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Preface

There are several good books on thermodynamics, gas dynamics, and combustion, 
but there is not one book that covers all three of these areas and shows the integral 
connections at an advance undergraduate or beginning graduate student level.

This book is written to provide a primer on the subject of thermodynamics (and 
the allied areas of gas dynamics and combustion) and to be both terse and clear; this 
is the guiding principle of the book. Most chapters are under 30 pages in length and 
sufficient examples and problems have been given. Along with the exercises, there 
are many appendices with either additional information or computer programs 
(spreadsheets) that further demonstrate some concept.

This book is written in three parts: Part I – Chapters 1, 2, 3, 4, 5, and 6 – is on the 
fundamentals of thermodynamics; Part II – Chapters 7, 8, and 9 – is on gas dynam-
ics; and Part III – Chapters 10, 11, 12, 13, and 14 – is on combustion.

Chapter 1 begins with ideal gases, then shows when gases deviate from ideal 
behavior (when pressure significantly increases for a fixed temperature or tempera-
ture significantly decreases for a fixed pressure). To address these deviations from 
ideal behavior, cubic equations of state were developed and mimic the behavior of 
specific volume versus pressure for a pure substance.

Chapter 2 deals with heat and work. This discussion includes understanding the 
definitions of specific heat and when to use a certain definition; how these defini-
tions relate to internal energy and enthalpy; various processes described as poly-
tropic processes, the work associated with a particular polytropic process; 
additionally, states, internal energy, and heat associated with a particular polytropic 
process are presented for an ideal, perfect gas.

In Chaps. 3 and 4, the first and second laws of thermodynamics are explored.
Chap. 5 presents several heat engines and refrigeration cycles. These cycles 

include Brayton, Rankine, reverse Brayton, and reverse Rankine cycles.
In Chap. 6, Maxwell relationships, their applications, and ideal gas mixtures are 

presented. The first and second laws of thermodynamics are re-derived for an ideal 
mixture of gases.

The next three chapters, Chapters 7, 8, and 9, deal with gas dynamics. Chapter 7 
deals with conservation laws applied to a gaseous system, derives the speed of 
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sound for an ideal perfect gas, and goes on to derive the equations for normal shocks. 
Chapter 8 develops the conservation principles necessary for combustion systems 
and includes the fact that states change with either location or time; Chapter 7 pro-
vides the necessary fluid mechanics for Chaps. 9 and 10 and Chap. 8 provides the 
necessary fluid mechanics for Chaps. 12 and 13.

Chapter 9 deals with isentropic, choked flow (chemical engineers tend to call this 
critical flow). A comparison is made between ideal, perfect gases and van der Waal 
gases. The effects of real gas behavior on isentropic, choked flows are clearly delin-
eated. The chapter goes on to address critical flow and sonic velocity for two phase 
systems.

Chapter 10 presents a physics-based description of combustions using the 
Hugoniot/Rayleigh theory that graphically represents the three conservation prin-
ciples: conservation of mass, conservation of energy, and conservation of moment. 
Where the Hugoniot Curve and Rayleigh lines intersect represents the end points of 
the combustion before and after an associated shock.

A combustion system can either be a detonation or a deflagration. A detonation 
is a wave with an attached reaction zone where the speed of the wave is greater than 
Mach 1, it’s known as a shock wave, and a deflagration is a wave where the speed 
of the wave is less than Mach 1 and there is an associated reaction zone.

Chapters 11, 12, and 13 deal with a chemically based combustion; a physics-
based combustion theory provides information about what occurs after the shock at 
the von Neumann point and the end of the reaction zone, but not what occurs within 
the reaction zone. A chemically based combustion theory allows us to investigate 
state changes within the reaction zone. Chapter 11 deals with the necessary combus-
tion chemistry to include stoichiometry, chemical equilibrium, chemical kinetics, 
and adiabatic flame temperature.

Chapter 12 discusses deflagration systems, which are combustion systems were 
the wave travels below Mach 1 (Ma1 <  .01) and now transport processes such as 
momentum diffusion, mass diffusion, and heat diffusion become important. Two 
forms of deflagrations are discussed: deflagrations where the fuel and oxidizer are 
pre-mixed (a Bunsen burner is an example) and deflagrations where the fuel and 
oxidizer are not pre-mixed (a candle flame is an example).

Chapter 13 discussed detonations and presents constant pressure and constant 
volume combustion, an extended example on a rotational detonation engine, solving 
for states within the reaction zone, and how the detonation structure is much more 
complicated and richer than the modeling conducted in this chapter.

In the last chapter, Chapter 14, blast waves are discussed. A blast wave is a wave 
where the strength of the wave (pressure) decreases with distances from the source. 
The pivotal works in this area are two papers by G.I. Taylor and blast waves associ-
ated with a very intense explosion (atomic bomb). The chapter presents the conser-
vation principles as partial differential equations, reduces these equations to ordinary 
differential equations through similarity methods, and presents two methods to 
solve the non-dimensionalized conservation principles. One method is numerical 
analysis of the ODEs and the other is approximate forms (algebraic equations) to 
match the numerical results.
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Many useful appendices are included. These appendices include worksheets for 
various heat engines and refrigeration cycles, normal shock waves, various models 
for critical flow, Rankine-Hugoniot theory, and programs for detonation dynamic 
systems (ZND models) and deflagration systems (laminar flame theory and diffu-
sion flames). Additionally, there are worksheets associated with the various blast 
wave systems.

A first course in thermodynamics (14-week semester) could include Sects. 1.1 to 
1.4; Chapters 2, 3, 4, and 5.

A second course in thermodynamics (14-week semester) could include Sect. 1.5, 
Chapters 6, 7, 8, and 9.

An introductory combustion course (14-week semester) could include Chaps. 10, 
11, 12, 13, and 14.

Houston, TX, USA� Henry Clyde Foust 
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Chapter 1
Equations of State

1.1  �Preview

The purpose of this chapter is to introduce equations that relate temperature (T), 
pressure (P), and specific volume (ν) for a given set of conditions where T, P, and ν 
are states of the system.

Specific volume is defined as

	
�

�
� �
V

m

1

	
(1.1)

where V is volume and m is mass, and specific volume is the inverse of density.
Temperature, pressure, and specific volume are fundamental quantities that 

describe the state of a system and are defined below. Please note we will often 
assume a system is homogenous in terms of the states, i.e., the temperature is the 
same throughout the system.

Temperature is a measure of the molecular activity of a fluid at a particular loca-
tion within the system.

Pressure is an average of the normal stresses that occur on a unit cube of fluid in 
the three principal directions {x, y, z} within the system.

Specific volume is a measure of the mass of a particular system for a unit volume.
We’ll start with the simplest representation, which is the ideal gas law. The ideal 

gas law is predicated on several assumptions that briefly state molecules are perfect, 
rigid spheres that only transfer momentum during collisions, are infinitely far apart, 
and occupy no space. When the density increases enough, then some of these 
assumptions are no longer valid.
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We’ll then look at phase diagrams (V vs. T and V vs. P) and develop cubic equa-
tions of state to represent the behavior seen on these phase diagrams; the simplest 
cubic EOS incorporates more accurate models for attractive and repulsive forces. 
We’ll then incorporate the effects of non-spherical molecules and that at higher 
pressures the volume becomes constant, which become significant as the density 
gets very large.

A general understanding is gathered by reading Sects. 1.2, 1.3, and 1.4 and more 
advanced material is given in Sect. 1.5.

1.2  �Ideal Gas Law

Through careful experimentation, several researchers of gas behavior that included 
Boyle, Charles, and Avogadro made observations using several gases near STP1 [1]. 
These observations include Boyle’s law, Charles’ law, and Avogadro’s law.

Boyle’s Law
Boyle’s law states that the volume of a gas (V) is indirectly proportional to its pressure 
(P) or mathematically

	
V

P
∝

1

�
(1.2)

Charles Law
Charles’ law states that the volume of a gas is directly proportional (V) to its 
temperature (T) or mathematically

	 V T∝ 	 (1.3)

Avogadro’s Law
Avogadro’s law states that the volume of a gas (V) is directly proportional to the 
mass given in moles (n) or mathematically

	 V n∝ 	 (1.4)

These three laws can be combined mathematically into the following relationship

	
V

nT

P
∝

	
(1.5)

It can be shown through experimentation (when temperature and pressure do not 
deviate too far from STP) that

1 Standard temperature and pressure, which is 0 °C and 101.325 kPa.
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V R

nT

Pu=
	

(1.6)

Or

	 PV nR Tu= 	 (1.7)

where Ru is the universal gas constant and has the value of 8.3145 Pa-m3 per mole-K.
Another form of Eq. 1.7 is

	
PV mR Tg=

	
(1.8)

where Rg is now particular to the substance and includes mass in units of kilograms.
The value of Rg for a particular substance can be found by the following formula

	

R
R

g

u
kJ

kg K

kJ

kmole K

MW
kg

kmole

�
�

�
�

�

�
� �

�
�
��

�
��

�
��

�
�� 	

(1.9)

where MW is molecular weight.
We can rearrange Eq. 1.8 to get

	

� � �
m

V

P

R Tg 	

(1.10)

The ideal gas law was later explained by the kinetic theory of gases [2]. This 
theory includes several assumptions

	1.	 The molecules occupy essentially no space and are infinitely far apart
	2.	 Each molecule has the same mass and is perfectly spherical
	3.	 Molecules only exchange momentum during perfectly elastic collisions
	4.	 Each molecule is in constant, rapid, and random motion
	5.	 There are so many molecules that we can discuss the entire set statistically

Some of these assumptions are no longer valid as the density increases. Referring 
to Eq. 1.10, it is easily seen that the density increases when pressure increases (for 
fixed T) or when temperature decreases (for fixed P). These observations can be 
summarized as

	 P T� � �� �for fixed Non ideal behavior� 	 (1.11)

	 T P� � �� �for fixed Non ideal behavior� 	 (1.12)

1.2  Ideal Gas Law
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1.3  �Ideal Gas Law Applications

When using the ideal gas law remember the following.
The first step is to make sure you use the correct value for the gas constant. If the 

mass is molar, then use Ru. If the mass is in kilograms or pounds, then use Rm. Rm 
values are given in tables at the back of the book.

A handout will be given for Ru in various units.
The next step is to make sure that T is in absolute scale

	
K C� � � �273 15 273. will be utilized in this book

	
(1.13)

and

	
R F� � � �459 67 460. will be utilized in this book

	
(1.14)

Further,

	
F C� �

9

5
32

	
(1.15)

where K is Kelvin, C is Celsius, R is Rankine, and F is Fahrenheit.
The third step is to make sure P is in absolute scale. Pressure may be given in 

terms of gauge pressure. The relationship between gauge pressure (Pg) and absolute 
pressure (Pabs) is

	
P P Pgabs atm� �

	
(1.16)

where Patm is atmosphere pressure (14.7 psia or 101,300 Pa).
For now, we will consider three possible processes, where a process is a change 

of states along a particular path. The three paths are -

	
P T P T

1 1 2 2
, , Constant volume process isometric process� ��� � � �,

	

	
P P

1 1 2 2
, , Constant temperature process isothermal pro� �� ��� �, ccess� � 	

	
� �

1 1 2 2
, , Constant pressure process isobaric processT T� ��� � �, �� 	

To find the equation for a particular process start with ideal gas law (for state 1) 
and manipulate the equation where the states that are changing are on the left and 
the states that are constant are on the right. Using the ideal gas law (for state 2) and 
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manipulate the equation where the states that are changing are on the right and the 
states that are constant are on the left. Equate these two equations to get a relation-
ship between states 1 and 2.

Constant Volume Process

	 PV nRT= 	 (1.17)

and

	

P

T

nR

V

P

T
1

1

2

1

= =
	

(1.18)

Constant Temperature Process

	 PV nRT= 	 (1.19)

and

	 P RT P1 1 2 2� �� � 	 (1.20)

Constant Pressure Process

	 PV nRT= 	 (1.21)

and

	

� �1

1

2

2T

R

P T
� �

	
(1.22)

1.4  �Lee/Kessler Charts

Imagine we conduct an experiment with a given mass of water, constant pressure (1 
atmosphere), and have a way of measuring both the temperature and volume (V). 
We heat up our container and plot various points of {V, T} for a liquid. Eventually, 
the positive slope of the line turns to a horizontal line, which is an indication of the 
mixture range. Again, the line forms a positive slope and the substance is now a gas 
(see Fig. 1.1).

We can get a similar curve for V versus P at a constant T (see Fig. 1.2).
We observe that there is a point that demarcates the saturated liquid from the 

saturated vapor curve and that this point is known as the critical point. Substances 
under the dome are known as mixtures that include both liquid and gas. When a 
substance is under the mixture dome, not only do we need to know the temperature 
and pressure but we also need a third quantity, quality (X), to define the substance. 
Quality is defined as

1.4  Lee/Kessler Charts
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X
m

m m
g

g l

�
�

	

(1.23)

where mg is the mass of gas and ml is the mass of liquid.
Going back to Figs. 1.1 and 1.2, we can determine for a given pressure and tem-

perature what phase we are in. These rules are provided in Table 1.1.

Fig. 1.2  P versus V for constant T

Fig. 1.1  T versus V for constant P

1  Equations of State
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We can define a given temperature and pressure relative to the critical pressure 
(Pc) and critical temperature (Tc).

Reduced pressure is

	
P

P

PR
c

=
	

(1.24)

and reduced temperature is

	
T

T

TR
C

=
	

(1.25)

Also define the compressibility factor (Z), which is a measure of the deviation 
from ideal gas behavior as

	
Z

PV

nR Tu
=

	
(1.26)

We can plot {PR, TR, Z} for a given pure substance and the result is given as 
Fig.  1.3. We observe that as TR decreases (T decreases) for fixed PR and/or PR 
increases (P increases) for fixed TR that Z decreases, which is consistent with what 
was said above about when the ideal gas behavior is no longer valid. We could plot 
{PR, TR, Z} for other pure substances and we would find that the points all fall on the 
same “constant Tr” lines.

Please note the Lee-Kessler chart is only valid for molecules that are nearly 
spherical. Below we’ll define another parameter acentricity (ω), which is a measure 
of how much a molecule deviates from being spherical.

Measuring the compressibility factor, Z, from Fig. 1.3 is fraught with error and 
Appendix 1.C provides a more accurate method. Also note that near the critical 
point {Tr, Pr} = {1, 1}, the greatest deviation from ideal behavior occurs {Z = 0.3} 
and all models for equation of state notoriously have difficulty predicting the states 
{P, T, ν} near the critical point.

Table 1.1  Delineating phase from a given T and P

For T < TSat and P = PSat → Sub-cooled liquid (see V versus T diagram)
For T > TSat and P = PSat → Super-heated vapour (see V versus T diagram)
For T = TSat and P < PSat → Super-heated vapour  (see V versus P diagram)
For T = TSat and P > PSat → Sub-cooled liquid (see V versus P diagram)
For T = TSat and P = PSat → Mixture

1.4  Lee/Kessler Charts
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1.5  �Cubic Equations of State

Three cubic equations of state will be discussed: van der Waals, Redlich-Kwong, 
and Redlich-Kwong-Soave [3, 5–8]. Each has the following form

	
P P PA� �rp 	

(1.27)

where Prp is the repulsive force and given as

	
P

R T

b
u

rp � �� 	
(1.28)

and PA is the attractive force and given as

	

P
a

g bA �
�
� �
�

� ,
	

(1.29)

where aα is a measure of the inter-molelcular attractive forces and b is related to the 
size of the equivalent rigid sphere.

These cubic equations of state are based on the following considerations [2, 3]:

	1.	 Mimic the behavior between ν and P given in Fig. 1.2

	2.	 Insure 
�
�

�
�
�

�
P P
� �

0 0

2

2
and  at the critical point

Fig. 1.3  Lee/Kessler compressibility chart [2–4]
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	3.	 The later cubic models also addressed the fact that all gases take on a constant 
specific volume at higher pressures, which is stated as ν = 0.26νc, where νc is the 
specific volume of the gas at the critical point

	4.	 Later models incorporated effects of non-spherical molecules (deviations from 
the predictions given on the Lee-Kessler chart)

1.5.1  �Van der Waal

One of the first attempts to address the deviations from ideal behavior seen as the 
density increases was the work of van der Waal [4]. The van der Waal equation of 
state is

	
P

a
b R Tu��

�
�

�
�
� �� � �

�
�

2

	
(1.30)

or

	
P P P

R T

b

a
R A

u� � �
�

�
� � 2

	
(1.31)

These two parameters {a, b} can be determined from the following conditions at 
the critical point

	

�
�

�
�
�

�
P P
� �

0 0

2

2
and

	
(1.32)

The values of {a, b} determined from Eqs. 1.30 and 1.32 are

	
a

R T

P
c

c

=
27

64

2 2

	
(1.33)

and

	
b

RT

P
c

c

=
8 	

(1.34)

Going back to Fig. 1.2, you’ll notice a cubic type of relationship between V and 
P, which Eq. 1.31 accounts for. Another version of this equation in terms of Z is

	 Z aZ bz c3 2 0� � � � 	 (1.35)

where

1.5  Cubic Equations of State
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a

P

T
b

P

T
c

P

T
R

R

R

R

R

R

� � � �
8

1
27

64

27

5122

2

3
, ,

	
(1.36)

It’s been found for various reasons that the van der Waal equation of state is inac-
curate near and above the critical pressure and other equations of state show higher 
accuracy in these regions. Van der Waal’s equation of state is known as an example 
of a two-parameter cubic equation of state.

1.5.2  �Redlich-Kwong

In 1949, Redlich and Kwong [5, 8] proposed the following model, which provided 
for a correction to the attractive force term within VW EOS and addresses Condition 
3 given above

	

P
R T

b

a

b
u�
�

�
�� ��
�

� �
	

(1.37)

Given

	
� �

1

T 	

Using the condition stated as Eq. 1.32, the values for {a, b} are

	
a

R T

P
b

RT

P
c

c

c

c

= =0 4748 0 08664
2 2 5

. , .
.

	
(1.38)

1.5.3  �Acentric Factor

For some substances, Pr and Tr are not enough to specify the compressibility factor 
(Z). A third factor is needed and is the acentric factor (ω) to account for the molecu-
lar structure [2]. In 1955, Pitzer [9] developed a thermodynamic quantity that mea-
sures the deviation of a fluid from spherical behavior that would include polar 
molecules. The acentric factor is defined as

	

� �� � �
�

�
�

�

�
�1 000 10. log

P

PC 	

(1.39)

where PC is the critical pressure for the substance and Pσ is the vapor pressure for T 
equal to 0.7TC (the saturated gas curve in Fig. 1.3) and when ω is essentially zero 
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the molecule is considered spherical and has values of Tr = 0.7 and Pr = 0.1; noble 
gases have a ω of 0.

The Redlich-Kwong EOS [5, 8] addresses Condition 3 and the Redlich-Kwong-
Soave [6] addresses Conditions 3 and 4.

1.5.4  �Redlich-Kwong-Soave

Soave in 1972 [6] incorporated into the Redlich-Kwong EOS Conditions 3 and 4

	

P
R T

b

a

b
u�
�

�
�� ��
�

� �
	

(1.40)

where

	
� � �� � �� ��

�
�
� � � �1 1 0 48 1 574 0 177
2

2S T SR , . . .
	

(1.41)

And satisfying the condition states as Eq. 1.32, the values for {a, b} are

	
a

R T

P
b

RT

P
c

c

c

c

= =
0 42748 0 086642 2.

,
.

	
(1.42)

In Figs. 1.4, 1.5, and 1.6 the ideal gas law is compared against the van der Waal 
and Redlich-Kwong Equations of State for methane. For Tr = 0.79, we see that as 
Pr goes up, the density increases, and the deviation from ideal behavior is seen. This 
trend is countered as the Tr increases and the deviation from ideal behavior becomes 
less significant (see Figs. 1.5 and 1.6).

For the three cubic equations of state discussed,

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.5 1 1.5 2

Pr

Nu [L/mole]

Ideal VW RK

Fig. 1.4  ν versus Pr for Tr = 0.79
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	 Z Z Z3 2 0� � � �� � � 	 (1.43)

where the coefficients are defined in Table 1.2 and {a, b} are the coefficients par-
ticular to a given equations of state.

0.00

0.50

1.00

1.50

2.00

2.50

0 0.5 1 1.5 2

Pr

Nu [L/mole]

Ideal VW RK

Fig. 1.5  ν versus Pr for Tr = 1.57

Fig. 1.6  ν versus Pr for Tr = 3.15
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1.6  �Examples and Problems

1.6.1  �Examples

Example 1.1 Ideal Gas Problem, Isothermal Process
An ideal gas goes from 10 bars (absolute) to 20 bars (absolute) for a fixed tempera-
ture of 100 F. If the initial specific volume is 20 ft3/lbm, then what’s the final spe-
cific volume?

Solution
This is a constant temperature (isothermal) process and the appropriate equation is

	 P P1 1 2 2� �� 	

Pressure is already in absolute scale and so

	
� �

2

1

2

1

3

310

20
20 10� � �

P
P

ft

lbm
ft lbm/

	

Example 1.2 Ideal Gas Problem, Isometric Process
An ideal gas goes from {200 °F, 20 Psia} to {400 °F, ??}. What’s the final pressure?

Solution
This is an isometric process and the appropriate equation is

	

P

T

P

T
1

1

2

2

=
	

Table 1.2  Coefficients for compressibility factor (Z)

VW RK SRK

α −1 − B −1 −1
β A A − B − B2 A − B − B2

γ −AB −AB −AB

A aP

R Tu� �2 5.
aP

R Tu
2 2 5.

aP

R Tu� �2 5.

B bP

R Tu

bP

R Tu

bP

R Tu

Z P

R Tu

ν P

R Tu

ν P

R Tu

ν
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Pressure is in absolute scale, but temperatures are not and so

	 T R T R1 2460 200 660 460 400 860� � � � � �, 	

Further,

	
P

T

T
P2

2

1
1

860

660
20 26 1= = =Psia Psia.

	

Example 1.3 Ideal Gas Problem, Isobaric Process
An ideal gas goes from 200 °F to 400 °F for a fixed pressure of 50 Psia. If the initial 
specific volume is 10 ft3/lbm, then what’s the final specific volume?

Solution
This is an isobaric (constant pressure) process and so the appropriate equation is

	

� �1

1

2

2T T
�

	

And temperatures are not in absolute so and thus

	 T R T R1 2200 460 660 400 460 860� � � � � �, 	

And

	
� �

2

2

1

1

3

3860

660
10 13� � �

T
T

ft

lbm
ft lbm/

	

Example 1.4 Lee/Kessler Chart Problem
Find the Z factor for CO2 at 300 K and 5 MPa.

Solution
Find the critical pressure and temperature for CO2 and then determine the reduced 

pressure and temperature

	
T Pr r� � � �

300

304 1
1

5

7 38
0 7

.
,

.
.

	

We then look this point up on the Lee-Kessler chart by first finding Pr equal to 
0.7 and then going up the Tr equal to 1 curve and then going to the left to find the Z 
factor, which is

	 Z = 0 7. 	
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Example 1.5 Lee/Kessler Chart Problem
Find the Z factor for CO2 at 300 K and 1 MPa.

Solution
Find the critical pressure and temperature for CO2 and then determine the reduced 

pressure and temperature

	
T Pr r� � � �

300

304 1
1

1

7 38
0 1

.
,

.
.

	

We then look this point up on the Lee-Kessler chart by first finding Pr equal to 
0.1 and then going up the Tr equal to 1 curve and then going to the left to find the Z 
factor, which is Z ≈ 0.98

Example 1.6 Lee/Kessler Chart Problem
Determine the mass of CO2 in a hemispherical tank with diameter of 30 inches, 
pressure of 60 psia, and temperature of −20 °C.

Solution
This problem needs to be done in a series of steps

Step 1 – Convert temperature to Fahrenheit and then put in absolute scale
Step 2 – Get volume of tank in the correct units (ft3)
Step 3 – Determine the Z factor for {Tr, Pr}
Step 4 – Using ideal gas law, determine the mass [lbm]

Step 1

	
F C F T R� �� � � � � � � �� � �9

5
20 32 4 460 4 456,

	

Step 2

	
V D� �

�

�
�

�

�
� �

1

2 6
7069

1

12
4 093 3

3

3�
in

foot

inches
ft.

	

Step 3

	
T Pr r� � � �

456

547 4
0 8

60

1070
0 06

.
. , .

	

For these conditions, the Z factor is essentially 1 and we treat the substance as an 
ideal gas

Step 4

	
PV R mTg=
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and

	

PV

R T
m

R
Rg

� �
�

�
�

�
�

60
144

1
4 09

35 10 456
2 21

2

2
3psia

in

ft
ft

ft lbf
lbm

.

.
. llbm

	

Example 1.7 van der Waal Gas
Derive {a, b} for the van der Waal equation of state

Solution
At the critical point,

	
P

R T

b

a
c

u c

c c

�
�

�
� � 2

	
(1.41)

and for 
�
�

�
P

�
0

	

R T

b

au c

c c� ��� �
�

2 3

2

	

(1.42)

For 
�
�

�
2

2
0

P

�

	

R T

b

au c

c c� ��� �
�

3 4

3

	

(1.43)

If each side of Eq. 1.42 is set equal to X, then Eq. 1.43 in terms of X is

	

1
3
2

� �c cb
X X

�
�

	
(1.44)

and solving for νc

	 � c b� 3 	 (1.45)

Substituting Eq. 1.45 into Eq. 1.42 results in

	

R T

b

a

b
u c

4

2

272 3
=

	
(1.46)

or

	
a bR Tu c=

27

8 	
(1.47)
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Substituting Eq. 1.47 into Eq. 1.41 results in

	
P

R T

b

bR T

b

R T

b

R T

bc
u c u c u c u c� � � ��

��
�
��
�

2

27
8
9

1

2

3

8 82

	
(1.48)

or

	
b

R T

P
u c

c

=
8 	

(1.49)

and substituting Eq. 1.49 into Eq. 1.47 results in

	
a

R T

P
R T

R T

P
u c

c
u c

u c

c

� �
� �27

8 8

27

64

2

	
(1.50)

Finally, substituting Eq. 1.49 into Eq. 1.45 results in

	
� c

u c

c

R T

P
�
3

8 	
(1.51)

Example 1.8 Comparing Gas Models
Because of safety concerns, a cylinder with a volume of 20.0 ft3 should not exceed 
50 atm. If the tank is filled with 40 lbm of CO2 at 200 °F, does the pressure exceed 
the allowable pressure of 50 atm? Check your answer using

	(a)	 Van der Waals EOS
	(b)	 Ideal gas law
	(c)	 RK EOS

Solution
This example was done in Excel and the results are given below.

Van der Waals EOS Ideal gas law Redlich-Kwong EOS

T [R] 660 T [R] 660 T [R] 660
P [lbf/ft2] 43,779.71 P [lbf/ft2] 46,332 P [lbf/ft2] 43,298.82
P [Psia] 304.03 P [Psia] 321.75 P [Psia] 300.69
T[c] [R] 547.4 nu [ft3/lbm] 0.5 T[c] [R] 547.4
P[c] [lbf/ft2] 154,080 R(g) [ft-lbf/lbm-R] 35.1 P[c] [lbf/ft2] 154,080
R(g) [ft-lbf/lbm-R] 35.1 R(g) [ft-lbf/lbm-R] 35.1
a 1010.791 a 26,615.87
b [ft3/lbm] 0.015587 b [ft3/lbm] 0.010804
nu [ft3/lbm] 0.5 nu [ft3/lbm] 0.5

If we use the pressure determine from Redlich-Kwong EOS, which is 301 Psia 
and convert this number to atmospheres, which is 20.5 atm and less than 50 atm, and 
so we’re good!

1.6  Examples and Problems
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1.6.2  �Problems

Problem 1.1 Use of Lee-Kessler Chart
Determine the Z factor for air at 10 MPa and 50 F.

Problem 1.2 Use of Lee-Kessler Chart
Determine the Z factor for water at 10 MPa and 50 F.

Problem 1.3 Comparing Z factor for Lee-Kessler Chart and van der Waal 
Equation
Compare the Z factor for water at the critical conditions using the Lee-Kessler chart 
and van der Waal equation of state. Do they differ significantly?

Problem 1.4 RK Gas
Derive {a, b} for RK EOS

Problem 1.5 SRK Gas
Derive {a, b} for SRK EOS

Problem 1.6 van der Waal Gas
Write a program to implement VW EOS

Problem 1.7 RK Gas
Write a program to implement RK EOS

Problem 1.8 SRK Gas
Write a program to implement SRK EOS

Problem 1.9 Comparing Gas Models
Twenty pounds of propane with a volume of 2  ft3 and a pressure of 300 lbf/in2. 
Determine the temperature in F using

	(a)	 Van der Waals EOS
	(b)	 Ideal gas law
	(c)	 Lee-Kessler chart

Problem 1.10 Comparing Gas Models
The pressure within a 20 m3 tank should not exceed 100 bars. Check the pressure 
with the tank if filled with 1000 kg of water vapor at a temperature of 350 °C using

	(a)	 Ideal gas law
	(b)	 Lee-Kessler chart
	(c)	 Van der Waals EOS
	(d)	 RK EOS

Problem 1.11 Comparing Gas Models
Ethane gas flows through a pipeline with a volumetric flow rate of 10 ft3/s at a pres-
sure of 150  atm and a temperature of 50  F.  Determine the mass flow rate in 
lbm/s using

1  Equations of State
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	(a)	 Ideal gas law
	(b)	 Van der Waals EOS
	(c)	 Lee-Kessler chart

Problem 1.12 Comparing Gas Models
A rigid tank contains 1 kg of oxygen (O2) at a pressure of 50 bars and 300 K. The 
gas is cooled until the temperature drops to 150 K. Determine the volume of the 
tank, m3, and the final pressure (bars) using

	(d)	 Ideal gas law
	(e)	 RK EOS
	(f)	 Lee-Kessler chart

Problem 1.13 Various Equations of State
Calculate the molar volume of propane at 400 K and 300 Bar using the equations of 
state given below. Compare your values with the experimental value of 0.094 L mol−1.

	(a)	 Ideal gas
	(b)	 VW
	(c)	 RK
	(d)	 SRK

Problem 1.14 RK EOS
Determine the temperature at which the density of methane is 0.183 kg L−1 at a pres-
sure of 500.0 bar. Assume that methane obeys the RK equation of state.

The most fundamental equation of state is the virial equation of state, which is 
expressed as a power series expansion in density or pressure about the ideal gas 
result. With a sufficient number of terms, the virial equation can give excellent pre-
dictions. However, it is usually truncated at the second term due to lack of higher-
term coefficient data. In terms of reduced pressure and temperature, the truncated 
virial equation can be expressed as the following,

	
Z B

P

T
r

r

� �1
	

where the second virial coefficient is determined from the following correlation,

	 B B B� �0 1� 	

with

	
B

T
B

Tr r

0 1 6 1 4 2
0 083

0 422
0 139

0 172
� � � �.

.
.

.
. .

	

Using the truncated virial equation, calculate the temperature of steam at a pres-
sure of 5.0 bar when its specific volume is 0.4744 m3 kg−1.
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Problem 1.15 SRK EOS
The critical temperature and pressure of fluid A are to be determined using a high-
pressure laboratory flow device. The molecular weight of A is 28.01 kg kmol−1. The 
mass flow rate and temperature of fluid A through the device are kept constant at 
10.0 g s−1 and 300.0 K, respectively. At pressures of 500 bar and 1000 bar the volu-
metric flow rates of the fluid through the device are measured to be 24.12 cm3 s−1 
and 17.11 cm3 s−1, respectively. Determine the critical temperature and pressure of 
fluid A, which assumes that A obeys the SRK equation of state.

�Appendix 1.1: Table of Ideal Gas Constants

https://en.wikipedia.org/wiki/Gas_constant, accessed on 10/14/2021

Values of R
[1]

Units
(V P T−1 n−1)

8.3144621(75) [2] J K−1 mol−1

8.31446 VC K−1 mol−1

5.189 × 1019 eV K−1 mol−1

0.08205746(14) L atm K−1 mol−1

1.9872041(18) [3] cal K−1 mol−1

1.9872041(18) × 10−3 kcal K−1 mol−1

8.3144621(75) × 107 erg K−1 mol−1

8.3144621(75) × 10−3 amu (km/s)2 K−1

8.3144621(75) L kPa K−1  mol−1

8.3144621(75) × 103 cm3 kPa K−1  mol−1

8.3144621(75) m3 Pa K−1 mol−1

8.3144621(75) cm3 MPa K−1 mol−1

8.3144621(75) × 10−2 m3 bar K−1 kg-mol−1

8.205736 × 10−5 m3 atm K−1 mol−1

8.205736 × 10−2 L atm K−1 kg-mol−1

82.05736 cm3 atm K−1 mol−1

84.78402 × 10−6 m3 kgf/cm2 K−1 mol−1

8.3144621(75) × 10−2 L bar K−1 mol−1

62.36367(11) × 10−3 m3 mmHg K−1   mol−1

62.36367(11) L mmHg K−1   mol−1

62.36367(11) L Torr K−1   mol−1

6.132440(10) ft lbf K−1 g-mol−1

1545.34896(3) ft lbf R−1 lb-mol−1

10.73159(2) ft3 psi R−1 lb-mol−1

0.7302413(12) ft3 atm R−1 lb-mol−1

1.31443 ft3 atm K−1 lb-mol−1

998.9701(17) ft3  mmHg K−1 lb-mol−1

1.986 Btu lb-mol−1 R−1

1  Equations of State

https://en.wikipedia.org/wiki/Gas_constant


23

�Appendix 1.2: Lee/Kessler Chart (website)

The Lee Kessler Chart is provided on the companion website.

�Appendix 1.3: Virial Equations of State (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 1.4: EOS (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.
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Chapter 2
Heat and Work

2.1  �Preview

In this chapter, we provide a foundation for what heat and work are and discuss 
some related topics such as specific heat and polytropic processes. Unlike pressure, 
temperature, and specific volume (density), both heat and work are not states. What 
this means essentially is that both heat and work depend on the path taken. We will 
also see that quantities such as internal energy (e) and enthalpy (h) are independent 
of path and state functions.

Internal energy (e) is a measure of the thermodynamic energy of a system and is 
often associated with closed system and enthalpy (h) is a measure of the thermody-
namic energy of a system to include changes in “Pν" (where h = e + Pν) and is often 
associated with an open system. Changes in either u or h can be determined by hav-
ing a specific heat model along either a constant volume or constant pressure path; 
note though that internal energy and enthalpy are state functions and independent 
of path.

Work, for an ideal gas, can be determined based on defining the path in terms of 
a polytropic process and the definition of thermodynamic work.

Quantities such as work and heat for a substance that is either non-ideal or imper-
fect are generally determined using the thermodynamic tables or a cubic relation-
ship between specific heat and temperature for the working fluid.

Quantities that are state functions and quantities that are not state functions are 
given in Table 2.1. Note changes in states will be represented as dx and changes in 
quantities that are not states will be represented as δx.

Electronic Supplementary Material: The online version of this chapter (https://doi.
org/10.1007/978-3-030-87387-5_2) contains supplementary material, which is available to autho-
rized users.
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2.2  �Reversible and Irreversible Processes

A reversible process is defined as “a process that, having taken place, can be 
reversed, and in so doing, leaves no change in either the system or the surround-
ings.” For a process to be reversible (ideal), the following conditions need to exist

•	 Quasi-equilibrium
•	 No friction
•	 Heat transfer due to an infinitesimal temperature difference only
•	 Unrestrained expansion does not occur

These conditions are discussed further below in terms of how certain factors can 
produce an irreversible process.

Four factors that create Irreversible Processes are

•	 Friction
•	 Unrestrained expansion
•	 Heat transfer through a finite temperature difference
•	 Mixing of two pure substances

Each factor is further discussed below.
Consider a block attached to a pulley where the other end has a weight and this 

system exists on an inclined ramp. If the weight is great enough, then the block is 
dragged up the ramp, but due to friction between the block and ramp, pulley and 
ropes, and internally within the pulley, the work required is greater than it would be 
without friction. We can then release weights and the block goes down the ramp. 
Due to the friction between the block and the ramp, the temperature of the ramp is 
now higher than the temperature of the surrounding and now heat is transferred to 
the surroundings. The surroundings are no longer back to their original state and this 
process is irreversible.

Imagine a system where a gas is on one side of a membrane and a vacuum is on 
the other side. Suddenly, the membrane bursts and the gas freely expands into the 
vacuum space. In order to restore the system to its original state, work would have 
to be done to the system and heat transferred out for the gas to go back to its original 

Table 2.1  Quantities that are states and not states

Quantity State Not States Comments

Pressure (P) X Defined in Chap. 1
Temperature (T) X Defined in Chap. 1
Specific volume (ν) X Defined in Chap. 1
Internal energy (e) X Defined in this chapter
Enthalpy (h) X Defined in this chapter
Work (w) X Defined in this chapter
Heat (q) X Defined in this chapter
Entropy (s) X Defined in Chap. 4

2  Heat and Work
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temperature. Again, the surroundings are no longer back to their original state this 
process is irreversible.

“Consider as a system a high-temperature body and a low-temperature body, and 
let heat be transferred from the high-temperature body to the low-temperature body. 
The only way in which the system can be restored to its initial state is to provide 
refrigeration, which requires work from the surroundings, and some heat transfer to 
the surroundings will also be necessary. Because of the heat transfer and the work, 
the surroundings are not restored to their original state, indicating that the process 
was irreversible [1].”

Imagine a system where Gas “A” is on one side of a membrane and Gas “B” is 
on the other side. Suddenly, the membrane bursts. It should be obvious that a certain 
amount of work and heat will be needed to restore this system to its original state 
and the surroundings will again not be as they were originally. This is yet another 
example of an irreversible process.

A reversible process is a process that can maximize the work extracted or mini-
mized the work required and is dependent on the application. An example of a pro-
cess (device) that extracts work is a turbine and we’d like to maximize the work 
extracted – we’ll call this a “work-out” process; an example of a process (device) 
that requires work is a pump and we’d like to minimize the work required – we’ll 
call this a “work-in” process.

The following example comes from [2].
For example, suppose we have a thermally insulated cylinder that holds an ideal 

gas, Fig. 2.1. The gas is contained by a thermally insulated massless piston with a 
stack of many small weights on top of it. Initially, the system is in mechanical and 
thermal equilibrium.

This is an example of a “work-out” process.
Our definition of thermodynamic work is

	 � �w Pd� 	 (2.1)

Weights

Air

Fig. 2.1  Frictionless, 
weightless, and perfectly 
insulated system [2]

2.2  Reversible and Irreversible Processes
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which states the infinitesimal work is equal to the pressure and infinitesimal 
change in specific volume; because work is dependent on path we use “δ” 
instead of “d.”

Consider three different pathways to get from {P1, ν} to {P2, 4ν}

	(a)	 All of the weights are removed from the piston instantaneously and the gas 
expands until its volume is increased by a factor of four (a free expansion).

	(b)	 Half of the weight is removed from the piston instantaneously, the system is 
allowed to double in volume, and then the remaining half of the weight is 
instantaneously removed from the piston and the gas is allowed to expand until 
its volume is again doubled.

	(c)	 Each small weight is removed from the piston one at a time, so that the pressure 
inside the cylinder is always in equilibrium with the weight on top of the piston. 
When the last weight is removed, the volume has increased by a factor of four.

The resulting graphs in terms of work on a force (P) versus ν graph are 
given below.

It is obvious from Eq. 2.1 and Fig. 2.2 that the third path maximizes work (maxi-
mizes area under the curve), which is the reversible path. This path can equally be 
termed an isentropic path and we’ll discuss this further in Chap. 4.

2.3  �Specific Heat, Internal Energy, and Enthalpy

Specific heat, C, of a substance has the following working definition

	
C

m

Q

dT
�
1 �

	
(2.2)

It’s a measure of the heat released for a given temperature rise and for a unit 
mass. In a sense, the BTU, British thermal unit, is a measure of specific heat. A 
60-degree BTU is defined as the amount of energy released to raise one pound 
(mass) of water from 59.5 °F to 60.5 °F under atmospheric pressure. The specific 
heat of water is measured at a particular temperature because the specific heat of 
water is dependent on temperature.

Fig. 2.2  Work related to pathways “a”, “b,” and “c” [2]

2  Heat and Work
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For liquids and solids, specific heat is independent of path and often considered 
constant. But for gases, it is dependent on path and so we talk about specific heat 
(constant pressure) and specific heat (constant volume).

The measure of thermodynamic energy for a closed system is in terms of internal 
energy (e) where e is related to specific heat along a constant volume path and 
given as

	

�
�

�
�
�

�
�
� �

e

T
c

v
v

	
(2.3)

And the measure of the thermodynamic energy for an open system is in terms of 
enthalpy (h) where h is related to specific heat along a constant pressure path and 
given as

	

�
�

�
�
�

�
�
� �

h

T
c

P
P

	
(2.4)

Gas molecules can store energy in three modes – translational, rotational, and 
vibrational. For monatomic gas molecules, such as argon, neon, and helium, the 
only mode of energy is translational (kinetic) energy and in each principal direction

	
E

kNT
j = 2 	

(2.5)

where k is the Boltzmann constant (specific energy), N is the number of molecules, 
T is temperature, and j is a principal axis (x, y, z).

And for the three principal directions the total energy is

	
E

kNT
total =

3

2 	
(2.6)

And for a diatomic molecule it is

	
E

kNT
total =

5

2 	
(2.7)

And more generally for a molecule with n″ atoms per molecule and on a molar 
basis [4]

	

E

T
Ak n R ntotal � ��

�
�

�
�
� � ��

�
�

�
�
��� ��1

2

1

2 	
(2.8)

where A is Avogadro’s number and represents 1 mole of molecules.
In terms of cv, the relationship is

2.3  Specific Heat, Internal Energy, and Enthalpy
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nv � ���

1

2 	
(2.9)

In terms of cp, the relationship is

	

c

R

c

R

R

R
np v� � � ���

3

2 	
(2.10)

where for an ideal gas cp − cv = R

While for γ, which is defined as � �
c

c
p

v

,  the relationship is
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n

n

3
2
1
2 	

(2.11)

How well does this theory work?
Three classes of molecules to be analyzed are:

Monatomic – neon, argon, helium (noble gases)
Diatomic – hydrogen, oxygen, nitrogen
Triatomic – water, carbon dioxide, nitrogen oxide

Discrepancies will be discussed.
A regressional model cP for a real gas is

	
cp � � � �� � � � � � �0 1 2

2
3

3

	
(2.12)

where � �
T

1000
 and {β0, β1, β2, β3} are coefficients particular to the substance.

Equation 2.12 will be utilized to make some general observations about specific 
heat and number of atoms within the molecule.

We see for the monatomic gases (see Fig. 2.3) that the theory and practice are in 
near perfect agreement and that for noble gases cp/R(g) versus temperature is con-
stant; this is due to the fact that a monatomic gas only has translational energy, 
which is the basis to the theory given above. For a diatomic gas (see Fig. 2.4), the 
theory tends to work at lower temperatures and becomes less and less accurate at 
higher temperatures. We see a similar trend for the triatomic gases (see Fig. 2.5). 
The theory tends to work well for molecules with fewer atoms and at lower 
temperatures.

Powers [5] discusses the modes of energy versus temperature for a diatomic ideal 
gas and shows

•	 At very low temperatures – the primary mode of energy is translational

2  Heat and Work
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•	 At low to normal temperatures (STP) – the primary modes of energy are transla-
tional + rotational

•	 At higher temperatures – all three modes of energy are important

Fig. 2.3  cp/R(g) versus T for monatomic gases

Fig. 2.4  cp/R(g) versus T for diatomic gases

Fig. 2.5  cp/R(g) versus T for triatomic gases

2.3  Specific Heat, Internal Energy, and Enthalpy
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Powers [5] suggests four main methods to calculate enthalpy for an ideal gas

	1.	 Assume a constant cp at 298 K (often the least accurate method)
	2.	 Assume a constant cp at some intermediate temperature along the thermody-

namic path (often used in engineering analysis)
	3.	 Integrate the differential equation given as Eqs. 2.4 and 2.12 (more accurate)
	4.	 Estimation from thermodynamic tables (most accurate method)

An example is given below to illustrate the four main methods given above, 
which would equally apply to internal energy.

Example 2.1
Determine the enthalpy change for carbon dioxide that runs from 300 K to 900 K 
using the four methods provided above.

Given

Substance CO2

n″ 3

R(g) [kJ/kg-K] 0.1889
cp/R(g) 4.5
cp [kJ/kg-K] 0.85005

The betas associated with the regressional model for a real gas are

Beta(0) 0.45
Beta(1) 1.67
Beta(2) −1.27
Beta(3) 0.39

where cp has been determined using the regression model at 300 K and 900 K with 
the average value being 1.03 kJ/kg-K (shown below).

T cp

[K] [kJ/kg-K]
300 0.85
900 1.21

cp-bar = 1.03

The integral version of Eq. 2.4 is
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(2.13)
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And the solutions at the two endpoints are

T h(T)

Integral(T1) 300 199.5

Integral(T2) 900 836.7

The values of enthalpy at 300 K and 900 K from the thermodynamic tables are

T h
[K] [kJ/kg]

300 214.4
900 849.7

The solutions and relative error from the four methods are given below.

Solution methods
Δh

RE[kJ/kg]

1. Using fixed cp determine dh 510.0 19.7%
2. Using average cp determine dh 616.8 2.9%
3. Integrating definition of cp determine dh 637.2 0.3%
4. Using thermodynamic tables determine dh 635.3

2.4  �Polytropic Processes and Work

Definitions:

Control Volume – a boundary around the system that allows us to distinguish the 
system from the environment and account for forces/energy/mass entering or 
leaving the system.

Isolated System – mass nor energy passes through the control volume.
Closed System – energy passes, but mass does not pass through the control volume.
Open System – energy and mass pass through the control volume.
Process – a change in states.
Isobaric Process – a process where pressure is constant from state “1” to “2.”
Isothermal Process  – a process where the temperature is constant from state 

“1” to “2.”
Isentropic Process – a process where there is no heat exchange between the system 

and environment from state “1” to “2.”
Isometric Process – a process where volume is constant from state “1” to “2.”
Cycle – a series of processes where the initial and final states coincide.

A polytropic process is defined as

	 PV Kn = =constant 	 (2.14)

where the index indicates the type of process (see Table 2.2).
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Using Eqs. 2.1 and 2.14, we can determine the work associated with a given pro-
cess. There will be two cases we’ll explore. The first case is when n ≠ 1 and when n = 1.

Case one (n ≠ 1)

	 1

2

1

2 1

1

2

2 2 2
1

1 1 1
1

1 1� �� �
�

�
�
�
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�W
K

V
dV K

V

n

PV V PV V

nn

n n n n n

	

(2.15)

where

	 K PV PV= =1 1 2 2 	 (2.16)

Table 2.2  Polytropic processes

n Process Comments

0 Isobaric Constant pressure
1 Isothermal Constant temperature
∞ Isometric Constant volume
γ Isentropic Adiabatic and reversible

Process N Work State Equation ΔE Heat

Constant 
Pressure
(Isobaric)

0 P(V2 − V1) V
T

V
T

1

1

2

2

=
mcv(T2 − T1) mcp(T2 − T1)

Constant 
Volume
(Isometric)

∞ 0 P
T

P
T

1

1

2

2

=
mcv(T2 − T1) mcv(T2 − T1)

Constant 
Temperature
(Isothermal)

1
PV V
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2

1

 ln
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P1V1 = P2V2 0
PV V
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mcv(T2 − T1) 0

Table 2.3  Relationships for different processes [3]
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and

	
W

PV PV

n
�

�
�

2 2 1 1

1 	
(2.17)

Case two (n = 1)

	
W PV

V

V
= 1 1

2

1

ln
	

(2.18)

Table 2.3 and Fig. 2.6 below provide a relationship between states, work associ-
ated with various processes, internal energy change associated with various pro-
cesses, and heat associated with various processes. Note – Table 2.3 is only valid for 
an ideal, perfect gas. This defines a gas that obeys the ideal gas law and has a spe-
cific heat that is independent of temperature.

2.5  �Examples and Problems

2.5.1  �Examples

Determining Δh for Water

Example 2.2  Determine enthalpy change for water at 200 kPa where the tempera-
ture runs from 150 °C to 500 °C. Solve by using a constant cp.

	
� �h c Tp� � � �� � �1 872 500 150 655 2. . /kJ kg

	

Example 2.3  Determine enthalpy change for water at 200 kPa where the tempera-
ture runs from 150 °C to 500 °C. Solve by using an average cp.

Fig. 2.6  ν versus P for polytrophic processes
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� �h

c c
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. /kJ kg

	

where each cp is determined from the cubic relationship between T and cp.

Example 2.4  Determine enthalpy change for water at 200 kPa where the tempera-
ture runs from 150 °C to 500 °C. Solve by using the cubic relationship between 
T and cp.
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�h h h h h� �� �� �� � � � �

500 150
1488 0 779 9 708 1. . . /kJ kg

	

Example 2.5  Determine enthalpy change for water at 200 kPa where the tempera-
ture runs from 150 °C to 500 °C. Solve by using the thermodynamic tables.

	 �h h h� � � � �
500 150

3487 0 2676 8 718 2. . . /kJ kg 	

The results for Examples 2.2 through 2.5 with relative error are given in the 
table below.
Determining Δh for carbon dioxide

Method
Δh
[kJ/kg] RE

Constant cp 655.2 8.78%
Average cP 709.7 1.19%
Cubic relationship 708.1 1.41%
Table 718.2

Example 2.6  Determine enthalpy change for carbon dioxide at 400 kPa where the 
temperature runs from −40 °C to 60 °C. Solve by using a constant cp.

	
� �h c Tp� � � � �� ��� �� �. . /842 60 40 84 2kJ kg

	

Example 2.7  Determine enthalpy change for carbon dioxide at 400 kPa where the 
temperature runs from −40 °C to 60 °C. Solve by using an average cp.

	
� �h

c c
Tp p�

�
�

�
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2

0 78 0 88

2
100 82 74

. .
. /kJ kg

	

where each cp is determined from the cubic relationship between T and cp
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Example 2.8  Determine enthalpy change for carbon dioxide at 400 kPa where the 
temperature runs from −40  °C to 60  °C.  Solve by using the cubic relationship 
between T and cp.
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�h h h h h� �� �� �� � � � ��60 40

228 0 145 1 82 9. . . /kJ kg
	

Example 2.9  Determine enthalpy change for carbon dioxide at 400 kPa where the 
temperature runs from −40 °C to 60 °C. Solve by using the thermodynamic tables.

	 �h h h� � � � ��60 40
421 1 334 46 86 64. . . /kJ kg 	

The results for Examples 2.6 through 2.9 with relative error are given in the 
table below.

Method
Δh
[kJ/kg] RE

Constant cp 84.20 2.82%
Average cP 82.74 4.50%
Cubic relationship 82.90 4.32%
Table 86.64

Example 2.10  Determine the work associated with a general polytropic process 
(PVn = K)

	(a)	 P1 as 1 atm, V1 as 10 ft3; P2 as 10 atm and n equal to 1.5
	(b)	 P1 as 10 atm, V1 as 10 ft3; P2 as 1 atm and n equal to 1.5

For (a), you will find the work is negative and the process is a contraction; for (b), 
you will find the work is positive and the process is an expansion. The sign associate 
with work (or heat) determines whether the work (or heat) is directed toward the 
system or toward the surroundings:

	(a)	 Negative Work → Work on System
	(b)	 Positive Work → Work on Surroundings

The solutions for (a) and (b) are given below.

P(1) [atm] 1 P(1) [atm] 10
V(1) [ft3] 10 V(1) [ft3] 10
P(2) [atm] 10 P(2) [atm] 1
V(2) [ft3] 2.2 V(2) [ft3] 46.4
n 1.5 n 1.5
K 31.6 K 316.2
K 31.6 K 316.2
W(1,2) [Atm-ft3] −23.1 W(1,2) [Atm-ft3] 107.2

2.5  Examples and Problems
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Example 2.11  Determine the work and heat for a series of processes that form a 
cycle, which establishes first Law for a cycle (the sum of the work equal the sum of 
the heat)

Given

Substance Air

Mass [lbms] 1
cp [lbf-ft/lbm-R] 186.7608
cv [lbf-ft/lbm-R] 133.0671
R [lbf-ft/lbm-R] 53.34
Gamma 1.4

Complete the following table by using Table 2.1 and the ideal gas law.

State Process
P T V W Q

n[psia] [Rankine] [ft3] [ft-lbf] [ft-lbf]

1 100 10
Isobaric 0

2 100 1
Isometric Infinity

3 1000 1
Isothermal 1

1 100 10

The solution is given below and we see the sum of the work does equal the sum 
of the heat (more/less).

State Process
P T V W Q
[psia] [Rankine] [ft3] [ft-lbf] [ft-lbf]

1 100 2700 10
Isobaric −129,600 −453,772

2 100 270 1
Isometric 0 323,313

3 1000 2700 1
Isothermal 331,572 331,572

1 100 2700 10
Sum of work is Sum of heat is
201,972 201,113

2  Heat and Work
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2.5.2  �Problems

Problem 2.1  Consider a process that involves superheated CO2 that runs from 0 °C 
to 100 °C at a constant pressure of 400 kPa. Assuming cp is constant, determine the 
change in enthalpy.

Problem 2.2  Consider a process that involves superheated CO2 that runs from 0 °C 
to 100 °C at a constant pressure of 400 kPa. Assuming a cubic model for cp, deter-
mine the change in enthalpy.

Problem 2.3  Consider a process that involves superheated CO2 that runs from 0 °C 
to 100 °C at a constant pressure of 1000 kPa. Using the thermodynamic tables deter-
mine the change in enthalpy.

Problem 2.4  Consider a process that involves superheated CO2 that runs from 0 °C 
to 100 °C at a constant pressure of 1000 kPa. Assuming cp is constant, determine the 
change in enthalpy.

Problem 2.5  Consider a process that involves superheated CO2 that runs from 0 °C 
to 100 °C at a constant pressure of 1000 kPa. Assuming a cubic model for cp, deter-
mine the change in enthalpy.

Problem 2.6  Consider a process that involves superheated CO2 that runs from 0 °C 
to 100 °C at a constant pressure of 1000 kPa. Using the thermodynamic tables deter-
mine the change in enthalpy.

Problem 2.7  Determine the work and heat for a series of processes that form a 
cycle, which established first Law for a cycle (Air). Assume the mass of the system 
is 1 kg.

State Process
P T V W Q

n[kPa] [K] [m3] [kJ] [kJ]

1 100 5.18
Isobaric 0

2 100 1
Isometric Infinity

3 1000 1
Isentropic 1.4

1 100 5.18

Problem 2.8  Determine the work and heat for a series of processes that form a 
cycle, which established first Law for a cycle. The substance is water and the 
states are

2.5  Examples and Problems
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State 1 – 20 kPa and X = 0%
State 2 – 1 MPa and υ1 = ν2

State 3 – 1 MPa and 350 °C
State 4 – 20 kPa and s3 = s4

Problem 2.9  A piston-cylinder device contains one mole of an ideal gas initially at 
30 °C and 1 bar. The gas undergoes the following reversible process: compressed 
adiabatically to 5 bar, then cooled at a constant pressure of 5 bar to 30  °C, and 
finally expanded isothermally to its original state. Assuming that for this gas 

c RP =
7

2
, calculate Q, W, ∆U, and ∆H for each step of the process and for the 

entire cycle.

Problem 2.10  One mole of air, initially at 25.0 °C and 100 kPa, undergoes the fol-
lowing mechanically reversible changes: it expands isothermally to a pressure such 
that when it is cooled at constant volume to 50 °C its final pressure is 3 bar. Assuming 

that for this gas c RP =
7

2
, calculate Q, W, ∆U, and ∆H for each step of the process 

and for the entire cycle.

Problem 2.11  A piston-cylinder device contains 0.150 kg of air at a temperature of 
300.0 K. The initial volume of air is 100.0 L. The air is then compressed isother-
mally that requires 20.0 kJ of work. If air is modeled as a RK gas, compute the final 
volume and pressure of air in the device.

Problem 2.12  30.0 g s−1 of nitrogen gas is flowing through a tube wrapped with a 
resistance heater. The gas enters the tube at 300.0 K and 100.0 kPa. The resistance 
heater is turned on and continuously passes a current of 50.0 A from a 240-V source, 
thereby isobarically heating the gas. Assuming that nitrogen behaves as an ideal gas 
with a temperature-dependent heat capacity given as a cubic polynomial, determine 
its exit temperature.

Problem 2.13  1.0 kg of methane initially at 330 K and 50 bar is isothermally com-
pressed to a final pressure that requires 220 kJ of work. If methane behaves as a 
SRK gas, determine this final pressure.

Appendix 2.1: Cycle Worksheet (Fig. 2.7)

Knowns
Air
m = 1 lbm
Rg = 53.34 ft-lbf per lbm-R
cv = 0.171 BTU per lbm-R
cp = 0.240 BTU per lbm-R

2  Heat and Work
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State Process
P
[psia]

T
[Rankine]

V
[ft3]

W
[ft-lbf]

Q
[ft-lbf]

1 100 10
Isobaric

2 100 1
Isometric

3 200 1
Isothermal

1
Sum = Sum =

Process

	1.	 Find all states {P,T,V} using relationships for polytropic processes and ideal gas 
law (make sure to put T and P in absolute scale)

	2.	 Find Q and W associated with each process
	3.	 Sum them up and check!

Fig. 2.7  Cycle on P versus V graph

2.5  Examples and Problems
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Isobaric Process

Isometric Process

Isothermal  
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Chapter 3
First Law of Thermodynamics

3.1  �Preview

When a system is steady state in terms of mass, which it almost always is, the 
amount of mass entering is equal to the amount of mass leaving. For a closed sys-
tem, this accounting is expressed [1, 3] as

	 � �q w e� � � 	 (3.1)

where e is the internal energy and a measure of the thermodynamic energy of a 
closed system.

And for an open system where both energy and mass transfer into and out of the 
control volume [1, 3]

	
� �q w h� � � � � � � � � �� � �KE PE

	
(3.2)

where KE is the kinetic energy, PE is the potential energy, and h is the enthalpy and 
a measure of the thermodynamic energy of an open system.

The devil is in the details!

3.2  �Linear Interpolation

How do we determine the value of a state associated with points between entries on 
a thermodynamic table? Here’s an example.

Given
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For water and at 200 kPa, the following values for u (see Table 3.1). What is the 
value of u at the same pressure, but temperature equal to 180 °C?

This can be determined by putting the data into Excel, graphing the data, and 
getting the equation of a line as shown in Fig. 3.1.

Similarly, we can solve for an equation that allows us to solve for y.

	
y

y

x
x b1 1� �

�
� 	

(3.3)

And

	

x x

x x
y

y y

x x
x b

x y x y

x x
2 1

2 1
1

2 1

2 1
1

2 1 1 2

2 1

�
�

�
�
�

� �
�
� 	

(3.4)

And

	
y

y y

x x
x

x y x y

x x

y y

x x
x x y�

�
�

�
�
�

�
�
�

�� � �2 1

2 1

2 1 1 2

2 1

2 1

2 1
1 1

	
(3.5)

Incidentally, the answer is u(180) = 1.5504(180) + 2344.3 = 2623.37 kJ/kg.

Fig. 3.1  T versus u

Temperature [°C] u [KJ/Kg]

150 2576.87
200 2654.39

Table 3.1  Temperature versus u

3  First Law of Thermodynamics
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3.3  �Using Thermodynamic Tables or NIST 
Chemistry Webbook

Before you can start to use the tables, you need to understand “what is the phase of 
the substance?”, which was previously discussed in Sect. 1.4.

Please note a pure substance is a substance made of only one kind of molecule 
such as O2, H2O, etc. The one exception will be air, which is made of many mole-
cules, but we can ignore this fact for the discussion to follow.

Pure substances (the only kind we deal with in Chaps. 1, 2, 3, 4, and 5) typically 
have the following ν versus T and ν versus P behavior (see Figs. 3.2 and 3.3). Let’s 
use water and assume we’re trying to determine the state of water with the following 
conditions {100 °C, 200 kPa}. We know water boils at 100 °C and 101.3 kPa. Go to 
Fig. 3.3.

We see that going toward the left the pressure increases and we’re now in the 
sub-cooled region. This observation is confirmed in two ways. We can go to the 
“Saturated Water” tables and see that for a pressure of 200 kPa the saturated tem-
perature is 120.23  °C, which is higher than 100  °C.  We can also go to the 
“Superheated Vapor Water” table and see for 200  kPa the lowest temperature is 
120.23 °C.

Under the mixture dome, the substance is at 100 °C and 101.3 kPa. We don’t 
know where we are under the mixture dome unless we specify quality (X), which is 
defined as

	

X
m

m m
g

g l

�
�

	

(3.6)

Fig. 3.2  T versus V

3.3  Using Thermodynamic Tables or NIST Chemistry Webbook
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where mg is the mass of gas and ml is the mass of liquid. Both gases and liquids are 
considered fluids.

Also note that the state of a mixture (i.e., specific volume) is a combination of 
that state as a liquid and a gas and understood through the following equation

	
� � � �mix � � �� �l g lX

	
(3.7)

Always start with the saturated table for the substance this guides you to the cor-
rect table. Additionally, water has compressed liquid tables, but most substances do 
not. We just use the saturated properties of the liquid at the same temperature. States 
such as specific volume for a liquid are affected by temperature, but not generally 
by pressure.

Another means to gather thermodynamic data is the National Institute of 
Standards and Testing (NIST), which runs a website called the NIST Chemistry 
Webbook [2]. It is required to provide the substance, units and in Fig. 3.4, the type 

Fig. 3.4  Data type from 
NIST Chemistry Webbook

Fig. 3.3  P versus V

3  First Law of Thermodynamics
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of data to request must be specified. Once this is done, the results are given either as 
a graph of one quantity versus another or as a table such as given in Fig. 3.5.

3.4  Conservation of Mass

There are three conservation principles associated with mechanics that we can uti-
lize to solve problems associated with fluid mechanics (open systems). These prin-
ciples are

•	 Conservation of mass
•	 Conservation of momentum
•	 Conservation of energy (first law of thermodynamics)

Conservation of mass will be discussed in this section and conservation of energy 
will be discussed in Sect. 3.5.

Essentially conservation of mass states “mass can neither be created, nor 
destroyed.” With this working assumption,

	

DM

Dt
syst = 0

	
(3.8)

and

Fig. 3.5  Saturated water thermodynamic properties [2]

3.4  Control Volumes and Conservation of Mass
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M dVsyst

sys

� ��
	

(3.9)

Such that

	 sys cv cs

ˆ 0D dV dV u ndA
Dt t

ρ ρ ρ∂
= + ⋅ =
∂∫ ∫ ∫



	

(3.10)

where the first term on the right-hand side accounts for changes in mass of the sys-
tem (control volume, cv) and the second term accounts for mass entering or leaving 
the control surface (cs).

When the density of the system is constant, the first term and second term 
simplify

	

sys ˆ 0
cs

dm
u ndA

dt
ρ+ ⋅ =∫


	
(3.11)

and

	 cs

ˆ 0dV u ndA
dt

+ ⋅ =∫


	
(3.12)

Normally, the velocity distribution represented by 


u  (see Fig. 1) and n̂  which is 
a normal vector associated with dA (itself a vector) are at an angle of either 0 or 180 
degrees and such

	 orˆ ˆu n u u n u⋅ = ⋅ = −
 

	 (3.13)

Such that

	

dm

dt
m msys

out in� � ��� � ��   0
	

(3.14)

where m  is the mass rate into or out of the control surface (cs).
And when the system is both incompressible (density is the same throughout the 

control volume) and steady state in mass then

	 � � �Q Qin out 	 (3.15)

where Q is volumetric discharge and defined as

	
Q

dV

dt
=

	
(3.16)

3  First Law of Thermodynamics
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When density is change, but the mass of the system is steady state then

	 � � � m min out 	 (3.17)

3.5  First Law

The first law of thermodynamics states that “energy can be neither created, nor 
destroyed.” We naturally exclude special situations such as reactions within the sun 
or a nuclear reactor where particles are moving appreciable toward the speed 
of light.

3.5.1  �Control Volumes

We use the concept of a control volume to delineate a system from the environment. 
There are three systems we’ll consider: isolated system, closed system, and open 
system. An isolated system does not allow the transfer of mass or energy to the 
environment; in a closed system, energy is transferred to the environment, but not 
energy; in an open system, both energy and mass can be transferred with the 
environment.

3.5.2  �Closed Systems

The first law can be expressed as “the heat added to a system minus the work 
extracted from a system equal the change in internal energy.” This naturally leads to 
questions such as “what is internal energy”?, “what is work”?, and “what is heat”? 
We’ll define work and heat below; for now, we’ll define internal energy as “the 
thermal energy stored within a system” where there are no changes in the system 
density (specific volume). This is usually expressed as the container is closed 
and rigid.

The first law applied to a closed system is given [1, 3] as

	 � �q w de� � 	 (3.18)

And can be represented graphically in Fig. 3.6.
There is a sign convention on heat (q) and work (w), which is given in Table 3.2.

3.6  First Law, Open System
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3.6  �First Law, Open System

The most general form of the equation for first law, open system that will be utilized 
[1, 3] is

	 � �q w h E E� � � � � �� � �KE PE
in out 	 (3.19)

Or

	

� �   q w m h
v

z m h
v

z� � � �
�
�
�

�
�
�
� � �

�
�
�

��
in in

in
in out out

out
out

2 2

2 2

��
�
�

��
� � E Ein out

	

(3.20)

where ΔKE is the change in kinetic energy, ΔPE is the change in potential energy, 
Δh is the change in enthalpy and enthalpy is a measure of the total thermodynamic 
energy of a system and defined as

	 h u P� � � 	 (3.21)

And can be represented graphically in Fig. 3.7.

Fig. 3.6  First law, closed 
system

Table 3.2  Heat and work sign convention

When heat is toward system → the  sign on δq is (+)
When heat is away from the system → the  sign on δq is (−)
When work is toward system → the  sign on − δw is (−)
When work is away from the system → the  sign on − δw is (+)

3  First Law of Thermodynamics
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3.7  �Engineering Devices

An energy device is some constructed machine that either converts heat to work, 
work to heat or affects one of the forms of energy shown in Eq. 3.22. Examples of 
energy devices are pumps, turbines, compressors, and heat exchangers. The govern-
ing equation (first law) for a particular device is determined from Eq. 3.22, but usu-
ally some simplifying assumptions can be made. An example of these ideas can be 
applied to a pump.

Example 3.1 First Law, Pump
We can assume the pump is adiabatic (δq = 0), the inner diameter on intake and 
discharge are equal (ΔKE = 0), and the pipes are at the same elevation (ΔPE = 0). 
Therefore, Eq. 3.19 takes the form of Eq. 3.22 for the system of concern.

	 � �q w h e e� � � � � �� � �KE PE
in out 	 (3.22)

Simplifies to

	 h w hin in out� � 	 (3.23)

which is shown graphically below (the sum of what goes into the control vol-
ume = the sum of what leaves the control volume) (Fig. 3.8).

Other engineering devices, the respective control volume, and resulting equation 
are given as Table 3.3.

Fig. 3.7  First law, open 
system

Fig. 3.8  Control volume 
for a pump

3.8  Cycles
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Table 3.3  First law, engineering devices

Engineering device
Assumptions Control volume Equation

Turbine
q = 0
ΔKE = 0
ΔPE = 0

w0 = hi − he

Pipe flow
δw = 0
ΔKE = 0
ΔPE = 0

q0 = hi − he

Boilers
δw = 0
ΔKE = 0
ΔPE = 0

qin = he − hi

Condensers
δw = 0
ΔKE = 0
ΔPE = 0

q0 = hi − he

Nozzles
δq = 0
W = 0
ΔKE ≠ 0
ΔPE = 0

h v h vi i e e� � �
1

2

1

2
2 2

Diffusers
δq = 0
δw = 0
ΔKE ≠ 0
ΔPE = 0

h v h vi i e e� � �
1

2

1

2
2 2

(continued)

3  First Law of Thermodynamics
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3.8  �Cycles

We first learn first law for a closed system that helps us to understand how to use the 
thermodynamics tables and then this leads to first law for an open system and engi-
neering devices. As part of learning first law for closed and open systems, we’ll see 
a method to solve thermodynamic problems, which is given in Sect. 3.10.

Once we’ve mastered engineering devices, we begin to learn about cycles where

	 � � �� �q wi i 	 (3.24)

Equation 3.24 is a consequence of a cycle beginning and ending in the same 
state. Thus the right-hand side of Eq. 3.25 is equal to zero.

	 � �q w h PE KE� � � �� � � 	 (3.25)

Given in the section on examples and problems are two examples of cycles. The 
first is an air cycle, which will become important when we discuss Brayton Cycles, 
which are a form of gas cycle (Sect. 5.3); the second is a water cycle, which will 
become important when we discuss Rankine Cycles, which is a form of vapor cycle 

Table 3.3  (continued)

Engineering device
Assumptions Control volume Equation

Throttling device
δq = 0
δw = 0
ΔKE = 0
ΔPE = 0

hi = he

Pump
δq = 0
ΔKE = 0
ΔPE = 0

−wi = he − hi

Compressor
δq = 0
ΔKE = 0
ΔPE = 0

−wi = he − hi

Heat exchanger
δq = 0
δw = 0
ΔKE = 0
ΔPE = 0

� � � 



m h m hi i e e

3.8  Cycles
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(Sect. 5.2). An introduction to Rankine Cycles is given below. Cycles will be more 
fully discussed in Chap. 5.

3.9  �Rankine Cycle

When we arrange several engineering devices in a particular order, see Figs. 3.9 and 
3.10, we create a series of processes that collectively start and end in the same state, 
which is the very definition of a cycle. The cycle shown in Figs. 3.9 and 3.10 is a 
Rankine Cycle.

You’ll notice that on the x-axis for Fig. 3.9 the quantity is entropy, which we have 
not formally introduced. A working definition is that entropy change is a measure of 
the irreversibilities of a system and we would always rather an entropy change of 
zero, which is a measure of no irreversibilities. But all processes generate some 
entropy.

In this analysis, we assume the pump and turbine are isentropic, which means 
there are no irreversibilities. Later, some of the assumptions made will be relaxed.

The Rankine Cycle involves the following four processes and the device that cre-
ates a particular process

1 → 2, Pressure Increase, Isentropic Pump
2 → 3, Heat Added, Boiler
3 → 4, Work Extracted, Isentropic Turbine
4 → 1, Heat Dumped, Condenser
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Fig. 3.9  T versus S for Rankine Cycle
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In order to determine Eq. 3.2 particular to a Rankine Cycle, an energy balance 
must be conducted around each engineering device and all states, heat, and work 
accounted for in a table. What goes into the control volume will be on the left-hand 
side of the equal sign and what goes out of the control volume will be on the right-
hand side of the equal sign.

The following simplifying assumptions and conditions were made

	1.	 Isentropic pump → s1 = s2

	2.	 Isentropic turbine → s3 = s4

	3.	 State 1 is on the saturated liquid line @ pressure P1

	4.	 State 2 is a compressed liquid @ pressure P2

	5.	 State 3 is a saturated vapor @ pressure P2

	6.	 State 4 is a mixture @ pressure P1

Note – the sum of the work equals the sum of the heat for a cycle.
The energy balance around the pump in Fig. 3.11 is

	 h w h1 2� �in 	 (3.26)

Fig. 3.10  Engineering devices within the Rankine Cycle

3.9  Rankine Cycle
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And solving for win

	 w h hin � �2 1 	 (3.27)

The energy balance around the boiler in Fig. 3.12 is

	 h q h2 3� �in 	 (3.28)

And solving for qin

	 q h hin � �3 2 	 (3.29)

The energy balance around the turbine in Fig. 3.13 is

	 h w h3 4� �out 	 (3.30)

The value of h4 is determined by utilizing the assumption that s3 = s4 and deter-
mining X4.

And solving for wo

	 w h hout � �4 3 	 (3.31)

Fig. 3.12  Energy balance 
for a boiler

Fig. 3.11  Energy balance 
for a pump

3  First Law of Thermodynamics
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The energy balance around the condenser in Fig. 3.14 is

	 h h q4 1� � out 	 (3.32)

And solving for qout

	 q h hout � �4 1 	 (3.33)

Once all enthalpies, works, and heats are determined, then a table (see Table 3.4) 
is completed for the states given in Fig. 3.9 and the overall thermal efficiency for the 
cycle is calculated, which is given as

	
�overall

in

in

�
�

�
� � �

�
w w

q

h h h h

h h
o 3 4 1 2

3 2 	
(3.34)

The final step is to check the first law of thermodynamics for a cycle

	
� � � � �� �q w 952 05 952 05. . /

kJ

kg
kJ kg

	
(3.35)

The left-hand side won’t exactly match the right-hand side, but if it’s off by too 
much, then check your work. There’s probably a mistake!

Fig. 3.13  Energy balance 
for a turbine

Fig. 3.14  Energy balance 
for a condenser
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3.10  �Problem Solving Procedure 
for Thermodynamics Problems

Step 1 – Identify the substance
Step 2 – Identify the system

•	 Isolated system
•	 Closed system (thermodynamic energy is measured in terms of inter-

nal energy)
•	 Open system (thermodynamic energy is measured in terms of enthalpy)

Step 3 – Can we assume ideal and/or perfect gas behavior?
Step 4 – Fill out as completely as possible the following table, which may involve 

unit conversions. Please note there may be more than one process involved and it 
may be useful to plot the states on a pressure versus specific volume or entropy 
versus temperature graph.

State 1 State 2
Process

Phase Phase
Temperature Temperature
Pressure Pressure
Specific volume (volume) Specific volume (volume)
Internal energy (enthalpy) Internal energy (enthalpy)
Mass Mass

Step 5 – Identify the appropriate equation/table or simplifying assumption for the 
following

•	 Heat
•	 Work
•	 Internal energy (enthalpy)
•	 Kinetic energy, potential energy, and mass rates (if necessary)

Table 3.4  Various states, heat, and work for Rankine Cycle

State Process/Device
T P s

X
h δw δq

[°C] [kPa] [KJ/Kg-K] [kJ/kg] [kJ/kg] [kJ/kg]

1 35.84 6 0.52 149.78
Isentropic pump −6.87

2 36.33 5000 0.52 156.65
Boiler +2637.68

3 263.99 5000 5.9733 2794.33
Isentropic turbine +958.92

4 35.84 6 5.9733 1835.41
Condenser −1685.63

1 35.84 6 149.78

3  First Law of Thermodynamics
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Table 3.5  First law and second law for various systems

Case First Law Second Law Comments

Closed 
System
Ideal Gas
Perfect 
Gas

Q − W = ∆E
�s C T

T
Rv g�

�

�
�

�

�
� �

�

�
�

�

�
�ln ln

2

1

2

1

�
�

�s C T
T

R P
PP g�

�

�
�

�

�
� �

�

�
�

�

�
�ln ln

2

1

2

1

Specific heat is 
constant
Work is determined by 
the path
Δh = cpΔT, Δe = cvΔT

Closed 
System
Ideal Gas
Non-
Perfect

Q − W = ∆E
�s s s R

P

PT T g� � �
�

�
�

�

�
�2

0
1

0 2

1

ln

�s S S RT T g� � �
�

�
�

�

�
�2

0
1

0 2

1

ln
�
�

+ Ideal Gas Thermodynamics 
Table

Specific heat is NOT 
constant
Work is determined by 
the path
e = f(T), s = f(T, P),
s = f(T, ν)

Closed 
System
Non-
Ideal
Non-
Perfect

Q − W = ∆E Use Appropriate 
Thermodynamics Table

Specific heat is NOT 
constant
Work is determined by 
the path

Open 
System
Ideal Gas
Perfect 
Gas

Q − W = ΔH + ΔKE + ΔPE
�s C T

T
Rv g�

�

�
�

�

�
� �

�

�
�

�

�
�ln ln

2

1

2

1

�
�

�s C T
T

R P
PP g�

�

�
�

�

�
� �

�

�
�

�

�
�ln ln

2

1

2

1

Specific heat is 
constant
Work is determined by 
the path
Δh = cpΔT, Δe = cvΔT

Open 
System
Ideal Gas
Non-
Perfect

Q − W = ΔH + ΔKE + ΔPE
�s s s R

P

PT T g� � �
�

�
�

�

�
�2

0
1

0 2

1

ln

�s S S RT T g� � �
�

�
�

�

�
�2

0
1

0 2

1

ln
�
�

+ Ideal Gas Thermodynamics 
Table

Specific heat is NOT 
constant
Work is determined by 
the path
h = f(T), s = f(T, P),
s = f(T, ν)

Open 
System
Non-
Ideal
Non-
Perfect

Q − W = ΔH + ΔKE + ΔPE Use Appropriate 
Thermodynamics Table

Specific heat is NOT 
constant
Work is determined by 
the path

Step 6 – Determine the first law for the system
Step 7 – Determine the second law for the system (if necessary)
Step 8 – Solve the problem

Given below in Table 3.5 are the first law and second laws for a particular case 
where second law will be discussed in Chap. 4.

3.11  Examples and Problems
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3.11  �Examples and Problems

3.11.1  �Examples

Example 3.1 Double Linear Interpolation
Determine the enthalpy for water at 12,000 kPa and 360 °C. This will involve more 
than one linear interpolation. The raw data from the thermodynamic tables is given 
in the first table and solving for A, B, and C determines the value to be 2874.41 kJ/kg.

Pressure [kPa]
10,000 12,000 15,000

T [°C] 350 2923.39 2692.41
360 A C B
400 3096.46 2975.44

	

y
y y

x x
x x y�

�� �
�� �

�� � �2 1

2 1
1 1

	

	
A �

�
�

�� � �3096 46 2923 39

400 350
360 350 2923 39

. .
.

	

	
B �

�
�

�� � �2975 44 2692 41

400 350
360 350 2692 41

. .
.

	

	
C �

�
�

�� � �2749 02 2957 00

15 000 10 000
12 000 10 000 2958 00

. .

, ,
, , .

	

Pressure [kPa]
10,000 12,000 15,000

T [°C] 350 2923.39 2692.41
360 2958 2874.41 2749.02
400 3096.46 2975.44

Example 3.2 Closed System
Saturated vapor R-410a at 0 °C in a rigid tank is cooled to −40 °C. Find the specific 
heat transfer.
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Substance, R-410a
Treat as a non-ideal, non-perfect gas → Use the Thermodynamics Tables
Process, Isometric → No Work

State 1 – Saturated Vapor

T1 is 0 °C
ν1 is 0.03267 m3/kg and ν1 = ν2

e1 is 253.02 kJ/kg

State 2 – Mixture

It’s a mixture because
νl < ν1 < νg

Find X

	

X l

g l

�
�
�

�
�
�

�
� �
� �
mix 0 03267 0 000762

0 14291 0 000762
22 45

. .

. .
. %

	

Find e2

	
e e X e el g l2

0 13 22 45 237 81 0 13 53 28� � �� � � � � � �� � �. . % . . . /kJ kg
	

Heat transfer is

	 � �q w e� � � 	

And

	 � q � �199 72. /kJ kg 	

Example 3.3 Closed System
A 100-L rigid tank contains N2 at 1000 K and 3 MPa. The tank is now cooled to 
80 K. What are the work and heat transfer for the process?

Volume is 100 L, Substance is N2 and the process is Isometric
Use the thermodynamic table for N2

State 1 – SHV

T1 is 1000 K
P1 is 3000 kPa
ν1 is 0.0996 m3/kg
e1 is 777.85 kJ/kg
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State 2 – Mixture

It’s a mixture because
νl < ν1 < νg

Find X

	

X l

g l

�
�
�

�
�
�

�
� �
� �
mix 0 03267 0 000762

0 14291 0 000762
22 45

. .

. .
. %

	

Find u2

	
e e X e el g l2

0 13 22 45 237 81 0 13 53 28� � �� � � � � � �� � �. . % . . . /kJ kg
	

Heat transfer is

	 � �q w e� � � 	

And

	 � q � �199 72. /kJ kg 	

Example 3.4 Reactor Explosion
A water-filled reactor with a volume of 1 m3 is at 10 MPa and 260 °C is placed 
inside a containment room. The room is well insulated and initially evacuated. Due 
to a failure, the reactor ruptures and the water fills the containment room. Find the 
minimum room volume so that the final pressure does not exceed 400 kPa.

 

Volume is 1 m3, Substance is Water and the process is that u1 = u2

The two internal energies are equal because there is neither work nor heat transfer!
Use thermodynamic table for Water

State 1 – SCL

T1 is 260 °C
P1 is 10,000 kPa

3  First Law of Thermodynamics
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ν1 is 0.001265 m3/kg
e1 is 1121.03 kJ/kg

State 2 – Mixture

It’s a mixture because
νl< ν1 < νg

Find X

	

X
u u

u u
l

g l

�
�
�

�
�
�

�mix 1121 03 604 29

2553 55 604 29
26 5

. .

. .
. %

	

Find ν2

	
� � �2

3

0 001084 26 5 0 46246 0 001084 0 12� � �� � � � � �� � �u Xl g l . . % . . .
m

kg 	

Find mass

	
m

V
� � �1

1

1

0 001265
790 5

� .
. kg

	

Find V2

	

V

m
V2

2 2
398 86� � �� . m

	

Example 3.5 Nozzle
Superheated vapor ammonia enters an insulated nozzle at 30 °C and 1000 kPa with 
a low velocity and a steady rate of 0.01 kg/s. The ammonia exits at 300 kPa with a 
velocity of 450 m/s. Determine the temperature (or quality) and the exit area of 
the nozzle.

 

Substance is ammonia, Nozzle, Use Thermodynamic Tables
State 1 State 2
Insulated nozzle

SHV Phase
20 C T2

3.11  Examples and Problems



64

State 1 State 2
Insulated nozzle

1000 kPa 300 kPa
V ≈ 0 450 m/s
h1 X and h2

h
u

h
u

1
1
2

2
2
2

2 2
� � �

Solve for h2

	
h h
2 1

2
450

2000
1377 85� � � . /kJ kg

	

And for 300 kPa in Saturated Ammonia Tables

T P h(l) h(g)
[°C] [kPa] [kJ/kg] [kJ/kg]

−10 290.9 134.41 1430.8
−5 354.9 157.31 1436.7
−9.29 300 137.67 1431.64

And solving for X

	

X
u u

u u
hl

g l

�
�
�

�
�
�

�2 1377 85 137 67

1431 64 137 67
95 84

. .

. .
. %

	

Example 3.6 Turbine
A dam along the Green River is 50 m higher than the river that it discharges into. 
The electric generators driven by the water-powered turbines deliver 250 MW of 
power. If the discharge water is 20 °C, find the minimum amount of water running 
through the turbines.
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z1 = 50 m, z2 = 0; � w � �250 250 000MW kW, ; T = 20 °C; ν = 0.001002 m3/kg
Find

	
Q

dV

dt
≡

	

	 � �   q w e e� � �2 1 	

	
 e m h KE PE1 1 1 1� � �� � 	

And

	
 e m h KE PE2 2 2 2� � �� � 	

	 h h KE KE1 2 1 2� � �, ,Far Upstream FarDownstream 	

	
PE

gZ
PE1

1
21000

9 81 50

1000
0� �

�
�

.
,

	

	
� � �

�
250 000

9 81 50

1000
,

.
m

	

	
 m Q m Q Q� � � �509 84 510 7

3
. , , . /

kg

s
m s�

� 	

Example 3.7 Boiler and Super-Heater
Saturated liquid nitrogen at 800 kPa enters a boiler at the rate of 0.01 kg/s and exits 
as saturated vapor. It then flows into a super-heater also at 800 kPa, where it exits at 
800 kPa and 280 K. Find the rate of heat transfer in the boiler and the super-heater.

 

Find δ δ q q1 2,

3.11  Examples and Problems



66

T P h(l) h(g)
[°C] [kPa] [kJ/kg] [kJ/kg]

100 779.2 −73.2 87.48
105 1084.6 −61.24 87.35
100.34 800 −72.39 87.47

	
h h h1 2 372 39 87 47 288 52� � � �. , . , .

kJ

kg

kJ

kg

kJ

kg 	

And

	




h q h1 1 2� �� 	

	




h q h2 2 3� �� 	

Further

	
�  q m h h1 2 1� �� � 	

	
�  q m h h2 3 2� �� � 	

And

	 � � q q1 21 6 2 0� �. , .kW kW 	

Example 3.8 Air Cycle
For the cycle shown in the figure below, find the work and heat transfer for 1 lbm of 
air contained in a cylinder with T1 at 800 °F assuming the process from 3 to 1 is (a) 
an isothermal process and (b) an adiabatic process.

We’ll assume an ideal, perfect gas and use the work/heat table given at the end of 
Chap. 2.

	

m T R R

c

g

p

� � � � �

�

�1 800 1260 1 4 53 34

0 24

1

0

lbm F
ft lbf

lbm R
BT

, , . , . ,

.

�
 

 

UU

lbm R

ft lbf

lbm R

BTU

lbm R

ft lbf

lbm 

 

  

 
� � �186 77 0 171 133 10. , . .cv

  R 	
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Plan of Attack

	(a)	 Find {T, P, V} for all states
	(b)	 Determine work and heat associated with each process
	(c)	 Sum work and sum heat, they should equal

What we are given

State Process
T P V Work Heat
[R] [lbf/ft2] [ft3] [ft-lbf] [ft-lbf]

1 1260 8640 V1

Isobaric δw1 → 2 δq1 → 2

2 T2 8640 10
Isometric 0 δq2 → 3

3 T3 P3 10
Isothermal δw3 → 1 δq3 → 1

1 1260 8640 V1

X Y

Find All States
Solve for V1

	
PV mR T V

mR T

Pg
g� � �

� �
�,

.
.1

1

1

31 53 34 1260

8640
7 78ft
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Solve for T2

	

T
PV

mRg
2

2 2 8640 10

1 53 34
1640� �

�
�

�
.

K

	

Solve for P3

	
PV PV P

PV

V3 3 1 1 3
1 1

3

38640 7 78

10
6721� � �

�
�,

.
/lbf ft

	

Solve for T3

3 → 1 is isothermal and T3 = T4, T3 = 1260 K

Find Work and Heat for All Processes
1 → 2, Isobaric

	
�w P V V� �� � � � � �� � �2 1 60 144 10 7 78 19 192. , ft lbf 

	

	
�q mC T Tp� �� � � � � �� � �2 1 1 187 1640 1260 67 199, ft lbf 

	

2 → 3, Isometric

	 �w � 0 	

	
�q mC T Tv� �� � � � � �� � � �3 2 1 133 1260 1640 47 889, ft lbf 

	

3 → 1, Isothermal

	

�w PV
V

V
�

�

�
�

�

�
� � � � �

�
�

�
�
� � �3 3

1

3

8640 7 78
7 78

10
16 882ln . ln

.
,

	

	 � �q w� 	

The results are

State Process
T P V Work Heat
[R] [lbf/ft2] [ft3] [ft-lbf] [ft-lbf]

1 1260 8640 7.77875
Isobaric 19,191.60 67,199.38

2 1619.798 8640 10
Isometric 0.00 −47,889.05

3 1260 6720.84 10
Isothermal −16,882.04 −16,882.04

1 1260 8640 7.77875
2309.56 2428.29
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Example 3.9 Water Cycle
For the cycle with the following conditions, show that the sum of the work equal the 
sum of the heat transfer

State 1 – Saturated Liquid
4000 kPa, h1 = 1087.29 kJ/kg, nu1 = 0.001252 m3/kg
State 2 – Saturated Vapor
4000 kPa, h2 = 2801.38 kJ/kg, nu2 = 0.04978 m3/kg, V2 = 0.5 m3

	

0 5
0 05 10

3 3.
. ,

m

m

m

kg
kg= =m

	

State 3 – Mixture
T = 80 °C
ν2 = ν3

	
� � � �3 3

0 04978 0 001029

3 40715 0 001029
1 44� � �� � �

�
�

�l g lX Xand
. .

. .
. %

	

And

	

h h hl g� � � � � �334 88 2643 66 334 88 1 44 2643 66 334
3

. . , . . % .
kJ

kg
and

kJ

kg
..

. /

88

368 07

� �
� kJ kg 	

State 4 – Mixture
ν1 = ν4

	
� � � �4 4

0 001252 0 001029

3 40715 0 001029
0 01� � �� � �

�
�

�l g lX Xand
. .

. .
. %%

	

And

	

h h hl g� � � � � �334 88 2643 66 334 88 0 01 2643 66 334
4

. . , . . % .
kJ

kg
and

kJ

kg
..

. /

88

335 0

� �
� kJ kg 	

Determination of Work and Heat

1 → 2, “Boiler”, δq = h2 − h1

2 → 3, “Turbine”, δw = h2 − h3

3 → 4, “Condenser”, −δq = h3 − h4

4 → 1, “Pump”, −δw = h1 − h4
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The results are given below.

State Process
T P V

Comments
h Work Heat

[°C] [kPa] [m3] [kJ/kg] [kJ/kg] [kJ/kg]

1 4000 Saturated liquid 1087.29
Isobaric 1714.09

2 4000 0.5 Saturated vapor 2801.38
Isometric 2433.31

3 80 0.5 368.07
Isobaric −33.07

4 80 335
Isometric −752.29

1 1087.29
1681.02 1681.02

3.11.2  �Problems

Problem 3.1  Air at 60 °C, 150 kPa flows in a 100 mm by 150 mm rectangular duct 
in a heating system. The volumetric flow rate is 0.01 m3/s. What is the velocity of 
the air flowing in the duct and what is the mass flow rate?

Problem 3.2  A boiler receives a constant flow of 6000 kg/h liquid water at 5 MPa 
and 20 °C, and it heats the flow such that the exit state is 425 °C and 4.5 MPa. 
Determine the necessary minimum pipe flow area in both the inlet and exit pipe(s) 
if there should be no velocities larger than 20 m/s. Also, determine the heat rate 
[BTU/hr.].

Problem 3.3  Nitrogen gas flows into a convergent nozzle at 200 kPa, 400 K, and 
very low velocity. It flows out of the nozzle at 100.3 kPa, 1000 m/s. If the nozzle is 
insulated, find the exit temperature.

Problem 3.4  In a jet engine a flow of air at 1000 K, 200 kPa, and 40 m/s enters a 
nozzle, where the air exits at 500 m/s, 101.3 kPa. Assuming no heat loss, what is the 
exit temperature?

Problem 3.5  Helium is throttled from 1 MPa, 20 °C to a pressure of 100 kPa. The 
diameter of the exit pipe is so much larger than that of the inlet pipe that the inlet 
and exit velocities are equal. Find the exit temperature of the helium and the ratio of 
the pipe diameters.

Problem 3.6  A compressor in a commercial refrigerator receives R-410a at −20 °C 
and X = 100%. The exit is at 1200 kPa and 60 °C. Neglect kinetic energies and find 
the specific work.

3  First Law of Thermodynamics
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Problem 3.7  A rigid 177-ft3 tank contains saturated steam at 73 psia. Initially, 10% 
of the volume is occupied by liquid and the rest by vapor. Heat transfer takes place 
until the pressure in the tank reaches 58 psia. Determine the following:

	(a)	 Amount and direction of heat transfer
	(b)	 Initial and final temperatures
	(c)	 Final volumes of liquid and vapor

Problem 3.8  A 4.25-ft3 rigid tank contains saturated liquid R-134a at 116 psia. A 
valve at the bottom of the tank is now opened, and liquid is withdrawn from the 
tank. Heat is transferred to the refrigerant such that the pressure inside the tank 
remains constant. Determine the amount of heat that must be transferred by the time 
75% of the total mass has been withdrawn.

Problem 3.9  150 kg of a saturated mixture of steam at 200 kPa is stored in a 15 m3 
container. A valve on the container is opened and 15 kg of steam at 500 kPa and 
300  °C is gradually added into the container. During this addition process, heat 
exchange occurs with the surroundings. The final pressure in the container is 
300 kPa.

	(a)	 What is the quality of the initial contents of the container?
	(b)	 What is the quality of the final contents of the container?
	(c)	 How much heat was transferred? State whether heat was added or removed.

�Appendix 3.1: Rankine Cycle Worksheet

A tableau for the Rankine Cycle is given on the companion website.

�Appendix 3.2: Linear Interpolation (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

References

	1.	 Borgnakke, C., & Sonntag, R. E. (2009). Fundamentals of thermodynamics (7th ed.). Wiley.
	2.	 National Institute of Standards and Testing; https://webbook.nist.gov/chemistry/. Accessed 23 

Apr 2020.
	3.	 Potter, M., & Scott, E. P. (2004). Thermal sciences (1st ed.). Brooks/Cole – Thomson Learning.

References

https://webbook.nist.gov/chemistry/


73© Springer Nature Switzerland AG 2022
H. C. Foust III, Thermodynamics, Gas Dynamics, and Combustion, 
https://doi.org/10.1007/978-3-030-87387-5_4

Chapter 4
Entropy and the Second Law 
of Thermodynamics

4.1  �Preview

We’ll begin by defining reversible and irreversible processes and give three exam-
ples. Example 4.1 defines reversible and irreversible processes; Example 4.2 pro-
vides details of a reversible heat engine (Carnot cycle); and Example 4.3 provides 
details of an irreversible heat engine (Rankine cycle).

We’ll move on to defining Carnot cycles, which are reversible heat engines, heat 
pumps, or refrigeration cycles. A heat engine extracts work, w(out), from two res-
ervoirs where one is at a high temperature and the other is at a low temperature; a 
heat pump reverses a heat engine to keep a warm space warm when the surround-
ings are cold and requires w(in); a refrigeration cycle is a reversed heat engine 
where work is added, w(in), to keep a cold space cold when the surroundings are hot.

We’ll then discuss Clausius inequalities, which were illustrated by the three 
examples discussed above and go on to define entropy and show that it is another 
state. We then determine entropy changes associated with processes that occur in 
liquids, solids, and gases.

We will then formally give the second law of thermodynamics for both closed 
and open systems, and apply the idea of entropy to determine the efficiency of engi-
neering devices.

4.2  �Reversible and Irreversible Systems

We’ll look at three examples that explore reversible and irreversible systems and tie 
this to the definition of entropy, which is given as

	
ds

q

T rev

= 







δ

	
(4.1)

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87387-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-87387-5_4#DOI
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where ds is the change in entropy (to be defined shortly), T is the temperature of the 
process, and δq is the heat released assuming a reversible process (to be defined 
shortly).

Example 4.1  Imagine a system of two ramps with equal angles, a cart, and a con-
nection horizontal section (see Fig. 4.1a), but no friction. No friction due to air, no 
internal friction within the cart, no friction between the cart and the ramps, and 
connecting horizontal section. The cart is released at “A”, goes through “B”, and 
stops at “C.” Because there is no friction, it falls and goes through “B”, and stops at 
“A.” Because there is no friction, it does this endlessly.

We know the world doesn’t work this way (see Fig. 4.1b). The cart falls away 
from “A” and likely lands somewhere in the horizontal section dependent on the 
coefficient of friction, length of each part, and the angle of the ramp. The system in 
Fig. 4.1b is an example of a reversible system and the system given as Fig. 4.1b is 
an example of an irreversible system.

Briefly stated, a reversible system is one where there is no additional  
energy (work) needed to get the system back to the original state, which in this 
case is “A.”

Example 4.2  Let’s look at another example.

Imagine a reversible heat engine that contains the four following processes

	 1 2→ , Isothermal 	

	 2 3→ ,Adiabatic 	

	 3 4→ , Isothermal 	

	 4 1→ ,Adiabatic 	

Fig. 4.1  (a) Reversible system. (b) Irreversible system
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If we assume the substance is an ideal, perfect gas with no phase changes, then the 
efficiency of this cycle is given as

	
η = =

−
= −

w

q

q q

q

q

q
net

in

in out

in

out

in

1
	

(4.2)

We’ll show the efficiency for a reversible heat engine can also be defined as

	
η = = −

w

q

T

T
net

in

out

in

1
	

(4.3)

Additionally,

	

q

q

T

T
out

in

out

in

=
	

(4.4)

Equally, we can divide q T
rev

abs
which gives us a relative measure of heat transfer 

and for a reversible heat engine it is

Fig. 4.1  (continued)

4.2  Reversible and Irreversible Systems
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q

T

q

T
in

in

out

out

− = 0
	

(4.5)

Example 4.3  For a real heat engine (Rankine cycle), we have the following condi-
tions [1].

	1.	 Saturated liquid, 0.7 MPa.
	2.	 Saturated vapor, 0.7 MPa.
	3.	 90% Quality, 15 kPa
	4.	 10% Quality, 15 kPa.

For these conditions,

	
q

kJ

kg
T C q

kJ

kg
T Cin in out out= = = =° °2066 3 164 9 1898 4 53 97. , . , . , .

	

	

q

T

q

T
in

in

out

out

− =
+

−
+

= −
2066 3

273 15 164 9

1898 4

273 15 53 97
1 9

.

. .

.

. .
.

kkJ

kg K−
< 0

	
(4.6)

Which is consistent for an irreversible heat engine and will be discussed again 
when we discuss Clausius’ inequality.

Fig. 4.2  Rankine cycle
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Some observations

	1.	
q

T

q

T
in

in

out

out

− provides a useful measure of whether or not a cycle is reversible or 

irreversible
	2.	 When the quantity given in (1) is negative, this implies the cycle is irreversible.
	3.	 When the quantity given in (1) is zero, this implies the cycle is reversible.

We’ll soon see that the quantity defined as Eq. 4.5 or 4.6 is in fact a state and has 
several uses to include

	1.	 Provides another state given in the thermodynamic tables.
	2.	 Will provide a measure of whether or not a given process (or cycle) can occur.
	3.	 Provides a means to improve some process (or cycle).
	4.	 Can be utilized to determine the heat transfer for a process (or cycle).

4.3  �Carnot Heat Engine and Carnot Heat Pump

The reversible heat engine given above as Example 2 is actually known as the 
Carnot heat engine and when the cycle is reversed it either becomes a heat pump or 
a refrigeration cycle (see Fig. 4.3a, b, and c).

Before we get into the Carnot heat engine there are four concepts that need to be 
clearly defined – heat engine, heat pump, refrigeration, thermal efficiency, and coef-
ficient of performance (β).

Fig. 4.3  (a) Heat engine, (b) Heat pump, and (c) refrigeration cycle

4.3  Carnot Heat Engine and Carnot Heat Pump
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Heat Engine
An example of a heat engine is given as Fig. 4.3a where heat naturally transfers 
from a high-temperature reservoir to a low-temperature reservoir and some portion 
of this heat transfer is extracted as useful work.

Heat Pump
A heat pump (see Fig. 4.3b) would be to add work to the system thereby changes the 
direction of heat transfer where the Th (Thigh) reservoir would be the space you’re 
trying to keep warm. Heat does not naturally want to go from low temperature to 
high temperature and only does so with the addition of work.

Refrigeration
A refrigeration cycle (see Fig. 4.3c) is another example of a system where work is 
added in order for the heat transfer to go from a lower temperature to a higher tem-
perature. The only difference between a refrigeration cycle and a heat pump cycle is 
that now the system is Tc (Tlow).

Thermal efficiency (η)
Is a measure of how much of the qhi is utilized as useful work and is mathematically 
defined as

	
ηHE

o

hi

w

q
=

	
(4.7)

Coefficient of Performance (β)
For heat pumps or refrigeration cycles is a measure of efficiency, but is different 
from thermal efficiency. For a heat pump, which is a reverse heat engine, the β is 
defined as

	
βHP

hi

o

q

w
=

	
(4.8)

And for refrigeration, the β is defined as

	
βRefrig

lo

o

hi o

o

hi

o

q

w

q w

w

q

w
= =

−
= −1

	
(4.9)

The processes involved in a Carnot heat engine (see Figs. 4.4 and 4.5) are.
A ->B is an isothermal expansion,
B ->C is an adiabatic reversible expansion,
C ->D is an isothermal contraction, and.
D ->A is an adiabatic reversible contraction.
There are a series of postulates invoked when considering a Carnot cycle [1].

Postulate 1  It is impossible to construct an engine that is more efficient than the 
Carnot heat engine.

4  Entropy and the Second Law of Thermodynamics
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Postulate 2  The efficiency of a Carnot engine is solely a function of the tempera-
ture reservoirs.

Postulate 3  All reversible engines, operating between two reservoirs, have the 
same overall thermal efficiency as a single Carnot engine operating between the 
same reservoirs.

Prove that for a reversible engine (Carnot heat engine) that the thermal efficiency 
is defined as

	
η = − = −1 1

q

q

T

T
lo

hi

lo

hi 	
(4.10)

	

1 2
1

2

2

1

→ = =








∫, lnQ PdV mRT
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Vhi

V
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hi

	

(4.11)

	 2 3 02 3→ =→,Q 	 (4.12)

	

3 4
3

4

4

3

→ = = −








∫,, lnQ PdV mRT

V

Vlo

V

V

lo

	

(4.13)

Fig. 4.4  Heat engine

V
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D

adiabatic

isothermal
Qin

isothermal
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Tcold

ThotQ = 0

adiabatic
Q = 0

B

C

Fig. 4.5  P versus V for a 
Carnot cycle
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	 4 1 03 4→ =→,Q 	 (4.14)

Substituting Eqs. 4.11 and 4.13 into Eq. 4.10 results in

	

η = − = +









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1 1
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(4.15)

Additionally, for the adiabatic process 2->3,
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(4.16)

And for the adiabatic process 4->1,
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(4.17)

Note T1 = T2 and T3 = T4.

Further,
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(4.18)

Therefore,
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(4.19)

A Carnot cycle is an idealization that cannot physically be realized, but provides 
an upper limit on actual performance.

A Summary of Carnot Cycles  Our definition of overall thermal efficiency (η) for 
a Carnot heat engine is

	
ηHE

o

hi

lo

hi

hi lo

hi

w

q
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T

T T
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= = − =

−
1

	
(4.20)
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Reverse it and you have a Carnot heat pump, which has a Beta of
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(4.21)

And for a Carnot refrigeration cycle, the Beta is
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(4.22)

A Summary of Actual Cycles  Our definition of overall thermal efficiency (η) for 
a Carnot heat engine is

	
ηHE

o

hi

w

q
=

	
(4.20)

Reverse it and you have a Carnot heat pump, which has a Beta of

	
βHP

hi

o

q

w
=

	
(4.21)

And for a Carnot refrigeration cycle, the Beta is
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(4.22)

4.4  �Clausius Inequality

We’ll show

	

δQ
T

≤∫ 0


	
(4.23)

where Eq. 4.23 for a reversible cycle takes the form

	

δQ
T

=∫ 0


	
(4.24)

And for an irreversible cycle it takes the form
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δQ
T

<∫ 0


	
(4.25)

4.4.1  �Reversible Heat Engines

	
δQ Q Qhi lo= − >∫ 0
 	 (4.26)

And using Eqs. 4.13 and 4.11 for Qhi and Qlo and dividing Qhi by Thi and Qlo by 
Tlo results in
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(4.27)

4.4.2  �Irreversible Heat Engines

For an irreversible heat engine,

	 W Wirrev rev< 	 (4.28)

And Qhi − Qlo = W therefore,

	
Q Q Q Qhi lo irrev hi lo rev

−( ) < −( )
	

(4.29)

Since Qhi is the same for both systems,

	
Q Qlo irrev lo rev, ,>

	
(4.30)

which results in
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(4.31)
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4.5  �Definition of Entropy, Entropy as a State Function, 
and Area under T Vs. Ds Graphs

4.5.1  �Definition of Entropy

Clausius inequality can also be defined as

	

δ
σ

Q
T cycle+ =∫ 0


	
(4.32)

where σcycle are irreversibilities of the cycle and the first term is a measure of the heat 
release per temperature and the second term is a measure of the irreversibilities of 
the cycle.

Another form of Eq. 4.32 is

	
∆s

q

T system= +
δ

σ
	

(4.33)

which is a measure of the entropy change of a system and when the system is adia-
batic, the first term on the right-hand side is zero

	
∆s cycle= σ

	
(4.34)

And when the system is reversible the second term on the right-hand side is zero.

	
∆s

q

T
=
δ

	
(4.35)

A system that is both reversible and adiabatic is isentropic and thus

	 ∆s s s= =0 1 2, 	 (4.36)

And for a closed system, the first law is

	 de q w= −δ δ 	 (4.37)

And work is defined as

	 δ νw Pd= 	 (4.38)

Substituting Eqs. 4.37 and 4.38 into Eq. 4.33 results in

	
ds

q

T

du

T

Pd

T

C T
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(4.39)
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And when the system is reversible

	
ds

q

T

du

T

Pd

T

C T

T
dT

Pd

T
v= = + =
( )

+
δ ν ν

	
(4.40)

Additionally, enthalpy is defined as

	 h e P= + ν 	 (4.41)

And the derivative of Eq. 4.41 is

	 dh de Pd dP= + +ν ν 	 (4.42)

Solving Eq. 4.42 for “du” and substituting into Eq. 4.37 results in

	 dh Pd dP q Pd− − = −ν ν δ ν 	 (4.43)

Or

	 dh q dP= +δ ν 	 (4.44)

Solving Eq. 4.44 for “δq” and substituting the resultant equation into Eq. 4.40 
results in
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T
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T
p= = − =
( )

−
δ ν ν

	
(4.45)

Note Eqs. 4.35 and 4.45 are known as the Gibbs Equations in honor of Wilfred 
Gibbs [1, 2].

4.5.2  �Entropy as State Function

Given below is a graph of P versus V along several reversible paths
We’ve seen for a reversible cycle that
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(4.46)

And so
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And
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Subtracting Eq. 4.48 from 4.47 results in
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Equally, we can say
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This shows that S is independent of path and is a state property of thermodynam-
ics and can be cast as

	
S S

Q

T2 1

1

2

− = ∫
δ

	
(4.51)

Or

Fig. 4.6  Entropy as a State Function
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δQ TdS= ∫

1

2

	
(4.52)

Which is analogous to

	
δW PdV= ∫

1

2

	
(4.53)

4.5.3  �Graph of T Versus S

Given in Fig. 4.7 is the T versus S graph for a reversible heat engine (Carnot heat 
engine) where q(in) is the area enclosed by 1->2->S(h)->S(l)->1, q(out) is the area 
enclosed by S(l)->4->3->S(h)->S(l), and the w(o) is the area enclosed by 
1->2->3->4->1.

More generally, the area under a T versus S graph represents δQ.

4.6  �Second Law of Thermodynamics

Given

	
∆s

q

T system= +
δ

σ
	

(4.54)

Fig. 4.7  Carnot heat engine
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The second law of thermodynamics is as follows
When the σsystem > 0 → Irreversible System
When the σsystem = 0 → Reversible System
When the σsystem < 0 → Impossible
Using the first law of thermodynamics helps us to account for energy sources and 

sinks and how fast a process or cycle will occur.
Using the second law of thermodynamics helps us to understand “if a process or 

cycle will ever occur”?

4.7  �Entropy of Solids and Liquids

Starting with the entropy balance for a reversible substance
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C dT

T

P

T
d
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




 = +

δ
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(4.55)

And knowing that solids and liquids are treated as incompressible results in two 
simplifying assumptions

	1.	 dν is zero

	
C C Cv p= =

	

Results in

	

∆s Cln
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T
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
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2

1 	

(4.56)

4.8  �Entropy of Gases

For entropy changes of gases, it’s not so simple. We’ll consider two possible cases

	1.	 Ideal, Perfect Gases.
	2.	 Ideal, Non-Perfect Gases.

4.8.1  �Entropy of an Ideal, Perfect Gas

Starting with the entropy balance for a reversible substance

4.8  Entropy of Gases
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	 Tds du Pdv= + 	 (4.57)

and
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T
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(4.58)

where Pν = RT such that
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(4.59)

And integrating both sides of Eq. 4.59 results in
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(4.60)

Or starting from

	 Tds dh dP= −ν 	 (4.61)

and
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dP
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(4.62)

where Pν = RT such that
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T
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(4.63)

And integrating both sides of Eq. 4.63 results in
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(4.64)

4.8.2  �Entropy Change of an Ideal, Non-Perfect Gas

When the gas is non-perfect and specific heat depends on temperature, then an inte-
gration is involved
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Or
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which is solved by using a combination of equation (second term) and tables (first 
term) to account for the integration.

See Examples 4.11, 4.12, and 4.13 for further details.

4.9  �Engineering Efficiency

In this section, thermal efficiency will be defined in terms of enthalpies associated 
with a reversible and irreversible engineering device.

4.9.1  �Engineering Devices for Work out

For an engineering device where it is work out, the definition of efficiency is

	
η =

w

w
out
Act

out
iso

	
(4.67)

where for an irreversible engineering device w wout
iso

out
act>

Reversible Device  The energy balance for a reversible engineering device is

	 w h hout
iso iso= −1 2 	 (4.68)

Irreversible Device  The energy balance for an irreversible engineering device is

	 w h hout
act act= −1 2 	 (4.69)

Using our previous definition of efficiency and Eqs. 4.68 and 4.69, we get

	
ηwork out

act

iso

h h

h h =
−
−

1 2

1 2 	
(4.70)
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4.9.2  �Engineering Device for Work in

For an engineering device where it is work out, the definition of efficiency is

	
η =

w

w
in
iso

in
Act

	
(4.71)

where for an irreversible engineering device w win
act

in
iso>

Reversible Device  The energy balance for a reversible engineering device is

	 w h hin
iso iso= −2 1 	 (4.72)

Irreversible Device  The energy balance for an irreversible engineering device is

	 w h hin
act act= −2 1 	 (4.73)

Using our previous definition of efficiency and Eqs. 4.72 and 4.73, we get

	
ηwork in

iso

act

h h

h h =
−
−

2 1

2 1 	
(4.74)

Fig. 4.8  Energy Balance 
for an Isentropic “Work 
Out” Device

Fig. 4.9  Energy Balance 
for an Actual “Work Out” 
Device
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What are some of the consequences of these definitions in terms of highest and 
lowest temperatures possible from engineering devices where it’s work in or 
work out?

Example 4.4
Consider a reversible turbine (work out device)

Assume η = 100%,

	 S S1 2= 	 (4.75)

And

	
η = =

−
−

1 1 2

1 2

h h

h h

act

iso

	
(4.76)

Therefore,

	 h h T Tact iso
2 2 2 1= → > 	 (4.77)

T2 can be found through knowing T1, P1, which provides s1 and s1 is equal to s2.

Example 4.5
Consider a perfectly irreversible turbine

Assume η = 0, ideal, and perfect gas

	 S S2 1> 	 (4.78)

Therefore,

	
η = =

−
−

0 1 2

1 2

h h

h h

act

iso

	
(4.79)

And

	 h h T Tact
2 1 2 1= → = 	 (4.80)

Fig. 4.10  Energy Balance 
for an Isentropic “Work 
In” Device
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Example 4.6
Consider a reversible pump (work in device)

Assume η = 100%, ideal, and perfect gas

	 S S1 2= 	 (4.81)

And

	
η = =

−
−

1 2 1

2 1

h h

h h

iso

act

	
(4.82)

Therefore,

	 h h T Tact iso
2 2 2 1= → > 	 (4.83)

T2 can be found through knowing T1, P1, which provides s1 and s1 is equal to s2.

Example 4.7
Consider a perfectly irreversible pump

Assume η = 0, ideal, and perfect gas

	 S S2 1> 	 (4.84)

And

	
η = =

−
−

0 2 1

2 1

h h

h h

iso

act

	
(4.85)

Therefore,

	 h h T Tact
2 1 2 1= → = 	 (4.86)

Fig. 4.11  Energy Balance 
for an Actual “Work In” 
Device
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4.10  �Examples and Problems

4.10.1  �Examples

Example 4.8 Heat Engines
A gasoline engine produces 120 HP using 300 kW of heat transfer from burning 
fuel. What is the thermal efficiency, and how much power is rejected to the 
environment?

	
η = = =

w

q

kW

kW
out

hi

89 5

300
29 8

.
. %

	

Using first law,

	     q q w q q kWhi lo out lo lo= + = + =, . , .300 89 5 210 5 	

Example 4.9 Carnot Heat Engine Problem
A Carnot heat engine runs between two heat reservoirs where the high-temperature 
reservoir is at 400 C and the low-temperature reservoir is at 25 C. What’s the ther-
mal efficiency of the heat engine? If the heat transfer from the high-temperature 
reservoir is 5000 BTU/hr., what’s the work out [BTU/hr.]? What’s the heat rejected 
[BTU/hr.]?

	
η = = − = − =





w

q

T

T

K

K
o

hi

lo

hi

1 1
298

673
55 7. %

	

and

	
 w

BTU

hr
q

BTU

hro lo= =2786 0 2214 0. .and
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Example 4.10 Carnot Heat Pump and Refrigeration Problem  Reverse the 
Carnot heat engine given in Example 4.2 and determine the beta (coefficient of 
performance) for a Carnot heat pump and Carnot refrigeration cycle.

	
β βHP

hi

hi lo
Refrig

lo

hi lo

T

T T

T

T T
=

−
= =

−
=1 79 79. , ..

	

Example 4.11 Using Entropy to Determine Heat Transfer for a Given Process
Nitrogen isentropically expands from 300 K to 600 K and the initially specific vol-
ume is 0.5 m3/kg, then what’s the final specific volume?

	

∆s s s RT
ref

T
ref

g= − +










2 1

2

1

ln
ν
ν

	

	

T K T K m
kg

R kJ
kg K

s kJ
g K

ref
1 2 1

3

300
300 600 5 2968 6 8463= = = =

−
=, , . , . , .ν

kkg K
s

kJ
kg K

K
ref

−

=
−

,

.

600

7 5741

	

and

	
0 7 7541 6 8463 2968

5
043052

2

3

= − + ∗ 







 =. . . ln

.
, .

ν
ν

m

kg 	

Example 4.12 Entropy Change for a Solid
Stainless Steel (304) goes from 300 C to 600 C.  What’s the change in entropy 
[kJ/kg-K]?

	

∆s cln
T

T

kJ

kg K
=









 =







 = −

2

1

46
873

573
194. ln .

	

Example 4.13 Entropy Change for an Ideal, Perfect Gas
Treating air as an ideal perfect gas, determine the entropy change from {25 C, 
101.3 kPa} to {200 C, 250 kPa}.

cp [kJ/kg-K] 1.004

Rg [kJ/kg-K] 0.287
T(1) [C] 25
T(2) [C] 200
T(1) [K] 298
T(2) [K] 571
P(1) [kPa] 101.3
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cp [kJ/kg-K] 1.004

P(2) [kPa] 250
S(0,T1) [kJ/kg-K] 6.87305
S(0,T2) [kJ/kg-K] 7.5244
Delta(s) [kJ/kg-K] 0.393628
Delta(s) [kJ/kg-K] 0.392082

	

∆s C
T

T
R

P

P

kJ

kg Kp g=








 −









 = −

0 2

1

2

1

3936ln ln .

	

Example 4.14 Entropy Change for an Ideal, Non-perfect Gas Using Table
Treating air as an ideal non-perfect gas, determine the entropy change from {25 C, 
101.3  kPa} to {200 C, 250  kPa}. Use the appropriate equation and thermody-
namic tables.

	

∆s s s R
P

P

kJ

kg KT
ref

T
ref

g= − −








 = −2 1

2

1

3921ln .

	

Example 4.15 Entropy Change for an Ideal, Non-perfect Gas Using 
Integration
Treating air as an ideal non-perfect gas, determine the entropy change from {25 C, 
101.3 kPa} to {200 C, 250 kPa}. Use the appropriate equation and a cubic model for 
specific heat, integrate the resulting equation.

	
ds

q

T
Tds C dT Pd where q w duv= = + − =

δ
ν δ δ,

	

and

	
ds C

dT

T
R

d
v g= +

ν
ν 	

Integrating both sides results in

	

∆s c T
dT

T
R

T

T

v g= ( ) +








∫

1

2

2

1

ln
ν
ν

	

where cp is expressed as

	
c and

c

c
where

T K
p

p

v

= + + + = = [ ]β β θ β θ β θ γ θ0 1 2
2

3
3

1000
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	 T

T
pc

T
dT T

1

2

0 1
2 2 3 3

2 3∫ = ( ) + + +β β θ
β

θ
β

θln

	

and

	
∆s

kJ

kg K
=

−
.40

	

Example 4.16 Irreversible Turbine
A steam turbine receives steam at a pressure of 2 MPa and a temperature of 300 
C. The steam leaves the turbine at a pressure of 15 kPa. The work output of the 
turbine is measured and is found to be 600 kJ/kg of steam flowing through the tur-
bine. Determine the efficiency of the turbine.

 

	
h

kJ

kg
s

kJ

kg K1 13051 15 7 1228= =
−

. , .
	

At 15 kPa,

	
h

kJ

kg
h

kJ

kg
s

kJ

kg K
s

kJ

kgl g l g= = =
−

=
−

225 91 2599 06 7548 8 0084. , . , . , .
KK 	

And

	
s s X and h

kJ

kgmix
iso

1 2 82 88 2192 68= → = =. % .
	

Therefore,

	
η =

−
=

600

3023 50 2192 68
72

. .
%
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Example 4.17 Reversible Turbine
What would be the work output of a reversible turbine with an input pressure of 
1 MPa and temperature of 300 C and an output pressure of 15 kPa?

 

	
X h

kJ

kg
and w kJ kgiso

o
iso= = =87 79 2309 32 741 832. %, . , . /

	

Example 4.18 Adiabatic Turbine
Nitrogen (N2) enters a turbine where the overall thermal efficiency is 70%. The inlet 
temperature and pressure of the fluid are 300 K and 200 kPa and the exit pressure is 
100 kPa. Assuming an ideal fluid and assuming the turbine to be adiabatic, deter-
mine the exit temperature and work out.

 

This problem will be solved by two methods

	1.	 Method of engineering efficiency based on enthalpies and steam tables.
	2.	 Analytical solution.

Method 1 Solution
•	 Assume an ideal gas.
•	 Adiabatic

	
ηwork out

Act

iso

h h

h h =
−
−

1 2

1 2 	
(4.87)
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and

	

∆s S S R
P

PT T g= − −








2

0
1

0 2

1

ln

	

(4.88)

and

	
0 6 8463 2968 1

2 6 6412
0

2
0= − − ∗ ( ) =

−
S S

kJ

kg KT T. . ln , .
	

(4.89)

and using a linear interpolation for S and T

S(1) 6.4250 T(1) 200
S(2) 6.6568 T(2) 250
S(x) 6.6410 T(x) 246.59

T2(iso) = 247 K and using a linter interpolation for T and h

T(1) 200 h(1) 208
T(2) 250 h(2) 259.7
T(x) 247 h(x) 256.58

h2(iso) = 256.6 kJ/kg and w(iso) = 55.1 kJ/kg
Additionally,

	
w w

kJ

kgact iso= = ∗ =η 70 55 1 38 6% . .
	

(4.90)

and h2(act) = 311.67–38.6 = 277.11 kJ/kg and using a linear interpolation for h and T

h(1) 259.70 T(1) 250
h(2) 311.67 T(2) 300
h(x) 273.11 T(x) 262.90

T2(act) = 263 K

Method 2 Solution
•	 Assume an ideal, perfect gas.
•	 Reversible.
•	 Adiabatic.

First law for the system is

	
w h h c T Tout p= − = −( )1 2 1 2 	

(4.91)
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and second law for the system is

	
∆s

q

T
s ssys= + = =

δ
σ 0 1 2,

	
(4.92)

and because the system is isentropic

	

T

T

P

P
2

1

2

1

1

=










−γ
γ

	

(4.93)

and substituting Eq. 4.93 into Eq. 4.91 for T2 results in

	

w c T
P

P
c T

P

Pout
iso

P P

R
c

g

= −





















= −











−

1
2

1

1

1
2

1

1 1

γ
γ pp













 	

(4.94)

and using the definition of overall thermal efficiency for a work out device

	

η η= = −
























w

w
w c T

P

P
out
act

out
iso out

act
P

R
c

g

p

, 1
2

1

1

	

(4.95)

and

	

ηc T
P

P
c T TP

R
c

P

g

p

1
2

1
1 21−
























= −( )

	

(4.96)

and solving for T2 results in

	

T T T
P

P
T

P

P

R
c

R
c

g

p

g

p

2 1 1
2

1
1

2

1

1 1 1= − −
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
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
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









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









	

(4.97)

Given cp = 1.042 kJ/kg-K and Rg = 0.2968 kJ/kg-K
Such that

	

w c T
P

Pout
act

P

R
c

g

p

= −





















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= ∗ ∗ − 


η 1

2

1

1 7 1 042 300 1
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2
. . 
















=

.
.

. /

2968
1 042

39 2 kJ kg

	

(4.98)
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and
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R
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(4.99)

4.10.2  �Problems

Problem 4.1  A room is heated with a 3-kW electric heater. How much power can 
be saved if a heat pump with a beta of 3 is to be used instead?

Problem 4.2  An air conditioner discards 3 kW to the surroundings with a power 
input of 1 kW. Find the rate of cooling and the Beta.

Problem 4.3  A Carnot heat engine has a thermal efficiency of 60%. If all else the 
same but the high temperature is raised 10%, what is the new thermal efficiency?

Problem 4.4  A household freezer operates in a room at 25 C. Heat must be trans-
ferred from the cold space at a rate of 4 kW to maintain its temperature at −20 
C. What is the theoretically smallest motor required to operate this freezer?

Problem 4.5  A piston/cylinder contains 1 kg of R-134a at 101.3 kPa. It will be 
compressed in an adiabatic reversible process to 400  kPa and should be at 100 
C. What should the initial temperature be?

Problem 4.6  Water at 300 C and 2 MPa is brought to saturated vapor in a rigid 
container. Find the final temperature and the specific heat transfer.

Problem 4.7  Two 10 kg blocks of copper, one at 300 C and the other at 25 C, come 
into thermal contact with each other. Find the change in entropy of the system and 
the final temperature.

Problem 4.8  R-410a at 400 kPa is brought from 20 C to 120 C in a constant pres-
sure process. Evaluate the entropy changes using the constant specific heat approach 
and the ideal gas tables that evaluate the integral involving specific heat.

Problem 4.9  A rigid tank contains 5 kg of methane at 1000 K and 1 MPa. It is now 
cooled to 300 K. Find the heat transfer and the entropy change.

Problem 4.10  A steam turbine inlet is at 1 MPa and 300 C. The exit is at 100 kPa. 
What is the lowest possible exit temperature? Which efficiency does this corre-
spond with?
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Problem 4.10  A steam turbine inlet is at 1 MPa and 300 C. The exit is at 100 kPa. 
What is the highest possible exit temperature? What efficiency does this corre-
spond with?

Problem 4.11  A steam turbine inlet is at 1 MPa and 300 C. The exit conditions are 
200 kPa and 200 C. What is the isentropic efficiency of this turbine?

Problem 4.12  Steam enters a turbine at 300 C and 1 MP and exits as saturated 
vapor at 50 kPa. What is the isentropic efficiency?

Problem 4.13  Two compressors for an agricultural application involving ammonia 
as a fertilizer are being evaluated in an economic study. The selected compressor 
will only be utilized for three years, and it will have no market value at the end of 
the year. The interest rate is 10%, compounded annually. Pertinent data are sum-
marized as follows:

ABC XYZ

Investment cost $2900 $6200
One-year maintenance cost $170 $510
Efficiency 80% 90%

The compressor will be used to compress 945 kg per hour of ammonia initially 
at 20 kPa and 300 K to a pressure of 0.1 MPa. If electricity costs 10 cents per kWh 
and the compressor will be operated 4000 hours per year, which compressor should 
be chosen? Assume ammonia is an ideal gas with a constant heat capacity.

Problem 4.14  120 kg/min of nitrogen gas is compressed from 1 bar and 25 °C to 
10 bar and 25 °C using a two-step process. The first step adiabatically compresses 
the nitrogen from 1 bar and 25 °C to 10 bar. This adiabatic compression step requires 
150 kW of work. The second step involves cooling the nitrogen exiting the com-
pressor to 25 °C in a heat exchanger using water. The water enters the heat exchanger 
at 25 °C and exits at 40 °C. Determine the temperature of the nitrogen exiting the 
compressor and the mass flow rate of water needed for the cooling. Use a 
temperature-dependent heat capacity for nitrogen given as a cubic polynomial.

Problem 4.15  Air enters an adiabatic nozzle steadily at 300  kPa, 200  °C, and 
35 m/s. It leaves at 100 kPa. The nozzle inlet has a diameter of 20.0 cm. If the outlet 
area of the nozzle is 5.60% of its inlet area, determine the exit temperature and 
velocity of the air. Use a temperature-dependent heat capacity for air given as a 
cubic polynomial.

Problem 4.16  Ammonia flowing at 1  mol  s−1 is adiabatically compressed from 
0.2 bar and 300 K. The compression requires 6450 J mol−1 of work. If the compres-
sor has an efficiency of 75%, determine the outlet pressure and temperature of the 
ammonia. Assume that ammonia behaves as an ideal gas with a temperature-
dependent heat capacity given as a cubic polynomial.
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Chapter 5
Various Heat Engines and Refrigeration 
Cycles

5.1  �Preview

Previously, we have seen how four engineering devices can be arranged in a certain 
order to provide a Rankine cycle, which is given in Sect. 3.8; Rankine cycles form 
the basis to electrical power generation for much of this country [1]. We have also 
explored the Carnot heat engine, heat pump, and refrigeration cycles.

In this chapter, we will explore in more depth two classes of heat engines (and 
refrigeration cycles): the first class is known as a vapor phase cycle and the second 
class is known as a gas cycle. For vapor phase cycles (Rankine cycle and reverse 
Rankine cycle), the cycle goes through a series of phases and often involves water. 
As well we know, when water is involved states change in such a manner that we 
resort to thermodynamic tables to determine quantities such as heat added or work 
released. For gas phase cycles, we’ll assume the working fluid is air, has constant 
properties such as cv, and that the ideal gas law is applicable; in gas phase cycles, 
there are no changes in phase.

A major aspect of this chapter is the development of an equation for thermal 
efficiency for heat engines, which is defined as

	
ηoverall

net

in

out in

in

w
q

w w
q

= =
−

	
(5.1)

And for refrigeration cycles, coefficient of performance is determined, and 
defined as

	
β =

q
w

lo

net 	
(5.2)
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Please note for actual heat engines and refrigeration cycles, finding heat and 
work are not as easy to determine as for Carnot heat engines and refrigeration 
cycles and will involve energy and entropy balances around each engineering device.

Many of the principles of this chapter will be made clear by examples.

5.2  �Vapor Phase Cycles

In this section, we’ll review (by examples) the Rankine cycle that is a form of heat 
engine and then reverse these Rankine cycles to form a refrigeration cycle.

Example 5.1 Rankine Cycle
Determine the overall thermodynamic efficiency of the Rankine cycle given as 
Table 5.1.

As was shown in Sect. 3.8, the steps in completing the problem are as follows

	1.	 Determine the enthalpy for each state by conducting an energy balance around 
each engineering device; h1 is given from the thermodynamic tables; h2 is deter-
mined by knowing the pump work; h3 is given from the thermodynamic tables; 
and h4 is determined by assuming s3 equals s4 and finding the enthalpy of the 
mixture with the same quality as s4

	2.	 Determine the heat and work associated with each engineering device
	3.	 Check that the sum of the work is equal to the sum of the heat
	4.	 Determine the overall thermal efficiency

Each step is given below
Energy Balance around Pump
Work is considered negative when it’s toward the system (Fig. 5.1).
It was determined that h1 = 225.91 kJ/kg and ν1 = .00101 m3per kg
The energy balance for the pump is

	 h w hin1 2
+ =δ 	 (5.1)

Table 5.1  Example 5.1 (Given)
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Energy Balance around Pump Fig. 5.1  Pump

Fig. 5.2  Boiler

Fig. 5.3  Turbine

Fig. 5.4  Condenser

5.2  Vapor Phase Cycles



106

Another form of the energy equation for incompressible fluids (assuming ν1 = ν2) is

	

PE P KE frictional losses
pump work turbine work PE

1 1 1

2

+ ( ) + +
+ + =

ν  

  ++ ( ) +P KEν
2 2 	

(5.2)

	
gZ P v h h h gZ P v

L p T1

1 1

2

2

2 2

2

2 2
+ + − + − = + +
ρ ρ 	

where it is assumed ΔKE = ΔPE = hL = hT = 0
Thus,

	

P h P
p

1 2

ρ ρ
+ =

	
(5.3)

or

	
− = = ( )( ) =δ νw P kJ kgin 1

00101 1985 2 0∆ . . /
	

(5.4)

and

	 h kJ kg
2

225 91 2 227 9= + =. . / 	 (5.5)

Energy Balance around Boiler
Heat is considered positive when it’s toward the system.
It was determined that h3 is 3023.5 kJ/kg and the energy balance for the boiler is

	 h q h q q kJ kgin in in2 3
227 91 3023 5 2795 58+ = + = =δ δ δ, . . , . / 	 (5.6)

Energy Balance around Turbine
Work is considered positive when it’s away from the system.
Because the turbine is isentropic, s3 = s4 and

s kg
kg K

s s X s sl g l3 4
6 77=

−
= = + −( ).

Where for 15 kPa

P s(l) s(g) s(mix) X

[kPa] [kJ/kg-K] [kJ/kg-K] [kJ/kg-K]
15 0.7584 8.0084 6.77 82.9%
X h(l) h(g) h(mix)

[kJ/kg] [kJ/kg] [kJ/kg]
82.9% 225.91 2599.06 2192.69

and h4 = 2192.7 kJ/kg and the energy balance for the turbine is

	 h w h w w kJ kgout out out3 4
2023 5 2192 7 830 8= + = + =δ δ δ, . . , . / 	 (5.7)

Energy Balance around Condenser
Heat is considered negative when it’s away from the system.
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The energy balance for the condenser is

	 h q h q q kJ kgout out out4 1
2192 7 225 9 1966 7= + = + = −δ δ δ, . . , . / 	 (5.8)

The summary of the solution is given as Table 5.2 where ∑δqi =  ∑ δwi and the 
overall thermal efficiency is 29.65%.

5.2.1  �Improvements to Rankine Cycle

This section will determine the effects on the overall thermal efficiency of changing 
the following

	1.	 Increasing the boiler pressure
	2.	 Increasing the boiler temperature
	3.	 Reducing the condenser pressure

These changes are given as Examples 5.2, 5.3, and 5.4.

Example 5.2 Increase Boiler Pressure
The solution is given as Table 5.3.

Example 5.3 Increase Boiler Temperature
The solution is given as Table 5.4.

Example 5.4 Reduce the Condenser Pressure
The solution is given as Table 5.5.

Table 5.2  Example 5.1 (Solution)
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Table 5.3  Example 5.2 (Solution)

Table 5.4  Example 5.3 (Solution)

Table 5.5  Example 5.4 (Solution)

5  Various Heat Engines and Refrigeration Cycles



109

A summary table is given as Table 5.6. From the table, we see that reducing the 
pressure in the condenser has the largest positive effect on overall thermal efficiency.

5.2.2  �Effects of Engineering Efficiency on Overall 
Thermal Efficiency

In this section, the effects of engineering efficiency associated with the pump and 
turbine on overall thermal efficiency are explored. The difference between this sec-
tion and the previous section is that an additional table is created to determine the 
enthalpies at states “2” and “4” for actual conditions where the appropriate equa-
tions are given below.

	
η pump

iso

act

h h
h h

=
−
−

2 1

2 1 	

	
ηturbine

act

iso

h h
h h

=
−
−

3 4

3 4 	

	

h h h hact
iso

pump
2 1

2 1= +
−

η
	

	
h h h hact

turbine
iso

4 3 3 4
= − −( )η

	

Example 5.5 90% Efficient Pump and Turbine
The solution is given as Table 5.7.

Example 5.6 80% Efficient Pump and Turbine
The solution is given as Table 5.8.

Example 5.7 70% Efficient Pump and Turbine
The solution is given as Table 5.9.

Table 5.6  Summary

Scenario Description q(in) q(out) w(in) w(out) η % Change

[kJ/kg] [kJ/kg] [kJ/kg] [kJ/kg]
1 Base case 2795.577 −1966.77 −2.013 830.82 29.65% 0.00%
2 Increase T(hi) 3129.56 −2136.28 −2.01 995.29 31.74% 7.05%
3 Decrease P(lo) 2883.705 −1925.17 −2.005 960.54 33.24% 12.12%
4 Increase P(hi) 2730.73 −1834.3 −4.04 900.47 32.83% 10.73%
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Table 5.7  Example 5.5 (Solution)

Table 5.8  Example 5.6 (Solution)

Table 5.9  Example 5.7 (Solution)

5  Various Heat Engines and Refrigeration Cycles
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A summary of Examples 5.5, 5.6, and 5.7 is given as Table 5.10. Please note with 
a 10% decrease in engineering efficiency of the pump and turbine there is an equal 
decrease in the overall thermal efficiency of 10%; additionally, the increased 
work(in) due to inefficiencies in the pump are minor compared to the loss of 
work(out) due to inefficiencies in the turbine and, as such, much of the reduction in 
overall thermal efficiency is attributable to the turbine inefficiencies.

5.2.3  �Reverse Rankine Cycle

The reverse Rankine cycle is shown in Figs. 5.5 and 5.6. The reverse Rankine cycle 
involves the following four processes and the device that provides undertakes 
the process

WARM

COLD refrigerated
space

environment

Evaporator

Compressor
Expansion
valve

3

4

2

1

QL

QH

Win

Condenser

T

s

Saturated vapor

Saturated
liquid

4' 4
1

2

3

QL

QH

Win

Figs. 5.5 and 5.6  Reverse Rankine cycle [2]

Table 5.10  Summary

Scenario Description q(in) q(out) w(in) w(out) Etta % Change

[kJ/kg] [kJ/kg] [kJ/kg] [kJ/kg]
5 90% efficient 

pump and turbine
2795.35 −2049.85 −2.24 747.74 26.67% −10.04%

6 80% efficient 
pump and turbine

2795.07 −2132.93 −2.52 664.66 23.69% −20.09%

7 70% efficient 
pump and turbine

2794.71 −2216.02 −2.88 581.57 20.71% −30.16%
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1->2, Pressure Increase (work added), Isentropic Compressor
2->3, Heat Dumped, Condenser
3->4, Pressure Decreased (work extracted), Isenthalpic Valve
4->1, Heat Added, Evaporator

In order to determine Eq. 5.2 particular to a reverse Rankine cycle, an energy 
balance must be conducted around each engineering device and all states, heat, and 
work accounted for in a table.

The following simplifying assumptions and conditions were made

	 h h
3 4
= 	

	1.	 Isentropic compressor, s1 = s2

	2.	 State 1 is a saturated vapor at Tlo

	3.	 State 2 is a superheated vapor at Thi

	4.	 State 3 is a saturated liquid at Thi

	5.	 State 4 is a mixture at Tlo

Note – the sum of the work equals the sum of the heat for a cycle.

Energy Balance for Compressor  The energy balance around the compressor in 
Fig. 5.7 is

	 h w hin1 2
+ = 	 (5.9)

And solving for win

	 w h hin = −
2 1 	 (5.10)

Energy Balance for Condenser  The energy balance around the condenser in 
Fig. 5.8 is

	 h q hout2 3
= + 	 (5.11)

And solving for qout

	 q h hout = −
2 3 	 (5.12)

Energy Balance for Expansion Valve  The energy balance around the expansion 
valve in Fig. 5.9 is

	
h h hsl Thi3 4
= =

, 	
(5.13)
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Fig. 5.7  Compressor

Fig. 5.8  Condenser

Fig. 5.9  Expansion Valve
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Energy Balance for Evaporator  The energy balance around the evaporator in 
Fig. 5.10 is

	 h q hin4 1
+ = 	 (5.14)

And solving for qout

	 q h hin = −
1 4 	 (5.15)

Once all enthalpies, works, and heats are determined, then a table (see Table 5.11) 
is completed and the coefficient of performance for the cycle is calculated, which is 
given as

	
β = =

−
−

q
w

h h
h h

lo

in

1 4

2 1 	
(5.16)

Fig. 5.10  Evaporator

Table 5.11  Various States, heat and work for a reverse Rankine cycle

State Process/Device T P s X h δw δq

[K] [MPa] [KJ/kg-K] [kJ/kg] [kJ/kg] [kJ/kg]
1 T1 P1 h1

Isentropic compressor -win

2 T2 P2 h2

Condenser +qin

3 T3 P2 h3

Expansion valve 0
4 T1 P1 h4

Evaporator -qout

1 T1 P1 h1
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The final step is to check the first law of thermodynamics for a cycle

	 ∑ = ∑δ δq w 	 (5.17)

Example 5.8 Reverse Rankine Cycle
Problem Statement

A reverse Rankine cycle has a Tlo of −10 C, Phi of 1 MPa, and the working fluid 
is R-134a. Find qlo, qhi, and Betaref.

Strategy
Determine all enthalpies and using energy balances around each engineering 

device, determine win, wout, qin, and qout. Once all this is found, determine beta for the 
refrigeration cycle.

Solution
State 1 – Saturated Vapor
h1 = h(saturated vapor) = 392.28 kJ/kg
s1 = 1.7319 kJ/kg-K = s2

State 2 – Superheated Vapor
Using a linear interpolation, find h2

1000 kPa

T [C]
s [kJ/
kg-K] h [kJ/kg]

40 1.7148 420.25
50 1.7493 431.24
44.94 1.7319 425.68

h2 is 425.68 kJ/kg

State 3 – Saturated Liquid
At state 3, pressure is 1000 kPa and X = 0%, using saturated R134a tables plus 

linear interpolations
Pressure [kPa] T [C] h [kJ/kg]

877.6 35 249.10
1017 40 256.54
1000 39.34 255.56

h3 is 255.56 kJ/kg

State 4 – Mixture
Since h3 = h4, h4 is 255.56 kJ/kg
Using the following equations,

	 w h hin = − = − = −1 2 392.29 425.68 33.40 kJ /kg 	

	 q h hhi = − = − = −3 2 255.56 425.68 170.12 kJ /kg 	

	 q h hlo = − = − =1 4 392.28 255.56 136.72 kJ /kg 	
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And beta for the refrigeration cycle is

	
β = =

136.72

33.40
4.09

	

5.3  �Gas Cycles

In this section, the following assumptions will be made (air-standard cycle)

	1.	 Air is the working fluid, acts ideal, and there is no inlet process, nor outlet process
	2.	 Combustion is treated as an external heat added to the system
	3.	 The cycle is completed by heat dumped to the atmosphere
	4.	 All processes are internally reversible
	5.	 Specific heat is assumed constant and takes the value for air at 300 K

5.3.1  �Brayton Cycle

The first example of an air cycle we’ll look at is the Brayton cycle, which is given 
in Figs. 5.11 and 5.12.

The following simplifying assumptions and conditions were made

	1.	 Isentropic compressor, s1 = s2.

	2.	 Isentropic turbine, s3 = s4

	3.	 The combustion is isobaric, P2 = P3

Note – the sum of the work always equals the sum of the heat for a cycle.

Energy Balance for Compressor  The energy balance around the compressor in 
Fig. 5.13 is

Figs. 5.11 and 5.12  Brayton cycle [3]
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	 h w h
1 2
+ =in 	 (5.18)

And solving for win

	 w h hin = −
2 1 	 (5.19)

Energy Balance for Combustion Chamber  The energy balance around the com-
bustion chamber in Fig. 5.14 is

	 h q h
2 3
+ =in 	 (5.20)

And solving for qin

	 q h hin = −
3 2 	 (5.21)

Fig. 5.13  Compressor

Fig. 5.14  Combustion chamber
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Energy Balance for Turbine  The energy balance around the turbine in Fig. 5.15 is

	 h ho3 4
= +w 	 (5.22)

And solving for wo

	 w h ho = −
4 3 	 (5.23)

Using Eq. 5.1,

	

ηoverall = − = −
−( )
−( )

= −
−


 


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1 1 1

1
4 1

3 2

1
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T
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hi

p

p 33

2

1T −
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 




	

(5.24)

Equation 5.24 can be simplified further by putting T
T

4

1

and T
T

3

2

 in terms of 
pressures (see Eqs. 5.25, 5.26, and 5.27).

Note

	

P
P P
2

1

3

4

=
P

	
(5.25)

Using the state equations for the isentropic path from state 1 to 2 results in

	

P
P

T
T

2

1 1

1

=










−
2

γ
γ

	

(5.26)

And
Using the state equations for the isentropic path from state 3 to 4 results in

Fig. 5.15  Turbine
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3

γ
γ

	

(5.27)

From Eqs. 5.25, 5.26, and 5.27 it is easy to see that

	

T
T

T
T

3

4

2

1

=
	

(5.28)

And

	

T
T

T
T

3

2

4

1
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(5.29)

Therefore, Eq. 5.24 simplifies to
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(5.30)

And from Eq. 5.26

	

η γ
γ

overall
T
T P

P

= − = −










−1
1

1

2

2
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1

	

And defining

	
r P

Pp =
2

1 	
(5.31)

Results in

	
η

γ
γ

overall pr= − −1 1

	
(5.32)

Another quantity of interest when dealing with Brayton cycles is to determine 
how much of the turbine work goes back to the system to drive the compressor, 
which is defined as back work rate (BWR) and given as

	
BWR

w
w

h h
h h

T T
T Tturbine

= =
−
−

=
−
−

compressor 2 1

3 4

2 1

3 4 	
(5.33)
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Example 5.9 Brayton Cycle
Problem Statement
Given an air standard Brayton cycle where the ambient conditions are 100 kPa and 
25 C, the rp associated with the compressor is 10 and the highest temperature in the 
system is 1100 C, determine win, wout, qin, and qout, the overall thermal efficiency, and 
the back work rate.

Strategy
Determine pressures and temperatures for all states. Once all temperatures are 
known and assuming an ideal, perfect gas, then the enthalpies are determined. 
Knowing all enthalpies perform an energy balance around each engineering device 
to determine work(in), work(out), heat(in), and heat(out). Once all this is deter-
mined, find the overall thermal efficiency and back work rate (BWR).

Solution

State 1
This is given as 100 kPa and 25 C (298 K).

State 2
Assuming an isentropic relationship between states 1 and 2, the following equation 
is appropriate for determining T2.

	

T

T

P

P
T K2

1

2

1

1
4

1 4
210 556=
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. →
	

And P2 is given as 1000 kPa.

State 3
T3 is given as 1100 C (1373 K).

State 4

	

T

T

P

P
T K4

3
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3

1
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1 4

4

1

10

711=
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
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Once all temperatures, compute all enthalpies, hi = cpTi, and determine win, wout, 
qin, and qout from the following equations:

	
w h h

kJ

kg

kJ

kgin = − = − = −1 2 289.152
558.261

269.11kJ /kg
	

	 q h hin = − = − =3 2 1374.49 558.2651 820.23kJ /kg 	

	 w h hout = − = − =3 4 1378.49 713.99 664.51kJ /kg 	

	 q h hout = − = − = −1 4 289.15 713.99 424.83kJ /kg 	
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Additionally,

	
η =

−
=

820.23 269.11

820.23
48.2%

	

	
WBR = =

269.11

664.51
40.5%

	

5.3.2  �Reverse Brayton Cycle

Using the definition of coefficient of performance for a refrigeration cycle we see
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(5.34)

and
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where
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and
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Therefore,
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(5.38)

5.4  �Examples and Problems

5.4.1  �Problems

Problem 5.1 Rankine Problem
A Rankine cycle utilizing ammonia as the working fluid runs between two 100 kPa 
and 1000 kPa with a high temperature of 40 C. Assuming that the pump and turbine 
are isentropic, what’s the overall thermal efficiency?

Figs. 5.16  Reverse Brayton cycle [4]
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Problem 5.2 Rankine Problem
Redo Problem 5.1, but with a pump and turbine at 80% isentropic efficiency, what’s 
the overall thermal efficiency?

Problem 5.3 Reverse Rankine Problem
Consider a reverse Rankine cycle utilizing R-134a as the working fluid. The tem-
perature of the refrigerant in the evaporator is −30 C and in the condenser is 40 
C. The refrigerant is circulated at the rate of 0.05 kg/s. Determine the beta and the 
capacity of the plant in rate of refrigeration.

Problem 5.4 Reverse Rankine Problem
Redo Problem 5.3, but with a compressor at 80% isentropic efficiency, what’s the 
new beta?

Problem 5.5 Brayton Problem
A Brayton cycle with rp of 5 and high temperature of 1200 C has ambient conditions 
of 0 C and 80 kPa. What’s the overall thermal efficiency and BWR?

Problem 5.6 Brayton Problem
Redo Problem 5.5, but with a compressor and turbine at 80% isentropic efficiency, 
what’s the overall thermal efficiency?

Problem 5.7 Reverse Brayton Problem
Consider a reverse Brayton cycle where air enters the compressor at 80 kPa and 0 C 
and leaves at 400 kPa. Air enters the expander at 20 C. Determine Beta for the cycle.

Problem 5.8 Reverse Brayton Problem
Redo Problem 5.7, but with a compressor at 80% isentropic efficiency, what’s the 
overall thermal efficiency?

Problem 5.9 Rankine Cycle
A 210-MW steam power plant operates on a simple ideal Rankine cycle. Steam 
enters the turbine at 10 MPa and 500 °C and is cooled in the condenser at 10 kPa. If 
the efficiency of the turbine and pump are 85% and 90%, respectively, determine the 
following:

	(a)	 The quality of the steam at the turbine exit.
	(b)	 The thermal efficiency of the cycle.
	(c)	 The mass flow rate of the steam.

Problem 5.10 Brayton Cycle
An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio of 
10. Heat is added to the cycle at a rate of 500 kW. Air passes through the engine at 
a rate of 50 m3 min−1 at STP. Air entering the compressor is at 70 kPa and 0 °C. The 
efficiency of the compressor and turbine are 80% and 90%, respectively. Assuming 
that air behaves as an ideal gas with a temperature-dependent heat capacity given as 
a cubic polynomial, determine the power produced by the engine and its thermal 
efficiency.

5.4  Examples and Problems
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Problem 5.11 Refrigeration Cycle
You are designing a refrigeration cycle that operates on the ideal vapor-compression 
cycle. The temperature range of the cycle is between 0 °C and 50 °C. The working 
fluid is R-134a. The cooling load is to be 20 kW. Two compressor options are to be 
considered: (1) a 70% efficient compressor; or (2) an 80% efficient compressor that 
is $5000 more expensive. The compressor runs on electricity which costs 10 cents 
per kWh. Assuming the system runs constantly, how long would the system have to 
be run in order for the higher-efficiency compressor to be cost-effective?

�Appendix 5.1: Rankine Cycle Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 5.2: Reverse Rankine Cycle Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 5.3: Brayton Cycle Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.
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Chapter 6
Thermodynamic Properties and Gas 
Mixtures

6.1  �Preview

The purpose of this chapter is the following. There are certain quantities within the 
thermodynamic tables that we cannot derive through experimentation but determine 
through measuring other quantities and what are known as the Maxwell relation-
ships. These relationships relate one set of states to another set of states. An 
example is
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∂
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Tν ν 	
(6.1)

So that if we know the relationship between pressure and temperature at a fixed 
volume this helps us to understand the relationship between entropy and specific 
volume at a fixed temperature.

Another facet of the chapter is to utilize the Maxwell relationships to relate states 
across the mixture dome from saturated liquid to saturated gas; this developed rela-
tionship is known as the Clapeyron equation. This process allows us to determine 
the heat of vaporization solely in terms of {T, P, ν} through either experimentation 
or the appropriate equation of state, which was discussed in Chap. 1.

The chapter also provides relationships for the first law and second law solely in 
terms of temperature and pressure. For these relationships to be complete, we also 
need to have an appropriate equation of state.

The final part of the chapter provides a method of determining relationships 
between temperature, pressure, and specific volume for a gas mixture.
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6.2  �Maxwell’s Equations

For a closed system, the energy of the system is

	 de q wrev rev≡ −δ δ 	 (6.2)

And using the definitions of entropy and work

	 de Tds Pd≡ − ν 	 (6.3)

For an open system, the energy of the system is

	 dh de Pd dP≡ + +ν ν 	 (6.4)

Substituting Eq. 6.3 into Eq. 6.4 results in

	 dh Tds dP≡ +ν 	 (6.5)

For a closed system, the entropy balance of the system is

	 da Pd sdT≡ − −ν 	 (6.6)

where a is a measure of the Helmholtz energy.
For an open system, the entropy balance of the system is

	 dg dP sdT≡ −ν 	 (6.7)

where g is a measure of the Gibbs energy.
All quantities in Eqs. 6.3, 6.5, 6.6, and 6.7 are states and described by exact dif-

ferentials. The total differential for a quantity F is given as
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and
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Because dF is an exact differential, Eqs. 6.9 and 6.10 are equivalent.
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Using the fact that Eqs. 6.3, 6.5, 6.6, and 6.7 are all exact differentials, the fol-
lowing conditions hold for Eq. 6.3
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For Eq. 6.5,
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For Eq. 6.6,
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



 = −

∂
∂







 = −

a Pand a
T

s
T Pν 	

(6.13)

For Eq. 6.7,

	

∂
∂







 =

∂
∂







 = −

g
P

and g
T

s
T

ν
ν 	

(6.14)

Using Eqs. 6.11 through 6.14, we get a set of equations known as the Maxwell 
equations [1, 2].

	

∂
∂







 =

∂
∂









e

s

h

s Pν 	
(6.15)

	

∂
∂







 =

∂
∂









h

P

a

s Tν 	
(6.16)

	

∂
∂







 =

∂
∂









e g

PS Tν 	
(6.17)

	

∂
∂







 =

∂
∂









a

T

g

TP ν 	
(6.18)

Another set of Maxwell equations that has proven to be more useful is [1].

	

∂
∂







 = −

∂
∂









T P

ssν ν 	
(6.19)
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∂
∂







 =

∂
∂









T

P ss P

ν

	
(6.20)

	

∂
∂







 =

∂
∂









P

T

S

Tν ν 	
(6.21)

	

∂
∂







 = −

∂
∂









ν
T

s

PP T 	
(6.22)

6.3  �Enthalpy and Entropy as Functions of T and P

Given

	
de

e

T
dT

e

P
dP

T

=
∂
∂







 +

∂
∂









ν 	
(6.23)

And

	
ds

s

T
dT

s
d

T

=
∂
∂







 +

∂
∂









ν ν
ν

	
(6.24)

We want to define Eqs. 6.23 and 6.24 solely in terms of {T, P}.
By definition,

	
C

e

TV =
∂
∂








ν 	

(6.25)

And using Eq. 6.21

	

∂
∂







 =

∂
∂









P

T

s

Tν ν 	
(6.26)

Substituting Eqs. 6.25 and 6.26 into Eqs. 6.23 and 6.24 results in

	
de C dT

e

P
dPV

T

= +
∂
∂









	
(6.27)
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and

	
ds

s

T
dT

P

T
d=

∂
∂







 +

∂
∂









ν ν

ν
	

(6.28)

And using Eqs. 6.3, 6.27, and 6.28 we can get

	

de C dT
e

P
dP Tds Pd T

s

T
dT

P

T
dV

T

= +
∂
∂







 = − =

∂
∂







 +

∂
∂







ν ν

ν ν








− Pdν

	

(6.29)

And combining like differentials results in

	

T
s

T
C dT

u
P T

P

T
dV

T

∂
∂







 −









=
∂
∂







 + −

∂
∂

















ν
νν

ν
	

(6.30)

where

	

∂
∂







 =

s

T

C

T
V

ν 	
(6.31)

and

	

∂
∂







 + −

∂
∂







 =

e
P T

P

TTν ν0
	

(6.32)

Substituting Eq. 6.31 into 6.28 and Eq. 6.32 into Eq. 6.28 results in

	

de C dT T
P

T
P dV= +

∂
∂







 −











ν

ν
	

(6.33)

and

	
ds

C

T
dT

P

T
dV= +

∂
∂








ν

ν
	

(6.34)

Further, du and dh can be related through

	 ∆h e P P= + −∆ 2 2 1 1ν ν 	 (6.35)
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And dh can be shown to be

	

dh C dT T
u

T
dPP

s

= + −
∂
∂

















ν

	

(6.36)

The above discussion was for a single phase. What follows is a discussion that 
addresses state changes under the mixture dome from the saturated liquid to satu-
rated gas lines.

Starting with Eq. 6.5

	 dh Tds dP= +ν 	 (6.37)

And for a constant temperature and pressure

	 dh Tds= 	 (6.38)

And integrating both sides results in

	
h h T s sg l g l− = −( )

	
(6.39)

And utilizing the Maxwell relationship (Eq. 6.21)

	

∂
∂







 =

∂
∂









s P

TTν ν 	
(6.40)

where the right-hand side is actually independent of specific volume

	

∂
∂







 =

∂
∂









s P

TT Satν 	
(6.41)

And integrating (where 
∂
∂









P

T
is constant

Sat

 ) results in

	

s s

v

P

T
g l

g l Sat

−

−
=

∂
∂







ν

	

(6.42)

And substituting Eq. 6.39 results in

	

1

T

h h

v

P

T
g l

g l Sat

−

−
=

∂
∂







ν

	

(6.43)

The beauty of Eq. 6.43 is that hg − hl can be determined by knowing the relation-
ship between {T, P, ν}, which can be either determined experimentally or through 
an appropriate equation of state.
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Further, νg ≫ νl and assuming v
R T

Pg
g=  results in

	

1

T

h h

R T

P

P

T
g l

g Sat

−
=

∂
∂









	

(6.44)

Another form of Eq. 6.44 is

	

dP
P

h
R

dT
T

Sat

g

=
∆

2

	

(6.45)

And assuming ∆hsat is constant results in the Clausius-Clapeyron equation [1].

	

ln P
h
R T

CSat

g

( ) = − +
∆ 1

	

(6.46)

Example 6.1 Application of Clausius-Clapeyron Equation.
We see for water from saturation pressure 5 kPa to 200 kPa has the following rela-
tionship between 1/T and P.

While the ∆hSat does vary as shown in Fig. 6.2, from Fig. 6.1 and using a value 
of 0.4615 kJ/kg-K for Rg, the calculated value for ∆hSat is 2344 kJ/kg and an accept-
able estimation for the given saturated pressure range.

y = -5078.5x + 18.23
R² = 0.9999

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2.00E-03 2.50E-03 3.00E-03 3.50E-03

ln
(P
)

1/T

Fig. 6.1  1/T versus ln(P) for Water
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6.3.1  �Enthalpy and Entropy Functions for Ideal, Perfect Gases

For an ideal, perfect gas and utilizing Eqs. 6.34 and 6.36, a relationship will be 
developed to account for the energy and entropy balance for an ideal gas.

For an ideal gas,

	

∂
∂







 =

∂
∂







 = =

P
T

R v
T

R
P

and RT
PPν ν

ν, ,
	

(6.47)

From Eq. 6.36, it is easily shown

	 dh C dTP= 	 (6.48)

Or

	 ∆ ∆h C TP= 	 (6.49)

And from Eq. 6.34

	

∆S C T
T

RlnV=








 +









ln

2

1

2

1

ν
ν

	

(6.50)

y = -2.5309x + 3200.1
R² = 0.9995
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Fig. 6.2  T versus delta(h) for Saturated Water
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6.3.2  �Enthalpy and Entropy Functions for Van der Waal Gas

Using the equation of state for a van der Waal gas and Eqs. 6.34 and 6.36, a relation-
ship will be developed to account for the energy and entropy balance for a non-
perfect, van der Waal gas.

	

∂
∂







 =

−
P

T

R

bV

u

ν 	
(6.51)

From Eq. 6.33, it is easily shown

	
de C dT

a
dV= +

ν
ν

2
	

(6.52)

And from Eq. 6.34

	
ds C

dT

T

R

b
dVV

u= +
−υ 	

(6.53)

An enthalpy balance can be determined by relating Δu and Δh through Eq. 6.35.

6.4  �Composition of Mixtures

The composition of a mixture can be expressed either on a molar basis or a mass 
basis; each is discussed below.

6.4.1  �Molar Basis

The mole fraction of species “i” is defined as

	
χi

i

i

N

N
=
∑ 	

(6.54)

where Ni is the number of moles of species “i”.
By definition

	 ∑ =χi 1 	 (6.55)

And
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χi i

mix

i

Y
MW

MW
=

	
(6.56)

6.4.2  �Mass Basis

The mass fraction of species “i” is defined as

	
Y

m

mi
i

i

=
∑ 	

(6.57)

where mi is the mass of species “i”.
By definition

	 ∑ =Yi 1 	 (6.58)

And

	
Y

MW

MWi i
i

mix

= χ
	

(6.59)

6.5  �Gas Mixtures, Part I

In this section, the question that will be asked is how to determine a specified state 
{T, P,   ν} of a gas system made from two or more substances? Another method 
applicable to cubic equations of state will be given in Sect. 6.6.

An example of determining the total mass for a binary mixture is given below.

Example 6.2 Gas Mixture Problem
A 2 kg mixture of 50% argon and 50% nitrogen by mole is in a tank at 2 MPa, 
180 K. How large is the volume using (a) Ideal Gas Law and (b) Kay’s Rule?

We’ll discuss both methods and then solve this problem. Note there are other 
methods [1, 2].

6.5.1  �Ideal Gas Mixtures

The idea behind an ideal gas mixture is that each component independently contrib-
utes to the state {n, P, V}. This is expressed mathematically for volume as
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	 V V V VTotal A B X= + +… 	 (6.60)

And

	
V

n R T

P

n R T

P

n R T

PTotal
A u B u X u= + +…+

	
(6.61)

Similar expressions can be developed for pressure or molar mass.

6.5.2  �Kay’s Rule

The idea behind Kay’s rule is that the critical pressure and temperature for the mix-
ture is a linear combination of each component and given by

	 T T T Tcritical
mixture

A critical
A

B critical
B

X critical
X= + +…+χ χ χ 	 (6.62)

And

	 P P P Pcritical
mixture

A critical
A

B critical
B

X critical
X= + +…+χ χ χ 	 (6.63)

where χi is defined as

	
χi

moles of i

total moles
=

 

 	
(6.64)

The correction factor to the ideal gas solution is to determine the z factor associ-
ated with the Lee Kessler chart using the critical temperature and pressure associ-
ated with the mixture.

	
V

n R T

PX
X u=

	

The solution for Example 6.2 is given below.

Substance(A) Argon

Substance(B) Nitrogen mwAnA + mwBnB = 2 kg

Total mass [kg] 2.00
Temperature [K] 180.00 39.948nA + 28.013nB = 2
Pressure [MPa] 2.00
X(A) 0.50 39.948{χAntotal} + 28.013 {χBntotal} = 2
X(B) 0.50
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Substance(A) Argon

Mw(A) [kg/
kmole]

39.95

Mw(B) [kg/
kmole]

28.01

R(u) [kJ/
kg-kmole]

8.31

PV = nRuT

Find total volume
n(total) [kmoles] 0.0588573
n(A) [kmoles] 0.0294286 PV = nZRuT

n((B) [kmoles] 0.0294286
V(A) [m^3] 0.0220216
V(B) [m^3] 0.0220216
V(Total) [m^3] 0.0440
Substance P[critical] T[critical] X(*) P*[critical] T*[critical]

[MPa] [K] [MPa] [K]
Argon 4.87 150.8 50% 2.435 75.4
Nitrogen 3.39 126.2 50% 1.695 63.1

4.13 138.5
T P T[r] P[r] Z V
[K] [MPa] [m^3]
180 2 1.30 0.48 0.92 0.0405
Method V

[m^3]
Ideal gas 0.0440
Kay’s rule 0.0405

6.6  �Gas Mixtures, Part II

We saw in Chap. 1 that when pressure increases for a fixed temperature or tempera-
ture decreases for a fixed pressure, then some of the assumptions that ideal gas 
behavior is based on are no longer valid. To address these concerns, cubic equations 
of state (EOS) were developed that mimic the behavior of pressure versus ν for real 
gases; further, these EOSs address other concerns.

The cubic EOS can be extended to gas mixtures through what are called mixing 
rules; the mixing rule utilized in this section is known as van der Waals one-fluid 
mixing rules [2]. Here’s how it works.

The mixture coefficients {amix, bmix} are defined [2] as

	

a

a a

a a
mix n

n

n nn n

= …[ ]
















…
















χ χ
χ

χ
1

11 1

1

1�
� � �

�
	

(6.65)
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and

	

b

a

a
mix n

n

= …[ ] …
















χ χ1

1

	

(6.66)

where

	
a a a aij ji i j= =

	
(6.67)

And xi is the mole fraction for pure component i, {ai, bi} are the coefficients for 
pure component i, and n is the number of components.

An example of this method for a binary mixture is given below.

Example 6.3 Gas Mixture for Cubic Equations of State
Determine how the pressure changes for a mixture of methane and air for tempera-

tures of 300 K, 600 K, and 1200 K and νmix

L

mole
= . .1  Do this by varying the per-

centage of methane from 0 to 100% and for both the van der Waal and Redlich 
Kwong EOS.

The results of this analysis are given below.

6.7  �Examples and Problems

6.7.1  �Examples

Example 6.4  For van der Waal’s equation of state, determine

	(a)	 dP,
	(b)	 Show mixed second derivatives are equal

	

∂
∂









ν
T P 	

Solution for (a)

	
dP

P

T
dT

P
d MdT Nd

T

=
∂
∂







 +

∂
∂







 = +

ν ν
υ ν

	
(6.68)

where
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Fig. 6.3  Pressure versus % Methane (VW EOS)
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M

R

b
=

−ν 	
(6.69)

and

	

N
RT

b

a
=

−

−( )
+

ν ν2 3
2

	

(6.70)

such that

	

dP
R

b
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RT

b

a
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
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


+
−

−( )
+











ν ν ν
ν

2 3
2

	

(6.71)

Solution for (b)

	

∂
∂







 =

−

−( )
=

∂
∂







 =

−

−( )
M R

b

N

T

R

bTν ν νν
2 2

	

(6.72)

Solution for (c).
The triple product states

	

∂
∂









∂
∂









∂
∂







 = −

ν
ν νT

P T

PP T

1
	

(6.73)

and

Fig. 6.4  Pressure versus % Methane (RK EOS)
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∂
∂
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 =
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∂
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

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


ν

ν ν

T P T

P
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(6.74)

Additionally, a double product shows

	

∂
∂







 =

∂
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


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
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P P
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(6.75)

Substituting Eq. 6.75 into Eq. 6.74 results in
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∂
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

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

∂
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ν
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P
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PP

T 	

(6.76)

For VW EOS,

	

∂
∂



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

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∂






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+

P

T

R

b

P RT

b

a

Tν ν ν ν ν
,

2 3
2

	

(6.77)

Substituting Eq. 6.77 into 6.76 results in

	

∂
∂







 =

−( )
− −( )

ν ν

ν
νT

R b

RT
a

bP 2
3

2

	

(6.78)

Example 6.5  Determine 
∂
∂









s

Tν
for water at 240 C and 0.4646  m3/kg using 

Maxwell relationships and RK EOS.

From Maxwell relationships,

	

∂
∂







 =

∂
∂









s P

TTν ν 	
(6.79)

RK EOS is

	

P
RT

b

a

b T
=

−
−

+( )ν ν ν
1

	

(6.80)
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and

	

∂
∂







 =

−
+

+( )
P

T

R

b

a

b Tν ν ν ν
1

2 1 5.

	

(6.81)

Given

	

ν = = =








 =. . , . , .

.
4646 8 372 142 59 0

3 3 3
2

5m
kg

m
kmole

a Bar m
kmole

K b 2211

3m
kmole

	

(6.82)

and thus

	

∂
∂







 =

−
=

∂
∂









P

T

J

m K

s

Tν ν
996

3

	

Example 6.6  Using RK EOS and for an isothermal process determine equations 
for ∆s, ∆u, and ∆h.

Defining ds as the following

	
ds

C

T
dT

T
dP

C

T
dT

P

T
dP

P

V= −
∂
∂







 = +

∂
∂









ν
ν

ν 	
(6.83)

and du as

	

dh C dT T
T

dPP
P

= + −
∂
∂

















ν

ν

	

(6.84)

And T1 = T2 implies

	
ds

P

T
d=

∂
∂








ν

ν
	

(6.85)

	

du T
P

T
P d=

∂
∂







 −











ν

ν
	

(6.86)

and

	 ∆ ∆ ν νh u= + −P P2 2 1 1 	 (6.87)

Further,
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∂
∂







 =

−
+

+( )
P

T

R

b

a

b Tν ν νν
1

2 1 5.

	

(6.88)

And so

	

ds
R

b

a

b T
d=

−
+

+( )










ν ν
ν

ν
1

2 1 5.

	

(6.89)

	

du
RT

b

a

b T

RT

b

a

b T
d=

−
+

+( )








 − −

+
+( )











ν ν ν ν
ν

ν ν
1 1

	

(6.90)

	

=
+( )

3

2

1a

b T
d

ν ν
ν

	

Example 6.7  Show that for an ideal gas,

	
C C Rp v u− =

	
(6.91)

Given

	
ds

C

T
dT

P

T
d

C

T
dT

T
dPv p

P

= +
∂
∂







 = −

∂
∂









ν

ν
ν

	
(6.92)

and

	

C C

T
dT

P

T
d

T
dPp v

P

−
=

∂
∂







 +

∂
∂









ν

ν
ν

	
(6.93)

And dP can be defined as

	
dP

P

T
dT

P
d

T

=
∂
∂







 +

∂
∂









ν ν
υ

	
(6.94)

Substituting Eq. 6.94 into 6.93 results in

	

C C

T
dT

P

T
d

T

P

T
dT

Pp v

P

−
=

∂
∂







 +

∂
∂









∂
∂







 +

∂
∂









ν ν

ν
ν

ν TT

dυ






 	

(6.95)

Also,

	

C C dT T
P

T
d T

T

P

T
dT

P
p v

P

−( ) =
∂
∂







 +

∂
∂









∂
∂







 +

∂
∂





ν ν

ν
ν

ν










T

dυ
	

(6.96)
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and

	

C C dT T
T

P

T
dT T

P

T
T

Tp v
P

−( ) −
∂
∂









∂
∂







 =

∂
∂







 +

∂
∂





ν υ

ν ν 


∂
∂



















P T

P
d

ν
υ

	

(6.97)

Since T and ν are independent variables, there derivates can be set to zero 
and thus

	
C C T

T

P

TP V
P

− =
∂
∂









∂
∂









ν

ν 	
(6.98)

and

	

∂
∂







 = −

∂
∂









∂
∂









P

T T

P

P Tν

υ
ν 	

(6.99)

And substituting Eq. 6.99 into 6.98 results in

	
C C T

T

P
P V

P T

− = −
∂
∂









∂
∂









ν
ν

2

	
(6.100)

Another form of Eq. 6.10 in terms of material science considerations is

	
C C TP V− =ν

β
κ

2

	
(6.101)

where β is volume expansivity and κ is isothermal compressibility where β is 
defined as

	
β

ν
ν

= −
∂
∂









1

T P 	
(6.102)

And κ is defined as

	
κ

ν
ν

= −
∂
∂









1

P T 	
(6.103)

For an ideal gas,

	

∂
∂







 = = =

ν
ν

ν
T

R

P

R

R T TP

u u

u 	
(6.104)
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and

	

∂
∂







 = −

P R T

T

u

ν ν 2

	
(6.105)

And using the definition for cP − cV, which is Eq. 6.100

	
C C T

T

R T
RP V

u
u− = − 








−







 =

ν
ν

2

2

	
(6.106)

Example 6.8  Determine the error in assuming cP = cV for water at 1 atmosphere 
and 20 C. In Chap. 2, we assumed for liquids and solids that the specific heat of the 
material is independent of path, temperature, and pressure. How accurate is this 
assumption?

Starting from Eq. 6.11

	
C C TP V− =ν

β
κ

2

	
(6.107)

And for water at 20 C and 1 atmosphere values are available for κ and β, it is 
determined that.

T [C] Ρ [kg/m^3] β*1e6 [1/K] Κ*1e6 [1/Bar]

20 998.21 206.6 45.90

Therefore,

	
C C

kJ

kg KP V− =
−

.027
	

(6.108)

and C kJ
kg KP = −4 188.  and C kJ

kg KV = −4 161.

The relative error in assuming cP = cV is

	
RE

C C

C
P V

V

=
−

= . %66
	

(6.109)

which is acceptable!

Example 6.9  A mixture is 0.18 kmoles as CH4 and 0.274 kmoles as C4H10, total 
volume is 0.241 m3 at 238 C, and measured pressure is 68.9 Bars. Using a) ideal gas 
law and b) Kay’s rule determine the pressure and compare against measured 
pressure.
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Ideal Gas Solution
Total Mole = 0.454 kmoles, y1 = 0.396, y2 = 0.604

	
ν = =

V

n

m

kmole
total

total

.531
3

	
(6.110)

And

	

P
R T

N m

kmole K
K

m

kmoe

e Pa Barsu= =

−
−

+( )
= =

ν

8314 238 273

531

80 6 80
3

.
	

(6.111)

Kay’s Rule

	
T y T P y Pc i c i c i c i= ∑ = ∑, ,,

	
(6.112)

Substance y(i) T[c] [K] P[c] [Bars] y(i)T[c,i] y(i)P[c,i]

Methane 0.40 191.00 46.40 75.64 18.37
Butane 0.60 425.00 38.00 256.70 22.95

1 T[c] = 332.3 P[c] = 41.3

And
Using the Lee Kessler chart to determine Z where Z is dependent on a changing 

pressure, the following iterative solution is found.

T P T[r] P[r] Z P

[K] [bars] [bars]
511 80 1.5 1.9 0.84 67.2
511 67.2 1.5 1.6 0.88 70.4
511 70.4 1.5 1.7 0.88 70.4

6.7.2  �Problems

Problem 6.1  Using the saturated nitrogen tables plot five points for 1/T versus 

ln(P) between 65 K and 100 K and show the slope of this line is appropriately −
∆h
R

Sat

g

.

Problem 6.2  Using the saturated solid-liquid water tables plot five points for 1/T 
versus ln(P) between 0 and  −  20 C and show the slope of this line is appro-

priately −
∆h
R

Sat

g

.
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Problem 6.3  Using the following relationship du = Tds − Pdν and the Maxwell 

relationships to find a relationship for 
∂
∂









u

P T

that is only a function of {nu, T, P}.

Problem 6.4  A mixture of CO2 (30% by moles) and nitrogen (70% by moles) with 
mass 2 kg is within a 1 m3 container at 400 C. Using both a) ideal gas law and b) 
Kay’s rule determine the pressure in the tank.

Note your solutions lies between the solutions for CO2 (100% by moles) and 
nitrogen (100% by moles). Show this!

Problem 6.5  A mixture of CO2 (70% by moles) and nitrogen (30% by moles) with 
mass 2 kg is at 2 MPa. Using both a) ideal gas law and b) Kay’s rule determine the 
volume in the tank.

Problem 6.6  Derive the expression dh C dT T
T

dP
P

= + −
∂
∂

















ν

ν
ν .

Problem 6.8  Using the equations given in Problem 6.5 find Δh for van der 
Waal’s EOS.

Problem 6.9  Using thermodynamic data for water estimate the freezing tempera-
ture of liquid water at a pressure of 4000 lbf/in^2.

Problem 6.10  Using Eq. 6.43 for ds determine Δs for water from 100 C and 50 kPa 
to 100 C and 200 kPa and compare against the thermodynamic tables.

Appendix 6.1: Thermodynamic Relationships

Maxwell Relationships 

∂
∂







 =

∂
∂







 = −

u
s

T and u P
sν ν

∂
∂







 =

∂
∂







 =

h
s

T and h
PP S

ν

∂
∂







 = −

∂
∂







 = −

A Pand A
T

s
T Pν

∂
∂







 =

∂
∂







 = −

g
P

and g
T

s
T V

ν

∂
∂







 = −

∂
∂









T P

sS Vν
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∂
∂







 =

∂
∂









T

P ss P

ν

∂
∂







 =

∂
∂









P

T

s

Tν ν

∂
∂







 = −

∂
∂









ν
T

s

PP T

Triple Product Rules 

∂
∂









∂
∂









∂
∂







 = −

P

T P

T

T Pν

ν
ν

1

∂
∂









∂
∂









∂
∂







 = −

T

P

P

TT Pν ν
ν

1

Double Product Rules 

∂
∂









∂
∂







 =

P

T

T

Pν ν

1

∂
∂









∂
∂







 =

P

PT Tν
ν

1

∂
∂









∂
∂







 =

ν
νT

T

P P

1

Other Relationships 

dP

dT

h h

TSat

g l

g l







 =

−

−( )ν ν

C C T
T

P
P V

P T

− = −
∂
∂









∂
∂









ν
ν

2

C C TP V− =ν
β
κ

2
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β
ν

ν
= −

∂
∂









1

T P

κ
ν

ν
= −

∂
∂









1

P T

Equations of State 

Ideal Gas Law

	 P RTν = 	

Van der Waals EOS

	
P

RT

b

a
=

−
−

ν ν 2
	

Redlich-Kwong EOS

	

P
RT

b

a

b T
=

−
−

+( )ν ν ν
1

	

First and Second Law 

First Law

	

du C dT T
P

T
P dV= +

∂
∂







 −











ν

ν
	

	

dh C dT T
u

T
dPP

s

= + −
∂
∂

















ν

	

Second Law

	 ∆ ∆h u P P= + −2 2 1 1ν ν 	

	
ds C

dT

T

P

T
dV irr= +

∂
∂







 +
ν

ν σ
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7.1  Preview

Before we discuss the theories of combustion, we need to go over some basics. 
These basic considerations include conservation principles for a gaseous system, 
the definition of speed of sound, applying this definition to an ideal, perfect gas, and 
normal shocks. A shock forms when a gas travels faster than the local speed of sound.

Mention needs to be made of what is an ideal, perfect gas and consider the 
assumption of assuming a substance is ideal and perfect. An ideal gas is simply a 
gas that obeys ideal gas behavior, which for air near 300 K is acceptable to pressures 
of 10 to 12 MPa [1]. A thermodynamically perfect gas is one where the specific heat 
is independent of both pressure and temperature. For air, this is generally true.

7.2  �Conservation Principles

Conservation principles for a gaseous system given as Fig. 7.1 are derived below.
The three equations to be derived below for conservation of energy, mass, and 

momentum will be utilized throughout this book. In this chapter, these principles 
will form the basis to our definition of speed of sound and equations to relate states 
on both sides of a normal shock.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87387-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-87387-5_7#DOI
https://doi.org/10.1007/978-3-030-87387-5_7#DOI
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7.2.1  �Conservation of Energy

Accounting for the energy of the system (time invariant) provides the following 
equation

	  

 

q e w e+ = +1 2 	 (7.1)

where q  is the heat transfer associated with the control volume, w  is the work 
associated with the control volume, e1 is the energy associated with the fluid enter-
ing the control volume, and e2



 is the energy associated with the fluid leaving the 
control volume.

Another form of Eq. 7.1 is

	

   m h z
u

q m h z
u

w1 1 1
1
2

2 2 2
2
2

2 2
+ +









 + = + +









 +

	

(7.2)

where mi  represents the mass rate (1 for “in” and 2 for “out” of the control volume), 

hi is the enthalpy, Zi is the potential energy above some datum, and 
ui
2

2
 is the 

kinetic energy.
In this chapter, it will be assumed that there is no heat transfer, work, no change 

in elevation and the mass rates in and out of the control volume are equal. With these 
assumptions, Eq. 7.2 becomes

	
h

u
h

u
1

1
2

2
2
2

2 2
+ = +

	
(7.3)

Fig. 7.1  Gaseous fluid system
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7.2.2  �Conservation of Mass

Assuming the rate of mass in is equal to the rate of mass out

	  m A u m A u1 1 1 1 2 2 2 2= = =ρ ρ 	 (7.4)

where it is assumed that the areas are equivalent, results in

	 ρ ρ1 1 2 2u u= 	 (7.5)

7.2.3  �Conservation of Momentum

From Newton’s second law,

	
+ → ∑ = − =

( )
= −( ) = −( )F P A P A

d mV

dt
m u u uA u ux 1 2 2 1 2 1 ρ

	
(7.6)

And dividing by A

	
P P u u u1 2 2 1− = −( )ρ

	
(7.7)

Or

	 P u P u1 1 1
2

2 2 2
2+ = +ρ ρ 	 (7.8)

7.3  �Speed of Sound

Figure 7.2 provides the conditions for a substance moving at the speed of sound (see 
Appendix 7.1 for more details).

Fig. 7.2  Control Volume for Gas Moving at Speed of Sound [2]

7.2  Speed of Sound
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From conservation of mass,

	
ρ ρ ρAc A c V= +( ) −( )∆ ∆

	
(7.9)

Expanding becomes

	 ρ ρ ρ ρ ρAc Ac Ac A V A V= + − −∆ ∆ ∆ ∆ 	 (7.10)

which simplifies to

	 ρ ρ ρ∆ ∆ ∆ ∆V V c+ = 	 (7.11)

And solving for ΔV

	
∆

∆
∆

V c
=

+
ρ

ρ ρ 	
(7.12)

From conservation of momentum,

	
PA P P A m V V Ac c V cout in− +( ) = −( ) = − −( )∆ ∆ ρ

	
(7.13)

Divide by A and simplify

	 ∆ ∆P c V= ρ 	 (7.14)

Substituting Eq. 7.12 for ΔV results in

	
∆

∆
∆

P c
=

+
ρ

ρ
ρ ρ

2

	
(7.15)

And solving for C2

	
c P P2

1=
+







 = +











∆
∆

∆ ∆
∆

∆
ρ

ρ ρ
ρ ρ

ρ
ρ 	

(7.16)

Taking the limit as Δρ goes to zero results in

	
c P P2

0

1= +








 =

∂
∂→

lim
∆

∆
∆

∆
ρ ρ

ρ
ρ ρ 	

(7.17)

Along an isentropic path.
Equation 7.17 along with the condition of isentropic flow is the definition of 

speed of sound.
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7.3.1  �Speed of Sound in an Ideal Gas

Entropy is a state function defined for a reversible process as

	
ds

q

T
=
δ

	
(7.18)

and

	 de q w= −δ δ 	 (7.19)

Substitution of Eq. 7.19 into 7.18 and applying the definition of δw results in

	 Tds de Pd= + υ 	 (7.20)

If ν ρ= 1 , then d dν
ρ

ρ= −
1
2

, thus

	
Tds de

P
d= −

ρ
ρ

2

	
(7.21)

e is a function of both P and ρ such that

	
de

e

P
dP

e
d

P

=
∂
∂

+
∂
∂ρ ρ

ρ
	

(7.22)

Substitution of Eq. 7.22 into 7.21 results in

	
Tds

e

P
dP

e
d

P
d

P

=
∂
∂

+
∂
∂

−
ρ ρ

ρ
ρ

ρ
2

	
(7.23)

When ds equals zero then

	

∂
∂

=
−
∂
∂

+

∂
∂

=

P

e P

e

P
ds

P

ρ
ρ ρ

ρ

0

2

	

(7.24)

For an ideal, perfect gas

	 e c Tv= + constant 	 (7.25)

and

	
e

P
=

−
+

1

1γ ρ
constant

	
(7.26)
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where the relationship cp − cv = R has been utilized.

Derivatives for 
∂
∂

∂
∂

∂
∂

e

P

e P

P sρ ρ ρ
, , and are given below

	

∂
∂

=
−

e

P ρ γ ρ
1

1

1

	
(7.27)

	

∂
∂

=
−
−

e P

Pρ γ ρ
1

1 2

	
(7.28)

and

	

∂
∂

=
−

+

−

= + −( ) = =
P

P P
P P P

RT
sρ

γ ρ ρ

γ ρ
ρ

γ
ρ

γ
ρ

γ

1
1
1
1
1

1
2 2

	

(7.29)

which is the definition for the speed of sound for an ideal, perfect gas.
Naturally, if the conditions dictate another equation of state, then the equation for 

speed of sound will differ from Equation 7.29. For a van der Waal equation of state, 
the speed of sound is given in [3].

7.3.2  �Speed of Sound in Liquids and Solids

By definition speed of sound [2] is

	

c
P

s

2 =
∂
∂ρ

	

(7.30)

And for liquids and solids the bulk modulus (K) is defined as

	

K
P

s

=
∂
∂

ρ
ρ

	

(7.31)

where for liquids, the speed of sound is usually determined from Eq. 7.31.
The bulk modulus (K) is related to Young’s modulus (E) through

	

E

K
= −( )3 1 2σ

	
(7.32)

where σ is Poisson’s ratio and often takes on the value σ =
1

3
, thus

	 E K≈ 	 (7.33)
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And for many solids

	
c

E2 ≈
ρ 	

(7.34)

7.4  �Normal Shocks

Just as in incompressible flow Reynold’s number, which is a non-dimensional num-
ber, is important, in compressible flow, Mach’s number is important and defined as

	
Ma

u

c
=

	
(7.35)

where u is the local gas speed and c is the local speed of sound. It is generally 
acceptable that for a Mach number above 0.3, the fluid is considered compressible 
and the density on the fluid field varies with location.

Given in Fig. 7.4 are the upstream and downstream conditions for a normal shock 
where the upstream Mach number is always

	 Ma1 1> 	 (7.36)

And the downstream Mach number is always

	 Ma2 1< 	 (7.37)

For a given set up upstream conditions to include Mach number, we want to be 
able to calculate the downstream conditions. This is done by algebraic manipulation 
of Eqs. 7.38, 7.39, and 7.40.

Fig. 7.3  Shock Wave [2]

7.3  Normal Shocks



158

	 ρ ρ1 1 1 2 2 2u A u A= 	 (7.38)

	 P u P u1 1 1
2

2 2 2
2+ = +ρ ρ 	 (7.39)

	
h

u
h

u
1

1
2

2
2
2

2 2
+ = +

	
(7.40)

Typically, A1 = A2 and Eq. 7.39 takes on the simpler form

	 ρ ρ1 1 2 2u u= 	 (7.41)

Another form of enthalpy can be derived from Eqs. 7.42 and 7.43 when assuming 
an ideal, perfect gas

	 c c RP V− = 	 (7.42)

and

	
γ =

c

c
P

V 	
(7.43)

Dividing Eq. 7.42 by cp results in

	

c c

c

R

c
P V

P P

−
= = −1

1

γ 	
(7.44)

and

	

R
c

R
P

1
1 1−
= =

−
γ

γ
γ

	

(7.45)

Fig. 7.4  Normal shock conditions upstream (1) and downstream (2)
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and

	
∆ ∆h

R
T=

−
γ

γ 1 	
(7.46)

The strategy is to non-dimensionalize Eqs. 7.39, 7.40, and 7.41 and get the fol-
lowing relations (which will be derived shortly) [4, 5].

	

Ma

Ma

Ma

Ma

Ma

Ma
2

1

1
2

2
2

2
2

1
2

1
1

2

1
1

2

1

1
=

+
−

+
−

+
+

γ

γ

γ
γ

	

(7.47)

	

P

P

Ma

Ma
2

1

1
2

2
2

1

1
=

+
+
γ
γ 	

(7.48)

and

	

T

T

P Ma

PMa
2

1

2 2

1 1

=










	

(7.49)

or

	

T

T

Ma

Ma

2

1

1
2

2
2

1
1

2

1
1

2

=
+

−

+
−

γ

γ

	

(7.50)

The first equation to be derived will be Eq. 7.50 from Eq. 7.40 and Eq. 7.46.

	

γ
γ

γ
γ

γ
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+ =
−

+
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
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
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

1

1 2 1 21
1
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2
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R
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u R
T

u

	

(7.51)

or

	
T

R
u T

R
u1 1

2
2 2

21

2

1

2
+

−( )
= +

−( )γ
γ

γ
γ 	

(7.52)

and

	
T Ma T Ma1 1

2
2 2

21
1

2
1

1

2
+

−




= +

−





γ γ

	
(7.53)
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Further, Eq. 7.39 can be rewritten as

	

P
P

u P
P

u1
1

1
1
2

2
2

2
2
21 1+









 = +











ρ ρ

	

(7.54)

and

	

u

P

u

RT

u

RT
Mai

i i

i

i

i

i
i

2 2 2
2

ν
γ
γ

γ= = =
	

(7.55)

Therefore,

	
P Ma P Ma1 1

2
2 2

21 1+  = + γ γ
	

(7.56)

Lastly, substituting ρi
i

i

P

RT
=  into Eq. 7.41 results in

	

P

RT
u

P

RT
u1

1
1

2

2
2=

	
(7.57)

And dividing both sides by γ results in

	

PMa

T

P Ma

T
1 1

1

2 2

2

=
	

(7.58)

Thus from Eq. 7.52 comes

	

T

T

Ma

Ma

2

1

1
2

2
2

1
1

2

1
1

2

=
+

−

+
−

γ

γ

	

(7.59)

From Eq. 7.56 comes

	

P

P

Ma

Ma
2

1

1
2

2
2

1

1
=

+
+
γ
γ 	

(7.60)

And Eq. 7.58 comes

	

T

T

P Ma

PMa
2

1

2 2

2

1 1

2
=
( )
( ) 	

(7.61)

Equating Eqs. 7.59 and 7.61 results in
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(7.62)

And substituting for the pressures Eq. 7.60 gives us
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(7.63)

or
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(7.64)

An example of these ideas is given below.

Example 7.1 Normal Shock
A normal shock occurs in air where T1 is 300 K, P1 is 100 kPa, and Ma1 is 3. What 
are the states on the other side of the shock?

 

Given in Fig.  7.5 are the ratios of pressure, temperature, and Mach number 
for Ma1.

We’ll now discuss a topic related to standing normal waves, which is moving 
shock waves that exhibit a different frame of reference (see Fig. 7.6).

where C is equal to u1 from the normal shock theory and C-ΔV is equal to u1-u2 
from the normal shock theory (see Appendix 7.2).
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Example 7.2 Explosions
An atomic explosion generates a pressure of 4500 psia inside the shock. If the ambi-
ent conditions are 15 psia and 300 K. What are the states within the shock and both 
the shock speed (C) and trailing wave (C–ΔV)?

We know the pressure ratio is equal to P P
2

2

4500

15
300= = .

This problem is solved by using our spreadsheet labeled “normal shock” and 
going to English unit worksheet. The problem is then solved by using goal seek to 
solve two problems

	1.	 Force “Diff” to zero by changing Ma2.
	2.	 Force Ma(2)/Ma(1) to 300 by changing Ma1.

Fig. 7.5  Moving shock waves

Fig. 7.6  Moving normal 
shock
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This iterative process was done several times and the final results are shown 
below where T2 is 26,458, shock speed is 7324 fps, and trailing wave is 6087 fps.

 

7.5  �Examples & Problems

7.5.1  �Examples

Example 7.3 Speed of Sound for an Ideal and Van der Waal Gas
Determine the speed of sound of Argon at 400 K and 1 atm assuming an ideal, per-
fect gas and then a van der Waal gas. The speed of sound for a van der Waal gas [3] 
is given as

	

c
R

c

RT

b

a

V

2
2

2
1 2= +










−( )
−

ν

ν ν
	

where {a, b} are coefficients associated with van der Waal’s EOS and R is the gas 
constant.

Given

	
c

kJ

kg K
R

kJ

kg Kv g=
−

=
−

=. , . , .31 2081 1 667γ
	

The solution is given below where it is naturally seen for a noble gas that the 
ideal gas and van der Waal gas speeds of sound are the same.
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Example 7.4 Speed of Sound in a Solid
Determine the speed of sound for aluminum at STP.

The density and Young’s modulus can vary dependent on the type of aluminum, 
but the values used are

	
ρAl Al

kg
m E GPa= =2700 693 and

	

Thus

	
c E c m s2

5055≈ ≈
ρ

and /

	

7.5.2  �Problems

Problem 7.1 Speed of Sound for a Van der Waal Gas
The speed of sound for an ideal gas and van der Waal gas should diverge as the 
compressibility factor (Z) deviates from 1.0. Show this for CO2 by varying P and T 
and referring to the work of Lee and Kessler.
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Problem 7.2 Normal Shock
Determine the states within a normal shock when P P

2

1
 is 10 and T1 is 300 K.

Problem 7.3 Frank White’s Atomic Bomb Explosion Problem
An atomic explosion propagates into still air at 15 lbf/in2 and 600 R. the pressure 
just inside the shock is 6000 lbf/in2. Assuming γ = 1.4, what are the speed of the 
shock and the velocity inside the shock?

Problem 7.4 Speed of Sound for a Gas Mixture (Van der Waal Gas)
Using the speed of sound equation for a van der Waal gas as given above and the 
data given below for specific heat constant volume determine the speed of sound for 
a mixture of argon and methane {50% argon by molar mass} at 1 atm and 800 K 
(Hint: use the method provided in Sect. 6.6 to find {amix, bmix} and Table  1.2 to 
determine Z).

This table provides critical constants for each gas and the specific heat constant 
pressure models utilized to create the figure given below.

T[c] P[c] γ β0 β1 β2 β3

[K] [MPa]
Argon 150.8 4.87 1.667 0.52
Methane 190.4 4.6 1.2999 1.2 3.25 0.75 −0.71

Problem 7.5 Speed of Sound for a Gas Mixture (Ideal Gas)
Redo Problem 7.4 but now assume ideal gas behavior. How do the answers differ 
between Problems 7.4 and 7.5?

 

7.4  Examples & Problems



166

�Appendix 7.1: Moving Shock Wave Frame of Reference

 

Fixed Wave Frame of Reference  If we ride the shock, then we subtract C from 
each velocity and get

Or
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�Appendix 7.2: Moving Shock Wave Frame of Reference

 

Fixed Wave Frame of Reference  If we ride the shock, then we subtract C from 
each velocity and get.

Or
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Chapter 8
Conservation Principles for a Gaseous 
System, Part II

8.1  �Preview

In the previous chapter, conservation principles were developed for a gaseous sys-
tem and are appropriate for several types of phenomena to include:

•	 Normal Shocks (Chap. 7).
•	 Critical Flow (Chap. 9).
•	 Rankine-Hugoniot Systems (Chap. 10).

But there are times when more general conservation principles are required and 
involve changes in states with either time or space, which leads to differential equa-
tions in a particular coordinate system. The main reason for the more general 
description when it’s a detonation is to incorporate heat released based on some type 
of Arrhenius reaction rate equation that changes with temperature and results with 
changes in states with either time or space; for deflagrations non-premixed, the heat 
release is considered instantaneous, but other transport processes dictate the changes 
in state with either time or space; and for deflagration premixed, both heat release 
and transport processes are important.

These transport processes, which are discussed below, include

•	 Mass transfer.
•	 Momentum transfer.
•	 Heat transfer.

Two classes of conservation principles are explored:

•	 Conservation principles appropriate to detonation systems.
•	 Conservation principles appropriate to deflagration systems.
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rized users.
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In Sect. 8.2, conservation principles for detonation systems are developed that 
allows for the following:

•	 Area changes.
•	 Shear stress at the wall.
•	 Heat release (Arrhenius reaction rate).

These equations do not address:

•	 Mass transfer to include diffusion.
•	 Momentum transfer.

In Sect. 8.3, relationships will be developed between temperature, pressure, and 
density for an isentropic, compressible flow. These developed relationships will be 
utilized to relate static and stagnation conditions for a given Mach number. The 
developed relationships will be seen again in Chap. 9.

Mass transfer is discussed in Sect. 8.4. In Sect. 8.5, conservation principles 
appropriate for a deflagration system that involves premixed laminar flames is 
developed and is in a planar coordinate system. In Sect. 8.6, conservation principles 
appropriate for a deflagration system that involves non-premixed laminar flames is 
developed and is in an axi-symmetric coordinate system.

Various sets of conservation principles and the related fluid phenomena are sum-
marized in Table 8.1.

8.2  �More General Conservation Principles for Detonations

In Chap. 7, conservation principles were developed for a gaseous system to include 
heat release. These equations were.

Conservation of Mass

	 � �1 1 2 2u u� 	 (8.1)

Conservation of Momentum

	 P u P u1 1 1
2

2 2 2
2� � �� � 	 (8.2)

Table 8.1  Conservation principles appropriate for a particular fluid phenomenon

Chapter/
Section Relevant Phenomena

Relevant Chapter/
Section

Chapter 7 Normal shocks, critical flow, Rankine-Hugoniot 
systems

Chapters 9 and 10

Section 8.2 Detonations Section 13.5
Section 8.3 Isentropic, compressible flow Chapter 9
Section 8.5 Premixed laminar flames Section 12.3
Section 8.6 Non-premixed laminar flames Section 12.4
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Conservation of Energy

	
h q

u
h

u
1

1
2

2
2
2

2 2
� � � �

	
(8.3)

More general equations are now derived that include heat release, area change, 
and shear stress at the wall (see Fig. 8.1). This derivation is taken from [1].

Where the following assumptions/conditions are made [1]

	1.	 Surfaces 1 and 2 are open and allow fluxes of mass, momentum, and energy.
	2.	 Surface w is closed – no mass flux allowed through the surface.
	3.	 An external heat is applied to through surface w.
	4.	 No longitudinal heat transfer and thermal conductivity is zero.
	5.	 No diffusive viscous stresses are allowed and so viscosity is zero.
	6.	 The cross-section is solely a function of x and so A(x).
	7.	 Lp is the circumferential perimeter length.

8.2.1  �Conservation of Mass

	
� � � �A x A x A u t A u tt t t

� � � ��� � � � � � � �1 1 1 2 2 2 	
(8.4)

Fig. 8.1  Control volume for more general conservation principles [1]
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or

	

� � � �A A

t

A u A u

x

t t t� �
�
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�

�

� �
1 1 1 2 2 2 0

	
(8.5)

The limit as Δt → 0 implies ∆x → 0, therefore

	

�
�
� � � �

�
� � �

t
A

x
Au� � 0

	
(8.6)

At steady state,

	

�
�

� � �
x

Au� 0
	

(8.7)

and

	 � �1 1 1 2 2 2A u A u� 	 (8.8)

8.2.2  �Conservation of Momentum

	

d

dt
mu um mu F F F Fx� � � � � � � � �  1 2 3

	
(8.9)

where
F1 = Pressure differential.
F2 = Reaction at the wall due to pressure differential.
F3 = Shear stresses at the wall.

or

	

mu mu
t

um um
t

Ft t t t t t
x

� ��
�

�
� �� �

� � 	
(8.10)

and

	
mu mu um um t F tt t t t t t x� �� � �� � � �� � � �

	
(8.11)

Further,
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(8.12)

or
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(8.13)

The limit as ∆x → 0 implies ∆t → 0
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(8.14)

And at steady state

	

d

dx
Au

d

dx
PA P

dA

dx
Lw p� �2� � � � � � � �

	
(8.15)

Further

	
� � �Au

du

dx
u
d

dx
Au P

dA

dx
A
dP

dx
P
dA

dx
Lw p� � � � � � � �

	
(8.16)

Where the second term of the left-hand side is zero and the sum of the first and 
third term on the right-hand side is zero.

	
� �Au

du

dx
A
dP

dx
Lw p� � � �

	
(8.17)

And when shear stress is zero

	
�Au

du

dx
A
dP

dx
� � 0

	
(8.18)

From Eq. 8.17, when 
dA

dx w� �� 0 , then

	

�
�

� � � �
�
�

� �
x

Au
x

PA� 2

	
(8.19)
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or
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x

Au PA
x

P u� �2 20 0,
	

(8.20)

	 P u P u1 1 1
2

2 2 2
2� � �� � 	 (8.21)

8.2.3  �Conservation of Energy
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The limit as ∆x → 0 implies ∆t → 0
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At steady state
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Further
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From the conservation of momentum
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Subtracting Eq. 8.28 from Eq. 8.27 results in
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When there is no heat transfer, nor shear stress Eq. 8.30 takes on the simpler form
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And from Eq. 8.30 de can be defined as
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Substitution of Eq. 8.33 into Eq. 8.30 results in
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or
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Where the quantity in brackets was shown in Chap. 7 to be equal to c2
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8.2.4  �Conservation of Energy for Detonation System

The total derivative for internal energy can be defined as
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And taking the time derivative
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And substituting Eq. 8.38 into Eq. 8.31 results in
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Where it can be shown that
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In Eq. 8.42 σ is thermicity and is defined as
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Thermicity is a measure of the pressure rise for a given change in λ [2].
And for an ideal gas
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Substitution of Eqs. 8.41 and 8.42 into Eq. 8.40 results in
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Which essentially shows that changes in pressure with time are a function of 
density change with time and heat release through a chemical reaction.

Another form of Eq. 8.46 is
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Where u
dx

dt
=

A summary table is given below (Table 8.2).

8.2  More General Conservation Principles for Detonations



178

Ta
bl

e 
8.

2 
C

on
se

rv
at

io
n 

Pr
in

ci
pl

es
 f

or
 a

 G
as

eo
us

 S
ys

te
m

, P
ar

t I
I

C
on

se
rv

at
io

n 
of

 M
as

s
C

on
se

rv
at

io
n 

of
 M

om
en

tu
m

C
on

se
rv

at
io

n 
of

 E
ne

rg
y

U
ns

te
ad

y,
 h

ea
t r

el
ea

se
, 

sh
ea

r 
st

re
ss

 a
t t

he
 w

al
l, 

an
d 

ar
ea

 c
ha

ng
e

� �
�

��
� �
�

��
t

A
x

A
u

�
�

0
� �
�

��
� �
�

��
�
� �
�

��
� �

�
t

A
u

x
A
u

x
P
A

P
A x

L
w

p
�

�
�

2
� �

�
� ��

� ��
� �� �

� �� ��
� �

�
�

� ��
� ��

� �� �

� �� �
�

t
A

e
u

x
A
u

e
u

P
q
L

w
p

�
�

�

2
2

2
2

St
ea

dy
, h

ea
t r

el
ea

se
, 

sh
ea

r 
st

re
ss

 a
t t

he
 w

al
l, 

an
d 

ar
ea

 c
ha

ng
e

� �
�

��
x

A
u

�
0

d dx
A
u

d dx
P
A

P
dA dx

L
w

p
�

�
2

�
��

�
�

��
�

dP dx
c

d dx

q
u

L

m
e P

w
w

p
�

�
�

�
�

� �

2
�

�

�



St
ea

dy
, n

o 
ar

ea
 

ch
an

ge
, n

o 
sh

ea
r 

st
re

ss
, a

nd
 h

ea
t r

el
ea

se
 

fr
om

 d
et

on
at

io
n

�
�

du dx
u
d dx

�
�
0

u
du dx

dP dx
�

�
1

0
�

u
dP dx

uc
d dx

c
r

�
�

2
2

�
�

�

St
ea

dy
, n

o 
ar

ea
 

ch
an

ge
, n

o 
sh

ea
r 

st
re

ss
, a

nd
 n

o 
st

at
e 

ch
an

ge
s 

w
ith

in
 th

e 
co

nt
ro

l v
ol

um
e

ρ 1
u 1

 =
 ρ

2u
2

P
u

P
u

1
1

12
2

2
22

�
�

�
�

�
h

q
u

h
u

1
12

2
22

2
2

�
�

�
�

8  Conservation Principles for a Gaseous System, Part II



179

8.3  Reversible, Adiabatic (Isentropic) Compressible Flow

In this section, equations are developed to relate states during isentropic, compress-
ible flow. These relationships will allow us to see how Mach number affects tem-
perature, pressure, and density when comparing static and stagnation conditions [3, 4].

From fluid mechanics [4], static and stagnation pressure are defined in the fol-
lowing manner. “The pressure at a point in a fluid is called the ‘static pressure‘. The 
‘stagnation pressure‘is the pressure that the fluid would obtain if brought to rest 
without loss of mechanical energy. The difference between the two is the ‘dynamic 
pressure’. The ‘total pressure’ is the sum of the static pressure, the dynamic pres-
sure, and the gravitational potential energy per unit volume. It is therefore the sum 
of the mechanical energy per unit volume in a fluid.”

The relationship between static and stagnation pressure (P0) with no change in 
potential energy is given as

	
P u Pstatic0
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Please note the relationship given as Eq. 8.49, which is derived from Bernoulli’s 
law, is no longer valid for a compressible flow.

The first law for an isentropic, compressible flow is
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where “0” denotes the stagnation conditions and assuming u0 ≈ 0 for an ideal gas 
such that
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where Rg is equal to
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Dividing both sides of Eq. 8.54 by cp results in
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Substitution of Eq. 8.56 into Eq. 8.53 results in
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Additionally, for an isentropic, compressible flow the second law is
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And for an ideal gas
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And for Δs = 0, the integration is
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or
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Where it can be shown that
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For air, γ = 1.4, Eqs. 8.58, 8.64, and 8.65 become
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Graphically Eqs.  8.66, 8.67, and 8.68 relate static and stagnation states with 
Mach number, which is given in Fig. 8.2.

The last thing to do in this section is to show the relationship between stagnation 
properties (0) and the location where Ma = 1 (*), which we’ll see in Chap. 9 is the 
choke point.
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and
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And for air, γ = 1.4, Eqs. 8.69, 8.70, and 8.71 become
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We’ll see in Chap. 9 that when the pressure at the stagnation condition is twice 
the pressure at the choke point, then the mass rate will be independent of the pres-
sure difference between the two states and this determined mass rate will be the 
maximum mass rate allowed (critical flow).

Fig. 8.2  Static/Stagnation States versus Mach Number
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8.4  �Mass Transfer

Mass diffusion, moment diffusion, and energy diffusion are understood through the 
following equations.

Mass Diffusion
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(8.75)

Momentum Diffusion
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Energy Diffusion
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�  is molecular diffusion for a binary gas, ν m
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�  is kinematic vis-

cosity, �
m

s

2�

�
�

�

�
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 is shear 

stress, and q
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my 2

�
��

�
��

is heat transfer and ρ is constant in Eqs. 8.75 and 8.76 and ρcp 

is constant in Eq. 8.77. Please note that Dab, υ, and α all have the same dimensions.
In the above equations, the quantities {DAB, α, υ} are related through three non-

dimensional numbers given below.

Schmidt Number
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Prandtl Number
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Lewis Number
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And these three non-dimensional numbers are related in the following way

	
Le

Sc
=
Pr 	

(8.81)

Typically for deflagrations [5],

	 1Le ≈ 	 (8.82)

And

	 Sc D� � �Pr � 	 (8.83)

Equation 8.83 states that the mass transfer (D) is approximately equal to the heat 
transfer (α) for deflagration systems; Glassman and Yetter [6] caution assuming 
Le ≈ 1 and this assumption must always be established for a particular system of 
interest.

8.4.1  �Fick’s Law and Species Conservation Principles

Fick’s law of diffusion for a binary gas, which is the type of mixture considered in 
this book, is defined as the rate at which two gas species diffusion through each 
other. For one dimensional, binary diffusion (the type considered in the chapter on 
deflagration) it is
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(8.85)

where gas “A” is transported by two means:

•	 Bulk motion of the fluid.
•	 Molecular diffusion.

So that for a mixture of gases “A” and “B” the mixture mass flux is
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(8.86)
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And for a binary gas mixture, YA + YB = 1, such that Eq. 8.86 is
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In general,

	 � ���
mi 0 	 (8.89)

Equation 8.89 is simply a consequence of the conservation of mass. In the next 
section, we’ll see how DAB is related to temperature and pressure.

8.4.2  �Understanding Diffusion from Kinetic Theory of Gases

From the kinetic theory of gases, the following relationships can be established [2, 
6, 7] and their derivation is beyond the scope of this book.

If we make certain assumptions [2]

	1.	 Consider a stationary (no bulk flow) plane layer of binary gas mixture consisting 
of rigid, non-attracting molecules.

	2.	 Molecular masses of gases “a” and “b” are identical.
	3.	 A concentration gradient exists in x-direction, and is sufficiently small that over 

small enough distances the gradient can be assumed to be linear.
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and
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where kB is the Boltzmann’s constant, ma is the mass of one molecule of gas “a”, 
n

V
a  molecular density of gas “a”, 

n

V
total  molecular density of gas mixture, and σ 

diameter of molecules “a” and “b”.
The next flux of molecule a along the x axis is
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Or in terms of ZA
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And the density of the binary mixture is
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Recalling the definition of ZA
′′  is
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And substituting Eq. 8.97 into Eq. 8.96 results in
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Or in terms of YA
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And substituting Eq. 8.99 into Eq. 8.95 leads to
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(8.100)

where 
dY
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 is defined as
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Substitution of Eq. 8.102 into Eq. 8.100 for YA, x − a − YA, x + a, we see that
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And going back to the definition of binary mass diffusion without bulk flow 
(Eq. 8.85), we see that

	
D

v
AB �

�
3 	

(8.104)

Substitution of Eq. 8.90 for v  and Eq. 8.92 for λ into Eq. 8.104 results in

	

D
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(8.105)

Where from ideal gas behavior
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(8.106)

Substitution of Eq. 8.106 into Eq. 8.105 leads to

	

D
k T

m P

k T

k T

m

T

PAB
B

A

B

B

A

� �
1

3

8 1

2

2

32

3

3 2� � � � �

	

(8.107)

And thus

	
D

T

PAB ∝
3
2

	
(8.108)

8.5  �More General Conservation Principles for Premixed 
Laminar Flames

The developed conservation principles in this section will be utilized in Chap. 12 for 
planar, one-dimensional systems.
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8.5.1  �Conservation of Mass

Change in mass with time for the control volume is

	

dm
dt

m msys
x x x� � �  �

	
(8.109)

or

	

d
dt

A x v A v Ax x x x x
� � ��

�� � � � � �� � �
	

(8.110)

Dividing both sides by A∆x and taking the limit as ∆x → 0 result in

	

�
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� �
�
�

� � �
�

�
�
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� � ��
�

�
�

t x
v

t x
vx x, 0

	
(8.111)

Or for steady state

	

�
�

� � �
x

vx� 0
	

(8.112)

Equation 8.112 is appropriate for one dimensional, planar system.
The conservation of species mass with binary diffusion is given for species “A” 

and it is

	
 m

d

dx
m Y

d

dx
D

dY

dxA A AB
A�� ��� � � � �

��
�

��
�

	
(8.113)

8.5.2  �Conservation of Momentum

From Newton’s second law,

	
� � � � � � �F mv mv

out in
 

	
(8.114)

For the one-dimensional, planar system

	
PA PA m v v

x x x x x x x x� � �� � � ��� ��� �� � , , 	
(8.115)
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And dividing both sides by ∆x and taking the limit as ∆x → 0 results in

	
� � ��dP

dx
m

dv

dx
x



	
(8.116)

or

	
� �
dP

dx
v

dv

dxx
x�

	
(8.117)

8.5.3  �Conservation of Energy

Given the diagram (Fig. 8.3).
The conservation of energy for this steady system is
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(8.118)

And assuming ∆PE = 0 and Wsys = 0  results in
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(8.119)

Fig. 8.3  Conservation of Energy (Premixed Deflagrations) [5]
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Dividing both sides by ∆x and taking the limit as ∆x → 0 results in

	
� � ��

�
�

�

�
�

��
��dQ

dx
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dx
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dx
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x
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
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(8.120)

There are two contributions to the heat flux, Qx
′′

	


Q k T m hi diff i
�� ��� � � �� , 	

(8.121)

For onedimension, planar systems Eq. 8.121 takes the simpler form

	
Q k Y v v hx i ix x i
�� � � � � �� �dT

dx
�

	
(8.122)

Or in terms of the bulk and species mass fluxes

	


 Q k v Y h v Y h k
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dx
m h m hx ix i i x i i i i
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� �

	
(8.123)

Noticing that m vi ix
�� � � , �v mx �

��
  and ∑Yihi = h.

Substituting these three expressions into Eq. 8.123 into Eq. 8.119 results in
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dx
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dxi i x
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�
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(8.124)

where the first term can be farther expanded as
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(8.125)

And substitution of Eq. 8.125 into Eq. 8.124 results in
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(8.126)

Another form of Eq. 8.126, which is more useful for numerical calculations, is
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h mp i i p i i i" ,



� ��
�
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(8.127)

where νi is a species diffusion velocity, and two other forms of conservation of 
energy that have proven useful are when the system is planar, one-dimensional
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(8.128)

And Eq. 8.128 can be understood as a system where the following mechanisms 
are important
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(8.129)

And in an axisymmetric form
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(8.130)

Where now there are two independent variables {x, r} and Eq. 8.130 has an addi-
tional term and can be understood as a system where the following mechanisms are 
important
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(8.131)

8.6  �More General Conservation Principles 
for a Non-premixed Laminar Flame

The following conservation principles for a non-premixed deflagration system are 
given without derivation; for more details please refer to [5], which provides a more 
thorough treatment. Please note these equations are for steady, axial symmetric 
systems.

These developed conservation principles will be utilized in Chap. 12.
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8.6.1  �Conservation of Mass

Conservation of mass for a steady, axial symmetric system is
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r r
r v
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vr x

�
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� � � �
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(8.132)

In this coordinate system, there are now two independent variables {r, x} and so 
two terms.

8.6.2  �Conservation of Momentum

For conservation of momentum of non-premixed combustible gases
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(8.133)

Equation 8.133 allows for buoyancy effects.

8.6.3  �Conservation of Energy

For conservation of energy of non-premixed combustible gases, which is a slightly 
different form of Eq. 8.130 and given as
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(8.134)

where

	 Y Y YF oxPr � � �1 	 (8.135)

8.7  �Problems

Problem 8.1  Prove the following relationship
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Problem 8.2  Prove the following relationship.
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Problem 8.3  Delineating Compressible and Incompressible Flows

Starting from the conservation of momentum for a steady flow with no heat 
transfer, no shear stress, nor area change (isentropic flow)

	
u
du

dx

dP

dx
� �
1

0
� 	

And assuming an ideal, perfect gas show for a density change 
d�
�

�

�
�

�

�
�  of 10% that 

the corresponding Mach number is 0.3, which is the threshold between treating a 
moving fluid as incompressible versus compressible. Please note an incompressible 
fluid field is one where the density is the same throughout the fluid field and where 

d�
�

�

�
�

�

�
�  is significant, then the density is changing with location.
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Chapter 9
Critical Flow

9.1  �Preview

The system under consideration is a pressurized vessel in which the discharge point 
is referred to as the “choke point,” and the center of the tank is denoted the “stagna-
tion point,” which is depicted in Fig. 9.1. The control volume could equally be a 
system where there is a sudden contraction, see Fig. 9.2.

The equation for the mass rate exiting (mass efflux) the system is

	

dm sys

dt
A u

( )
= − ∗ ∗ ∗ρ

	
(9.1)

where m is the mass of fluid within the system at time t, A* is the choke cross-
sectional area, ρ* is the density at the choke point, and u* is the local speed of sound 
at the choke point.

The crux of the problem is to develop a model for "ρ∗u∗" in terms of the properties 
within the tank, such as T0 and P0, where T0 is the stagnation temperature and P0 is 
the stagnation pressure.

Fundamentals of Fluid Mechanics by Munson, Young and Okiishi [2] does an 
excellent job of explaining static and stagnant conditions in terms of pressures.

The development of a model for single-phase flow for ρ∗u∗ involved six assump-
tions/conditions that are

	1.	 The reversibility of the system
	2.	 An adiabatic system
	3.	 A model for specific heat
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org/10.1007/978-3-030-87387-5_9) contains supplementary material, which is available to autho-
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	4.	 The equation of state
	5.	 The stagnation condition
	6.	 Choked flow

This chapter will discuss critical flow associated with a single phase (single com-
ponent) and go on to discuss critical flow in a two phase (two-component system). 
The concept of critical flow for a single-phase fluid can be understood in the follow-
ing manner.

Given the following equation for first law

	 0 = +∆ ∆h KE 	 (9.2)

Where the system has no work, no heat transfer, nor changes in potential energy, 
which has the differential version

Fig. 9.1  Pressurized vessel

Fig. 9.2  Supersonic nozzle [1]
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	 0 = +dh udu 	 (9.3)

And given the following equation for second law for an isentropic flow

	
Tds dh

dP
= − =

ρ
0

	
(9.4)

Equating the two forms of “dh” results in

	
− =udu

dP

ρ 	
(9.5)

or

	

du

u

dP

u
= −

ρ 2

	
(9.6)

And defining the mass flux (G) as

	 G u= ρ 	 (9.7)

or

	
ln ln lnG u( ) = ( ) + ( )ρ

	
(9.8)

Taking the derivative of both sides results in

	

dG

G
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u
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ρ
ρ 	

(9.9)

And substituting Eq. 9.6 into Eq. 9.9 results in
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(9.11)

And
G is a maxima when
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
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Such that
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or
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(9.14)

Additionally, the speed of sound for a single-phase, single-component sub-
stance is

	

a
P

s

2 =
∂
∂









ρ

	

(9.15)

Such that we see that 
Gmax

ρ
 is equal to the local speed of sound!

We’ll see in the next section that this critical flow occurs at the choke point, 
which is essentially where the area of the conduit is minimal within the fluid flow or 
a location before the conduit suddenly expands.

We see in Fig. 9.2 that the throat is the choke point and the Mach Number (M) is 
1 consistent with the above discussion.

In Sect. 9.2, we will explain Fig.  9.2 and discuss choked flow, which is also 
termed critical flow.

In Sect. 9.3, we will assume the gas is both ideal and thermodynamically perfect, 
e.g., specific heat is independent of temperature. With the six above assumptions/
conditions and an ideal, perfect gas, we get two algebraic expressions from the 
energy and entropy balances.

In Sect. 9.4, we will assume the gas is a van der Waal gas and that the specific 
heat is independent of temperature and pressure. Again, from the entropy and energy 
balances we get two algebraic expressions; how differently the two equations of 
state are in terms of critical flow will be explored through an example.

In Sect. 9.5, liquid/gas flows will be discussed. It is likely that a tank of gas at a 
high pressure and ambient temperature would “flash.” Flashing is not what you’d 
hope. Flashing is when a gas suddenly experiences a great drop of pressure and 
begins to form a liquid phase as it expands. It’s likely any critical flow from a pres-
sure vessel will experience two-phase flow and so this section discusses liquid/
gas flows.

In Sect. 9.6, speed of sound for either a two-component or liquid/gas flow will be 
discussed.

In Sect. 9.7, critical flow for a two-phase, one-component system is discussed. 
Two classes of models will be explored: homogenous models assume average prop-
erties between the liquid and gas phase and develop a model based on either the 
momentum equation or energy equation; non-homogenous models assume an 
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annular flow where a gas core is surrounded by a liquid sheath. Naturally, these two 
separate flows are traveling at different speeds and a slip velocity exists between the 
phases. Other non-equilibrium conditions make this model framework a challenge.

9.2  �Effect of Area Changes on Gas Dynamic States

From conservation of mass [3–5]

	 ρuA = constant 	 (9.16)

and

	
ln ln lnρ( ) + ( ) + ( ) =u A constant

	
(9.17)

Taking the derivative of both sides
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u
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ρ
ρ

+ + = 0
	

(9.18)

Substituting Eq. 9.6 for du results in
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And solving for dP ρ  gives us
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And by definition the speed of sound is
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And

	 a d dP2 ρ ≈ 	 (9.22)

Substituting Eq. 9.22 into Eq. 9.20 results in
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(9.23)
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And solving Eq. 9.23 for dρ
ρ  gives us
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(9.24)

Substitute Eq. 9.24 into the differential form of conservation of mass gives as

	

Ma

Ma

dA

A

dA

A

du

u

2

21
0

−








 + + =
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And solving for 
du

u
 results in
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(9.26)

Also, 
du

u
 is equal to
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(9.27)

Such that
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(9.28)

A summary table is given below
We’ll now use Table  9.1 to see how pressure, density, and velocity change 

through a converging and then diverging engineering device. The results of this 
analysis are given below.

Table 9.1  Area effects on gas dynamics

dP

P
Ma

Ma

dA

A
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−
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 (9.27)

du

u Ma

dA

A
= −

−
1

1 2
 (9.28)
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We see in Fig. 9.3 that pressure is continually decreasing which is consistent with 
a fluid system; we also see the density decrease in a similar fashion with the pres-
sure, which is consistent with ideal gas behavior. Further, we see the area is decreas-
ing for Mach <1 and then increasing for Mach >1 and that the velocity continually 
increases through the device and drastically increases around Mach 1.

The portion of the device with minimal area can be the point of a choking [3–6]. 
Choking is a condition where the pressure differential between stagnation  

pressure and downstream pressure does not dictate the mass flux. It can be shown 

for 
P

P
0 2
∗
> , where P0 is the stagnation pressure and P* is the pressure at the choke 

point, that the Mach number at the choke point is always 1 (for pure substance) and 
is consistent with Fig. 9.3; the critical flux through a choke point is the maximal flux 
allowed [3, 6–8] through the system.

9.3  �Ideal Gas

In this section, a critical flow model is developed for an ideal, perfect gas.

Entropy Balance
From the first four assumptions/conditions and the entropy balance, we get to the 
following relationship

	
ds

c dT
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ν

	
(9.29)

or
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(9.30)

Fig. 9.3  Converging/diverging engineering device
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where γ is defined as

	
γ =

c

c
p

v 	
(9.31)

and

	

c T

T
RP
uγ

ν
ν

ln ln
∗ ∗







 +









 =

0 0

0

	

(9.32)

For an ideal gas

	
c c Rp v u− =

	
(9.33)

Substituting Eq. 9.33 into Eq. 9.32 results in

	

c T

T
c cP
p vγ

ν
ν

ln ln
∗ ∗







 + −( ) 







 =

0 0

0

	

(9.34)

And dividing by cp gives

	

1
1

1
0

0 0γ γ
ν
ν

ln ln
T

T

∗ ∗







 + −



















 =

	

(9.35)

or

	

ln ln
T

T

∗ ∗







 + −( ) 







 =

0 0

1 0γ
ν
ν

	

(9.36)

and

	

T

T

∗

∗

−

= 









0

0

1ν
ν

γ

	
(9.37)

Energy Balance
From the last four assumptions/conditions and the energy balance, we get the fol-
lowing relationship

	
h h c0

21

2
= +∗

	
(9.38)
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where h0 is the enthalpy at the stagnation point, h* is the enthalpy at the discharge 
(choke) point, and c is the local speed of sound [4]. In a converging area, the chocked 
flow will be sonic when the following condition [4] is met

	

P

P

∗ −

=
+











0

12

1γ

γ
γ

	
(9.39)

Which as a rule of thumb, essentially states that as long as the stagnation pres-
sure is at least twice of the chocked pressure, then the discharge velocity is equal to 
the local speed of sound.

We saw in Chap. 7 that c for an ideal, perfect gas is equal to

	 c RT= γ 	 (9.40)

Substituting Eq. 9.40 into 9.38 for a perfect gas results in

	
c T c T RTp p0

1

2
= +∗ ∗γ

	
(9.41)

and

	

T

T c
R

p

0 1
1

2∗ = + γ
	

(9.42)

Further,

	

T

T c
c c

v
p v

0 1
1

2

1
∗ = + −( )

	
(9.43)

and

	

T

T
0 1

1

2
1

1

2
1∗ = + −( ) = +( )γ γ

	
(9.44)

Again the mass rate of discharge is

	
m A usys = − ∗ ∗ ∗ρ

	
(9.45)

Given above with the definition for the local speed of sound (Eq. 9.40) for an 
ideal gas and

	
u R Tg
∗ ∗= γ

	
(9.46)
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Additionally, we know from Eqs. 9.37 and 9.44 that

	

ρ
ρ γ

γ γ∗ ∗ − −

=








 =

+










0 0

1
1

1
12

1

T

T
	

(9.47)

Substitution of Eqs. 9.46 and 9.47 (plus the ideal gas law) into 9.45 results in

	
m A

R T P

RTsys = −
+ +











∗
−2

1

2

1
0 0

0

1
1γ

γ γ

γ

	
(9.48)

Example 9.1 Pressure vessel for ideal gas
Determine the amount of carbon dioxide within a pressure vessel after 1.5 seconds 
when the initial stagnation pressure is 2 MPa, temperature is 300 K, and the opening 
is 5e-3 m2. The volume of the vessel is 1 m3.

Note that CO2 at this temperature and initial pressure is not ideal! In fact, using 
a Peng-Robinson equation of state [7] it can be shown that the Z factor is 0.89, 
which tells us this gas is not acting ideal.

From the graph above, the answer is about 10.24 kg (Fig. 9.4).

9.4  �Van der Waal Gas

In order to incorporate real gas effects, the following approach was adopted and 
includes the use of the van der Waal’s equation of state

	
P

RT

b

a
=

−
−

ν ν 2
	

(9.49)

Fig. 9.4  Example 9.1 Results
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where {a, b} have been previously defined.
Because the equation of state is more mathematically involved, the entropy and 

energy balance equation will be more involved.

Energy Balance
From the last four assumptions, an energy balance is given as

	
h h c0

21

2
= +∗

	
(9.50)

where h0 is the enthalpy at the stagnation point, h* is the enthalpy at the discharge 
(choke) point, and c is the local speed of sound [9] for a van der Waal gas.

What we’ll do is define “du,” solve this equation and then define “dh” in terms 
of “du.”

	
de

e

T
dT

e
d

T

=
∂
∂







 +

∂
∂









ν ν
ν

	
(9.51)

where

	

∂
∂







 =

e

T
cv

ν 	
(9.52)

and

	

∂
∂







 =

∂
∂







 − =

−
−

−
−







=

e
T

P

T
P T

R

b

R

b

a a

Tν ν ν ν νν
2 2

	
(9.53)

So that

	
de c dT

a
dv= +

ν
ν

2
	

(9.54)

And integrating

	
∆ ∆e c T

a a
v= + −

ν ν1 2 	
(9.55)

and

	

∆ ∆ ∆h h h u P P c T
a a RT

b

a RT

bv= − = + − = + − +
−

− −
−2 1 2 2 1 1

1 2

2 2

2 2

1 1

1

ν ν
ν ν

ν
ν ν

ν
ν

++
a

ν1 	
(9.56)
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Additionally, the speed of sound for a van der Waal gas is [9]

	

c
R

c

RT

b

a
vw

v

2
2

2
1 2= +










−( )
−

ν

ν ν
	

(9.57)

And substituting Eqs. 9.56 and 9.57 into 9.50 results in

	

c T
a a RT

b

a RT

b

a R

c

R
v

v

∆ + − +
−

− −
−

+ + +








ν ν

ν
ν ν

ν
ν ν

ν

1 2

2 2

2 2

1 1

1 1

2
21

2
1

TT

b

a2

2

2
2

0
ν ν−( )

− =

	

(9.58)

Entropy Balance
From the first four assumptions, an entropy balance is given as

	 Tds de Pd= + ν 	 (9.59)

and

	
de c dT

a

v
dv= +

2
ν

	
(9.60)

Substituting Eq. 9.60 into Eq. 9.59 results in

	
Tds c dT P

a

v
d c dT

RT

b
dv v= + +






 = +

−2
ν

ν
ν

	
(9.61)

and

	
ds c

dT

T

R

b
dv= +

−ν
ν

	

For isentropic flow

	

c
T

T
Rln

b

bv ln
2

1

2

1

0








 +

−
−









 =

ν
ν

	

(9.62)

or

	

ln ln
T

T

b

b
2

1

2

1

1 0








 + −( ) −

−








 =γ

ν
ν

	

(9.63)

And finally
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T

T

b

b
2

1

1

2

1

=
−
−











−
ν
ν

γ

	

(9.64)

In Sects. 9.4 and 9.5, relationships were developed between T0 and T* and ν0 and 
ν∗. These developed relationships along with the appropriate speed of sound model 
and conservation of mass provided models for critical flow.

9.5  �Liquid/Gas Flows

When we begin to ask questions about quantities such as critical flow in a liquid/gas 
system, we need to understand there are many types of flow that can be encountered 
(see Fig. 9.5) and these flows are dependent on a combination of the liquid and gas 
flows (see Fig. 9.6). Many of the critical flow models for two-phase systems have 
either assumed homogenous flow or annular flow. Each of these flows is dis-
cussed below.

Fig. 9.5  Common vertical 
flow regimes – from left to 
right: churn flow, annual 
flow, and wispy annual 
flow [10]
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In homogenous flows, the two regimes (liquid flow and gas flow) are assumed to 
have some average associated with all properties such as density, pressure, or flow 
velocity; there is equilibrium between the phases. In annular flow, and assuming the 
conduit is a pipe, the gas flows in an inner core with a higher velocity and the liquid 
flows as an outer sheath with a lower velocity. The reason for the differing velocities 
is that one pressure is applied to the whole system, but that the effective density of 
the gas phase is much less than the effective density of the liquid phase and so the 
gas phase moves at a higher velocity relative to the liquid phase. A slip velocity is 
created and there is no equilibrium between the phases.

In this section we’ll provide some necessary nomenclature to distinguish proper-
ties of the liquid phase with properties of the gas phase; we’ll then define the con-
servation principles for a two-phase system.

In Sect. 9.6, we’ll explore speed of sound for a liquid/gas flow where it is the case 
that the gas is supersonic and the liquid is subsonic.

In Sect. 9.7, we’ll define critical flow for a liquid/gas flow and see that there are 
three considerations associated with critical flow as opposed to one in one phase, 
critical flow. We will then discuss a seminal paper [11] that delineates the two main 
forms of analytical models for two-phase, critical flow and we’ll end with a brief 
discussion of the Omega method.

Two-Phase Gas Flow Nomenclature
W, mass rate (where g denotes the gas phase and l denotes the liquid phase) and the 
total mass rate is

	
W W W u A u Ag l g g g l l l= + = +ρ ρ

	
(9.65)

Fig. 9.6  Gas/liquid flow regimes
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x, quality

	

x
W

W W
g

g l

=
+

	

(9.66)

Q, volumetric flow rate and the total volumetric flow rate is

	
Q Q Qg l= +

	
(9.67)

And Qg and Ql can be defined as

	

Q
W

Ag
g

g

=
	

(9.68)

and

	
Q

W

Al
l

l

=
	

(9.69)

where α volumetric fraction of gas and defined as

	

α =
+

Q

Q Q
g

l g 	

(9.70)

G, mass flux (where A is the cross-sectional area orthogonal to the direction 
of flow)

	
G

W

A

W

A

W

A

u A

A

u A

A
u ug l g g g l l l

g g l l= = + = + = + −( )
ρ ρ

αρ α ρ1
	

(9.71)

j, volumetric flux and the total volumetric flux is

	
j

Q

A
=

	
(9.72)

Mean density is defined as

	
ρ αρ α ρ= + −( )g l1

	
(9.73)

where jg and jl are defined as

	
j

Q

Ag
g=

	
(9.74)
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and

	
j

Q

Al
l=

	
(9.75)

And the total volumetric flux is

	
j j j

Q Q

A

A

A
u

A

A
u u ug l

g l g
g

l
l g l= + =

+
= + = + −( )α α1

	
(9.76)

where

	
u

j
l

l=
−1 α 	

(9.77)

and

	
u

j
g

g=
α 	

(9.78)

A summary table is given below (Table 9.2).

Example 9.2
Prove the following relationship

	

1

1

−

−
=

x

x Q

Q
l

g
α

α 	

(9.79)

where

	

1 1−
=

−
=

x

x

u A

u A

u A

u A
l l l

g g g

l l

g g

ρ
ρ

α
α

,

	

Table 9.2  Two-phase nomenclature

Volumetric Flow Rate
Qi = ρiui

Volumetric Flux

j
Q

Ai
i=

Volumetric Flux (gas)
jg = αug

Volumetric Flux (liquid)
jl = (1 − α)ul

Mass Flow Rate
Wi = ρiuiAi

Mass Flux

G
W

Ai
i=

Mass Flux (gas)
Gg = αρgug

Mass Flux (liquid)
Gl = (1 − α)ρlul
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and

	

1

1

−

−
= = =

x

x Q

Q

W

A
W

A

l

g

l

g

l

l

g

g

α
α

ρ
ρ

	

Further,

	

ρ
ρ

α

α

α
α

l

g

l

l

g

g

l

g

l

g

W

A
W

A

W

A

W

A

W

W
= =

−( )
=

−

1

1

	

Finally,

	

ρ
ρ

α
α

l

g

l

g

l

g

g g

l l

W

W

W

W

u A

u A
=

−





=











1
	

or

	

ρ
ρ

l

g

l l

g g

l

g

u A

u A

W

W
=

	

Conservation Principles for Two-Phase Flow
The conservation principles for a two-phase flow are given below without deriva-
tion [3].

Conservation of Momentum

	
∑ = +  = + + =dF d m u m u dF dF dFz g g l l zp zG zw  0

	
(9.80)

or

	
∑ = − − + −( )  − + dF A dP zdx PdXz z g l w l w gαρ α ρ τ τ1 , , 	

(9.81)

where Az is the cross-sectional area in the “z” direction, τw, l is the shear stress associ-
ated with the liquid, and τw, g is the shear stress associated with the gas.

And dividing by “AzdZ” and solving for dP/dZ results in
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− = −





 − 






 − 








dP

dZ

dP

dZ

dP

dZ

dP

dZg f acc 	

(9.82)

or

	
− = − − − ( )dP

dz

P

A

W

A

dv

dz
gcosw mτ ρ θ

	
(9.83)

Conservation of Mass

	 W vAm= =ρ constant 	 (9.84)

Conservation of Energy

	

dq

dz

dw

dz
W

d

dz
h

u
gZ− = + +









2

2
	

(9.85)

where q is the heat transfer, w is the work, and the three quantities in brackets are 
specific enthalpy, specific kinetic energy, and specific potential energy.

9.6  �Speed of Sound in a Two-Phase Flow

The first portion of this section develops the speed of sound for a mixture of com-
ponents [12]; it is assumed that the flow is homogeneous. The effort in this first part 
doesn’t address some of the concerns inherent in two-phase flow where interfacial 
processes become relevant and the two phases are no longer at equilibrium. It will 
be shown in this first section that the speed of sound of the mixture is a weighted 
average of the speed of sound of each component and that the weighting is based on 
the component density.

The derived relationship for a liquid/gas flow is

	

1
1

2c P g l= + −( ) 
α
γ

αρ αρ
	

(9.86)

In the second portion of this section, a correlation is developed between the 
speed of sound of the mixture and a variable, ω [13]. The relationship derived is

	
c

c

P
∗ = =

ν ω
1

	
(9.87)
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Speed of Sound for a Two-Phase Flow, Weighted Average of Densities
Consider a very small control volume (with volume equal to 1) where one phase is 
dispersed (phase A) and the other phase is continuous (phase B). The pressure asso-
ciated with the dispersed phase will include a surface tension [14] and is given as

	
P P

S

RA B= + 2
	

(9.88)

where PB is the pressure for phase B, S is the surface tension, and R is the radius of 
the dispersed phase particles. Eq. 9.88 is Laplace’s law for a spherical particle.

The mass of phase A is

	 m mA A A= +ρ α δ 	 (9.89)

And the mass of phase B is

	 m mB B B= −ρ α δ 	 (9.90)

Where mass is transferring from phase B to A and the amount is δm.
Given the mass above for phase A the volume for phase A is

	

V
m

P
P

A
A A

A
A

A Q

A

A

=
+

+
∂
∂











ρ α δ

ρ
ρ

δ

	

(9.91)

And the volume of phase B is

	

V
m

P
P

B
B B

B
B

B Q

A

B

=
−

+
∂
∂











ρ α δ

ρ
ρ

δ

	

(9.92)

where QA and QB are unspecified thermodynamic paths and

	

1
2C PA

A

A QA

=
∂
∂











ρ

	

(9.93)

and

	

1
2C PB

B

B QB

=
∂
∂











ρ

	

(9.94)
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Thus,

	 δV V VA B= + −1 	 (9.95)

And the definition of speed of sound is

	

c
V

PB PB

−

→

= −










2

0

ρ
δ
δ

δ 	

(9.96)

The following derivation is determined from substituting Eqs. 9.91 to 9.95 into 
Eq. 9.96
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δ
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
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

	

(9.97)

The ratio 
δ
δ
P

P
B

A

 needs to be determined where no dispersed particles are created, 

nor destroyed where the new radius of dispersed particles is R + δR and

	

δ δP P P P P S
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(9.98)

Thus,

	

δ
δ

α ρ
δ
δ

ρ
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1
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3
	

(9.99)

Substituting Eq. 9.99 into 9.97 and utilizing the definitions for speed of sound 
(Eqs. 9.93 and 9.94), the following relationship is derived

	

1 1

1 1 1 2
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2 2
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α
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1
2

S
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(9.100)

Homogenous flow assumes no mass transfer and typically the second term in the 
denominator associated with surface tension is much smaller than 1 and thus
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1
2 2 2c c CA A B B

B

A B

A

B A

= +[ ] +








α ρ α ρ

α
ρ

α
ρ

	

(9.101)

Equation 9.101 is valid for two-phase or two-component flow. Another form of 
the equation exists for two-phase flow where the density of one phase is much 
greater than the density of another phase, which is typical in a one-component, gas/
liquid flow. This other form is

	

1
1

1
2 2c P cg l

l l

= + −( )  +
−







αρ α ρ

α
γ

α
ρ

	

(9.102)

And when 
P

cL lρ 2
1 a simpler form is given as

	

1
1

2c kP g l= + −( ) 
α

αρ α ρ
	

(9.103)

Example 9.3 Speed of Sound for Water Mixture using Eq. 9.103
Using Eq. 9.103 and saturated water at 100 °C and alpha equal to 0.95, determine 
the speed of sound. Given below is the solution, which is 54.2 m/s (Fig. 9.7).

Speed of Sound for a Two-Phase Flow, Omega Method [15]
By definition,

	

c
P s

2 2
1

= −
∂
∂
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


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



−

ν
ν

	

(9.104)

Where the following thermodynamic relationships will be utilized to develop a 
homogeneous, two-phase sonic velocity (Clausius-Clapeyron relationships)

Fig. 9.7  Solutions for Example 9.3
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T
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fg f pf= = ≈
ν

, ,

	

(9.105)

Starting from the definition for specific volume of a mixture of gas and liquid

	
ν ν ν νmix = + −( )l g lx

	
(9.106)

And taking the derivation of Eq. 9.106 with respect to P results in
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1
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(9.107)

Where we’ll assume the liquid phase is an incompressible fluid and so 
∂
∂

≈
ν l

P
0 .

Given below are derivation for 
∂

∂

ν g

P
 and 

∂
∂
x

P
.

Assuming νg acts ideal

	
ν g

RT

P
=

	
(9.108)

And taking the derivative of both sides with respect to P results in
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(9.109)

and

	

R
P T P

RT
P P
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
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
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ν ν
and

1

	
(9.110)

and

	

dP
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s h

T
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fg

fg

= =
ν ν

	

(9.111)

Substituting Eqs. 9.110 and 9.111 into 9.109 results in

	

d

dP P h
g g g fg

fg

ν ν ν ν
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(9.112)
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and
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(9.113)

And the Clausius-Clapeyron relationships is
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h

T
fg

fg

=
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(9.114)

and

	
s s xsf fgmix = +

	
(9.115)

And taking the derivative of both sides with respect to T for an isentropic process 
results in
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(9.116)

or
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(9.117)

where hfg is constant with respect to T and so
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(9.118)

and
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(9.119)

and
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(9.120)
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Substitution of Eqs. 9.112 and 9.120 into Eq. 9.107 results in
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(9.121)

or
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(9.122)

And a dimensionless version of the above equation along with the following 
observation, νfg ≈ νg in terms of c is
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(9.123)

And setting ω equal to
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ν
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(9.124)

results in

	
c

c

P
∗ = =

ν ω
1

	
(9.125)

Example 9.4 Speed of Sounds Using Omega Method
Using Leung’s method as given in Eqs. 9.124 and 9.125, determine the speed of 
sound of saturated water at 100 °C and quality equal to 50%. Given below is the 
solution and we can see that the speed of sound for this saturated water mixture is 
298 m/s (Fig. 9.8).
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9.7  �Critical Flow for a Two-Phase Flow System

The first critical flow model for two-phase systems that will be developed [3] incor-
porates slip that addresses differing velocities between phases but will largely 
ignore other forms of non-equilibrium behavior, which will be discussed fur-
ther below.

Fig. 9.8  Solution for 
Example 9.4

9.7  Critical Flow for a Two-Phase Flow System



220

From the conservation of energy and assuming no heat transfer, no work, no 
appreciable kinetic energy at the stagnation point, nor changes in potential 
energy then

	
h

u
h0

2

2
= +∗

∗
	

(9.126)

where now u(*) is not necessary the local speed of sound, but a mixture of two 
phases and another form of Eq. 9.126 is

	
2 1

2 2∆h xu x ug l= + −( ) 	
(9.127)

And it can be show that G is equal to
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or
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From Eq. 9.129,

	

α =
xG

Qg 	

(9.130)

And Substituting Eq. 9.130 into 9.128 results in
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(9.132)

And solving for G
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And defining slip velocity (k) as

	
k
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u
g
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(9.134)

It is the case that
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(9.135)

And substituting in for ug the term kul results in
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and

	

2 1
1

2

2

2∆h
G

x

k

x
xk x

g l

= +
−











+ −( ) ρ ρ
	

(9.137)

For a given x and dh, G can be maximized by taking the derivative of both sides 
with respect to k.
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where
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(9.139)

and
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or
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Further
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and
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Substituting Eq. 9.143 into Eq. 9.137 results in
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(9.144)

Equation 9.144 tends to work well when x > 10%, but below this quality the fluid 
begins to act homogenous and as x approaches 0 or 100%, the slip goes to 1. For 
very low quality, another model of two-phase critical flow [16] is required and dis-
cussed below.

Example 9.5 Critical Flow using Eq. 9.144
Determine the critical flow for saturated water with a quality of 10% and a pressure 
of 150 kPa and using Eq. 9.144.

Given below is saturation data for water from 25 to 250 kPa. Using this data and 
Eq. 9.144, a curve is developed for x equal to 10%. Additionally, curves are pro-
vided for x = 5% and x = 90%.

The answer to the example is 510 kg/m^2-s (Fig. 9.9).

We’ve seen for one phase, one component flow that
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But for two-phase (two-component) flow
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(9.146)

where the thermodynamic path QA is no longer specified to be isentropic
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And now with a two-phase system

	
ν ν ν νmix = + −( )l g lx

	
(9.147)

And taking the derivation of Eq. 9.147 with respect to P results in
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And if we assume homogenous conditions where both phases are in equilibrium, 
then we can still assume an isentropic path, such that substituting Eq. 9.148 into 
Eq. 9.145 results in
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(9.149)

Fig. 9.9  Solution for Example 9.5
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And assuming an incompressible liquid
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And typically

	
ν νg l

	
(9.151)

Substituting Eqs. 9.150 and 9.151 into 9.149 results in
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(9.152)

Equation 9.152 is known as the homogenous equilibrium model and has been 
shown to inadequately predict critical flow because crucial interphase processes 
have been ignored. One discrepancy is that the densities between the liquid phase 
and the gas phase are very different and under the same applied pressure would 
experience very different accelerations and velocities.

Another common model for two-phase flow is the homogenous frozen model that 
assumes the properties through the choke point don’t change and specifically x. In 
Henry and Fauske [11], the underlying assumptions associated with both forms of 
the two-phase flow model are discussed.

We saw in the previous section that a liquid portion of a flow and a gas portion of 
a flow are at two very different Mach numbers. Put another way, we will see that 
phases are not at the same speed and momentum and energy may not be in equilib-
rium. All these issues will be discussed further when a general critical flow model is 
derived. This developed model addresses three interfacial transport processes [17]

	1.	 Interfacial heat transfer. The heat transfer rate between the gas phase and the 
surrounding liquid and solid phase.

	2.	 Interfacial momentum transfer. This transfer determines how fast each phase is 
accelerating.

	3.	 Interfacial mass transfer. This transfer determines the rate of evaporation or 
condensation.

A more general definition of critical flow for two-phase (two-component 
systems) is
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(9.153)

where H0 denotes a constant stagnation enthalpy [16, 11].
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Definition of Critical Flow for a Two-Phase System
Another form of the momentum equation where the effect of gravity and friction are 
ignored is

	
ρu

du

dz

dP

dz
= −

	
(9.154)

And conservation of mass is
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And substituting Eq. 9.30 into 9.155 results in
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Where again the critical flow is
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(9.157)

Where now the path is constant with regard to stagnation enthalpy.
As was just noted above, often ug ≠ ul and so
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(9.158)

And by definition
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Combining Eqs. 9.158 and 9.159 results in

	
− =

∂
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+ −( ) 1 1G
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Where the slip velocity is again defined as

	
u kug l=

	
(9.161)

Mass flow rate for each phase is defined below.

Where the liquid phase mass flow rate is
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(9.162)

And the gas phase mass flow rate is
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(9.163)

If we eliminate “G” from Eqs. 9.162 and 9.163 then a relationship between α and 
x is established
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Combining the previous two equations gives an equation for G solely in terms of ul
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Eliminating “ul” from Eqs. 9.165 and 9.163 results in
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where B is
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or
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And the following derivatives will have to be determined either experimentally 
or theoretically
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Henry and Fauske [11, 16, 18] have shown that

	

G
d

dP

xk x

k
x xc l g

H

2

0

1
1

1=
+ −( )

−( ) + 






















−

ν ν

	

(9.169)

Expanding Eq. 9.169 results in
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Again, using an order of magnitude arguments Eq. 9.170 can be simplified
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and
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And thus Eq. 9.170 is simplified to
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(9.173)

Given below are determinations through theory and experiments values or for-
mulas for the derivatives appearing in Eq. 9.173 [16, 11].

	

dk

dP

dk

dz

dP

dz
H

t

t







 =















0

	

(9.174)

Below are graphs for k versus z and P versus z where it is seen in Fig. 9.10 that k 
is a minima at z = zt = 1.6" (where zt is the throat of the nozzle) with the first deriva-
tive equal to zero and from Fig. 9.11 P is an inflection point at z = zt where the first 
derivative is not equal to zero.
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Evaluating Eq. 9.174 in light of these two figures it is seen that

	

dk

dP H







 =

0

0
	

(9.175)

The differential involving νg has been determined to be a polytropic process [11, 
16, 18] given below as
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0 	

(9.176)

where N is dependent on the geometry of the conduit and provides an estimate 
for the fact that the actual path “H0” is between isentropic and isenthalpic where a 
portion of the thermodynamic energy is converted to kinetic energy.

And n equals

	

n

x
c

c

x
c

c

f

pg

f
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=

−( ) +

−( ) +

1 1

1
1
γ

	

(9.177)

Further [16]
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∂
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
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(9.178)

And from Fauske [18] a model for 
∂
∂









x

P s

is

Fig. 9.10  k versus z [11] 
for various qualities

Fig. 9.11  Pressure versus 
z [11] for various qualities
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(9.179)

Substituting Eqs. 9.175 through 9.179 into Eq. 9.173 results in
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(9.180)

And it has been found [18, 16] for x < 5% that k = 1 such that
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(9.181)

Equation 9.181 is similar to a model, Eq. 3.25, given in Henry [16].

Example 9.6 Compare Three Critical Flow Models
In this example, three models are compared for critical flow. These models include 
the model at the beginning of this section given from Wallis [3], the model just 
developed, and a model attributed to Henry and Fauske [11].

Given below is the analysis for Eqs. 9.140 and 9.181 for water at a pressure of 
600 psia as Fig. 9.12 for quality ranging from 15% to 80%. Figure 9.13 provides a 

Fig. 9.12  Solution for Example 9.6
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comparison between the two discussed models and a model developed by Henry and 
Fauske [11]. It is seen as quality decreases that Eq. 9.181 approaches the mass flow 
flux of liquid as computed from Bernoulli’s equation, which is 1807 lbm/ft.^2-s and 

based on u P
l = 2 ∆

ρ
.

Critical Flow Utilizing the Omega Method
Another method exists that is much more empirical and much more straightfor-
ward – the ω method. We utilized this method earlier to look at determinations of 
speed of sound in two-phase flows.

The critical flow of a homogeneous two-phase flow can be expressed in terms of 
the omega correlation [17, 19, 13]. The equation is given as

	
G

P
c
2 2 0

0

=η
ων 	

(9.182)

where ω takes a slightly different form from Eq. 9.124 where the first terms differs 
slightly.
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(9.183)

And η, which is the critical pressure ratio 
P
PC

0







 , has been determined to be

	
η ω ω η ω η ω η2 2 2 2 22 1 2 2 1 0+ −( ) −( ) + ( ) + −( ) =ln

	
(9.184)

Fig. 9.13  Comparison of three critical flow models for two-phase systems
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where omega can be determined either graphically or through empirical relation-
ships [14] such as

When

	 ω ≥ 4 	
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2
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(9.185)

Or when

	 ω < 4 	
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(9.186)

Please note the following

	 ω ω α< → − =1 0Non Flashing Flow, 	 (9.187)
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c T P
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Example 9.7 Critical Flow Using Omega Method
Determine the critical flow [kg/m^2-s] for saturated water at 100 °C and quality 
equal to 50% utilizing the Omega method discussed above.

It is seen from below that the calculated omega is 1.10 (Flashing) and so Eq. 9.186 
is utilized. For the given stagnation pressure (101.3 kPa) and specific volume of the 
mixture (0.84 m^3/kg), the critical flow is determined to be 185 kg/m^2-s and about 
20% of the value for G(L), which is the critical flow for liquid water at the same 
temperature and pressure (Fig. 9.14).

9.8  �Problems

Problem 9.1 Ideal, Perfect Critical Flow
Determine mass rate versus time for methane with an initial pressure of 5 MPa and 
temperature of 300 K. The pressure vessel is composed of a cylinder with two hemi-
spherical end-caps where the diameter is 36″ and the length of the cylinder is 60″. 
The opening has a diameter of 1/8″.
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Problem 9.2 Two-Phase Flows
Prove the following

	
G Q

xl=
−
−

1

1

α

	

Problem 9.3 Speed of Sound for Two-Phase System
Determine the speed of sound for saturated methane at 95  K where the qual-
ity is 30%.

Fig. 9.14  Solution for 
Example 9.7
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Problem 9.4 Speed of Sound for a Two-Component System
Determine the speed of sound for water and air at STP where α for air is 50%.

Problem 9.5 Two-Phase Critical Flow
Using the two-phase model for critical flow given from Wallis [3] determine the 
critical flow rate [lbm/ft^2-s] for saturated carbon dioxide at 50  °F with a qual-
ity of 50%.

Problem 9.6 Two-Phase Critical Flow
Using the two-phase model for critical flow given from Henry and Fauske [11] 
determine the critical flow rate [lbm/ft^2-s] for carbon dioxide at 50 °F with a qual-
ity of 50%.

�Appendix 9.1: Critical Flow, Ideal Gas (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 9.2: Speed of Sound in a Two-Phase Flow (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 9.3: Omega Method (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.
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Chapter 10
Physically Based Combustion

10.1  �Preview

To this point, we have gathered a foundation in thermodynamics and applied ther-
modynamics to the area of gas dynamics to understand speed of sound, normal 
shocks, and critical flow. Another important application of thermodynamics is 
combustion.

A combustion system is simply a wave which involves a chemical reaction that 
sustains the wave while oxidizer (usually air) and fuel are available; when the com-
bustion is a detonation, the wave is traveling greater than Mach 1 and is a shock 
wave. When the combustion is deflagration, the wave is traveling much less than 
Mach 1. This chapter will mainly address detonation; deflagration will be addressed 
in Chap. 12.

Various properties (states) of a detonation or deflagration are given as Table 10.1 
where the subscript “1” denotes unburned gas and “2” denotes burnt gas.

One representation of a detonation system is known as the Zeldovic, von 
Neumann, and Doren, which are commonly known as ZND models [1–4] and given 
as Fig. 10.1; in Chap. 13, we’ll discuss ZND models and call them dynamic detona-
tion models. In this figure the shock wave and attached reaction zone are moving 
from right to left and the reaction zone includes an induction zone.

This chapter asks the following question “for a given initial states (1) what are 
the final states at either points (2) or (3)”? and assumes the heat release is instanta-
neous. The ZND model deals with the fact that the heat is released as a result of a 
chemical reaction and allows for characterization of the states within the induction/
reaction zone (2- > 3).

Much of our experimental knowledge for combustion comes from shock tubes 
(see Fig.  10.2), which are essentially tubes divided by a diaphragm and have a 

Electronic Supplementary Material: The online version of this chapter (https://doi.
org/10.1007/978-3-030-87387-5_10) contains supplementary material, which is available to 
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Table 10.1  Properties of combustions [1]

Detonation Deflagration

Mach1
1

1
= u

c

5–10 0.0001–0.03

u
u

2
0.4–0.7 (Deceleration) 4–6 (Acceleration)

P
P

2

1

13–55 (Compression) .98 (Slight Expansion)

T
T

2

1

8–21 (Heat Addition) 4–16 (Heat Addition)

ρ
ρ

2

1

1.7–2.6 0.06–0.25

Induction
Zone

Temperature,
pressure, and
Density

Shock
Wave

Reaction
Zone

Distance

T

1 2 3

P

�

Fig. 10.1  ZND model [5]
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Fig. 10.2  Shock tube with states versus time [6]
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region of higher pressure (Driver Section) and a region of lower, ambient, pressure 
(Driven Section). If the differential pressure is great enough, the thin-skinned dia-
phragm “bursts” and a shock wave travels down the tube and obeys Eqs. 10.1, 10.2, 
and 10.3 where q is zero for a normal shock or has some positive value for a com-
bustion system.

Conservation Equations
Conservation of mass:

	 ρ ρ1 1 2 2u u= = m 	 (10.1)

Conservation of energy:

	
h u q h u1 1

2
2 2

21

2

1

2
+ + = +

	
(10.2)

Conservation of momentum:

	 P u P u1 1 1
2

2 2 2
2+ = +ρ ρ 	 (10.3)

When the gas is an air/fuel mixture and ignites in some fashion as the diagram 
bursts, the system around the shock and attached reaction zone can be treated as one 
dimensional and friction and turbulence ignored. A graphical solution for Eqs. 10.1, 
10.2, and 10.3 is known as the Rayleigh-Hugoniot system (see Fig. 10.3) and trans-
forms the equations into a line (Rayleigh line) and curve (Hugoniot curve); the point 
where the line and curve intersect is an endpoint of the system in terms of the point 
between the compressive shock and beginning of the reaction zone (λ = 0%) or the 
end of the reaction zone (λ = 100%) where λ is the percent reaction complete. For 
detonation systems, it is often assumed that the gas at the end of the reaction zone 
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Fig. 10.3  Rankine/Hugoniot system [4]
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travels at Mach 1 and this point is known as the Chapman-Jouget (CJ) point; states 
associated with the “CJ” point can be determined by assuming that the Rayleigh line 
is tangent to the Hugoniot curve. The determined velocity, Ma(cj), for a detonation 
system has been shown to be within a few percent of experimentally determined 
velocities; unfortunately, this is not the case for the “CJ” point associated with a 
deflagration [1, 7, 8] where important transport processes have been ignored.

Figure 10.3 represents the states associated with a rotational detonation engine 
[4] where the pressure rises along the “shock Hugoniot” to the “von Neumann peak” 
(λ = 0%) and then the reaction occurs along the “subsonic Rayleigh line” and the 
reaction is complete at the “upper Chapman-Jouget point” where λ = 100%.

The chapter goes on to discuss a RH system for partially complete combustions 
(λ < 100 % ) and extends the RH framework to a system where issues of boundary 
layers are considered, which addresses some of the issues friction. It has been 
observed [1, 3, 4] that gas velocities within the reaction zone are sub-mach and that 
issues of friction become important, which is the purpose of Fay’s system and will 
be discussed in Sect. 10.5.

The chapter ends will an alternate method to determine the Mach number of the 
shock wave with or without friction; this section parallels the discussion of Norman 
shocks in Chap. 7 and includes equations for ratios of the states.

10.2  �Standard Rankine-Hugoniot Theory

Staring from Eqs.  10.1 to 10.3, this section will develop the Rankine line and 
Hugoniot curve that graphically depicts the conservation principles.

10.2.1  �Deriving the Rankine Line

From Eq. 10.2,

	 P P u u2 1 1 1
2

2 2
2− = −ρ ρ 	 (10.4)

From Eq. 10.1,

	

ρ
ρ

ρ
ρ

1

2
1 2

1

2
1

2

2
2u u u u=









 =,

	

(10.5)

Substituting Eq. 10.5 into Eq. 10.4 results in

	

P P u u u2 1 1 1
2

2
1

2
1

2

1 1
2 1

2

1− = −






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
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ρ ρ

ρ
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ρ
ρ
ρ

	

(10.6)
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And dividing both sides by P1 and substituting y P
P x= =2

1

1

2
, ρ

ρ  results in

	
y

u

P
x− = −[ ]1 11

2

1 1ν 	
(10.7)

which is the celebrated Rankine line. Another form of Eq. 10.7 is

	
y Ma x− = −[ ]1 11 1

2γ
	

(10.8)

10.2.2  �Mass Flux

	
u

m
u

m
1

1
2

2

= =
 

ρ ρ
,

	
(10.9)

Substituting Eq. 10.9 into Eq. 10.4 results in

	
P P

m m
2 1

2

1

2

2

− = −
 

ρ ρ 	
(10.10)

and

	

P P m2 1
2

1 2

1 1
− = −
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
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(10.11)

Further

	

m
P P2 2 1

1 2

1 1
=

−

−
ρ ρ 	

(10.12)

10.2.3  �Derivation for −∆KE

And −∆KE is defined as
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(10.13)
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And substituting Eq. 10.12 into Eq. 10.13 results in
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(10.14)

and
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(10.15)

Therefore, substituting Eq. 10.15 into Eq. 10.14 results in

	

− = −( ) +








∆KE P P

1

2

1 1
2 1

1 2ρ ρ
	

(10.16)

10.2.4  �Deriving the Hugoniot Curve

The energy balance for the system, Eq. 10.2, is
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(10.17)

and
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(10.18)

and
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Substituting Eq. 10.19 into Eq. 10.18 gives
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or
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+
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γ ρ

γ
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(10.23)

And diving both sides of Eq. 10.23 by P1υ1 results in

	
y xy x xy

q

P
q+ − −[ ]−

−
+

−
= − = − ′1 2

1
2
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2
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(10.24)

and
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

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(10.25)

Solving for y
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q x
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=
− − +

−

−








 − −

′2 1
2

1

2

1
1

1

1

2

2

γ
γ

γ
γ

	

(10.26)

Equation 10.26 can be simplified using the following relationships
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(10.27)
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and
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1
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(10.28)

Substituting Eqs. 10.27 and 10.28 into Eq. 10.26 results in

	
y

q x a

bx
=

− +
−

′2

1 	
(10.29)

which is the celebrated Hugoniot curve.
We will now apply all this theory to a practical problem, but first more theory!

10.2.5  �Delineating Combustion Regions

Given Rankine lines and a Hugoniot curve, we want to understand the various 
regions of the graph given below [1]. Looking at Fig. 10.4, the initial point is “A” 
and possible endpoints include “U” and “L”, which are Chapman-Jouget points 
where the Rankine line and Hugoniot curve are tangent.

Using the developed equation for mass flux

	





m
P P

=
−

−

2 1

1 2

1 1
ρ ρ

	

(10.30)

Fig. 10.4  Jouget’s rules [1]
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and

	
u u m2 1 2 1− = −[ ] ν ν

	
(10.31)

If we square both sides of Eq. 10.30, we see that this is the Rankine line and 
dividing by P1ρ1 results in

	

m

P

y

x
Ma

2

1 1
1 1

21

1ρ
γ=

−
−

=
	

(10.32)

We’ll see in the next section that

	
Ma

q
1
2 2

2

1

2 1
≈

−( ) ′γ

γ 	
(10.33)

Substituting Eq. 10.33 into Eq. 10.32 results in

	

m

P

y

x
Ma q

q

P

2

1 1
1 1

2
2
2

2
2

1 1

1

1
2 1 2 1

ρ
γ γ γ

ν
=

−
−

= = −( ) = −( )′
	

(10.34)

Using Fig.  10.4 and Eqs.  10.30, 10.31, and 10.34 observations will be made 
about the following quantities

	1.	 Relationship between P2 and P1 for a particular region
	2.	 Relationship between ν2 and ν1 for a particular region
	3.	 Relationship between u2 and u1 for a particular region
	4.	 Relationship between slope of Rankine line, Ma1, and q for a particular region

Analysis is given as Tables 10.2, 10.3, and 10.4.
The only portions of the graph observed experimentally (there are rare excep-

tions) are the Detonation CJ point and the weak deflagration region (Region III) [3]; 
the weak deflagration region is understood through a knowledge of laminar flame 
speed of premixed gases [1, 5, 7] and will not be discussed in this chapter. This 
chapter will focus solely on the detonation CJ point and properties of this point such 
as {xcj, Macj}.

Table 10.2  Jouget rules, Part I

Region P2 versus P1 ν2 versus ν1 Designation Comments

I P2 > P1 ν2 < ν1 Strong Detonation u1 > u2

II P2 > P1 ν2 < ν1 Weak Detonation u1 > u2

V P2 > P1 ν2 > ν1 Impossible Quantity under radical would be 
negative!

III P2 < P1 ν2 > ν1 Weak Deflagration u1 < u2

IV P2 < P1 ν2 > ν1 Strong 
Deflagration

u1 < u2
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Example 10.1 RH Theory
Given ambient conditions of 1 atmosphere, 25 C, γ1 is 1.4, γ2 is 1.2, and the heat 
released is 2400 kJ/kg. Develop the Rankine line and Hugoniot for this system and 
graph. Assume Ma(cj) is 4.20. We see from the graphs that x(cj) is between 0.5 and 
0.6 and y(cj) is between 10 and 15, which provides an estimate for x(cj) and y(cj). 
Knowing ρ1 and P1 we can determine ρ2 and P2. We will take this problem further in 
the next section, but first we need to understand the CJ condition (Fig. 10.5).

Fig. 10.5  Solution to Example 10.1

Table 10.3  Jouget rules, Part II [1]

Region Slope of Rankine Line Ma1 q

I Steep Ma1 > 1 High
II Steepest Ma1 > 1 Highest
V Impossible
III Shallowest Ma1 < 1 Lowest
IV Shallow Ma1 < 1 Low

Table 10.4  Jouget rules, Part III [1]

Region Observed Experimentally Comments

I CJ Detonation Point Only u1 > u2 Flow supersonic in front, subsonic behind
II No u1 > u2 Flow supersonic in front, supersonic behind
V Impossible
III Yes u1 < u2 Flow subsonic in front, subsonic behind
IV No u1 < u2 Flow subsonic in front, supersonic behind
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10.3  �Chapman-Jouget (CJ) Point for Standard RH System

When the Rankine line and Hugoniot curve are tangent to each other, the endpoint 
of the combustion is known as the Chapman-Jouget condition and there are two 
possible “CJ” points; one is associated with detonation and the other is associated 
with deflagration.

This section will derive the states (Xcj, Macj) associated with a detonation at the 
CJ point and also the point where the reaction is complete (λ = 100%).

At the CJ point

	
y yRankine Line Hugoniot Curve=

	
(10.35)

and

	

d

dx
y

d

dx
yRankine Line Hugoniot Curve=

	
(10.36)

Equation 10.35 will be utilized to determine Xcj and Eq. 10.36 will be utilized to 
determine Macj.

10.3.1  �Derivation for X(cj)

	
1 1

2

11 1
2+ −( ) = − +

−
′

γ Ma x
a x q

bx 	
(10.37)

	
bx Ma x bx a x q− + −( ) −( ) = − + ′1 1 1 21 1

2γ
	

(10.38)

or

	 bx Ma bx b Ma x Ma x Ma a q x− + − + − − − + =′1 2 01 1
2

1 1
2 2

1 1
2

1 1
2γ γ γ γ 	 (10.39)

which is of the form

	 Ax Bx C2 0+ + = 	 (10.40)

where

A b Ma B b Ma b Ma C Ma a q= − = + + + = − − − − ′γ γ γ γ1 1
2

1 1
2

1 1
2

1 1
21 1 2, , 	 (10.41)

The CJ point, by definition, is a point of tangency and Eq. 10.39 has a unique 
solution. Therefore,
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x
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(10.42)

Recalling that b is defined as

	
b =

+
−

γ
γ
2

2

1

1 	
(10.43)

And 1 2
1

2

2

32≤ ≤ → 





γ xcj ,  and for air/fuel mixtures is more likely between 
0.5 and 0.6.

Now solve for Macj

10.3.2  �Derivation for Ma(cj)

Given

	
y Ma Ma xRL = +( ) −1 1 1

2
1 1

2γ γ
	

(10.44)

and

	
y

a x q

bxHC =
− +

−
′2

1 	
(10.45)

and

	 y MaRL
′ = −γ1 1

2

	 (10.46)

and

	

y
ab bq
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=
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1 2

1
2

	

(10.47)

Set Eqs. 10.46 and 10.47 equal to each other and solve for Ma1.
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(10.48)

and
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(10.49)
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Further,
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(10.50)

where b is defined as
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(10.51)

Therefore,

	

1

4
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1
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2

2

2
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−( )γ
	

(10.52)

Substituting Eq. 10.52 into Eq. 10.48 results in

	
γ

γ
γ
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(10.53)

and

	
Ma

q
1
2 2

2

1

2 1
≈

−( ) ′γ

γ 	
(10.54)

Example 10.2 RH Theory and CJ Point
Complete Example 10.1 by determining Macj, xcj, ν2, T2, and P2. (Fig. 10.6)

Fig. 10.6  Solution for Example 10.2
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10.4  �Partially Complete Reactions

When a reaction does not go to completion (λ  <  100  %  ), a series of Hugoniot 
Curves are graphed for each λ and when this series of curves intersects the Rankine 
Line, and then the endpoint of the system is determined.

Let’s start by formally defining λ.

	

λ =
[ ] −[ ]

[ ]
∗

F F

F
f0

0

100%

	

(10.55)

where [F]0 is the initial concentration of fuel and [F]f is the final concentration 
of fuel.

The only change to the RH theory is to multiple the q term within the Hugoniot 
curve by λ. An example using partial Hugoniot curves is given in Chap. 13.

10.5  �Fay’s System and RH Theory

This section will focus on algebraically deriving the equations for the Rankine line 
and Hugoniot curve starting from the given conservation principles for Fay’s sys-
tem. These equations will be obtained in terms of initial and final conditions of deto-
nations, as well as Mach numbers. The different equations for conservations will 
take into account the mass divergence considerations as devised by Fay.

The theory for combustion presented in Sects. 10.2 and 10.3 assumes one-
dimensional flow that ignores the effects of friction and turbulence and the theory 
has been shown over 100  years to work surprisingly well. There are exceptions 
though. It was seen that when a shock tube was utilized with a smaller inside diam-
eter the predicted Ma(cj) and actual Ma(cj) were significantly different. In Fay [3], 
“It was argued that the effects of the wall were confined to a thin layer of fluid 
closed to the wall, and could only influence the major portion of the flow through 
changes in pressure propagated through the subsonic reaction zone. The effect of 
this boundary layer is to cause the streamlines in the reaction zone to diverge and 
thereby reduce the propagation velocity.” Given as Eqs. 10.56, 10.57, and 10.58 are 
the conservation equations for a system that addresses this area divergence.

The derivation for the Rankine line and Hugoniot curve in this section is solely 
the work of Imane Ennadi [2] who derived these equations as part of her senior 
honor’s thesis at the University of Saint Thomas.

Equations of Conservation
Conservation of mass:

	
ρ ρ ξ1 1 2 2 1u u= +[ ] = m 	

(10.56)
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Conservation of energy:

	
h u h u1 1

2
2 2

21

2

1

2
+ = +

	
(10.57)

Conservation of momentum:

	
P u P u1 1 1

2
2 2 2

21 1 1+ = + −( )  + +[ ]ρ ξ ρ ξ
	

(10.58)

where ξ = −
A

A
2

1

1 and 1 < ϵ ≤ 2.

10.5.1  �Rankine Line

Using Eq. 10.58, we can rearrange it to get:

	
P P u u2 1 1 1

2
2 2

21 1 1+ −( )  − = − +[ ]ξ ρ ρ ξ
	

(10.59)

Using Eq. 10.56, we get:
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Thus, we can plug in Eq. 10.61 into Eq. 10.59
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(10.65)
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We define Y and X to be:

	
Y

P

P
= 2

1 	
(10.66)

	
X =

ρ
ρ
1

2 	
(10.67)

To introduce these two variables, we divide Eq. 10.65 by variable P1, obtaining:
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(10.68)

Replacing the variables, we obtain the equation:

	

Y
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(10.69)

Determining this equation in term of Mach numbers, we obtain:

	

Y
X

1 1 1 1
11 1
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
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(10.70)

This equation is the equation of the Rayleigh line.

10.5.2  �Mass Flux

Using Eq. 10.56, we can derive two equations:

	
u1

1

=
m

ρ 	
(10.71)

	

u
m

2
2 1

=
+[ ]


ρ ξ
	

Using Eq. 10.71, we can replace the variables u1 and u2 in Eq. 10.58:
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Following, we get the equation:
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(10.75)

10.5.3  �Deriving Hugoniot Curve

We first start by rewriting Eq. 10.57:

	
− = −( )∆KE u u1
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2

2
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(10.76)

Using Eqs. 10.71, we obtain:
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Using Eq. 10.74, we obtain:
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where:
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Using Eq. 10.67, we obtain:
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Thus, Eq. 10.81 becomes:
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where, following the ideal gas law, we know that:

	
∆KE q C T C Tp p= + −

2 2 1 1 	
(10.84)

where:
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And, following the ideal gas law:

	
C Rp u=
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(10.86)

Thus, we obtain:
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Using Eq. 10.83, we obtain:
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where we know that:
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Using density instead of specific volume, we get:
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Using Eqs. 10.66 and 10.67, we obtain:
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As such, we obtain the equation for the Hugoniot curve to be:
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And can be simplified to
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10.6  �Determination of States to Include Ma(cj)

An alternative approach exists for determining the Ma(cj) for a system with or with-
out considerations of friction, which is the issue that Fay [3] addressed; this alter-
nate approach will also provide equations for ratios of the states. This approach 
[9–12] parallels the method we utilized for determining the equations for ratio of 
states associated with a normal shock, Chap. 7.

10  Physically Based Combustion



257

10.6.1  �Determination of States without Thermodynamic 
Changes (Coleman)

In this section, equations are derived for the following non-dimensionalized states 
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.  Please note in this section thermodynamics properties such as 

{cP, γ} will be considered constant, but will be allowed to varying in Sect. 10.6.2.
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From Eqs. 10.1 to 10.3 and other considerations for an ideal, perfect gas it can be 
shown (see Appendix 10.1) that
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Coleman [9] has shown that F characterizes the type of detonation system where

	 F = → −1 Chapman Jouget Detonation 	

	 1 2≤ ≤ →F Strong Detonation 	

	 F = →2 Adiabatic Shock 	
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And Substituting Eq. 10.101 into Eq. 10.100 results in
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and
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or
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where u2 is also equal to
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Substituting Eq. 10.106 into Eq. 10.105 equals
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And substituting Eq. 10.102 into Eq. 10.107 results in
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The ratio of Mach numbers squared is derived as a function of the quantities 
given above. By definition

Ma

Ma

u

a

u

a

u
P

u
P

u

u

P

P

A

M
2
2

1
2

2
2

2
2

1
2

1
2

2
2

2

2

1
2

1

1

2
2

1
2

1

2

2

1

1

= = = =
−γ

ρ

γ
ρ

ρ
ρ

aa

A

Ma
A

A

Ma

A
1
2

2

1
2

1
2

1 1

1

1











−








 +[ ]

=
−











+
γ

γ

	

(10.109)

10.6.2  �Determination of States with Thermodynamic 
Changes (Adamson)

In this section, thermodynamic properties across the shock are allowed to vary, but 
essentially the equations keep the same form [12]. The only difference is in how “F” 
and “A” are defined.
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Again, starting from Eqs. 10.1, 10.2, and 10.3 one could get to
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We’ll derive relationships for 
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Therefore,
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The ratio of Mach numbers squared can be defined as
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10.6.3  �Ma(cj) for a Detonation System with and without 
Area Divergence

Without Area Divergence
The determination of the Mach number associated with the CJ detonation wave 

is determined from Eq.  10.112, which is the F associated with Adamson’s sys-
tem [12].
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Setting F = 1 results in
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And solving for Ma1 we get to
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With Area Divergence [10]
From the conservation principles associated with Fay’s system, one with great 

patience could get to the following relationship
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where ψ is defined as
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Example 10.3 Sensitivity Analysis of Area Divergence Effects on 
Velocity Deficit
Show how area divergence affects the velocity deficit for two values of q. Velocity 
deficit is defined as (Fig. 10.7)

	

∆V
Ma Ma

Ma
cj RH cj Fay

cj RH

=
−, ,

, 	

(10.122)

10.7  �Problems

Problem 10.1 Standard RH Problem Around RDE
Given a pressure of 2 atmospheres, 250 K, γ1 = γ2 = 1.4 and a heat release of 20 kJ/
kg create the Rankine line and Hugoniot curve for this system. Also determine the 
states at the CJ point.

Problem 10.2 Partially Complete Combustion
Repeat the analysis of Problem 10.1 but assume that λ = 60%.

Problem 10.3 Fay’s RH Problem
Using the Rankine line and Hugoniot curve for Fay’s system with ϵ = 1.5 and ξ = 0.1 
for Problem 10.1 determine the Ma(cj). This will be an iterative problem where 
Ma(cj) will be varied until the Rankine line and Hugoniot curve are tangent to 
each other.

Problem 10.4 Ma(cj) from Alternate Method
Using the tools developed in Sect. 10.6, determine Ma(cj) with and without area 
divergence for the system described in Problems 10.1 and 10.3.

Fig. 10.7  Solution for Example 10.3
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�Appendix 10.1: Derivation for Eq. 10.100

Given
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Further
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And multiplying both sides by 
ρ
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 results in
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Starting from Eqs. C.4 and C.5
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And multiplying both sides by 2
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Further
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And solving for 
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where
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Substituting Eq. C.11 into C.15 results in
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or

Appendix 10.1 – Derivation for Eq. 10.100
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or
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It can be shown that

	

1 1
1

1
1 1

2 1

1

2

1

1

2

1
2

1
2

1
2

1
2 2

− = − =
−
+( )

+ −
+( )

−( )





u

u

Ma

Ma

Ma

Ma

q

C TP

ρ
ρ γ

γ










=

−
+( )

Ma

Ma
F1

2

1
2

1

1γ
	

(C.20)

�Appendix 10.2: More Exact Solution for CJ Conditions

The following appendix derives more exact solutions for X(cj) and Ma(cj), which 
does not include changes in thermodynamic properties across the shock.

Another form of the Hugoniot curve is

	
y x q+( ) −( ) = − + ′µ µ µ µ λ2 2 4 21 2

	
(E.1)

where

	
µ

γ
γ

2 1
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−
+ 	

(E.2)

If we substitute the Rankine line into Eq. E.1, then we get

	
1 1 1 21

2 2 2 4 2+ −( ) +  −  = − + ′γ µ µ µ µ λMa x x q
	

(E.3)

And expanding the terms

x Ma x x x Ma x q+ −( ) + − − −( ) − = − + ′γ µ µ µ γ µ µ µ λ1
2 2 2 2

1
2 4 4 21 1 1 2

	
(E.4)

which is quadratic in x
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or

− + +( ) +( )



 − + +  − =′γ µ γ µ γ λMa x Ma x Ma q1

2 2 2
1
2 2

1
21 1 1 2 1 0

	
(E.6)

When B2 = 4AC, a unique solution exists. From this fact, more exact solutions 
exist for x(cj) and Ma(cj), which are given below.

X(cj) is
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And Ma(cj) can be determined from
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�Appendix 10.3: Standard Rankine-Hugoniot 
Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 10.4: Partially Combusted Rankine-Hugoniot 
Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 10.5: Ma(cj) Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 10.5: Ma(cj) Worksheet (website)



266

References

	 1.	Kuo K (2005). Principles of combustion; , 2nd.
	 2.	Ennadi, I. (2019). Numerical and graphical solutions to more general Rankine Hugoniot sys-

tems; Senior Honor’s Thesis, Department of Mathematics and Computer Science, University 
of St. Thomas.

	 3.	Fay, J. (1959). Two-dimensional gaseous detonation: Velocity deficit. The Physics of Fluids, 
2(3), 283–289.

	 4.	Norden, C. (2013). Thermodynamics of a rotating detonation engine; University of Connecticut, 
Dissertation.

	 5.	Rouser, Kurt P., personal Communications, April 4, 2021.
	 6.	Wikipedia. https://en.wikipedia.org/wiki/Shock_tube. Accessed 6/12/2021.
	 7.	Lee, J. H. S. (2008). The detonation phenomenon. Cambridge University Press.
	 8.	Turns, S.  R. (2012). An introduction to combustion concepts and applications (3rd ed.). 

Mc-Graw Hill.
	 9.	Coleman, L. H. (1970). An analysis of oblique and Normal detonation waves; Ministry of 

Technology, Aeronautical Research Council, Reports and Memoranda, R&M No. 3638.
	10.	Dabora, E. K. (1963). The influence of a compressible boundary on the propagation of gaseous 

detonations; Dissertation, University of Michigan.
	11.	Evans and Ablow (1960). Theories of detonation; Standard Research Institute, Received May 

16, 1960.
	12.	Murray, S. B. (1985). The influence of initial and boundary conditions on gaseous detonation 

waves; Dissertation, Mc-Gill University, Suffield Report 411.

10  Physically Based Combustion

https://en.wikipedia.org/wiki/Shock_tube


267© Springer Nature Switzerland AG 2022
H. C. Foust III, Thermodynamics, Gas Dynamics, and Combustion, 
https://doi.org/10.1007/978-3-030-87387-5_11

Chapter 11
Combustion Chemistry

11.1  �Preview

We saw in Chap. 10 how to determine the endpoints of either the shock or combus-
tion utilizing the Rankine-Hugoniot theory and the Chapman-Jouget theory. This 
theory has been shown over the last century to accurately determine the endpoint 
states of the reaction zone for a detonation, but doesn’t work as well for deflagra-
tions. The theory in Chap. 10 was from a purely physical basis.

In Chaps. 12 (Deflagrations) and 13 (Detonation), we will incorporate chemistry 
and other considerations to see how states change within the control volume, but 
first we need to learn some chemistry.

In this chapter, we will learn stoichiometry, which is the idea that for a particular 
set of chemistry molecules react in certain proportions and produce other molecules 
in other proportions. When a fuel and oxidizing run stoichiometric, there can be 
advantages to this situation.

Other areas covered in this chapter are a more general definition of enthalpy, dis-
cussion of chemical equilibrium and kinetics, and a discussion of adiabatic tempera-
ture for a constant pressure and constant volume process. The discussion of adiabatic 
temperature will include complete combustion (reactions) and incomplete combustion.

11.2  �Stoichiometry

Stoichiometry is a branch of chemistry that asks very practical questions such as the 
following: if I have 10 kg of gasoline, how many kilograms of air do I need to com-
pletely combust the fuel? It’s also an area of chemistry that utilizes conservation of 
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mass and shows that molecules associated with particular reactions react in certain 
amounts.

The basic oxidation reaction for hydrocarbons of the form CnH2n+2 is given as

	
C H O N CO H O Nx y a x y a� �� � � � �2 2 2 2 23 76 2 3 76. .

	
(11.1)

where a x y� � 4
In order to completely combust the fuel, CxHy, the following ratio of fuel to oxi-

dizer (air), O2 + 3.76N2, is required
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(11.2)

Combustions do not always run at these stoichiometric conditions, and as such, 
an equivalence ratio is defined as
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(11.3)

when ф < 1 → fuel-lean and when ф > 1 → fuel rich
It can be seen in Fig. 11.1 there are times to run fuel-lean and other times to run 

fuel-rich. Also, graphing different quantities of concern against the non-dimensional 
quantity Φ provides insight on how the chemistry affects performance (see Fig. 11.2) 
where in Fig.  11.2 complete combustion results in the highest adiabatic 
temperature.

Example 11.1 Stoichiometric example
Determine the equivalence ratio for a mixture of methane and air where the mass 
rate of methane is 0.5 kg/s and the mass rate of air is 16 kg/s.
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Stoichiometric
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Fig. 11.1  A/F ratio versus 
power [12]
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11.3  �Enthalpy (Revisited)

To this point, we have ignored the fact that there are different forms of enthalpy and 
now we’ll look at three main forms:

•	 Sensible enthalpy
•	 Latent enthalpy
•	 Enthalpy of formation

Each form is defined below and more details are given in separate sections.

Sensible enthalpy is the amount of energy released to either the system or the 
surrounds to change the temperature by a given amount and does not involve phase 
changes, nor changes in chemical composition.

Latent enthalpy is the amount of energy released to either the system or the sur-
rounds to go from one phase into another phase. We dealt with this previously when 
we discussed Clausius-Clapeyron equation in Chap. 7.

Enthalpy of formation is the amount of energy contained within a molecule’s 
molecular bonds and is typically given at some standard set of conditions (298 K 
and 1 atmosphere).

A more general energy balance to incorporate these three forms of enthalpy is 
given as Eq. 11.4.

	 � �q w h h h� � � � � �� � � �
heat latent formation

KE PE 	 (11.4)

How to compute the amount of energy released for each type of enthalpy is the 
subject of the sections below.

11.3.1  �Sensible Enthalpy

The type of enthalpy we have considered to this point is either determined from 
thermodynamic tables or the definition of specific heat, constant pressure (cp) and 
given as

	

C T
h

Tp
p

� � � �
�

	

(11.5)

where the gas is assumed ideal and cp is solely a function of temperature

11  Combustion Chemistry



271

11.3.2  �Latent Enthalpy

Latent enthalpy can be computed from the thermodynamic tables or the Clausius-
Clapeyron equation, which is given as

	

dP

P

h

R

dT

T
fgsat

sat

sat

sat

=
2

	
(11.6)

where Tsat is the saturation temperature, Psat is the saturation pressure, R is the gas 
constant, and hfg is the amount of energy released to either the system or surround-
ings based on the phase change.

11.3.3  �Enthalpy of Formation

Chemical reaction enthalpy is the type of enthalpy to be considered in this chapter.
Consider the following reaction

	
C s O CO� � � � �2 2 �q

	
(11.7)

Where the heat released is −393.522 kJ/mole and using the energy balance it is  
seen
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(11.8)

where by definition, “the enthalpy of formation is zero for reference elements [9]” 
and as such H1 = 0. It needs to be noted that the temperature was the same between 
the reactants and products and at STP; this is detonated as standard enthalpy of 
formation and has a special designation, hf

0 .
How do we determine the heat release for a reaction when the reactants and 

products are at different temperatures?
The standard enthalpy at temperature T [9] is given as

	
h T h h T h h T hi

f
s i o i

f
i

� � � � � � � � � � �� �0
�

, , ref 	
(11.9)

which states that the standard enthalpy at temperature Tref is equal to the enthalpy 
of formation at reference conditions plus the change in latent energy between tem-
perature T and Tref.

A generalization of the above can be stated as

	
�q h h� �products reactants 	

(11.10)
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where

	
h hj

i
i i� ��

	
(11.11)

And j is 1 for the reactions and 2 for the products.
An example of these ideas is the following.

Example 11.2
Given a gas stream containing CO, CO2, and N2 at 1 atmosphere and 1800 K where 
the molar fraction for CO is 0.1 and CO2 is 0.2 determine the enthalpy of the mix-
ture in terms of moles and kilograms.

Given
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2 2
. , . .
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[kg/kmole] [K] [kJ/kmole] [kJ/kmole]

CO 28.01 298 −110,541
CO 28.01 1800 49,517
CO2 44.01 298 −393,546
CO2 44.01 1800 79,399
N2 28.01 298 0
N2 28.01 1800 48,971
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Also,
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(11.12)

and
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(11.13)
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Accurately knowing the thermodynamic properties before and after the shock for 
a given set of reactants and products

	
C H O N CO H Nx y a x

y
a� �� � � � �2 2 2 2 23 76

2
3 76. .

	
(11.14)

where a x y� � 4
can provide a better estimate of the detonation velocity (u2) and temperature after 

the shock, T2.
This analysis involves determining the following thermodynamic properties 

before and after the shock

•	 Specific heat, constant pressure (cp)
•	 Gas constant (Rg)
•	 γ

where
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(11.16)

And for the gas constants
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and
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where � i
p i

i p i

C

R C
�

�
,

,

.

It is noted that cp,2 and γ2 are dependent on T2 and this process usually involves 
an iteration methodology.

Knowing the value of T2 and u1 allows us to determine if the selected T2 was 
accurate and if it is, then the thermodynamic properties calculated and u1 are accu-
rate. Turns [9] provides equations for T2 and u1 in terms of thermodynamic proper-
ties before and after the shock
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and
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An example of these ideas is the following.

Example 11.3
A rotational detonation engine at the Air Force Research Laboratory on Wright 
Patterson Air Force Base is running a mixture of H2/Air at 226 K and 145 kPa and 
it is running with an equivalence ratio of 1.0.

This information will be useful in the illustrated example in Chap. 13.
What are the values of the thermodynamic properties, T2 and u2?
Given

x 0
y 2
a 0.5
T(1) [K] 226
T(2) [K] 2975

The reactant thermodynamic properties are

Reactants MW(i) N(i) X(i) = N(i)/N(total)
X(i) * 
MW(i)

Y(i) = X(i) * 
MW(i)/MW(mix) cp(I,T1)

X(i) * 
cp(I)

CxHy 2 1 0.30 0.59 0.03 28.61 8.47
O2 31.999 0.5 0.15 4.73 0.23 28.70 4.24
N2 28.013 1.88 0.56 15.58 0.75 28.87 16.06

3.38 20.91 28.77

The product thermodynamic properties are

Products MW(i) N(i) X(i) = N(i)/N(total)
X(i) * 
MW(i)

Y(i) = X(i) * 
MW(i)/MW(mix) cp(I,T2)

X(i) * 
cp(I)

CO2 44.011 0 0.00 0.00 0.00 0 0.00
H2O 18.016 1 0.35 6.26 0.25 55.779 19.37
N2 28.013 1.88 0.65 18.29 0.75 37.028 24.17

2.88 24.54 43.54
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The reactant enthalpies are

Reactants Y(i) h(i) Y(i) * h(i)

C2H2 0.03 −1027.549603 −29.08
O2 0.23 0 0.00
N2 0.75 0 0.00

−29.08

The product enthalpies are

Products Y(i) h(i) Y(i) * h(i)

CO2 0.00 0 0.00
H2O 0.25 −14043.22547 −3579.53
N2 0.75 0 0.00

−3579.53

And the computed thermodynamic properties are

cp(1) [kJ/kg-K] 1.38
cp(2) [kJ/kg-K] 1.77
Ru [J/mole-K] 8.315
R(1) [kJ/kg-K] 0.40
R(2) [kJ/kg-K] 0.34
Gamma(1) 1.41
Gamma(2) 1.24

The results for T2 and u1 are

q [kJ/kg] [kJ/kg] 3550.45
A [K] 2176.593
v(D) [m/s] [m/s] 2019.03
T(2) [K] 2974.43

Because T2(i = 1) and T2(i = 2) are so close, no further iterations are required.

11.4  �Chemical Equilibrium

Much of this section comes from [6, 9, 10].

11.4  Chemical Equilibrium
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11.4.1  �Gibb’s Free Energy and Chemical Potential

Given our definition for first law

	 � �q w h� � � �� � �PE KE 	 (11.21)

And a definition for entropy

	
ds

q

T
Tds q� �

�
�,

	
(11.22)

Where we assume no change in kinetic energy, no change in potential energy
If we substitute Eq. 11.22 into Eq. 11.21 the result is

	 � � ��w h Tds� 	 (11.23)

And Gibb’s free energy, which we’ll show is a measure of the available energy of 
the system to do work is

	 � �g h Tds� � 	 (11.24)

or

	 g u P sT� � �� 	 (11.25)

And taking the derivative of both sides

	 dg du Pd dP sdT Tds� � � � �� � 	 (11.26)

where dg is defined for an equilibrium condition and so {P, T} are fixed, which 
results in

	 dg du Pd Tds� � �� 	 (11.27)

Internal energy (e) for an ideal gas can be determined through a knowledge of 
entropy and specific volume

	
e f s� � �,�

	
(11.28)

But when different chemical species (molecules) are involved this function is 
extended

	
e f s n n� � �, , ,� 1 2 	

(11.29)

And the total differential of both sides is
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(11.30)

Or more generally
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where the index nj represents that the last partial derivative is not fixed for ni.
It was shown in Chap. 6 when we derived the Maxwell relationships that
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(11.32)

These two relationships can be generalized to
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(11.33)

Substitution of Eq. 11.33 into Eq. 11.31 results in
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(11.34)

Where the last partial derivative is so important it has a name, chemical potential 
(μI) and is defined as

	

�
�

i
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, , 	

(11.35)

Thus, Eq. 11.34 takes the form

	
de Tds Pd dn

i

c

i i� � �
�
�� �

1 	
(11.36)

Substitution of Eq. 11.36 into our definition of dg (Eq. 11.27) results in

	
dg Pd Tds Tds Pd dn

i

c

i i� � � � �
�
�� � �

1 	
(11.37)

11.4  Chemical Equilibrium



278

or
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(11.38)

A physical interpretation of the chemical potential is as follows. The first law for 
this system takes the form

	
� � � �q w du Tds Pd dn

i

c

i i� � � � �
�
�

1 	
(11.39)

and

	 �q Tds� 	 (11.40)

Substituting Eq. 11.40 into Eq. 11.39 results in

	
Tds w Tds Pd dn

i

c

i i� � � �
�
�� � �

1 	
(11.41)

or

	
� � � �

�
�� � �w Pd dn
i

c

i i
1 	

(11.42)

Equation 11.42 provides an equation for the available work of the system to 
include work due to chemical reactions or mass transfer [10].

We’ll see that at chemical equilibrium

	
dG dn

i

c

i i� �
�
�0

1

�
	

(11.43)

We now want to extend the model for chemical potential to non-standard (refer-
ence) conditions.

For an ideal gas

	
�i i ig T P� � �,

	
(11.44)

where μi is the chemical potential for species “i” and gi is the free energy for spe-
cies “i” for a given temperature and pressure.

Additionally,

	 g h Tsi i i i� � �� 	 (11.45)
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where
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and
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(11.47)

11.4.2  �Chemical Reactions

Given a chemical reaction

	 aA bB cC dD� � � 	 (11.48)

or

	
cD cD aA bB I

i
i i� � � � �

�
�0

1

4

�
	

(11.49)

where νiis the stoichiometric coefficient of the species Ii.
And the amount of moles of Ii at time t can be related to the amount of moles of 

Ii at time to by the equation

	
N t Ni i i� � � � � �0 � �

	
(11.50)

where ξ, the molar extent of reaction, is defined as

	
�

�
�

� � � � �N t Ni i

i

0

	
(11.51)

Another common metric is λ, which is the % reaction complete and defined as

	

�i
i i

i

N t N

N
�

� � � � �
� �

0

0
	

(11.52)

A relationship between ξ and λ is

	
�� �i i iN� � �0 	

(11.53)
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Example 11.4
Consider the following gas phase reaction at 400  K and 2  atm where ideal gas 
behavior is assumed.

	 A B C� �2 	 (11.54)

The mole fractions of the reactive species at equilibrium satisfy the relationship

	

y

y y
c

A B
2

1 1124= .
	

(11.55)

Starting with equal moles of A and B and no C where molar mass is represented 
either in terms of coefficients associated with the chemical reaction equation or 
using the notation [X], determine yA, yB, yC, λ, and 1 − ξ at chemical equilibrium.

[A] [B] [C] Total

Initial 1 1 0 2
Final 1 − ξ 1 − 2ξ ξ 2(1 − ζ)

where

	

y y yA B C�
�
�� �

� �
�
�� �

�
�� �

1

2 1

1

2

1 2

2 1 2 1

�
�

�
�

�
�

, ,

	

(11.56)

And Substituting Eq. 11.56 into Eq. 11.55 results in
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1 2
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(11.57)

Equation 11.57 has solutions {0.16, 0.84} but when ξ = 0.84 → yi < 0, therefore 
ξ = 0.16.

More details of the solution are given as Appendix 11.1 and the solutions are also 
given in the table below

zeta A B C Total λ[A] λ[B]

Initial 0.00 1.00 1.00 0.00 2.00
Final 0.16 0.84 0.69 0.16 1.69 15.6% 31.2%

11.4.3  �Chemical Reactions and Gibb’s Free Energy

Example 11.5
Consider the following ideal gas reaction at 1 bar [10].
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	 aA bB cAB� � 	 (11.58)

where a = b = 1 moles initially and

	 a b� � �1 � 	 (11.59)

a b c Total

Initial 1 1 0 2
Final 1 − ξ 1 − ξ 2ξ 2

The total Gibb’s free energy for the system is

	 G n g n n n ni i i i A A b B AB AB� � � � � � �� � � � 	 (11.60)

and

	
�i i

ig RT
P

� �
�

�
�

�

�
�

0

1
ln

Bar 	
(11.61)

Substitution of Eq. 11.61 into Eq. 11.60 results in

	

G n g n g n g RT n P n P n P BA A B B AB AB A A B B AB A� � � � � � � � � � � �� �0 0 0 ln ln ln
	

(11.62)

and

	 P y Pi i= 	 (11.63)

Substitution of Eq. 11.63 into Eq. 11.62 results in

	
G n g n g n g

RT n y n y n y
A A B B AB AB

A A B B AB

� � �

� � ��� �� � � ��� �� �

0 0 0

ln ln ln� � AAB A B ABRT n n n P�� ��� ��� � � � �� � � �ln
	
(11.64)

In terms of ξ Eq. 11.64 becomes

	
G g g g

RT y y
A B AB

A B

� �� � �� � �
� �� � � � � �� � � ��� �� �

1 2

1 1 2

0 0 0� �
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(11.65)

Given a system where

	

T P R g g gA B AB� � � � � �

� �

1000 1 8 3124 0

9 5

0 0 0
K Bar
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K and

kJ mo
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11.4  Chemical Equilibrium



282

Equation 11.65 reduces to

	

G RT P g
RT y y y
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A B AB
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ln ln ln

2

1 1 2

0�

� � � � � � ���� ���� ��� �
	

(11.66)

The solution for Eq. 11.66 is given in Fig. 11.3 and more details can be found in 
Appendix 11.1.

Figure 11.3 graphically illustrates that where dG = 0 is the chemical equilibrium 
of the system and ξ is roughly 0.6.

11.4.4  �Fugacity

Fugacity is a derived thermodynamic property measured in terms of pressure and 
provides an experimental means of determining phase and chemical equilibrium. 
For a pure substance at a given T and P,

	 d dP sdT� �� � 	 (11.67)

And when T is constant

	 d dP� �� 	 (11.68)

Assuming ideal gas behavior

	
� � R

T

P 	
(11.69)

Substitution of Eq. 11.69 into Eq. 11.68 results in

	
d

RT

P
dP RTd P� � � � �� �ln

	
(11.70)

Fig. 11.3  G − RTln(P) versus zeta
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And knowing for a real gas � �
RT

PDefining fugacity as

	
d RTd f� � � �ln

	
(11.71)

where as P → 0 implies 
f

P
→1 , which is a correction for non-ideal behavior. 

Integrating Eq. 11.71 results in
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For phase equilibrium between phases α and β,

	 � �� �
i i� 	 (11.73)

Substitution of Eq. 11.72 into Eq. 11.73 results in
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(11.74)

Another form of Eq. 11.74 is
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(11.75)

From Eq. 11.72
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(11.76)

Therefore,
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f fi
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i iln
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(11.77)

Example 11.6
Determine the fugacity of liquid water at 30 °C and at the saturation pressures, 10 
Bar and 100 Bar.

At 20  °C, Psat  =  0.0424  bar. In the limit as P  →  0, f  →  P, therefore 
fsat = Psat = 0.0424 bar.
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From the definition of fugacity

	
d RTd f dP� �� � � �ln

	
(11.78)

Integrating from P(sat) to P results in
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(11.79)

where specific volume is
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Such that the fugacity at 10 Bars is
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(11.81)

And the fugacity at 100 Bars is
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(11.82)

11.4.5  �Chemical Equilibrium Constant

Previously, we’ve seen at chemical equilibrium

	
dG dT P i i, � �� � �

	
(11.83)

or
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(11.84)

and

	
d RTd fi i� � � �ln

	
(11.85)

And integrating Eq. 11.85 results in
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(11.86)

Substituting of Eq. 11.86 into Eq. 11.84 results in
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And defining activity, ai
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(11.88)

Another form of Eq. 11.87 is
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(11.89)

where 0
rxng∆  is the standard Gibb’s free energy change of reaction.

The left-hand side of Eq.  11.89 is the logarithm of the chemical equilibrium 
constant (K) such that

	
ln K

g

RT
� � � �

� rxn
0

	
(11.90)

Example 11.7
Calculate the equilibrium constant for the following reaction using the data at 298 K

	
H O g CH OH g CO g H g2 3 2 23� � � � � � � � � � � 	

(11.91)

where

H2O(g) CH3OH(g) CO2(g) H2(g)

�g
rxn

kJ

mole

0 �
��

�
��

−228.57 −161.96 −394.36 0

and

	
�g gi irxn

kJ mo
0 0

394 36 3 0 228 57 161 96 3 83� � � � � � � � �� � � �� � � �� � . . . . / lle
	
(11.92)
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Thus
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(11.93)

Example 11.8
Find the equilibrium concentration of N2O(g) due to the following chemical reac-
tion that occurs at 25 °C and 1 atmosphere.

	
N O g NO g2 4 22� � � � � 	

(11.94)

where the following reactions occur
Chemical Reaction 1 (R1)

	
N O g N g O g

kcal

mole
rxn2 4 2 2

0
2 23 14� � � � � � � � � �, .�g

	
(11.95)

and
Chemical Reaction 2 (R2)

	
0 5 12 24

2 2 2

0
. , . /N g O g NO g kcal mole
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(11.96)

The overall reaction is a combination of R1 and R2 where

	 Overall � �R R1 22 	 (11.97)

Thus,
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and
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(11.99)

And the chemical equilibrium constant (K) in terms of activities (fugacity) is
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(11.100)

and

[N2O4] [NO2] Total

Initial 1 0 1
Final 1 − ξ 2ξ 1 + ξ

Substitution of the values for y(NO2) and y(N2O4) from the table into Eq. 11.100 
results in
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(11.101)

With solution ξ = 0.194 and a complete solution is

[N2O4] [NO2] Total y[N2O4] y[NO2]

Initial 1 0 1
Final 0.81 0.39 1.19 0.68 0.32

11.5  �Chemical Kinetics

11.5.1  �Reaction Fundamentals

Much of this section comes from [1].

Definitions
Heterogeneous Reactions involves more than one phase and likely occurs at the 

interfacial boundary
Homogenous Reactions involves a single phase
Reversible Reactions can proceed forward from reactants to products or backwards 

from products to reactants
Irreversible Reactions proceeds in only one direction
Equilibrium Chemistry composition of species when a reaction is complete
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Rate Law
The chemical reaction

	 aA bB cC dD� � � 	 (11.102)

Has the following reaction rate

	

dc

dt
kc cA

A B� � � �

	
(11.103)

Where {α, β} are empirical constants determined from regression analysis of 
experimental results.

But in this section, we’ll assume the following form

	

dc

dt
kcA

A� � �

	
(11.104)

Zero Order
A zero-order reaction has the following form

	

dc

dt
k� �

	
(11.105)

And solution

	 c c kt� �0 	 (11.106)

First Order
A first-order reaction has the following form

	

dc

dt
kc� �

	
(11.107)

And solution

	 c c ekt= 0 	 (11.108)

Second Order
A second-order reaction has the following form

	

dc

dt
kc� � 2

	
(11.109)

And solution

	

1 1

0c c
kt� �

	
(11.110)
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Higher Order Reactions
A second-order reaction has the following form

	

dc

dt
kcn� �

	
(11.111)

And solution

	

1 1
1

1
0

1c c
n kt

n n� �� � �� �
	

(11.112)

In order to determine “what is the proper reaction rate for a given chemical reac-
tion?”, reaction rate experiments must be conducted. From the data, graphs 
are made of

	1.	 C versus Time
	2.	 Ln[c] versus Time
	3.	 1/C versus Time

Example 11.9
Given the following reaction rate data (Table 11.1)

Graph the three graphs listed above and based on the coefficient of correlation 
(R2), the best fit is the first-order model (Figs. 11.4, 11.5, and 11.6).

11.5.2  �Chemical Kinetic Complexity

The number of reactions involved with the combustion of hydrocarbons can be over 
100 and associated with each reaction is a reaction rate equation developed from 
kinetics studies and this whole process involves a huge amount of effort. Many 

Table 11.1  Concentration versus Time Data

Time [days] 0 1 3 5 10 15 20
C [mg/L] 12 10.7 9 7.1 4.6 2.5 1.8

Fig. 11.4  Zero-order 
model
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scientists [2, 4, 5, 7] have determined various ways to reduce the chemical kinetics 
complexity and one approach is the work of Westbrook and Dryer [10] who have 
determined a global reaction rate equation of the form

	
k AT
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RTav
n a a b

� � ��

�
�

�

�
�� � � �� exp Fuel Oxidizer

	
(11.113)

where n is set to zero and {A, a, b} are determined through a regression method 
that involves fitting the model for the laminar flame speed equation, which is given 
below (see Chap. 12 for a full derivation)
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�
�

�
�


	

(11.114)

where λ is the heat convection, ρ is density, cp is the specific heat, Tf is the final 
temperature, T0 is the initial temperature, Ti is the ignition temperature, and ω  is the 
reaction rate.

The goal was to fit the laminar flame speed equation (Eq. 11.114) that includes 
the global reaction rate (Eq.  11.113) to an experimental curve of laminar flame 
speed versus equivalence ratio; an example is given below as Fig. 11.7. Westbrook 
and Dryer did this analysis for 19 hydrocarbons [11].

The parameters {A, a, b} are determined to ensure that the following laminar 
flame speed characteristics match between the model and experimental results:

	1.	 Peak SL

	2.	 �L
� , which is the lean flammability limit

Fig. 11.5  First-order 
model

Fig. 11.6  Second-order 
model
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	3.	 ϕR
′, which is the rich flammability limit

	4.	 General shape

Other efforts to reduce the chemical kinetic complexity include the work of 
Hautman et al. [2] and Sichel et al. [8]. Hautman et al. will be briefly discussed.

Hautman, Dryer, Schug, and Glassman [2] reduced the reactions associated with 
certain hydrocarbons (aliphatic hydrocarbons) to four reactions

	
C H C H Hn n

n
2 2 2 2 22� � �

	
(11.115)

	 C H CO H2 2 22 2� � 	 (11.116)

	
CO O CO� �

1

2 2 2
	

(11.117)

	
H O H O2 2 2

1

2
� �

	
(11.118)

With four reaction rate equations

	

d

dt

E

RT
n n x

n n

a b cC H
C H O C H2 2

2 2 2 2 210�
�

� �
� � ��

��
�
��
� � � � � �exp

	
(11.119)

	

d
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E

RT
x a b

n n

cC H
C H O C H2 2

2 2 2 2 210
� �

� � ��
��

�
��
� � � � � ��exp

	
(11.120)

Fig. 11.7  Laminar flame speed versus equivalence [11]
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d

dt

E

RT
Sx a b cCO

CO O H O
� �

� � ��
��

�
��
� � � � � �10 2 2exp

	
(11.121)

	

d

dt

E

RT
n n x a b cC H

H O C H2 2
2 2 2 210�� �

� � ��
��

�
��
� � � � � �exp

	
(11.122)

where S = 7.93 exp (−2.48ϕ0) and ϕ0 is the initial equivalence ratio.
Where the coefficients are given as Table 11.2
Hautman et al.’s [2] work provides a means to observe the development of the 

various stages of hydrocarbon oxidation where Eqs.  11.119 and 11.122 provide 
reaction steps associated with the heat release.

Turns [8] has provided for hydrocarbons of the form CnH2n + 2 a three-step process 
for the combustion chemistry that is given as

	1.	 The fuel molecule is attached by O and H atoms and breaks down, primarily 
forming alkenes and hydrogen. The hydrogen oxidizes to water, subject to avail-
able oxygen.

	2.	 The unsaturated alkenes further oxidize to CO and H2. Essentially, all of the H2 
is converted to water.

	3.	 The CO burns out via the following reaction CO H O O CO H O� � � �2 2 2 2
1
2 .  

Nearly all of the heat released associated with the overall combustion process 
occurs in this step.

The following reactions summarize these three steps for methane [2]

Induction Phase

	
CH O H O CO4 2 2

3
2 2� � �

	
(11.123)

and

Reaction Phase

	
H O CO O CO H O2 2 2 2

1
2� � � �

	
(11.124)

Where these two equations represent two distinct phases, which are called the 
induction phase (Eq.  11.123) and the reaction phase (Eq.  11.124). More will be 
made of the induction phase (zone) and reaction phase (zone) in Chap. 13, 
Detonations.

Table 11.2  Coefficients associated with Eqs. 11.119, 11.120, 11.121, and 11.122

Reaction x E a b c

C(n)H(2n + 2) 17.32 49,600 0.5 1.07 0.4
C(2)H(4) 14.7 50,000 0.9 1.18 −0.37
CO 13.52 41,000 0.85 1.42 −0.56
H(2) 14.6 40,000 1 0.25 0.5
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It also needs to be noted with the incredible power of modern computers at our 
disposal the full combustion chemistry, which involves dozens of pathways and 
hundreds of reactions for a particular fuel and oxidizer, are now routinely solved, 
but deemed beyond the scope of this book.

11.5.3  �Temperature Effects on Reaction Rates

Given the Arrhenius reaction rate

	

k A
E

R T
a

u

� �
�

�
�

�

�
�exp

	

(11.125)

where k is the reaction rate, A is a constant dependent on several factors, Ea is the 
activation energy, Ru is the universal gas constant, and T is the temperature.

or

	
ln lnk A

E

R T
a

u

� � � � � � 1

	
(11.126)

A graph of experimental data in terms of ln(k) versus 
1

T
 provides an estimate for 

{Ea, A}.

Example 11.10 Determination of Activation Energy
Given from [3] for the decomposition of nitrogen dioxide is the following experi-
mental reaction rate data (Table 11.3)

A graph of ln(k) versus 1/T provides (see Fig.  11.8) an estimate for {Ea, Ru} 

where the slope of the line is equal to 
−E
R

a

u

 and ln(A) is equal to the y intercept. For 
this problem,

	

E

R
R Ea

u
u a= = =13 671 1 9872 27 2, , . , .

cal

mole K

kcal

mole 	

Table 11.3  Reaction rate data

T k(f)
[K] [cm3/mole-s]

592 498
603.5 775
627 1810
651.5 4110
656 4740
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and

	
ln . , .A A e� � � �

�
29 305 5 33 12

3cm

mole s 	

11.6  �Adiabatic Flame Temperature

Back in Chap. 2, we mentioned that the thermodynamic energy for a closed system 
is generally in terms of internal energy and for an open system it is generally in 
terms of enthalpy. This is relevant in this section because a closed system is a con-
stant volume system and an open system is a constant pressure system.

11.6.1  �Complete Reaction

The adiabatic flame temperature for a constant pressure system can be determined 
in the following fashion. The energy balance for this system is as follows

	
h T P h T P qireactants products adiabatic, ,� � � � � �� 	

(11.127)

were for an adiabatic process δq = 0.
And the adiabatic flame temperature for a constant volume process can be deter-

mined in the following fashion. The energy balance for this system is as follows

	
u T P u T P qireactants products adiabatic, ,� � � � � �� 	

(11.128)

where for an adiabatic process δq = 0.

y = -13671x + 29.305
R² = 1

0
1
2
3
4
5
6
7
8
9

0.0015 0.00155 0.0016 0.00165 0.0017

ln
[k

(f)
]

1/T

Fig. 11.8  ln(k) versus 1/T
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By determining the enthalpy of formation and knowing the specific heat for a 
given substance and temperature, the value of Tad can be determined. An example is 
as follows.

Example 11.11 Adiabatic Flame Temperature
Estimate the constant pressure adiabatic flame temperature for complete combus-
tion of the following reaction, which is initially at 298 K and 1 atmosphere

	
CH O N CO H O N4 2 2 2 2 22 3 76 2 7 52� �� � � � �. .

	
(11.129)

Where the following properties will be utilized (Table 11.4)
Going back to the energy balance for the system, Eq. 11.127, and plugging in the 

enthalpies and specific heats results in

1 74 831 2 0 7 52 0 1 393 546 56 21 298

2 2

� � �� � � � � � � � � � � �� ��� ��
� �

, . , . T
ad

441 845 43 87 298 7 52 0 33 71 298, . . .� �� ��� �� � � �� ��� ��T T
ad ad 	

(11.130)

Solving Eq. 11.130 for results in Tad = 2381 K, which is about 100 K high due to 
not accounting for disassociation; disassociation is the fact that at higher tempera-
tures water breaks down to simpler molecules.

The distinction between constant volume and constant pressure combustion will 
be explored further in the next chapter.

In the next section, we’ll discuss incomplete combustion.

11.6.2  �Incomplete Reactions

Much of this section comes from [10].

System I: Complete Combustion in Oxygen
One combustion reaction is the following

	
C s O g CO g� � � � � � � �2 2 	

(11.131)

Table 11.4  Enthalpy of formation and specific heat associated with Eq.10.129

Chemical speciation
Enthalpy of formation
[kJ/kmole]

Specific heat @ 1200 K
[kJ/kmole-K]

CH4 −74,831
CO2 −393.546 56.21
H2O −241,845 43.87
N2 0 33.71
O2 0
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System II: Incomplete Combustion in Oxygen
But from a knowledge of Gibb’s free energy and the understanding that the G is 
minimized when

	

�

�
�

GT P,

�
0

	
(11.132)

leads us to a more realistic reaction

	
C s O CO CO O� � � � � �2 2 2x y z

	
(11.133)

where now the unknowns are {Tad, x, y, z} versus Tad seen in the last section.
In order to solve for four unknowns, we need four equations and these equa-

tions are
Mass balance for carbon

	 x y� � 1 	 (11.134)

Mass balance for oxygen

	 2 2 2x y z� � � 	 (11.135)

Equilibrium constant for this system is

	

k G
RT

P P
P

x z
y

P
x y zp � �

�

�
�

�

�
� � �

� �
exp

.�
rxn

ad

CO O

CO

0 0 5

2

2 	

(11.136)

Please note that the equilibrium constant would vary with temperature where this 
effect has been ignored in the example. Given that

	 K e G To

� ��
rxn

/

	

is only good for T at standard conditions, i.e., 298.15 K, a better expression, though 
somewhat still an approximation, is the so-called short-cut van’t Hoff equation

	
K G

RT
G

RT
H
R T T

T
o o

o

o

o� � � ��
�
�

�
�
�

� � � 1 1

	
(11.137)

And finally, the energy balance for the system is

	

� � � � � ��� �� � � � ��� ��
� � � ��� ��

xh yh x h T h

y h T h
f f f

f

0

2

0 0

0

2

CO CO
ad

CO

ad
CCO

ad
O

� � � ��� ��z h T hf
0

2 	
(11.138)
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Equations 11.134, 11.134, 11.135, 11.136, 11.137, and 11.138 are a set of non-
linear algebraic equations and can be solved. The solution is found to be

x y z T= = = =0 23 0 77 0 38 3537. , . , .moles moles moles and Kad 	 (11.139)

System III: Incomplete Combustion in Air
If now the oxidizer is air, then the equations become.

	 x y� � 1 	 (11.140)

	 2 2 2x y z� � � 	 (11.141)
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�
�
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� � �
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CO O
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79 21
	

(11.142)

� � � � � ��� �� � � � ��� �� � � � ��� ��xh yh x h T h y h T hf f f f
0

2

0 0 0

2

CO CO
ad

CO
ad

CCO

ad
O

ad
N

� � � ��� �� � � � ��� ��z h T h h T hf f
0 0

2 2

79

21 	
(11.143)

The above set has solution

x y z T= = = =0 89 0 11 0 05 2312. , . , .moles moles moles and Kad 	 (11.144)

Comparing the solutions for System II and III, it is seen that

	1.	 Adiabatic flame temperature is significantly lowering when using air
	2.	 The reaction is less complete when using pure oxygen

11.7  �Problems

Problem 11.1 Stoichiometry Problem
Determine the equivalence ratio for a mixture of propane and air where the mass 
rate of propane is 0.5 kg/s and the mass rate of air is 16 kg/s.

Problem 11.2 Chemical Equilibrium Problem
Given the following reaction

	 A B C� �2 2 	
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Where the mole fractions of reactive species at equilibrium satisfy the relationship

	

y

y y
C

A B

2

2
1 25= .

	

And initially {yA, yB, yC} = {1, 1, 0}
Determine the final concentrations for {yA, yB, yC}

Problem 11.3 Chemical kinetics problems
Given Eqn. 11.115 through Eqn. 11.121 and Table 11.2 and the following initial 
conditions

	
m e en n� � � � � � � � ��0 97 4 25 3 1 7 62 2 2. , . , .

moles

s
C H

mole

cc
O

mole

cc 	

Graph the change with time for the quantities

	
C H C H CO Hn n2 2 2 4 2�� � � � � � � �, , ,

	

Problem 11.4 Determining q from a chemical reaction
Determine the heat release from Example 11.11 for complete combustion of the 
fuel/air mixture and a constant pressure process at 300 K and 1 atmosphere.

Problem 11.5 Adiabatic Temperature, Constant Pressure
Determine the adiabatic temperature, constant pressure for the complete combus-
tion of stoichiometric mixture of propane and air at 400 K and 1 atmosphere.

Problem 11.6 Adiabatic Temperature, Constant Pressure
Determine the adiabatic temperature, constant pressure for the complete combus-
tion of stoichiometric mixture of propane and air at 800 K and 1 atmosphere.

Problem 11.7 Adiabatic Temperature, Constant Volume
Determine the adiabatic temperature, constant volume for the complete combustion 
of stoichiometric mixture of propane and air at 400 K and 1 atmosphere.

�Appendix 11.1: Chemical Equilibrium (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 11.2: Chemical Kinetics (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.
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Chapter 12
Deflagration

12.1  �Preview

In this chapter, two types of deflagration systems will be discussed:

	1.	 Pre-mixed laminar flames
	2.	 Non-premixed laminar flames

An example of a premixed laminar flame is a Bunsen burner.
Examples of a non-premixed laminar flame are a match burning or a pool of 

gasoline on fire. Non-premixed laminar flame systems are more numerous in nature 
than premixed laminar flames.

Turbulence will not be discussed but note an understanding of turbulence is pred-
icated on an understanding of the laminar theory.

As we saw in Chap. 10, the Rankine-Hugoniot (RH) theory doesn’t predict well 
the wave speed for a CJ deflagration and this is due to some fundamental transport 
processes being ignored where the RH theory ignores all transport processes such 
as mass transfer, momentum diffusion, and process of the heat transfer as expressed 
by a particular reaction rate equation. In the RH theory, heat is assumed instanta-
neously released and the path is ignored.

The first deflagration system to be explored is a laminar, premixed system where 
the object is to determine the laminar flame speed, which is essentially the speed of 
the deflagration wave. The second deflagration system to be explored is a laminar, 
non-premixed system (also known as diffusion flames) and in this portion of the 
chapter, it will be asked “what is the height of the flame, concentration of fuel and 
air at certain locations within the flame, and the mass rate of fuel and air 
consumptions?”

Electronic Supplementary Material: The online version of this chapter (https://doi.
org/10.1007/978-3-030-87387-5_12) contains supplementary material, which is available to 
authorized users.
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12.2  �Qualitative Differences Between Various 
Combustion Phenomena

Imagine a very long shock tube (insulated from the environment) where air and a 
fuel have been premixed. Now imagine that the mixture is ignited, which is the 
process of increasing the temperature and pressure high enough until a combustion 
occurs and a wave travels down the tube toward the right. If the left end of the tube 
is open, the speed of the wave will be between 20 and 200 cm/s [5], which consti-
tutes a constant pressure combustion and the energy balance of the system is

	 h q h1 2� �� 	 (12.1)

where “1” is the initial state and “2” is the state associated with the wave, hi is the 
enthalpy associated with state “i”, and λ is the percent reaction complete and dis-
cussed in Chap. 11.

Or for an ideal gas

	
c T q c TP p

P
1 2� ��

	
(12.2)

And when λ = 100%, then T P
2  is the adiabatic flame temperature, constant pres-

sure and this type of combustion is a deflagration.
Now imagine the same process, but the left end is capped and now the combus-

tion is constant volume

	 e q e1 2� �� 	 (12.3)

where “1” is the initial state and “2” is the state associated with the wave, ei is the 
internal energy associated with state “i”, and λ is the percent reaction complete and 
discussed in Chap. 11.

Or for an ideal gas

	 c T q c Tv v
V

1 2� �� 	 (12.4)

And when λ = 100%, then TV
2  is the adiabatic flame temperature, constant vol-

ume and now as the wave moves to the right, the wave transitions through Mach 1 
and becomes a shock wave with Ma1 > 1 and the combustion is now a detonation.

Please note that given c c T Tp v
V P� � �2 2  for a given λq.

This chapter is solely about waves traveling much less than Mach 1 (Ma1 < 0.01), 
deflagrations. When the deflagration involves a mixture of air and fuel that has been 
premixed, the rate of consumption is orders of magnitude greater than when it is not 
premixed. An example [6] is ethylene-oxygen (see Table 12.1).

Table 12.1  Comparison of fuel/O2 consumption based on mixing [5]

Mixing Fuel/oxidizer
Rate of consumption
[Mole/cm3−s] Relative rate

Premixed Ethylene-oxygen 4.0 66,667
Non-premixed Ethylene-oxygen 6E-5 1
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12.3  �Premixed Deflagration (Laminar Flames)

In this section, three different formulations for the laminar flame speed, which is 
defined as a premixed combustible gas and oxidizer with a wave traveling well 
below Mach 1, are given. The first is attributed to Mallard and Le Chatelier [10], the 
second is attributed to Spalding [10] and the third is a correlation from Metghalachi 
and Keck based on several hydrocarbon and air mixtures [7].

Given below in Fig. 12.1 is a premixed laminar flame where h represents the 
height of the premixed flame and H represents the height of the non-premixed (dif-
fusion) flame.

The planar conservation principles, to be used in this section, and that include 
transport considerations derived in Chap. 8 are given below [6, 10].

Fig. 12.1  Premixed laminar flame [1]
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Conservation of Mass, Planar Coordinates

	

� � �
�

�
�v

x
x 0

	
(12.5)

or

	 m vx
�� � �� constant 	 (12.6)

Conservation of Species, Planar Coordinates
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mi

i





��
����

	
(12.7)

And in terms of Fick’s law [10]
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(12.8)

And for the following chemical reaction

	
1 1kg fuel kgOxidizer kg product� � �� �S S

	
(12.9)

Thus,

	
  m

S
m

S
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��� ��� ���� �
�
�

1 1

1 	
(12.10)

And Eq. 12.7 for each component is
Fuel
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d
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(12.11)

Oxidizer
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(12.12)
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Product
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(12.13)

Conservation of Energy, Planar Coordinates
Starting from Eq. 8.128,
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(12.14)

where
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(12.15)

Substitution of Eq. 12.14 into Eq. 12.13 results in
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d k
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m h
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(12.16)

where the intent of this section is to determine the laminar flame speed, SL, which 
is related to conservation of mass through

	 m Su L
�� � � 	 (12.17)

where ρu is the density of unburned fuel/oxidizer.

12.3.1  �Mallard and Le Chatelier’s Laminar Flame Speed

In this section, a model is developed for the speed of unburned gas (at T0), SL, mov-
ing through the combustion zone (Zone II) normal to the wavefront where Zone II 
is where the reaction occurs (at Ti) and the burned gases are at Tf. This type of com-
bustion is a deflagration and the Mach numbers are below 1 and the values of SL are 
typically below 1 m/s (Fig. 12.2).
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The approach taken is that of Mallard and Le Chatelier [10] where the energy 
balance into and out of the control volume for Zone II is

	
mC T T

T T
Ap i

f i�� � �
�� �

0 �
� 	

(12.18)

where λ is the heat convection, ρ is density, Cp is the specific heat, Tf is the final 
temperature, T0 is the initial temperature, Ti is the ignition temperature, δ is the 
width of the reaction zone, and m  is the mass rate into the control volume.

And

	 m Au S AL� �� � 	 (12.19)

Substitution of Eq. 12.18 into 12.17 results in

	
� � �S C T T T TL p i f i�� � � �� �0 /

	
(12.20)

And solving for SL results in
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T T

T TL
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(12.21)

And a mass balance equation through Zone II is

	



m

A
u SL� � �� � ��

	
(12.22)

T0

Zone I

Zone II

X

T

Ti Tf

δ
Region of
conduction

Region of
burning

Fig. 12.2  Mallard and Le Chatelier’s conceptual model
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Equation 12.21 is solved for δ and substituted into Eq. 12.20, which result in
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T T

T TL
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f i

i o

2 �
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�
�
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(12.23)

A challenge with using Eq. 12.22 is that Ti is not properly known and another 
form of Eq.  12.22 is determined in the next section that addresses this issue 
among others.

12.3.2  �Spalding’s Laminar Flame Speed Theory

Beginning with the energy equation, Eq. 12.15 [10],
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(12.24)

And integrating both sides of Eq.  12.23 where the boundary conditions far 
upstream are
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(12.25)

And far downstream are
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(12.26)

The results of integration Eq. 12.23 with the given boundary conditions results in
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(12.27)

or
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(12.28)
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Where the assumed temperature profile from Tu to Tb is linear and the differential 
appearing in the above integration and the endpoints of integration can be redefined 
in terms of temperatures by using
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And Eq. 12.27 becomes
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where
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which is the average reaction rate and
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Equation 12.31 can be thought of as an algebraic expression with two unknowns 
m��� �, �  and we need another equation to solve for these two unknowns.
Resorting again to Eq. 12.29 but now the boundary conditions are
Far downstream

	
T T dT

dxu��� � � ��� � �and 0
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Additionally, in the interval x mF ���
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Integration of Eq. 12.29 with the above boundary conditions results in
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or
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and
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The linear system to solve is
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and
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Solving Eq. 12.39 for δ
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And substituting Eq. 12.40 into Eq. 12.38 results in
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or
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And solving for m′′  results in
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By definition the laminar flame speed and thermal diffusivity are
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Further,
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where S is the mass air to fuel ratio.
Substitution of Eqs. 11.44, 11.45, and 11.46 into Eq. 11.43 results in
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and
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(12.49)

Example 12.1 Laminar Flame Speed
Find the laminar flame speed for a stoichiometric mixture of propane and air at STP.

In order to determine the laminar flame speed for a stoichiometric mixture of 
propane and air, several distinct steps are required to include:

	1.	 Stoichiometric considerations
	2.	 Reaction rate equation
	3.	 Specific heat determined
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	4.	 Determination of adiabatic flame temperature
	5.	 Determination of heat diffusivity
	6.	 Laminar flame speed calculations

Each step is discussed below.

Stoichiometric Considerations
A screenshot of this worksheet within the “Laminar Flame Speed” worksheet is 
provided and essentially this worksheet determines the concentrations for fuel, oxi-
dizer (air), and products.

It should be noted that

	 T� � 300K, 	

	
T T T50

1

2
1 280% ,� �� � �� Burnt K

	

	 T75 1 770% ,= K 	

	 T TBurnt ad K= = 2 270, , 	

where T∞ is the ambient temperature, T50% is the temperature at the beginning of 
the reaction zone, T75% is the temperature in the middle of the reaction zone, and 
TBurnt is the temperature at the end of the reaction zone where it is assumed fuel and 
oxidizer have been completely consumed.

Also note the mass concentrations of fuel, air, and oxidizer are given at the ambi-
ent conditions and within the reaction zone.
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Reaction Rate Equation
This worksheet within the spreadsheet “Laminar Flame Speed” determines the 
parameters associated with a global reaction rate equation, which was discussed in 
the previous chapter.

A global reaction rate equation engineering purposes and derived for deflagra-
tion was given in Chap. 11 as Eq. 11.113

	
k AT

E

RTav
x a m n

� � ��

�
�

�

�
�� � � �� exp Fuel Oxidizer

	

where x is set to zero and {A, a, b} are determined through a regression method 
that involves fitting the model for the laminar flame speed equation (the parameters 
particular to a given fuel are given in the table below) and for a fuel of propane, the 
coefficients are {8.60e11, 15098, 0.1, 1.65}.

 

Specific Heat Determination
A cubic relationship for specific heat constant pressure for air is utilized to deter-
mine the specific heat constant pressure at T equal to 1280 K (see below).
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Substance Beta(0) Beta(1) Beta(2) Beta(3)

Air 1.05 −0.365 0.85 −0.39
T [K] 1280
Theta [K] 1.28
Cp [kJ/kg-K] 1.16

Adiabatic Flame Temperature
The adiabatic flame temperature constant pressure for several fuels is provided 
below to include propane [T(ad) = 2267 K].

 

Thermal Properties
This worksheet within the spreadsheet “Laminar Flame Speed” determines the ther-
mal diffusivity based on the following equation evaluated at two temperatures 
(300 K and 1280 K).
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Laminar Flame Speed Calculations
In this worksheet, the laminar flame speed is calculated from the following equation

	
S A

F
m

L
u

2 2 1� � �� ��
�
 Fuel

	

The real challenge in this worksheet is to get the mass rate of fuel in the correct 
units. The following process was utilized to determine mFuel

A [gmole/cm3-s] 8.60E+11 Original units
A [kmole/m3-s] 4.84E+09 New units
E/R(u) 15,098
m 0.1
n 1.65
[Fuel] 0.00067901 Mass concentration
[Ox] 0.00342262 Mass concentration
k(G) 9.55E+05
d(omega)/dt [kmole/m3-s] −2.43E+00 Units from reaction equation
dm(omega)/dt [kg/m3-s] −107.2 Appropriate units
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The complete worksheet is given below where the solution is S(L) = 43 cm/s.

 

12.3.3  �Metghalachi and Keck’s Correlations for Laminar 
Flame Speed

Metghalchi and Keck [7] have developed accurate correlations that allow us to 
determine the laminar flame speed for several fuels where the equations are given 
below and the fuel-specific parameters are given as Table 12.2.

Table 12.2  Parameters associated with a particular fuel

Fuel Phi(M) B(M) [cm/s] B(2) [cm/s]

Methanol 1.11 36.92 −140.51
Propane 1.08 34.22 −138.65
Isooctane 1.13 26.32 −84.72
RMFD-303 1.13 27.58 −78.34
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(12.50)

And SL
ref  has the relationship
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(12.51)

where

	 T Pu
ref refK atm= =298 1, 	 (12.52)

And β has the relationship

	
� �� � � �� �0 16 0 22 1. .

	
(12.53)

And γ has the relationship

	
� �� � �� �2 18 0 8 1. .

	
(12.54)

Utilizing the correlations given above and assuming the substance is RMFD-303, 
a sensitivity analysis was performed to show the effects of increased temperature, 
increased pressure, and increased dilution had on S(L). The results are given as 
Figs. 12.3, 12.4, and 12.5 where
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(12.55)

It can be seen that increasing T* has a drastic positive effect on S(L) and that 
increasing P* or Y(dil) has a slight negative effect on S(L).

Fig. 12.3  S(L) versus Phi for increasing T*
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12.4  �Non-premixed Deflagration (Diffusion Flames)

In this section, the first attempt to model the height of a diffusion flame (non-
premixed flame) was by Burke and Schumann [2], which has been shown to work 
well for circular burners. For burners of other geometries, buoyant forces become 
more important and Burke and Schumann [2] ignored these considerations. Roper 
[8, 9] addresses buoyant forces and the temperature dependence of diffusion.

The axi-symmetric conservation principles, to be used in this section, and that 
include transport considerations presented in Chap. 8 are given below.

Conservation of Mass, Axi-symmetric Coordinates

	

1
0

r

r v

r

v

x
r x� � �

�
�
� � �
�

�
� �

	
(12.56)

Fig. 12.4  S(L) versus Phi for increasing P*

Fig. 12.5  S(L) versus Phi for increasing dilution
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Conservation of Axial Momentum, Axi-symmetric Coordinates
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(12.57)

Conservation of Species, Axi-symmetric Coordinates
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(12.58)

where

	 Y Y YFPr � � �1 ox 	 (12.59)

12.4.1  �Reacting, Constant Density Laminar Jet Flow  
(Burke and Schumann)

In Burke and Schumann [2], the coordinate system is axi-symmetric and two con-
centric cylinders are utilized (see Figs.  12.6 and 12.7) where the inner cylinder 
represents the fuel input and the outer cylinder represents the air (oxidizer); please 

Fig. 12.6  Burke and 
Schumann, conceptual 
model [3]

12  Deflagration



319

note the radius of each cylinder is carefully selected to insure the velocities of air 
and fuel are equal. Also shown in Fig. 12.6 is two flame configurations – “a” and “b” 
where a represents a situation where there is an over-abundance of air for combus-
tion (over-ventilated) and b represents a situation where there is an under-abundance 
of air for combustion (under-ventilated). We see for over-ventilation the flame 
expands to a width equal to the inner cylinder and for an under-ventilated flame it 
expands to the outer cylinder.

One of the assumptions to be made for a Burke and Schumann flame is that the 
reaction is infinitely fast and that a “flame front” exists (see Fig. 12.7) where the 
equivalence ratio is 1 and, theoretically, inside the flame front the composition is 
fuel and outside the flame front the composition is air.

Consider two concentric cylinders where the outer cylinder (oxidizer cylinder) 
has radius b and the inner cylinder (fuel) has radius a. The cylinders end at z = 0 and 
this is the zone where mixing begins. Let the initial mass fraction of fuel be YF0 and 
the initial mass fraction of oxygen be YO0. The following assumptions are made 
[2, 10]:

	1.	 The average velocity is parallel to the z-axis of the ducts
	2.	 The mass flux in the axial direction is constant
	3.	 Axial diffusion is negligible when compared to transverse/radial diffusion
	4.	 The flame is infinitely fast and occurs in a thin reaction sheet, Flame Front, 

where the equivalence ratio is one
	5.	 Effects of gravity (buoyancy) are ignored

Flame
Front

Oxygen Vapor x

Air Air

2 c

Fuel
(vapor+
droplets+
inert gas)

y

Fig. 12.7  Flame front [4]
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Consider a very simple chemical reaction

	
Fuel O Products� � �� � �s s q2 1

	
(12.60)

where s is the mass of oxygen and q is the heat released per unit mass of fuel 
consumed.

The following non-dimensional quantities are defined
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The conservation of mass for the fuel and oxidizer are given as
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and
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where ω is the number of moles of fuel burned per unit volume per time and, as 
previously stated, ρD = constant.

The necessary boundary conditions are
Within the inner cylinder,

	 at z r a y yF O� � � � �0 0 1 0, , , 	 (12.64)

Within the outer cylinder,

	 at z a r b y yF O� � � � �0 0 1, , , 	 (12.65)

and
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(12.66)

Equations 12.62 and 12.63 can be combined by using a linear combination of the 
{yF, yO} where the new variable, mixture fraction is
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	 for and0 1 0� � � � � � � �r a Z a r b Z 	
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Thus, assuming no fuel leaks outside of the flame front, nor any oxygen leaks 
inside of the flame front. Please note S is the molar stoichiometric oxidizer to 
fuel ratio.

Equations 12.62 and 12.63 where Z has been substituted reduces to
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(12.68)

Please note we have reduced two in-homogenous differential equations to one 
homogenous differential equation, which reduces the complexity of the solution 
considerably.

Going further, the following non-dimensional variables are introduced
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Substitutions of the equations given as Eq. 12.69 into Eq. 12.68 result in
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With the following non-dimensional boundary conditions

	 at and� �� � � � �0 0 1c Z 	 (12.71)

	 at and� �� � � � �0 1 0c Z 	 (12.72)

and
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Equation 12.70 with boundary conditions 12.71, 12.72, and 12.73 has solution [6]
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(12.74)

where J0 and J1 are the Bessel function of the first type and λn is the nth root of 
J1(λ) = 0.

An approximate solution for Eq. 12.74 can be determined by noting that λ1 = 3.83 
and that only one term of the infinite series will be necessary because

	 e n en n� �� � �� �2 2

1 0for 	 (12.75)

where λn + 1 > λn for n = 1, 2, 3…
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Approximate Solution for Burke Schumann Flames [11]
It has been assumed that the fuel and oxygen only co-exist into a thin shell known 
as the flame front and so

	 outside the flame front � �y yF O 0 	 (12.76)

and

	 inside the flame front � �Sy yF o 	 (12.77)

And thus Z inside the flame front takes the value

	
Z Z

Ssstoich � �
�
1

1 	
(12.78)

And substituting Eq. 12.78 into Eq. 12.74 results in
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(12.79)

where

	 S  1� �under ventilated case 	 (12.80)

and

	 S  1� �over ventilated case 	 (12.81)

And utilizing one term from Eq. 12.79 and setting ξ = 0 (over-ventilated case)
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And utilizing one term from Eq. 12.79 and setting ξ = 1 (under-ventilated case)
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Example 12.2 Burke Schumann Flame
What’s the flame height for a circular burner with inner diameter of 10 cm, outer 
diameter of 20 cm, a fuel with axial velocity of 0.05 m/s, density of 1.2 kg/m3, and 
diffusion of 1e-4 m2/s?

The solution is given in the tables below from which we see the system is over-
ventilated and the flame height is 0.48 m.

Variable Units Value Comments

a [m] 0.1 Inner diameter
b [m] 0.2 Outer diameter
D [m2/s] 1.00E-04 Mass diffusion
v [m/s] 0.05 Velocity
ρ [kg/m3] 1.2 Density
r [m] 0.05 Distance from center line
z [m] 0.1 Distance above release
S 0.1 s*Y(F,0)/Y(O,0)

ξ 0.25
η 0.005
c 0.5
S 0.1
Z(s) 0.91
Etta’ 0
Lambda(1) 3.83
Ventilation Over ventilated
J1(c*Lamba1) 0.58
J0(Lambda1) −0.403
Etta #NUM! Under-ventilated
Etta 0.02 Over-ventilated
Flame height [m] #NUM! Under-ventilated
Flame height [m] 0.48 Over-ventilated

12.4.2  �Reacting, Buoyant Laminar Jet Flow (Roper)

For the Burke and Schumann flame and a circular burner, assuming no buoyancy 
and constant diffusion are assumptions that the errors tend to cancel each other out, 
but for other burner geometries this is no longer the case. Besides, it is intuitively 
obvious that the diffusion will change with location because of temperature as will 
the density.

Roper provides a conservation principle given as
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(12.84)
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where C is concentration, D is diffusion, t is time, xf and yf are coordinates, and 
{η, ξ} are defined below
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Roper, Circular Burner
For a circular port burner, a form of conservation principles was derived similar to 
the beginning equation in Burke and Schumann [2], which is given as
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(12.86)

where r and y are independent variables and k is the heat transfer coefficient and ν 
is the velocity.

The main difference is in the Roper equation the independent non-dimensional 
variables have been defined as
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These stretched variables allow for changes in density and diffusion with 
location.

A solution for a circular burner to the conservation principle posed in Roper [8] 
is given as Eqs. 12.88, 12.89, 12.90, and 12.91.
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where D is the diffusion coefficient at Tfuel, D∞ is the diffusion coefficient at T∞, z is 
the distance above the opening, Tfuel is the temperature of the fuel, Tflame is the tem-
perature of the flame, T∞ is the ambient temperature, r is the radius of the circular 
opening, vfuel is the velocity of the fuel, cm is the concentration of fuel, and z is the 
height of the flame.

Combining Eqs. 12.91 and 12.89 results in
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Further,
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And substituting in for θ Eq. 12.88 and Eq. 12.90 for D results in
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And solving for 
H

Q
 gives us
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(12.96)

where Q∞ is the mixture flow rate reference to T∞ and is equal to

	
Q v r
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Roper, Square Burner
For a square burner, the H/Q model is
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(12.98)

where Q∞ equals

	
Q r v

T

T�
�� 4 2

fuel
fuel 	

(12.99)

where now r is the length of a side of the square opening.
It needs to be noted that for the range of S from methane (S = 9.52) to pentane 

(S  =  38.08) that the Eqs.  12.96 and 12.98 will essentially predict the same 
H

Q
. 

Additionally, for circular and square geometries the “flow is unaffected by buoy-
ancy forces [8].”

Example 12.3 Comparison of Flow Rates and Heat Rates for Propane 
and Methane
We want to operate a square port diffusion flame burner with a 100 mm high flame 
in a laboratory. Determine the volumetric flow rate required if the fuel is methane. 
What flow rate would be required if the fuel is propane?

In this problem, a SI version of the equation For square port burners will be uti-
lized and is given as
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(12.100)

where D T T T� �� � � �20 300 1500
2mm

s
K Kfuel flame, ,  [9], please note that the 

H

Q
 

determined using this equation is reference to Tfuel

The following equation was utilized to determine the heat rate

	 P m h� �
combustion 	

where ∆hcombustion was determined from [10].
The results of the analysis are given below and it’s seen that even though propane 

is a much heavier hydrocarbon (S = 23.80 versus S = 9.52), the heat rates are similar 
(260 watts versus 243 watts).
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Substance Propane Methane

x 3 1
y 8 4
S 23.80 9.52
1/sqrt(S + 1) 0.20 0.31
Inverf(arg) 0.18 0.28
H/Q(fuel) [s/m2] 31874 13403
H [m] 0.10 0.10
Q [m3/s] 3.14E-06 7.46E-06
Delta(h) [J/kg] 46,357,000 50,016,000
Density [kg/m3] 1.79 0.65
Power [watts] 260 243

For slot burners, the combustion system may be controlled by whether the flow 
is dominated by momentum considerations, buoyancy considerations, or a mixture 
of the two. In order to determine the regime of flow, an appropriate Froude number 
is calculated.

Diffusion Flame Froude Number
The Froude number for a laminar flow into a stagnant environment [10] is

	
Fr

stoich�
�� ��vIY

aH
F ,

2

	
(12.101)

where v is the velocity, I is a constant associated with the shape of the velocity pro-
file, YF,  sthoic is the mass fraction of fuel for a stoichiometric flow, a is an acceleration 
term (given below as Eq. 12.107), and H is the height of the flame.

When
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Roper, Slot Burner, Momentum Controlled
A process similar to the process for the derivation of H/Q for the circular burner 
results for a slot burner where momentum controls and is given as
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where 
b

L
�
�
�

�
�
�  is the ratio of slot height to width, I is a momentum factor taken to be 

1, and ϕ is given as
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For a slot burner Q equals

	
Q v bL

T

T�
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(12.105)

Roper, Slot Burner, Buoyancy Controlled
For a slot burner where buoyancy controls, the H/Q model is
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where a is an acceleration term and takes the value
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Roper, Slot Burner, Transition Zone
And in the transition zone the H/Q model is
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(12.108)

In Roper’s second paper [9], experimental validation for circular geometries 
occurred where the flame height was determined by two means for various hydro-

carbons and it was showed that a linear relationship exists between 
H

Q
 versus 

1

1
1

ln ��
�
�

�
�
�S

 where S is the ratio of moles of oxygen to moles of fuel. It can also be 

shown mathematically
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(12.109)
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For Sϵ(2, 30)
The relationship developed in Roper [9] is given as
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(12.110)

A relationship provided as Eqs. 12.96 and 12.110 is shown below as Fig. 12.8.
Experimental validation [9] was also conducted for slot geometries where either 

momentum or buoyancy controlled.

12.5  �Problems

Problem 12.1  Determination of the laminar flame speed using Spalding’s 
presentation

Using Example 12.1 vary the equivalence ratio from 0.5 to 4 and show the effect 
on the laminar flame speed.

Problem 12.2  Determine the laminar flame speed for propane using the correlation 
given in Sect. 12.3.3 where the equivalence ratio varies from 0.5 to 4 and compare 
against Problem 12.1.

Problem 12.3  Determine the flame height for a circular burner based on the 
approximate solution for the Burke and Schumann for the following conditions

Fig. 12.8  H/Q versus S +
1

2
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A circular burner with inner diameter of 5 cm, outer diameter of 10 cm, a fuel 
with axial velocity of 0.1 m/s, density of 1.2 kg/m3, and diffusion of 1e-4 m2/s?

Problem 12.4  Determine the flow rate for a square flame using Roper’s method for 
the following conditions

Ethane and assume D T T T� �� � � �20 300 1500
2mm

s
K Kfuel flame, ,

For Q = 10
mm

s
 what’s the height [mm]?

Problem 12.5  Determine the flame height using Roper’s method for a circular and 
square burner with the diameter equal to the square’s length and show that the solu-
tions are essentially the same.

�Appendix 12.1: Laminar Flame Speed (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 12.2: Laminar Flame Speed Correlations (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 12.3: Burke and Schumann’s Model (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 12.4: Roper’s Model (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.
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Chapter 13
Detonations

13.1  �Preview

Please refer to Fig. 13.1 where the shock is moving from right to left and the initial 
states are at “1,” the shock states are at “2,” and the reaction is complete at “3.”

We saw in Chap. 10 that using the conservation principles we can determine the 
states after the shock (2) or at the endpoint of the reaction (3) based on the initial 
conditions (1). This theory is known as the Rankine-Hugoniot theory and is based 
solely on considerations of physics. In order to understand changes in states between 
2 and 3, we need to delve into the chemistry of the problem.

The heat is not released instantaneously, and a reaction rate equation added to the 
conservation principles will address this issue. When the heat release changes with 
time (distance), so do the other states. This is the basis to a dynamic detonation 
model or ZND model.

Development of the dynamic detonation model is a major theme of this chapter 
in that it addresses some of the features of what is changing within the “reaction 
zone.” You’ll notice in Fig. 13.1 there are actually two zones within the “reaction 
zone” and these are (1) induction zone and (2) reaction zone. In order to properly 
address these two regions a better dynamic detonation model would have two reac-
tion rate equations where the induction zone reaction rate equation doesn’t release 
heat but delays the onset of heat release and a second reaction rate equation for the 
reaction zone that releases all of the heat. Both forms of dynamic detonation model 
will be discussed – one reaction rate and two reaction rates.

Combustion has traditionally been considered as either a constant volume pro-
cess or a constant pressure process. An example of constant pressure combustion is 
the Brayton cycle; an example of a constant volume process is the Humphrey’s 
cycle. Both types of combustion will be discussed in a simplified manner.

Electronic Supplementary Material: The online version of this chapter (https://doi.
org/10.1007/978-3-030-87387-5_13) contains supplementary material, which is available to 
authorized users.
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The chapter will end by showing how the detonation structure is much more rich 
and strange than envisioned by the dynamic detonation models developed in this 
chapter; this section is entitled Detonation Structure.

13.2  �Constant Volume Combustion

“Combustion in closed vessels is accompanied by a pressure rise. Whereas in open 
space the gas that is heated during combustion may expand freely and part of the 
heat released in the chemical reaction can go into the work of expansion, in closed 
vessels the walls prevent expansion of the gas and the heat of reaction goes solely 
into raising the internal energy of the gas. Because of the pressure rise, combustion 
in closed vessels involves a larger temperature rise than burning of the same mass of 
fuel of the same composition in open space at constant pressure.” [13]

Theoretically, combustion chambers can be either constant pressure or constant 
volume; a third type, general combustion, will also be discussed in Sect. 13.4. Given 
below are the energy balance and entropy balance assuming homogenous flow and 
“uniform” reactions.

The entropy and energy balance for constant volume combustion are

	
ds

c T dT

T
Pdv=

( )
+ υ

	
(13.1)

and (first law, closed system)

	 c T q c Tv v1 2+ =λ 	 (13.2)

Temperature,
Pressure,and
Density

Shock
Wave

Distance

Induction

Zone

Reaction

Zone

T

P

Fig. 13.1  States within the detonation structure [9]
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where ε is defined as

	
λ = −[ ]c

q
T Tv
2 1

	
(13.3)

For constant volume, Eq. 13.1 simplifies to
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Additionally,
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Substituting Eq. 13.5 into Eq. 13.4 results in
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(13.6)

A similar process can be utilized to define the energy equation (Eq.  13.3) in 
terms of X′ and Y′
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(13.7)

13.3  �Constant Pressure Combustion

The energy (first law, open system) and entropy balance for a constant pressure 
combustor are

	
c T q c Tp p1 2+ =′λ

	
(13.8)

where

	
′ = −[ ] =λ γλ
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q
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2 1

	
(13.9)

and
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13.4  �Illustrated Example

The author of this book had the opportunity to work at the U.S. Air Force, Air Force 
Research Laboratory at Wright Patterson Air Force Base where he worked on deter-
mining the entropy increase associated with the combustion step of the rotational 
detonation engine [1], RDE (see Fig. 13.2). The RDE is a novel gas turbine that will 
likely be more fuel efficient in terms of the specific impulse versus a given 
Mach number.

The diagram the author was asked to create would look similar to what is given 
below (see Fig. 13.3) where 2 –>3’” is constant pressure combustion and 2->3’ is 
constant volume compression. It will be shown there is a third distinct pathway 
associated with the RDE, 2->3.

Fig. 13.2  RDE

Fig. 13.3  ds versus 
temperature [2]
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In order to do this work the following tasks were required:

•	 Task 1 – Develop first and second laws for constant volume and constant pres-
sure combustion, which are given as Sects. 13.2 and 13.3

•	 Task 2 – Develop first and second laws for the RDE, which were done through a 
combination of using the Rankine-Hugoniot theory with partially combusted 
reactants and data from a dissertation on the thermodynamics associated with an 
RDE [4].

•	 Task 3 – Analysis of three scenarios

–– Task 3a – Temperature versus lambda
–– Task 3b – Δs versus lambda where λ = −

[ ]
[ ]

1
0

Fuel

Fuel
t

–– Task 3c – T/T(0) versus 
p

s
c
∆

Each task is discussed below. Additionally, the complete analysis is given as 
Appendix 13.1.

Task 1 – First and Second Law for Constant Volume and Constant Pressure 
Combustion
First Law, Constant Volume

	
c T c T F Qv v2 1 0

= + [ ]λ
	

(13.11)

and

Second Law, Constant Volume
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First Law, Constant Pressure

	
c T c T F Qp p2 1 0

= + [ ]λ
	

(13.13)

and
Second Law, Constant Pressure
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(13.14)

For hydrogen/air the following conditions prevail:
From the developed equations above and the parameters given in Table  13.1 

graphs of lambda versus temperature and lambda versus ds are developed for both 
constant pressure and constant volume combustion (see Figs. 13.4 and 13.5).

Table 13.1  H2/air parameters

T(0) [K] 300
cv [cal/mole-deg] 5
cp [cal/mole-deg] 7
Q*a(0) [cal/mole] 14,000

13.4  Illustrated Example
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Task 2 – First and Second Law for RDE
First Law, RDE

The states for the RDE {T, P} were determined through a combination of a run 
of the RDE utilizing CFD modeling (see Fig. 13.6) with superposed Rankine lines 
and Hugoniot curves.

From Fig. 13.6, a Rankine line was developed
From Fig.  13.7 and knowing the initial pressure-temperature (145  kPa and 

226 K), the following table was developed for the states {P,T,ρ}.
Given the following equations from the Rankine-Hugoniot theory and Chapman-

Jouguet theory along with Table 13.2 above, a graph of X versus lambda was devel-
oped (see Fig. 13.8). This relationship was determined by solving for lambda when 
YRL = YHC for X = {0.2,0.55}.

	
Y XRL Ma− = −( )1 11 1

2γ
	

(13.15)

Fig. 13.4  Lambda versus temperature

Fig. 13.5  Lambda versus ds
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Fig. 13.6  Rankine line and Hugoniot curve for RDE [4]

Fig. 13.7  Rankine line 
for RDE

Table 13.2  States associated with Rankine line

X Y Rho Rho P T
[kg/m3] [kmoles/m3] [kPa] [K]

0.2 36 11.19 0.51 5220.00 1234.43
0.25 33.8125 8.95 0.41 4902.81 1449.27
0.3 31.625 7.46 0.34 4585.63 1626.62
0.35 29.4375 6.39 0.29 4268.44 1766.45
0.4 27.25 5.59 0.25 3951.25 1868.79
0.45 25.0625 4.97 0.23 3634.06 1933.62
0.5 22.875 4.48 0.20 3316.88 1960.94
0.55 20.6875 4.07 0.18 2999.69 1950.76

13.4  Illustrated Example
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or

	
Y A XRL − = −( )1 1

	
(13.16)

and
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(13.18)

where the detonation velocity D(cj) is determined from the following equation
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1 1
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1

1

Ma =
u
P

	

(13.19)

And the heat release (q) is determined from the following equation

	
u q1
2 2 1≈ −( )γ

	
(13.20)

From the figure of X versus λ and the table of states associated with the Rankine 
line, the following figure was developed (Fig. 13.9).

Second Law, RDE

Fig. 13.8  Development of graph for X versus lambda
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The entropy change can be determined from either Eq. 13.21 or 13.22.
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or
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Task 3 – Analysis of Three Scenarios
For the given parameters give in Table 13.3, graphs of λ versus T, λ versus Δs, and 
T/T(0) versus Δs/cp-bar were developed for constant volume, constant pressure, and 
RDE style combustion and given below as Figs. 13.10, 13.11, and 13.12.

Some of the parameters utilized in Table 13.3 come from an analysis for thermo-
dynamic properties (see Appendix 13.1).

From Fig. 13.12, it can be seen that the RDE during the combustion step pro-
duces less entropy than the constant pressure and constant volume combustion and 
should provide all else being equal a gas turbine with higher overall thermal 
efficiency.

Fig. 13.9  T versus lambda

13.5  Dynamic Detonation Models



Fig. 13.11  λ vs. Δs for H2/air for constant volume, constant pressure, and general combus-
tion (RDE)

Fig. 13.10  λ vs. T for H2/air for constant volume, constant pressure, and general combustion (RDE)

Table 13.3  Parameters for three scenarios [2]

CP [kJ/Kg-K] 1.58
Gamma 1.32
cV [kJ/Kg-K] 1.20
R [kJ/Kg-K] 0.37
Rho(0) [kg/m3] 2.24
P(0) [Pa] 145000.00
T(ad,CP) [K] 2348.48
T(ad,CV) [k] 3100.00
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13.5  �Dynamic Detonation Models

13.5.1  �Introduction

We’ve already seen one model for the detonation structure, which is defined as the 
modeling of states {T, ρ, P} between the initial conditions and the final conditions 
where the reaction is 100% complete (also known as the CJ point) and this model is 
the Rankine-Hugoniot model (Fig. 13.13).

The Rankin-Hugoniot system allows us to determine the states after the shock 
(2) and at the CJ plane (3) for a given initial point (1); using the Chapman-Jouguet 
theory allows us to determine states associated with the CJ plane (2) such as x(cj), 
y(cj), and Ma(cj). The dynamic model developed in this section will allow us to 
determine the states {T, ρ, P} between the von Neumann point (1′) to the CJ point 
(2) by coupling the conservation principles with an equation for the chemical reac-
tion (Arrhenius type reaction) where the chemical reaction is irreversible

	 A B→ 	 (13.23)

Another model will then be developed around two irreversible chemical reactions

	

A B

B C

→
→ 	

(13.24)

where the first reaction (RAB) is exothermic and the second reaction (RBC) is 
endothermic

The model developed with double reactions (Eq. 13.24) will show that the reac-
tion complete plane (λ = 100 % ) no longer coincides with the CJ point and these 
types of detonations are known as pathological detonations.

Fig. 13.12  ds/cp versus T/T0
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13.5.2  �Reaction Rates

In this chapter the reaction rate equation will be of the form r k
E

RT
a= −( ) −







1 λ exp .

13.5.3  �Derivation of Dynamic Detonation Model

In Sect. 8.2, a more general form of the conservation principles is presented that 
includes considerations of

	1.	 Shear stress at the wall
	2.	 Area changes
	3.	 Heat release
	4.	 Unsteady flow

In this chapter, we will assume no shear stress, no area changes, and steady flow.
Given Eqs. 8.7, 8.18, and 8.47

	
u
d

dx

du

dx

ρ
ρ+ = 0

	
(13.25)

	
ρu

du

dx

dP

dx
+ = 0

	
(13.26)

	
u
dP

dx
uc

d

dx
c r− =2 2ρ

ρ σ
	

(13.27)

Induction
Zone

Temperature,
pressure, and
Density

Shock
Wave

Reaction
Zone

Distance

T

1 2 3

P

�

Fig. 13.13  States within 
the detonation structure 
(Rouser KP, April 4, 2021, 
personal communication)
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We’ll pursue two approaches to developing a dynamic detonation model:

	1.	 The first approach is to reduce the three equations into one equation in terms of

	

du

dx
f X= ( )

	
(13.28)

And couple Eq. 13.28 with an appropriate equation for the reaction rate and 
equations to relate the states.

	2.	 The second approach is to reduce Eqs. 13.25, 13.26, and 13.27 into three equa-
tions of the form

	

d

dx
f X

ρ
= ( )

	
(13.29)

	

du

dx
g X= ( )

	
(13.30)

	

dP

dx
h X= ( )

	
(13.31)

And couple Eqs. 13.29, 13.30, and 13.31 with an appropriate equation for the 
reaction rate.

First Approach – Single Dynamic Equation [14]
Multiplying both sides of Eq.  13.25 by dx and dividing each term by ρuA we 
can get to

Conservation of Mass

	

d du

u

ρ
ρ

+ = 0
	

(13.32)

Multiplying Eq. 13.26 by dx results in
Conservation of Momentum

	 dP udu+ =ρ 0 	 (13.33)

Conservation of Energy
Given

	
d h u qd+





 =

1

2

2 ∆ λ
	

(13.34)
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or

	 dh udu qd+ − =∆ λ 0 	 (13.35)

And substituting dh = cpdT for a perfect gas into Eq. 13.35 results in

	
c dT qd udup − + =∆ λ 0

	
(13.36)

Additionally, for an ideal, perfect gas the equation of state is
Equation of State

	

dP

P

d dT

T
= +

ρ
ρ 	

(13.37)

Solving Eq. 13.36 for dT and diving by cpT results in

	

dT

T

qd

c T

udu

c Tp p

= −
∆ λ

	

(13.38)

And substituting Eq. 13.38 into Eq. 13.37 results in

	

dP

P

d qd

c T

udu

c Tp p

= + −
ρ
ρ

λ∆

	

(13.39)

Further, using Eq. 13.33

	

dP

P

udu

P
= −

ρ

	
(13.40)

And substituting  Eq. 13.40 into Eq. 13.39 results in

	

− = + −
ρ ρ

ρ
λudu

P

d qd

c T

udu

c Tp p

∆

	

(13.41)

Substituting Eq. 13.32 into Eq. 13.41 results in

	

− = − + −
ρ λudu

P

du

u

qd

c T

udu

c Tp p

∆

	

(13.42)

And solving in terms of 
du

u
 results in

	

−
+ + =

udu
p

du

u
u
du

c t

qd

c TP pρ

λ∆

	

(13.43)

	

−
( )

+ +

















=
u

P

u

c T

du

u

qd

c Tp p

2 2

1

ρ

λ∆

	

(13.44)
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and

	

u
RT c T

du

u

qd

c Tp p

2 1 1
1

−
+












+













=
∆ λ

	

(13.45)

and

	

u
c R

c RT

du

u

qd

c T
p

p p

2 1
− +











+













=
∆ λ

	

(13.46)

And using cp − cv = R results in

	

−
+









 =

u

RT

du

u

qd

c Tp

2

1
γ

λ∆

	

(13.47)

or

	

1 2−  =Ma
du

u

qd

c Tp

∆ λ

	

(13.48)

And finally solving for 
du

u
 results in

	

du

u

qd

c Tp=
−

∆ λ

1 2Ma 	
(13.49)

Additionally,

	

λ λ= −( ) −







k

E

RT
a1 exp

	
(13.50)

And Eq. 13.50 can be related to 
d

dx

λ
 through the following equation

	
λ

λ λ
= +
d

dt
u
d

dx 	
(13.51)
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And in a wave fixed frame of reference 
d

dt

λ
= 0  so that Eq. 13.49 becomes

	

du

dx

q

c Tp=
−

∆
λ

1 2Ma 	
(13.52)

In order to use  Eq. 13.52 and assuming a constant cp, the following additional 
models are required

	1.	 Model for reaction rates, λ , which is Eq. 13.50
	2.	 Models for {T(x), P(x)}, {T(x), ρ(x)} or {ρ(x), P(x)} in order to determine T(x) 

and Ma(x)

Second Approach – Three Dynamic Equations [6, 7]
The second approach is more efficient mathematically and provides four equations 
that relate {ρ, P, u, λ}.

Starting from Eqs. 8.7, 8.19, and 8.47 along with the reaction rate equation

	
u
d

dx

du

dx

ρ
ρ+ = 0

	
(13.53)

	
ρu

du

dx

dP

dx
+ = 0

	
(13.54)

	
u
dP

dx
uc

d

dx
c r− =2 2ρ

ρ σ
	

(13.55)

	
u
d

dx
r

λ
=

	
(13.56)

Equations 13.53, 13.54, 13.55, and 13.56 have a matrix form, which is

	

u

u

uc u

u

d

dx
du

dx
dP

dx
d

dx

ρ

ρ

ρ

λ

0 0

0
1

0

0

0

0 0

02−





























































=























0

0
2ρ σc r

r

	

(13.57)
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The determinant of this system is |A| = u2(u2 − c2)
And utilizing Kramer’s rule we can solve for 

d

dx

du

dx

dP

dx

d

dx

ρ λ
, , ,









and these 
equations are

	

d

dx

A

A

u

c r

r

u

u

u u c

ρ

ρ

ρ

ρ σ

= =
−( )

1

2

2 2 2

0 0 0

0
1

0

0

0 0

0

	

(13.58)

	

du

dx

A

A

u

uc c r u

u

u u c
= =

−

−( )
2

2 2

2 2 2

0 0 0

0 0
1

0

0 0 0

0

ρ

ρ σ

	

(13.59)

	

dP

dx

A

A

u

u

uc c r

u

u u c
= =

−

−( )
3

2 2

2 2 2

0 0

0 0 0

0

0

0 0

0

ρ

ρ σ

	

(13.60)

	

d

dx

A

A

u

u

uc u c r

u u c

λ

ρ

ρ

ρ σ

= =

−

−( )
4

2 2

2 2 2

0 0

0
1

0

0

0

0 0 0

	

(13.61)

Equations 13.58, 13.59, 13.60, and 13.61 simplify to

13.6  Detonation Structures



350

	

d

dx

c r

u u c

ρ ρ σ
=

−( )
2

2 2

	

(13.62)

	

du

dx

c r

u c
=

−
−( )
2

2 2

σ

	

(13.63)

	

dP

dx

u c r

u c
=

−( )
ρ σ2
2 2

	

(13.64)

	

d

dx

r

u

λ
=

	
(13.65)

And using the definition of Mach number, Eqs. 13.62, 13.63, 13.64, and 13.65 
further simplifies to

	

d

dx

r

u u
K r

ρ ρσ ρ
σ= −

−( )
= − ( )

1 1
2Ma

,Ma

	

(13.66)

	

du

dx

r
K r=

−
= ( )σ

σ
1 1

2Ma
,Ma

	
(13.67)

	

dP

dx

u r
uK r= −

−
= − ( )ρ σ

ρ σ
1 1

2Ma
,Ma

	
(13.68)

	
u
d

dx
r k

E

RT
aλ

λ= = −( ) −







1 exp

	
(13.69)

Please note in Approach 1 the system that is developed is an algebraic-differential 
system and notoriously difficult to solve; in Approach 2, the system is purely dif-
ferential and we’ll use Approach 2 in the next two sections.

Given below are two sections that work through examples for a single-reaction 
dynamic detonation model (one-step model) and a double-reaction dynamic detona-
tion model (two-step model). These two sections will also explore some issues asso-
ciated with each approach.

13.5.4  �Dynamic Detonation Model with Single Reaction

In this section, Eqs. 13.66, 13.67, and 13.68 along with a model for the reaction rate 
(Eq. 13.69) are solved numerically.

The procedure to be utilized will be as follows
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	1.	 Determine the states {ρ, u, P, Ma} associated with the shocked conditions. These 
states will be where λ = 0

	2.	 Set the following constraints

	 (a)	
E

RT
a = constant

	 (b)	 k = 1

	3.	 Determine Δx and solve for λ(x + Δx), ρ(x + Δx), u(x + Δx), P(x + Δx)

	4.	 Solve for Ma x x
u x x

c x x

u x x

P x x

x x

+( ) =
+( )
+( )

=
+( )
+( )
+( )

∆
∆

∆

∆
∆
∆

γ
ρ

	5.	 Repeat until λ is near 1

Example 13.5 – Single Reactions
Given in Turns [12] is the discussion of the following detonation system (see 
Table 13.4 and Fig. 13.1), which is a stoichiometric mixture of C2H2 and air with the 
following states at the initial conditions (state 1), von Neumann point (state 2’), and 

CJ conditions (state 2). The value of 
E

R Tu
 was set to 10 and k was 1.

Given the initial conditions, the states at 1’ and 2 were determined through the 
Rankine-Hugoniot theory. Using the theory associated with dynamic detonation 
systems (Eqs. 13.66, 13.67, 13.68, and 13.69) and the following initial conditions 
(see Table 13.5), results of solving the system of equations are given as Figs. 13.14, 
13.15, 13.16, 13.17, and 13.18 where it is noted that the x-axis has not been properly 
scaled and the values are approaching asymptotically the values at the CJ point.

Table 13.4  Detonation states for stoichiometric methane-air

Property Units State 1 State 1’ State 2

Rho [kg/m3] 1.17 6.34 2.11
Pressure [kPa] 101.3 3910 2087
T [K] 298 2119 3531
Ma 5.78 0.4 1
C [m/s] 345 845 1091
u [m/s] 1997 338 1091
C(P) [kJ/kg-K] 1.057 1.443 1.443
R(g) [kJ/kg-K] 0.290 0.273 0.273
Gamma 1.379 1.233 1.233
dq [kJ/kg] 3399
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Fig. 13.15  Mach versus x

Fig. 13.16  u versus x

Table 13.5  Initial conditions

State Initial value Units

Density 6.34 [kg/m3]
Shock velocity 338 [m/s]
Pressure 3,910,000 [Pa]
Lambda 0

Fig. 13.14  P versus x
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13.5.5  �Dynamic Detonation Model with Double Reactions

If we go back to Fig. 13.1, we see that the reaction zone is actually two separate 
zones – an induction zone followed by the actual reaction zone where the heat is 
released.

In this section, a detonation structure will be discussed that includes two reaction 
rate equations and the effect of two reaction rate equations on the determined final 
conditions. Another form of Eqs. 13.66, 13.67, 13.68, and 13.69 [7] that includes 
two reaction rate equations is given below.

	

d

dx

r r

u

ρ ρ σ σ
= −

+( )
−( )

1 1 2 2

1
21 Ma

	

(13.70)

	

du

dx

r r
=

+( )
−

σ σ1 1 2 2

1
21 Ma 	

(13.71)

	

dP

dx

u r r
= −

+( )
−

ρ σ σ1 1 2 2

1
21 Ma 	

(13.72)

Fig. 13.17  Lambda versus x

Fig. 13.18  Sigma versus x
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u
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1 1 1
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(13.73)

	

u
d

dx
r k

E

RT

λ
λ λ2

2 1 2 2
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


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(13.74)

If we were to solve this system of equations where r1 is slightly endothermic 
(induction zone) and r2 is exothermic, then we’d see the final states are no longer at 
the classic CJ conditions of λ = 100 % and Mach = 1, but at some other values [7]. 
Another situation presented in the detonation literature is where the r1 is exothermic 
and r2 is endothermic and again the final state are no longer at the classic CJ condi-
tions. The point of these exercises would be to show that there are detonation struc-
tures where the final conditions don’t converge to the classic CJ conditions, but that 
the Rankine-Hugoniot and Chapman-Jouguet theory provide a reasonable estimate 
of the final states for most engineering analysis.

More exact solutions can be determined through incorporating more combustion 
chemistry with a more accurate numerical integration scheme and utilizing software 
that is readily available at [10, 11], which is known as the Caltech’s Shock and 
Detonation Toolbox.

13.6  �Detonation Structures

We saw in Sect. 13.5 how states within the detonation structure change with dis-
tance, but even the dynamic detonation model is only an approximation to the real-
ity of a three-dimensional, transient detonation structure with instabilities (see 
Fig. 13.19, 13.20, and 13.21). It was found in 1957 by [3] that putting soot on the 

Fig. 13.19  Detonation cell 
pattern
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Fig. 13.21  Experimental results of a detonation structure [8]

Fig. 13.20  Delineating regular and irregular detonation cell patterns [1]

References
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inside of shock tubes and detonating the enclosed fuel/air mixture resulted in a par-
ticular fish scale pattern shown in Fig. 13.19 where λ is a measure of the detonation 
cells and related to other features of the detonation structure such as the intensity of 
transverse waves, the distance between the shock and CJ plane, etc.

It was also found that adding various amounts of inert gases such as argon to the 
fuel/air mixture resulted in a more regular detonation cell pattern (see Fig. 13.20) 
where the top image is an example of a regular detonation cell pattern and the bot-
tom image is an example of an irregular detonation cell pattern. Please note all deto-
nations are inherently unstable and the literature will classify regular detonations as 
(stable) and irregular detonations as (unstable).

Detonation stability is defined as the ability to estimate the states for a particular 
time and location; as the detonation becomes more unstable, this estimation becomes 
more unpredictable. There is a more exact, mathematical definition [2, 5, 8, 14], but 
it’s beyond the scope of this book.

Given in Fig. 13.21 is an image of experiments within a shock tube where vari-
ous features of the detonation structure are given in the carton (Fig. 13.22).

As the Mach shock moves from right to left through the detonation cell the Mach 
shock (Mach stem) velocity, D(cj), is not constant but cycles through a range of 
values in a periodic fashion [8]. Transverse waves orthogonal to the Mach shock 
sweep through the detonation cell and toward the end of the detonation that occurs 
in each detonation cell a secondary combustion occurs as transverse waves collide. 
The strength of the transverse waves can be measured by the distance between 
waves and the detonation cell length (λ) is also a measure of the strength of the 
transverse waves. Triple points are the intersection of Mach stems and trans-
verse waves.

Mach shock

Triple point

Mach shock

Shear layer

Transverse shocks

Burned gases

High density unburned gases

Path of triple points
forming the cell boundaries

Triple point

Incident shock

Fig. 13.22  Cartoon of detonation structure [8]
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Regions of Stability
It has been found [3, 4, 10] that the ratio of the induction length (∆I) divided by the 
reaction length (∆R) is a measure of how stable a detonation structure is and Ng [4] 
utilized this observation among others to define a non-dimensional stability param-
eter given as

	
χ = I

I

R

∆
∆ 	

(13.75)

where ϵI is “essentially the normalized activation energy of the induction reaction 
with respect to the shock temperature [3]”, ∆I is the length of the induction zone, 
and ∆R is the length of the reaction zone.

In Fig.  13.23, detonations above the bold line are regular and those below 
irregular.

When the detonation is regular, the effort to model various features of the detona-
tion structure or artifacts of the detonation is easier to accomplish. One example of 
this is as follows. It was found that detonations in shock tubes can be affected by 
boundary conditions when the inside diameter of the tube is below some critical 
diameter (Dc) and this phenomenon was the impetus to Fay’s work [2]. Graphs of 
d

d
c  versus V Vcj

 for a regular and irregular detonation are given in Fig. 13.24 

where the solid line is Fay’s theory. It obvious that Fay’s theory works for a regular 
detonation and not an irregular detonation.

This section has provided the briefest of abstracts for a very active and very com-
plicated area within combustion  – detonation structures and detonation shock 
dynamics. The following resources take this discussion much further:
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Fig. 13.23  Regions of stability versus detonation Mach [4]
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13.7  �Problems

Problem 13.1 ZND Model, Single Reaction
Given a H2-air detonation system [7]

1

a

b

0.95

0.9

0.85

0.8
0 5 10 15 20

dc /d

V
VCJ

dc /d

25 30 35 40

75% Ar

1

0.95

0.9

0.85

0.8
0 20 40 60 80

V
VCJ

Fig. 13.24  Detonation 
velocity deficit for  
a stable (a) and unstable  
(b) mixture [2].  
(a) Stable mixture 
(C2H2 + 2.502 + xAr).  
(b) Unstable mixture 
[0.5(C2H2 + 5 N2) + 0.5Ar]
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Parameter Units Value

γ 1.4
MW Kg/kmole 20.91
R J/kg-K 397.58
P(0) Pa 1.01325e5
T(0) K 298
ρ(0) Kg/m3 0.85521
ν(0) M3/kg 1.1693
q J/kg 1.89566e6
E J/kg 8.29352e6
a 1/s 5e9
β 0

Where the reaction rate equation is

	
r aT

E

RT
= −





−( )β λexp 1
	

Model this system to determine how the following states change with distance 
within the reaction/induction zone

•	 Pressure
•	 Density
•	 Mach
•	 Temperature
•	 Λ

Problem 13.2 ZND Model, Double Reactions
Results for the simple analysis (Problem 13.1) and detailed analysis [7] are 
given below.

Parameter Simple analysis Detailed analysis

L(rxn) 0.01 m 0.01 m
L(induction) 0.001 m 0.0001 m
D(cj) 1991.1 m/s 1979.7 m/s
P(s) 2.80849e6 Pa 2.8323e6 Pa
P(cj) 1.4553d6 Pa 1.6483e6 Pa
T(s) 1664.4 K 1542.7 K
T(cj) 2570.86 K 2982.1 K
Rho(s) 4.244 kg/m3 4.618 kg/m3

Rho(cj) 1.424 kg/m3 1.5882 kg/m3

M(0) 4.88887 4.8594
M(s) 0.41687 0.40779
M(cj) 1 0.93823
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Repeat Problem 13.1, but now there are two reactions where the first is exother-
mic and the second is endothermic [6]. It is assumed that

	 k k k= =1 2 	

	 MW MW MW MW= = =A B c 	

And all other reaction rate parameters are the same {a, β, R}
Given

Parameter Units Value

γ 1.4
MW Kg/kmole 20.91
R J/kg-K 397.58
P(0) Pa 1.01325e5
T(0) K 298
ρ(0) Kg/m3 0.85521
ν(0) M3/kg 1.1693
q(1) J/kg 7.58265e6
Q(2) J/Kg −5.68698e6
E J/kg 8.29352e6
a 1/s 5e9
β 0

Where the reaction rate equation is

	
r aT

E

RT
= −





−( )β λexp 1
	

Model this system to determine how the following states change with distance 
within the reaction/induction zone

•	 Pressure
•	 Density
•	 Mach
•	 Temperature
•	 Λ

�Appendix 13.1: Illustrated Example (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.
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�Appendix 13.2: Dynamic Detonation Model – One Step 
Model (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.
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Chapter 14
Blast Waves

14.1  �Preview

G.I. Taylor was one of the greatest physicists of the twentieth century and worked 
in classical mechanics. One area of interest for Mr. Taylor was blast waves associ-
ated with explosions and he had the privilege to work on the Manhattan Project that 
developed the atomic bomb. Two classic papers [8, 9] he has written form the basis 
to a theoretical model that estimated the energy released and states across the blast 
wave associated with a very intense explosion.

Mr. Taylor reduced the partial differential equations (representing the conserva-
tion principles) into a system of ordinary differential equations (ODEs) and solved 
these ODEs both numerical and provided approximate forms (algebraic equations) 
for the non-dimensional states. He also utilized a dimensional analysis argument to 
find a critical parameter, K(γ), and showed that

	

E

R
t K O

�
�

1
5

2 1� � � � � �
	

(14.1)

where E is energy release, ρ1 is the density of air before the blast wave, R is the 
radius of the spherical blast, and t is time after detonation (see Fig. 14.1).

Mr. Taylor’s work in this area will be discussed in this chapter. Mr. Taylor’s work 
was in a particular coordinate system and a more general coordinate system associ-
ated with blast waves is the subject of J.H.S. Lee’s work [3] and will be reviewed. 
As will the work of three undergraduate students, who applied the tools of G.I. Taylor 
to solve a blast wave associated with certain stellar explosions and note other sys-
tems exist [1, 2, 5, 10].
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14.2  �Euler’s Reactive Flow Equations

The Euler reactive flow equations given as Eqs. 14.2, 14.3, and 14.4 provided dif-
ferential forms for the conservation principles and are a set of partial differential 
equations. These equations represent the conservation principles across the shock 
wave that includes blast waves. A blast wave is defined as “a shock wave whose 
strength decreases as it propagates away from the source [8].”
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(14.4)

where ρ is density, t is time, u is velocity, r is the radius of the shock sphere, j is a 
coefficient, P is pressure, and γ is the thermodynamic constant particular to the gas.

Partial differential equations are not easily solved numerically and would have 
been especially onerous in a time before computers and so are often reduced to 
ordinary differential equations through various means where one method is the sim-
ilarity argument. Once Eqs. 14.2, 14.3, and 14.4 are reduced to ODEs, this new 
system can be solved numerically, which will be explored further in Sect. 14.4.

Fig. 14.1  Trinity test site detonation
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14.3  �G.I. Taylor’s Blast Theory (G.I. Taylor)

14.3.1  �Overview

The equation of motion, continuity, and equation of state are given as Eqs. 14.5, 
14.6, and 14.7. These equations are partial differential equations (PDE) and difficult 
to solve. G.I. Taylor used similarity arguments to reduce the set of PDEs into a set 
of ordinary differential equations (ODE).
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where t is time after detonation, u is the one-dimensional velocity, r is the radius of 
the spherical shock wave, P is pressure, and ρ is density.

The resulting ODEs are
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With the following final conditions (come from the Rankine-Hugoniot theory)
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where γ is a thermodynamic constant, u1, ρ1, y1 represent the values of u, ρ, y imme-
diately behind the shock wave, and U is the radial velocity of the shock wave.

Variables utilized are defined below (the choice of certain non-dimensional 
groups is determined by group theory)

	
� �

r

R 	
(14.14)
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(14.15)

	
f f
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(14.16)

	
a
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� 	

(14.17)

where r is the distance from the point of detonation, R is the current radius of the 
detonation, ρ is air density, A is a constant to be determined, and P is pressure.

You’ll notice in Eqs. 14.8, 14.9, and 14.10 there is only one independent vari-
able, η and one parameter, γ. G.I. Taylor numerically integrated these equations (for 
γ = 1.4) and the results are given in Fig. 14.2.

GI Taylor then derived an equation for the energy release, which is

	 E B A� �0
2

	 (14.18)

and B is defined as

	

B d f d I I� �
�� �

� �
�� �� �2

4

1
2

4

10

1
2 2

0

1
2

1 2� �� � �
�

� �
� � �

�
� �

	

(14.19)

Fig. 14.2  η versus f, φ and ϕ
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where A is a parameter determined experimentally from data of {t, R} given in 
Fig. 14.3 and A is defined as

	

dR

dt
AR� �1 5.

	
(14.20)

G.I.  Taylor then developed algebraic expressions for f, ϕ,and ψ, which are 
given below.
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	 (14.23)

where the parameters {a, b} were determined from Eqs. 14.11, 14.12, and 14.13 and 
other considerations.

In Sect. 14.3.2, we show how Eqs. 14.5, 14.6, and 14.7 were reduced to Eqs. 14.8, 
14.9, and 14.10. In Sect. 14.3.3, more details of the numerical integration will be 
discussed to include where the final values (Eqs.  14.11, 14.12, and 14.13 come 
from). It will be shown how the approximate forms were derived in Sect. 14.3.4 and 
what the values of the parameters {a, b} are for Eqs. 14.20, 14.21, and 14.22. In 
Sect. 14.3.5, we will discuss the form of the energy equation (Eqs. 14.18 and 14.19), 
how A is estimated from experimental data for {t, R} and an estimate for the energy 
released at the Trinity test site.

In Sect. 14.4, numerical solutions are provided for a more general set of ODEs 
applicable to three coordinate systems – planar, cylindrical, and spherical.

Fig. 14.3  t2 versus R5
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G.I. Taylor developed two approaches to solving for states associated within very 
intense blast waves: (a) numerical methods and (b) approximate solutions (alge-
braic equations). In Sect. 14.5, these two tools are applied to stellar explosions in 
cylindrical coordinates.

14.3.2  �Similarity Arguments

In this section, it will be shown the process of reducing one of the partial differential 
equations (Eqs. 14.5, 14.6 and 14.7) into an ordinary differential Equation (Eqs. 14.8, 
14.9, and 14.10). This section will also derive the final conditions given as 
Eqs. 14.11, 14.12, and 14.13.

Much of this section comes from the excellent lecture notes of Dr. Joseph 
Powers [4].

….. Transformations
The independent variables {r, t} are transformed to {η, τ}

	
r t, ,� ��� �� �

	
(14.24)

And the following dependent variables are defined

	

P

P
y R f2

1

3
1� � � �� �

	
(14.25)

	

�
�

� �2

1

� � �
	

(14.26)

	
u R� � ��1 5

1
. � �

	
(14.27)

where
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The transformation also transforms the differential operators such as
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where

	

�
�

�
�
�

�
�

�
�
�

�
�t t t

�
�

�
� 	

(14.30)

14  Blast Waves



369

and
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and
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And substituting Eqs. 14.31 and 14.32 into Eq. 14.30 results in
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Also,
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….. Transform one of the conservation principles
Starting with
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We want to transform each term
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Substituting Eqs. 14.37, 14.38, 14.39, and 14.40 into Eq. 14.36 results in
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Simplifying results in
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With the substitution �
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A
 into Eq. 14.42 results in
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Which is also Eq. 14.9
….. States associated with a large blast wave
Another form of the Hugoniot curve is
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And it is assumed the thermodynamic properties are the same on both sides of 
the shock.

If we substitute the Rankine line into Eq. 14.44, we get
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which is a quadratic in x and
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and has solution
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Either before or after the shock and attached reaction zone, λ = 0 and the solution 
for Eq. 14.48 for these conditions is either
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where the second solution is appropriate [9]
And as Ma1

2 ��  implies that Eq. 14.49 goes to

	
x � � �

�
�

�
�

�
�
�

0 2 1

1 	
(14.50)

and

	
�

�
�

1
1 1

1
� � � �

�
�x 	

(14.51)

Substituting x = μ2 into the Rankine Line results in
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And as Ma1
2 ��  implies that Eq. 14.52 goes to
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Further,
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where u is the shock speed.
Substituting Eq. 14.55 into Eq. 14.54 results in
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and
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From the conservation of mass and in a laboratory frame of reference
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where

	 u D� � particle velocity and is in laboratory frame of referennce 	 (14.59)

And as Ma1
2 ��  implies that Eq. 14.58 goes to
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And as such
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14.3.3  �Numerical Solutions

In order to numerically integrate the system of ordinary differential equations given 
as Eqs. 14.8, 14.9, and 14.10, we need to get the system in the form
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Substituting Eq. 14.9 into Eq. 14.10 results in

14  Blast Waves



373

	
3 2 0f f f f� � �

�

�
�

�

�
� �� � � �� � �� � �

�
�

�
	

(14.66)

and

	
� � � �

�
�

�� � � �
�

�
�

�

�
� �� �f f f2 3

	
(14.67)

	

� � �
� � � �

�
�
�

�� � �
�

�
�

�
�

�

�
� � �

�

�
�




�
�




f

f
f

1 1 3

2
2 3

	

(14.68)

And multiplying both sides by (η − ϕ) results in

	

� � �
� �

�
�
�

� ��� � � �
�

�
�

�

�
� � �

�

�
�

�

�
� �� ��

�
�




�
�



2 1 3

2
2 3f

f
f

	

(14.69)

and
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or
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And from Eq. 14.8
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And from Eq. 14.9
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Equations 14.71, 14.72, and 14.73 are solved using Euler’s method and a small 
time step with the final conditions given as Eqs. 14.11, 14.12, and 14.13. As shown 
in [8, 9], Euler’s method is a rather crude numerical integration technique, but in the 
figures below shows good agreement with G.I. Taylor’s results (Figs. 14.4, 14.5, 
and 14.6).

14.3  G.I. Taylor’s Blast Theory (G.I. Taylor)



374

Fig. 14.4  Etta versus f

Fig. 14.5  Etta versus Psi

Fig. 14.6  Etta versus Phi
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14.3.4  �Approximate Forms

In this section, approximate forms are developed from the ordinary differential 
equations (Eqs. 14.8, 14.9, and 14.10); parameters of these algebraic equations are 
determined from the final conditions given as Eqs. 14.11, 14.12, and 14.13.

……..… Deriving approximate form for φ
From Eq. 14.67,
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If we were to graph 
′f

f
 versus η, then we’d see for η < 0.6 the left-hand side of 

Eq. 14.74 is essentially zero and thus
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Which is a first-order, differential equation [6] with solution provided via an 
integrating factor. Equation 14.76 is of the form

	

dy

dx
P x y Q x� � � � � �

	
(14.77)

With integrating factor

	 � � � � �e P x dx

	 (14.78)

And for Eq. 14.76 μ is

	 � �� 2

	 (14.79)

And multiplying both sides of Eq. 14.76 by Eq. 14.79 results in

	

d

d

�
�
� ��

�
�2 22

3
� �

	
(14.80)

or

	

d

d�
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(14.81)
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With solution

	
�

�
�

�
	

(14.82)

Looking at the graph of ϕ versus η (see Fig. 14.4) there is a second portion to the 
right-hand side of Eq. 14.82 to account for the nonlinear changes in ϕ as a func-
tion of η

	
�

�
�

��� � n

	
(14.83)

Utilizing the final condition ϕ(1) and Eq. 14.83, α is determined
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(14.84)

or
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�
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1 1

1 	
(14.85)

Determining n is more involved.
Using Eq.  14.74 and substituting in for ϕ and ϕ′ the approximate forms just 

determined one gets to
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(14.86)

Solving the right-hand side of Eq. 14.86 when η = 1 results in
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(14.87)

Solving for η − ϕ when η = 1 results in
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�
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1
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1

1

1 	
(14.88)

And substituting Eqs. 14.88 into Eq. 14.17 results in
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(14.89)

14  Blast Waves



377

or when η = 1
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f
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(14.90)

Additionally,
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(14.91)

And when η = 1
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(14.92)

Substituting Eq. 14.90 and Eq. 14.92 into Eq. 14.91 results in
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(14.93)

and
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(14.94)

and
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2 2
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(14.95)
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Therefore,

	
n �

� �
�

�
�
�

7 1

1

7 1

12 2

�
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�
� 	

(14.96)

………... Deriving approximate form for f
Using Eq. 14.91,
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(14.97)

and
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(14.98)

Substitution of Eqs. 14.98 into Eq. 14.97 and solving for 
′f

f
 results in
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(14.99)

With solution
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(14.100)

Set b u du
n

dn n� � �
�

�� �� ��� ��� �1
1

1 2
, , and  results in
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(14.101)

And set x = b − u and dx =  − du results in
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(14.102)

Equation 14.102 has solution
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(14.103)
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and
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(14.104)

or
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(14.105)

………… Deriving approximate form for ψ
Given
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And approximate forms for ϕ and ϕ′ results in
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(14.107)

and
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(14.108)

Equation 14.108 won’t be solved but the solution is given by G.I. Taylor [8] as
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(14.109)

14.3.5  �Energy Released

In this chapter, the initiation of the explosion and the geometry of the container have 
been ignored. It can be shown that quickly after ignition, a very intense explosion 
can be treated as a point explosion developing into a sphere. As such, the infinitesi-
mal volume is given as
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dV r dr� � ��� � �Surface Area thickness 4 2�

	
(14.110)

And the differential mass of this shell is

	 dm dV r dr� �� ��4 2

	 (14.111)

The differential energy of the system includes internal energy plus kinetic energy
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(14.112)

And the total energy is
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(14.113)

Equation 14.113 is now put into a non-dimensional form based on Eqs. 14.14, 
14.15, 14.16, and 14.17 where the transformations are given below.

	 P P R f r R dr Rd u R� � � � �� �
0

3
1 0

2 3
1
2, , , ,� � � � � � 	 (14.114)

Substitution of Eq. 14.114 into Eq. 14.113 results in
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(14.115)

and
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(14.116)

Further
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and
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or
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(14.119)

Additionally,

	 E A B� �0
2

	 (14.120)

where B is
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(14.121)

Please note than I1 and I2 have only one parameter (γ) and can be solved numeri-
cally using mathematical software.

The crux of the problem is to determine A, which can be surmised from how it 
was originally defined

	

dR

dt
AR� �1 5.

	
(14.122)

The solution to Eq. 14.122 is

	
2
5

5
2R At=

	
(14.123)

In G.I. Taylor [9], experimental results of time after ignition [t] versus radius of 

the spherical shock blast [R] are given. Graphing t versus 25
5
2R  provides an esti-

mate of A.
A graph of R5 versus t2 is shown below (Fig. 14.7).
Given below is a reprint of G.I. Taylor’s Table 3 [8].

Table 14.1  Energy release from Trinity test site [8]

γ 1.2 1.3 1.4 1.667
I1 0.259 0.221 0.185 0.123
I2 0.175 0.183 0.187 0.201
K 1.727 1.167 0.856 0.487
Ex1e-20 [erg] 14.4 9.74 7.14 4.06
TNT 34,000 22,900 16,800 9,500
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(14.124)

and

	
E K

R

t
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5

2
	

(14.125)

G.I. Taylor went on to prove that the likely gamma of the system is 1.4 and so the 
energy released was near 16,800 T.N.T.!

14.4  �More General Theory (JHS Lee)

The equations given in below [3] are a more general form of the equations given in 
the sections on G.I. Taylor’s work given as Eqs. 14.8, 14.9, and 14.10.

14.4.1  �Reduced Forms

The reduced form of the PDE’s given as Eqs. 14.2, 14.3, and 14.4 are
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(14.126)

Fig. 14.7  R5 versus t2 for Trinity test site
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where
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(14.129)

With final conditions
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Fig. 14.8  Etta versus non-dimensional states (j = 0)
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�
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(14.131)

	
f 1

2

1
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�� 	
(14.132)

Fig. 14.9  Etta versus non-dimensional states (j = 1)

Fig. 14.10  Etta versus non-dimensional states (j = 2)
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14.4.2  �Numerical Solutions

Utilizing Eqs. 14.126, 14.127, and 14.128 and an Euler’s scheme with h = 0.01, the 
following graphs were created for j equal to 0, 1, and 2 (Figs. 14.8, 14.9, and 14.10).

14.5  �Illustrated Example (Explosions Associated 
with Rotating Stars)

The author of this book had the pleasure of teaching a numerical analysis course 
where we essentially worked through understanding G.I. Taylor’s two papers [6, 7] 
and solved the system of ODEs using package differential equation solvers. This 
author has also had the opportunity as a mentor for undergraduate research experi-
ence to lead three undergraduate researchers through these two papers and applying 
the two developed tools (numerical integration and approximate forms) to a similar 
system [10]. It was quite pleasing how well these tools applied to the particular 
system chosen and the results of this work are given below.

The system discussed below is the conservation principles for an adiabatic flow 
behind a cylindrical shock propagating in a rotational axi-symmetric flow of a per-
fect gas with initial density and velocity as a function of distance from the axis of 
symmetry [10], which would model a very intense explosion from a rotating star.

14.5.1  �Reduce Form

Given from [10]
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(14.137)

where

	 u RU v RV w RW p R P� � � � �   , , , ,� � �0 0
2

	 (14.138)

And final conditions are

Fig. 14.11  Etta versus U

Fig. 14.12  Etta versus V
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Fig. 14.13  Etta versus W

Fig. 14.14  Etta versus g

Fig. 14.15  Etta versus P

14.5  Illustrated Example (Explosions Associated with Rotating Stars)



388
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14.5.2  �Numerical Solutions

Solutions for the five non-dimensional quantities are given below as Figs. 14.11, 
14.12, 14.13, 14.14, and 14.15.

14.5.3  �Approximate Forms

Referring to Fig. 14.11, there is a linear relationship between η and U; this linear 
relationship will be exploited below.

Another form of Eqs. 14.133, 14.134, 14.135, 14.136, and 14.137 is
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and
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……..… Deriving approximate form for U
It has been shown numerically that the relationship between ξ and U is linear for 

the admissible range of parameters and as such

	 U m k� �� 	 (14.149)

Given Eq. 14.149 the following relationships result
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And subtracting Eq. 14.147 from Eq. 14.146 results in
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Further, another form of Eq. 14.148 is
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……..… Deriving approximate form for W
Given
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and
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With solution
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……..… Deriving approximate form for V
Given
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and
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The solution to Eq. 14.162 is
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where
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Substituting Eq. 14.164 into the integral within Eq. 14.163 results in
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Which has solution [7]
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……..… Deriving approximate form for P
Given
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Substituting the relationships from Eq. 14.168 into Eq. 14.167 results in
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and
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and
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Such that
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and

14.5  Illustrated Example (Explosions Associated with Rotating Stars)
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The second integral can be simplified as
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……..… Deriving approximate form for g
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and
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or
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With solution
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and
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Substituting Eq. 14.179 into 14.178 results in
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14.6  �Problems

Problem 14.1  Reduce Eq. 14.6 to an ordinary differential equation.

Problem 14.2  Reduce Eq. 14.7 to an ordinary differential equation.

Problem 14.3  Using Matlab’s ODE solvers, solve Eqs. 14.8, 14.9, and 14.10 with 
the final conditions given as Eqs. 14.11, 14.12, and 14.13.

Problem 14.4  Using Matlab’s ODE solvers, solve Eqs. 14.144, 14.145, 14.146, 
14.147, and 14.148 with the final conditions given as Eqs. 14.139, 14.140, 14.141, 
14.142, and 14.143.

Problem 14.5  Using Matlab develop a program to determine the value of I1 and I2 
for a given value of γ and compare against Table 14.1.

Problem 14.6  Develop approximate form (algebraic solution) for Eq. 14.128.

Problem 14.7  Reduce Eq. 14.2 to an ordinary differential equation.

Problem 14.8  Reduce Eq. 14.3 to an ordinary differential equation.

�Appendix 14.1: Similarity Arguments (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 14.2: GI Taylor’s Work (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 14.3: JHS Lee’s Work (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.

�Appendix 14.3: JHS Lee’s Work (website)



394

�Appendix 14.4: Fisk, Tjandra and Vaughan’s Work (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given 
on the companion website.
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Boltzmann constant (specific energy), 29
Boundary conditions, 307, 308
Boundary layers, 240, 250
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Brayton Cycles, 53
British thermal unit (BTU), 28
Bulk modulus (K), 156

C
Carnot cycle, 78, 80
Carnot engine, 79
Carnot heat engine
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problem, 93, 94
process, 78
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T vs. S graph, 86
thermal efficiency, 80, 81

Carnot heat pump, 81, 94
Carnot refrigeration cycle, 77, 81, 94
Change in kinetic energy (ΔKE), 50
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derivation for Ma(cj), 248, 249
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Chapman-Jouguet theory, 338
Charles’ law, 4
Chemical equilibrium, 276–279

chemical equilibrium constant, 285, 286
chemical potential, 277, 278
chemical reaction, 279–282
entropy, 276
fugacity, 282–284
gas phase reaction, 280
Gibb’s free energy, 276, 280–282
ideal gas, 278
internal energy (e) for ideal gas, 276
mole fractions, reactive species, 280

Chemical equilibrium constant, 284–287
Chemical kinetic complexity, 289–292
Chemical kinetics

equilibrium chemistry, 287
first-order reaction, 288
heterogeneous reactions, 287
higher order reactions, 289
homogenous reactions, 287
irreversible reactions, 287
reaction rate, 288
second-order reaction, 288
temperature effects on reaction rates, 293
zero-order model, 289
zero-order reaction, 288

Chemical reaction, 237, 271
Chocked pressure, 203
Choke flow, 198
Choke point, 195, 198, 201, 203, 224
Circular burners, 317, 323–325
CJ detonation, 260
Clapeyron equation, 125
Clausius-Clapeyron equation, 131
Clausius inequalities, 73

definition, 83
irreversible cycle, 81
irreversible heat engines, 82
reversible cycle, 81
reversible heat engines, 82

Closed system, 33, 43, 61
Closed vapor, 60
Coefficient of performance, 78, 103
Combustion chemistry, 292
Combustions

deflagration, 237
detonation, 237
properties, 238
from shock tubes, 237
ZND models, 237, 238

Combustion system, 237
Composition of a mixture

mass basis, 134
molar basis, 133

Compressibility factor (Z), 9, 15
Compressible flow, 170, 179, 180, 193
Computed thermodynamic properties, 275
Connection horizontal section, 74
Conservation of energy, 151, 152

of non-premixed combustible  
gases, 192

Conservation of mass, 47, 48, 153, 200
for steady, axial symmetric system, 192

Conservation of momentum, 153, 154
of non-premixed combustible gases, 192

Conservation of species mass with binary 
diffusion, 188

Conservation principles
conservation of mass, 47, 48, 153
conservaton of energy, 152
conservaton of momentum, 153
for detonation systems, 170, 176, 177
for gaseous system, 151, 152, 169

conservation of energy, 171, 
174–176, 178

conservation of mass, 170, 172, 178
conservation of momentum, 170, 172, 

173, 178
for non-premixed deflagration  

system, 191
conservation of energy, 192
conservation of mass, 192
conservation of momentum, 192

for particular fluid phenomenon, 170
for premixed laminar flames

conservation of energy, 189–191
conservation of mass, 188
conservation of momentum, 188, 189

total derivative for internal energy, 176
Constant pressure process, 7, 335
Constant temperature process, 7
Constant volume process, 7, 334, 335
Control surface (cs), 48
Control volume, 33, 49
Converging-diverging nozzles, 201, 203
Critical flow, 198

annular flow, 208
at choke point, 198, 201
homogenous flows, 208
ideal gas (see Ideal critical flow)
in liquid/gas system, 207–212
single-phase flow, 195
single-phase fluid, 196
speed of sound (see Speed of sound)
for two-phase flow system, 219–231
van der Waal gas (see van der Waal 

critical flow)
Critical point, 7, 9–11, 18
Critical pressure (Pc), 9
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Critical temperature (Tc), 9
Cubic equations of state (EOS)

acentric factor, 12, 13
attractive force, 10
considerations, 10
inter-molelcular attractive force, 10
Redlich-Kwong, 12–14
repulsive force, 10
van der Waal’s, 11, 12

Cycle on P vs. V graph, 41
Cycles, 33, 53

D
Deflagration, 237, 238, 240, 245, 247

buoyant laminar jet flow
buoyancy controlled, 328
conservation principles, 323, 324
diffusion coefficient, 325
flow rates, 326, 327
heat rates, 326, 327
heat transfer coefficient, 324
momentum controlled, 327
Roper equation, 324
slot burner, 327, 328
square burner, 326
temperature, 325
transition zone, 328

laminar flame, 301
qualitative differences, 302
RH theory, 301
system, 301

Density change, 177, 193
Derivation of ∆KE, 241
Detonation CJ point, 245
Detonations, 169, 170, 237–240, 245, 247, 

250, 257
analysis, 341, 342
conservation principles, 333
constant pressure process, 333, 335
constant volume process, 333–335, 337
ds vs. temperature, 336
dynamic detonation model, 333
entropy, 336
H2/air parameters, 337
H2-air detonation system, 358
induction zone, 359
lambda vs. temperature, 338
RDE, 336, 338
reaction rate, 359
reaction zone, 333, 359
structure, 334
T vs. lambda, 341
X versus λ, 340
ZND model, 333, 359, 360

Detonation structures
cartoon, 356
cell pattern, 354
fuel/air mixture, 356
regions of stability, 357
transverse waves, 356

Diaphragm, 237
Diatomic gases, 30, 31
Diatomic molecule, 29
Differential equations, 363, 385
Dimensional analysis, 363
Double linear interpolations, 60
Double product rules, 147
Dynamic detonation models

approach, 345
conservation of energy, 345
conservation of mass, 345
conservation of momentum, 345
conservation principles, 344
double reactions, 353, 354
equation of state, 346, 348
Rankine-Hugoniot model, 343
reaction rate, 344
single reaction, 350, 351
three dynamic equations, 348–350

E
Efficient pump and turbine, 109
Electric generators, 64
Energy balance, 334

boiler, 56
condenser, 57
pump, 55, 56
turbine, 56, 57

Energy diffusion, 183
Energy equation, 335
Energy vs. temperature modes, 30
Engineering devices

machine, 51
pump, 51
Rankine Cycle, 54, 55

Engineering efficiency, 97
irreversible devices, 89
reversible devices, 89
work in devices, 90–92
work out devices, 89, 90

Engineering thermal efficiency,  
89, 93

Enthalpy (h)
calculation methods, 32
changes, 32, 35, 36
cubic relationship, 37
definition, 29
derivative, 84
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Enthalpy (h) (cont.)
problems, 39
values, 33

Enthalpy and entropy as functions, 130
Clausius-Clapeyron equation, 131
constant temperature and pressure, 130
differentials, 129
equation of state, 130
ideal, perfect gas, 132
Maxwell relationship, 130
T and P, 128
van der Waal gas, 133

Enthalpy of formation, 270–273, 295
Entropy, 155
Entropy as State Function, 84, 85
Entropy balance, 87, 334
Entropy of gases

ideal and non-perfect gases, 88, 89, 95
ideal and perfect gases, 87, 88, 94
possible cases, 87

Entropy of liquids, 73, 87
Entropy of solids, 73, 87
Equations of conservation, 250
Equilibrium chemistry, 287
Equivalence ratio, 268, 269, 274, 290, 

292, 297
Euler reactive flow equations, 364
Euler’s method, 373
Evaporator, 112, 114, 123
Exact differentials, 126, 127
Expansion valve, 112

F
Fay’s system, 240, 250, 260, 261
Fick’s law of diffusion for binary gas, 

184, 185
First law and second law systems, 59
First law of thermodynamics

closed systems, 49, 50
control volume, 49
cycles, 53, 57
description, 49
energy sources, 87
engineering devices, 52–53
open systems, 50, 51
reverse Rankine cycle, 115

First law, pump, 51
Flashing, 198, 231
Flow regimes for gas-liquid flow,  

207, 208
Fugacity, 282–284, 286

of liquid water, 283

G
Gas cycles

assumptions, 116
Brayton cycle

assumptions and conditions, 116
energy balance, combustion 

chamber, 117
energy balance, compressor, 116
energy balance, turbine, 118
problem statement, 120
quantity of interest, 119
state equations, 118

reverse Brayton cycle, 121, 122
Gas dynamics with area changes,  

170, 171
Gas dynamics with heat transfer, 170, 

171, 177
Gas dynamics with shear stress, 170–173
Gas mixtures, part I

ideal gas, 134
Kay’s rule, 135
specified state, 134

Gas mixtures, part II
EOS, 136, 137
mole fraction, 137
van der Waals, 136

Gas models comparison, 19, 20
Gas molecules, 29
Gasoline engine, 93
Gibb’s free energy, 126, 276–282,  

285, 296
Gibbs Equations, 84

H
Heat and work sign convention, 49, 50
Heat diffusivity, 311
Heat engine, 73, 78

gas cycle, 103
thermal efficiency, 103
vapor phase cycle, 103

Heat pump, 73, 78
Heat transfer, 75, 169, 171, 183, 184
Helmholtz energy, 126
Homogenous equilibrium model, 224
Homogenous flows, 208
Homogenous frozen model, 224
Homogenous models, 198
Homogenous reactions, 287
Horizontal section dependent, 74
Hugoniot curve, 239, 240, 242, 244, 247, 250, 

253, 256, 261
Hydrocarbon oxidation, 292
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I
Ideal critical flow, 201, 231

energy balance, 202–204
entropy balance, 201, 202

Ideal gas, 151, 163, 201–204. See also  
Ideal critical flow

Ideal gas constants, 22
Ideal gas law, 38, 255

applications, 6, 7
assumptions, 3
Avogadro’s law, 4
Boyle’s law, 4
Charles’ law, 4
density, 5
experimentation, 4
kinetic theory of gases, 5
molecular weight, 5
observations, 5
particular substance, 5
relationship, 4
universal gas constant, 5

Ideal gas mixture, 134
Ideal gas problem

isobaric process, 16
isometric process, 15
isothermal process, 15

Incompressible flows, 193
Incompressible fluid field, 193
Induction zone, 237, 333, 353, 354, 357, 359
Infinitesimal work, 28
Integrating factor, 375
Internal energy (e)

calculation methods, 32
constant volume path, 29
thermodynamic energy, 25, 43

Irreversibilities, 54, 83
Irreversible engineering device, 89, 90
Irreversible heat engine, 76
Irreversible processes

creation factor, 26
gas, 26
low-/high-temperature body, 27
pulley example, 26

Irreversible reactions, 287
Irreversible system, 74
Irreversible turbine, 96
Isentropic flow, 170, 179, 180, 193, 197, 206
Isentropic path, 28, 118, 154, 223, 228
Isentropic process, 33
Isentropic relationship, 120
Isentropic system, 83
Isobaric process, 33
Isolated system, 33

Isometric process, 33
Isothermal compressibility, 143
Isothermal process, 33

J
Jouget’s rules, 244–246

K
Kay’s rule, 135, 146
Kinetic energy (KE), 43, 276, 380
Kinetic theory of gases, 185–187
Kinetics, 267
Kramer’s rule, 349

L
Laminar flame speed

adiabatic flame temperature, 313
calculations, 314
Metghalachi and Keck’s Correlations, 

315, 316
reaction rate equation, 312
specific heat determination, 312
stoichiometric considerations, 311
thermal properties, 313

Laminar flame speed equation, 290
Latent enthalpy, 270, 271
Lee/Kessler chart, 7, 9, 10, 17, 145
Lewis number, 183
Linear interpolations, 43, 44, 98

M
Ma(cj) for system, 256–260
Mach number, 157, 161, 170, 179, 181, 182, 

193, 259
Mass diffusion, 183, 187
Mass efflux, 195, 197
Mass flux, 201, 209, 210, 241, 242, 244, 252

gas, 210
liquid, 210, 230

Mass fraction of species, 134
Mass rate, 268, 297
Mass transfer, 169, 170

energy diffusion, 183
Fick’s law (see Fick’s law of diffusion for a 

binary gas)
kinetic theory of gases (see Kinetic theory 

of gases)
mass diffusion, 183
momentum diffusion, 183
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Material science considerations, 143
Maxwell relationships, 140, 146

definition, 125
entropy and specific volume, 125
mixture dome, 125
pressure and temperature, 125

Maxwell’s equations
closed system, 126
differentials, 126
Gibbs energy, 126
Helmholtz energy, 126
open system, 126
set of equations, 127

Mean density, 209
Mixture coefficients, 136
Mixture dome, 45, 130
Mole fraction of species, 133
Molecule classes, 30
Momentum diffusion, 183
Momentum transfer, 169, 170
Monatomic gases, 30, 31
Moving shock waves, 161, 167

N
National Institute of Standards and Testing 

(NIST), 46
Nitrogen, 94
Nitrogen gas flows, 70
Noble gas, 30
Non-homogenous models, 198
Non-premixed deflagration, 169

average velocity, 319
Bessel function, 321
boundary conditions, 320
Burke Schumann flame, 323
concentric cylinders, 319
conservation of axial  

momentum, 318
conservation of mass, 317, 320
conservation of species, 318 (see also 

Conservation principles)
diffusion flame, 317
flame front, 319
fuel and oxygen, 322
in-homogenous, 321
linear combination, 320
non-dimensional boundary  

conditions, 321
non-dimensional quantities, 320

Non-premixed laminar flames, 170
Normal shocks, 151, 157–162, 165
Numerical methods, 368

O
Omega method, 208, 215, 218, 230, 231
One-step reaction, 350
Open system, 33, 43
Ordinary differential equations (ODE), 363, 365

P
Partial differential equations (PDE), 365
Partially complete combustion, 261
Partially complete reactions, 250
Perfectly irreversible pump, 92
Perfectly irreversible turbine, 91
Phase diagrams, 4
Piston-cylinder device, 40
Poisson’s ratio, 156
Polytropic process, 25

definition, 33
relationships, 35
types, 33, 34
work, 34, 37

Potential energy, 43, 196, 212, 220
Prandtl number, 183
Premixed deflagration, 169

chemical reaction, 304
component, 304
conservation of energy, 305
conservation of species, 304 (see also 

Conservation principles)
density, 305
Fick’s law, 304
gas and oxidizer, 303
Mallard and Le Chatelier’s laminar flame 

speed, 305–307
planar conservation principles, 303
Spalding’s laminar flame speed theory, 

307, 308, 310
Premixed laminar flames, 170
Pressure (P), 3
Pressure versus % Methane (RK EOS), 139
Pressure vessel, 198, 204, 231

for ideal gas, 204
Pressures, 195
Pressurized vessel, 196
Product enthalpies, 275
Product thermodynamic properties, 274
Pure substance, 45

Q
Quality, 7
Quantities, 77

enthalpy (h), 25
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internal energy (e), 25
state and not state functions, 25, 26
thermodynamic tables, 125
work and heat, 25

R
Rankine cycle, 53–55, 76, 103

increase boiler pressure, 107
increase boiler temperature, 107
overall thermal efficiency, 109
reduce condenser pressure, 107
thermal efficiency, 107

Rankine Line, 241, 244–246, 250–252, 
261, 371

Rankine-Hugoniot (RH) theory, 301, 338, 365
Rankine-Hugoniot system, 239, 240
Reactant enthalpies, 275
Reactant thermodynamic properties, 274
Reaction rate equation, 289–291
Reaction zone, 237, 239, 240, 250, 333, 353
Real heat engine, 76
Redlich Kwong EOS, 137
Redlich-Kwong equation of state, 12
Redlich-Kwong-Soave equations of 

state, 13, 14
Reduced pressure, 9
Refrigeration cycle, 73, 78, 124

coefficient of performance, 103
Refrigeration problem, 94
Regions of stability, 357
Regressional model, 30, 32
Regular and irregular detonation 

structures, 356
Relative error, 144
Resistance heater, 40
Reverse Brayton cycle, 121–123
Reverse heat engine, 78
Reverse Rankine cycle, 123

coefficient of performance, 114
energy balance

assumptions and conditions, 112
compressor, 112
condenser, 112
engineering device, 112
evaporator, 114
expansion valve, 112

enthalpies, 115
linear interpolation, 115
mixture, 115
processes, 111
working fluid, 115

Reversible and irreversible systems, 73

Reversible engine, 79
Reversible heat engine, 73–75
Reversible process

definition, 26
ideal gas, 27, 40
work minimization, 27

Reversible pump (work in device), 92
Reversible reactions, 287
Reversible system, 74, 83, 84
Reversible turbine, 97
RH theory, 246, 250
RK EOS, 21, 141
Roper’s theory, 317, 323–325, 328–330
Rotational detonation engine (RDE), 336

S
Saturated Ammonia, 64
Saturated liquid nitrogen, 65
Saturated mixture of steam, 71
Saturated nitrogen tables, 145
Saturated pressure range, 131
Saturated solid-liquid water tables, 145
Saturated table, 46
Saturated temperature, 45
Saturated vapor, 60
Saturated Water, 45
Saturated water thermodynamic properties, 47
Schmidt number, 183
Second law of thermodynamics, 87
Sensible enthalpy, 270
Shock tubes, 237, 238, 250
Shock waves, 157
Slot burners, 327, 328
Specific heat, 25, 28, 30, 144
Specific heat constant pressure, 25, 29
Specific heat constant volume, 25, 29
Specific volume (ν), 3
Speed of sound, 151, 153, 157, 199

for aluminum at STP, 164
condition of isentropic flow, 154
control volume for gas moving, 153
for gas mixture, 165
in ideal gas, 155, 156
for ideal and van der Waal gas, 163, 164
for liquid/gas flow, 208
in liquids and solids, 156
for single-phase gas, 198
for two-component gas, 198, 233
for two-phase gas flow, 212, 215, 220, 232

derived relationship, 212
homogenous flow, 214
omega method, 218

Index



402

Speed of sound (cont.)
water mixture, 215
weighted average of densities, 213

for van der Waal gas, 206
Square burners, 326, 330
SRK EOS, 22
Stagnation point, 195
Stagnation pressure, 179
Stainless Steel, 94
Standard enthalpy of formation, 271
State of system, 3
Static pressure, 179
Stoichiometry, 267, 268, 279, 297
Sub-Mach flow, 240
Substance, 7
Superheated vapor ammonia, 63
Superheated Vapor Water, 45
Supersonic nozzle, 196, 208

T
Taylor’s blast theory

approximate forms, 375–379
coordinate systems, 367
energy release, 366, 379–381
independent variable, 366
numerical integration, 367
numerical solutions, 372, 373
ODEs, 365
PDEs, 365
similarity arguments, 368–370, 372
t2vs. R5, 367
thermodynamic constant, 366
η vs. f, φ and ϕ, 366

Temperature (T), 3
Thermal efficiency (η), 57, 78–80
Thermicity, 177
Thermodynamic data, 146
Thermodynamic energy, 29
Thermodynamic properties, 273, 274, 341
Thermodynamics, 237
Thermodynamic tables, 37
Thermodynamic work, 27
Thermodynamics problem solving 

procedure, 58, 59
Trailing wave, 162, 163

Translational (kinetic) energy, 29
Triatomic gases, 30, 31
Trinity test site, 364, 367, 381, 382
Triple product rules, 147
Two-step reaction, 350

V
van der Waal critical flow

energy balance, 205, 206
entropy balance, 206
real gas effects, 204

van der Waal equations of state, 11,  
12, 18

van der Waal gas, 18, 19, 198
van der Waal’s equation of state, 137
Vapor phase cycles

engineering efficiency effects, 109, 111
problem solving steps, 104
Rankine cycle, 104

energy balance, boiler, 106
energy balance, condenser, 106, 107
energy balance, pump, 104, 106
energy balance, turbine, 106

reverse Rankine (see Reverse 
Rankine cycle)

Velocity distribution, 48
Virial coefficient, 21
Volumetric discharge, 48

W
Water Cycle, 69
Water-filled reactor, 62
Wave speed, 237, 245
Work and heat, 38, 39
Wright Patterson Air Force Base, 336

Y
Young’s modulus, 156, 164

Z
Zero-order model, 289
ZND models, 237, 238
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