat from a
low temperature place to a high temperature place without any work input.

Thus, the COP of a refrigerator or heat pump cannot be infinity.

4.5 Applying Second Law Equation to a Human Body

Thinking about the 2nd law equation for open systems, one may ask if we could
apply the 2nd law equation to a living biological system such as a cell or a human
body. A human body, for example, is an open system that exchanges mass (e.g., air,
water and food) and energy (heat) with the surroundings. Therefore, the 2nd law
equation should be applicable.
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Ṡgen = �Ṡsys +
∑

ṁout sout −
∑

ṁinsin +
∑ Q̇ j,out

Tj,out
−

∑ Q̇k,in

Tk,in
(kW/k)

Obviously, all the bio-chemical processes taking place inside our body are irre-
versible. Without the need to know the specifics of each of these processes, we
know that, eventually, the net effect of these irreversible processes is to make us
aging (getting old), to make the functions and the performance of the body parts
and organs deteriorating, and resulting in diseases. Therefore, from thermodynamics
point of view, the body’s health condition is determined by the net effect of the
internal irreversibility of a human body and should be reflected by the total entropy
generation rate. The value of this entropy generation rate should indicate the speed
of the internal irreversibility. Of course, everyone likes to have a long and healthy
life. This will require having a low entropy generation rate or a minimum entropy
generation rate under given conditions. Obviously, a lot of research has to be done
to understand these internal irreversible processes and find the controlling parame-
ters to reduce the total entropy generation rate. One may imagine that someday in
the future when you go to visit your family doctor, the first thing the doctor would
say to you is: Ok, let me measure your entropy generation rate first. (Of course,
the medical students then would have to learn thermodynamics before they could
become doctors).

First
measure your

. 

Generally, the temperature of a human body is 37 °C, higher than the average
environmental temperature. Therefore, there is no heat transfer from the surrounding
to the human body. That is, **The equation below should be placed in the center.

∑ Q̇k,in

Tk,in
= 0

.
On the other hand, heat transfers from human body to the surrounding. We

have. **The equation below should be placed in the center.

∑ Q̇ j,out

Tj,out
= Q̇out

Tbody

.
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Furthermore, within a short period of time, we may consider the body is in a
steady state, and hence �Ṡsys = 0.

The mass transfer into the body generally includes air, food and drinks. The mass
transfer out of the body includes the rejected wastes and moisture vaporized from
the skin. Therefore, the 2nd law equation for an average human body becomes:

Ṡgen =
∑

ṁout sout −
∑

ṁinsin + Q̇out

Tbody
(kW/K )

It is pretty amazing to see that such a simple equation could allow us to estimate
the internal irreversibility of a human body. Of course, this is a phenomenological
equation; it calculates the entropy generation by using the “outside” or “apparent”
measurable parameters (not by the parameters characterizing the internal irreversible
processes).

Of course, we may apply the same approach to individual processes or segments
of a human body, to analyze the entropy generation rate or the irreversibility of these
individual processes or segments. Such analysiswould tell us the key and problematic
segments of the body, pointing out the directions to improve our health and life.

In the above 2nd law equation, the entropy rejected from human body with mass
is given by

+
∑

ṁout sout

and the entropy rejected from human body with heat is given by

+ Q̇out

Tbody

These are two positive terms in the above 2nd law equation. Clearly, they indicate
thatwe release positive entropy. In otherwords, our body is like an entropy generation
machine because of the internal irreversibility.

Intuitively, we know we have to breath fresh air, eat food and drink water to
maintain our live. Air, food and drinks all have entropies. From the 2nd law equation
given above, we see clearly that these intake entropies are represented by

−
∑

ṁinsin

which is a negative term in the above 2nd law equation. This means that the entropy
we take into our body is “negative”. In other words, we take “negative entropy” to
balance some of the positive entropies generated by the body in order to maintain
our life. Perhaps, tomorrow morning at the breakfast table, instead of asking for a
cup of milk, you should say, “A cup of negative entropy, please.”
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Water

Let‛s drink more 
negative entropy.
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