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Preface

There are several good books on thermodynamics, gas dynamics, and combustion,
but there is not one book that covers all three of these areas and shows the integral
connections at an advance undergraduate or beginning graduate student level.

This book is written to provide a primer on the subject of thermodynamics (and
the allied areas of gas dynamics and combustion) and to be both terse and clear; this
is the guiding principle of the book. Most chapters are under 30 pages in length and
sufficient examples and problems have been given. Along with the exercises, there
are many appendices with either additional information or computer programs
(spreadsheets) that further demonstrate some concept.

This book is written in three parts: Part [ — Chapters 1, 2, 3,4, 5, and 6 —is on the
fundamentals of thermodynamics; Part II — Chapters 7, 8, and 9 —is on gas dynam-
ics; and Part IIT — Chapters 10, 11, 12, 13, and 14 — is on combustion.

Chapter 1 begins with ideal gases, then shows when gases deviate from ideal
behavior (when pressure significantly increases for a fixed temperature or tempera-
ture significantly decreases for a fixed pressure). To address these deviations from
ideal behavior, cubic equations of state were developed and mimic the behavior of
specific volume versus pressure for a pure substance.

Chapter 2 deals with heat and work. This discussion includes understanding the
definitions of specific heat and when to use a certain definition; how these defini-
tions relate to internal energy and enthalpy; various processes described as poly-
tropic processes, the work associated with a particular polytropic process;
additionally, states, internal energy, and heat associated with a particular polytropic
process are presented for an ideal, perfect gas.

In Chaps. 3 and 4, the first and second laws of thermodynamics are explored.

Chap. 5 presents several heat engines and refrigeration cycles. These cycles
include Brayton, Rankine, reverse Brayton, and reverse Rankine cycles.

In Chap. 6, Maxwell relationships, their applications, and ideal gas mixtures are
presented. The first and second laws of thermodynamics are re-derived for an ideal
mixture of gases.

The next three chapters, Chapters 7, 8, and 9, deal with gas dynamics. Chapter 7
deals with conservation laws applied to a gaseous system, derives the speed of
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sound for an ideal perfect gas, and goes on to derive the equations for normal shocks.
Chapter 8 develops the conservation principles necessary for combustion systems
and includes the fact that states change with either location or time; Chapter 7 pro-
vides the necessary fluid mechanics for Chaps. 9 and 10 and Chap. 8 provides the
necessary fluid mechanics for Chaps. 12 and 13.

Chapter 9 deals with isentropic, choked flow (chemical engineers tend to call this
critical flow). A comparison is made between ideal, perfect gases and van der Waal
gases. The effects of real gas behavior on isentropic, choked flows are clearly delin-
eated. The chapter goes on to address critical flow and sonic velocity for two phase
systems.

Chapter 10 presents a physics-based description of combustions using the
Hugoniot/Rayleigh theory that graphically represents the three conservation prin-
ciples: conservation of mass, conservation of energy, and conservation of moment.
Where the Hugoniot Curve and Rayleigh lines intersect represents the end points of
the combustion before and after an associated shock.

A combustion system can either be a detonation or a deflagration. A detonation
is a wave with an attached reaction zone where the speed of the wave is greater than
Mach 1, it’s known as a shock wave, and a deflagration is a wave where the speed
of the wave is less than Mach 1 and there is an associated reaction zone.

Chapters 11, 12, and 13 deal with a chemically based combustion; a physics-
based combustion theory provides information about what occurs after the shock at
the von Neumann point and the end of the reaction zone, but not what occurs within
the reaction zone. A chemically based combustion theory allows us to investigate
state changes within the reaction zone. Chapter 11 deals with the necessary combus-
tion chemistry to include stoichiometry, chemical equilibrium, chemical kinetics,
and adiabatic flame temperature.

Chapter 12 discusses deflagration systems, which are combustion systems were
the wave travels below Mach 1 (Ma; < .01) and now transport processes such as
momentum diffusion, mass diffusion, and heat diffusion become important. Two
forms of deflagrations are discussed: deflagrations where the fuel and oxidizer are
pre-mixed (a Bunsen burner is an example) and deflagrations where the fuel and
oxidizer are not pre-mixed (a candle flame is an example).

Chapter 13 discussed detonations and presents constant pressure and constant
volume combustion, an extended example on a rotational detonation engine, solving
for states within the reaction zone, and how the detonation structure is much more
complicated and richer than the modeling conducted in this chapter.

In the last chapter, Chapter 14, blast waves are discussed. A blast wave is a wave
where the strength of the wave (pressure) decreases with distances from the source.
The pivotal works in this area are two papers by G.I. Taylor and blast waves associ-
ated with a very intense explosion (atomic bomb). The chapter presents the conser-
vation principles as partial differential equations, reduces these equations to ordinary
differential equations through similarity methods, and presents two methods to
solve the non-dimensionalized conservation principles. One method is numerical
analysis of the ODEs and the other is approximate forms (algebraic equations) to
match the numerical results.
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Many useful appendices are included. These appendices include worksheets for
various heat engines and refrigeration cycles, normal shock waves, various models
for critical flow, Rankine-Hugoniot theory, and programs for detonation dynamic
systems (ZND models) and deflagration systems (laminar flame theory and diffu-
sion flames). Additionally, there are worksheets associated with the various blast
wave systems.

A first course in thermodynamics (14-week semester) could include Sects. 1.1 to
1.4; Chapters 2, 3, 4, and 5.

A second course in thermodynamics (14-week semester) could include Sect. 1.5,
Chapters 6, 7, 8, and 9.

An introductory combustion course (14-week semester) could include Chaps. 10,
11, 12, 13, and 14.

Houston, TX, USA Henry Clyde Foust
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Chapter 1
Equations of State

1.1 Preview

The purpose of this chapter is to introduce equations that relate temperature (7),
pressure (P), and specific volume (v) for a given set of conditions where 7, P, and v
are states of the system.

Specific volume is defined as

(1.1

vV 1
V==
m. . p
where V is volume and m is mass, and specific volume is the inverse of density.

Temperature, pressure, and specific volume are fundamental quantities that
describe the state of a system and are defined below. Please note we will often
assume a system is homogenous in terms of the states, i.e., the temperature is the
same throughout the system.

Temperature is a measure of the molecular activity of a fluid at a particular loca-
tion within the system.

Pressure is an average of the normal stresses that occur on a unit cube of fluid in
the three principal directions {x, y, z} within the system.

Specific volume is a measure of the mass of a particular system for a unit volume.

We’ll start with the simplest representation, which is the ideal gas law. The ideal
gas law is predicated on several assumptions that briefly state molecules are perfect,
rigid spheres that only transfer momentum during collisions, are infinitely far apart,
and occupy no space. When the density increases enough, then some of these
assumptions are no longer valid.
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4 1 Equations of State

We’ll then look at phase diagrams (V vs. T'and V vs. P) and develop cubic equa-
tions of state to represent the behavior seen on these phase diagrams; the simplest
cubic EOS incorporates more accurate models for attractive and repulsive forces.
We’ll then incorporate the effects of non-spherical molecules and that at higher
pressures the volume becomes constant, which become significant as the density
gets very large.

A general understanding is gathered by reading Sects. 1.2, 1.3, and 1.4 and more
advanced material is given in Sect. 1.5.

1.2 Ideal Gas Law

Through careful experimentation, several researchers of gas behavior that included
Boyle, Charles, and Avogadro made observations using several gases near STP! [1].
These observations include Boyle’s law, Charles’ law, and Avogadro’s law.

Boyle’s Law
Boyle’s law states that the volume of a gas (V) is indirectly proportional to its pressure
(P) or mathematically

Vo — (1.2)

Charles Law
Charles’ law states that the volume of a gas is directly proportional (V) to its
temperature (7) or mathematically

VT (1.3)

Avogadro’s Law
Avogadro’s law states that the volume of a gas (V) is directly proportional to the
mass given in moles (n) or mathematically

Von (1.4)
These three laws can be combined mathematically into the following relationship

Voc% (1.5)

It can be shown through experimentation (when temperature and pressure do not
deviate too far from STP) that

! Standard temperature and pressure, which is 0 °C and 101.325 kPa.
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nT
V=R — 1.6
“p (1.6)
Or
PV =nRT (1.7)

where R, is the universal gas constant and has the value of 8.3145 Pa-m?* per mole-K.
Another form of Eq. 1.7 is

PV =mRT (1.8)

where R, is now particular to the substance and includes mass in units of kilograms.
The value of R, for a particular substance can be found by the following formula

R [ kJ }
k " -

Rg{k JK} - km"ll‘z K (1.9)

£- MW[ £ }

kmole
where MW is molecular weight.
We can rearrange Eq. 1.8 to get
m P

=—=— 1.10
T (1.10)

The ideal gas law was later explained by the kinetic theory of gases [2]. This
theory includes several assumptions

. The molecules occupy essentially no space and are infinitely far apart

. Each molecule has the same mass and is perfectly spherical

. Molecules only exchange momentum during perfectly elastic collisions

. Each molecule is in constant, rapid, and random motion

. There are so many molecules that we can discuss the entire set statistically

I S R

Some of these assumptions are no longer valid as the density increases. Referring
to Eq. 1.10, it is easily seen that the density increases when pressure increases (for
fixed T) or when temperature decreases (for fixed P). These observations can be
summarized as

P 1 for fixed T — Jo} T Non —ideal behavior (1.11)

T for fixed P — Jo} T Non —ideal behavior (1.12)
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1.3 Ideal Gas Law Applications

When using the ideal gas law remember the following.

The first step is to make sure you use the correct value for the gas constant. If the
mass is molar, then use R,. If the mass is in kilograms or pounds, then use R,. R,
values are given in tables at the back of the book.

A handout will be given for R, in various units.

The next step is to make sure that T is in absolute scale

K =C+273.15 (273 will be utilized in this book) (1.13)
and
R=459.67+F (460 will be utilized in this book) (1.14)
Further,
F:§C+32 (1.15)

where K is Kelvin, C is Celsius, R is Rankine, and F is Fahrenheit.

The third step is to make sure P is in absolute scale. Pressure may be given in
terms of gauge pressure. The relationship between gauge pressure (P,) and absolute
pressure (Py,) 1S

P =P +P (1.16)

abs = atm g

where P, is atmosphere pressure (14.7 psia or 101,300 Pa).
For now, we will consider three possible processes, where a process is a change
of states along a particular path. The three paths are -
{P.T,} > {P,.T,}, Constant volume process (isometric process)
{R.,v,} > {P,v,}, Constant temperature process (isothermal process)
{vi.T;} > {v,.T,}, Constant pressure process (isobaric process)
To find the equation for a particular process start with ideal gas law (for state 1)

and manipulate the equation where the states that are changing are on the left and
the states that are constant are on the right. Using the ideal gas law (for state 2) and
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manipulate the equation where the states that are changing are on the right and the
states that are constant are on the left. Equate these two equations to get a relation-
ship between states 1 and 2.

Constant Volume Process

PV =nRT (1.17)
and
P P
£ _nR_F (1.18)
L Vo7
Constant Temperature Process
PV =nRT (1.19)
and
Pv, =RT =Py, (1.20)
Constant Pressure Process
PV =nRT (1.21)
and
W _R_v (1.22)
T, P T,

1.4 Lee/Kessler Charts

Imagine we conduct an experiment with a given mass of water, constant pressure (1
atmosphere), and have a way of measuring both the temperature and volume (V).
We heat up our container and plot various points of {V, T} for a liquid. Eventually,
the positive slope of the line turns to a horizontal line, which is an indication of the
mixture range. Again, the line forms a positive slope and the substance is now a gas
(see Fig. 1.1).

We can get a similar curve for V versus P at a constant T (see Fig. 1.2).

We observe that there is a point that demarcates the saturated liquid from the
saturated vapor curve and that this point is known as the critical point. Substances
under the dome are known as mixtures that include both liquid and gas. When a
substance is under the mixture dome, not only do we need to know the temperature
and pressure but we also need a third quantity, quality (X), to define the substance.
Quality is defined as
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Critical
Point

Superheated
Vapor

Region /

Compressed
Liquid
Region

Saturated
, Liguid-Vapor
/ Region

v
Fig. 1.1 T versus V for constant P
P
Critical
Point
Saturated
Liquid-Vapor
. Region
Compressed
Liquid = -
Region T=Constant
S@turated ~—
Liquid-Vapor
Region
v
Fig. 1.2 P versus V for constant 7'
m,
X=—"t (1.23)
m, +m,

where m, is the mass of gas and m, is the mass of liquid.
Going back to Figs. 1.1 and 1.2, we can determine for a given pressure and tem-
perature what phase we are in. These rules are provided in Table 1.1.
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Table 1.1 Delineating phase from a given 7" and P

For T'< Ts, and P = Ps,, — Sub-cooled liquid (see V versus T diagram)

For T'> Ts, and P = Ps,, — Super-heated vapour (see V versus T diagram)

For T'=Ts, and P < Ps,, — Super-heated vapour (see V versus P diagram)

For T = Ts, and P > Ps,, — Sub-cooled liquid (see V versus P diagram)
For T = T, and P = Ps,, — Mixture

We can define a given temperature and pressure relative to the critical pressure
(P.) and critical temperature (7).
Reduced pressure is

P
P, = F( (1.24)
and reduced temperature is
T
T, =— 1.25
ST (1.25)

Also define the compressibility factor (Z), which is a measure of the deviation
from ideal gas behavior as

7 - PV
nR T

(1.26)

We can plot {Py, Tk, Z} for a given pure substance and the result is given as
Fig. 1.3. We observe that as 7 decreases (T decreases) for fixed P and/or Py
increases (P increases) for fixed T that Z decreases, which is consistent with what
was said above about when the ideal gas behavior is no longer valid. We could plot
{Px, Tx, Z} for other pure substances and we would find that the points all fall on the
same “constant Tr” lines.

Please note the Lee-Kessler chart is only valid for molecules that are nearly
spherical. Below we’ll define another parameter acentricity (w), which is a measure
of how much a molecule deviates from being spherical.

Measuring the compressibility factor, Z, from Fig. 1.3 is fraught with error and
Appendix 1.C provides a more accurate method. Also note that near the critical
point {7,,P,} = {1, 1}, the greatest deviation from ideal behavior occurs {Z = 0.3}
and all models for equation of state notoriously have difficulty predicting the states
{P, T, v} near the critical point.
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1.2

™ = —n - — "

0.2 2
P[r]

—0—T[r]=1 T[r]=1.5 T[r]=2 —#=—T[r]=5

Fig. 1.3 Lee/Kessler compressibility chart [2—4]

1.5 Cubic Equations of State

Three cubic equations of state will be discussed: van der Waals, Redlich-Kwong,
and Redlich-Kwong-Soave [3, 5-8]. Each has the following form

P=P +P, (1.27)

where P, is the repulsive force and given as

p = (1.28)

(1.29)

where aa is a measure of the inter-molelcular attractive forces and b is related to the
size of the equivalent rigid sphere.
These cubic equations of state are based on the following considerations [2, 3]:

1. Mimic the behavior between v and P given in Fig. 1.2

2

oP - .
2. Insure — =0 and —; =0 at the critical point
ov ov
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3. The later cubic models also addressed the fact that all gases take on a constant
specific volume at higher pressures, which is stated as v = 0.26v,, where v, is the
specific volume of the gas at the critical point

4. Later models incorporated effects of non-spherical molecules (deviations from
the predictions given on the Lee-Kessler chart)

1.5.1 Van der Waal

One of the first attempts to address the deviations from ideal behavior seen as the
density increases was the work of van der Waal [4]. The van der Waal equation of
state is

(P+%j(v—b):RuT (1.30)
\%
or
RT
P=P+P =—— - (1.31)
v—-b v

These two parameters {a, b} can be determined from the following conditions at
the critical point

2
g—P:Oandg—}::O (1.32)
v v

The values of {a, b} determined from Eqgs. 1.30 and 1.32 are

22
a= i—z RPT‘ (1.33)
and
RT
b= 8PC (1.34)

Going back to Fig. 1.2, you’ll notice a cubic type of relationship between V and
P, which Eq. 1.31 accounts for. Another version of this equation in terms of Z is

Z'—aZ’ +bz—c=0 (1.35)

where
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P, 27P 27P?
a=—L+1, b= 7’;, c= 7R3 (1.36)
8T, 64T, 5127,

It’s been found for various reasons that the van der Waal equation of state is inac-
curate near and above the critical pressure and other equations of state show higher
accuracy in these regions. Van der Waal’s equation of state is known as an example
of a two-parameter cubic equation of state.

1.5.2 Redlich-Kwong

In 1949, Redlich and Kwong [5, 8] proposed the following model, which provided
for a correction to the attractive force term within VW EOS and addresses Condition
3 given above

p=tw 4% (1.37)

Given

Using the condition stated as Eq. 1.32, the values for {a, b} are

R2T2.5 RT
a=0.4748 P" , b=0.08664 —=

c c

(1.38)

1.5.3 Acentric Factor

For some substances, P, and 7, are not enough to specify the compressibility factor
(Z). A third factor is needed and is the acentric factor (w) to account for the molecu-
lar structure [2]. In 1955, Pitzer [9] developed a thermodynamic quantity that mea-
sures the deviation of a fluid from spherical behavior that would include polar
molecules. The acentric factor is defined as

o =-1.000-log,, (P—"J (1.39)
PC

where P is the critical pressure for the substance and P, is the vapor pressure for 7'
equal to 0.7T¢ (the saturated gas curve in Fig. 1.3) and when w is essentially zero
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the molecule is considered spherical and has values of 77 = 0.7 and Pr = 0.1; noble
gases have a w of 0.

The Redlich-Kwong EOS [5, 8] addresses Condition 3 and the Redlich-Kwong-
Soave [6] addresses Conditions 3 and 4.

1.5.4 Redlich-Kwong-Soave

Soave in 1972 [6] incorporated into the Redlich-Kwong EOS Conditions 3 and 4

RT
p=luw 4% (1.40)
v—b v(v+b)
where
2
a=[1+s(1—\/i)] . S=048+15740—0.1770° (1.41)
And satisfying the condition states as Eq. 1.32, the values for {a, b} are
0.42748R°T’ 0.08664RT.
a= 7 ~, b= 7 < (1.42)

c c

In Figs. 1.4, 1.5, and 1.6 the ideal gas law is compared against the van der Waal
and Redlich-Kwong Equations of State for methane. For 7r = 0.79, we see that as
Pr goes up, the density increases, and the deviation from ideal behavior is seen. This
trend is countered as the 7r increases and the deviation from ideal behavior becomes
less significant (see Figs. 1.5 and 1.6).

For the three cubic equations of state discussed,

1.20
1.00
0.80

0.60

Pr

0.40

Nu [L/mole]

——|deal —@—VW RK

Fig. 1.4 v versus Pr for Tr = 0.79
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Pr

0.50

0.00

Nu [L/mole]

—#—|deal —@—VW RK

Fig. 1.5 v versus Pr for Tr = 1.57

5.00
4.50 e
4.00
3.50
3.00
2.50

2.00 \
1.50 3
1.00 T

0.50 .
0.00

Pr

Nu [L/mole]
—@—|deal —@—VW RK

Fig. 1.6 v versus Pr for Tr =3.15

Z +vaZ* +BZ+y =0 (1.43)

where the coefficients are defined in Table 1.2 and {a, b} are the coefficients par-
ticular to a given equations of state.
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Table 1.2 Coefficients for compressibility factor (Z)

15

Vw RK SRK
a —-1-B -1 -1
3 A A-B-B A-B-B
7 —AB —AB —AB
A aP aP aP
(RuT)Z.S R:TZ.S (RMT)Z.S
’ bP bP P
RT RT RT
’ P Py P
RT RT RT

1.6 Examples and Problems

1.6.1 Examples

Example 1.1 Ideal Gas Problem, Isothermal Process

An ideal gas goes from 10 bars (absolute) to 20 bars (absolute) for a fixed tempera-
ture of 100 F. If the initial specific volume is 20 ft*/lbm, then what’s the final spe-

cific volume?
Solution

This is a constant temperature (isothermal) process and the appropriate equation is

Fv, =Py,
Pressure is already in absolute scale and so

P 10, ft’

v, =—tv, =—20——=10ft"/lbm

P2, 207 Ibm

Example 1.2 Ideal Gas Problem, Isometric Process

An ideal gas goes from {200 °F, 20 Psia} to {400 °F, ??}. What’s the final pressure?

Solution

This is an isometric process and the appropriate equation is

N
S3 0w
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Pressure is in absolute scale, but temperatures are not and so

T, =460+200 =660 R,T, = 460 +400 =860 R

Further,
T
P,=—2P = 860 )0 Psia = 26.1Psia
T 660

1

Example 1.3 Ideal Gas Problem, Isobaric Process
An ideal gas goes from 200 °F to 400 °F for a fixed pressure of 50 Psia. If the initial
specific volume is 10 ft*/lbm, then what’s the final specific volume?

Solution

This is an isobaric (constant pressure) process and so the appropriate equation is

\%

2

7,

e
T
And temperatures are not in absolute so and thus

T, =200+ 460 = 660 R,T, =400+ 460 =860 R
And

3
v =Ly, 80,0 38 mbm
T ' 660 Ibm

Example 1.4 Lee/Kessler Chart Problem
Find the Z factor for CO, at 300 K and 5 MPa.

Solution

Find the critical pressure and temperature for CO, and then determine the reduced
pressure and temperature

T = 300 ~1, P_=iz0.7
" 304.1 " 7.38

We then look this point up on the Lee-Kessler chart by first finding Pr equal to
0.7 and then going up the Tr equal to 1 curve and then going to the left to find the Z
factor, which is

Z=0.7
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Example 1.5 Lee/Kessler Chart Problem
Find the Z factor for CO, at 300 K and 1 MPa.

Solution

Find the critical pressure and temperature for CO, and then determine the reduced
pressure and temperature

300 ~1, P :Lzo.l
304.1 " 7.38

7;:

We then look this point up on the Lee-Kessler chart by first finding Pr equal to
0.1 and then going up the 7r equal to 1 curve and then going to the left to find the Z
factor, which is Z ~ 0.98

Example 1.6 Lee/Kessler Chart Problem
Determine the mass of CO, in a hemispherical tank with diameter of 30 inches,
pressure of 60 psia, and temperature of —20 °C.

Solution

This problem needs to be done in a series of steps

Step 1 — Convert temperature to Fahrenheit and then put in absolute scale
Step 2 — Get volume of tank in the correct units (ft*)

Step 3 — Determine the Z factor for {7, P,}

Step 4 — Using ideal gas law, determine the mass [Ibm]

Step 1
F =%(—20C)+32 =—4F,T =460+ (—4) =456 R
Step 2
1 lfoot |
V=-"D=7069in’| —> | =4.09f
26 12 inches
Step 3
= B0 o8P =29 <006
547.4 1070

For these conditions, the Z factor is essentially 1 and we treat the substance as an
ideal gas
Step 4

PV =R,mT
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and
)
oy 60psia14112n % 4.00f¢’
Ll Ap— - tlbf —2211bm
RT 35.10 L0 w456 R
Ibm - R

Example 1.7 van der Waal Gas

Derive {a, b} for the van der Waal equation of state
Solution
At the critical point,

RT a
P=—r—-— 1.41
Cv,-b V! (14h
and for op =0
ov
RT
— = 2—? (1.42)
(vc _b) Ve
2
For 6—5 =0
ov
RT. 3
e 2 (1.43)
(Vc _b) Ve
If each side of Eq. 1.42 is set equal to X, then Eq. 1.43 in terms of X is
3
L x_ éx (1.44)
v, —b v,
and solving for v,
v, =3b (1.45)
Substituting Eq. 1.45 into Eq. 1.42 results in
RT 2
Sl o 24 (1.46)

4> 27b°
or

a= 28—7bRMTL, (1.47)
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Substituting Eq. 1.47 into Eq. 1.41 results in

RT. 2%17&2 RT.[1 3] RT.
f)czuz_ 5 —_uc| - _ T |—_uc (148)
2b 9b b |2 8 8b
or
RT
b=—=< 1.49
5 (1.49)
and substituting Eq. 1.49 into Eq. 1.47 results in
2
RT RT
a=2 ”CRMTC=2( “C) (1.50)
8 8P 64 P
Finally, substituting Eq. 1.49 into Eq. 1.45 results in
3RT
v, =——= 1.51
e (1.51)

Example 1.8 Comparing Gas Models

Because of safety concerns, a cylinder with a volume of 20.0 ft* should not exceed
50 atm. If the tank is filled with 40 Ibm of CO, at 200 °F, does the pressure exceed
the allowable pressure of 50 atm? Check your answer using

(a) Van der Waals EOS
(b) Ideal gas law
(¢c) RKEOS

Solution
This example was done in Excel and the results are given below.

Van der Waals EOS Ideal gas law Redlich-Kwong EOS

T [R] 660 T [R] 660 T [R] 660

P [1bf/ft?] 43,779.71 | P [Ibf/ft?] 46,332 | P [Ibf/ft?] 43,298.82
P [Psia] 304.03 P [Psia] 32175 | P [Psia] 300.69
Tlc] | [R] 5474 nu | [ft¥/1bm] 0.5 Tlc] | [R] 547.4
P[c] | [Ibf/ft’] 154,080 | R(g) | [ft-Ibf/lbm-R] | 35.1 | P[c] | [Ibf/ft?’] 154,080
R(g) | [ft-Ibf/lbm-R] | 35.1 R(g) | [ft-1bf/lbm-R] | 35.1

a 1010.791 a 26,615.87
b [ft}/1bm] 0.015587 b [ft*/1bm] 0.010804
nu | [ft}/Ibm] 0.5 nu | [ft*/lbm] 0.5

If we use the pressure determine from Redlich-Kwong EOS, which is 301 Psia
and convert this number to atmospheres, which is 20.5 atm and less than 50 atm, and
so we’re good!
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1.6.2 Problems

Problem 1.1 Use of Lee-Kessler Chart
Determine the Z factor for air at 10 MPa and 50 F.

Problem 1.2 Use of Lee-Kessler Chart
Determine the Z factor for water at 10 MPa and 50 F.

Problem 1.3 Comparing Z factor for Lee-Kessler Chart and van der Waal
Equation

Compare the Z factor for water at the critical conditions using the Lee-Kessler chart
and van der Waal equation of state. Do they differ significantly?

Problem 1.4 RK Gas
Derive {a, b} for RK EOS

Problem 1.5 SRK Gas
Derive {a, b} for SRK EOS

Problem 1.6 van der Waal Gas
Write a program to implement VW EOS

Problem 1.7 RK Gas
Write a program to implement RK EOS

Problem 1.8 SRK Gas
Write a program to implement SRK EOS

Problem 1.9 Comparing Gas Models
Twenty pounds of propane with a volume of 2 ft* and a pressure of 300 1bf/in%
Determine the temperature in F using

(a) Van der Waals EOS
(b) Ideal gas law
(c) Lee-Kessler chart

Problem 1.10 Comparing Gas Models
The pressure within a 20 m? tank should not exceed 100 bars. Check the pressure
with the tank if filled with 1000 kg of water vapor at a temperature of 350 °C using

(a) Ideal gas law

(b) Lee-Kessler chart
(c) Van der Waals EOS
(d) RK EOS

Problem 1.11 Comparing Gas Models

Ethane gas flows through a pipeline with a volumetric flow rate of 10 ft/s at a pres-
sure of 150 atm and a temperature of 50 F. Determine the mass flow rate in
Ibm/s using
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(a) Ideal gas law
(b) Van der Waals EOS
(c) Lee-Kessler chart

Problem 1.12 Comparing Gas Models

A rigid tank contains 1 kg of oxygen (O,) at a pressure of 50 bars and 300 K. The
gas is cooled until the temperature drops to 150 K. Determine the volume of the
tank, m®, and the final pressure (bars) using

(d) Ideal gas law
(e) RK EOS
(f) Lee-Kessler chart

Problem 1.13 Various Equations of State
Calculate the molar volume of propane at 400 K and 300 Bar using the equations of
state given below. Compare your values with the experimental value of 0.094 L mol~'.

(a) Ideal gas
(b) VW
(c) RK
(d) SRK

Problem 1.14 RK EOS
Determine the temperature at which the density of methane is 0.183 kg L' at a pres-
sure of 500.0 bar. Assume that methane obeys the RK equation of state.

The most fundamental equation of state is the virial equation of state, which is
expressed as a power series expansion in density or pressure about the ideal gas
result. With a sufficient number of terms, the virial equation can give excellent pre-
dictions. However, it is usually truncated at the second term due to lack of higher-
term coefficient data. In terms of reduced pressure and temperature, the truncated
virial equation can be expressed as the following,

Z:1+B£
T

r

where the second virial coefficient is determined from the following correlation,

B=B, +B,
with
0.422 0.172
BO :0083—W Bl 20139—W

r r

Using the truncated virial equation, calculate the temperature of steam at a pres-
sure of 5.0 bar when its specific volume is 0.4744 m? kg~'.
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Problem 1.15 SRK EOS

The critical temperature and pressure of fluid A are to be determined using a high-
pressure laboratory flow device. The molecular weight of A is 28.01 kg kmol™'. The
mass flow rate and temperature of fluid A through the device are kept constant at
10.0 g s7' and 300.0 K, respectively. At pressures of 500 bar and 1000 bar the volu-
metric flow rates of the fluid through the device are measured to be 24.12 cm® s
and 17.11 cm?® s7!, respectively. Determine the critical temperature and pressure of
fluid A, which assumes that A obeys the SRK equation of state.

Appendix 1.1: Table of Ideal Gas Constants

https://en.wikipedia.org/wiki/Gas_constant, accessed on 10/14/2021

Values of R Units

t (VPT'n7")
8.3144621(75) @ JK~"mol"!

8.31446 VCK-"mol™!

5.189 x 10" eV K-'mol™!
0.08205746(14) LatmK~'mol~!
1.9872041(18) ©*! cal K~'mol~!
1.9872041(18) x 1073 kcal K-'mol™!
8.3144621(75) x 107 erg K~'mol™!
8.3144621(75) x 1073 amu (km/s)>K-!
8.3144621(75) L kPa K=" mol™!
8.3144621(75) x 10° cm? kPa K=!' mol™!
8.3144621(75) m*PaK~'mol™!
8.3144621(75) cm’® MPaK~"mol~!
8.3144621(75) x 1072 m?bar K~'kg-mol~!
8.205736 x 10~ m?atm K=" mol~!
8.205736 x 1072 LatmK~'kg-mol~!
82.05736 cm?atm K=" mol™!
84.78402 x 10~° m’kgf/cm? K=" mol~!
8.3144621(75) x 1072 Lbar K-'mol™!
62.36367(11) x 1073 m’mmHg K=" mol~!
62.36367(11) LmmHgK~" mol™!
62.36367(11) LTorrK=' mol~!
6.132440(10) ftIbf K-' g-mol~!
1545.34896(3) ft1Ibf R~!Ib-mol~!
10.73159(2) ft* psiR~"' 1b-mol~!
0.7302413(12) ft>atm R~'1b-mol~!
1.31443 ft’> atm K= Ib-mol ™!
998.9701(17) ft* mmHg K~'Ib-mol~!
1.986 Btulb-mol~'R™!
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Appendix 1.2: Lee/Kessler Chart (website)

The Lee Kessler Chart is provided on the companion website.

Appendix 1.3: Virial Equations of State (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 1.4: EOS (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Chapter 2
Heat and Work

2.1 Preview

In this chapter, we provide a foundation for what heat and work are and discuss
some related topics such as specific heat and polytropic processes. Unlike pressure,
temperature, and specific volume (density), both heat and work are not states. What
this means essentially is that both heat and work depend on the path taken. We will
also see that quantities such as internal energy (e) and enthalpy (/) are independent
of path and state functions.

Internal energy (e) is a measure of the thermodynamic energy of a system and is
often associated with closed system and enthalpy (%) is a measure of the thermody-
namic energy of a system to include changes in “Pv" (where h = ¢ + Pv) and is often
associated with an open system. Changes in either u or & can be determined by hav-
ing a specific heat model along either a constant volume or constant pressure path;
note though that internal energy and enthalpy are state functions and independent
of path.

Work, for an ideal gas, can be determined based on defining the path in terms of
a polytropic process and the definition of thermodynamic work.

Quantities such as work and heat for a substance that is either non-ideal or imper-
fect are generally determined using the thermodynamic tables or a cubic relation-
ship between specific heat and temperature for the working fluid.

Quantities that are state functions and quantities that are not state functions are
given in Table 2.1. Note changes in states will be represented as dx and changes in
quantities that are not states will be represented as ox.
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Table 2.1 Quantities that are states and not states

Quantity State Not States Comments
Pressure (P) X Defined in Chap. 1

Temperature (7) X Defined in Chap. 1
Specific volume (v) X Defined in Chap. 1
Internal energy (e) X Defined in this chapter
Enthalpy (h) X Defined in this chapter
Work (w) X Defined in this chapter
Heat (q) X Defined in this chapter
Entropy (s) X Defined in Chap. 4

2.2 Reversible and Irreversible Processes

A reversible process is defined as “a process that, having taken place, can be
reversed, and in so doing, leaves no change in either the system or the surround-
ings.” For a process to be reversible (ideal), the following conditions need to exist

e Quasi-equilibrium

* No friction

e Heat transfer due to an infinitesimal temperature difference only
e Unrestrained expansion does not occur

These conditions are discussed further below in terms of how certain factors can
produce an irreversible process.
Four factors that create Irreversible Processes are

 Friction

e Unrestrained expansion

e Heat transfer through a finite temperature difference
e Mixing of two pure substances

Each factor is further discussed below.

Consider a block attached to a pulley where the other end has a weight and this
system exists on an inclined ramp. If the weight is great enough, then the block is
dragged up the ramp, but due to friction between the block and ramp, pulley and
ropes, and internally within the pulley, the work required is greater than it would be
without friction. We can then release weights and the block goes down the ramp.
Due to the friction between the block and the ramp, the temperature of the ramp is
now higher than the temperature of the surrounding and now heat is transferred to
the surroundings. The surroundings are no longer back to their original state and this
process is irreversible.

Imagine a system where a gas is on one side of a membrane and a vacuum is on
the other side. Suddenly, the membrane bursts and the gas freely expands into the
vacuum space. In order to restore the system to its original state, work would have
to be done to the system and heat transferred out for the gas to go back to its original
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temperature. Again, the surroundings are no longer back to their original state this
process is irreversible.

“Consider as a system a high-temperature body and a low-temperature body, and
let heat be transferred from the high-temperature body to the low-temperature body.
The only way in which the system can be restored to its initial state is to provide
refrigeration, which requires work from the surroundings, and some heat transfer to
the surroundings will also be necessary. Because of the heat transfer and the work,
the surroundings are not restored to their original state, indicating that the process
was irreversible [1].”

Imagine a system where Gas “A” is on one side of a membrane and Gas “B” is
on the other side. Suddenly, the membrane bursts. It should be obvious that a certain
amount of work and heat will be needed to restore this system to its original state
and the surroundings will again not be as they were originally. This is yet another
example of an irreversible process.

A reversible process is a process that can maximize the work extracted or mini-
mized the work required and is dependent on the application. An example of a pro-
cess (device) that extracts work is a turbine and we’d like to maximize the work
extracted — we’ll call this a “work-out” process; an example of a process (device)
that requires work is a pump and we’d like to minimize the work required — we’ll
call this a “work-in” process.

The following example comes from [2].

For example, suppose we have a thermally insulated cylinder that holds an ideal
gas, Fig. 2.1. The gas is contained by a thermally insulated massless piston with a
stack of many small weights on top of it. Initially, the system is in mechanical and
thermal equilibrium.

This is an example of a “work-out” process.

Our definition of thermodynamic work is

ow = Pdv 2.1

Fig. 2.1 Frictionless,
weightless, and perfectly
insulated system [2] Weights
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Fig. 2.2 Work related to pathways “a”, “b,” and “c” [2]

which states the infinitesimal work is equal to the pressure and infinitesimal
change in specific volume; because work is dependent on path we use “5”
instead of “d.”

Consider three different pathways to get from {P,,v} to {P,,4v}

(a) All of the weights are removed from the piston instantaneously and the gas
expands until its volume is increased by a factor of four (a free expansion).

(b) Half of the weight is removed from the piston instantaneously, the system is
allowed to double in volume, and then the remaining half of the weight is
instantaneously removed from the piston and the gas is allowed to expand until
its volume is again doubled.

(c) Each small weight is removed from the piston one at a time, so that the pressure
inside the cylinder is always in equilibrium with the weight on top of the piston.
When the last weight is removed, the volume has increased by a factor of four.

The resulting graphs in terms of work on a force (P) versus v graph are
given below.

It is obvious from Eq. 2.1 and Fig. 2.2 that the third path maximizes work (maxi-
mizes area under the curve), which is the reversible path. This path can equally be
termed an isentropic path and we’ll discuss this further in Chap. 4.

2.3 Specific Heat, Internal Energy, and Enthalpy

Specific heat, C, of a substance has the following working definition

C~ 130 (2.2)
m dT

It’s a measure of the heat released for a given temperature rise and for a unit
mass. In a sense, the BTU, British thermal unit, is a measure of specific heat. A
60-degree BTU is defined as the amount of energy released to raise one pound
(mass) of water from 59.5 °F to 60.5 °F under atmospheric pressure. The specific
heat of water is measured at a particular temperature because the specific heat of

water is dependent on temperature.
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For liquids and solids, specific heat is independent of path and often considered
constant. But for gases, it is dependent on path and so we talk about specific heat
(constant pressure) and specific heat (constant volume).

The measure of thermodynamic energy for a closed system is in terms of internal
energy (e) where e is related to specific heat along a constant volume path and

given as
Oe
= = 2.3
(arl “ o

And the measure of the thermodynamic energy for an open system is in terms of
enthalpy (h) where # is related to specific heat along a constant pressure path and

given as
(2—;) =c, 2.4)
p

Gas molecules can store energy in three modes — translational, rotational, and
vibrational. For monatomic gas molecules, such as argon, neon, and helium, the
only mode of energy is translational (kinetic) energy and in each principal direction

E - kNT

== 2.5)

where k is the Boltzmann constant (specific energy), N is the number of molecules,
T is temperature, and j is a principal axis (x, y, z).
And for the three principal directions the total energy is

T
Elolal = 3kN (26)
2
And for a diatomic molecule it is
SkNT
Etolal = 2 (27)

And more generally for a molecule with n” atoms per molecule and on a molar
basis [4]

Etotal = Ak n"+l =R n”+l (2.8)
T 2 2

where A is Avogadro’s number and represents 1 mole of molecules.
In terms of c,, the relationship is
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c 1
=V - n” +— 29
R 2 (2.9)
In terms of ¢, the relationship is
c
S$_o,R_ .3 (2.10)
R R R 2

where for an ideal gas ¢, — ¢, =R

c
While for y, which is defined as y =, the relationship is

v

@2.11)

How well does this theory work?
Three classes of molecules to be analyzed are:

Monatomic — neon, argon, helium (noble gases)
Diatomic — hydrogen, oxygen, nitrogen
Triatomic — water, carbon dioxide, nitrogen oxide

Discrepancies will be discussed.
A regressional model cp for a real gas is

¢, =By + B0+ B0 +B,6° (2.12)

where 6 = ﬁ and {p, B1, P>, B3} are coefficients particular to the substance.

Equation 2.12 will be utilized to make some general observations about specific
heat and number of atoms within the molecule.

We see for the monatomic gases (see Fig. 2.3) that the theory and practice are in
near perfect agreement and that for noble gases ¢,/R(g) versus temperature is con-
stant; this is due to the fact that a monatomic gas only has translational energy,
which is the basis to the theory given above. For a diatomic gas (see Fig. 2.4), the
theory tends to work at lower temperatures and becomes less and less accurate at
higher temperatures. We see a similar trend for the triatomic gases (see Fig. 2.5).
The theory tends to work well for molecules with fewer atoms and at lower
temperatures.

Powers [5] discusses the modes of energy versus temperature for a diatomic ideal
gas and shows

* At very low temperatures — the primary mode of energy is translational



2.3 Specific Heat, Internal Energy, and Enthalpy

2502
2.500
2.498

150 350 550 750 950 1150
TIIK]

=fi=Neon ==t==Argon Helium Theory

Fig. 2.3 ¢,/R(g) versus T for monatomic gases

C(p)/R(g)

150 350 550 750 950 1150
TIK]

== Hydrogen ==¢==0xygen Nitrogen Theory

Fig. 2.4 c¢,/R(g) versus T for diatomic gases

7.00

o
o
S

5.00

C(p)/R(g)

150 350 550 750 950 1150
TIK]

—@—\Nater ==¢=Carbon Dioxide Nitrogen Oxide Theory

Fig. 2.5 c¢,/R(g) versus T for triatomic gases

e Atlow to normal temperatures (STP) — the primary modes of energy are transla-

tional + rotational
e At higher temperatures — all three modes of energy are important
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Powers [5] suggests four main methods to calculate enthalpy for an ideal gas

1. Assume a constant ¢, at 298 K (often the least accurate method)

2. Assume a constant ¢, at some intermediate temperature along the thermody-
namic path (often used in engineering analysis)

. Integrate the differential equation given as Eqs. 2.4 and 2.12 (more accurate)

4. Estimation from thermodynamic tables (most accurate method)

IV}

An example is given below to illustrate the four main methods given above,
which would equally apply to internal energy.

Example 2.1
Determine the enthalpy change for carbon dioxide that runs from 300 K to 900 K
using the four methods provided above.

Given
Substance CO,
n” 3
R(g) [kJ/kg-K] | 0.1889
c,/R(g) 4.5
) [kJ/kg-K] | 0.85005

The betas associated with the regressional model for a real gas are

Beta(0) | 0.45
Beta(l) | 1.67
Beta(2) | —1.27
Beta(3) 1 0.39

where ¢, has been determined using the regression model at 300 K and 900 K with
the average value being 1.03 kJ/kg-K (shown below).

T Cp

[K] | [kI/kg-K]
300 | 0.85

900 | 1.21

c,-bar = 1.03

The integral version of Eq. 2.4 is

T T’ T’ B, 1* B T B T
+ + + dT =BT+ ——+-2-— 44— (213
I{ﬂ 2 Prioo0 * P 000" P 10003} AT 1000 2 100" 3 T1000 4



2.4  Polytropic Processes and Work 33

And the solutions at the two endpoints are

T (1)
Integral(7'1) | 300 199.5
Integral(72) | 900 836.7

The values of enthalpy at 300 K and 900 K from the thermodynamic tables are

T h

(K] | [kl/kg]
300 2144
900 | 849.7

The solutions and relative error from the four methods are given below.

Ah
Solution methods [kl/kg] |RE
1. Using fixed ¢, determine dh 510.0 | 19.7%
2. Using average c, determine dh 616.8 12.9%
3. Integrating definition of ¢, determine dh 6372 103%
4. Using thermodynamic tables determine dh | 635.3

2.4 Polytropic Processes and Work

Definitions:

Control Volume — a boundary around the system that allows us to distinguish the
system from the environment and account for forces/energy/mass entering or
leaving the system.

Isolated System — mass nor energy passes through the control volume.

Closed System — energy passes, but mass does not pass through the control volume.

Open System — energy and mass pass through the control volume.

Process — a change in states.

Isobaric Process — a process where pressure is constant from state “1” to “2.”

Isothermal Process — a process where the temperature is constant from state
“1”to “2.”

Isentropic Process — a process where there is no heat exchange between the system
and environment from state “1” to “2.”

Isometric Process — a process where volume is constant from state “1” to “2.”

Cycle — a series of processes where the initial and final states coincide.

A polytropic process is defined as

PV" =constant = K (2.14)

where the index indicates the type of process (see Table 2.2).
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Table 2.2 Polytropic processes

2 Heat and Work

n Process Comments

0 Isobaric Constant pressure

1 Isothermal Constant temperature
o0 Isometric Constant volume

y Isentropic Adiabatic and reversible

Table 2.3 Relationships for different processes [3]

Process N Work State Equation | AE Heat
Constant 0 P(V,-V)) v, W, me(T, = T)) | me,(T,—T))
Pressure F = F
(Isobaric) 1 2
Constant oo 0 Pl P2 me(T,—T,) mc(T,-T)
Volume F =
(Isometric) 1 2
Constant 1 v PVi=RV, 0 V.
Temperature PV, In| =+ PV, In| =+
(Isothermal) V1 Vl
Polytropic All values EVI — P2 V2 Tz B Vz n-1 |\me(T,—-T) |Q=W+AU
n-1 - 7
1 1
n-l,
AR
A \7
PV'=K
Adiabatic y PV, - PV, T (V J“ me(T,-T)) |0
1 L_|
v Lo\
71
B _(n)”
A\
PVI=K

Using Egs. 2.1 and 2.14, we can determine the work associated with a given pro-
cess. There will be two cases we’ll explore. The first case is when n # 1 and whenn = 1.
Case one (n # 1)

where

2 2

K
6 = | — =
!W !nw K

Vlfn

2

NAAN

n _ I)l‘/ln‘/ll—n

1—n|l B

K=PV, =PV,

1-n

(2.15)

(2.16)
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Fig. 2.6 v versus P for polytrophic processes

and
PV, —P
W=—2V2 Y 2.17)
1-n
Casetwo (n=1)
\%
W=PlVlln72 (2.18)

1

Table 2.3 and Fig. 2.6 below provide a relationship between states, work associ-
ated with various processes, internal energy change associated with various pro-
cesses, and heat associated with various processes. Note — Table 2.3 is only valid for
an ideal, perfect gas. This defines a gas that obeys the ideal gas law and has a spe-
cific heat that is independent of temperature.

2.5 Examples and Problems

2.5.1 Examples

Determining Ah for Water

Example 2.2 Determine enthalpy change for water at 200 kPa where the tempera-
ture runs from 150 °C to 500 °C. Solve by using a constant c,,.

Ah~c, AT =1.872%[500~150] = 655.2kJ / kg

Example 2.3 Determine enthalpy change for water at 200 kPa where the tempera-
ture runs from 150 °C to 500 °C. Solve by using an average c,,.
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150 500

C +cC
Mhw AT:1'92;2'13[500—150]=709.7kJ/kg

where each c, is determined from the cubic relationship between 7 and c,.

Example 2.4 Determine enthalpy change for water at 200 kPa where the tempera-
ture runs from 150 °C to 500 °C. Solve by using the cubic relationship between
T and c,,.

5004273 300+273

Ah~ j {By+ B0+ B,0° + B0} dT = {ﬁo

150+273

2 3 4
r BT BT BT
1000 2 1000 3 1000° 4

150+273

A =[hyy +h]~[ s, +h] =1488.0—779.9 = 708.1kJ/kg

500

Example 2.5 Determine enthalpy change for water at 200 kPa where the tempera-
ture runs from 150 °C to 500 °C. Solve by using the thermodynamic tables.

Ah = hyy — by, =3487.0-2676.8 = 718.2kI/kg

The results for Examples 2.2 through 2.5 with relative error are given in the

table below.
Determining A/ for carbon dioxide

Ah
Method [kJ/kg] RE
Constant ¢, 655.2 8.78%
Average cp 709.7 1.19%
Cubic relationship 708.1 1.41%
Table 718.2

Example 2.6 Determine enthalpy change for carbon dioxide at 400 kPa where the
temperature runs from —40 °C to 60 °C. Solve by using a constant c,.

Ah=c, AT = 842 %[ 60— (-40) | =84.2kJ/kg

Example 2.7 Determine enthalpy change for carbon dioxide at 400 kPa where the
temperature runs from —40 °C to 60 °C. Solve by using an average c,,.

—40 60

¢ +c
AT = 0.78+0.88

100 = 82.74kJ/kg

where each ¢, is determined from the cubic relationship between T and ¢,
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Example 2.8 Determine enthalpy change for carbon dioxide at 400 kPa where the
temperature runs from —40 °C to 60 °C. Solve by using the cubic relationship
between T and c,,.

60+273

60 TZ ﬂ T3 ﬂ T4
Ah =~ + B0+ B0+ B0’ dT =| B,T + B — i3
Jw{ﬂ“ PO+PO PO} {ﬂ" 1000 2 1000° 3 1000° 4

—40+273

Ah = [h60 + h]—[h410 + h] =228.0-145.1=82.9kJ/kg

Example 2.9 Determine enthalpy change for carbon dioxide at 400 kPa where the
temperature runs from —40 °C to 60 °C. Solve by using the thermodynamic tables.

Ah=hy —h, =421.1-334.46 = 86.64k]/kg

The results for Examples 2.6 through 2.9 with relative error are given in the
table below.

Ah
Method [kl/kg] RE
Constant c, 84.20 2.82%
Average cp 82.74 4.50%
Cubic relationship 82.90 4.32%
Table 86.64

Example 2.10 Determine the work associated with a general polytropic process

(PV'=K)

(a) Pyas 1 atm, V, as 10 ft}; P, as 10 atm and n equal to 1.5
(b) P,as 10 atm, V, as 10 ft}; P, as 1 atm and n equal to 1.5

For (a), you will find the work is negative and the process is a contraction; for (b),
you will find the work is positive and the process is an expansion. The sign associate
with work (or heat) determines whether the work (or heat) is directed toward the
system or toward the surroundings:

(a) Negative Work — Work on System
(b) Positive Work — Work on Surroundings

The solutions for (a) and (b) are given below.

P(1) [atm] 1 P(1) [atm] 10
V(1) [ft] 10 V(1) [ft] 10

P(2) [atm] 10 P(2) [atm] 1
V(2) [ft}] 2.2 V(2) [ft}] 46.4
n 1.5 n 1.5

K 31.6 K 316.2
K 31.6 K 316.2

W(l1,2) [Atm-ft*] -23.1 W(1,2) [Atm-ft*] 107.2
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Example 2.11 Determine the work and heat for a series of processes that form a
cycle, which establishes first Law for a cycle (the sum of the work equal the sum of
the heat)

Given

Substance

Air

Mass

[Ibms]

1

Sp

[1bf-ft/lbm-R]

186.7608

Cy

[Ibf-ft/Ibm-R]

133.0671

R

[Ibf-ft/Ibm-R]

53.34

Gamma

1.4

Complete the following table by using Table 2.1 and the ideal gas law.

P T Vv w (0]

State Process [psia] [Rankine] [ft]] [ft-1bf] [ft-1bf] n
1 100 10

Isobaric 0
2 100 1

Isometric Infinity
3 1000 1

Isothermal 1
1 100 10

The solution is given below and we see the sum of the work does equal the sum
of the heat (more/less).

P T 1% w (0]
State Process [psia] [Rankine] [ft}] [ft-1bf] [ft-1bf]
1 100 2700 10
Isobaric —129,600 —453,772
2 100 270 1
Isometric 0 323,313
3 1000 2700 1
Isothermal 331,572 331,572
1 100 2700 10
Sum of work is Sum of heat is
201,972 201,113
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2.5.2 Problems

Problem 2.1 Consider a process that involves superheated CO, that runs from 0 °C
to 100 °C at a constant pressure of 400 kPa. Assuming c, is constant, determine the
change in enthalpy.

Problem 2.2 Consider a process that involves superheated CO, that runs from 0 °C
to 100 °C at a constant pressure of 400 kPa. Assuming a cubic model for c,, deter-
mine the change in enthalpy.

Problem 2.3 Consider a process that involves superheated CO, that runs from 0 °C
to 100 °C at a constant pressure of 1000 kPa. Using the thermodynamic tables deter-
mine the change in enthalpy.

Problem 2.4 Consider a process that involves superheated CO, that runs from 0 °C
to 100 °C at a constant pressure of 1000 kPa. Assuming ¢, is constant, determine the
change in enthalpy.

Problem 2.5 Consider a process that involves superheated CO, that runs from 0 °C
to 100 °C at a constant pressure of 1000 kPa. Assuming a cubic model for c,, deter-
mine the change in enthalpy.

Problem 2.6 Consider a process that involves superheated CO, that runs from 0 °C
to 100 °C at a constant pressure of 1000 kPa. Using the thermodynamic tables deter-
mine the change in enthalpy.

Problem 2.7 Determine the work and heat for a series of processes that form a
cycle, which established first Law for a cycle (Air). Assume the mass of the system
is 1 kg.

P T Vv w o

State Process [kPa] [K] [m?] [kJ] [kJ] n
1 100 5.18

Isobaric 0
2 100 1

Isometric Infinity
3 1000 1

Isentropic 1.4
1 100 5.18

Problem 2.8 Determine the work and heat for a series of processes that form a
cycle, which established first Law for a cycle. The substance is water and the
states are



40 2 Heat and Work

State 1 — 20 kPa and X = 0%
State 2—1 MPa and v, =1,
State 3 — 1 MPa and 350 °C
State 4 — 20 kPa and 55 = s,

Problem 2.9 A piston-cylinder device contains one mole of an ideal gas initially at
30 °C and 1 bar. The gas undergoes the following reversible process: compressed
adiabatically to 5 bar, then cooled at a constant pressure of 5 bar to 30 °C, and
finally expanded isothermally to its original state. Assuming that for this gas

cp = %R, calculate Q, W, AU, and AH for each step of the process and for the

entire cycle.

Problem 2.10 One mole of air, initially at 25.0 °C and 100 kPa, undergoes the fol-
lowing mechanically reversible changes: it expands isothermally to a pressure such
that when it is cooled at constant volume to 50 °C its final pressure is 3 bar. Assuming

that for this gas ¢, = %R , calculate Q, W, AU, and AH for each step of the process

and for the entire cycle.

Problem 2.11 A piston-cylinder device contains 0.150 kg of air at a temperature of
300.0 K. The initial volume of air is 100.0 L. The air is then compressed isother-
mally that requires 20.0 kJ of work. If air is modeled as a RK gas, compute the final
volume and pressure of air in the device.

Problem 2.12 30.0 g s~! of nitrogen gas is flowing through a tube wrapped with a
resistance heater. The gas enters the tube at 300.0 K and 100.0 kPa. The resistance
heater is turned on and continuously passes a current of 50.0 A from a 240-V source,
thereby isobarically heating the gas. Assuming that nitrogen behaves as an ideal gas
with a temperature-dependent heat capacity given as a cubic polynomial, determine
its exit temperature.

Problem 2.13 1.0 kg of methane initially at 330 K and 50 bar is isothermally com-
pressed to a final pressure that requires 220 kJ of work. If methane behaves as a
SRK gas, determine this final pressure.

Appendix 2.1: Cycle Worksheet (Fig. 2.7)

Knowns

Air

m=1Ibm

R, = 53.34 ft-1bf per Ibm-R
¢, =0.171 BTU per Ibm-R
¢, =0.240 BTU per Ibm-R
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Fig. 2.7 Cycle on P versus V graph

P T Vv w o

State Process [psia] [Rankine] [ft3] [ft-1bf] [ft-1bf]
1 100 10

Isobaric
2 100 1

Isometric
3 200 1

Isothermal
1

Sum = Sum =

Process

1. Find all states { P,T,V} using relationships for polytropic processes and ideal gas
law (make sure to put 7 and P in absolute scale)

2. Find Q and W associated with each process

3. Sum them up and check!
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Isobaric Process

Isometric Process

Isothermal
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Chapter 3
First Law of Thermodynamics

3.1 Preview

When a system is steady state in terms of mass, which it almost always is, the
amount of mass entering is equal to the amount of mass leaving. For a closed sys-
tem, this accounting is expressed [1, 3] as

8g—ow=Ae 3.1

where e is the internal energy and a measure of the thermodynamic energy of a
closed system.

And for an open system where both energy and mass transfer into and out of the
control volume [1, 3]

5q—5w=A(KE)+A(PE)+A(h) 3.2)
where KE is the kinetic energy, PE is the potential energy, and / is the enthalpy and

a measure of the thermodynamic energy of an open system.
The devil is in the details!

3.2 Linear Interpolation

How do we determine the value of a state associated with points between entries on
a thermodynamic table? Here’s an example.
Given
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For water and at 200 kPa, the following values for u (see Table 3.1). What is the
value of u at the same pressure, but temperature equal to 180 °C?

This can be determined by putting the data into Excel, graphing the data, and
getting the equation of a line as shown in Fig. 3.1.

Similarly, we can solve for an equation that allows us to solve for y.

Ay
Y =Exl +b (3.3)
And
Xy =X Y, Yo =N x =b= Y =X, (3.4)
Xy =X Xy =X Xy =X
And
y:yz_y1x+x2y1_x1)’2:y2_y1 (x_x1)+y1 (3.5)

Xy =X Xy =X Xy =X

Incidentally, the answer is ©#(180) = 1.5504(180) + 2344.3 = 2623.37 kJ/kg.

Table 3.1 Temperature versus u

Temperature [°C] u [KJ/Kg]
150 2576.87
200 2654.39
660 °
240 | e
Bowo | e
S e
=600 | e
s 5T e y =1.5504x + 2344.3
...... 2_
2580 P RZ=1
2560
150 160 170 180 190 200

Fig. 3.1 T versus u
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3.3 Using Thermodynamic Tables or NIST
Chemistry Webbook

Before you can start to use the tables, you need to understand “what is the phase of
the substance?”, which was previously discussed in Sect. 1.4.

Please note a pure substance is a substance made of only one kind of molecule
such as O,, H,O, etc. The one exception will be air, which is made of many mole-
cules, but we can ignore this fact for the discussion to follow.

Pure substances (the only kind we deal with in Chaps. 1, 2, 3, 4, and 5) typically
have the following v versus T and v versus P behavior (see Figs. 3.2 and 3.3). Let’s
use water and assume we’re trying to determine the state of water with the following
conditions {100 °C, 200 kPa}. We know water boils at 100 °C and 101.3 kPa. Go to
Fig. 3.3.

We see that going toward the left the pressure increases and we’re now in the
sub-cooled region. This observation is confirmed in two ways. We can go to the
“Saturated Water” tables and see that for a pressure of 200 kPa the saturated tem-
perature is 120.23 °C, which is higher than 100 °C. We can also go to the
“Superheated Vapor Water” table and see for 200 kPa the lowest temperature is
120.23 °C.

Under the mixture dome, the substance is at 100 °C and 101.3 kPa. We don’t
know where we are under the mixture dome unless we specify quality (X), which is
defined as

X = £ (3.6)

Critical
Point

Superheated
Vapor

Region /
/’ P =Constant

Compressed
Liquid
Region

Saturated
, Liquid-Vapor
/ Region

Fig. 3.2 T versus V
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P
Critical
Point
Saturated
\ Liquid-Vapor
. Region
Compressed
Liquid - -
Region T=Constant
Saturated
Liquid-Vapor T
Region
v
Fig. 3.3 P versus V
Fig. 3.4 Data type from 3. Choose the desired type of data:
NIST Chemistry Webbook —Data type

® |sothermal properties
Isobaric properties
Isochoric properties
Saturation properties — temperature increments
Saturation properties — pressure increments

where m, is the mass of gas and m;, is the mass of liquid. Both gases and liquids are
considered fluids.

Also note that the state of a mixture (i.e., specific volume) is a combination of
that state as a liquid and a gas and understood through the following equation

Ve =V, + X(vg —v,) (3.7)

Always start with the saturated table for the substance this guides you to the cor-
rect table. Additionally, water has compressed liquid tables, but most substances do
not. We just use the saturated properties of the liquid at the same temperature. States
such as specific volume for a liquid are affected by temperature, but not generally
by pressure.

Another means to gather thermodynamic data is the National Institute of
Standards and Testing (NIST), which runs a website called the NIST Chemistry
Webbook [2]. It is required to provide the substance, units and in Fig. 3.4, the type



3.4 Control Volumes and Conservation of Mass 47

= Gateation Popees for Water X e hipsfiwebbooksmigowicgde X |+ - B8 X

€ € @ webbooknist.gov/ogh/uid cgitActionsLoad BIDsCTTI2 1854 Type = SatP 8 Digits= SATHigh= 00 TLow= 300
ga 9 £ 3

Incs 258 RefState = DEF&TUnits KAPURits MPak.

I
%
=

Saturation Properties for Water — Temperature Increments

Bata Availabis;

* Lise the inbersctive diaplay. (nequines JsvaSorpt | MTML 5 Canvaa Capabie beowser].
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Liquid Phase Data
Data on Saturation Curve
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Fig. 3.5 Saturated water thermodynamic properties [2]

of data to request must be specified. Once this is done, the results are given either as
a graph of one quantity versus another or as a table such as given in Fig. 3.5.

3.4 Conservation of Mass

There are three conservation principles associated with mechanics that we can uti-
lize to solve problems associated with fluid mechanics (open systems). These prin-
ciples are

e Conservation of mass
¢ Conservation of momentum
e Conservation of energy (first law of thermodynamics)

Conservation of mass will be discussed in this section and conservation of energy
will be discussed in Sect. 3.5.

Essentially conservation of mass states “mass can neither be created, nor
destroyed.” With this working assumption,

DMS st
T (3.8)
Dt

and
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M, = [pdv (3.9)

sys

Such that

D%j,;dl/:%jpdmjpa-ﬁdA:o (3.10)
sys cv cs

where the first term on the right-hand side accounts for changes in mass of the sys-
tem (control volume, cv) and the second term accounts for mass entering or leaving
the control surface (cs).

When the density of the system is constant, the first term and second term
simplify

My ol rdd =0 3.11)
+pli-ndd = .
dt pcs
and
av
Y fihda=0 3.12
" j (3.12)

Normally, the velocity distribution represented by # (see Fig. 1) and n which is
anormal vector associated with dA (itself a vector) are at an angle of either 0 or 180
degrees and such

U-n=u Or u-n=-u (3.13)
Such that
dm,
dty‘ +p{Zn’10m —Zn’zin} =0 (3.14)

where m is the mass rate into or out of the control surface (cs).
And when the system is both incompressible (density is the same throughout the
control volume) and steady state in mass then

20, =20, (3.15)
where Q is volumetric discharge and defined as

v

="

(3.16)
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When density is change, but the mass of the system is steady state then

Z:n.,lin = Z:’/’./loul (317)

3.5 First Law

The first law of thermodynamics states that “energy can be neither created, nor
destroyed.” We naturally exclude special situations such as reactions within the sun
or a nuclear reactor where particles are moving appreciable toward the speed
of light.

3.5.1 Control Volumes

We use the concept of a control volume to delineate a system from the environment.
There are three systems we’ll consider: isolated system, closed system, and open
system. An isolated system does not allow the transfer of mass or energy to the
environment; in a closed system, energy is transferred to the environment, but not
energy; in an open system, both energy and mass can be transferred with the
environment.

3.5.2 Closed Systems

The first law can be expressed as “the heat added to a system minus the work
extracted from a system equal the change in internal energy.” This naturally leads to
questions such as “what is internal energy”?, “what is work”?, and “what is heat”?
We’ll define work and heat below; for now, we’ll define internal energy as “the
thermal energy stored within a system” where there are no changes in the system
density (specific volume). This is usually expressed as the container is closed
and rigid.
The first law applied to a closed system is given [1, 3] as

Sqg—ow=de (3.18)

And can be represented graphically in Fig. 3.6.
There is a sign convention on heat (g) and work (w), which is given in Table 3.2.
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Fig. 3.6 First law, closed 5
system a

de

‘éw

Table 3.2 Heat and work sign convention

When heat is toward system — the sign on dq is (+)

When heat is away from the system — the sign on d¢q is (—)
‘When work is toward system — the sign on — éw is (—)

When work is away from the system — the sign on — dw is (+)

3.6 First Law, Open System

The most general form of the equation for first law, open system that will be utilized
[1,3]1is

0q—6w=AKE+APE+Ah=E_ -E_, (3.19)
Or

2 2
5q_5W = min {hin +%+Zin}_mout {houl +%+Zoul} = Ein _Eoul (320)

where AKE is the change in kinetic energy, APE is the change in potential energy,
Ah is the change in enthalpy and enthalpy is a measure of the total thermodynamic
energy of a system and defined as

h=u+Pv (3.21)

And can be represented graphically in Fig. 3.7.
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Fig. 3.7 First law, open
S 6q
ystem
Ein

EOUt

Fig. 3.8 Control volume Win
for a pump

hout

3.7 Engineering Devices

An energy device is some constructed machine that either converts heat to work,
work to heat or affects one of the forms of energy shown in Eq. 3.22. Examples of
energy devices are pumps, turbines, compressors, and heat exchangers. The govern-
ing equation (first law) for a particular device is determined from Eq. 3.22, but usu-
ally some simplifying assumptions can be made. An example of these ideas can be
applied to a pump.

Example 3.1 First Law, Pump

We can assume the pump is adiabatic (6g = 0), the inner diameter on intake and
discharge are equal (AKE = 0), and the pipes are at the same elevation (APE = 0).
Therefore, Eq. 3.19 takes the form of Eq. 3.22 for the system of concern.

0q—-0w=AKE+APE+Ah=e, —¢, (3.22)
Simplifies to

hin + Win = houl (323)
which is shown graphically below (the sum of what goes into the control vol-
ume = the sum of what leaves the control volume) (Fig. 3.8).

Other engineering devices, the respective control volume, and resulting equation
are given as Table 3.3.
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Table 3.3 First law, engineering devices

3 First Law of Thermodynamics

Engineering device
Assumptions

Control volume

Equation

Turbine
g=0

AKE=0
APE =0

h;
——p

Q.

W0=hi—he

Pipe flow
ow=0
AKE =0
APE=0

quhi_he

Boilers
ow=0
AKE =0
APE=0

Gi

Gin = he - hi

Condensers
ow=0
AKE =0
APE =0

h,

9o

qo=h; — h,

Nozzles
6g=0
W=0
AKE #0
APE=0

Diffusers
6qg=0
ow=0
AKE # 0
APE =0

1 1
h+—vi=h+—v
2

e 2 e

(continued)
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Table 3.3 (continued)

Engineering device
Assumptions Control volume Equation
Throttling device — 1 — |=h

6q=0
ow=0 L]
AKE=0
APE =0 1 -

Pump h, —wi=h,—h;

h;
69=0 —p —
AKE =0
4

APE=0

w;

Compressor

h he
6=0 —p —
AKE=0

4

-wi=h,—h;

APE=0

Heat exchanger .
6q=0 Z mghy Siivh =X h,
ow=0 v
AKE=0

APE=0 - >
b

3.8 Cycles

We first learn first law for a closed system that helps us to understand how to use the
thermodynamics tables and then this leads to first law for an open system and engi-
neering devices. As part of learning first law for closed and open systems, we’ll see
a method to solve thermodynamic problems, which is given in Sect. 3.10.

Once we’ve mastered engineering devices, we begin to learn about cycles where

2.0q, =20w, (3.24)

Equation 3.24 is a consequence of a cycle beginning and ending in the same
state. Thus the right-hand side of Eq. 3.25 is equal to zero.

5q—8w = Ah+APE + AKE (3.25)

Given in the section on examples and problems are two examples of cycles. The
first is an air cycle, which will become important when we discuss Brayton Cycles,
which are a form of gas cycle (Sect. 5.3); the second is a water cycle, which will
become important when we discuss Rankine Cycles, which is a form of vapor cycle
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(Sect. 5.2). An introduction to Rankine Cycles is given below. Cycles will be more
fully discussed in Chap. 5.

3.9 Rankine Cycle

When we arrange several engineering devices in a particular order, see Figs. 3.9 and
3.10, we create a series of processes that collectively start and end in the same state,
which is the very definition of a cycle. The cycle shown in Figs. 3.9 and 3.10 is a
Rankine Cycle.

You’ll notice that on the x-axis for Fig. 3.9 the quantity is entropy, which we have
not formally introduced. A working definition is that entropy change is a measure of
the irreversibilities of a system and we would always rather an entropy change of
zero, which is a measure of no irreversibilities. But all processes generate some
entropy.

In this analysis, we assume the pump and turbine are isentropic, which means
there are no irreversibilities. Later, some of the assumptions made will be relaxed.

The Rankine Cycle involves the following four processes and the device that cre-
ates a particular process

1 — 2, Pressure Increase, Isentropic Pump
2 — 3, Heat Added, Boiler

3 — 4, Work Extracted, Isentropic Turbine
4 — 1, Heat Dumped, Condenser

400 1 Critical Point 50bar

350 1 (725psi)

300 -

250 +

200 - Wiurbine

Temperature (°C)

150 -
100 - 0.06bar

i : (0.87psi)
0. 1/2/ Woump Oyt \4 \V

00 10 20 30 40 50 60 7.0 80
Entropy, s (kJ/kgK)

Fig. 3.9 T versus S for Rankine Cycle
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'

Condenser

J Qout

Fig. 3.10 Engineering devices within the Rankine Cycle

In order to determine Eq. 3.2 particular to a Rankine Cycle, an energy balance
must be conducted around each engineering device and all states, heat, and work
accounted for in a table. What goes into the control volume will be on the left-hand
side of the equal sign and what goes out of the control volume will be on the right-
hand side of the equal sign.

The following simplifying assumptions and conditions were made

. Isentropic pump — s, =5,

. Isentropic turbine — s3 = s4

. State 1 is on the saturated liquid line @ pressure P,
. State 2 is a compressed liquid @ pressure P,

. State 3 is a saturated vapor @ pressure P,

. State 4 is a mixture @ pressure P;

AN AW =

Note — the sum of the work equals the sum of the heat for a cycle.
The energy balance around the pump in Fig. 3.11 is

h+w, =h, (3.26)



56 3 First Law of Thermodynamics

Fig. 3.11 Energy balance h 1

for a pump h2
— .
A
‘ Win
Fig. 3.12 Energy balance h, h;
for a boiler el I
A
i Gin
And solving for w;,
w, =h,—h, (3.27)
The energy balance around the boiler in Fig. 3.12 is
by +q, =h, (3.28)
And solving for g;,
q,, =h,—h, (3.29)
The energy balance around the turbine in Fig. 3.13 is
hy =W, +h, (3:30)

The value of h, is determined by utilizing the assumption that s; = s, and deter-
mining X.
And solving for w,

Wo, =h, —h, (3.31)

out
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Fig. 3.13 Energy balance

for a turbine
hs
—> —>
Wout
|
| h4
Fig. 3.14 Energy balance
for a condenser
“— +—
h, | hy
Qout
v
The energy balance around the condenser in Fig. 3.14 is
h,=h+q,, (3.32)
And solving for g,
Goue =hy — hy (3.33)

Once all enthalpies, works, and heats are determined, then a table (see Table 3.4)
is completed for the states given in Fig. 3.9 and the overall thermal efficiency for the
cycle is calculated, which is given as

Wo = Wi _ h3 _h4 +h1 _hz

= 3.34
rloverall qin h3 _ h2 ( )
The final step is to check the first law of thermodynamics for a cycle
kJ
>6q= 25W—>952.05k— =952.05kJ/kg (3.35)
g

The left-hand side won’t exactly match the right-hand side, but if it’s off by too
much, then check your work. There’s probably a mistake!
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Table 3.4 Various states, heat, and work for Rankine Cycle

3 First Law of Thermodynamics

T P s h ow oq

State | Process/Device [°C] [kPa] | [KJ/Kg-K] |X | [kl/kg] [kl/kg] [kl/kg]
1 3584 |6 0.52 149.78

Isentropic pump —6.87
2 36.33 | 5000 0.52 156.65

Boiler +2637.68
3 263.99 | 5000 5.9733 2794.33

Isentropic turbine +958.92
4 3584 |6 5.9733 1835.41

Condenser —1685.63
1 35.84 |6 149.78

3.10 Problem Solving Procedure
for Thermodynamics Problems

Step 1 — Identify the substance
Step 2 — Identify the system

Isolated system

Closed system (thermodynamic energy is measured in terms of inter-

nal energy)

Open system (thermodynamic energy is measured in terms of enthalpy)

Step 3 — Can we assume ideal and/or perfect gas behavior?
Step 4 — Fill out as completely as possible the following table, which may involve
unit conversions. Please note there may be more than one process involved and it
may be useful to plot the states on a pressure versus specific volume or entropy
versus temperature graph.

State 1 ‘ State 2
Process

Phase Phase
Temperature Temperature
Pressure Pressure

Specific volume (volume)

Specific volume (volume)

Internal energy (enthalpy)

Internal energy (enthalpy)

Mass

Mass

Step 5 — Identify the appropriate equation/table or simplifying assumption for the
following

Heat
Work

Internal energy (enthalpy)

Kinetic energy, potential energy, and mass rates (if necessary)
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Step 6 — Determine the first law for the system
Step 7 — Determine the second law for the system (if necessary)
Step 8 — Solve the problem

59

Given below in Table 3.5 are the first law and second laws for a particular case
where second law will be discussed in Chap. 4.

Table 3.5 First law and second law for various systems

Case First Law Second Law Comments
Closed |Q—-W=AE T v Specific heat is
System As=C,In [—ZJ +R,In [—ZJ constant
Ideal Gas T Vi Work is determined by
Perfect the path
Gas As=C, IH(EJ_R h{ij Ah =c,AT, Ae = c, AT
) * R
Closed |Q—-W=AE P Specific heat is NOT
System As=s7,—s;, —R,In (—2] constant
Ideal Gas A Work is determined by
Non- the path
Perfect As=5",-S°, +R, ln(v—z] e=fT),s=AT,P),
v, s=f(T,v)

+ Ideal Gas Thermodynamics

Table
Closed |Q—-W=AE Use Appropriate Specific heat is NOT
System Thermodynamics Table constant
Non- Work is determined by
Ideal the path
Non-
Perfect
Open Q- W=AH+ AKE + APE T v Specific heat is
System As=C,In (—ZJ +R,In (—ZJ constant
Ideal Gas T Vi Work is determined by
Perfect the path
Gas M:CPIn(QJ_R ln[ij Ah=c,AT, Ae = c,AT

n) < \r
Open Q- W=AH+ AKE + APE P Specific heat is NOT
0 0 2
System As = s, =5, —R,In [F] constant
Ideal Gas 1 Work is determined by
Non- the path
Perfect As=S8;,-S;, +R, 1{"—2] h=£AT),s=AT.P),
v s=fT,v)

+ Ideal Gas Thermodynamics

Table
Open Q — W=AH + AKE + APE | Use Appropriate Specific heat is NOT
System Thermodynamics Table constant
Non- Work is determined by
Ideal the path
Non-

Perfect
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3.11 Examples and Problems

3.11.1 Examples

Example 3.1 Double Linear Interpolation

Determine the enthalpy for water at 12,000 kPa and 360 °C. This will involve more
than one linear interpolation. The raw data from the thermodynamic tables is given
in the first table and solving for A, B, and C determines the value to be 2874.41 kJ/kg.

Pressure [kPa]
10,000 12,000 15,000
T [°C] 350 2923.39 2692.41
360 A C B
400 3096.46 2975.44
Y, =Y
po )y,
(x,-x)
_ 3096.46 —2923.39 (360—350)+ 292339
400-350
_ 2975.44 -2692.41 (360 _350) +2692.41
400-350
= 2749022295700 1 4 _10,000) + 2958.00
15,000 -10,000
Pressure [kPa]
10,000 12,000 15,000
T[°C] 350 2923.39 2692.41
360 2958 2874.41 2749.02
400 3096.46 2975.44

Example 3.2 Closed System
Saturated vapor R-410a at 0 °C in a rigid tank is cooled to —40 °C. Find the specific

heat transfer.
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Substance, R-410a
Treat as a non-ideal, non-perfect gas — Use the Thermodynamics Tables
Process, Isometric — No Work

State 1 — Saturated Vapor

T,is 0 °C
v is 0.03267 m¥/kg and v, = v,
e, is 253.02 kJ/kg

State 2 — Mixture

It’s a mixture because

n<r; < Vg
Find X
Vo=V _ 0.03267-0.000762 .
v,—v, 0.14291-0.000762
Find e,

e,=¢,+X(e,—e)=-0.13+22.45%%(237.81+0.13) = 53.28kJ/kg

Heat transfer is
Sg—0w=Ae
And

5q=-199.72kJ/kg

Example 3.3 Closed System
A 100-L rigid tank contains N, at 1000 K and 3 MPa. The tank is now cooled to
80 K. What are the work and heat transfer for the process?

Volume is 100 L, Substance is N, and the process is Isometric
Use the thermodynamic table for N,

State 1 — SHV

T,1s 1000 K

P, is 3000 kPa

vy is 0.0996 m/kg
e, is 777.85 kl/kg
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State 2 — Mixture

It’s a mixture because

n<rv; < Vg
Find X
Vo=V, _ 0.03267-0.000762 .
v,—v,  0.14291-0.000762
Find Uy

e,=¢,+X(e,—e)=-0.13+22.45%%(237.81+0.13) = 53.28kJ/kg

Heat transfer is
Sg—0w=Ae
And

5q=-199.72kJ/kg

Example 3.4 Reactor Explosion

A water-filled reactor with a volume of 1 m? is at 10 MPa and 260 °C is placed
inside a containment room. The room is well insulated and initially evacuated. Due
to a failure, the reactor ruptures and the water fills the containment room. Find the
minimum room volume so that the final pressure does not exceed 400 kPa.

Volume is 1 m?, Substance is Water and the process is that u; = u,
The two internal energies are equal because there is neither work nor heat transfer!
Use thermodynamic table for Water

State 1 — SCL

T, is 260 °C
P, is 10,000 kPa
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vy is 0.001265 m¥/kg
e, is 1121.03 kJ/kg

State 2 — Mixture

It’s a mixture because

U< Uy < Uy
Find X
M 112003-60429
u, —u 2553.55-604.29
Find Uy

3

v, =u,+ X (v, —v,) = 0.001084 +26.5%*(0.46246 —0.001084) = 0.12
k

g
Find mass
V
v, 0.001265
Find V,
L/ v, >V, =98.86m’
m
Example 3.5 Nozzle

Superheated vapor ammonia enters an insulated nozzle at 30 °C and 1000 kPa with
a low velocity and a steady rate of 0.01 kg/s. The ammonia exits at 300 kPa with a
velocity of 450 m/s. Determine the temperature (or quality) and the exit area of
the nozzle.

hy,uy =0 h,,u, = 450m/s
—_ —_

Substance is ammonia, Nozzle, Use Thermodynamic Tables

State 1 ‘ State 2
Insulated nozzle
SHV Phase

20C T,
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State 1 State 2
Insulated nozzle
1000 kPa 300 kPa
Va0 450 m/s
hy X and h,
2 2
u u
h+—=h+=
2
Solve for h,
4507
h=h =S

And for 300 kPa in Saturated Ammonia Tables

5 =137785k/kg

3 First Law of Thermodynamics

T

P

h(l) h(g)
[°C] [kPa] [kI/kg] [kJ/kg]
—10 290.9 134.41 1430.8
-5 354.9 157.31 1436.7
-9.29 300 137.67 1431.64
And solving for X
X< U, — U, he 1377.85-137.67 —95.84%
u,—u, 1431.64 -137.67
Example 3.6 Turbine

A dam along the Green River is 50 m higher than the river that it discharges into.
The electric generators driven by the water-powered turbines deliver 250 MW of
power. If the discharge water is 20 °C, find the minimum amount of water running

through the turbines.

out
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71=50m, z,=0; Sw=250MW =250,000kW ; T'= 20 °C; v = 0.001002 m*/kg
Find

Q‘;

SG-8w=¢é,—¢
é, =1[h +KE, + PE, |
And
é, =m[h, + KE, + PE, |

h, = h,,Far Upstream, Far Downstream — KE, = KE,

o7 _9BLS0 L
1000 1000
1000

i = 50984k , PO = m_Q,Q=51o.7m3/s

Example 3.7 Boiler and Super-Heater

Saturated liquid nitrogen at 800 kPa enters a boiler at the rate of 0.01 kg/s and exits
as saturated vapor. It then flows into a super-heater also at 800 kPa, where it exits at
800 kPa and 280 K. Find the rate of heat transfer in the boiler and the super-heater.

l{lg
Saturated Liquid Sat'-'fatEd Vapor 280K
800 kPa 800 kPa 800 kPa
Boiler Super-heater
A A
oqy 8q2

Find 6,,64,
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T P h(l) h(g)
[°C] [kPa] [kJ/kg] [kJ/kg]
100 779.2 —73.2 87.48
105 1084.6 —61.24 87.35
100.34 800 —72.39 87.47

h, = —72.391%, h, :87.47112—;, h, :288.521;—;
And
h +8¢, =h,
h,+38q, =h,
Further
8¢, =m[h,—h]
8q, =m[h,—h,]
And
0q, =1.6kW, 64, =2.0kW
Example 3.8 Air Cycle

For the cycle shown in the figure below, find the work and heat transfer for 1 Ibm of
air contained in a cylinder with 7, at 800 °F assuming the process from 3 to 1 is (a)
an isothermal process and (b) an adiabatic process.

We’ll assume an ideal, perfect gas and use the work/heat table given at the end of
Chap. 2.

m=1lbm, T,=800'F=1260R, y=14, R, =5334 lf; Ibf

m
=024 BT _yge77 LLIOL o _ggp BIU__ 35, St IOF
! Ibm R Ibm R Ibm R Ibm R
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9000
8500
8000
~
&
= 7500
2]
o
7000
6500
6000
7.5 8.5 9.5 10 10.5
V [ftA3]
Plan of Attack
(a) Find {T, P, V} for all states
(b) Determine work and heat associated with each process
(c) Sum work and sum heat, they should equal
What we are given
T P \% Work Heat
State Process [R] [Ibf/ft?] [ft*] [ft-1bf) [ft-1bf)
1 1260 8640 v,
Isobaric oW Lo 0q) -2
2 T, 8640 10
Isometric 0 0q> -3
3 T; P; 10
Isothermal OWs .1 0qs 1
1 1260 8640 Vi
X Y
Find All States
Solve for V,
mRT,  1%53.34%1260
PV=mRT,V,=— "= =7.78ft’

i

8640
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Solve for T,

; _ BV, _8640%10

; =1640K
mR, 1%53.34

Solve for Ps

PV #7.
PV,=PV, %zgzw
14 10

=67211bf / ft’

Solve for T;
3 — lisisothermal and 75 =Ty, T3 = 1260 K

Find Work and Heat for All Processes
1 — 2, Isobaric

Sw=P(V,-V,)=60%144%(10-7.78) =19,192 ft Ibf
8q=mC, (T, —T,)=1%187(1640—1260) = 67,199 ft Ibf
2 — 3, Isometric
ow=0
8q=mC, (T, -T,)=1%133%(1260-1640) = —47,889 ft Ibf

3 — 1, Isothermal

14 .
Sw=PV, 1n(71J —8640%7.78 *In [%) — 16,882

3

6g=06w
The results are
T P \% Work Heat

State Process [R] [Ibf/ft?] [ft}] [ft-1bf) [ft-1bf)
1 1260 8640 7.77875

Isobaric 19,191.60 67,199.38
2 1619.798 8640 10

Isometric 0.00 —47,889.05
3 1260 6720.84 10

Isothermal —16,882.04 —16,882.04
1 1260 8640 7.77875

2309.56 2428.29
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Example 3.9 Water Cycle
For the cycle with the following conditions, show that the sum of the work equal the
sum of the heat transfer

State 1 — Saturated Liquid

4000 kPa, 21 = 1087.29 kl/kg, nul = 0.001252 m3/kg

State 2 — Saturated Vapor

4000 kPa, h2 = 2801.38 kl/kg, nu2 = 0.04978 m’/kg, V, =0.5 m*

3 3
0.5m” _ o.osf—,m =10kg
g

m

State 3 — Mixture
T=280°C

Uy=VU3

_0.04978-0.001029 _,

v.=v,+X(v, —v, ]and X, = =1.44%
P ( ¢ ’) *3.40715-0.001029 ’
And
kJ kJ
h = 334.88k—and hg = 2643.661{—,h3 =334.88+1.44% *(2643.66—334.88)
g g
=368.07kl/kg
State 4 — Mixture
Uy =U4
v, =v, +X(v —vl)andX4 _ 0.001252-0.001029 0.01%
& 3.40715-0.001029
And

h = 334.88gand h, = 2643.6611:—J,h4 = 334.88+0.01%*(2643.66 —334.88)
g g
=335.0kl/kg

Determination of Work and Heat

1 — 2, “Boiler”, ¢ = h, — h,

2 — 3, “Turbine”, éw = h, — h;

3 — 4, “Condenser”, —0q = h; — hy
4 - 1, “Pump”, —dw=h, — hy
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The results are given below.

T P v h Work Heat

State | Process [°C] |[kPa] |[m’] |Comments [k/kg] [kJ/kg] [kJ/kg]
1 4000 Saturated liquid | 1087.29

Isobaric 1714.09
2 4000 | 0.5 Saturated vapor | 2801.38

Isometric 2433.31
3 80 0.5 368.07

Isobaric -33.07
4 80 335

Isometric —752.29
1 1087.29

1681.02 | 1681.02

3.11.2 Problems

Problem 3.1 Air at 60 °C, 150 kPa flows in a 100 mm by 150 mm rectangular duct
in a heating system. The volumetric flow rate is 0.01 m?*/s. What is the velocity of
the air flowing in the duct and what is the mass flow rate?

Problem 3.2 A boiler receives a constant flow of 6000 kg/h liquid water at 5 MPa
and 20 °C, and it heats the flow such that the exit state is 425 °C and 4.5 MPa.
Determine the necessary minimum pipe flow area in both the inlet and exit pipe(s)
if there should be no velocities larger than 20 m/s. Also, determine the heat rate
[BTU/hr.].

Problem 3.3 Nitrogen gas flows into a convergent nozzle at 200 kPa, 400 K, and
very low velocity. It flows out of the nozzle at 100.3 kPa, 1000 m/s. If the nozzle is
insulated, find the exit temperature.

Problem 3.4 In a jet engine a flow of air at 1000 K, 200 kPa, and 40 m/s enters a
nozzle, where the air exits at 500 m/s, 101.3 kPa. Assuming no heat loss, what is the
exit temperature?

Problem 3.5 Helium is throttled from 1 MPa, 20 °C to a pressure of 100 kPa. The
diameter of the exit pipe is so much larger than that of the inlet pipe that the inlet
and exit velocities are equal. Find the exit temperature of the helium and the ratio of
the pipe diameters.

Problem 3.6 A compressor in a commercial refrigerator receives R-410a at —20 °C
and X = 100%. The exit is at 1200 kPa and 60 °C. Neglect kinetic energies and find
the specific work.
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Problem 3.7 A rigid 177-ft® tank contains saturated steam at 73 psia. Initially, 10%
of the volume is occupied by liquid and the rest by vapor. Heat transfer takes place
until the pressure in the tank reaches 58 psia. Determine the following:

(a) Amount and direction of heat transfer
(b) Initial and final temperatures
(c) Final volumes of liquid and vapor

Problem 3.8 A 4.25-ft’ rigid tank contains saturated liquid R-134a at 116 psia. A
valve at the bottom of the tank is now opened, and liquid is withdrawn from the
tank. Heat is transferred to the refrigerant such that the pressure inside the tank
remains constant. Determine the amount of heat that must be transferred by the time
75% of the total mass has been withdrawn.

Problem 3.9 150 kg of a saturated mixture of steam at 200 kPa is stored in a 15 m?
container. A valve on the container is opened and 15 kg of steam at 500 kPa and
300 °C is gradually added into the container. During this addition process, heat
exchange occurs with the surroundings. The final pressure in the container is
300 kPa.

(a) What is the quality of the initial contents of the container?
(b) What is the quality of the final contents of the container?
(c) How much heat was transferred? State whether heat was added or removed.

Appendix 3.1: Rankine Cycle Worksheet

A tableau for the Rankine Cycle is given on the companion website.

Appendix 3.2: Linear Interpolation (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Chapter 4
Entropy and the Second Law
of Thermodynamics

4.1 Preview

We’ll begin by defining reversible and irreversible processes and give three exam-
ples. Example 4.1 defines reversible and irreversible processes; Example 4.2 pro-
vides details of a reversible heat engine (Carnot cycle); and Example 4.3 provides
details of an irreversible heat engine (Rankine cycle).

We’ll move on to defining Carnot cycles, which are reversible heat engines, heat
pumps, or refrigeration cycles. A heat engine extracts work, w(out), from two res-
ervoirs where one is at a high temperature and the other is at a low temperature; a
heat pump reverses a heat engine to keep a warm space warm when the surround-
ings are cold and requires w(in); a refrigeration cycle is a reversed heat engine
where work is added, w(in), to keep a cold space cold when the surroundings are hot.

We’ll then discuss Clausius inequalities, which were illustrated by the three
examples discussed above and go on to define entropy and show that it is another
state. We then determine entropy changes associated with processes that occur in
liquids, solids, and gases.

We will then formally give the second law of thermodynamics for both closed
and open systems, and apply the idea of entropy to determine the efficiency of engi-
neering devices.

4.2 Reversible and Irreversible Systems

We’ll look at three examples that explore reversible and irreversible systems and tie
this to the definition of entropy, which is given as

oq
= =L 4.1
® (Tj @D
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where ds is the change in entropy (to be defined shortly), T is the temperature of the
process, and 9dq is the heat released assuming a reversible process (to be defined
shortly).

Example 4.1 Imagine a system of two ramps with equal angles, a cart, and a con-
nection horizontal section (see Fig. 4.1a), but no friction. No friction due to air, no
internal friction within the cart, no friction between the cart and the ramps, and
connecting horizontal section. The cart is released at “A”, goes through “B”, and
stops at “C.” Because there is no friction, it falls and goes through “B”, and stops at
“A.” Because there is no friction, it does this endlessly.

We know the world doesn’t work this way (see Fig. 4.1b). The cart falls away
from “A” and likely lands somewhere in the horizontal section dependent on the
coefficient of friction, length of each part, and the angle of the ramp. The system in
Fig. 4.1b is an example of a reversible system and the system given as Fig. 4.1b is
an example of an irreversible system.

Briefly stated, a reversible system is one where there is no additional
energy (work) needed to get the system back to the original state, which in this
case is “A.”

Example 4.2 Let’s look at another example.

Imagine a reversible heat engine that contains the four following processes
1 — 2, Isothermal
2 — 3, Adiabatic
3 — 4, Isothermal

4 — 1, Adiabatic

Fig. 4.1 (a) Reversible system. (b) Irreversible system
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Fig. 4.1 (continued)

| -

Wour

R

l o

If we assume the substance is an ideal, perfect gas with no phase changes, then the
efficiency of this cycle is given as

qin qin qin

TI :h: qin _qout :l_qaut (42)

We’ll show the efficiency for a reversible heat engine can also be defined as

w T
=t =]t 4.3
n qlﬂ 7’:‘” ( )
Additionally,
T
Qou _ Zou (4.4)
qin T;‘n

Equally, we can divide qr% which gives us a relative measure of heat transfer
abs

and for a reversible heat engine it is
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9n 4
Zin _ZTow _ ) 45
T 4.5)

Example 4.3 For a real heat engine (Rankine cycle), we have the following condi-
tions [1].

1. Saturated liquid, 0.7 MPa.

2. Saturated vapor, 0.7 MPa.

3. 90% Quality, 15 kPa
4. 10% Quality, 15 kPa.

For these conditions,

q, = 2066.3H,Tm =1649'C,q,, = 1898.4H,Tm =53.97°C

kg kg
Qo _Gou _ 20663 1898.4 19 kJ -0 “6)
T T 273.15+164.9 273.15+53.97 kg—K

in out

Which is consistent for an irreversible heat engine and will be discussed again
when we discuss Clausius’ inequality.

Fig. 4.2 Rankine cycle
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Some observations

9 4 : . .
1. =2 —=22 provides a useful measure of whether or not a cycle is reversible or

7’;‘" out

irreversible

2. When the quantity given in (1) is negative, this implies the cycle is irreversible.
3. When the quantity given in (1) is zero, this implies the cycle is reversible.

We’ll soon see that the quantity defined as Eq. 4.5 or 4.6 is in fact a state and has
several uses to include

1. Provides another state given in the thermodynamic tables.

2. Will provide a measure of whether or not a given process (or cycle) can occur.
3. Provides a means to improve some process (or cycle).

4. Can be utilized to determine the heat transfer for a process (or cycle).

4.3 Carnot Heat Engine and Carnot Heat Pump

The reversible heat engine given above as Example 2 is actually known as the
Carnot heat engine and when the cycle is reversed it either becomes a heat pump or
a refrigeration cycle (see Fig. 4.3a, b, and c).

Before we get into the Carnot heat engine there are four concepts that need to be
clearly defined — heat engine, heat pump, refrigeration, thermal efficiency, and coef-
ficient of performance (f).

hi Tni ni

 J

Win

‘—

Jio
‘ -

(a)

Fig. 4.3 (a) Heat engine, (b) Heat pump, and (c) refrigeration cycle

Woue
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Heat Engine

An example of a heat engine is given as Fig. 4.3a where heat naturally transfers
from a high-temperature reservoir to a low-temperature reservoir and some portion
of this heat transfer is extracted as useful work.

Heat Pump

A heat pump (see Fig. 4.3b) would be to add work to the system thereby changes the
direction of heat transfer where the Ty, (Ty) reservoir would be the space you’re
trying to keep warm. Heat does not naturally want to go from low temperature to
high temperature and only does so with the addition of work.

Refrigeration

A refrigeration cycle (see Fig. 4.3c) is another example of a system where work is
added in order for the heat transfer to go from a lower temperature to a higher tem-
perature. The only difference between a refrigeration cycle and a heat pump cycle is
that now the system is T, (Tioy).

Thermal efficiency (1)
Is a measure of how much of the q; is utilized as useful work and is mathematically
defined as

w
Nygg =—= 4.7)
m

Coefficient of Performance ()

For heat pumps or refrigeration cycles is a measure of efficiency, but is different
from thermal efficiency. For a heat pump, which is a reverse heat engine, the f is
defined as

B,y = L (4.8)

4.9)

The processes involved in a Carnot heat engine (see Figs. 4.4 and 4.5) are.

A ->B is an isothermal expansion,

B ->C is an adiabatic reversible expansion,

C ->D is an isothermal contraction, and.

D ->A is an adiabatic reversible contraction.

There are a series of postulates invoked when considering a Carnot cycle [1].

Postulate 1 It is impossible to construct an engine that is more efficient than the
Carnot heat engine.
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Fig. 4.4 Heat engine

T
|
W
!
T
c
Fig. 4.5 P versusV fora P A
Carnot cycle isothermal
Qin
adiabatic B
Q=0
adiabatic
D Q=0
C
isothermal
Vv

Postulate 2 The efficiency of a Carnot engine is solely a function of the tempera-
ture reservoirs.

Postulate 3 All reversible engines, operating between two reservoirs, have the
same overall thermal efficiency as a single Carnot engine operating between the
same reservoirs.

Prove that for a reversible engine (Carnot heat engine) that the thermal efficiency
is defined as

T

qla o
n=l-—==1--= (4.10)
i T,
V2
v,
1-2,0,= J‘PdvszThi ln(—] 4.11)
% 14
2-53,0,,,=0 (4.12)

3

V,
: %

34,0, = [PdV =-mRT, 1n(74j (4.13)
V3
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4-51,0,,=0 4.14)

Substituting Egs. 4.11 and 4.13 into Eq. 4.10 results in

_ qla

qhi T [‘/Zj
hi v
1
Additionally, for the adiabatic process 2->3,
y—1
T. T
== & =l (4.16)
T2 ‘/3 Thi
And for the adiabatic process 4->1,
-1
T T.
—1=££] =h 4.17)
T4 ‘/1 lo
Note T\ =T,and T =T,
Further,
non o gl V_y (4.18)
oV on
Therefore,
T [‘é] 7, In(X) T,
n
R P A R N WA B =1-k (4.19)

A Carnot cycle is an idealization that cannot physically be realized, but provides
an upper limit on actual performance.

A Summary of Carnot Cycles Our definition of overall thermal efficiency (n) for
a Carnot heat engine is

w T )
Nue :—”:1—%:—’” lo (4.20)
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Reverse it and you have a Carnot heat pump, which has a Beta of

i 1 T,
B =T Tu “.21)
" Wo 1_5 7-;11'_7-}0
T,

And for a Carnot refrigeration cycle, the Beta is

i —Wo _ ﬂ_] _ T, _(T"i _Tl") = T, (4.22)
i _’Tlo T

)

B — qlu —
o
E w w T

o o o hi

A Summary of Actual Cycles Our definition of overall thermal efficiency (1) for
a Carnot heat engine is

Nye = — (4.20)

By =L @21)

And for a Carnot refrigeration cycle, the Beta is

Qo _Di = Wo _ i
Breprie = Mj :hw— :W_h_l (4.22)

o o o

4.4 Clausius Inequality
We’ll show
955—Q <0 4.23)
T
where Eq. 4.23 for a reversible cycle takes the form

60 _
gS -, =0 (4.24)

And for an irreversible cycle it takes the form
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qS‘%Q <0 (4.25)

4.4.1 Reversible Heat Engines

$50=0,-0,>0 (4.26)

And using Egs. 4.13 and 4.11 for Q,; and Q,, and dividing Q,; by T}; and Q,, by
T, results in

cj)a—Q = & —% =mRIn [ﬁj + len(&J =0 (4.27)
T T, T v v,

hi lo

4.4.2 Irreversible Heat Engines

For an irreversible heat engine,

irrev < ‘/I/rev (428)
And Q,, — Q,, = W therefore,
(th - Qlo ),-,,ev < (Qm - on )n,v (4.29)

Since Qy; is the same for both systems,

Qlo, irrev > Qlo,rev (430)
which results in
T T, T

hi lo
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4.5 Definition of Entropy, Entropy as a State Function,
and Area under T Vs. Ds Graphs

4.5.1 Definition of Entropy

Clausius inequality can also be defined as

§%2+0,,. -0 (4.32)

where o, are irreversibilities of the cycle and the first term is a measure of the heat
release per temperature and the second term is a measure of the irreversibilities of
the cycle.

Another form of Eq. 4.32 is

As =@+G (4.33)

T system

which is a measure of the entropy change of a system and when the system is adia-
batic, the first term on the right-hand side is zero

As=o (4.34)

— Yeycle

And when the system is reversible the second term on the right-hand side is zero.

o
As = 7" (4.35)
A system that is both reversible and adiabatic is isentropic and thus
As=0,s =5, (4.36)
And for a closed system, the first law is
de=5q—6w (4.37)
And work is defined as
ow = Pdv (4.38)
Substituting Eqs. 4.37 and 4.38 into Eq. 4.33 results in
ds:é—q+cr :ﬂ+P—dv+ =MdT+P—dv+0' (4.39)

T sys T T 5ys T T sys
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And when the system is reversible

_8q _du Pdy _C(T) . Pdv

ds T STt dT + T (4.40)
Additionally, enthalpy is defined as
h=e+Pv (4.41)
And the derivative of Eq. 4.41 is
dh =de+ Pdv +vdP (4.42)

Solving Eq. 4.42 for “du” and substituting into Eq. 4.37 results in

dh—Pdv —vdP = 6q — Pdv (4.43)

dh=38q+vdP (4.44)

Solving Eq. 4.44 for “dq” and substituting the resultant equation into Eq. 4.40
results in

c (T
_8q_dh_vap_C,( )dT—VdP (4.45)

T T T T T

ds

Note Egs. 4.35 and 4.45 are known as the Gibbs Equations in honor of Wilfred
Gibbs [1, 2].
4.5.2 Entropy as State Function

Given below is a graph of P versus V along several reversible paths
We’ve seen for a reversible cycle that

qS(S—Q =0 (4.46)

And so

e
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Fig. 4.6 Entropy as a State Function

And
2 1
j(S—Q + j LI (4.48)
1 T A 2 T C
Subtracting Eq. 4.48 from 4.47 results in
1 1
j‘LQ _ in (4.49)
2 T B 2 T C
Equally, we can say
2 2
J'S_Q = J.S_Q (4.50)
1 T B 1 T C

This shows that S is independent of path and is a state property of thermodynam-
ics and can be cast as

S, -, =j5TQ 451)
1



86 4 Entropy and the Second Law of Thermodynamics

2
5Q = [1ds (4.52)
1
Which is analogous to
2
SW = [Pdv (4.53)
1

4.5.3 Graph of T Versus S

Given in Fig. 4.7 is the T versus S graph for a reversible heat engine (Carnot heat
engine) where q(in) is the area enclosed by 1->2->S(h)->S(1)->1, q(out) is the area
enclosed by S(1)->4->3->S(h)->S(l), and the w(o) is the area enclosed by
1->2->3->4->1.

More generally, the area under a T versus S graph represents 6Q.

4.6 Second Law of Thermodynamics

Given

oq

As = 3 +0 om (4.54)
b
w din I
isothermal

el 1 2
T IV adiabatic ~Wour Hadiabatic
T L

4 IMisothermat 3

Gour
1 >
Si S Sh

Fig. 4.7 Carnot heat engine
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The second law of thermodynamics is as follows

When the 6ygem > 0 — Irreversible System

When the 6ygem = 0 = Reversible System

When the 6yyem < 0 = Impossible

Using the first law of thermodynamics helps us to account for energy sources and
sinks and how fast a process or cycle will occur.

Using the second law of thermodynamics helps us to understand “if a process or
cycle will ever occur”?

4.7 Entropy of Solids and Liquids

Starting with the entropy balance for a reversible substance

T
ds=[5—qj _Gdr P, (4.55)
T) T T

And knowing that solids and liquids are treated as incompressible results in two
simplifying assumptions

1. dvis zero

Results in

As =Cin [Ej (4.56)

4.8 Entropy of Gases
For entropy changes of gases, it’s not so simple. We’ll consider two possible cases

1. Ideal, Perfect Gases.
2. Ideal, Non-Perfect Gases.

4.8.1 Entropy of an Ildeal, Perfect Gas

Starting with the entropy balance for a reversible substance
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Tds = du+ Pdv 4.57)
and
Cdr
ds=———+ P_dv (4.58)
T T
where Pv = RT such that
T
ds =Cvd—+Rd—v (4.59)
T \%

And integrating both sides of Eq. 4.59 results in

T,
As=C, In [-2] +Rin [V—ZJ (4.60)
T, Vi
Or starting from
Tds = dh—-vdP (4.61)
and
dl  dP
ds=C,—-v— 4.62
P T (4.62)
where Pv = RT such that
T P
ds =Cvd——Rd— (4.63)
T P

And integrating both sides of Eq. 4.63 results in

T P
As=C,In 2 |-Rln| = (4.64)
T A

4.8.2 Entropy Change of an Ideal, Non-Perfect Gas

When the gas is non-perfect and specific heat depends on temperature, then an inte-
gration is involved
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L C(T)dT
As= | MMM(V—ZJ (4.65)
7 T \Z
Or
AS:TM—RM L3 (4.66)
L T 1 '

which is solved by using a combination of equation (second term) and tables (first
term) to account for the integration.

See Examples 4.11, 4.12, and 4.13 for further details.
4.9 Engineering Efficiency
In this section, thermal efficiency will be defined in terms of enthalpies associated
with a reversible and irreversible engineering device.

4.9.1 Engineering Devices for Work out

For an engineering device where it is work out, the definition of efficiency is
Act

w
_ t
n=—2 (4.67)
W()L«t
where for an irreversible engineering device w"’ > w

Reversible Device The energy balance for a reversible engineering device is

Wit =y — (4.68)

out

Irreversible Device The energy balance for an irreversible engineering device is

T (4.69)

out

Using our previous definition of efficiency and Eqgs. 4.68 and 4.69, we get

act
n _ hl _hz
work out iso
hl - hz

(4.70)
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Fig. 4.8 Energy Balance
for an Isentropic “Work

Out” Devi Wi
ut” Device h, out,iso
- —_
hZ,iso

Fig. 4.9 Energy Balance

for an Actual “Work Out”

Device hy Wout act
S _—

h2,iact

4.9.2 Engineering Device for Work in

For an engineering device where it is work out, the definition of efficiency is

Wf’so
n=—i @.71)
win

where for an irreversible engineering device wi" > wi*’

Reversible Device The energy balance for a reversible engineering device is
wo' =h —h, (4.72)

Irreversible Device The energy balance for an irreversible engineering device is

wi = by —hy (4.73)
Using our previous definition of efficiency and Eqs. 4.72 and 4.73, we get

leork in = hzc; _hl (474)
hy" —h,
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What are some of the consequences of these definitions in terms of highest and
lowest temperatures possible from engineering devices where it’s work in or

work out?

Example 4.4
Consider a reversible turbine (work out device)
Assume 1 = 100%,

And

Therefore,

act __ 1,iso
' =h" ->T, >T,

(4.75)

(4.76)

4.77)

T, can be found through knowing T, P;, which provides s, and s, is equal to s,.

Example 4.5
Consider a perfectly irreversible turbine
Assume 7 = 0, ideal, and perfect gas

S, > S,
Therefore,
T’ = O = —hl _h;a
h —h"
And

h;Ctzhl -1, =T

Fig. 4.10 Energy Balance
for an Isentropic “Work
In” Device

Win,iso

(4.78)

4.79)

(4.80)

hZ,iSO
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Fig. 4.11 Energy Balance hy et
for an Actual “Work In” '
Device
_—
Win,act
Example 4.6
Consider a reversible pump (work in device)
Assume 1 = 100%, ideal, and perfect gas
S, =S, (4.81)
And
hiso _ h
n=I1= fm 1 (4.82)
hz - hl
Therefore,
hy = h;“’ ->T,>T (4.83)

T, can be found through knowing T, P;, which provides s; and s, is equal to s,.

Example 4.7
Consider a perfectly irreversible pump
Assume 7 = 0, ideal, and perfect gas

S, >S, (4.84)
And
hi:o _
n=0= zt i (4.85)
h —h,
Therefore,

B =h —>T, =T, (4.86)
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4.10 Examples and Problems

4.10.1 Examples

Example 4.8 Heat Engines

A gasoline engine produces 120 HP using 300 kW of heat transfer from burning
fuel. What is the thermal efficiency, and how much power is rejected to the
environment?

out

Wou _ 89.5kW —298%

q, 300kW
Using first law,

Gy = G+ W,00,300 = G, +89.5,G,, =210.5kW

Example 4.9 Carnot Heat Engine Problem

A Carnot heat engine runs between two heat reservoirs where the high-temperature
reservoir is at 400 C and the low-temperature reservoir is at 25 C. What’s the ther-
mal efficiency of the heat engine? If the heat transfer from the high-temperature
reservoir is 5000 BTU/hr., what’s the work out [BTU/hr.]? What’s the heat rejected
[BTU/hr.]?

T
p=Yo_1 L 28K 554,
i T, 73
and
w, =2786.0 BTU andg,, =2214.0 BTU
hr hr

l (:=5,000 BTU/hr.

Wour
—p

| w!o

-
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Example 4.10 Carnot Heat Pump and Refrigeration Problem Reverse the
Carnot heat engine given in Example 4.2 and determine the beta (coefficient of
performance) for a Carnot heat pump and Carnot refrigeration cycle.

T, T,
ﬂHP = # = ].79, ﬂRefri ) = # = '79
Thi - T}a ¢ T;'zi _T}o

Example 4.11 Using Entropy to Determine Heat Transfer for a Given Process
Nitrogen isentropically expands from 300 K to 600 K and the initially specific vol-
ume is 0.5 m*kg, then what’s the final specific volume?

v
As=s;" —si" +R ln[—zj
2 1 8
v]
3

T =300K,T, = 600K,v, =.5" R = 2968— _ o _ 68463 g
kg ¢ kg—K kg—K
kJ

kg—K

=7.5741

and

3

0=7.7541 - 6.8463 +.2968 * ln(v—;}v2 = .04305%
. g

Example 4.12 Entropy Change for a Solid
Stainless Steel (304) goes from 300 C to 600 C. What’s the change in entropy

[kJ/ke-K]?
T.
As =cln| =%+ =.46ln£gj =.194 kI
T 573 kg—K

Example 4.13 Entropy Change for an Ideal, Perfect Gas
Treating air as an ideal perfect gas, determine the entropy change from {25 C,
101.3 kPa} to {200 C, 250 kPa}.

¢ [kJ/kg-K] | 1.004
Rg [ki/kg-K] |0.287
T(1) [C] 25
T(Q2) [C] 200
T(1) K] 298
T(2) (K] 571

P(1) [kPa] 101.3
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Cp [kJ/kg-K] | 1.004
P(2) [kPa] 250
S(0,T1) |[kJ/kg-K] | 6.87305
S(0,T2) |[kJ/kg-K] | 7.5244
Delta(s) | [kJ/kg-K] |0.393628
Delta(s) | [kJ/kg-K] |0.392082

T, P,
As = CS In (—2] -R, In (—zj =.3936 K
T, 1 kg—K

Example 4.14 Entropy Change for an Ideal, Non-perfect Gas Using Table
Treating air as an ideal non-perfect gas, determine the entropy change from {25 C,
101.3 kPa} to {200 C, 250 kPa}. Use the appropriate equation and thermody-
namic tables.

P
As=s;7 -5 =R, In [—2] = .3921%
1 8~

Example 4.15 Entropy Change for an Ideal, Non-perfect Gas Using
Integration

Treating air as an ideal non-perfect gas, determine the entropy change from {25 C,
101.3 kPa} to {200 C, 250 kPa}. Use the appropriate equation and a cubic model for
specific heat, integrate the resulting equation.

ds = %,Tds =C dT + Pdv where5q—6w =du

and

ds:CVd—T+R a
T *v

Integrating both sides results in

T,
As = .[Cv (T)dTT+Rg ln(v—zj

I Vi

where c, is expressed as

c TIK
c, =P, + B0 +p,0°+p,0° andc—p =y wheref = [ %)OO
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e Brpe B
j?PdT =By In(T)+ fio+720" + 20"

.

kJ
kg—K

As = .40

Example 4.16 Irreversible Turbine

A steam turbine receives steam at a pressure of 2 MPa and a temperature of 300
C. The steam leaves the turbine at a pressure of 15 kPa. The work output of the
turbine is measured and is found to be 600 kJ/kg of steam flowing through the tur-

bine. Determine the efficiency of the turbine.
k,
2 MPa Woue = 600 _}
300C kg

> —P

15 kPa

h, =3051.15ﬂ,sl =7.1228 K
kg kg—K
At 15 kPa,
h, = 225.91ﬂ,h = 2599.06ﬂ,sl =.7548L,s =8.0084
kg ¢ kg kg—K ¢ k
And
iso k‘]
s, =8, > X =82.88%andh,, = 2192.68k—
8
Therefore,

600

= =T72%
3023.50-2192.68

n
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Example 4.17 Reversible Turbine
What would be the work output of a reversible turbine with an input pressure of
1 MPa and temperature of 300 C and an output pressure of 15 kPa?

1 MPa
300 C wis0
> . °
K
hy = 305115
712287
S51=1/. =5
. kg—-K 7 15 kPa

X =87.79%,h," = 2309.32g,and w' =741.83kJ / kg
8

Example 4.18 Adiabatic Turbine

Nitrogen (N,) enters a turbine where the overall thermal efficiency is 70%. The inlet
temperature and pressure of the fluid are 300 K and 200 kPa and the exit pressure is
100 kPa. Assuming an ideal fluid and assuming the turbine to be adiabatic, deter-

mine the exit temperature and work out.

300 K. 200 kPa W(out)
e ——0
100 kPa

This problem will be solved by two methods

1. Method of engineering efficiency based on enthalpies and steam tables.
2. Analytical solution.

Method 1 Solution
e Assume an ideal gas.
e Adiabatic

_ hAL‘[
T’wark out hl 21'30 (487)
hl - hz
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and
0 0 f)Z
As =S8, =5, —R,In| = (4.88)
1
and
057, ~6.8463- 2968 In( 11,57, = 6.641 K (4.89)
2 kg—K
and using a linear interpolation for S and T
S(1) 6.4250 T(1) 200
S(2) 6.6568 T2) 250
S(x) 6.6410 T(x) 246.59
T,(iso) = 247 K and using a linter interpolation for T and h
T(1) 200 h(1) 208
T(2) 250 h(2) 259.7
T(x) 247 h(x) 256.58
h,(iso) = 256.6 kJ/kg and w(iso) = 55.1 kJ/kg
Additionally,
kJ
w,, =nw,, =70%=*55.1= 38.6k— (4.90)

8

and h,(act) =311.67-38.6 =277.11 kJ/kg and using a linear interpolation for hand T

h(1l) 259.70 T(1) 250

h(2) 311.67 T(2) 300

h(x) 273.11 T(x) 262.90
T,(act) =263 K

Method 2 Solution

e Assume an ideal, perfect gas.

e Reversible.
¢ Adiabatic.

First law for the system is

4.91)
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and second law for the system is

and because the system is isentropic
y-1
T, (P 7

L, (R

and substituting Eq. 4.93 into Eq. 4.91 for T, results in

- R
_ pY P
Won = CpT1 1= Fz =cpTiq1= FZ

1 1

and using the definition of overall thermal efficiency for a work out device

A
act ¢
w P v
_ out act __ _ _2
n= iso Wou = T’CPTI 1 (P J

out 1

and

P zZ
ne T 1_[?2J =Cp (Tl_Tz)

and solving for T, results in

Ry Ry
n)" n)*
A IR

Given ¢, = 1.042 kJ/kg-K and R, = 0.2968 kJ/kg-K
Such that

99

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

4.97)

p % ) 2968/
wi =nc,T,41-| = =.7%1.042+300 1—(5j =39.2kJ / kg (4.98)
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and

2968/
< 1 1.042
=300 * 1—.7{1—(5] } =262K (4.99)

4.10.2 Problems

Problem 4.1 A room is heated with a 3-kW electric heater. How much power can
be saved if a heat pump with a beta of 3 is to be used instead?

Problem 4.2 An air conditioner discards 3 kW to the surroundings with a power
input of 1 kW. Find the rate of cooling and the Beta.

Problem 4.3 A Carnot heat engine has a thermal efficiency of 60%. If all else the
same but the high temperature is raised 10%, what is the new thermal efficiency?

Problem 4.4 A household freezer operates in a room at 25 C. Heat must be trans-
ferred from the cold space at a rate of 4 kW to maintain its temperature at —20
C. What is the theoretically smallest motor required to operate this freezer?

Problem 4.5 A piston/cylinder contains 1 kg of R-134a at 101.3 kPa. It will be
compressed in an adiabatic reversible process to 400 kPa and should be at 100
C. What should the initial temperature be?

Problem 4.6 Water at 300 C and 2 MPa is brought to saturated vapor in a rigid
container. Find the final temperature and the specific heat transfer.

Problem 4.7 Two 10 kg blocks of copper, one at 300 C and the other at 25 C, come
into thermal contact with each other. Find the change in entropy of the system and
the final temperature.

Problem 4.8 R-410a at 400 kPa is brought from 20 C to 120 C in a constant pres-
sure process. Evaluate the entropy changes using the constant specific heat approach
and the ideal gas tables that evaluate the integral involving specific heat.

Problem 4.9 A rigid tank contains 5 kg of methane at 1000 K and 1 MPa. It is now
cooled to 300 K. Find the heat transfer and the entropy change.

Problem 4.10 A steam turbine inlet is at | MPa and 300 C. The exit is at 100 kPa.
What is the lowest possible exit temperature? Which efficiency does this corre-
spond with?
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Problem 4.10 A steam turbine inlet is at 1 MPa and 300 C. The exit is at 100 kPa.
What is the highest possible exit temperature? What efficiency does this corre-
spond with?

Problem 4.11 A steam turbine inlet is at 1 MPa and 300 C. The exit conditions are
200 kPa and 200 C. What is the isentropic efficiency of this turbine?

Problem 4.12 Steam enters a turbine at 300 C and 1 MP and exits as saturated
vapor at 50 kPa. What is the isentropic efficiency?

Problem 4.13 Two compressors for an agricultural application involving ammonia
as a fertilizer are being evaluated in an economic study. The selected compressor
will only be utilized for three years, and it will have no market value at the end of
the year. The interest rate is 10%, compounded annually. Pertinent data are sum-
marized as follows:

ABC | XYZ
Investment cost $2900 | $6200
One-year maintenance cost | $170 | $510
Efficiency 80% | 90%

The compressor will be used to compress 945 kg per hour of ammonia initially
at 20 kPa and 300 K to a pressure of 0.1 MPa. If electricity costs 10 cents per kWh
and the compressor will be operated 4000 hours per year, which compressor should
be chosen? Assume ammonia is an ideal gas with a constant heat capacity.

Problem 4.14 120 kg/min of nitrogen gas is compressed from 1 bar and 25 °C to
10 bar and 25 °C using a two-step process. The first step adiabatically compresses
the nitrogen from 1 bar and 25 °C to 10 bar. This adiabatic compression step requires
150 kW of work. The second step involves cooling the nitrogen exiting the com-
pressor to 25 °C in a heat exchanger using water. The water enters the heat exchanger
at 25 °C and exits at 40 °C. Determine the temperature of the nitrogen exiting the
compressor and the mass flow rate of water needed for the cooling. Use a
temperature-dependent heat capacity for nitrogen given as a cubic polynomial.

Problem 4.15 Air enters an adiabatic nozzle steadily at 300 kPa, 200 °C, and
35 m/s. It leaves at 100 kPa. The nozzle inlet has a diameter of 20.0 cm. If the outlet
area of the nozzle is 5.60% of its inlet area, determine the exit temperature and
velocity of the air. Use a temperature-dependent heat capacity for air given as a
cubic polynomial.

Problem 4.16 Ammonia flowing at 1 mol s7' is adiabatically compressed from
0.2 bar and 300 K. The compression requires 6450 J mol~' of work. If the compres-
sor has an efficiency of 75%, determine the outlet pressure and temperature of the
ammonia. Assume that ammonia behaves as an ideal gas with a temperature-
dependent heat capacity given as a cubic polynomial.
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Chapter 5
Various Heat Engines and Refrigeration
Cycles

5.1 Preview

Previously, we have seen how four engineering devices can be arranged in a certain
order to provide a Rankine cycle, which is given in Sect. 3.8; Rankine cycles form
the basis to electrical power generation for much of this country [1]. We have also
explored the Carnot heat engine, heat pump, and refrigeration cycles.

In this chapter, we will explore in more depth two classes of heat engines (and
refrigeration cycles): the first class is known as a vapor phase cycle and the second
class is known as a gas cycle. For vapor phase cycles (Rankine cycle and reverse
Rankine cycle), the cycle goes through a series of phases and often involves water.
As well we know, when water is involved states change in such a manner that we
resort to thermodynamic tables to determine quantities such as heat added or work
released. For gas phase cycles, we’ll assume the working fluid is air, has constant
properties such as c,, and that the ideal gas law is applicable; in gas phase cycles,
there are no changes in phase.

A major aspect of this chapter is the development of an equation for thermal
efficiency for heat engines, which is defined as

w —W.
— net __ out in
Noverant = - (5 .1 )
qin qin

And for refrigeration cycles, coefficient of performance is determined, and
defined as

p = (5.2)
w
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Please note for actual heat engines and refrigeration cycles, finding heat and
work are not as easy to determine as for Carnot heat engines and refrigeration
cycles and will involve energy and entropy balances around each engineering device.

Many of the principles of this chapter will be made clear by examples.

5.2 Vapor Phase Cycles

In this section, we’ll review (by examples) the Rankine cycle that is a form of heat
engine and then reverse these Rankine cycles to form a refrigeration cycle.

Example 5.1 Rankine Cycle
Determine the overall thermodynamic efficiency of the Rankine cycle given as
Table 5.1.

As was shown in Sect. 3.8, the steps in completing the problem are as follows

1. Determine the enthalpy for each state by conducting an energy balance around
each engineering device; h, is given from the thermodynamic tables; h, is deter-
mined by knowing the pump work; h; is given from the thermodynamic tables;
and h, is determined by assuming s; equals s, and finding the enthalpy of the
mixture with the same quality as s,

2. Determine the heat and work associated with each engineering device

. Check that the sum of the work is equal to the sum of the heat

4. Determine the overall thermal efficiency

N}

Each step is given below

Energy Balance around Pump

Work is considered negative when it’s toward the system (Fig. 5.1).
It was determined that h; = 225.91 kJ/kg and v, = .00101 m’per kg
The energy balance for the pump is

b +ow, =h, (5.1)
Table 5.1 Example 5.1 (Given)
| Given
State MNo. T
=

1

2 2,000

3 300 2,000

4 15 X Mixture

~gfout) Condenser
1 15 ] Saturated Liquid
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Fig. 5.1 Pump

Fig. 5.2 Boiler

Fig. 5.3 Turbine

Fig. 5.4 Condenser

105

Energy Balance around Pump
hl h2
-
A

‘I Win

Energy Balance around Boiler

Energy Balance around Condenser

‘ - - ‘ N
hl | h4
Qoue

v
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Another form of the energy equation for incompressible fluids (assuming v, =v,) is

PE, + (Pv)l + KE, + frictional losses
+ pump work + turbine work = PE, + (Pv)2 +KE, 5.2)

B v P, v
gz, +—1+V—1—hL+hp—hT :gZZ+—2+V—2
p 2 p 2

where it is assumed AKE = APE=h;,=h;=0

Thus,
£+ h, = Li1 (5.3)
P P
or
—5w,, =v,AP =(.00101)(1985) = 2.0kJ/kg (5.4)
and
h, =22591+2=2279kJ/kg (5.5)

Energy Balance around Boiler
Heat is considered positive when it’s toward the system.
It was determined that h; is 3023.5 kJ/kg and the energy balance for the boiler is

h,+8q, = hy,227.91+8¢, =3023.5,8q, =2795.58kJ/kg (5.6)

Energy Balance around Turbine
Work is considered positive when it’s away from the system.
Because the turbine is isentropic, s; = s4 and

kg

S5 :6.77k 7
g —

=s, :sl-i-X(sg —s,)

Where for 15 kPa

P s(l) s(g) s(mix) X
[kPa] [kJ/kg-K] [kJ/kg-K] [kJ/kg-K]
15 0.7584 8.0084 6.77 82.9%
X h(l) h(g) h(mix)

[kJ/kg] [kJ/kg] [kJ/kg]
82.9% 22591 2599.06 2192.69

and hy, =2192.7 kJ/kg and the energy balance for the turbine is
h,=6w,, +h,,2023.5=0w,

out

+2192.7,5w,, =830.8kJ/kg (5.7)

Energy Balance around Condenser
Heat is considered negative when it’s away from the system.
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The energy balance for the condenser is
h,=68q,,+h,21927=6¢q,,+2259,6q,, =-1966.7kJ/kg (5.8)

The summary of the solution is given as Table 5.2 where Y.5¢; = Y. éw; and the
overall thermal efficiency is 29.65%.

5.2.1 Improvements to Rankine Cycle

This section will determine the effects on the overall thermal efficiency of changing
the following

1. Increasing the boiler pressure
2. Increasing the boiler temperature
3. Reducing the condenser pressure

These changes are given as Examples 5.2, 5.3, and 5.4.

Example 5.2 Increase Boiler Pressure
The solution is given as Table 5.3.

Example 5.3 Increase Boiler Temperature
The solution is given as Table 5.4.

Example 5.4 Reduce the Condenser Pressure
The solution is given as Table 5.5.

Table 5.2 Example 5.1 (Solution)

| Solution ]
3 53.97 15 ]0.00101 ] Saturated Liquid | 22591 0.75
AL | S R Rphn TR |
2 2,000 Compressed Liquid | 227.923 0.75
2795.58 Boller
F] 200 2,000 [0.12547 Suparheated Vaper| 30235 677
£30.82 | Isentropic Turbine
4 15 82.85% Mixture 2192.68 6.77
986,77 | Condenser
1 15 ] Saturated Liguid | 225.91 0.75 |
828.81 828.81
Difference = ]
Eff= 29.65%
| Linear in! |
X[1} 779 ¥i1) 87 ¢ )
Fa =y,
X2} toss | vzl [e73s | o, =¥ = Mde, o hay L=vta(y-n)
x 800 ¥ 87.47 (xz —x,)
P 1) slg} sfeming} x L[] hig) hfmix)
[kPa] [l fig-K] | [ied feg-K] | [l fleg-K] [ fig] [ fig] [l fieg]
15 0.7548 | 8.0084 | 6.7863 82.88% 22581 2599.06] 219268
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Table 5.3 Example 5.2 (Solution)

Table 5.4 Example 5.3 (Solution)

Table 5.5 Example 5.4 (Solution)

Effs 33.24%
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Table 5.6 Summary

Scenario | Description q(in) q(out) w(in) w(out) |n % Change
kgl | [kI/kel | [KI/kel |[KD/ke]

1 Base case 2795.577 | —1966.77 | -2.013 |830.82 |29.65% | 0.00%

2 Increase T(hi) |3129.56 | —-2136.28 |-2.01 99529 31.74% | 7.05%

3 Decrease P(lo) |2883.705 |—1925.17 | -2.005 |960.54 |33.24% |12.12%

4 Increase P(hi) |2730.73 —18343 | —-4.04 190047 [32.83% |10.73%

A summary table is given as Table 5.6. From the table, we see that reducing the
pressure in the condenser has the largest positive effect on overall thermal efficiency.

5.2.2 Effects of Engineering Efficiency on Overall
Thermal Efficiency

In this section, the effects of engineering efficiency associated with the pump and
turbine on overall thermal efficiency are explored. The difference between this sec-
tion and the previous section is that an additional table is created to determine the
enthalpies at states “2” and “4” for actual conditions where the appropriate equa-
tions are given below.

T) _ h;':o _ hl
pump act
hz - hl

-k

r’turbine - iso
h3 - h4

h;zct =hl+h2 _h'l

npump

h:cr = h3 ~Niurbine (h3 N hfa )

Example 5.5 90% Efficient Pump and Turbine
The solution is given as Table 5.7.

Example 5.6 80% Efficient Pump and Turbine
The solution is given as Table 5.8.

Example 5.7 70% Efficient Pump and Turbine
The solution is given as Table 5.9.
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Table 5.7 Example 5.5 (Solution)

1 53.97 15 | [ | 25, |
2 2,000

3 = 2000 | 042547 | sum

- & e | e TS |

1 15 { 0 | Saturatediiquid | 22591 |

Table 5.8 Example 5.6 (Solution)

Table 5.9 Example 5.7 (Solution)
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Table 5.10 Summary

Scenario | Description q(in) q(out) w(in) w(out) | Etta % Change
[ki/kg] | [kI/ke] [k/kg] | [kI/ke]

5 90% efficient 279535 | —-2049.85 |-2.24 |747.74 |26.67% | —10.04%
pump and turbine

6 80% efficient 2795.07 | -213293 |-2.52 |664.66 |23.69%  —20.09%
pump and turbine

7 70% efficient 279471 | -2216.02 |-2.88 |581.57 |20.71% | —30.16%
pump and turbine

WARM
environment

Qy
I Saturated 2 /

- Condenser \- liquid
3 2 . Q
—_— 3 w
: W, . in
Expansion [y atn . “
valve  Compressor |
: 1 SN MY
4 4 Q
Evaporator — j— B
Saturated vapor

r Q 5
COLD refrigerated
space

Figs. 5.5 and 5.6 Reverse Rankine cycle [2]

A summary of Examples 5.5, 5.6, and 5.7 is given as Table 5.10. Please note with
a 10% decrease in engineering efficiency of the pump and turbine there is an equal
decrease in the overall thermal efficiency of 10%; additionally, the increased
work(in) due to inefficiencies in the pump are minor compared to the loss of
work(out) due to inefficiencies in the turbine and, as such, much of the reduction in
overall thermal efficiency is attributable to the turbine inefficiencies.

5.2.3 Reverse Rankine Cycle

The reverse Rankine cycle is shown in Figs. 5.5 and 5.6. The reverse Rankine cycle
involves the following four processes and the device that provides undertakes
the process
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1->2, Pressure Increase (work added), Isentropic Compressor
2->3, Heat Dumped, Condenser

3->4, Pressure Decreased (work extracted), Isenthalpic Valve
4->1, Heat Added, Evaporator

In order to determine Eq. 5.2 particular to a reverse Rankine cycle, an energy
balance must be conducted around each engineering device and all states, heat, and
work accounted for in a table.

The following simplifying assumptions and conditions were made

. Isentropic compressor, s, = s,

. State 1 is a saturated vapor at T},

. State 2 is a superheated vapor at T;
. State 3 is a saturated liquid at T;

. State 4 is a mixture at Ty,

[ I SO I NS I

Note — the sum of the work equals the sum of the heat for a cycle.

Energy Balance for Compressor The energy balance around the compressor in
Fig. 5.7 is

h+w, =h, 5.9
And solving for w;,

w, =h —h (5.10)

Energy Balance for Condenser The energy balance around the condenser in
Fig. 5.8 is

h2 ZQOut+h3 (511)
And solving for qgy

Gy =h —hy (5.12)

Energy Balance for Expansion Valve The energy balance around the expansion
valve in Fig. 5.9 is

h3 = h4 = hsl,Thi (5.13)
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Fig. 5.7 Compressor Energy Balance for Compressor

hl . hz
e e
Fig. 5.8 Condenser Energy Balance for Condenser
qwl
h3 hz
-— -
Fig. 5.9 Expansion Valve Energy Balance for Expansion Valve

hy
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Fig. 5.10 Evaporator Energy Balance for Evaporator

hy hy

= Evaporator =

Table 5.11 Various States, heat and work for a reverse Rankine cycle

State | Process/Device T P s X |h dw dq
[K] |[MPa] |[KJ/kgK] [ki/kg] | [kJ/ke] |[kJ/kg]

1 T, P, h,

Isentropic compressor “Wip
2 T, |P, h,

Condenser +Qin
3 T, |P, h;

Expansion valve 0
4 T, P, h,

Evaporator -Qout
1 T, P, h,

Energy Balance for Evaporator The energy balance around the evaporator in
Fig. 5.101s

h,+q, =h (5.14)
And solving for qgy

G =h—h, (5.15)
Once all enthalpies, works, and heats are determined, then a table (see Table 5.11)

is completed and the coefficient of performance for the cycle is calculated, which is
given as

=~

_ e _h—h
B P

in 2

(5.16)

=
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The final step is to check the first law of thermodynamics for a cycle

2.8q=206w (5.17)

Example 5.8 Reverse Rankine Cycle
Problem Statement

A reverse Rankine cycle has a T, of —10 C, Py; of 1 MPa, and the working fluid
is R-134a. Find q,, qi;, and Beta,;.

Strategy

Determine all enthalpies and using energy balances around each engineering
device, determine wi,, Wou, Qin, and g, Once all this is found, determine beta for the
refrigeration cycle.

Solution

State 1 — Saturated Vapor

h, = h(saturated vapor) = 392.28 kJ/kg
s; = 1.7319 klJ/kg-K = s,

State 2 — Superheated Vapor
Using a linear interpolation, find h,
1000 kPa

s [kJ/
T[C] |kg-K] |h[kl/kg]
40 1.7148 |420.25
50 1.7493 |431.24
4494 | 1.7319 | 425.68

h, is 425.68 kJ/kg
State 3 — Saturated Liquid

At state 3, pressure is 1000 kPa and X = 0%, using saturated R134a tables plus
linear interpolations

Pressure [kPa] | T [C] |h [kl/kg]
877.6 35 249.10
1017 40 256.54
1000 39.34 |255.56

h; 18 255.56 kJ/kg

State 4 — Mixture

Since h; = hy, h, is 255.56 kJ/kg

Using the following equations,
w,, =h —h, =392.29-425.68 = -33.40kJ/kg
q, =h,—h, =255.56—-425.68 =—-170.12kJ /kg

q, =h —h, =392.28—255.56 =136.72kJ /kg
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And beta for the refrigeration cycle is

13672
33.40

B 4.09

5.3 Gas Cycles

In this section, the following assumptions will be made (air-standard cycle)

Air is the working fluid, acts ideal, and there is no inlet process, nor outlet process
Combustion is treated as an external heat added to the system

The cycle is completed by heat dumped to the atmosphere

All processes are internally reversible

Specific heat is assumed constant and takes the value for air at 300 K

Dk e =

5.3.1 Brayton Cycle

The first example of an air cycle we’ll look at is the Brayton cycle, which is given
in Figs. 5.11 and 5.12.
The following simplifying assumptions and conditions were made

1. Isentropic compressor, s, = §,.
2. Isentropic turbine, 53 = s,
3. The combustion is isobaric, P, = P;

Note — the sum of the work always equals the sum of the heat for a cycle.

Energy Balance for Compressor The energy balance around the compressor in
Fig. 5.13is

i T
mbustion
Fuel Combustio A 3
Work
out 4
Compressof Turbine
2
i & i
o Lt u
Fresh Air Exhaust - Q -
Passes P-v Diagram b4 T-s Diagram s

Figs. 5.11 and 5.12 Brayton cycle [3]
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Fig. 5.13 Compressor Energy Balance for Compressor
hi . hz
— —
Energy Balance for Combustion Chamber

h;

Fig. 5.14 Combustion chamber

ho+w, =h (5.18)
And solving for wy,

w, =h,—h, (5.19)

Energy Balance for Combustion Chamber The energy balance around the com-
bustion chamber in Fig. 5.14 is

hz + qin = h3 (520)
And solving for q;,

4y =h —h, (5.21)
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Fig. 5.15 Turbine Energy Balance for Turbine
hy Wout
—_— -_—

hy

Energy Balance for Turbine The energy balance around the turbine in Fig. 5.15 is

hy=w, +h, (5.22)
And solving for w,
w, o =h,—h (5.23)
Using Eq. 5.1,
w-n_, 55
c -
Mo =1~ 2 =1 =2t - L0 (5.24)
qhi Cp T3

Equation 5.24 can be simplified further by putting 7% and % in terms of
pressures (see Egs. 5.25, 5.26, and 5.27). ! 2
Note

(5.25)

ol
|

Using the state equations for the isentropic path from state 1 to 2 results in

Y
2-(2] (5.26

P \T

And
Using the state equations for the isentropic path from state 3 to 4 results in
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Y
P T. /7"
3|3 (5.27)
F,\1T,
From Egs. 5.25, 5.26, and 5.27 it is easy to see that
T, T,
322 (5.28)
T
And

L L (5.29)
T,

T(ET_Q T,
r’overall =1 - l =1- - (530)
o)
2
And from Eq. 5.26
T 1
rloveml[ =l-—=1 T 4
T, FAR
B
And defining
P,
r = 7? (5.31)
Results in
v
rlovem[[ =1- Vp/771 (532)

Another quantity of interest when dealing with Brayton cycles is to determine
how much of the turbine work goes back to the system to drive the compressor,
which is defined as back work rate (BWR) and given as

w - T
BWR — compressor — 1 — 2 (5'33)
T

Wlurhine
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Example 5.9 Brayton Cycle

Problem Statement

Given an air standard Brayton cycle where the ambient conditions are 100 kPa and
25 C, the r, associated with the compressor is 10 and the highest temperature in the
system is 1100 C, determine Wi, Woy, Qin, and qqy, the overall thermal efficiency, and
the back work rate.

Strategy

Determine pressures and temperatures for all states. Once all temperatures are
known and assuming an ideal, perfect gas, then the enthalpies are determined.
Knowing all enthalpies perform an energy balance around each engineering device
to determine work(in), work(out), heat(in), and heat(out). Once all this is deter-
mined, find the overall thermal efficiency and back work rate (BWR).

Solution

State 1
This is given as 100 kPa and 25 C (298 K).

State 2
Assuming an isentropic relationship between states 1 and 2, the following equation
is appropriate for determining T,.

N

14 A

Q: i =10 > T, =556 K
T P

1 1

And P, is given as 1000 kPa.

State 3
T; is given as 1100 C (1373 K).

State 4

4
T, (P77
—4:[—4] =L—>T4=711K

4
T3 1 Oﬁ

Once all temperatures, compute all enthalpies, i; = ¢,T;, and determine wi,, Wy,
Qin» and g, from the following equations:

w, =h —h, = 289.152Q—M =-269.11kJ/kg
kg kg
q, =h,—h, =1374.49 -558.2651 = 820.23 kJ /kg

w,. =hy —h, =1378.49-713.99 = 664.51kJ/kg

out

q,, =h —h, =289.15-713.99 = —424 83 kJ/kg
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Additionally,

~820.23-269.11

=48.2%
820.23
WBR = 269‘; =40.5%

5.3.2 Reverse Brayton Cycle

Using the definition of coefficient of performance for a refrigeration cycle we see

B = 4 _ h—h,
W, =W, (=)= (h—h,)
Cp(Tl_T4) _

_ _ T
¢,(L-T)=¢c,(L-T.) (

T,
(1,-T,)

r-1,) L
LT,
and

-7,
—(

(5.34)
-1

(5.35)

where

(5.36)
and

(5.37)
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Hot
reservoir

Figs. 5.16 Reverse Brayton cycle [4]

Therefore,

B = = = (5.38)

5.4 Examples and Problems

5.4.1 Problems

Problem 5.1 Rankine Problem

A Rankine cycle utilizing ammonia as the working fluid runs between two 100 kPa
and 1000 kPa with a high temperature of 40 C. Assuming that the pump and turbine
are isentropic, what’s the overall thermal efficiency?
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Problem 5.2 Rankine Problem
Redo Problem 5.1, but with a pump and turbine at 80% isentropic efficiency, what’s
the overall thermal efficiency?

Problem 5.3 Reverse Rankine Problem

Consider a reverse Rankine cycle utilizing R-134a as the working fluid. The tem-
perature of the refrigerant in the evaporator is =30 C and in the condenser is 40
C. The refrigerant is circulated at the rate of 0.05 kg/s. Determine the beta and the
capacity of the plant in rate of refrigeration.

Problem 5.4 Reverse Rankine Problem
Redo Problem 5.3, but with a compressor at 80% isentropic efficiency, what’s the
new beta?

Problem 5.5 Brayton Problem
A Brayton cycle with r, of 5 and high temperature of 1200 C has ambient conditions
of 0 C and 80 kPa. What’s the overall thermal efficiency and BWR?

Problem 5.6 Brayton Problem
Redo Problem 5.5, but with a compressor and turbine at 80% isentropic efficiency,
what’s the overall thermal efficiency?

Problem 5.7 Reverse Brayton Problem
Consider a reverse Brayton cycle where air enters the compressor at 80 kPa and 0 C
and leaves at 400 kPa. Air enters the expander at 20 C. Determine Beta for the cycle.

Problem 5.8 Reverse Brayton Problem
Redo Problem 5.7, but with a compressor at 80% isentropic efficiency, what’s the
overall thermal efficiency?

Problem 5.9 Rankine Cycle

A 210-MW steam power plant operates on a simple ideal Rankine cycle. Steam
enters the turbine at 10 MPa and 500 °C and is cooled in the condenser at 10 kPa. If
the efficiency of the turbine and pump are 85% and 90%, respectively, determine the
following:

(a) The quality of the steam at the turbine exit.
(b) The thermal efficiency of the cycle.
(c) The mass flow rate of the steam.

Problem 5.10 Brayton Cycle

An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio of
10. Heat is added to the cycle at a rate of 500 kW. Air passes through the engine at
arate of 50 m® min~' at STP. Air entering the compressor is at 70 kPa and 0 °C. The
efficiency of the compressor and turbine are 80% and 90%, respectively. Assuming
that air behaves as an ideal gas with a temperature-dependent heat capacity given as
a cubic polynomial, determine the power produced by the engine and its thermal
efficiency.
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Problem 5.11 Refrigeration Cycle

You are designing a refrigeration cycle that operates on the ideal vapor-compression
cycle. The temperature range of the cycle is between 0 °C and 50 °C. The working
fluid is R-134a. The cooling load is to be 20 kW. Two compressor options are to be
considered: (1) a 70% efficient compressor; or (2) an 80% efficient compressor that
is $5000 more expensive. The compressor runs on electricity which costs 10 cents
per kWh. Assuming the system runs constantly, how long would the system have to
be run in order for the higher-efficiency compressor to be cost-effective?

Appendix 5.1: Rankine Cycle Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 5.2: Reverse Rankine Cycle Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 5.3: Brayton Cycle Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Chapter 6
Thermodynamic Properties and Gas
Mixtures

Check for
updates

6.1 Preview

The purpose of this chapter is the following. There are certain quantities within the
thermodynamic tables that we cannot derive through experimentation but determine
through measuring other quantities and what are known as the Maxwell relation-
ships. These relationships relate one set of states to another set of states. An

example is
v T .

So that if we know the relationship between pressure and temperature at a fixed
volume this helps us to understand the relationship between entropy and specific
volume at a fixed temperature.

Another facet of the chapter is to utilize the Maxwell relationships to relate states
across the mixture dome from saturated liquid to saturated gas; this developed rela-
tionship is known as the Clapeyron equation. This process allows us to determine
the heat of vaporization solely in terms of {T, P, v} through either experimentation
or the appropriate equation of state, which was discussed in Chap. 1.

The chapter also provides relationships for the first law and second law solely in
terms of temperature and pressure. For these relationships to be complete, we also
need to have an appropriate equation of state.

The final part of the chapter provides a method of determining relationships
between temperature, pressure, and specific volume for a gas mixture.
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6.2 Maxwell’s Equations

For a closed system, the energy of the system is

de=0dq,,, —6w,, (6.2)
And using the definitions of entropy and work
de =Tds — Pdv (6.3)
For an open system, the energy of the system is
dh =de+ Pdv +vdP 6.4)
Substituting Eq. 6.3 into Eq. 6.4 results in
dh=Tds +vdP (6.5)
For a closed system, the entropy balance of the system is
da =—Pdv —sdT (6.6)

where a is a measure of the Helmholtz energy.
For an open system, the entropy balance of the system is

dg =vdP — sdT 6.7)

where g is a measure of the Gibbs energy.
All quantities in Egs. 6.3, 6.5, 6.6, and 6.7 are states and described by exact dif-
ferentials. The total differential for a quantity F is given as

dF:de+Ndy:(a—F) dx + 8_F dy (6.8)
ox ), oy ).
where M =(8—Fj and N = 6_F and further
ox y oy ),
2
aﬂ = OF (6.9)
oy ). Oyox
and
2
[G_N) = or (6.10)
ox ), 0OxOy

Because dF is an exact differential, Egs. 6.9 and 6.10 are equivalent.
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Using the fact that Egs. 6.3, 6.5, 6.6, and 6.7 are all exact differentials, the fol-

lowing conditions hold for Eq. 6.3

(%j =T and (a—uj =-P
0s ), ov ),

For Eq. 6.5,
(%] =T and (%j =v
0s Jp OP ),
For Eq. 6.6,
(a_aj =—Pand (a_aj =—s
ov ), oT ),
For Eq. 6.7,

(a—gJ =vand (a_g) =—s
oP ), oT ),

6.11)

6.12)

(6.13)

(6.14)

Using Egs. 6.11 through 6.14, we get a set of equations known as the Maxwell

equations [1, 2].

(6.15)

(6.16)

6.17)

(6.18)

Another set of Maxwell equations that has proven to be more useful is [1].

(&)%)

(6.19)
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%) (%)
op) \os ),
-5
oT ), ov ),
&) ()
or ),  \oP),
6.3 Enthalpy and Entropy as Functions of T and P

Given

de:[@j dn[%j ap
or ), oP ),

ds = o dT + @j dv
oT ), ov ),

We want to define Eqgs. 6.23 and 6.24 solely in terms of {7, P}.

By definition,
Oe
C, =|—

&)

Substituting Egs. 6.25 and 6.26 into Eqs. 6.23 and 6.24 results in

And

And using Eq. 6.21

de=C,dT + [gj dP
oP

T

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

6.27)



6.3 Enthalpy and Entropy as Functions of T and P
and
P
ds = G5 dT + op dv
or ), or ),

And using Eqs. 6.3, 6.27, and 6.28 we can get

de:chTJ{@j dP =Tds—Pdv =T [ﬁj dT+(a—Pj dv b~ Pdv
oP ), or ), or ),

And combining like differentials results in

(57 )efor-{(50) () o

where

and

) erfi)o
ov ), oT

Substituting Eq. 6.31 into 6.28 and Eq. 6.32 into Eq. 6.28 results in

de = C,dT +[T(6—PJ —P} dv
or ),

and

dszﬁdT+ 6—Pj dv
T oT ),

Further, du and dh can be related through

Ah=Ae+ Py, - Py,

129

(6.28)

(6.29)

(6.30)

6.31)

6.32)

(6.33)

(6.34)

(6.35)



130 6 Thermodynamic Properties and Gas Mixtures

And dh can be shown to be
ou
dh=C,dT +\v-T 5 dP (6.36)

The above discussion was for a single phase. What follows is a discussion that
addresses state changes under the mixture dome from the saturated liquid to satu-
rated gas lines.

Starting with Eq. 6.5

dh=Tds+vdP (6.37)
And for a constant temperature and pressure
dh =Tds (6.38)
And integrating both sides results in
h,—h =T (s, —s,) (6.39)

And utilizing the Maxwell relationship (Eq. 6.21)

)2
ov ), \oT ),

where the right-hand side is actually independent of specific volume

(ﬁj [G_Pj (641)
ov ), \0oT ),
. . oP) . .
And integrating (where | — | is constant) results in
Sat
s, =
$ 1:(‘3—’)) (6.42)
v, =V, oT ),

And substituting Eq. 6.39 results in

h —h
1% I:EG—PJ (6.43)
Tv,—v, \dT ),

The beauty of Eq. 6.43 is that i, — h, can be determined by knowing the relation-
ship between {7, P, v}, which can be either determined experimentally or through
an appropriate equation of state.
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RT
Further, v, > v, and assuming v . = % results in

L1h—h _(op (6.44)
T RKT - aT Sat .
P
Another form of Eq. 6.44 is
Ah
E = id—{ (6.45)
P R, T

And assuming Ah,, is constant results in the Clausius-Clapeyron equation [1].

In(P)= —%%w (6.46)
g

Example 6.1 Application of Clausius-Clapeyron Equation.
We see for water from saturation pressure 5 kPa to 200 kPa has the following rela-
tionship between 1/T and P.

While the Ahg, does vary as shown in Fig. 6.2, from Fig. 6.1 and using a value
of 0.4615 kJ/kg-K for R,, the calculated value for Ahg,, is 2344 kJ/kg and an accept-
able estimation for the given saturated pressure range.

6.00

5.00

y =-5078.5x + 18.23
2.00 R? = 0.9999

1.00

0.00
2.00E-03 2.50E-03 3.00E-03 3.50E-03
YT

Fig. 6.1 1/T versus In(P) for Water
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2450

2400

2300

delta(h) [kI/kg]

2250

2200

2150

300.00 320.00 340.00 360.00 380.00

TIK]

Fig. 6.2 T versus delta(h) for Saturated Water

y =-2.5309x + 3200.1

6.3.1 Enthalpy and Entropy Functions for Ideal, Perfect Gases

For an ideal, perfect gas and utilizing Eqs. 6.34 and 6.36, a relationship will be
developed to account for the energy and entropy balance for an ideal gas.

For an ideal gas,

(ap] R (avj R RT
— | =—,|— | =—,and v =—
or), v\er), P P

From Eq. 6.36, it is easily shown

dh=C,dT

Ah=C,AT

AS=C, In [Qj +Rin ["—2]
T, Vi

And from Eq. 6.34

(6.47)

(6.48)

(6.49)

(6.50)
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6.3.2 Enthalpy and Entropy Functions for Van der Waal Gas

Using the equation of state for a van der Waal gas and Eqs. 6.34 and 6.36, a relation-
ship will be developed to account for the energy and entropy balance for a non-
perfect, van der Waal gas.

(G_Pj _ & (6.51)
or), v-b

From Eq. 6.33, it is easily shown

de = C,dT +-= dv (6.52)
v
And from Eq. 6.34
R
dgs=c, LTy R gy (6.53)
v—>b

An enthalpy balance can be determined by relating Au and Ah through Eq. 6.35.

6.4 Composition of Mixtures

The composition of a mixture can be expressed either on a molar basis or a mass
basis; each is discussed below.

6.4.1 Molar Basis

33

The mole fraction of species “i” is defined as

N
= 6.54
xi SN (6.54)

3%

where N, is the number of moles of species “i”.
By definition

Yy =1 (6.55)

And



134 6 Thermodynamic Properties and Gas Mixtures

MW

6.4.2 Mass Basis

[

The mass fraction of species “i” is defined as

m,
Y = Z_nlq (6.57)
where m; is the mass of species “i”.
By definition
XY =1 (6.58)
And
MW,
Y =y, MW’ (6.59)

mix

6.5 Gas Mixtures, Part I

In this section, the question that will be asked is how to determine a specified state
{T,P, v} of a gas system made from two or more substances? Another method
applicable to cubic equations of state will be given in Sect. 6.6.

An example of determining the total mass for a binary mixture is given below.

Example 6.2 Gas Mixture Problem

A 2 kg mixture of 50% argon and 50% nitrogen by mole is in a tank at 2 MPa,

180 K. How large is the volume using (a) Ideal Gas Law and (b) Kay’s Rule?
We’ll discuss both methods and then solve this problem. Note there are other

methods [1, 2].

6.5.1 Ideal Gas Mixtures

The idea behind an ideal gas mixture is that each component independently contrib-
utes to the state {n, P, V}. This is expressed mathematically for volume as
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Vo =V 4V, 4.V, (6.60)
And
RT n,RT RT
vV, =cate  Pet I (6.61)
P P P

Similar expressions can be developed for pressure or molar mass.

6.5.2 Kay’s Rule

The idea behind Kay’s rule is that the critical pressure and temperature for the mix-
ture is a linear combination of each component and given by

mixture

critical XA 7wcl:‘itical + XBT‘cfitical +...+ ZX chilical (662)
And
PL":I;C:‘Z;e = %A I)c/:itical + xBf)clrgitical +...+ XXPL‘i(iIiCa[ (663)
where y; is defined as
7= moles of i (6.64)

* total moles

The correction factor to the ideal gas solution is to determine the z factor associ-
ated with the Lee Kessler chart using the critical temperature and pressure associ-
ated with the mixture.

The solution for Example 6.2 is given below.

Substance(A) Argon

Substance(B) Nitrogen mwany + mwgng =2 kg

Total mass [ke] 2.00 ‘ ‘
Temperature | [K] 180.00 39.948n, +28.013n; =2

Pressure [MPa] 2.00

X(A) 0.50 39.948{ ¥atioar} + 28.013 {ypnipm} =2
X(B) 0.50
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Substance(A) Argon
Mw(A) [kg/ 39.95
kmole]
Mw(B) [kg/ 28.01
kmole]
R(u) [kJ/ 8.31
kg-kmole]
PV=nRT |
Find total volume
n(total) [kmoles] | 0.0588573 \
n(A) [kmoles] | 0.0294286 PV =nZR,T
n((B) [kmoles] | 0.0294286
V(A) [mA3] 0.0220216
V(B) [m”3] 0.0220216
V(Total) [m”3] 0.0440
Substance P[critical] | T[critical] X(*) | P*[critical] | T*[critical]
[MPa] [K] [MPal] (K]
Argon 4.87 150.8 50% |2.435 75.4
Nitrogen 3.39 126.2 50% | 1.695 63.1
4.13 138.5
T P T[r] Plr] |Z A%
[K] [MPa] [m"3]
180 2 1.30 048 0.92 0.0405
Method \%
[m"3]
Ideal gas 0.0440
Kay’s rule 0.0405

6.6 Gas Mixtures, Part I1

We saw in Chap. 1 that when pressure increases for a fixed temperature or tempera-
ture decreases for a fixed pressure, then some of the assumptions that ideal gas
behavior is based on are no longer valid. To address these concerns, cubic equations
of state (EOS) were developed that mimic the behavior of pressure versus v for real
gases; further, these EOSs address other concerns.

The cubic EOS can be extended to gas mixtures through what are called mixing
rules; the mixing rule utilized in this section is known as van der Waals one-fluid
mixing rules [2]. Here’s how it works.

The mixture coefficients {a,., b,ir} are defined [2] as

LTI T I/ 4
a =[x ]l b o (6.65)

anl T ann Xn
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and

b =[x - 2] - (6.66)

where

a.=a,=.laa. (6.67)

) Jt J

And x; is the mole fraction for pure component i, {a;, b;} are the coefficients for
pure component i, and n is the number of components.
An example of this method for a binary mixture is given below.

Example 6.3 Gas Mixture for Cubic Equations of State
Determine how the pressure changes for a mixture of methane and air for tempera-

tures of 300 K, 600 K, and 1200 K and v, =.1

. Do this by varying the per-
mole

centage of methane from 0 to 100% and for both the van der Waal and Redlich
Kwong EOS.
The results of this analysis are given below.

6.7 Examples and Problems

6.7.1 Examples

Example 6.4 For van der Waal’s equation of state, determine

(a) dP,
(b) Show mixed second derivatives are equal

)
oT ),
Solution for (a)

dP = [8_Pj drT + [6—PJ dv = MdT + Ndv (6.68)
orT ), V)

where
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Substance Omega Tle] Ple] Substance Methane
K] [Bars] nu (mix) [L/mole] 0.1
Methane 0.012 190.6 45.99 T: x1 1200
Ethane 0.1 3053 4872 Plc) [Atm] 45,40
Propane 0.152 369.8 42.48 Tlel x] 190.6
Benzene 0.21 562.2 48.98 Tr 6.30
Acetone 0.307 508.2 47.01
Methanol 0.564 5126 80.97 Substance Air
Ethanol 0.645 5139 6148 nu (mix) [L/mole] 0.1
Air 0.035 1322 3745 T ® 1200
Water 0.345 B47.1 22055 Plc] [Atm] 36.97
Ammonia 0.253 4057 1128 Tiel ® 132.2
Carbon Dioxide 0.225 304.2 73.83 Tr 9.08
Chiorine 0.059 417.2 7.1
Substance a(vw) b(vw)  a(RK)  b(RK) alpha(T)
Conditions
Methane 2.27 0.043 31.80 0.030 0.029
T [x] 1200 Air 1.34 0.037 15.65 0.025 0.029
u(mix) [L/mole] 0.1
Riu) [L-Atm/mole-K]  0.08206 22{RLY| B A2TSRATH _ -0B664RT, _ 1
=4 =—£ g= b= a=—
64 P 8P, P P VT
Substance (VW) BIVW) s(RK)  B(RK) alphe{T)
Methane 227 004 SLEO  0.08 0.8
Air 134 o004 1565 003 003
vw Eos R EOS
vcHe = 05
viaig= 05
y= o5 os v 05 05
A= e A 3180 2N
175 1w 231 1565
¥ os ¥ os
0s o5
almix) = 2010223 178 almix) = 27,0545 20
1545107 1897715
bimix)= | 0,040 bimix)= | 0,028
alpha = 003
PVW) = fatm] | 14500 Pl = Jetm] | 13087
1600
1400 # e e - o i o L i - e
1200
s VW EOS
E
5 800
S 600 * * + & + + *> + +- *> +
400
200 ® - - = —a - - —m———a
0
0% 20% 40% 60% 80% 100%

% Methane

—8—300K —e—600K —a&—1200K

Fig. 6.3 Pressure versus % Methane (VW EOS)
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M= R
v—>b
and
N= _RTerzi3
(v-b) v
such that
dP:[ R }dT+ R 22
v—-b (v—b) v
Solution for (b)

(&) o (&)
ov)r (v-b)y \oT), (v-b)
Solution for (c).

The triple product states

(55 G =

and

80%

L 2

139

100%

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)
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vy (6.74)
@@
ov ).\ OP ),
Additionally, a double product shows

[a—T) S (6.75)
op), (oP
)

Substituting Eq. 6.75 into Eq. 6.74 results in

{&r)
(a_vj __\or), (6.76)
e
ov J;
For VW EOS,
(a—PJ - R ,[a—PJ - R a2 (6.77)
or), v-b\ov); (v-b) v

Substituting Eq. 6.77 into 6.76 results in

(a_vj ___ Rlv-b) (6.78)
T)r RT-2%(v-b)
>

as

Example 6.5 Determine ( j for water at 240 C and 0.4646 m’/kg using
T

v
Maxwell relationships and RK EOS.

From Maxwell relationships,

(ﬁj :[a_Pj (6.79)
ov ), \oT ),
RK EOS is

(6.80)
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and
(6_”) R e 1 6.81)
or), v-b v(v+b)2r"
Given
m m m Y m
vV =.4646— =8372—, a=142.59 Bar K?,b=.0211 (6.82)
kg kmole kmole kmole
and thus

) kel
oT ), m —-K \ov);

Example 6.6 Using RK EOS and for an isothermal process determine equations
for As, Au, and Ah.

Defining ds as the following

ds:&dT— 8_v dP:&dT+ 6_P dv (6.83)
T oT ), T oT ),
and du as
ov
dh=C,dT +\v-T|—| |dP (6.84)
or ),
And T, =T, implies
ds = (a—Pj dv (6.85)
oT ),
du = {T(a—PJ —P}lv (6.86)
oT ),
and
Ah=Au+P,v, -Pyv, (6.87)

Further,
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(a—P) __R , @ 1,5 (6.88)
or), v-b v(v+b)2rT"
And so
ds=| 2 @ L1y (6.89)
v—b V(V+b)2T"

du=H RT ,_ ¢ LJ— RT ,_a L:ldv (6.90)

C,-C, =R, (6.91)
Given
C
as= & dT+[a—Pj dv = —"dT—(a—vj dpP (6.92)
T or ), T or ),
and
C -C
p =S g <[9P [ 2V ap (6.93)
T or ), or ),
And dP can be defined as
dP = (G_P] dT + (a—PJ dv (6.94)
oT ), ov J;

Substituting Eq. 6.94 into 6.93 results in

C,-C,

'de(a—Pj dv +(a—vj {(G—PJ dT+[a—P] du} (6.95)

T or ), or ), \er ), ov ).

(C)—CV)deT(a—Pj dv +T(a—vj {a—PJ dT+(a—Pj du} (6.96)
; or ), or ), \or ). ov ),

Also,
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and

(C,—CV)dT—T(a—v] (a—P) dT:{T(a—PJ +T[a—0] (a—PJ }du (6.97)
. or ),\ o1 ), or ), or J,\ ov ),

Since T and v are independent variables, there derivates can be set to zero

and thus
c,-C, =T(a—vj [a—PJ (6.98)
or ), \ar ),

) A5 ) 6
or), — \eor),\ov),

And substituting Eq. 6.99 into 6.98 results in

C,-C,=-T (a_vj (a—PJ (6.100)

P

and

Another form of Eq. 6.10 in terms of material science considerations is

ﬁZ
Cc,-C, =vT (6.101)
K

where P is volume expansivity and k is isothermal compressibility where f is
defined as

1({ov
=——| — 6.102
p= ( GTJP (6.102)
And « is defined as
K = —lEG—VJ (6.103)
v\ 0P ),

For an ideal gas,

(ivj _R_R Vv (6.104)
, T
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and

(a—Pj __RT (6.105)

ov v?

And using the definition for ¢, — ¢y, which is Eq. 6.100

2
“RT
C,-C, = —T(%) (v—zj =R, (6.106)

Example 6.8 Determine the error in assuming ¢, = ¢y for water at 1 atmosphere
and 20 C. In Chap. 2, we assumed for liquids and solids that the specific heat of the
material is independent of path, temperature, and pressure. How accurate is this
assumption?

Starting from Eq. 6.11
[))2

C,-C, =vT - (6.107)
K

And for water at 20 C and 1 atmosphere values are available for k and f, it is
determined that.

T [C] P [kg/m"3] p*le6 [1/K] K*1e6 [1/Bar]
20 998.21 206.6 45.90
Therefore,
C.-C, =.027 K (6.108)
kg—K
_ ki/ _ - K/ _
and C, =4.188 Ag K and C, =4.161 Ag K
The relative error in assuming cp = cy is
c,-C
RE=—"_"" = 66% (6.109)

14

which is acceptable!

Example 6.9 A mixture is 0.18 kmoles as CH, and 0.274 kmoles as C,H,, total
volume is 0.241 m® at 238 C, and measured pressure is 68.9 Bars. Using a) ideal gas
law and b) Kay’s rule determine the pressure and compare against measured
pressure.
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Ideal Gas Solution
Total Mole = 0.454 kmoles, y; = 0.396, y, = 0.604

3

1%
v = Do _ 537 M (6.110)
Mol kmole
And
RT 8314- MM (2384273)K
p=u mole—K__ —80¢6 Pa =80 Bars  (6.111)
v 531"
kmoe
Kay’s Rule
T.=2yT,P =XyP, (6.112)
Substance y(i) Tlc] [K] P[c] [Bars] y(i)T[c,i] y(i)P[c,i]
Methane 0.40 191.00 46.40 75.64 18.37
Butane 0.60 425.00 38.00 256.70 22.95
1 Tlc]=332.3 Plc]=41.3
And

Using the Lee Kessler chart to determine Z where Z is dependent on a changing

pressure, the following iterative solution is found.

T p Tlr] P[r] z P

[K] [bars] [bars]
511 80 1.5 1.9 0.84 67.2
511 67.2 1.5 1.6 0.88 70.4
511 70.4 1.5 1.7 0.88 70.4

6.7.2 Problems

Problem 6.1 Using the saturated nitrogen tables plot five points for 1/T versus

Ah
In(P) between 65 K and 100 K and show the slope of this line is appropriately — RS“’ .
g
Problem 6.2 Using the saturated solid-liquid water tables plot five points for 1/T
versus In(P) between 0 and — 20 C and show the slope of this line is appro-

Ah
riately ——4
p y R

g
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Problem 6.3 Using the following relationship du = Tds — Pdv and the Maxwell

relationships to find a relationship for (2—;) that is only a function of {nu, T, P}.
T

Problem 6.4 A mixture of CO, (30% by moles) and nitrogen (70% by moles) with
mass 2 kg is within a 1 m? container at 400 C. Using both a) ideal gas law and b)
Kay’s rule determine the pressure in the tank.

Note your solutions lies between the solutions for CO, (100% by moles) and
nitrogen (100% by moles). Show this!

Problem 6.5 A mixture of CO, (70% by moles) and nitrogen (30% by moles) with
mass 2 kg is at 2 MPa. Using both a) ideal gas law and b) Kay’s rule determine the
volume in the tank.

Problem 6.6 Derive the expression dh = C,dT + {v =T (Z—VJ }dv
P

Problem 6.8 Using the equations given in Problem 6.5 find Ah for van der
Waal’s EOS.

Problem 6.9 Using thermodynamic data for water estimate the freezing tempera-
ture of liquid water at a pressure of 4000 1bf/in"2.

Problem 6.10 Using Eq. 6.43 for ds determine As for water from 100 C and 50 kPa
to 100 C and 200 kPa and compare against the thermodynamic tables.

Appendix 6.1: Thermodynamic Relationships

Maxwell Relationships

O_uj =T and (a—u) =-P
0s ), ov ),
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J [as jp
J-(5)
7))

a P T

Triple Product Rules
7)) 5]
oT J,\oP ).\ ov ),
) (22) ()
OP ), \ov ). \oT ),
Double Product Rules
ap) (er)

or )\orP),

o) (5]
ov J.\OP ),
&)%),
oT ), \ ov ),

Other Relationships

L2
ar ), - T(vg —v,)

Lk

<

(&
(
(

1

147
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__1fov
F= v(é’Tl

1(ov
K=——| —
% (8PJT

Equations of State
Ideal Gas Law
Pv =RT
Van der Waals EOS
p_ RT iz
v-b v

Redlich-Kwong EOS

P RT _ a L
v-b V(V+b)JT
First and Second Law
First Law
du=C,dT + T(a—P) —P |dv
oT ),
ou
dh=C,dT +\v-T| — | |dP
oT ),
Second Law
Ah=Au+Pyv, - Py,
ds=C, d—T+ op dv+o,,
T \or),
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Chapter 7
Conservation Principles for a Gaseous
System, Part I

7.1 Preview

Before we discuss the theories of combustion, we need to go over some basics.
These basic considerations include conservation principles for a gaseous system,
the definition of speed of sound, applying this definition to an ideal, perfect gas, and
normal shocks. A shock forms when a gas travels faster than the local speed of sound.

Mention needs to be made of what is an ideal, perfect gas and consider the
assumption of assuming a substance is ideal and perfect. An ideal gas is simply a
gas that obeys ideal gas behavior, which for air near 300 K is acceptable to pressures
of 10 to 12 MPa [1]. A thermodynamically perfect gas is one where the specific heat
is independent of both pressure and temperature. For air, this is generally true.

7.2 Conservation Principles

Conservation principles for a gaseous system given as Fig. 7.1 are derived below.

The three equations to be derived below for conservation of energy, mass, and
momentum will be utilized throughout this book. In this chapter, these principles
will form the basis to our definition of speed of sound and equations to relate states
on both sides of a normal shock.

Electronic Supplementary Material: The online version of this chapter (https:/doi.
org/10.1007/978-3-030-87387-5_7) contains supplementary material, which is available to autho-
rized users.
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q
€
€
— —
— —
Pl PZ

Fig. 7.1 Gaseous fluid system

7.2.1 Conservation of Energy

Accounting for the energy of the system (time invariant) provides the following
equation

G+e =W+e, (7.1)

where ¢ is the heat transfer associated with the control volume, w is the work
associated with the control volume, ¢, is the energy associated with the fluid enter-
ing the control volume, and e, is the energy associated with the fluid leaving the
control volume.

Another form of Eq. 7.1 is

2 2
m{hl+z1+%}+q':m{h2+zz+%}+w (7.2)

where 1, represents the mass rate (1 for “in” and 2 for “out” of the control volume),
2

h; is the enthalpy, Z; is the potential energy above some datum, and % is the
kinetic energy. 2

In this chapter, it will be assumed that there is no heat transfer, work, no change
in elevation and the mass rates in and out of the control volume are equal. With these
assumptions, Eq. 7.2 becomes

I+ (1.3)
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7.2.2 Conservation of Mass

Assuming the rate of mass in is equal to the rate of mass out
ny = p A =, = p,Au, (7.4)
where it is assumed that the areas are equivalent, results in

Py = prl, (7.5)

7.2.3 Conservation of Momentum

From Newton’s second law,

+—>2FX=P]A—P2A=@=m(uz—ul)zpuA(uz—ul) (7.6)
And dividing by A

P —P, =pu(u,—u) (1.7)
B+ puy =P, + pyu; (7.8)

7.3 Speed of Sound

Figure 7.2 provides the conditions for a substance moving at the speed of sound (see
Appendix 7.1 for more details).

P P+AP
p p+Ap
T — " THAT

V=c V=c-AV

Fig. 7.2 Control Volume for Gas Moving at Speed of Sound [2]
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From conservation of mass,
pAc=(p+Ap)A(c—AV)
Expanding becomes
pAc=pAc+ApAc— pAANV —Ap ANV
which simplifies to
PAV +ApAV = Apc
And solving for AV

A
N

p+Ap
From conservation of momentum,

PA—(P+AP)A=m(V,, -V, )= pAc(c—AV -c)
Divide by A and simplify
AP = pcAV
Substituting Eq. 7.12 for AV results in
cap.

AP =
pp+Ap

And solving for C?

cz_££P+ApJ_£(1+A_/Dj
Ap( p Ap P

Taking the limit as Ap goes to zero results in

c2=lim£ 1+A—’D =0—P
=0 Ap p) op

Along an isentropic path.

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

Equation 7.17 along with the condition of isentropic flow is the definition of

speed of sound.
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7.3.1 Speed of Sound in an Ideal Gas

Entropy is a state function defined for a reversible process as
ds =— (7.18)

and
de=56q—06w (7.19)
Substitution of Eq. 7.19 into 7.18 and applying the definition of éw results in
Tds = de + Pdv (7.20)

1
Ifv= 1/ then dv=——dp,th
v /p en dv = p , thus
P
Tds =de——dp (7.21)
P

e is a function of both P and p such that

de=g dP+% dp (7.22)
oP, op,

Substitution of Eq. 7.22 into 7.21 results in

Tds=2 dP+2 dp—izdp (7.23)
p opp
When ds equals zero then
_Oe P
2
o __ %Py P (7.24)
ap ds=0 &
oP,
For an ideal, perfect gas
e =c,T +constant (7.25)
and
e= L E + constant (7.26)

y=1p
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where the relationship ¢, — ¢, = R has been utilized.

Derivatives for @ ,@ ,anda—P are given below
OoP, 0p, op,
Oe :Ll (7.27)
oP, y-lp
e :__1% (7.28)
op, v-lp
and
1 P
P y-1p p P P P
T TP P T (y-1) ==y =yRT (7.29)
op, 11 p p ' p
y—1p

which is the definition for the speed of sound for an ideal, perfect gas.

Naturally, if the conditions dictate another equation of state, then the equation for
speed of sound will differ from Equation 7.29. For a van der Waal equation of state,
the speed of sound is given in [3].

7.3.2 Speed of Sound in Liquids and Solids

By definition speed of sound [2] is

=— 7.30
ol (7.30)

c

And for liquids and solids the bulk modulus (K) is defined as

oP

K:p%

(7.31)

s

where for liquids, the speed of sound is usually determined from Eq. 7.31.
The bulk modulus (K) is related to Young’s modulus (E) through

§=3(1—2o) (7.32)

. . . 1
where o is Poisson’s ratio and often takes on the value o = 5 , thus

E=~K (7.33)
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And for many solids

(7.34)

[
a
o | &

7.4 Normal Shocks

Just as in incompressible flow Reynold’s number, which is a non-dimensional num-
ber, is important, in compressible flow, Mach’s number is important and defined as

Ma=" (7.35)
C

where u is the local gas speed and c is the local speed of sound. It is generally
acceptable that for a Mach number above 0.3, the fluid is considered compressible
and the density on the fluid field varies with location.

Given in Fig. 7.4 are the upstream and downstream conditions for a normal shock
where the upstream Mach number is always

Ma, >1 (7.36)
And the downstream Mach number is always

Ma, <1 (7.37)
For a given set up upstream conditions to include Mach number, we want to be

able to calculate the downstream conditions. This is done by algebraic manipulation
of Egs. 7.38, 7.39, and 7.40.

Fig. 7.3 Shock Wave [2]
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Py Py > Py
T, T, >T,
Py Py 7 m
uy Uy <y
o ——r- x direction
My > 1 My <1

© ®

Given conditions
ahead of the
shock wave

Unknown conditions
behind the shock wave
Normal shock

Fig. 7.4 Normal shock conditions upstream (1) and downstream (2)

P A = pou,A, (7.38)

P +pu; =P, + pu; (7.39)
uz u2

h + 1 h. + 2 7.40

1t =t (7.40)

Typically, A; = A, and Eq. 7.39 takes on the simpler form
Py, = P, (7.41)

Another form of enthalpy can be derived from Eqs. 7.42 and 7.43 when assuming
an ideal, perfect gas

¢, —¢, =R (7.42)

and
y="t (7.43)

CV
Dividing Eq. 7.42 by c, results in
oo R_1 (7.44)
Cp Cp y

and

Ll =c, = Ry (7.45)
- y-1
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and

Ah = ﬂAT (7.46)
y—1

The strategy is to non-dimensionalize Eqs. 7.39, 7.40, and 7.41 and get the fol-
lowing relations (which will be derived shortly) [4, 5].

y-1. ,
1+—Ma
Ma, _ 2 TN l+yMa; (7.47)
M — 1+yMa? '
“ 1+—y 1Ma§ ria
2
P _leyMa 45)
I 1+yMa§
and
L _[ hMa, (7.49)
1 I)lMa]
or
T 1+}’—_1Mal2
H__ 2 (7.50)
T 7y

The first equation to be derived will be Eq. 7.50 from Eq. 7.40 and Eq. 7.46.

2 2
7/_—1 ﬂTl +u_|=ﬂT2+u_2 (751)
Ry |y-1 2 y-1 2
or
-1 -1
Tl—i—(y )uf:T2+(y )uf (7.52)
2Ry 2Ry
and

T {1+y7_1Maf} =T, [1+YT_1Ma§} (7.53)
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Further, Eq. 7.39 can be rewritten as

Pl1+ 2 |=p |1+ 22
A )

and

Therefore,
R[1+yMa} | = P,[1+yMa; ]

P
Lastly, substituting p, = —’T into Eq. 7.41 results in

il P,
o =T
RT, RT,
And dividing both sides by y results in
P.Ma, _P,Ma,

NN

Thus from Eq. 7.52 comes

1+%— Ma’
L__ 2
T 1+}/—_1Ma2
2 2
From Eq. 7.56 comes
P, 1+7/Ma12
P, l+yMa§
And Eq. 7.58 comes
2
T, (P,Ma,)
T, (PMa, )2

Equating Egs. 7.59 and 7.61 results in

(7.54)

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)
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(PzMaz)z l—ky—_lMal2

(PMa,) 1+y2_1Ma2

2

And substituting for the pressures Eq. 7.60 gives us

y=1l, -
Mad; {1+7/Mal2 }2 _ I+ 2 Ma,

Ma; |1+yMa; 1+7/_1Ma§
2

or

y-1l,.
Ma, I+ 2 Ma, 1+yMa;

M, _ 1+yMa®
& \/1+y 1Maf rva

An example of these ideas is given below.

Example 7.1 Normal Shock

161

(7.62)

(7.63)

(7.64)

A normal shock occurs in air where T, is 300 K, P, is 100 kPa, and Ma, is 3. What

are the states on the other side of the shock?

Air Blue =Input
R [fkg-k] | 287 vellow = Goal Seek
Gamma 14 Tan = Output
T(1) [x] 300 T(2) K] 803.72
P(1) [kPa] 100 P{2) [kPa] |1033.48
Ma(1) 3 Ma(2) 0.48
(1) [m/s] | 104157 uf2) [m/s] | 269.96
[ ma) | mag2) | Term1 [ Term2 | Term 3 [verma [ ws | mus | oitt |
[ 3] os8] 280 105 132] 13600 o01s]  oas|-2ese0s|
[Ma(2)/Ma(1 0.16
pyey) [ | a0

| =13
May J1HETMal 4 ypad
i ot L

Ma, . 1+yMaj

Ma, [ yr=1
QH’TM“

P: _1+yMai
Soo 3
P, 1+4yMa;z

T:  [(P:Masy’
A {Pp\fn,)

Given in Fig. 7.5 are the ratios of pressure, temperature, and Mach number

for Ma,.

We’ll now discuss a topic related to standing normal waves, which is moving
shock waves that exhibit a different frame of reference (see Fig. 7.6).
where C is equal to u; from the normal shock theory and C-AV is equal to u-u,

from the normal shock theory (see Appendix 7.2).
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12 4

—¢—Ma(2)/Ma(1)
——P(2)/P(1)
=e=T(2)/T(1)

Fig. 7.5 Moving shock waves

Fig. 7.6 Moving normal

shock \

Capla Tl

C-AV, P>, T,

Example 7.2 Explosions

An atomic explosion generates a pressure of 4500 psia inside the shock. If the ambi-
ent conditions are 15 psia and 300 K. What are the states within the shock and both
the shock speed (C) and trailing wave (C-AV)?

We know the pressure ratio is equal to I% = %20 =300.
2

This problem is solved by using our spreadsheet labeled “normal shock™ and
going to English unit worksheet. The problem is then solved by using goal seek to
solve two problems

1. Force “Diff” to zero by changing Ma,.
2. Force Ma(2)/Ma(1) to 300 by changing Ma,.
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This iterative process was done several times and the final results are shown
below where T, is 26,458, shock speed is 7324 fps, and trailing wave is 6087 fps.

T(1) [R] 520 T(2) [R] 26,458
P(1) [psial 15 P(2) [psial 4,500
Ma(1) 16.02 Ma(2) 0.38
u(1) [fps] 7,324 u(2) [fps] 1,237
1
Ma(1) Ma(2) | Term1 | Term2 Term 3 Term 4 LHS RHS Diff
16.02243341 D.3B| 52.34 1.03 1.20 360.41 0.02 0.02] -1.07€-04)
Ma(2)/Ma(1) 0.02 6,087
P(2)/P(1) 300.00
T(2)/7(1) 50.88

7.5 Examples & Problems

7.5.1 Examples

Example 7.3 Speed of Sound for an Ideal and Van der Waal Gas
Determine the speed of sound of Argon at 400 K and 1 atm assuming an ideal, per-
fect gas and then a van der Waal gas. The speed of sound for a van der Waal gas [3]

is given as
R | v’RT
02:£1+—] v 2—2g
Cy (V—b) 1%

where {a, b} are coefficients associated with van der Waal’s EOS and R is the gas
constant.
Given

¢, =310 R = 2081

v

K ,y =1.667
kg—K kg—K

The solution is given below where it is naturally seen for a noble gas that the
ideal gas and van der Waal gas speeds of sound are the same.
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Cv [kJ/kg-K] 0.31
R(g) [kJ/kg-K]| 0.2081
R(g) [J/kg-K] 208.1
Gamma 1.667
T [K] 400
| c(ideal) | [m/s) | 373 c* =yR,T
T[c] [K] 150.8
Plc] [Mpa] 4.87
_ 27R’T} _ BT,
a [mA3/kg]| 85.3 “%a p
b [m~3/kg] | 8.05E-04
V. R,T
|nu{idea|}| [m’\3/kg]l 0.82 YSmT P
A2 1.39E+05 o2 = (1 i) v RT __ 58
c(vw) [m/s] 373 ¢/ (v—b)? v

Example 7.4 Speed of Sound in a Solid
Determine the speed of sound for aluminum at STP.

The density and Young’s modulus can vary dependent on the type of aluminum,
but the values used are

p, =2700 k%, s and E, = 69GPa

Thus

& E and ¢ ~ 5055m/s
P

7.5.2 Problems

Problem 7.1 Speed of Sound for a Van der Waal Gas

The speed of sound for an ideal gas and van der Waal gas should diverge as the
compressibility factor (Z) deviates from 1.0. Show this for CO, by varying P and T
and referring to the work of Lee and Kessler.
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Problem 7.2 Normal Shock

Determine the states within a normal shock when P, P is 10 and T, is 300 K.

1

Problem 7.3 Frank White’s Atomic Bomb Explosion Problem

An atomic explosion propagates into still air at 15 1bf/in> and 600 R. the pressure
just inside the shock is 6000 1bf/in. Assuming y = 1.4, what are the speed of the

shock and the velocity inside the shock?

Problem 7.4 Speed of Sound for a Gas Mixture (Van der Waal Gas)
Using the speed of sound equation for a van der Waal gas as given above and the
data given below for specific heat constant volume determine the speed of sound for
a mixture of argon and methane {50% argon by molar mass} at 1 atm and 800 K
(Hint: use the method provided in Sect. 6.6 to find {a,,.,b,,.} and Table 1.2 to
determine 7).

This table provides critical constants for each gas and the specific heat constant
pressure models utilized to create the figure given below.

Tlc] Plc] Y Po B )23 B
[K] [MPa]
Argon 150.8 4.87 1.667 0.52
Methane 190.4 4.6 1.2999 1.2 3.25 0.75 —0.71

Problem 7.5 Speed of Sound for a Gas Mixture (Ideal Gas)
Redo Problem 7.4 but now assume ideal gas behavior. How do the answers differ
between Problems 7.4 and 7.5?

4.50
4.00
3.50

= 3.00

X

© 250

2.00

Cv [kJ/

1.50
1.00
0.50

0.00
200 400 600 800 1000 1200 1400

T[K]

—0—0—0—0—0—0—0—0—00—0—0—00—0—00009°

—@—Argon —ill— Methane
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Appendix 7.1: Moving Shock Wave Frame of Reference

VS:C
4—
V1=0 V,=Av
B B

Fixed Wave Frame of Reference If we ride the shock, then we subtract C from
each velocity and get

Or
V'e=C-C
44—
Vi=-C V'y=0v-C
— —
V's=0

e

Vi=C V'p=C-Av




Appendix 7.2: Moving Shock Wave Frame of Reference

Appendix 7.2: Moving Shock Wave Frame of Reference

Fixed Wave Frame of Reference If we ride the shock, then we subtract C from

each velocity and get.

Or

V11=‘C

V2:V

VSZC‘C

V'1=C

V’2=V'C

V',=C-V
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Chapter 8
Conservation Principles for a Gaseous
System, Part II

8.1 Preview

In the previous chapter, conservation principles were developed for a gaseous sys-
tem and are appropriate for several types of phenomena to include:

e Normal Shocks (Chap. 7).
e Critical Flow (Chap. 9).
* Rankine-Hugoniot Systems (Chap. 10).

But there are times when more general conservation principles are required and
involve changes in states with either time or space, which leads to differential equa-
tions in a particular coordinate system. The main reason for the more general
description when it’s a detonation is to incorporate heat released based on some type
of Arrhenius reaction rate equation that changes with temperature and results with
changes in states with either time or space; for deflagrations non-premixed, the heat
release is considered instantaneous, but other transport processes dictate the changes
in state with either time or space; and for deflagration premixed, both heat release
and transport processes are important.

These transport processes, which are discussed below, include

e Mass transfer.
e Momentum transfer.
¢ Heat transfer.

Two classes of conservation principles are explored:

* Conservation principles appropriate to detonation systems.
» Conservation principles appropriate to deflagration systems.
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In Sect. 8.2, conservation principles for detonation systems are developed that
allows for the following:

* Area changes.
e Shear stress at the wall.
e Heat release (Arrhenius reaction rate).

These equations do not address:

e Mass transfer to include diffusion.
¢ Momentum transfer.

In Sect. 8.3, relationships will be developed between temperature, pressure, and
density for an isentropic, compressible flow. These developed relationships will be
utilized to relate static and stagnation conditions for a given Mach number. The
developed relationships will be seen again in Chap. 9.

Mass transfer is discussed in Sect. 8.4. In Sect. 8.5, conservation principles
appropriate for a deflagration system that involves premixed laminar flames is
developed and is in a planar coordinate system. In Sect. 8.6, conservation principles
appropriate for a deflagration system that involves non-premixed laminar flames is
developed and is in an axi-symmetric coordinate system.

Various sets of conservation principles and the related fluid phenomena are sum-
marized in Table 8.1.

8.2 More General Conservation Principles for Detonations

In Chap. 7, conservation principles were developed for a gaseous system to include
heat release. These equations were.
Conservation of Mass
Py, = Py, (8.1)

Conservation of Momentum

P+ pu =P, + pyu; (8.2)

Table 8.1 Conservation principles appropriate for a particular fluid phenomenon

Chapter/ Relevant Chapter/

Section Relevant Phenomena Section

Chapter 7 Normal shocks, critical flow, Rankine-Hugoniot Chapters 9 and 10
systems

Section 8.2 Detonations Section 13.5

Section 8.3 Isentropic, compressible flow Chapter 9

Section 8.5 Premixed laminar flames Section 12.3

Section 8.6 Non-premixed laminar flames Section 12.4
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Conservation of Energy

2 2

u u
h+g+—+=h+= 8.3
q > 2T (8.3)

More general equations are now derived that include heat release, area change,
and shear stress at the wall (see Fig. 8.1). This derivation is taken from [1].
Where the following assumptions/conditions are made [1]

. Surfaces 1 and 2 are open and allow fluxes of mass, momentum, and energy.
. Surface w is closed — no mass flux allowed through the surface.

. An external heat is applied to through surface w.

. No longitudinal heat transfer and thermal conductivity is zero.

. No diffusive viscous stresses are allowed and so viscosity is zero.

. The cross-section is solely a function of x and so A(x).

. L, is the circumferential perimeter length.

~N N R W=

8.2.1 Conservation of Mass

PAAx

rn—PAMY] = p A (A1) = p, A, (u,Ar) (8.4)

Fig. 8.1 Control volume for more general conservation principles [1]
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or
PA| n _EAL P4 (”1 )_ P,A, ("‘2)
- =0 (8.5)
At Ax
The limit as At — 0 implies Ax — 0, therefore
0 0
—(pA)+—(pAu)=0 8.6
po (pA) . (pAu) (8.6)
At steady state,
i( pAu)=0 (8.7)
ox
and
piAu = p,Ayu, (8.8)
8.2.2 Conservation of Momentum
d ) .
E(mu)=um+mu=ZFx=Fl+F2 +F, (8.9)
where
F, = Pressure differential.
F, = Reaction at the wall due to pressure differential.
F; = Shear stresses at the wall.
or
mu|,, ., —mu| um|, , —um
|1+Ar |, + |1+At |, — ZF; (810)
At At
and
mu|tw:mu|f+{um|,+A,—um|t}At+ZF;At (8.11)

Further,
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(E‘ZAX)_ t+At T (pAA)C) ‘ +|:p] u]At)]ul
_[p2A2 u, At ]”2 [ [P2A2]At
+[P(4,-4)]Ar—(x WLpr)At (8.12)
or
(’3‘2)17 HA,—(/SZ)EL +[p2A2(“2)]”2_[p1A1 (”' )]ul __(PzAz_PIAIJ
At Ax - Ax
phA —,L, (8.13)
Ax P

The limit as Ax — 0 implies Az - 0

d d ) d oA
—(pAu)+—(pAu’)=-—(PA)+P—~-1,L, 8.14
5 (PAW) 2 (P ) == 2o (PA)+ PE0 19
And at steady state
doa)=—4 aa_
dx(pAu)— dx(PA) P—--tL, (8.15)

Further

du d dA dP dA
Au—+u—(pAu)=—P——A—+P——-1 L 8.16
P dx dx(p ) dx dx dc "7 (8.16)

Where the second term of the left-hand side is zero and the sum of the first and
third term on the right-hand side is zero.

pand a9 .1 (8.17)
by dx ’
And when shear stress is zero
du dP
Au—+A—=0 8.18
P dx dx ( )
From Eq. 8.17, when d—A =7, =0, then
dx
0 0
Au’)=——(PA 8.19
ox (p ) Ox ( ) ( )
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or
 (paut +PA)=0,2(P+ pu?) =0 (8.20)
X ’ax .

P +pu; =P, +pu; (8.21)

8.2.3 Conservation of Energy

t+At

[52&]{@%}
A, (ulAt)(el +§j_ (uzAt)(ez +_2j

i
he}
|
E
—
o
+
o S
| I

7 8.22
4, (B, Ax) At +(BA) (Ar)— (PA, ) (1) (8.22)
or
_ul R e
palery o rle+ )
At
2 2
pzAz(uz)[e2+uzz+Pj P (u )[e1+uzl+Plj
+ ple Py :qwzp (8.23)

The limit as Ax — 0 implies At — 0

0 : 0 uw P
Ale+— ||+—]| pA +—+—||=¢q,L 8.24
6t|:p [e 2}} ax[p ”(6 2 pﬂ " ®29

At steady state

0 W P
—| pA +—+—||=qg L 8.25
ax{p u[e 5 Pﬂ q,L, (8.25)

or

2 L
P DO (8.26)
dx 2 p
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Further

de  du 1dP PdP:|_CIWLp

Subtracting Eq. 8.28 from Eq. 8.27 results in

de P dp qup i TwL

pU——U———=—-

dx pdx A A

or

175

(8.27)

(8.28)

(8.29)

(8.30)

When there is no heat transfer, nor shear stress Eq. 8.30 takes on the simpler form

é+Pv=0

And from Eq. 8.30 de can be defined as

dezﬁpdp+2 dP
op 8Pp
de
And — can be defined as
dx
de_e| dp | dp
dx op|"dx 0P|, dx

Substitution of Eq. 8.33 into Eq. 8.30 results in

Oe

op

dp Oe
_+_ >
,dx  p°odx

Pdx  opP

8.31)

(8.32)

(8.33)

(8.34)
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or
P _ce
dp ) ap P dp (qw +TWM)LP
N T o S Sl L (8.35)
dx Oe dx W Oe
oP|, oP|,
Where the quantity in brackets was shown in Chap. 7 to be equal to ¢?
+T u)L
P dp _(4,+71.4)L, (8.36)
dx dx . Oe
2L
oP|,
8.2.4 Conservation of Energy for Detonation System
The total derivative for internal energy can be defined as
de:g dP+g Mdv+% dr=0 (8.37)
oP|,, ovl|" OAlp,
And taking the time derivative
o=l +@Hv+@ y) (8.38)
oP|, ov|" OAlp,
And substituting Eq. 8.38 into Eq. 8.31 results in
oe +2”v'+@ A+Pv=0 (8.39)
oP|,, ovl|" OAlp,
or
P+ Viea | TVlea 5 _ g (8.40)
e e
oP|,, oP|,,
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Where it can be shown that

P+ g—u
pic =- Ve (8.41)
Ou
0Py
and
Oe
Py iy (8.42)
Oe
OP .
In Eq. 8.42 ¢ is thermicity and is defined as
o=_L 2P (8.43)
pc oA uy
Thermicity is a measure of the pressure rise for a given change in A [2].
And for an ideal gas
o=1Z1P (8.44)
}/ P qw °
Substitution of Eqs. 8.41 and 8.42 into Eq. 8.40 results in
P+p’cV—pclc =0 (8.45)
and
P=c’p+pcior (8.46)

Which essentially shows that changes in pressure with time are a function of
density change with time and heat release through a chemical reaction.
Another form of Eq. 8.46 is

dr »dp 2
u——uc - —=pcor 8.47
dx dx P ( )

Where u = @
dt

A summary table is given below (Table 8.2).
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8.3 Reversible, Adiabatic (Isentropic) Compressible Flow

In this section, equations are developed to relate states during isentropic, compress-
ible flow. These relationships will allow us to see how Mach number affects tem-
perature, pressure, and density when comparing static and stagnation conditions [3,4].

From fluid mechanics [4], static and stagnation pressure are defined in the fol-
lowing manner. “The pressure at a point in a fluid is called the ‘static pressure‘. The
‘stagnation pressure‘is the pressure that the fluid would obtain if brought to rest
without loss of mechanical energy. The difference between the two is the ‘dynamic
pressure’. The ‘total pressure’ is the sum of the static pressure, the dynamic pres-
sure, and the gravitational potential energy per unit volume. It is therefore the sum
of the mechanical energy per unit volume in a fluid.”

The relationship between static and stagnation pressure (P,) with no change in
potential energy is given as

F = %pu2 +P (8.48)

static

or

2
L w 1+ lj/Ma2 (8.49)

=14+—-
Rv[alic 2 Wmt/ 2
0

Please note the relationship given as Eq. 8.49, which is derived from Bernoulli’s
law, is no longer valid for a compressible flow.
The first law for an isentropic, compressible flow is

2 2
h0+u?°:h+u? (8.50)

where “0” denotes the stagnation conditions and assuming u, = O for an ideal gas
such that

2

T, =c,T +“7 (8.51)
or
uZ
T =T+ (8.52)
0 2
¢y
and
uZ

(8.53)
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where R, is equal to
R, =c,—c,

8

Dividing both sides of Eq. 8.54 by ¢, results in

&ZCP_CV :1_127/__1
c, c, 14 14
or
dorett
Cl’ Rg

Substitution of Eq. 8.56 into Eq. 8.53 results in

Ty u y-1
T

and

Additionally, for an isentropic, compressible flow the second law is

c,dT  Pdv
ds = +—
T T
And for an ideal gas
dTr
ds=2" LR av
T v
or

And for As = 0, the integration is

¢, In r +(cp—cv)1n r =s,—5 =0
T, Vo

(8.54)

(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

(8.60)

(8.61)

(8.62)
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or

y-1 7=l —
T_ (V_oj _ [ﬂ) _ (EJ ’ (8.63)
T, v Po £

Where it can be shown that

P (1+_7 ml Mazj (8.64)
Py 2
and
_r
— -1
P (1+7/—1Ma2j ’ (8.65)
) 2

For air, y = 1.4, Egs. 8.58, 8.64, and 8.65 become

-1
T_ (1 + lMcﬁj (8.66)
: 5
1 =25
P [1 +—Ma2j (8.67)
Po 5
=35
L (1 +1Ma2j (8.68)
P, 5

Graphically Egs. 8.66, 8.67, and 8.68 relate static and stagnation states with
Mach number, which is given in Fig. 8.2.

The last thing to do in this section is to show the relationship between stagnation
properties (0) and the location where Ma = 1 (*), which we’ll see in Chap. 9 is the
choke point.

-1
Ez(u_y‘llzJ __2 (8.69)
T, 2

_ o -1
pr_ [y r=lp ) o 2 ) (8.70)
Po 2 y+1
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5
0.001 -
Mach
=@=T/T(0) e==o==rho/rho(0) ==#=P/P(0)
Fig. 8.2 Static/Stagnation States versus Mach Number
and
_r r
— — -1
ﬁ:[1+_y 112j“: 2y 8.71)
P, 2 y+1
And for air, y = 1.4, Egs. 8.69, 8.70, and 8.71 become
T*_ g333 (8.72)
TO
P* _ 6339 (8.73)
Po
And
Px_ o83 (8.74)
P

0

We’ll see in Chap. 9 that when the pressure at the stagnation condition is twice
the pressure at the choke point, then the mass rate will be independent of the pres-
sure difference between the two states and this determined mass rate will be the
maximum mass rate allowed (critical flow).
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8.4 Mass Transfer

Mass diffusion, moment diffusion, and energy diffusion are understood through the
following equations.

Mass Diffusion
J =—Db£(p) (8.75)
a a ay a
Momentum Diffusion
T, =-v 2( pv,) (8.76)
’ y
Energy Diffusion
q,=-a E( pe,T) (8.77)
y

2 2

where D, {—} is molecular diffusion for a binary gas, v{—} is kinematic vis-
s s

2

. . o N | . . . N | .
cosity, o{m—} is heat diffusion, J, [—2} is mass diffusion, 7 [—2} is shear
s m “lm

N |. . .

stress, and g, {—2} is heat transfer and p is constant in Eqs. 8.75 and 8.76 and pc,
m

is constant in Eq. 8.77. Please note that D, v, and a all have the same dimensions.

In the above equations, the quantities {D,p, @, v} are related through three non-
dimensional numbers given below.

Schmidt Number
Se = v _rate of momentum transport (8.78)
D rate of mass transport
Prandtl Number
Pr— v _rate of momentum transport (8.79)
a rate of energy transport
Lewis Number
Le— o _rate of energy transport (8.80)

D rate of mass transport
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And these three non-dimensional numbers are related in the following way

Sc
Le = Pr (8.81)
Typically for deflagrations [5],
Le=1 (8.82)
And
Sc~Pr—>a=D (8.83)

Equation 8.83 states that the mass transfer (D) is approximately equal to the heat
transfer () for deflagration systems; Glassman and Yetter [6] caution assuming
Le ~ 1 and this assumption must always be established for a particular system of
interest.

8.4.1 Fick’s Law and Species Conservation Principles

Fick’s law of diffusion for a binary gas, which is the type of mixture considered in
this book, is defined as the rate at which two gas species diffusion through each
other. For one dimensional, binary diffusion (the type considered in the chapter on
deflagration) it is

mass flow of A perunit area
= mass flow of A associated with bulk flow per unit area

—mass flow of A associated with molectular diffusion (8.84)
or
m cn day
ity ==Y, (ri, +m3)—pDABd—; (8.85)

where gas “A” is transported by two means:

¢ Bulk motion of the fluid.
e Molecular diffusion.

So that for a mixture of gases “A” and “B” the mixture mass flux is

T . dy . dy,
it =ity iy =Y il = D,y = L4 Yy = pD,, — L (8.86)
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And for a binary gas mixture, Y, + Y = 1, such that Eq. 8.86 is

" " " " dy dy,
m =m, +m, =m —pD,,—*+-pD,, —2 (8.87)
X dx
or
dy, dy,
0=-pD,,—*+-pD,,—2 (8.88)
dx dx
In general,
Y =0 (8.89)

Equation 8.89 is simply a consequence of the conservation of mass. In the next
section, we’ll see how D,y is related to temperature and pressure.

8.4.2 Understanding Diffusion from Kinetic Theory of Gases

From the kinetic theory of gases, the following relationships can be established [2,
6, 7] and their derivation is beyond the scope of this book.
If we make certain assumptions [2]

1. Consider a stationary (no bulk flow) plane layer of binary gas mixture consisting
of rigid, non-attracting molecules.

2. Molecular masses of gases “a” and “b” are identical.

3. A concentration gradient exists in x-direction, and is sufficiently small that over
small enough distances the gradient can be assumed to be linear.

8k, T
v = mean speed of speciesamolecules = 5 (8.90)
m,
., .. . In, _
Z, = Wall collision frequency of amolecules per unit area = va" v (8.91)

A = Mean free path =

; (8.92)
NGY 3 (n"””’jcrz

and

a = average perpendicular distance from plane of last

collision to plane where next collision occurs = %l (8.93)
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[TPRL]

where kg is the Boltzmann’s constant, ma is the mass of one molecule of gas “a”,

«©,0 ntotal

—~ molecular density of gas “a”, —** molecular density of gas mixture, and o

diameter of molecules “a” and “b”.
The next flux of molecule a along the x axis is

m;; m:‘;xfa ;;,)Hra (894)
Or in terms of Z,
iy =(Zy) my=(Zy) m, (8.95)
And the density of the binary mixture is
p= mtotal (896)
Vtoral
Recalling the definition of Z, is
7z =g (8.97)
% '
And substituting Eq. 8.97 into Eq. 8.96 results in
.« lnm, _
Z, =——"""2pv (8.98)
4 mtotal
Or in terms of Y,
.1 _
zZ, = PV (8.99)
And substituting Eq. 8.99 into Eq. 8.95 leads to
), = 1 PV Y=Y ] (8.100)
4
where ar is defined as
dx
dy, Y, .-Y
A — Ax—a Ax+a (8101)
dx 2a
or
dYA YAxfa_YAXJra
=2 oA 8.102
dx 40 ( )
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Substitution of Eq. 8.102 into Eq. 8.100 for Y, ,_, — Ya .+, We see that

, VA dY,
" :_p? dx

(8.103)

And going back to the definition of binary mass diffusion without bulk flow
(Eq. 8.85), we see that

D, = (8.104)

Substitution of Eq. 8.90 for v and Eq. 8.92 for 4 into Eq. 8.104 results in

k,T
D, _L 8k, ! (8.105)
Hom ol
1%

Where from ideal gas behavior

— nTotal _ P

= 8.106
Vo kT (8100

Substitution of Eq. 8.106 into Eq. 8.105 leads to

b _ 1 [8k,T 1 _2 kT T (8.107)
B3\ wm, N P > 3\z’m, Pc’
k,T

And thus

9
D,y o (8.108)

8.5 More General Conservation Principles for Premixed
Laminar Flames

The developed conservation principles in this section will be utilized in Chap. 12 for
planar, one-dimensional systems.
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8.5.1 Conservation of Mass

Change in mass with time for the control volume is

Mo o i (8.109)
dr - mx mx+Ax .
or
d
—[pAAx] = [vaA]X —[pva]HAx (8.110)

dt

Dividing both sides by AAx and taking the limit as Ax — O result in

op 0 op O
*rz__Z e = A11
o TP g ) =0 ®A1D
Or for steady state
0
—(pv,)=0 (8.112)

ox

Equation 8.112 is appropriate for one dimensional, planar system.
The conservation of species mass with binary diffusion is given for species “A”
and it is

wood s d dy
n, =—1 (mY,|——| pD A 8.113
i = 2 (0,) - oDy | @113
8.5.2 Conservation of Momentum
From Newton’s second law,
ZF = (mv)out _(mv)in (81 14)

For the one-dimensional, planar system

[PA], ~[PA],,\ = [ Vsne =V ] (8.115)
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And dividing both sides by Ax and taking the limit as Ax — 0 results in

_dp_ v, (8.116)
dx dx
or
dP dv
——=py —= 8.117
dx e dx ( )

8.5.3 Conservation of Energy

Given the diagram (Fig. 8.3).
The conservation of energy for this steady system is

2 2
ortdorcffioe] (on]]
x+Ax X

And assuming APE = 0 and Wm =0 results in

[0l -0 =" HM%) —[h+§j } (8.119)

Control

Volum:
Control olume

Surface

|
|
— [rim (.‘a + ”7 + gz)]

| o

(509
|

[6.7a], — s (0],

-

W, Ax _.1

Fig. 8.3 Conservation of Energy (Premixed Deflagrations) [5]
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Dividing both sides by Ax and taking the limit as Ax — 0 results in

_d0. _ @wxﬂ (8.120)
dx dx dx

There are two contributions to the heat flux, Q}r

0 :—kVT+Zm,dW : (8.121)
For onedimension, planar systems Eq. 8.121 takes the simpler form
s T
0. :—k3—+2pYi (v =V, ), (8.122)
X

Or in terms of the bulk and species mass fluxes
-0 T T p "
0 = —k((il—+ 2pv,Yh —pv XYh = —k%+2ml. h—mh  (8.123)
X

Noticing that 7z, = pv,, pv, =t and Y Yih, = h.
Substituting these three expressions into Eq. 8.123 into Eq. 8.119 results in

d N od ar . dv
—(Xhm, —k— |+m v —=0 8.124
dx ( Y ) dx ( X J Y dx ¢ )
where the first term can be farther expanded as
. dh, diin;
L (St )= o ey, (8.125)
dx dx dx

And substitution of Eq. 8.125 into Eq. 8.124 results in

Y, —

dh, d[ de odv
. myvy
“dx  dx ’

diin;
dx " dx " dx t ( )

Another form of Eq. 8.126, which is more useful for numerical calculations, is

ar d ar ar
mre a4 40, s, E S 8.127
P dx dx( dx\J l i pr dx (R} ( )

where v; is a species diffusion velocity, and two other forms of conservation of
energy that have proven useful are when the system is planar, one-dimensional
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m"C =

dr d dlc T
-p
dx dx

] =K i (8.128)

X

And Eq. 8.128 can be understood as a system where the following mechanisms
are important

Specific Rate of Sensible Specific Rate of Sensible
enthalpy transportby |+| enthalpy transport by
convection diffusion
Specific Rate of Sensible
=| enthalpy production (8.129)

by chemical reaction

And in an axisymmetric form

la(rpvrfcpdT)+16(rpvxjcpdT)_lg(rpDMJz_Zho A (8.130)
or re '

r Oox r or ror

Where now there are two independent variables {x, r} and Eq. 8.130 has an addi-
tional term and can be understood as a system where the following mechanisms are
important

Specific Rate of Sensible | | Specific Rate of Sensible
enthalpy transportby |+| enthalpy transport by
axial convection radial convection
Specific Rate of Sensible Specific Rate of Sensible
+| enthalpy transportby |=| enthalpy production (8.131)
radial diffusion by chemical reaction

8.6 More General Conservation Principles
for a Non-premixed Laminar Flame

The following conservation principles for a non-premixed deflagration system are
given without derivation; for more details please refer to [5], which provides a more
thorough treatment. Please note these equations are for steady, axial symmetric
systems.

These developed conservation principles will be utilized in Chap. 12.
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8.6.1 Conservation of Mass

Conservation of mass for a steady, axial symmetric system is

10 0
;E(var)+a(pvx)—0 (8.132)

In this coordinate system, there are now two independent variables {r, x} and so
two terms.

8.6.2 Conservation of Momentum

For conservation of momentum of non-premixed combustible gases

o|r v,
18(rpvxvx)+18(pvxv,) 1 H or _(
r Ox r or r or -

p.—P)g (8.133)

Equation 8.133 allows for buoyancy effects.

8.6.3 Conservation of Energy

For conservation of energy of non-premixed combustible gases, which is a slightly
different form of Eq. 8.130 and given as

0 Y,) 0 Y, i
1 (rpv, ,)+ (rpv, ,)_lﬂ , D% =it (8.134)
ro ox or r or or
where
Y =¥, 7. (8.135)

8.7 Problems

Problem 8.1 Prove the following relationship
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Problem 8.2 Prove the following relationship.

Oe
o= gi rs
OPy .
where
oP  de OA

Ev,/l aﬂ, Py gv,e -

Problem 8.3 Delineating Compressible and Incompressible Flows

Starting from the conservation of momentum for a steady flow with no heat
transfer, no shear stress, nor area change (isentropic flow)

u%_}_ld_}):o

. . . d
And assuming an ideal, perfect gas show for a density change (—pj of 10% that
p

the corresponding Mach number is 0.3, which is the threshold between treating a
moving fluid as incompressible versus compressible. Please note an incompressible
fluid field is one where the density is the same throughout the fluid field and where

(d_pj is significant, then the density is changing with location.
p
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Chapter 9
Critical Flow

9.1 Preview

The system under consideration is a pressurized vessel in which the discharge point
is referred to as the “choke point,” and the center of the tank is denoted the “stagna-
tion point,” which is depicted in Fig. 9.1. The control volume could equally be a
system where there is a sudden contraction, see Fig. 9.2.

The equation for the mass rate exiting (mass efflux) the system is

M =-A"p'u’ 9.1
dt

where m is the mass of fluid within the system at time #, A" is the choke cross-

sectional area, p" is the density at the choke point, and " is the local speed of sound

at the choke point.

The crux of the problem is to develop a model for "p*u*" in terms of the properties
within the tank, such as Ty and Py, where T is the stagnation temperature and Py is
the stagnation pressure.

Fundamentals of Fluid Mechanics by Munson, Young and Okiishi [2] does an
excellent job of explaining static and stagnant conditions in terms of pressures.

The development of a model for single-phase flow for p*u* involved six assump-
tions/conditions that are

1. The reversibility of the system
2. An adiabatic system
3. A model for specific heat
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org/10.1007/978-3-030-87387-5_9) contains supplementary material, which is available to autho-
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Stagnation
Point

Choke Point

Fig. 9.1 Pressurized vessel

Converging Diverging
Section Section
dA<0 dA>0
dv >0 dv =0

M<1 M>1
Reservoir
To oy — 5 Supersonic — 5 Vexit
po flow
Vo=0
Throat
M=1

Fig. 9.2 Supersonic nozzle [1]

4. The equation of state
5. The stagnation condition
6. Choked flow

This chapter will discuss critical flow associated with a single phase (single com-
ponent) and go on to discuss critical flow in a two phase (two-component system).
The concept of critical flow for a single-phase fluid can be understood in the follow-
ing manner.

Given the following equation for first law

0=Ah+AKE 9.2)

Where the system has no work, no heat transfer, nor changes in potential energy,
which has the differential version
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0=dh+udu 9.3)

And given the following equation for second law for an isentropic flow

Tds=d —d—P:O 94)

p

Equating the two forms of “dh” results in

—udu = d—P 9.5)
Io}
or
ﬂ =— dPZ (9.6)
u pu

And defining the mass flux (G) as
G = pu 9.7)
or
In(G)=1In(p)+In(u) 9.8)

Taking the derivative of both sides results in

4G _dp  du 09
G p u
And substituting Eq. 9.6 into Eq. 9.9 results in
P P
aG__4d - d_(@_pj 9.10)
G pu~  p \OP ),
or
4G _ ap _L2+L2[a_pj 9.11)
G G° p \0OP),
And

G is a maxima when

(d—Gj =0 9.12)
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Such that

L. (ﬁ_pj =0 (9.13)
oP ).

or

oP oP
o [ 2 [[-E 14
G p\/( o ) \/( > j 9.14)

Additionally, the speed of sound for a single-phase, single-component sub-
stance is

2 _[ P
a _[apl (9.15)

max

G
Such that we see that —= is equal to the local speed of sound!

We’ll see in the next section that this critical flow occurs at the choke point,
which is essentially where the area of the conduit is minimal within the fluid flow or
a location before the conduit suddenly expands.

We see in Fig. 9.2 that the throat is the choke point and the Mach Number (M) is
1 consistent with the above discussion.

In Sect. 9.2, we will explain Fig. 9.2 and discuss choked flow, which is also
termed critical flow.

In Sect. 9.3, we will assume the gas is both ideal and thermodynamically perfect,
e.g., specific heat is independent of temperature. With the six above assumptions/
conditions and an ideal, perfect gas, we get two algebraic expressions from the
energy and entropy balances.

In Sect. 9.4, we will assume the gas is a van der Waal gas and that the specific
heat is independent of temperature and pressure. Again, from the entropy and energy
balances we get two algebraic expressions; how differently the two equations of
state are in terms of critical flow will be explored through an example.

In Sect. 9.5, liquid/gas flows will be discussed. It is likely that a tank of gas at a
high pressure and ambient temperature would “flash.” Flashing is not what you’d
hope. Flashing is when a gas suddenly experiences a great drop of pressure and
begins to form a liquid phase as it expands. It’s likely any critical flow from a pres-
sure vessel will experience two-phase flow and so this section discusses liquid/
gas flows.

In Sect. 9.6, speed of sound for either a two-component or liquid/gas flow will be
discussed.

In Sect. 9.7, critical flow for a two-phase, one-component system is discussed.
Two classes of models will be explored: homogenous models assume average prop-
erties between the liquid and gas phase and develop a model based on either the
momentum equation or energy equation; non-homogenous models assume an
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annular flow where a gas core is surrounded by a liquid sheath. Naturally, these two

separate flows are traveling at different speeds and a slip velocity exists between the
phases. Other non-equilibrium conditions make this model framework a challenge.

9.2 Effect of Area Changes on Gas Dynamic States
From conservation of mass [3-5]
puA = constant (9.16)
and
In(p)+In(u)+1In(A)= constant 9.17)

Taking the derivative of both sides

dp  du dA_ (9.18)
p u A
Substituting Eq. 9.6 for du results in
dp  —dP A _, 9.19)
p pu A
And solving for dp f gives us
P _p [d—p+@J 9.20)
P p A
And by definition the speed of sound is
a’ = 8_P & d—P 9.21)
op), dp
And
a’dp ~dP (9.22)

Substituting Eq. 9.22 into Eq. 9.20 results in

2
dp_uw(dp dA)_\..(dp  dA (9.23)
p alp A p A
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And solving Eq. 9.23 for d% gives us

dp Ma*> \dA
7:[1_Ma2j7 ©29

Substitute Eq. 9.24 into the differential form of conservation of mass gives as

2
Ma” 1dA dA  du_, 9.25)
1-Ma~ ) A A u
And solving for du results in
u
du 1 dA
—=- — 9.26
1-Ma*> A ( )
Also, @ is equal to
u
—-dP
du_ d2 (9.27)
pv

Such that

2
& _pe 1 dA:yMaz(—ll ]dA (9.28)

P P 1-Md A Md® ) A
A summary table is given below
We’ll now use Table 9.1 to see how pressure, density, and velocity change
through a converging and then diverging engineering device. The results of this
analysis are given below.

Table 9.1 Area effects on gas dynamics

dl:yMaz 1 > %
P 1-Ma” ) A

2
dp _[_Ma_1dA g 59)
p 1-Md*)A

du__ LA g5
1-Md® A
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Fig. 9.3 Converging/diverging engineering device

We see in Fig. 9.3 that pressure is continually decreasing which is consistent with
a fluid system; we also see the density decrease in a similar fashion with the pres-
sure, which is consistent with ideal gas behavior. Further, we see the area is decreas-
ing for Mach <1 and then increasing for Mach >1 and that the velocity continually
increases through the device and drastically increases around Mach 1.

The portion of the device with minimal area can be the point of a choking [3-6].
Choking is a condition where the pressure differential between stagnation

pressure and downstream pressure does not dictate the mass flux. It can be shown
for —% > 2, where P, is the stagnation pressure and P* is the pressure at the choke
ES

point, that the Mach number at the choke point is always 1 (for pure substance) and
is consistent with Fig. 9.3; the critical flux through a choke point is the maximal flux
allowed [3, 6-8] through the system.

9.3 Ideal Gas

In this section, a critical flow model is developed for an ideal, perfect gas.

Entropy Balance
From the first four assumptions/conditions and the entropy balance, we get to the
following relationship

dT
ds = S Pdv (9.29)
T T
or
¢, dr Y RT
5,5, =0=-"2 d—+j " dy (9.30)
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where vy is defined as

y=-=2 (9.31)
CV
and
C—PlnLT—]mu ln[v j:o (9.32)
v \L Vo
For an ideal gas
c,—c, =R, (9.33)

Substituting Eq. 9.33 into Eq. 9.32 results in

C—Pln[?J+(CP—cv)ln[v*]:0 (9.34)

4 0 Yo

And dividing by ¢, gives

lln[T—*J+(1—lJln(v*]=0 (9.35)
Y T, 14 Vo

T v
IH(FOJ+(}/_1)1H(Z]_O (9.36)

or

and

* y-1
r_ (V‘ij (9.37)
T, \v

Energy Balance
From the last four assumptions/conditions and the energy balance, we get the fol-
lowing relationship

hy=h" +%c2 (9.38)
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where h, is the enthalpy at the stagnation point, 4* is the enthalpy at the discharge
(choke) point, and c is the local speed of sound [4]. In a converging area, the chocked
flow will be sonic when the following condition [4] is met

* %,1
r_ [ij (9.39)
P y+1

0

Which as a rule of thumb, essentially states that as long as the stagnation pres-
sure is at least twice of the chocked pressure, then the discharge velocity is equal to
the local speed of sound.

We saw in Chap. 7 that ¢ for an ideal, perfect gas is equal to

c=+yRT (9.40)

Substituting Eq. 9.40 into 9.38 for a perfect gas results in

c,T,=c,T" +%yRT* (9.41)
and
T
b1l yR 9.42)
T ZCP
Further,
T, 11
=l+——(c —c 9.43
T ZCV( r V) ©43)
and
T, 1 1
=l+—(y-1)==(y+1 9.44
Fo=1ro (=) =5(r+1) (944)

Again the mass rate of discharge is
g =-A"u'p’ (9.45)

Given above with the definition for the local speed of sound (Eq. 9.40) for an

ideal gas and
W= JyRT (9.46)
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Fig. 9.4 Example 9.1 Results

Additionally, we know from Eqgs. 9.37 and 9.44 that

p_(T i _(2 e (9.47)
po \T,) \r+l '

Substitution of Eqs. 9.46 and 9.47 (plus the ideal gas law) into 9.45 results in

pa
i ——ar 2RV B 2 (9.48)
Y y+1 RT,\y+1

Example 9.1 Pressure vessel for ideal gas
Determine the amount of carbon dioxide within a pressure vessel after 1.5 seconds
when the initial stagnation pressure is 2 MPa, temperature is 300 K, and the opening
is 5e-3 m% The volume of the vessel is 1 m?’.

Note that CO, at this temperature and initial pressure is not ideal! In fact, using
a Peng-Robinson equation of state [7] it can be shown that the Z factor is 0.89,
which tells us this gas is not acting ideal.

From the graph above, the answer is about 10.24 kg (Fig. 9.4).

9.4 Van der Waal Gas

In order to incorporate real gas effects, the following approach was adopted and
includes the use of the van der Waal’s equation of state

p_ KT

" Viz (9.49)
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where {a, b} have been previously defined.
Because the equation of state is more mathematically involved, the entropy and
energy balance equation will be more involved.

Energy Balance
From the last four assumptions, an energy balance is given as

hy=h"+ %cz (9.50)

where A is the enthalpy at the stagnation point, #* is the enthalpy at the discharge
(choke) point, and c is the local speed of sound [9] for a van der Waal gas.

What we’ll do is define “du,” solve this equation and then define “dh” in terms
of “du.”

dez(gj dT+(%j dv (9.51)
oT ), ov );
where
Oe
— | =c 9.52
(aTJV ' ( )
and
R R
ov J; or ), v-b |v-b v v
So that
a
de=c dT +—dv (9.54)
v
And integrating
Ae=c AT+2L -2 (9.55)
v1 v2
and
RT. RT,
Ah=h —h =Au+Py, Py, =c AT +% -4 00 4 BV 4 g 56

v, v, Vv,=b v, v,-b v
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Additionally, the speed of sound for a van der Waal gas is [9]

2
e :[1+£J VRT _,a
C, (v—b) 1%

And substituting Egs. 9.56 and 9.57 into 9.50 results in

cars s o Ky, o Rl a 1y R)ViRT, _
v, v, v,=b v, v,=b v, 2 c,
Entropy Balance

From the first four assumptions, an entropy balance is given as

Tds = de + Pdv

and

de = c,dT +-=dv
4

Substituting Eq. 9.60 into Eq. 9.59 results in

Tds = c,dT +(P+%)dv — a7+ XL
v v-b

and

dl R

For isentropic flow

e tn| 2|4 rin| Y220 )20
T, v,—b

In L +(y—=1)In Yo =b =0
T v,—b

or

And finally

(v,-0)

9 Critical Flow

9.57)

(9.58)

(9.59)

(9.60)

9.61)

(9.62)

(9.63)
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y-1
L _ n-b (9.64)
T, \v,-b

1

In Sects. 9.4 and 9.5, relationships were developed between T, and 7" and v, and
v*. These developed relationships along with the appropriate speed of sound model
and conservation of mass provided models for critical flow.

9.5 Liquid/Gas Flows

When we begin to ask questions about quantities such as critical flow in a liquid/gas
system, we need to understand there are many types of flow that can be encountered
(see Fig. 9.5) and these flows are dependent on a combination of the liquid and gas
flows (see Fig. 9.6). Many of the critical flow models for two-phase systems have
either assumed homogenous flow or annular flow. Each of these flows is dis-
cussed below.

Fig. 9.5 Common vertical e T 1 W B g
flow regimes — from left to ] | |
right: churn flow, annual . ’
flow, and wispy annual
flow [10]
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Dispersed Bubbles

Liquid Superficial Velocity

| Elongated Bubbles |
|
Shug Flow

[ = .- Annular Flow

Stratified Flow
Wavy Stratified Flow

L -

Gas Superficial Velocity

Fig. 9.6 Gas/liquid flow regimes

In homogenous flows, the two regimes (liquid flow and gas flow) are assumed to
have some average associated with all properties such as density, pressure, or flow
velocity; there is equilibrium between the phases. In annular flow, and assuming the
conduit is a pipe, the gas flows in an inner core with a higher velocity and the liquid
flows as an outer sheath with a lower velocity. The reason for the differing velocities
is that one pressure is applied to the whole system, but that the effective density of
the gas phase is much less than the effective density of the liquid phase and so the
gas phase moves at a higher velocity relative to the liquid phase. A slip velocity is
created and there is no equilibrium between the phases.

In this section we’ll provide some necessary nomenclature to distinguish proper-
ties of the liquid phase with properties of the gas phase; we’ll then define the con-
servation principles for a two-phase system.

In Sect. 9.6, we’ll explore speed of sound for a liquid/gas flow where it is the case
that the gas is supersonic and the liquid is subsonic.

In Sect. 9.7, we’ll define critical flow for a liquid/gas flow and see that there are
three considerations associated with critical flow as opposed to one in one phase,
critical flow. We will then discuss a seminal paper [11] that delineates the two main
forms of analytical models for two-phase, critical flow and we’ll end with a brief
discussion of the Omega method.

Two-Phase Gas Flow Nomenclature
W, mass rate (where g denotes the gas phase and 1 denotes the liquid phase) and the
total mass rate is

W =W, +W,=pu,A, +puA, (9.65)

88 8
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X, quality

Wg
x= (9.66)
W, +W,

0, volumetric flow rate and the total volumetric flow rate is
0=0,+0, (9.67)

And Q, and Q, can be defined as

o ié (9.68)
8 - Ag :
and
W,
= e— 9-69
o A (9.69)

where a volumetric fraction of gas and defined as

0

a=——" (9.70)
0,+0,
G, mass flux (where A is the cross-sectional area orthogonal to the direction
of flow)

W W W _PA L puA

-4 a A A =apgug+(1—a)p,u, (9.71)

J, volumetric flux and the total volumetric flux is

._ 0
== 9.72
=5 9.72)
Mean density is defined as
p=op,+(1-a)p, 9.73)

where j, and j, are defined as

0
=== 14
j== (9.74)
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and
Y
== (9.75)
Ji N
And the total volumetric flux is
. . . Qg + Ql Ag Al
J=J,*ti= 1 =Xug+xul=aug+(l—a)u, (9.76)
where
J
u, = —L 9.77)
l-a
and
J
.= = (9.78)
(04
A summary table is given below (Table 9.2).
Example 9.2
Prove the following relationship
1-x
x O (9.79)
lze 0,
(04
where
I-x _ puA l-o uh
by puA, T« u,A,
Table 9.2 Two-phase nomenclature
Volumetric Flow Rate | Volumetric Flux | Volumetric Flux (gas) | Volumetric Flux (liquid)
Qi = pu; j = i jg =aug Ji=0 =y
A
Mass Flow Rate Mass Flux Mass Flux (gas) Mass Flux (liquid)
Wi = puA; G = K G, =ap,u, G=1-apu

A
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and

Further,

Finally,

or

211

1-x ﬁ
x _P_9_A
Ira p, 0 W,
a A

8
w, |14
AI_A(I_a)_VVl (24
W Wi
Ag Aa

AL
p, u A, W

8

Conservation Principles for Two-Phase Flow

The conservation principles for a two-phase flow are given below without deriva-

tion [3].

Conservation of Momentum

YdF, =d|mu, +niu, |=dF, +dF;+dF, =0

or

2 dF, =—AdP - [apg +(1-a)p, J zdx —[TWJ + rW’gJPdX

(9.80)

9.81)

where A, is the cross-sectional area in the “z” direction, z,, , is the shear stress associ-
ated with the liquid, and 7, , is the shear stress associated with the gas.
And dividing by “A.dZ” and solving for dP/dZ results in
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_d_P:_(d_P) _(d_P) _(d_’)} (9.82)
dz dz), \dz), \dZ),.
or
v
——=—7 ————p gcos(@) (9.83)
7

Conservation of Mass

W = p, vA = constant (9.84)
Conservation of Energy
2
N (9.85)
dz dz dz 2

where ¢ is the heat transfer, w is the work, and the three quantities in brackets are
specific enthalpy, specific kinetic energy, and specific potential energy.

9.6 Speed of Sound in a Two-Phase Flow

The first portion of this section develops the speed of sound for a mixture of com-
ponents [12]; it is assumed that the flow is homogeneous. The effort in this first part
doesn’t address some of the concerns inherent in two-phase flow where interfacial
processes become relevant and the two phases are no longer at equilibrium. It will
be shown in this first section that the speed of sound of the mixture is a weighted
average of the speed of sound of each component and that the weighting is based on
the component density.
The derived relationship for a liquid/gas flow is

1
== ;‘_P[apg +(1-ap,)] (9.86)

In the second portion of this section, a correlation is developed between the
speed of sound of the mixture and a variable, @ [13]. The relationship derived is

(9.87)
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Speed of Sound for a Two-Phase Flow, Weighted Average of Densities
Consider a very small control volume (with volume equal to 1) where one phase is
dispersed (phase A) and the other phase is continuous (phase B). The pressure asso-
ciated with the dispersed phase will include a surface tension [14] and is given as

P =P, +2% (9.88)

where Pj is the pressure for phase B, S is the surface tension, and R is the radius of
the dispersed phase particles. Eq. 9.88 is Laplace’s law for a spherical particle.
The mass of phase A is
m, =p,0, +0m (9.89)
And the mass of phase B is

My = P, —Om (9.90)

Where mass is transferring from phase B to A and the amount is ém.
Given the mass above for phase A the volume for phase A is

v, = pAZA +om 9.91)
P
p,+ OP
A [6PA L A
And the volume of phase B is
1)
v, =—PF BZB e (9.92)
ij
0+ OP
? [6PB o
where Q4 and Q; are unspecified thermodynamic paths and
1 op
o = ( aPA J (9.93)
A AJg

and

1 _[%s (9.94)
c; \op, ),
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Thus,
V=V, +V, -1 (9.95)

And the definition of speed of sound is

2 =—p [5—‘/] (9.96)
5PB 5Py —0

The following derivation is determined from substituting Egs. 9.91 to 9.95 into

Eq. 9.96
op a_A[aij 6P, +0‘_A(6PAJ _ Py Py Sm (9.97)
P4\ OP, 04 6P, py\OP, op  PaPs o P,

PB

The ratio needs to be determined where no dispersed particles are created,

nor destroyed where the new radius of dispersed particles is R + 6R and

, , R (R+3R) SR
5P, =P, - P, =(PB—PB)+2S|:R(R+6R)—R(R+8R)}=5PB—2 o 9%
Thus,
_ 25 om
oP, 3a,p,R P, 9.99)

5PA_1_ 28 (6pAJ
3p,R\ 2P, ),,

Substituting Eq. 9.99 into 9.97 and utilizing the definitions for speed of sound
(Egs. 9.93 and 9.94), the following relationship is derived

{ouhém{hu 28 1}}
1 Za“%-i- Pa Ci 0P, Py P 3aApBRci (9.100)
P Pyl 25 1

3p.Rc;

Homogenous flow assumes no mass transfer and typically the second term in the
denominator associated with surface tension is much smaller than 1 and thus
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aB aA
=la +a + 9.101
2 [ aPa BPB]L)AC; chi} ( )

Equation 9.101 is valid for two-phase or two-component flow. Another form of
the equation exists for two-phase flow where the density of one phase is much
greater than the density of another phase, which is typical in a one-component, gas/
liquid flow. This other form is

a l-a
=|lap, +(l-a + 9.102
c [pg ( )pl]L’P P,cl} ( )
And when > <1 asimpler form is given as
puci
1
C—=—[apg +(1-a)p, | (9.103)

Example 9.3 Speed of Sound for Water Mixture using Eq. 9.103
Using Eq. 9.103 and saturated water at 100 °C and alpha equal to 0.95, determine
the speed of sound. Given below is the solution, which is 54.2 m/s (Fig. 9.7).

Speed of Sound for a Two-Phase Flow, Omega Method [15]

By definition,
av Y
¢t =v? {—(a—PJ } (9.104)

Where the following thermodynamic relationships will be utilized to develop a
homogeneous, two-phase sonic velocity (Clausius-Clapeyron relationships)

1 l—a
Alpha 0.950 = [ﬂpg +(1-a)p)] [ - ]
Rho(g) [kg/mA3] 0.598 c* P PG
Rho(l) [kg/mA3] 957.854
k 1.327 And when -
z = — 1
a simple form is given as pLc}
1/cr2 1/{m/s]*2  3.403E-04
& [m/s] 54.205
c* 1.182 L o
o [ap, + (1 —a)p)]
P/rho(l)*cA2 3.60E-02

Fig. 9.7 Solutions for Example 9.3
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s h, ds c
d_Pzﬁ,sf e B (9.105)
aT v * T’4r T

18
Starting from the definition for specific volume of a mixture of gas and liquid
Vi =V, +x(v, v, (9.106)
And taking the derivation of Eq. 9.106 with respect to P results in
oV, .. 6v, 6
-v v
(5] -Sosspl bl

6v

Ve yy & Ox (l_x)% (9.107)
8P ¢ opP OP

0
Where we’ll assume the liquid phase is an incompressible fluid and so B_‘f/’l ~0.
ox
orP
Assuming v, acts ideal
RT
v, = - (9.108)
And taking the derivative of both sides with respect to P results in
dv
—g:Ri T =R ld—T—izT (9.109)
dpP dP\ P PdpP P
and
v v
R_Ye and—l RTY__Ye (9.110)
P T PP P
and
s h
4P _Sw _ Mw 9.111)
dT Vi vag
Substituting Eqs. 9.110 and 9.111 into 9.109 results in
dv v, Vv,V
e (9.112)

P P h,
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and

[dx)
(d—xJ _dL, (9.113)
dap ). (de

ar

And the Clausius-Clapeyron relationships is

h
LT (9.114)
dar Tv,
and
Spix =8, T XS, 9.115)

And taking the derivative of both sides with respect to T for an isentropic process
results in

ds,.~ds, ds, dx

~Dmix _ 7 +5. = 9.116
dr dr =~ dr *dr e-Ho
or
h ds ds c h
I e R W L i 9.117)
dl T dT dT dT T ar| T
where £, is constant with respect to T and so
c h
LIS AN ' [ (9.118)
dT T ar | 1° || hy,
and
c
ax _ _Cy X 9.119)
dT h, T
and
(dXJ BTN
[ﬂ} _\dr ), _ hy, T:_Cpf"nger"fg:"i x_cp/T (9.120)
dP ), fe

2
(dpj hfg hfg hfg hfg
dT vag
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Substitution of Eqgs. 9.112 and 9.120 into Eq. 9.107 results in

_ ov VX VV.X v c, T
OViix | _ Ve ‘v, a_x:_L+i+vf il L9121
oP s oP o oP P hfg " hfg hfg

or

2
ov —xv Pv v, v,
[5) = T{l_h_fg[Hv_mH_c”’T[hij (9.122)
s 13 g fg

And a dimensionless version of the above equation along with the following
observation, v, & v, in terms of ¢ is

2 h

c % {1—2—%}—% r [Vﬁj (9.123)

= p P )
VPv v 12 v 12
And setting ® equal to
Pv (v,
C \%
w:a{l—z—ff‘}"f—[-—féfj (9.124)
hfg v hfg

results in

1

R

*

c (9.125)

Example 9.4 Speed of Sounds Using Omega Method

Using Leung’s method as given in Eqs. 9.124 and 9.125, determine the speed of
sound of saturated water at 100 °C and quality equal to 50%. Given below is the
solution and we can see that the speed of sound for this saturated water mixture is
298 m/s (Fig. 9.8).
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Fig. 9.8 Solution for

219

Example 9.4 Subtance Water
T(0) [c] 100
T(0) (K] 373
P(0) [kPa] 101.3
x(0) 50%

Gamma 1.327
v(1,0) [m~3/kg]  0.001044
v(g,0) [m~3/kg] 1.6729
v(fgo) [m~3/kg]  1.671856

v(0) [m~3/kgl  0.836972
c(f0) [kJ/kg-K] 4.18
h(fg0) [ki/kg] 2257.03
Alpha 0.999

Omega(1) 0.85

Omega(2) 0.10
Omega 0.95

¢/sqrt(P*nu) 1.02
c [m/s] 298

9.7 Critical Flow for a Two-Phase Flow System

The first critical flow model for two-phase systems that will be developed [3] incor-
porates slip that addresses differing velocities between phases but will largely
ignore other forms of non-equilibrium behavior, which will be discussed fur-
ther below.
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From the conservation of energy and assuming no heat transfer, no work, no
appreciable kinetic energy at the stagnation point, nor changes in potential
energy then

hy=—=+h (9.126)

where now u(*) is not necessary the local speed of sound, but a mixture of two
phases and another form of Eq. 9.126 is

2Ah:xu§ +(1—x)u,2 9.127)

And it can be show that G is equal to

1- l-a
G=py, =0, (9.128)
1-x
or
a o
GngugEZQg; (9129)
From Eq. 9.129,
a=2C (9.130)
0,
And Substituting Eq. 9.130 into 9.128 results in
G=0, £ (9.131)
1-x
and
G(l—x)+x—Q’G=G|:(1—x)+x—Q’}:Ql (9.132)
8 8
And solving for G
G= 9 = ! = ! (9.133)

1- 1-
(1—)c)+xg LA S
Qg Qg 0 PU, Py
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And defining slip velocity (k) as

k=-—% (9.134)
U
It is the case that
2 1 ’
Azh :{ x +;x} [ +(1-x)u; | (9.135)
G pu, Py

And substituting in for u, the term ku, results in

2
2Ah X 1-x
= +—= | | xk* i+ (1= x)u? (9.136)
G’ |:ng”‘/ p,u,:| [ l ( ) I:|
and
2Ah 1 ’
X —-x
= 4+ 2| | xk*+(1—-x (9.137)
G’ Lgk P } (1)

For a given x and dh, G can be maximized by taking the derivative of both sides
with respect to k.

2
i{ﬁ}:i L e (1-0)] — L AB=AB+AB  (9.138)
ak | G* | dk||pk  p dk

where

2
:i{ﬁ}zzkx x L= ~2[ ke +(1-x) ] 5 X2 0139
dk | G kp, p k

and

2
z{iﬁ‘_x} [+ (1-2)]5—=0 (9.140)
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or
Xl @ Iox (9.141)
P, P P, kp,
Further
pl=x l;x (9.142)
Py k“p,
and
\%
=Pz (9.143)
P, Vi
Substituting Eq. 9.143 into Eq. 9.137 results in
G’ = __ 2k (9.144)

c 3
1-x X
pl.667 + p:67

Equation 9.144 tends to work well when x > 10%, but below this quality the fluid
begins to act homogenous and as x approaches 0 or 100%, the slip goes to 1. For
very low quality, another model of two-phase critical flow [16] is required and dis-
cussed below.

Example 9.5 Critical Flow using Eq. 9.144
Determine the critical flow for saturated water with a quality of 10% and a pressure
of 150 kPa and using Eq. 9.144.

Given below is saturation data for water from 25 to 250 kPa. Using this data and
Eq. 9.144, a curve is developed for x equal to 10%. Additionally, curves are pro-
vided for x = 5% and x = 90%.

The answer to the example is 510 kg/m"2-s (Fig. 9.9).

We’ve seen for one phase, one component flow that

oG
<l = .14
( P 1 0 (9.145)

But for two-phase (two-component) flow

(ac;ﬂ) =0 (9.146)
QA

oP

where the thermodynamic path Q, is no longer specified to be isentropic
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Substance  Water VZAR
x 10% L oo e, Ahyge 1
b 0.667 [1_‘: = WF) = -2 "2tC
Rg 0.4615 Lol :
P T nufl) nulg) hil) hg)  nulmix)  h{mix) dh Gmax  Gmax(5%) Gmax(30%)

[kpa] €l [m*3fkg] [me3fkg] [/kg]  [W/kg] [m~3/kg]  [Wi/kg]  [W/kgl  [ke/mt2ss] [kg/mt2ss] [kg/mA2-s)

25 64.97 0.00102 6.20424 2719 2618.19 0.62134 506.529 234.629 106 203 12
50 81.33 0.00103 3.24034 34047 264587 0.32496 571.01 230.54 197 369 23
75 9177 0.001037 2.21711 384.36 2662.96 0.22264 612.22 227.86 281 518 34
100 99.62 0.001043 1.694 417.44 267546 0.17034 643.242 225.802 361 654 44
125 105.95 0.001048 1.3749 4443 268535 0.13843 668.405 224.105 437 781 54
150 111.37 0.001053 1.15933 467.08 2693.54 0.11688 689.726 222.646 510 501 64
175 116.06 0.001057 1.00363 486.97 2700.53 0.10131 708.326 221.356 580 1013 74
200 12023 0.001061 0.83573 504.68 2706.63 0.08953 724.875 220.195 648 1121 83
225 124 0.001064 0.79325 520.69 2712.04 0.08028 739.825 219.135 714 1223 93
250 127.43 0.001067 0.71871 535.34 2716.89 0.07283 753.495 218.155 779 1321 102
1400
1200
Elwc
E s
¥
= s
E 400
200
5 i
] 50 100 150 200 2% 200
P [kPa]

——10% —8—5% —ir—90%

Fig. 9.9 Solution for Example 9.5
And now with a two-phase system
Vi =V, +2(v, v, (9.147)

m

And taking the derivation of Eq. 9.147 with respect to P results in

Vois —%+xi[v —v]+[v -v &

op ). oP “op-® ¢ dop
0

sy, & 1-x) (9.148)
oP % oP oP

And if we assume homogenous conditions where both phases are in equilibrium,
then we can still assume an isentropic path, such that substituting Eq. 9.148 into
Eq. 9.145 results in

G’ =—[2—PJ =73 -1 (9.149)
4 s v ax 5\/
X a; S"r(Vg _Vl)(a[)JS+(1_.x) aif)l

s
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And assuming an incompressible liquid

(%j ~0 (9.150)
oP ),
And typically

v, >V, (9.151)

Substituting Eqs. 9.150 and 9.151 into 9.149 results in

G =- 9P _ ! (9.152)
aV s avg ax

X +v | —

op ) *\oP),

Equation 9.152 is known as the homogenous equilibrium model and has been
shown to inadequately predict critical flow because crucial interphase processes
have been ignored. One discrepancy is that the densities between the liquid phase
and the gas phase are very different and under the same applied pressure would
experience very different accelerations and velocities.

Another common model for two-phase flow is the homogenous frozen model that
assumes the properties through the choke point don’t change and specifically x. In
Henry and Fauske [11], the underlying assumptions associated with both forms of
the two-phase flow model are discussed.

We saw in the previous section that a liquid portion of a flow and a gas portion of
a flow are at two very different Mach numbers. Put another way, we will see that
phases are not at the same speed and momentum and energy may not be in equilib-
rium. All these issues will be discussed further when a general critical flow model is
derived. This developed model addresses three interfacial transport processes [17]

1. Interfacial heat transfer. The heat transfer rate between the gas phase and the
surrounding liquid and solid phase.

2. Interfacial momentum transfer. This transfer determines how fast each phase is
accelerating.

3. Interfacial mass transfer. This transfer determines the rate of evaporation or
condensation.

A more general definition of critical flow for two-phase (two-component

systems) is
%, =0 (9.153)
oP ),

where H, denotes a constant stagnation enthalpy [16, 11].
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Definition of Critical Flow for a Two-Phase System
Another form of the momentum equation where the effect of gravity and friction are
ignored is

du dP
U— = —— 9.154
P dz dz ( )
And conservation of mass is
dp  du dA_ (9.155)
o u
And substituting Eq. 9.30 into 9.155 results in
aa_dpl_dp (9.156)
A  plu dP
Where again the critical flow is
G =p [d—P) (9.157)
dp ) o
Where now the path is constant with regard to stagnation enthalpy.
As was just noted above, often u, # u, and so
d dp
G—|xu, +(1-x)u, |=—— 9.158
dz [ (1) J dz ( )
And by definition
(G_G] = Qatthe critical point (9.159)
HO
Combining Eqgs. 9.158 and 9.159 results in
1=G 0 1 9.160
1= E[x”g"‘( —x)u,] (9.160)
Where the slip velocity is again defined as
u, =ku 9.161)

g 1

Mass flow rate for each phase is defined below.

Where the liquid phase mass flow rate is
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(1-x)G =(1-a)= (9.162)
V]
And the gas phase mass flow rate is
u k
XG=a—t=q—t (9.163)
vg VK

If we eliminate “G” from Eqgs. 9.162 and 9.163 then a relationship between a and
x is established

xv
a=—-"""—" (9.164)
k(l—x)v, +av,

Combining the previous two equations gives an equation for G solely in terms of i,

G LI, (9.165)
k(1-x)v, +xv,

Eliminating “u,” from Eqgs. 9.165 and 9.163 results in

! i}

G = - (9.166)
P [k(l—x)v, +xvg}[xk+(l—x)} B,
op k

HO
where B is
B,:i{xkzu—x)vl+k<l—x>2vl+x2kvg+x<1—x>vg} ©.167)
oP k
HO
or
b N x(l—x)v
B, =a—P{xk(1—x)vl +(1-x) v, +x%, +Tglo

And the following derivatives will have to be determined either experimentally

or theoretically
ox) (k) (v, % (9.168)
op),’\ep) \ oP )\ oP ) '
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Henry and Fauske [11, 16, 18] have shown that

-1

G = {%{W[(l —x)v, + xvg]}} (9.169)

HO

Expanding Eq. 9.169 results in

v +|:vg {1+Zx(k—I)Jrkv,z(k—])}g{—d;+k[l+x(k—2)—x2 (k*I)J%er(lfx)(kvl 7‘/—‘]:‘&} (9170)

v
dp k )|dP

G? :{k[l +x(k=1)]x

Again, using an order of magnitude arguments Eq. 9.170 can be simplified

k~0(1)< \/g ~0(10) and v, >v, 9.171)
v

and

[%) ~0 9.172)
oP ).

And thus Eq. 9.170 is simplified to
G o k (9.173)

ST oy R Ey g Y

Given below are determinations through theory and experiments values or for-
mulas for the derivatives appearing in Eq. 9.173 [16, 11].

i)

dk
ORE

dz

Below are graphs for k versus z and P versus z where it is seen in Fig. 9.10 that k
is a minima at z = z, = 1.6" (where z, is the throat of the nozzle) with the first deriva-
tive equal to zero and from Fig. 9.11 P is an inflection point at z = z, where the first
derivative is not equal to zero.
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Fig. 9.10 k versus z [11]
for various qualities

K
Fig. 9.11 Pressure versus
z [11] for various qualities 80
601
K 40 x
201
1 2 3 4
Z[in]
Evaluating Eq. 9.174 in light of these two figures it is seen that
dk
— | =0 (9.175)
dP )y,
The differential involving v, has been determined to be a polytropic process [11,
16, 18] given below as
dv %
—£ | =N|-% (9.176)
ap ). np )

where N is dependent on the geometry of the conduit and provides an estimate
for the fact that the actual path “H,” is between isentropic and isenthalpic where a
portion of the thermodynamic energy is converted to kinetic energy.

And n equals

(1-x)L 41
nz# (9.177)
c
(1—)6)—f+l
CI’.S’ y
Further [16]
(G_xJ :N(é—x) (9.178)
OP ) s OP ),

And from Fauske [18] a model for (2—;) is



9.7 Critical Flow for a Two-Phase Flow System 229

ox dh, dh, 1 [Ah AR
L I N PO S e T 2 (9.179)
oP ). h dP P h | AP AP

Substituting Egs. 9.175 through 9.179 into Eq. 9.173 results in

G = k (9.180)
Ah, Ah
[1+x (k- l]xN—+Nv [T+2x(k=1)]| | L+x=—%
h AP AP
And it has been found [18, 16] for x < 5% that k = 1 such that
) 1
G = (9.181)

o A, Ah,
xN——i—NV —Lx £
nP h/g AP AP

Equation 9.181 is similar to a model, Eq. 3.25, given in Henry [16].

Example 9.6 Compare Three Critical Flow Models
In this example, three models are compared for critical flow. These models include
the model at the beginning of this section given from Wallis [3], the model just
developed, and a model attributed to Henry and Fauske [11].

Given below is the analysis for Eqs. 9.140 and 9.181 for water at a pressure of
600 psia as Fig. 9.12 for quality ranging from 15% to 80%. Figure 9.13 provides a

Pressure  [Faia) 620 600 580
Pressure  [Int/ne2) 89280 86400 83520 - 24k Gm (‘”’] ST I S
ool [re3fem] 00202 0.0201 0.0201 6™ ' \|_.L ’[TA}I
nulg)  [fe°3om] 0744 07638 0.7973 [l-_?;. -{;\-I
hif) [eTuiem] 4757 47155 2674 Pi P
higl  [8TY/em] 727.2 736 7361 - h
Substance Water x Gell) 62 [ ] : PI
Pressure  (Ibt/fee2] 86400 15 308 ss3
Nl [Re3fem] 00201 s 02 m2 S
Mulg) Dt ez} 0.7658 0 134 136 00
x 15% 50 109 s e
[ 20 €0 22 102 2kl
dhif) [8TY/ieen] 23 70 80 92 z e
ap list/fe~2] £760 80 70 85 i
ahitg)  [ETYEm] 29 % o ——vass
nifg) [BTU/1bem] 7316 5 3 1 PR
axfdp 1653606
200
i} [BTU/ 1) 4TLSS e
hig) [BTUfbm] | 120315 : . ' . .
himix)  [8TU/en] 581.29 o L 0 ® % 00
dh [T/ ieen] 109.74

w2 PomfRealil 94,234
stz [omfrasje 779,796

sicl omfer2a] 307
e bmfes) fTH

Fig. 9.12 Solution for Example 9.6
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1000
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600

400

G(c) [lbm/ft"2-s]

200

0 20 40 60 80 100
Quaity (x)

—f@—Fauske ==¢=\Wallis ==t=Foust

Fig. 9.13 Comparison of three critical flow models for two-phase systems

comparison between the two discussed models and a model developed by Henry and
Fauske [11]. It is seen as quality decreases that Eq. 9.181 approaches the mass flow
flux of liquid as computed from Bernoulli’s equation, which is 1807 Ibm/ft.*2-s and

based on u, = 2g .
\’ Io}

Critical Flow Utilizing the Omega Method
Another method exists that is much more empirical and much more straightfor-
ward — the ® method. We utilized this method earlier to look at determinations of
speed of sound in two-phase flows.

The critical flow of a homogeneous two-phase flow can be expressed in terms of
the omega correlation [17, 19, 13]. The equation is given as

P
— (9.182)

v,

Gl =n’

where w takes a slightly different form from Eq. 9.124 where the first terms differs
slightly.

2
c..T P (v
a)=a0+M(ﬂJ (9.183)

v h 520

P
And 7, which is the critical pressure ratio EFOJ , has been determined to be

C

n’ +(a)2 —2(0)(1—11)2 +20° 1n(1))+2a)2 (1—1)) =0 (9.184)
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where omega can be determined either graphically or through empirical relation-
ships [14] such as

When
w>4
G 0.6055+0.1356*ln(a))—0.0131*(ln(w))2
= (9.185)
3 Jo
v0
Or when
w<4
G = 0'063? (9.186)
oo
VO
Please note the following
@ <1 — Non —Flashing Flow,o» = «, (9.187)

v, h

2

c..T.P, (v
® >1—> Flashing Flow,0 = o, + J070 O[ﬂ]
180

Example 9.7 Critical Flow Using Omega Method
Determine the critical flow [kg/m”2-s] for saturated water at 100 °C and quality
equal to 50% utilizing the Omega method discussed above.

Itis seen from below that the calculated omega is 1.10 (Flashing) and so Eq. 9.186
is utilized. For the given stagnation pressure (101.3 kPa) and specific volume of the
mixture (0.84 m"3/kg), the critical flow is determined to be 185 kg/m”2-s and about
20% of the value for G(L), which is the critical flow for liquid water at the same
temperature and pressure (Fig. 9.14).

9.8 Problems

Problem 9.1 Ideal, Perfect Critical Flow

Determine mass rate versus time for methane with an initial pressure of 5 MPa and
temperature of 300 K. The pressure vessel is composed of a cylinder with two hemi-
spherical end-caps where the diameter is 36” and the length of the cylinder is 60”.
The opening has a diameter of 1/8".
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Fig. 9.14 Solution for

Example 9.7 Subtance

T(0)
T(0)
P(0)
x(0)
Gamma

v(1,0)
v(g.0)
v(fgo)
v(0)
c(fo)
h(fgo)

Alpha
Omega(1)
Omega(2)

Omega

G(L)/sqrt[P(0)/nu(0))

G/sqrt[P(0)/nu(0)]
G/sqrt[P(0)/nu(0)]

G/5art[P(0)/nu(0)]

G/G(L)
G
G(L)
Problem 9.2 Two-Phase Flows
Prove the following
l-a
G =0,
1-x

Problem 9.3 Speed of Sound for Two-Phase System
Determine the speed of sound for saturated methane at 95 K where the qual-

ity is 30%.

9 Critical Flow

Water
[c] 100
(K] 373
[kPa] 101.3
50%
1.327
[m*3/kg]  0.001044
[mA3/kg] 1.6729
[mA3/kg]  1.671856
[mA3/kg]  0.836972
[kJ/kg-K] 418
[k)/kg] 2257.03
0.999
1.00
0.10
1.10
3.1
For Omega <4.0 0.64
For Omega=>4.0 0.59
0.64
0.20
[kg/m~2-s] 185
[kg/m#2-s] 905
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Problem 9.4 Speed of Sound for a Two-Component System
Determine the speed of sound for water and air at STP where a for air is 50%.

Problem 9.5 Two-Phase Critical Flow

Using the two-phase model for critical flow given from Wallis [3] determine the
critical flow rate [lbm/ft*2-s] for saturated carbon dioxide at 50 °F with a qual-
ity of 50%.

Problem 9.6 Two-Phase Critical Flow

Using the two-phase model for critical flow given from Henry and Fauske [11]
determine the critical flow rate [Ilbm/ft*2-s] for carbon dioxide at 50 °F with a qual-
ity of 50%.

Appendix 9.1: Critical Flow, Ideal Gas (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 9.2: Speed of Sound in a Two-Phase Flow (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 9.3: Omega Method (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Chapter 10
Physically Based Combustion

10.1 Preview

To this point, we have gathered a foundation in thermodynamics and applied ther-
modynamics to the area of gas dynamics to understand speed of sound, normal
shocks, and critical flow. Another important application of thermodynamics is
combustion.

A combustion system is simply a wave which involves a chemical reaction that
sustains the wave while oxidizer (usually air) and fuel are available; when the com-
bustion is a detonation, the wave is traveling greater than Mach 1 and is a shock
wave. When the combustion is deflagration, the wave is traveling much less than
Mach 1. This chapter will mainly address detonation; deflagration will be addressed
in Chap. 12.

Various properties (states) of a detonation or deflagration are given as Table 10.1
where the subscript “1” denotes unburned gas and “2”” denotes burnt gas.

One representation of a detonation system is known as the Zeldovic, von
Neumann, and Doren, which are commonly known as ZND models [1-4] and given
as Fig. 10.1; in Chap. 13, we’ll discuss ZND models and call them dynamic detona-
tion models. In this figure the shock wave and attached reaction zone are moving
from right to left and the reaction zone includes an induction zone.

This chapter asks the following question “for a given initial states (1) what are
the final states at either points (2) or (3)”? and assumes the heat release is instanta-
neous. The ZND model deals with the fact that the heat is released as a result of a
chemical reaction and allows for characterization of the states within the induction/
reaction zone (2- > 3).

Much of our experimental knowledge for combustion comes from shock tubes
(see Fig. 10.2), which are essentially tubes divided by a diaphragm and have a

Electronic Supplementary Material: The online version of this chapter (https://doi.
org/10.1007/978-3-030-87387-5_10) contains supplementary material, which is available to
authorized users.

© Springer Nature Switzerland AG 2022 237
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Table 10.1 Properties of combustions [1]

Detonation Deflagration
u 5-10 0.0001-0.03
Mach, = /
cl
" 0.4-0.7 (Deceleration) 4-6 (Acceleration)
2
%
P 13-55 (Compression) .98 (Slight Expansion)
i
T 8-21 (Heat Addition) 4-16 (Heat Addition)
7
1.7-2.6 0.06-0.25
A
P

Fig. 10.1 ZND model [5]
'}

Temperature,
pressure, and "
Density :
¢ 1
¥ .
g o e—_—r
{1 Induction | Reaction |
. [} 1
+ Zone . Zone !
' >
L] [} L} I
f 1 ' L e
Distance

Reflected shock wave
Contact surface

""‘v

B

Reflected
expansion fan

Time

Expansion

fan Shock wave

Position

I . " J

High pressure region

Shock Tube

Diaphragm Low pressure region

Fig. 10.2 Shock tube with states versus time [6]
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region of higher pressure (Driver Section) and a region of lower, ambient, pressure
(Driven Section). If the differential pressure is great enough, the thin-skinned dia-
phragm “bursts” and a shock wave travels down the tube and obeys Eqgs. 10.1, 10.2,
and 10.3 where q is zero for a normal shock or has some positive value for a com-
bustion system.

Conservation Equations
Conservation of mass:

P, = P, =M (10.1)
Conservation of energy:
hl+lulz+q=hz+luz2 (10.2)
2 2
Conservation of momentum:
P +pu’ =P, +pu,’ (10.3)

When the gas is an air/fuel mixture and ignites in some fashion as the diagram
bursts, the system around the shock and attached reaction zone can be treated as one
dimensional and friction and turbulence ignored. A graphical solution for Egs. 10.1,
10.2, and 10.3 is known as the Rayleigh-Hugoniot system (see Fig. 10.3) and trans-
forms the equations into a line (Rayleigh line) and curve (Hugoniot curve); the point
where the line and curve intersect is an endpoint of the system in terms of the point
between the compressive shock and beginning of the reaction zone (4 = 0%) or the
end of the reaction zone (4 = 100%) where 4 is the percent reaction complete. For
detonation systems, it is often assumed that the gas at the end of the reaction zone

N
o

) I T T
Subsonic Rayleigh Line Heat Addition

35| = -
von Neumann Hugoniot
30 | peak max .
pressure Upper Chapman-Jouget Point

N
6]
T

Supersonic Rayleigh Line
Streamline
Expansion

—_ N
[6)] o
T T

Static Pressure Ratio, p,/pg,
)

5 I~ Shock Hugoniot Sta}lon 3

O 1 1 1 zxxa < -
0 0.2 0.4 0.6 0.8 1 1.2
x = Static Specific Volume Ratio, p./p,

Y

Fig. 10.3 Rankine/Hugoniot system [4]
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travels at Mach 1 and this point is known as the Chapman-Jouget (CJ) point; states
associated with the “CJ” point can be determined by assuming that the Rayleigh line
is tangent to the Hugoniot curve. The determined velocity, Ma(cj), for a detonation
system has been shown to be within a few percent of experimentally determined
velocities; unfortunately, this is not the case for the “CJ” point associated with a
deflagration [1, 7, 8] where important transport processes have been ignored.

Figure 10.3 represents the states associated with a rotational detonation engine
[4] where the pressure rises along the “shock Hugoniot™ to the “von Neumann peak”
(4 =0%) and then the reaction occurs along the “subsonic Rayleigh line” and the
reaction is complete at the “upper Chapman-Jouget point” where 1 = 100%.

The chapter goes on to discuss a RH system for partially complete combustions
(4 <100 % ) and extends the RH framework to a system where issues of boundary
layers are considered, which addresses some of the issues friction. It has been
observed [1, 3, 4] that gas velocities within the reaction zone are sub-mach and that
issues of friction become important, which is the purpose of Fay’s system and will
be discussed in Sect. 10.5.

The chapter ends will an alternate method to determine the Mach number of the
shock wave with or without friction; this section parallels the discussion of Norman
shocks in Chap. 7 and includes equations for ratios of the states.

10.2 Standard Rankine-Hugoniot Theory

Staring from Egs. 10.1 to 10.3, this section will develop the Rankine line and
Hugoniot curve that graphically depicts the conservation principles.

10.2.1 Deriving the Rankine Line

From Eq. 10.2,
P,~P, = puit — pii (104)
From Eq. 10.1,
2
L =uz,(&u.j —i (10.5)
P P

Substituting Eq. 10.5 into Eq. 10.4 results in

2
P,~P, =pu -p, {&”1:| = plu12|: _&:| (10.6)
> P,
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And dividing both sides by P, and substituting y = % ,X = % results in
1 2

2
u

1=—tJ1=
y P]v][ x]

which is the celebrated Rankine line. Another form of Eq. 10.7 is

y—1l=y,Ma; [1—x]

10.2.2 Mass Flux

.2 .2
p_p ot
P P
and
1 1
A T
P P
Further
P -P
-2 2 1
T
P P

10.2.3 Derivation for —-AKE

And —AKE is defined as

2

—AKE=%[M12—M§:|= 1|:rh2_m2:|: .

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

(10.13)
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And substituting Eq. 10.12 into Eq. 10.13 results in

P—P
—AKE:l#{%—%} (10.14)

21 _1ip p;

P Py

and

1o
L’f Pzz}_ PPs {L_l}: 1 {&_&}
P>

1.1 p-plel P -plA P
P P
10.15
_ 1 {pi—pf}:pl+p2:[i+Lj (10-15)
P2 =P P1P; P1P; P P
Therefore, substituting Eq. 10.15 into Eq. 10.14 results in
1 I 1
—AKE =—(P,-P,)| —+— (10.16)
2 P Py
10.2.4 Deriving the Hugoniot Curve
The energy balance for the system, Eq. 10.2, is
1 1 1
~AKE=h,—h —q=—(P,-B)| —+— (10.17)
2 P P
and
) | 1 1 1
C,T,-C,T,—q==(P,-P)| —+— (10.18)
2 P P
and
P . Ry
Lo = (10.19)
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Substituting Eq. 10.19 into Eq. 10.18 gives

z_z;_ﬁuzL_q:qg_E{14gq

Py Vs 1 P 71_1 2 P P
or

P, P

252 7 H,4 _zq:(pz_pl)(iJriJ

pyv,=1 pry -l P Py
and

P oy Ay
2g=(P,—-P)(v, +v,)-2-*+—2—+2-1L "1
( ? ])( 1 2) P> 7/2_1 Py yl_l

P P
—2q =[Py, + P,v, - Pv, — Pv,|-2—=% Loy N
Py, -1 Py —1

And diving both sides of Eq. 10.23 by P,v, results in

[y+xy—1-x]-2 e xy+2L:—2—q:—2q'
7,1 7=l Ao,
and
2
y 1+x—(ijx :—2q'+1+x—2L
¥y —1 -1
Solving for y
2q'—x—l+i
71

Y= "
[:wzjx_x_l
72_1

Equation 10.26 can be simplified using the following relationships

on on-l ol

e e e
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(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

(10.25)

(10.26)

(10.27)
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and

2 2 +1
[ij—x—l{i—qx—l=72—x—1=bx—1 (10.28)
7, —1 7, —1

Substituting Egs. 10.27 and 10.28 into Eq. 10.26 results in

= 2q——x+a (10.29)
bx—1

which is the celebrated Hugoniot curve.

We will now apply all this theory to a practical problem, but first more theory!

10.2.5 Delineating Combustion Regions

Given Rankine lines and a Hugoniot curve, we want to understand the various
regions of the graph given below [1]. Looking at Fig. 10.4, the initial point is “A”
and possible endpoints include “U” and “L”, which are Chapman-Jouget points
where the Rankine line and Hugoniot curve are tangent.

Using the developed equation for mass flux

(10.30)

Fig. 10.4 Jouget’s rules [1]
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and
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y, —uy =mfv, —v,] (10.31)

If we square both sides of Eq. 10.30, we see that this is the Rankine line and
dividing by P,p; results in

Plpl I-x

We’ll see in the next section that

Substituting Eq. 10.33 into Eq. 10.32 results in

m

Pp,

1

1-x

2
Ma =

1

14!

2(y; -1)q’

= —= 71Ma12 (10.32)

(10.33)

I —yMat =2( g =2(r2 1)L (1034)

Pv,

Using Fig. 10.4 and Eqgs. 10.30, 10.31, and 10.34 observations will be made
about the following quantities

AW N =

. Relationship between P, and P, for a particular region

. Relationship between v, and v, for a particular region

. Relationship between u, and u, for a particular region

. Relationship between slope of Rankine line, Ma,, and ¢ for a particular region

Analysis is given as Tables 10.2, 10.3, and 10.4.

The only portions of the graph observed experimentally (there are rare excep-
tions) are the Detonation CJ point and the weak deflagration region (Region III) [3];
the weak deflagration region is understood through a knowledge of laminar flame
speed of premixed gases [1, 5, 7] and will not be discussed in this chapter. This
chapter will focus solely on the detonation CJ point and properties of this point such
as {x., Ma,}.

Table 10.2 Jouget rules, Part I

Region | P, versus P; | v, versus v; | Designation Comments

1 P,> P, v, < Strong Detonation | u; > u,

11 P,> P, U, <1 Weak Detonation | u; > u,

\'% P,>P, U, > Impossible Quantity under radical would be
negative!

11 P,<P, U, > Weak Deflagration | u; < u,

v P, <P, Uy > Strong Uy < iy

Deflagration
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Table 10.3 Jouget rules, Part IT [1]
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Region Slope of Rankine Line Ma, q

I Steep Ma, > 1 High

1T Steepest Ma, > 1 Highest
v Impossible

111 Shallowest Ma, < 1 Lowest
v Shallow Ma, < 1 Low

Table 10.4 Jouget rules, Part ITI [1]

Region | Observed Experimentally | Comments
I CJ Detonation Point Only | u; >u, | Flow supersonic in front, subsonic behind
1I No u; > u, | Flow supersonic in front, supersonic behind
A% Impossible
111 Yes u; < u, |Flow subsonic in front, subsonic behind
v No u; <u, | Flow subsonic in front, supersonic behind
60.00
50.00
= 40.00
£
s 30.00
&
> 20.00
10.00 -
0-00 T T T 1
0.2 0.4 0.6 0.8 1.2

x=nu(2)/nu(1)

==@==Rankine Line

Fig. 10.5 Solution to Example 10.1

Example 10.1 RH Theory
Given ambient conditions of 1 atmosphere, 25 C, v, is 1.4, y, is 1.2, and the heat
released is 2400 kJ/kg. Develop the Rankine line and Hugoniot for this system and
graph. Assume Ma(cj) is 4.20. We see from the graphs that x(cj) is between 0.5 and
0.6 and y(cj) is between 10 and 15, which provides an estimate for x(cj) and y(cj).
Knowing p; and P, we can determine p, and P,. We will take this problem further in
the next section, but first we need to understand the CJ condition (Fig. 10.5).

== Hugoniot Curve
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10.3 Chapman-Jouget (CJ) Point for Standard RH System

When the Rankine line and Hugoniot curve are tangent to each other, the endpoint
of the combustion is known as the Chapman-Jouget condition and there are two
possible “CJ” points; one is associated with detonation and the other is associated
with deflagration.

This section will derive the states (X,;, Ma,;) associated with a detonation at the
CJ point and also the point where the reaction is complete (4 = 100%).

At the CJ point

(10.35)

y Rankine Line y Hugoniot Curve
and

d

yRankine Line = yHu oniot Curve
dx dx ™"

(10.36)

Equation 10.35 will be utilized to determine X,; and Eq. 10.36 will be utilized to
determine Ma,;.

10.3.1 Derivation for X(cj)

_a-x+2q

10.37
bx—1 ( )

1+y,Ma; (1—x)

bx—1+y,Ma; (1-x)(bx—1)=a—x+24' (10.38)
or
bx —1+y,Mabx —by,Ma; x* +y,Ma; x—y,Ma’ —a—2q'+x=0 (10.39)
which is of the form

Ax* +Bx+C=0 (10.40)

where
A=-byMa; ,B=b+y,Ma'b+yMa} +1,C =-1—y,Ma; —a-2q' (10.41)

The CJ point, by definition, is a point of tangency and Eq. 10.39 has a unique
solution. Therefore,
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xc.:—E:%+l+i+%:l[1+1J:i(b+1) (10.42)
T 24 2y,Ma’ 2 2b 2byMa’ 2\ b) 2b

Recalling that b is defined as

7, +1
7, —1

b= (10.43)

And 1<y, <2—>x€ [l,%} and for air/fuel mixtures is more likely between
0.5 and 0.6. 23
Now solve for Ma,;

10.3.2 Derivation for Ma(cj)

Given
Vo :(1+7/1Ma12)—7/1Ma12x (10.44)
and
a-x+2q'
i e 10.45
Yhe bx—1 ( )
and
y;eL = —y,Ma,2 (10.46)
and
1—ab—-2bq
Yue = —2q (10.47)
(bx - 1)

Set Egs. 10.46 and 10.47 equal to each other and solve for Ma,.

2_1—ab—2bq' , _ab+2bg'—1

—v,.Ma s a (10.48)
Va, (bx—l)z yiMa (bx—l)z

and

x, =—[1+—j,bx=—(b+1),bx—1=%(b—1) (10.49)



10.4  Partially Complete Reactions

Further,
(bx—1)" = i(b—l)z

where b is defined as

b=y2+1’b_1=y2+1_72—1= 2
J/2_1 J/l—l 7/2_1 7/2_1
Therefore,
- = ——
(72_1)

Substituting Eq. 10.52 into Eq. 10.48 results in

+1
yMa} =y, -1Y [a+2q']-(r, 1)
72_1
and
2(v2-1)q’
Malzz (72 )61
!

Example 10.2 RH Theory and CJ Point
Complete Example 10.1 by determining Ma,;, x,;, v», T», and P,. (Fig. 10.6)

P2} [Pal 101,300 x w1 ¥(2)
nu(l)  [m*3fkg] 0.8442843 2076 5L60 ,
Ti1) <l 25 0.3 1829 2688 b y=1=nMai(1-x)
(1) Ixl 298 04 1582 1815 g bx—1
Ag [4/kg-K] 87 05 13.35 13.69
q [kifkg] 2400 0.6 1088 1099
q [1kg) 2800000 0.7 Bl 9.17 6000
q' 28.06 0.8 594 7.86
Gammal1) 14 09 347 6.88 50.00
Gammaf2) 12 1 1.00 6.11
a & _‘000
b e n+l _r:tl1 £
xa) 0 L L -
Maic) 420 E
al1) [m/s) 346.03 L A0
uf1) Imfs]  14s3.27 MaZ, % 2q'E
mass flux [kg/mez-s] 172131 " 1000
i) 1222 4 " o
':E(z:'} [m(‘:’]kil “::‘:“ e *}(“;} 0z 04 08 oz 1
2 [ 1887 m=nuf2]fmul1])
Ti2) <l 1,718

Fig. 10.6 Solution for Example 10.2
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(10.50)

(10.51)

(10.52)

(10.53)

(10.54)
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10.4 Partially Complete Reactions

When a reaction does not go to completion (41 < 100 % ), a series of Hugoniot
Curves are graphed for each A and when this series of curves intersects the Rankine
Line, and then the endpoint of the system is determined.

Let’s start by formally defining A.

[F],-[F],

L

*100% (10.55)

where [F], is the initial concentration of fuel and [F], is the final concentration
of fuel.

The only change to the RH theory is to multiple the g term within the Hugoniot
curve by 4. An example using partial Hugoniot curves is given in Chap. 13.

10.5 Fay’s System and RH Theory

This section will focus on algebraically deriving the equations for the Rankine line
and Hugoniot curve starting from the given conservation principles for Fay’s sys-
tem. These equations will be obtained in terms of initial and final conditions of deto-
nations, as well as Mach numbers. The different equations for conservations will
take into account the mass divergence considerations as devised by Fay.

The theory for combustion presented in Sects. 10.2 and 10.3 assumes one-
dimensional flow that ignores the effects of friction and turbulence and the theory
has been shown over 100 years to work surprisingly well. There are exceptions
though. It was seen that when a shock tube was utilized with a smaller inside diam-
eter the predicted Ma(cj) and actual Ma(cj) were significantly different. In Fay [3],
“It was argued that the effects of the wall were confined to a thin layer of fluid
closed to the wall, and could only influence the major portion of the flow through
changes in pressure propagated through the subsonic reaction zone. The effect of
this boundary layer is to cause the streamlines in the reaction zone to diverge and
thereby reduce the propagation velocity.” Given as Egs. 10.56, 10.57, and 10.58 are
the conservation equations for a system that addresses this area divergence.

The derivation for the Rankine line and Hugoniot curve in this section is solely
the work of Imane Ennadi [2] who derived these equations as part of her senior
honor’s thesis at the University of Saint Thomas.

Equations of Conservation
Conservation of mass:

pu, = pyuty [1+&] =m (10.56)
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Conservation of energy:
L, 1
hl+5ul :hz+§u2 (10.57)
Conservation of momentum:

B+ pu’ =P 1+&(1=€) |+ pu, [1+&] (10.58)

A
where E=-—2—1and 1<e<2.
1

10.5.1 Rankine Line
Using Eq. 10.58, we can rearrange it to get:
P[1+&(1-€)]-P = pu — pyu,” [1+€] (10.59)
Using Eq. 10.56, we get:

P,y
p[1+&] " 7

2
[p [’f‘lé]ulJ " ey
2

Thus, we can plug in Eq. 10.61 into Eq. 10.59

(10.60)

P[1+&(1-€)]-P =p]u12—pz[1+§][ P J (10.62)

pz[l+§]u1
Pl1+e(1-¢)]-B =pu’ ——2—u? 10.63
[1+&(1-¢)]-R=p T (10.63)
Pl1+&(1=€)]-P = pu> 1—L] 10.64
2[ +€( )] 1= Py [ P2[1+£] ( )

_ 2 P2[1+§]—P]
P[1+&(1=¢)]-F = pu (—pz[w] J (10.65)
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We define Y and X to be:

v (10.66)
I

x=F (10.67)
P,

To introduce these two variables, we divide Eq. 10.65 by variable P,, obtaining:

132|:1+€(1_€):|_ﬂ:&u2 p2[1+§]_ pl (1068)
h BB p1+E] pf1+¢]
Replacing the variables, we obtain the equation:
P X
Y[1+&(1—€) |-1=Zu"| 1- 10.69
Determining this equation in term of Mach numbers, we obtain:
Y[1+&(1-¢)]-1=0" Mach’ . (10.70)
[1+&]
This equation is the equation of the Rayleigh line.
10.5.2 Mass Flux
Using Eq. 10.56, we can derive two equations:
" = (10.71)
Py
"y - 1
T [1+¢]

Using Eq. 10.71, we can replace the variables #; and u, in Eq. 10.58:
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m’ m’

o p[l+E]

ﬂD+ﬂhfﬂ—E:m{l___L_J

P P [1+&]

P[1+&(l1-€)]-P =

P2[1+‘g’(1—e)]—P, »
1 1 -m

P Py [1+§]

Following, we get the equation:
P[1+&(1-€)]-R _at
o
p[1+E] p,

10.5.3 Deriving Hugoniot Curve

We first start by rewriting Eq. 10.57:

—AKE = %(ulz —u22 )

Using Eqs. 10.71, we obtain:
.2 -2
_AKE = %[m__m_J
P P> [1""5]

AKE:lmZ %_;2
2P pl[1+¢]

Using Eq. 10.74, we obtain:

AKE =

1| B[1+e(-6)]-R | 1 !
of 11
P p[1+&]

e pR[1+ET

|
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(10.72)

(10.73)

(10.74)

(10.75)

(10.76)

(10.77)

(10.78)

(10.79)
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254
where:
1
— |51 =[ poflve] j L1 aoso
1__1 p’ pllt+el ) \m[1+E]-p ) p7 p2[14¢]
P P [1+€]
P
1+&[+—
p[1+E]=p ) p7 pR[1+£] p,[1+&]p, p 142
P>
Using Eq. 10.67, we obtain:
P
1 +—
[1+¢] P, _[[1+€]+XJ
= (10.82)
plire] 2| Lellrelx
P>
Thus, Eq. 10.81 becomes:
1 [1+§]+X]
AKE =—| ———— |(P,|1+&(1—€) |-P, (10.83)
where, following the ideal gas law, we know that:
AKE =q+C,,T,-C,T, (10.84)
where:
(10.85)

P
RT, =—*
P>

u

u

P
RT =—
P
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And, following the ideal gas law:

Y
C =R —— 10.86
» =Ry ( )
Thus, we obtain:

Y, P Y, \P
AKE = q+{ ] 2—[—1 ]—1 (10.87)

r,-1)p, \Xi-1)p
ME—[ Y, ]PZ+[ o ]£=q (10.88)

r-1)p, \Xi=1)p

Using Eq. 10.83, we obtain:

1 [1+&]x L, B (1 )R _
e I N ) e Py ST

(%J(g[ug(l—e)}ﬂ (Y” Jpz{f—ﬁjgzzq (10.90)

1

where we know that:

v, =— (10.91)

Thus, we get:

[1+&]+X 2r, 2r,
uz(w ( 148 (1-6))- P) Yo Py, + o Pv, =2q (10.92)

v_z([uz; +XJ[ [1+6(1-¢)] 1]_( oY, ]PZV2+[ oY, ]: 24 (003
Vi [1+§] A r,-1) PRy, r-1 By,
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Using density instead of specific volume, we get:

&([“‘SFXJ[Pz[”é(I_eﬂ_1}[ 2T, JPZ”I +( ZY'1J= é‘v’l (10.94)

P [1+§]X R r,-1)Rp, \1, -

1 1

Using Eqs. 10.66 and 10.67, we obtain:

[1+&]+X 21, 2r 2q
X ——|(Y]|1 l-€)|-1)- YX+| —L [=— 10.95
g R I A ey o

(1+ﬁ](y[l+g(1—e)]—1)—(5{21}10({;12]= 1‘2’131 (10.96)

[1+¢] r,-1)" ] Py, _Y1—1+1_[1+<§] :

Y{[1+§(1—6)]+ X[Hg(l_e)]—( 2T Jx]— 29 _ 21, X 0o7)

As such, we obtain the equation for the Hugoniot curve to be:

L2 2 X
1_1 Plvl [1+§]

Y

Y= oy (10.98)
X 2
[1+5(1—e)](1+[1+§]J—[Yz_l]x
And can be simplified to
2q 3 X _7/,+1
Rv, [1+&] 7 -1 2¢'-X'-a
Yy = = (10.99)
X 2r [1+&(1-€)](1+X")-bX
[1+§(1—e)](1+ -2 |x
[1+§] Yz_l

10.6 Determination of States to Include Ma(cj)

An alternative approach exists for determining the Ma(cj) for a system with or with-
out considerations of friction, which is the issue that Fay [3] addressed; this alter-
nate approach will also provide equations for ratios of the states. This approach
[9-12] parallels the method we utilized for determining the equations for ratio of
states associated with a normal shock, Chap. 7.
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10.6.1 Determination of States without Thermodynamic
Changes (Coleman)

In this section, equations are derived for the following non-dimensionalized states

T, P, p, Ma; _ Please note in this section thermodynamics properties such as
'R p, Md}
{cp, 7} will be considered constant, but will be allowed to varying in Sect. 10.6.2.

Derivation for {u_z} and {ﬂ}
U Ps.

From Egs. 10.1 to 10.3 and other considerations for an ideal, perfect gas it can be
shown (see Appendix 10.1) that

ty_y_p_ Ma-l | 2y +)Mar g | Map -

w o p, Ma;(y+1) (Ma; ~1) T | Mai(v+1) " (10.100)

Coleman [9] has shown that F’ characterizes the type of detonation system where
F =1— Chapman — Jouget Detonation
1 < F £2 — Strong Detonation
F =2 — Adiabatic Shock

Let

Ma; -1
(r+1)

And Substituting Eq. 10.101 into Eq. 10.100 results in

A= F (10.101)

u, &zA

- _q_ (10.102)
u, p, Ma;
P
Derivation for {—2}
From Eq. 10.2, d
P P
P B Py (10.103)
K A LA
and
P
R Y Y B e (10.104)
P P
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or

P 2
?2:1+7/u—'2—&u§ =1+yMaf—%u§ (10.105)

1 al 1 1

where u, is also equal to

w, =Py (10.106)

Substituting Eq. 10.106 into Eq. 10.105 equals

o3 B p, v o

1 1

2 2
1;2:1+yMa|2—p2Mp‘j u121=1+yMa12—p‘lufy=1+yMa]{1—pl:| (10.107)

And substituting Eq. 10.102 into Eq. 10.107 results in

LN (10.108)
R

a
Ma;
The ratio of Mach numbers squared is derived as a function of the quantities

given above. By definition

Derivation for

2
w, P A A
2 2 Y 2 1= 2 - 2
Ma, _a, __p, 6, B p, _ Ma; _L M4 (10.109)
2T T2 T T 2 T - N ’
Ma, u U, u; P,op [1_ :|[1+ A] I+yA
a2 z
1 },71 a,
P

10.6.2 Determination of States with Thermodynamic
Changes (Adamson)

In this section, thermodynamic properties across the shock are allowed to vary, but
essentially the equations keep the same form [12]. The only difference is in how “F”
and “A” are defined.
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Again, starting from Eqgs. 10.1, 10.2, and 10.3 one could get to

P
2 1=yA (10.110)

-4 (10.111)

where

y;-1  Ma} Ya=Y
F=1+ [1-22 ! 2{ 4 __77Nh } (10.112)
Y1 |:Ma12_}/2:| c,T 71(72_1)
71

and

At {Maf—y—z} (10.113)
Y, +1 14

T. Md;
We’ll derive relationships for {Fz}and{ az} using the relationships
X a

2
given above. T Ma;
Derivation for {FZ}

Given 1
P rr (10.114)
p
Therefore,
P,
T P, A
&:—Zz—zﬂ:(uyl/{)[l— 2J (10.115)
B T Ap Ma
Py
M 2
Derivation for ai
Ma,

The ratio of Mach numbers squared can be defined as

2

u2
”5 P, A A
R 2 1_M 2 1_]\4 2
Ma, _a, " p, _u B p, _ 4 - il (10.116)
Mai w W  w P [ A [epa] A
a; yi Ma; ]
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10.6.3 Ma(cj) for a Detonation System with and without
Area Divergence

Without Area Divergence

The determination of the Mach number associated with the CJ detonation wave
is determined from Eq. 10.112, which is the F associated with Adamson’s sys-
tem [12].

>—1  Ma] -
F=1+ 120 4 |4 hTh (10.117)
71_1|:Ma2_}/2:| C,T, 71(7/2_1)

1

41

Setting F' = 1 results in

>—1  Ma; -
1=222 4 { 4 __nh7h } (10.118)
-1 |:Ma12—y2:| C.T 71(7/2_1)
4!
And solving for Ma, we get to
2
{Mal2 _72} 24
LA Yt R 6 (10.119)
Ma Hn=H Gy, (yz _1)

With Area Divergence [10]
From the conservation principles associated with Fay’s system, one with great
patience could get to the following relationship

2 2
{Ma]2 —}/2} {Mal2 +1} -
4! 2 7 Vo~ q V1™V
+yy =2 - (10.120)
Ma; b Mg 7, -1 {CPTI 7, (7, —1)}
where y is defined as
2
1
l+y =| ———M— (10.121)
PR
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[ 30 W B T W LA
A g (A PR P

|

1y —

AL [ = e
P g | seea A _n-n - M
ol 2678 [ AT T T

[T —

| - T + T s [ ¢ TusTws [ om e 1
L ¥ [ 2096 | 330 | 60 | ss9% | 0o [waveon] o5 ol P i
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Area Dovergence
1 [T [ 2 T 3 T ¢ T oT T mal] ca] A
s s39e | a0 | ess | 943 | as3s | ieos [eamess  dobak. 7
n
[Cveibeneir | 3138w 100 | 1400 1300 | 400 =
aoE | 442 am W sa | am S e
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Fig. 10.7 Solution for Example 10.3

Example 10.3 Sensitivity Analysis of Area Divergence Effects on

Velocity Deficit

Show how area divergence affects the velocity deficit for two values of g. Velocity
deficit is defined as (Fig. 10.7)

\Ma,, ,,, - Ma

¢ Fay
Macj’ RH

AV =

(10.122)

10.7 Problems

Problem 10.1 Standard RH Problem Around RDE

Given a pressure of 2 atmospheres, 250 K, 7, = 7, = 1.4 and a heat release of 20 kJ/
kg create the Rankine line and Hugoniot curve for this system. Also determine the
states at the CJ point.

Problem 10.2 Partially Complete Combustion
Repeat the analysis of Problem 10.1 but assume that 4 = 60%.

Problem 10.3 Fay’s RH Problem

Using the Rankine line and Hugoniot curve for Fay’s system with ¢ = 1.5 and £ = 0.1
for Problem 10.1 determine the Ma(cj). This will be an iterative problem where
Ma(cj) will be varied until the Rankine line and Hugoniot curve are tangent to
each other.

Problem 10.4 Ma(cj) from Alternate Method
Using the tools developed in Sect. 10.6, determine Ma(cj) with and without area
divergence for the system described in Problems 10.1 and 10.3.
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Appendix 10.1: Derivation for Eq. 10.100

Given
pu, = pyl, (C.1)
P +pu; =P, + p,u; (C.2)
2 1 aZ
—u +——tq=—u +—2 C3
2T €2
a’ =yRT = y£ (C4)
p
and
c, - IR (C.5)
y—

Dividing Eq. C.2 by P, results in

yu; B p o (C.6)

- o %2
yly PP
Py
1

2
Substituting in u; ={i ul} results in
2

1+

2 P 2
1+ Dy P B e (C.7)
yly P PP
Py
and
T 2
l+yMa} =Py Pri Py (C.8)
Pl Bp;
Further
2 Py Py P s
l+yMa; =——+—| —u (C.9
P14, P | p;

1

And multiplying both sides by b results in
P
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2 2 71

2 2
(Hﬂmﬂﬂzﬂ+ﬂ&Pif}
P, a p, B|p

2 2 2
(1+yMa]2)u_2=a_2+&&{u_2u2}=a_i+yMalz(
al

2 2t
wooa p, By

2
U

2
U

Starting from Eqs. C.4 and C.5

2u (7/—1)1412 ulz_Z u

1

1_;_11H_

And multiplying both sides by 2

Further

2
And solving for “_zJ
1

u
2 2
u, (7/—1)Ma1 C.T, a,
where
2 q9 _ 2q _ 2q _
(V_I)Malz G, T, (y—l) uy C.T (y—l) w YR T
yRT, " yRT, y—1"

Substituting Eq. C.11 into C.15 results in

2 2
u, 2 q 2\ Uy R
— | =1+ 1+ —(1+yMa; | —=—-yMa;, | =
[ulj (y—l)Maf{ C.T, {( 4 1)u1 4 l(uf

or

263

(C.10)

(C.11)
(C.12)
(C.13)
(C.14)

(C.15)

2q
= (C.16)
ul

Jor
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2 2
u, 2 q 2\ U, 2| Uy
—= | =1+ 1+ —(1+yMa’ | —=+yMa; | —= C.18
(uJ (y—l)Maf[ C.T, ( 4 1)u1 4 l{ufﬂ ( )

or

2 > 2(1+yMa’
{ 2y Ma, 2_1}(12] 2y “12)”_z+ 2 Z{H 1 }1:0 (C.19)
(v =1)Ma; U (y=1)Ma} u, (y-1)Ma, Gy

It can be shown that

|ty P Mai-] 2 Mal g | Ma; -1

=—1 " 11+ = F (C.20)
u, P, Maf(y+1) (Maf—l)z Cc,T Ma,z(y+1)

Appendix 10.2: More Exact Solution for CJ Conditions

The following appendix derives more exact solutions for X(cj) and Ma(cj), which
does not include changes in thermodynamic properties across the shock.
Another form of the Hugoniot curve is
(y+u2)(x—/.t2)=1—/,t4+2/,tzﬂ,q' (E.1)
where

-1
w=r— (E.2)

If we substitute the Rankine line into Eq. E.1, then we get
[1+7/Ma,2(1—x)+,uz][x—y2]:1—u4+2uzlq' (E.3)
And expanding the terms
x+yMa; (1 —x)x+ Wx—u’—plyMa; (l—x)— pt=1-pt+2u°2q' (E4)

which is quadratic in x
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~yMa}x* +[1+yMa; + 1 + 'y Ma; |x -’ [1+yMa; +22q |-1=0 (E.5)
or
—yMa; x* +[(1+ u’ )(l-i—}/Mal2 )Jx—uz [1 +yMa; +2&q1—1 =0 (E.6)

When B? = 4AC, a unique solution exists. From this fact, more exact solutions
exist for x(c¢j) and Ma(cj), which are given below.
X(cj) is

[(1 +u’ )(1 +yMa; )]

2yMa?

x(cj =

(E.7)

And Ma(cj) can be determined from

[(1+ %) (14 7 Ma? )T =a[yMa | [1+yMa +224 ]+1]  (ES)

Appendix 10.3: Standard Rankine-Hugoniot
Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
Appendix 10.4: Partially Combusted Rankine-Hugoniot

Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 10.5: Ma(cj) Worksheet (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Chapter 11
Combustion Chemistry

11.1 Preview

We saw in Chap. 10 how to determine the endpoints of either the shock or combus-
tion utilizing the Rankine-Hugoniot theory and the Chapman-Jouget theory. This
theory has been shown over the last century to accurately determine the endpoint
states of the reaction zone for a detonation, but doesn’t work as well for deflagra-
tions. The theory in Chap. 10 was from a purely physical basis.

In Chaps. 12 (Deflagrations) and 13 (Detonation), we will incorporate chemistry
and other considerations to see how states change within the control volume, but
first we need to learn some chemistry.

In this chapter, we will learn stoichiometry, which is the idea that for a particular
set of chemistry molecules react in certain proportions and produce other molecules
in other proportions. When a fuel and oxidizing run stoichiometric, there can be
advantages to this situation.

Other areas covered in this chapter are a more general definition of enthalpy, dis-
cussion of chemical equilibrium and kinetics, and a discussion of adiabatic tempera-
ture for a constant pressure and constant volume process. The discussion of adiabatic
temperature will include complete combustion (reactions) and incomplete combustion.

11.2  Stoichiometry

Stoichiometry is a branch of chemistry that asks very practical questions such as the
following: if I have 10 kg of gasoline, how many kilograms of air do I need to com-
pletely combust the fuel? It’s also an area of chemistry that utilizes conservation of
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org/10.1007/978-3-030-87387-5_11) contains supplementary material, which is available to
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mass and shows that molecules associated with particular reactions react in certain
amounts.
The basic oxidation reaction for hydrocarbons of the form C,H,,,, is given as

CH, +a(0,+3.76N, ) — xCO, +%H20+3.76aN2 (11.1)

where a =x+ }/
In order to completely combust the fuel, C,H,, the following ratio of fuel to oxi-
dizer (air), O, + 3.76N,, is required

m,, 4.76a MW,
(A/F)stoich = (m ] = 1 MW (1 12)
fuel /stoich

fuel

Combustions do not always run at these stoichiometric conditions, and as such,
an equivalence ratio is defined as

(4 )

@ = L swien. (11.3)

(*5)

when ¢ < 1 — fuel-lean and when ¢ > 1 — fuel rich

It can be seen in Fig. 11.1 there are times to run fuel-lean and other times to run
fuel-rich. Also, graphing different quantities of concern against the non-dimensional
quantity @ provides insight on how the chemistry affects performance (see Fig. 11.2)
where in Fig. 11.2 complete combustion results in the highest adiabatic
temperature.

Example 11.1 Stoichiometric example
Determine the equivalence ratio for a mixture of methane and air where the mass
rate of methane is 0.5 kg/s and the mass rate of air is 16 kg/s.

a=x+2=1+1=2
4

4.76(a) MW,  4.76(2) 29
A = air_ =172
( A)h 1 MW 1 16.032

fuel

(47)- =22

air
fuel

(%)sloich 172’

O=—""==—-2=05

(%)
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Fig. 11.1 A/F ratio versus
power [12]

Fig. 11.2 Adiabatic flame
temperature versus
equivalence ratio (constant
volume and air) [13]

~os0m —>

Constant Volume Adiabatic Flame Temperature [K]
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11.3 Enthalpy (Revisited)

To this point, we have ignored the fact that there are different forms of enthalpy and
now we’ll look at three main forms:

e Sensible enthalpy
e Latent enthalpy
* Enthalpy of formation

Each form is defined below and more details are given in separate sections.

Sensible enthalpy is the amount of energy released to either the system or the
surrounds to change the temperature by a given amount and does not involve phase
changes, nor changes in chemical composition.

Latent enthalpy is the amount of energy released to either the system or the sur-
rounds to go from one phase into another phase. We dealt with this previously when
we discussed Clausius-Clapeyron equation in Chap. 7.

Enthalpy of formation is the amount of energy contained within a molecule’s
molecular bonds and is typically given at some standard set of conditions (298 K
and 1 atmosphere).

A more general energy balance to incorporate these three forms of enthalpy is
given as Eq. 11.4.
og—ow=Ah_ +Ah,  +h

heat latent formation

+AKE + APE (11.4)

How to compute the amount of energy released for each type of enthalpy is the
subject of the sections below.

11.3.1 Sensible Enthalpy

The type of enthalpy we have considered to this point is either determined from
thermodynamic tables or the definition of specific heat, constant pressure (c,) and
given as

_oh

p(T)—Ep (11.5)

where the gas is assumed ideal and ¢, is solely a function of temperature
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11.3.2 Latent Enthalpy

Latent enthalpy can be computed from the thermodynamic tables or the Clausius-
Clapeyron equation, which is given as
dap, hy, dT.

sat — ___sat 116
P, R T: (110

sat sat

where T, is the saturation temperature, Py, is the saturation pressure, R is the gas
constant, and £, is the amount of energy released to either the system or surround-
ings based on the phase change.

11.3.3 Enthalpy of Formation

Chemical reaction enthalpy is the type of enthalpy to be considered in this chapter.
Consider the following reaction

C(s)+0, > CO, +d¢ (11.7)

Where the heat released is —393.522 kJ/mole and using the energy balance it is
seen

6q = H2 - Hl = Hproducts - Hreactants = hf 298 (CO )

>l<|:hf,298 (C(s))+hf,29s (Oz )] (11.8)

where by definition, “the enthalpy of formation is zero for reference elements [9]”
and as such H; = 0. It needs to be noted that the temperature was the same between
the reactants and products and at STP; this is detonated as standard enthalpy of
formation and has a special designation, h
How do we determine the heat release for a reaction when the reactants and
products are at different temperatures?
The standard enthalpy at temperature 7 [9] is given as
h(T)=h +h, (T)=h, +{h(T)=hy | (11.9)
which states that the standard enthalpy at temperature 7, is equal to the enthalpy
of formation at reference conditions plus the change in latent energy between tem-
perature 7 and Ty
A generalization of the above can be stated as
oqg=h

products  Mreactants

(11.10)
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where
h, :Zx,.h[ (11.11)

And j is 1 for the reactions and 2 for the products.
An example of these ideas is the following.

Example 11.2

Given a gas stream containing CO, CO,, and N, at 1 atmosphere and 1800 K where
the molar fraction for CO is 0.1 and CO, is 0.2 determine the enthalpy of the mix-
ture in terms of moles and kilograms.

Given
Xco =0.1, Xco, = 02— An, = 0.7
And
MW Temperature h(formation) h(T) — h(ref)

Substance [kg/kmole] [K] [kJ/kmole] [kJ/kmole]
CO 28.01 298 —110,541
CO 28.01 1800 49,517
CO, 44.01 298 —393,546
CO, 44.01 1800 79,399
N, 28.01 298 0
N, 28.01 1800 48,971

hriix = Z%ih[ =Xco {h}CO +(h(T)_hﬁ )Co } * Xco, {h}c% +(h(T)_h3 )CO2 }
# i, 4 ((T) =12}

K=k =(0.1){~110,541+ 49,517} +(0.2) {393,546 + 79,399}

+ (0.7) {0 +48, 971} =—34,652kJ/kmole
Also,

MW, =Y 7MW, (11.12)

and

kJ
hmix l: :| :
iy | | o Lkmole | _ =34.652kj/kmole _ 1y 3510 (11.13)
kg MW._ 32.2kg/kmole

mix
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Accurately knowing the thermodynamic properties before and after the shock for
a given set of reactants and products

C.H, +a(0, +3.76N, ) - xCO, +%H2 +3.76aN, (11.14)

where a = x+ )/

can provide a better estimate of the detonation velocity (u,) and temperature after
the shock, 7.

This analysis involves determining the following thermodynamic properties
before and after the shock

* Specific heat, constant pressure (c,)
* Gas constant (R,)

* 7

where

Reactants
Reactants”"? Pl

c - (11.15)
' Z ReaclanlsMWi
Products
C — ZProducts%iC(T)P-i (11 16)
P2 Z M\Nl .
Products

And for the gas constants

R
R =—/—""—"— 11.17
T (11.17)
Reactants
and
R
R =—/——""— 11.18
T (11.18)
Products !
where y, = —2

i Cp,i

It is noted that ¢,, and y, are dependent on 7, and this process usually involves
an iteration methodology.

Knowing the value of T, and u; allows us to determine if the selected 7, was
accurate and if it is, then the thermodynamic properties calculated and u; are accu-
rate. Turns [9] provides equations for 7, and #; in terms of thermodynamic proper-
ties before and after the shock
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and

u12 = 2(72 +1)72R2 |:

T — 2y22 CP,I
2
v, +1C,,

C
L’ITZ +L
C C

P2

An example of these ideas is the following.

Example 11.3
A rotational detonation engine at the Air Force Research Laboratory on Wright
Patterson Air Force Base is running a mixture of Hy/Air at 226 K and 145 kPa and
it is running with an equivalence ratio of 1.0.
This information will be useful in the illustrated example in Chap. 13.
What are the values of the thermodynamic properties, 7> and u,?

Given

X

0

y

2

a

0.5

) |[K]

226

72 |[K]

2975

The reactant thermodynamic properties are

11 Combustion Chemistry

2
T, + q =2LA
C 7, +1

p2

P2

} =2(y, +1)7,R,A

(11.19)

(11.20)

X()y* | YG)=X() * X(i) *
Reactants | MW (i) | N(i) | X(i) = N(i)/N(total) MW (@) | MW(@i)/MW(mix) | c,(I,T1) | c ()
C.H, 2 1 0.30 0.59 0.03 28.61 8.47
0O, 31.999 0.5 |0.15 4.73 0.23 28.70 4.24
N, 28.013 | 1.88|0.56 15.58 0.75 28.87 16.06
3.38 20.91 28.77

The product thermodynamic properties are
X() * Y(i) = X(@0) * X(@) *
Products | MW(i) | NG) | X(i) = N()/N(total) | MW(G) | MWGE/MW(mix) | ¢,(I,T2) | ¢,(I)
Co, 44.011/0 0.00 0.00 0.00 0 0.00
H,O 18.016 | 1 0.35 6.26 0.25 55.779 | 19.37
N, 28.013 | 1.88 1 0.65 18.29 0.75 37.028 | 24.17
2.88 24.54 43.54
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The reactant enthalpies are

275

Reactants Y(i) h(i) Y(i) * h(i)

C,H, 0.03 —1027.549603 —29.08

0, 0.23 0 0.00

N, 0.75 0 0.00
—29.08

The product enthalpies are

Products Y(i) h(i) Y(i) * h(i)

CO, 0.00 0 0.00

H,O 0.25 —14043.22547 —3579.53

N, 0.75 0 0.00
—3579.53

And the computed thermodynamic properties are

c,(1) [kJ/kg-K] | 1.38
c,(2) [kJ/kg-K] | 1.77
Ru [J/mole-K] | 8.315
R(1) [kl/kg-K] |0.40
R(2) [kl/kg-K] ]0.34
Gamma(l) 1.41
Gamma(2) 1.24

The results for 7, and u, are

g [Kl/kg] | [kl/kg] |3550.45
A (K] 2176.593
wD) [m/s] | [m/s] | 2019.03
7(2) (K] 2974.43

Because T,(i = 1) and T,(i = 2) are so close, no further iterations are required.

11.4 Chemical Equilibrium

Much of this section comes from [6, 9, 10].
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11.4.1 Gibb’s Free Energy and Chemical Potential

Given our definition for first law
6q—0w=Ah+APE + AKE (11.21)

And a definition for entropy
1
ds:?q, Tds = 5q (11.22)

Where we assume no change in kinetic energy, no change in potential energy
If we substitute Eq. 11.22 into Eq. 11.21 the result is

—Sw=Ah—Tds (11.23)

And Gibb’s free energy, which we’ll show is a measure of the available energy of
the system to do work is

Ag = Ah—Tds (11.24)
or

g=u+Pv—-sT (11.25)
And taking the derivative of both sides

dg =du+ Pdv +vdP —sdT —Tds (11.26)

where dg is defined for an equilibrium condition and so {P, T} are fixed, which
results in

dg =du+ Pdv —Tds (11.27)

Internal energy (e) for an ideal gas can be determined through a knowledge of
entropy and specific volume

e=f(sv) (11.28)

But when different chemical species (molecules) are involved this function is
extended

e:f(s,v,nl,nz---) (11.29)

And the total differential of both sides is
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do— %j dH(@ av+| 2 dn,+[ 2] dny- (1130
as V. n,... aV SNy 6”1 S aS Sl sty

Or more generally

de:(%] ds{@j v+ ] a1
Os Vo ov S,1y,0. 1 ani sv.n

where the index n; represents that the last partial derivative is not fixed for n;.
It was shown in Chap. 6 when we derived the Maxwell relationships that

(@] _ Tand (s—ej __p (11.32)

Os v

These two relationships can be generalized to

(%} :Tand(ﬁj —_p (11.33)
08 ), oV ),

Substitution of Eq. 11.33 into Eq. 11.31 results in

de=Tds—Pv + (gj (11.34)
i=1 an s,v.n

i

Where the last partial derivative is so important it has a name, chemical potential
(u7) and is defined as

i

Oe
= — 11.35
‘ul [6’1 js,v,n ( )

Thus, Eq. 11.34 takes the form

de = Tds — Pdv + p,dn, (11.36)
i=1
Substitution of Eq. 11.36 into our definition of dg (Eq. 11.27) results in

dg = Pdv —Tds +Tds — Pdv +Zuidnl. (11.37)

i=1
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or

[N,
i =[5_G] {MJ _g, (11.38)
on. ON
i JT.pn; TP

A physical interpretation of the chemical potential is as follows. The first law for
this system takes the form

0q—6w =du=Tds— Pdv +Zyidni (11.39)
i=1
and

8q ="Tds (11.40)

Substituting Eq. 11.40 into Eq. 11.39 results in
Tds—5w=Tds—Pdv+zC:,uidni (11.41)
i
or
—ow =—Pdv + iuidni (11.42)
i

Equation 11.42 provides an equation for the available work of the system to
include work due to chemical reactions or mass transfer [10].
We’ll see that at chemical equilibrium

dG =0=" udn, (11.43)
i=1

We now want to extend the model for chemical potential to non-standard (refer-
ence) conditions.
For an ideal gas

4 -8 (T.P) (1144

where y; is the chemical potential for species “i” and g; is the free energy for spe-
cies “i” for a given temperature and pressure.

Additionally,

g =M, =h —Ts, (11.45)



11.4  Chemical Equilibrium 279

where
P
w =hi—T{s?—Rln(y}TH (11.46)
0

and

0 0

P P
= h ~Ts +RT1n(y;TJ _ +RT1n[y;T] (11.47)

11.4.2 Chemical Reactions

Given a chemical reaction
aA+bB <> cC+dD (11.48)

or

4
cD+cD-aA-bB=0=YVI, (11.49)

i=1
where viis the stoichiometric coefficient of the species I;.
And the amount of moles of /; at time ¢ can be related to the amount of moles of
I; at time to by the equation

N, (1)=N,(0)+vE (11.50)

where &, the molar extent of reaction, is defined as
(11.51)

Another common metric is 4, which is the % reaction complete and defined as

2, =%(ON)"(O) (11.52)

A relationship between & and A is

&v, = AN, (0) (11.53)
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Example 11.4
Consider the following gas phase reaction at 400 K and 2 atm where ideal gas
behavior is assumed.

A+2BC (11.54)

The mole fractions of the reactive species at equilibrium satisfy the relationship

Y 11124

YaVs

(11.55)

Starting with equal moles of A and B and no C where molar mass is represented
either in terms of coefficients associated with the chemical reaction equation or
using the notation [X], determine y,, yz, V¢, 4, and 1 — £ at chemical equilibrium.

[A] [B] [C] Total
Initial 1 1 0 2
Final 1-¢ 1-2¢ ¢ 200-0)
where
1-¢& 1 1-2¢ I3
= = —’ = 5 = 11056
And Substituting Eq. 11.56 into Eq. 11.55 results in
1.1124| 1-2 ’
¢ _L —2 (11.57)
2(1—5) 2 2(1—’g’)

Equation 11.57 has solutions {0.16, 0.84} but when £ = 0.84 — y, < 0, therefore
£=0.16.

More details of the solution are given as Appendix 11.1 and the solutions are also
given in the table below

zeta A B C Total AlA] AlB]
Initial 0.00 1.00 1.00 0.00 2.00
Final 0.16 0.84 0.69 0.16 1.69 15.6% 31.2%

11.4.3 Chemical Reactions and Gibb’s Free Energy

Example 11.5
Consider the following ideal gas reaction at 1 bar [10].
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aA+bB < cAB

where a = b = 1 moles initially and

Initial
Final 1-¢ 1-¢

The total Gibb’s free energy for the system is

G=2mg =Xmp, =N, + 0y + Nl

)

Substitution of Eq. 11.61 into Eq. 11.60 results in

and

P
=9" 4+ RTIn :
Hi= & 1Bar

28

Total

G=nAg2 +ntz +nAngB +RT{nA ln(PA)+nB ln(PB)+nAB 1n(PAB)}

and

P=yP

i i

Substitution of Eq. 11.63 into Eq. 11.62 results in

_ 0 0 0
G=n,g, +ngy+n,,84

281

(11.58)

(11.59)

(11.60)

(11.61)

(11.62)

(11.63)

+RT{nA ln[yA (5)}+ngln[yb,(g‘)}+nABln[yAB(§)]}+RT{nA +ny+n,,}In(P)(11.64)

In terms of £ Eq. 11.64 becomes

G=(1-¢)(g} +gy)+2£g

+RT{(1=&)In] 3, (&) +(1=&)In[ v, (£)]+ 28 [y, (&)]]} + RT I (P)

Given a system where

T =1000K, P=1Bar, R=8.3124
=-9.5kJ/mole

mole

-K, gl =g;=0, and g,

(11.65)
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0.0
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-20.0

25.0 ___—

-30.0

G-2RTIn(P)

zeta

Fig. 11.3 G — RTIn(P) versus zeta

Equation 11.65 reduces to

G-RTIn(P)=2:g5,
+RT{(1-&)In[ y, (£)+(1-&)In[ v, (£)]+ 28y, (£)]]} (11.66)
The solution for Eq. 11.66 is given in Fig. 11.3 and more details can be found in
Appendix 11.1.

Figure 11.3 graphically illustrates that where dG = 0 is the chemical equilibrium
of the system and & is roughly 0.6.

11.4.4 Fugacity

Fugacity is a derived thermodynamic property measured in terms of pressure and
provides an experimental means of determining phase and chemical equilibrium.
For a pure substance at a given 7 and P,

dyu=vdP —sdT (11.67)

And when T is constant
du=vdP (11.68)

Assuming ideal gas behavior

v=R— 11.69
P ( )

Substitution of Eq. 11.69 into Eq. 11.68 results in

RT
du :?dP:RTd{ln(P)} (11.70)
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And knowing for a real gas v # RT
Defining fugacity as P

dp=RTdIn{f} (11.71)

where as P — 0 implies i — 1, which is a correction for non-ideal behavior.
Integrating Eq. 11.71 results fn

u—u :RTln(%j (11.72)

For phase equilibrium between phases a and f,
U= ,U,-ﬂ (11.73)

Substitution of Eq. 11.72 into Eq. 11.73 results in

a B
w* +RTIn [%J = ,ul.”'” + RTln( f;m J (11.74)
f Ve
Another form of Eq. 11.74 is
o,0 B
'ui"‘a—yi‘”ﬂ =RT1n(ﬁB0]+RTln(f’;a] (11.75)
f fi
From Eq. 11.72
fa,O
e _/Jl_vvﬁ = RTln[J;ﬁ,o) (11.76)
Therefore,
fﬂ
RT In f— =0 f“=fF (11.77)
Example 11.6

Determine the fugacity of liquid water at 30 °C and at the saturation pressures, 10
Bar and 100 Bar.

At 20 °C, P* = 0.0424 bar. In the limit as P — 0, f — P, therefore
S =P =0.0424 bar.
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From the definition of fugacity
dp=RTdIn(f)=vdP

Integrating from P(sat) to P results in

RTln(;;j:v(P_psat)_)fL _ explw}

RT

where specific volume is

3 3
y=v,| = (18.02 ke j:0.01809 o
kg kmole

Such that the fugacity at 10 Bars is

0.01809(10—-0.0424)1e5
8314.3%303.15

fr=0.0424% exp{ } =0.0427 Bars

And the fugacity at 100 Bars is

0.01809(100 - 0.0424) * 1e5
8314.3%303.15

fr=0.0424% exp{ } =0.0455Bars

11.4.5 Chemical Equilibrium Constant

Previously, we’ve seen at chemical equilibrium

dG; , = 2 pdé
or
oG
dG,,=0—>|—| =X2v,u, =0
(aé ) .
and

dy, = RTdIn(f;)

And integrating Eq. 11.85 results in

(11.78)

(11.79)

(11.80)

(11.81)

(11.82)

(11.83)

(11.84)

(11.85)
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=g +RT1n(%J (11.86)

Substituting of Eq. 11.86 into Eq. 11.84 results in

Yv.gl +RTXv, ln(%

i

]=0 (11.87)

And defining activity, a;

a;, = % (11.88)
Another form of Eq. 11.87 is
) —Svg’ Ag
npl| fo | o TRV Al (11.89)
f RT RT

where Ag’  is the standard Gibb’s free energy change of reaction.
The left-hand side of Eq. 11.89 is the logarithm of the chemical equilibrium
constant (K) such that

Agy,

ln(K): RT

(11.90)

Example 11.7
Calculate the equilibrium constant for the following reaction using the data at 298 K

H,0(g)+CH,0H(g) «> CO, (g)+3H, (g) (11.91)
where
H,0(g) CH;0H(g) COx(g) Hy(g)
K -228.57 -161.96 ~394.36 0
0
o [mole}
and

Ag’, =Yv,Ag’ = ~394.36+3(0)—(-228.57)~(~161.96) = ~3.83kJ/mole (11.92)
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Thus

Ag, 3830
K =exp| ——20 | —exp| ————— | =4.69 11.93
eXp{ RTJ eX1{(8.314)(298.15)} (159

Example 11.8
Find the equilibrium concentration of N,O(g) due to the following chemical reac-
tion that occurs at 25 °C and 1 atmosphere.

N,0, (g) ©>2NO, (g) (11.94)

where the following reactions occur
Chemical Reaction I (R;)

kcal
mole

N,0,(g) © N, (2)+20, (g), Agy, =-23.14 (11.95)

and
Chemical Reaction 2 (R;)

0.5N, (g)+0,(g) © NO,(g),Ag,, =12.24kcal/mole (11.96)

The overall reaction is a combination of R, and R, where

Overall = R, +2R, (11.97)
Thus,
0 0 0 kcal
Agr = AZo i +AZo zo =—23.41+2(12.24) =1.11
' ' mole
=4644 ! :—RTln(K) (11.98)
mole
and
Ag’ —
K =exp| —28m | Zexp| 304|563 (11.99)
RT (8.314)(298.15)

And the chemical equilibrium constant (K) in terms of activities (fugacity) is
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2 2 2
(f NO, Po, Yno, P
a’ fo P latm R
_ Mo, o) \Two,) =N (1563 (11.100)

K — —
Apaps 0, Fy0, Yx0,P Yn,0,
f£2 o, PI\(I)Z o, latm

and
[N,O,] [NO,] Total
Initial 1 0 1
Final 1-¢ 2 1+¢

Substitution of the values for y(NO,) and y(N,O,) from the table into Eq. 11.100
results in

&)
I+o 4 K _0.1563

_ 5/ = (11.101)
1-¢) 1-¢
1+¢&
With solution £ = 0.194 and a complete solution is
[N,O,] [NO,] Total YIN,O4] y[NO,]
Initial 1 0 1
Final 0.81 0.39 1.19 0.68 0.32

11.5 Chemical Kinetics

11.5.1 Reaction Fundamentals

Much of this section comes from [1].

Definitions

Heterogeneous Reactions involves more than one phase and likely occurs at the
interfacial boundary

Homogenous Reactions involves a single phase

Reversible Reactions can proceed forward from reactants to products or backwards
from products to reactants

Irreversible Reactions proceeds in only one direction

Equilibrium Chemistry composition of species when a reaction is complete
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Rate Law
The chemical reaction

aA+bB <> cC+dD (11.102)

Has the following reaction rate

dc u
d—:z—kcAcg (11.103)

Where {a,f} are empirical constants determined from regression analysis of
experimental results.
But in this section, we’ll assume the following form

de,
—= = —kc}; 11.104
&t A ( )

Zero Order
A zero-order reaction has the following form

de

=—k 11.105
7 ( )

And solution

c=c,—kt (11.106)

First Order
A first-order reaction has the following form

ﬁ=—kc (11.107)
dt

And solution
c=c,e" (11.108)

Second Order
A second-order reaction has the following form

E: —kc? (11.109)
dt

And solution
l=i+kt (11.110)
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Higher Order Reactions
A second-order reaction has the following form

dc
— = —kc" 11.111
B ( )
And solution
11
= =F+(n—1)kz (11.112)

0

In order to determine “what is the proper reaction rate for a given chemical reac-
tion?”, reaction rate experiments must be conducted. From the data, graphs
are made of

1. C versus Time
2. Ln[c] versus Time
3. 1/C versus Time

Example 11.9
Given the following reaction rate data (Table 11.1)

Graph the three graphs listed above and based on the coefficient of correlation
(R?), the best fit is the first-order model (Figs. 11.4, 11.5, and 11.6).

11.5.2 Chemical Kinetic Complexity

The number of reactions involved with the combustion of hydrocarbons can be over
100 and associated with each reaction is a reaction rate equation developed from
kinetics studies and this whole process involves a huge amount of effort. Many

Table 11.1 Concentration versus Time Data

Time [days] 0 1 3 5 10 15 20
C [mg/L] 12 10.7 9 7.1 4.6 2.5 1.8
Fig. 11.4 Zero-order 15.0
model — ® y =-0.5104x + 10.751
< 100 R? = 0.9366
-T4]
£
= 50
(4
0.0
0 5 10 15 20 25

Time [Days]
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Fig. 11.5 First-order 3.00

model y =-0.0972x + 2.4701

< 2.00 R?=0.9954
< 1.00
0.00
0 10 20 30
Time [Days]
Fig. 11.6 Second-order 0.60
model —_
£ 0.40
=
© 020 S y =0.0235x + 0.0478
- R2=0.9589
0.00
0 5 10 15 20 25

Time [Days[

scientists [2, 4, 5, 7] have determined various ways to reduce the chemical kinetics
complexity and one approach is the work of Westbrook and Dryer [10] who have
determined a global reaction rate equation of the form

k, =®=AT" exp[— If%}[Fuel]a [Oxidizer] (11.113)

where 7 is set to zero and {A, a, b} are determined through a regression method
that involves fitting the model for the laminar flame speed equation, which is given
below (see Chap. 12 for a full derivation)

)

A (Tf_ '
)

S} =——
’ rC, (Tl -

where / is the heat convection, p is density, ¢, is the specific heat, T} is the final
temperature, T is the initial temperature, 7T; is the ignition temperature, and @ is the
reaction rate.

The goal was to fit the laminar flame speed equation (Eq. 11.114) that includes
the global reaction rate (Eq. 11.113) to an experimental curve of laminar flame
speed versus equivalence ratio; an example is given below as Fig. 11.7. Westbrook
and Dryer did this analysis for 19 hydrocarbons [11].

The parameters {A, a, b} are determined to ensure that the following laminar
flame speed characteristics match between the model and experimental results:

1. Peak S;
2. ¢L , which is the lean flammability limit

(11.114)

N
|8
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—-30
kow = 4.6e11 * exp [ﬁ] [CgH15]%%[0,]%°

S[L] [em/s]

Equivalence

—@— n-octane/air

Fig. 11.7 Laminar flame speed versus equivalence [11]

3. ¢, which is the rich flammability limit
4. General shape

Other efforts to reduce the chemical kinetic complexity include the work of
Hautman et al. [2] and Sichel et al. [8]. Hautman et al. will be briefly discussed.

Hautman, Dryer, Schug, and Glassman [2] reduced the reactions associated with
certain hydrocarbons (aliphatic hydrocarbons) to four reactions

CH,,., —>§CZH2+H2 (11.115)
C,H, -»2CO+2H, (11.116)
1
c0+502 - CO, (11.117)
1
H2+502 —H,0 (11.118)

With four reaction rate equations

d[C,H,,, ) E a C

%510 eXp{_E}[Cnszz] [o.][cH]  dL1Y
d[C,H ) E ) C

[aft o eXP{‘E}[Csz] [0.][CH,,.] (1120
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Table 11.2 Coefficients associated with Eqs. 11.119, 11.120, 11.121, and 11.122

Reaction X E a b c
C(n)H(2n +2) 17.32 49,600 0.5 1.07 0.4
C(2)H(4) 14.7 50,000 0.9 1.18 —-0.37
CO 13.52 41,000 0.85 1.42 -0.56
H(2) 14.6 40,000 1 0.25 0.5
d[co] E T P e
=-10"exp| -— |[CO]'[0,] [H,O] S 11.121
< Pl [lcOT [0.] [1.0] 1.121)
d[CnH n+ ] x E a b c
#?10 exp[—ﬁ [H,][0,] [C,H,] (11.122)

where S = 7.93 exp (—2.48¢,) and ¢, is the initial equivalence ratio.

Where the coefficients are given as Table 11.2

Hautman et al.’s [2] work provides a means to observe the development of the
various stages of hydrocarbon oxidation where Eqs. 11.119 and 11.122 provide
reaction steps associated with the heat release.

Turns [8] has provided for hydrocarbons of the form C,H,, . , a three-step process
for the combustion chemistry that is given as

1. The fuel molecule is attached by O and H atoms and breaks down, primarily
forming alkenes and hydrogen. The hydrogen oxidizes to water, subject to avail-
able oxygen.

2. The unsaturated alkenes further oxidize to CO and H,. Essentially, all of the H,
is converted to water.

3. The CO burns out via the following reaction CO+H,O + y 0, - CO, +H,0.
Nearly all of the heat released associated with the overall combustion process
occurs in this step.

The following reactions summarize these three steps for methane [2]

Induction Phase

CH, + 340, - 2H,0+CO (11.123)
and
Reaction Phase
H,0+CO+ 100, >0, +H,0 (11.124)

Where these two equations represent two distinct phases, which are called the
induction phase (Eq. 11.123) and the reaction phase (Eq. 11.124). More will be
made of the induction phase (zone) and reaction phase (zone) in Chap. 13,
Detonations.
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Table 11.3 Reaction rate data

T k()

[K] [cm?/mole-s]
592 498

603.5 775

627 1810

651.5 4110

656 4740

It also needs to be noted with the incredible power of modern computers at our
disposal the full combustion chemistry, which involves dozens of pathways and
hundreds of reactions for a particular fuel and oxidizer, are now routinely solved,
but deemed beyond the scope of this book.

11.5.3 Temperature Effects on Reaction Rates

Given the Arrhenius reaction rate

E
k=Aexp| ——* (11.125)
RT
where k is the reaction rate, A is a constant dependent on several factors, E, is the
activation energy, R, is the universal gas constant, and 7 is the temperature.

or

ln(k):ln(A)—%% (11.126)

. . 1 . .
A graph of experimental data in terms of In(k) versus T provides an estimate for
{E. A}

Example 11.10 Determination of Activation Energy
Given from [3] for the decomposition of nitrogen dioxide is the following experi-
mental reaction rate data (Table 11.3)

A graph of In(k) versus 1/T provides (see Fig. 11.8) an estimate for {E,,R,}

a

where the slope of the line is equal to and In(A) is equal to the y intercept. For

this problem, u

Ee 13671, R —19812—S4L g _pyp Kk
R mole K mole

u
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9 [
8 ... ...................
: ...‘ ..............
| C@eeeen..... °
S y=-13671x +29.305
¥4
E : RZ=1
3
2
1
0
0.0015 0.00155 0.0016 0.00165 0.0017

1T

Fig. 11.8 In(k) versus 1/T

and

3

In(A)=29.305,A = 5.33e12%
mole —S

11.6 Adiabatic Flame Temperature

Back in Chap. 2, we mentioned that the thermodynamic energy for a closed system
is generally in terms of internal energy and for an open system it is generally in
terms of enthalpy. This is relevant in this section because a closed system is a con-
stant volume system and an open system is a constant pressure system.

11.6.1 Complete Reaction

The adiabatic flame temperature for a constant pressure system can be determined
in the following fashion. The energy balance for this system is as follows

Pocians (TP = T uic P) + 64 (11.127)

reactants products ( adiabatic *

were for an adiabatic process dg = 0.
And the adiabatic flame temperature for a constant volume process can be deter-
mined in the following fashion. The energy balance for this system is as follows

Mreactants (’Tt ’P) = uproducls (T;xdiabalic ’P) + 6q (1 1 1 28)

where for an adiabatic process 6g = 0.
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By determining the enthalpy of formation and knowing the specific heat for a
given substance and temperature, the value of 7,4 can be determined. An example is
as follows.

Example 11.11 Adiabatic Flame Temperature
Estimate the constant pressure adiabatic flame temperature for complete combus-
tion of the following reaction, which is initially at 298 K and 1 atmosphere

CH, +2(0, +3.76N, ) - CO, +2H,0 +7.52N, (11.129)

Where the following properties will be utilized (Table 11.4)
Going back to the energy balance for the system, Eq. 11.127, and plugging in the
enthalpies and specific heats results in

(1)(-74,831)+2(0)+7.52(0) =1[ ~393,546 +56.21(T,, —298) |
+2[ ~241,845+43.87(T,, —298) |+ 7.52[ 0+33.71(T,, —298) | (11.130)

Solving Eq. 11.130 for results in 7,4 = 2381 K, which is about 100 K high due to
not accounting for disassociation; disassociation is the fact that at higher tempera-
tures water breaks down to simpler molecules.

The distinction between constant volume and constant pressure combustion will
be explored further in the next chapter.

In the next section, we’ll discuss incomplete combustion.

11.6.2 Incomplete Reactions

Much of this section comes from [10].

System I: Complete Combustion in Oxygen
One combustion reaction is the following

C(s)+0,(g) « CO,(g) (11.131)

Table 11.4 Enthalpy of formation and specific heat associated with Eq.10.129

Enthalpy of formation Specific heat @ 1200 K
Chemical speciation [kJ/kmole] [kJ/kmole-K]
CH, —74,831
CO, —393.546 56.21
H,O —241,845 43.87
N, 0 33.71
0O, 0
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System II: Incomplete Combustion in Oxygen
But from a knowledge of Gibb’s free energy and the understanding that the G is
minimized when

P90 (11.132)

leads us to a more realistic reaction
C(s)+0, > xCO, + yCO+ 20, (11.133)

where now the unknowns are {7, x, y, 7} versus 7,4 seen in the last section.

In order to solve for four unknowns, we need four equations and these equa-
tions are

Mass balance for carbon

x+y=1 (11.134)
Mass balance for oxygen
2x+y+2z=2 (11.135)

Equilibrium constant for this system is

o1 P P"
Aern}: wlo, _az [P (11.136)

k =exp|—
’ p{ RT,

Please note that the equilibrium constant would vary with temperature where this
effect has been ignored in the example. Given that

F vy \x+y+z

o,

K = o 8Ga/T

is only good for T at standard conditions, i.e., 298.15 K, a better expression, though
somewhat still an approximation, is the so-called short-cut van’t Hoff equation

k=40 _AGT AH (l— lj (11.137)

RT RT° R \T T°
And finally, the energy balance for the system is

~[xh) (€O, )+ yh) (CO) | = x[h(zgd)—hHC%
+y[h(Ty) =ty ] +2[ (L) H) ], (11.138)
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Equations 11.134, 11.134, 11.135, 11.136, 11.137, and 11.138 are a set of non-
linear algebraic equations and can be solved. The solution is found to be

x=0.23moles, y=0.77moles, z=0.38moles and T, = 3537K (11.139)

System III: Incomplete Combustion in Air
If now the oxidizer is air, then the equations become.

xt+y=1 (11.140)

2x+y+27=2 (11.141)

0 P P045
k =exp|—2Cm | _ foTo, _xz P (11.142)
’ RT,, By, y \x+y+z+7921

~[xhy (€O, )+ yh) (CO)] = x[h(z,d)—hg]wz +y[h(T0)-H ],

+2[h(Ty) =y ], +£[h(7m)—’?3]Nz (11.143)

The above set has solution

x=0.89moles, y=0.11moles, z =0.05moles and7,; =2312K (11.144)

Comparing the solutions for System II and III, it is seen that

1. Adiabatic flame temperature is significantly lowering when using air
2. The reaction is less complete when using pure oxygen

11.7 Problems

Problem 11.1 Stoichiometry Problem
Determine the equivalence ratio for a mixture of propane and air where the mass
rate of propane is 0.5 kg/s and the mass rate of air is 16 kg/s.

Problem 11.2 Chemical Equilibrium Problem
Given the following reaction

A+2B < 2C
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Where the mole fractions of reactive species at equilibrium satisfy the relationship

=1.25

2
Ye
=

YaVp

And initially {y4, vz yc} = {1,1,0}
Determine the final concentrations for {y,, vz, yc}

Problem 11.3 Chemical kinetics problems
Given Eqn. 11.115 through Eqn. 11.121 and Table 11.2 and the following initial
conditions

moles mole mole

m=0.97

. [CH,,.,]=425¢-3

=1.7e—-
cc ’[02] ¢=6 cc

Graph the change with time for the quantities

[C.H,,..][CH,].[COL[H, ]

Problem 11.4 Determining q from a chemical reaction
Determine the heat release from Example 11.11 for complete combustion of the
fuel/air mixture and a constant pressure process at 300 K and 1 atmosphere.

Problem 11.5 Adiabatic Temperature, Constant Pressure
Determine the adiabatic temperature, constant pressure for the complete combus-
tion of stoichiometric mixture of propane and air at 400 K and 1 atmosphere.

Problem 11.6 Adiabatic Temperature, Constant Pressure
Determine the adiabatic temperature, constant pressure for the complete combus-
tion of stoichiometric mixture of propane and air at 800 K and 1 atmosphere.

Problem 11.7 Adiabatic Temperature, Constant Volume
Determine the adiabatic temperature, constant volume for the complete combustion
of stoichiometric mixture of propane and air at 400 K and 1 atmosphere.

Appendix 11.1: Chemical Equilibrium (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 11.2: Chemical Kinetics (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Chapter 12 )
Deflagration

Check for
updates

12.1 Preview

In this chapter, two types of deflagration systems will be discussed:

1. Pre-mixed laminar flames
2. Non-premixed laminar flames

An example of a premixed laminar flame is a Bunsen burner.

Examples of a non-premixed laminar flame are a match burning or a pool of
gasoline on fire. Non-premixed laminar flame systems are more numerous in nature
than premixed laminar flames.

Turbulence will not be discussed but note an understanding of turbulence is pred-
icated on an understanding of the laminar theory.

As we saw in Chap. 10, the Rankine-Hugoniot (RH) theory doesn’t predict well
the wave speed for a CJ deflagration and this is due to some fundamental transport
processes being ignored where the RH theory ignores all transport processes such
as mass transfer, momentum diffusion, and process of the heat transfer as expressed
by a particular reaction rate equation. In the RH theory, heat is assumed instanta-
neously released and the path is ignored.

The first deflagration system to be explored is a laminar, premixed system where
the object is to determine the laminar flame speed, which is essentially the speed of
the deflagration wave. The second deflagration system to be explored is a laminar,
non-premixed system (also known as diffusion flames) and in this portion of the
chapter, it will be asked “what is the height of the flame, concentration of fuel and
air at certain locations within the flame, and the mass rate of fuel and air
consumptions?”’

Electronic Supplementary Material: The online version of this chapter (https://doi.
org/10.1007/978-3-030-87387-5_12) contains supplementary material, which is available to
authorized users.

© Springer Nature Switzerland AG 2022 301
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12.2 Qualitative Differences Between Various
Combustion Phenomena

Imagine a very long shock tube (insulated from the environment) where air and a
fuel have been premixed. Now imagine that the mixture is ignited, which is the
process of increasing the temperature and pressure high enough until a combustion
occurs and a wave travels down the tube toward the right. If the left end of the tube
is open, the speed of the wave will be between 20 and 200 cm/s [5], which consti-
tutes a constant pressure combustion and the energy balance of the system is

h +Ag=h, (12.1)

where “1” is the initial state and “2” is the state associated with the wave, A; is the
enthalpy associated with state “i”, and 4 is the percent reaction complete and dis-
cussed in Chap. 11.

Or for an ideal gas

c, T, +2q =cpT2P (12.2)

And when 1 = 100%, then T,” is the adiabatic flame temperature, constant pres-
sure and this type of combustion is a deflagration.

Now imagine the same process, but the left end is capped and now the combus-
tion is constant volume

e, +Ag=e, (12.3)

where “1” is the initial state and “2” is the state associated with the wave, ¢; is the
internal energy associated with state “i”’, and 4 is the percent reaction complete and
discussed in Chap. 11.

Or for an ideal gas

e, T, +Aqg=cT, (12.4)

And when A = 100%, then TZV is the adiabatic flame temperature, constant vol-
ume and now as the wave moves to the right, the wave transitions through Mach 1
and becomes a shock wave with Ma, > 1 and the combustion is now a detonation.

Please note that given ¢, >c, —»T," >T," for a given 1q.

This chapter is solely about waves traveling much less than Mach 1 (Ma, < 0.01),
deflagrations. When the deflagration involves a mixture of air and fuel that has been
premixed, the rate of consumption is orders of magnitude greater than when it is not
premixed. An example [6] is ethylene-oxygen (see Table 12.1).

Table 12.1 Comparison of fuel/O, consumption based on mixing [5]

Rate of consumption
Mixing Fuel/oxidizer [Mole/cm?—s] Relative rate

Premixed Ethylene-oxygen 4.0 66,667
Non-premixed Ethylene-oxygen 6E-5 1
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12.3 Premixed Deflagration (Laminar Flames)

In this section, three different formulations for the laminar flame speed, which is
defined as a premixed combustible gas and oxidizer with a wave traveling well
below Mach 1, are given. The first is attributed to Mallard and Le Chatelier [10], the
second is attributed to Spalding [10] and the third is a correlation from Metghalachi
and Keck based on several hydrocarbon and air mixtures [7].

Given below in Fig. 12.1 is a premixed laminar flame where h represents the
height of the premixed flame and H represents the height of the non-premixed (dif-
fusion) flame.

The planar conservation principles, to be used in this section, and that include
transport considerations derived in Chap. 8 are given below [6, 10].

Diffusion flame

Front flame

Blue cone

h= Height of blue cone H= Height of diffusion flame

Fig. 12.1 Premixed laminar flame [1]
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Conservation of Mass, Planar Coordinates

o(pv,) 0
ox

or
m = pv_=constant

Conservation of Species, Planar Coordinates

And in terms of Fick’s law [10]

,, av] ..
D iy —pp |2
dx dx

And for the following chemical reaction

1kg fuel + S kg Oxidizer — (S +1) kg product

Thus,
L . -1 ..
Mgy = 5 Moxidizer = S+1 Mpyoguct

S

And Eq. 12.7 for each component is

Fuel
mm dYFuel _i D dYFuel — m;’uel
dx  dx dx
Oxidizer
L dy. Y. .. -
. d Oxidizer _i Dm = SmFuel
dx dx dx

(12.5)

(12.6)

(12.7)

(12.8)

(12.9)

(12.10)

(12.11)

(12.12)



12.3  Premixed Deflagration (Laminar Flames)

Product
. dY, dy,
. Lduct_i D ——Product :_(1+S)mFuel
dx dx dx

Conservation of Energy, Planar Coordinates
Starting from Eq. 8.128,

o dT d T
m'C —+—|—pDc, — |=-2h" m,
P dx dx( pce dx] S

where

S
0

_ 0 L L 9 L o m
- |:hf,Fucl mFucl + hf,OxidizcrsmOxidizcr - h/,Product (S + 1) mFucl:| - _mFucl AhL

Substitution of Eq. 12.14 into Eq. 12.13 results in

d kd—T
m”' d_T _ i dx _ mFuelAhc
dx ¢, dx Cp

305

(12.13)

(12.14)

(12.15)

(12.16)

where the intent of this section is to determine the laminar flame speed, S;, which

is related to conservation of mass through
m =p,S,

where p, is the density of unburned fuel/oxidizer.

12.3.1 Mallard and Le Chatelier’s Laminar Flame Speed

(12.17)

In this section, a model is developed for the speed of unburned gas (at 7y), S;, mov-
ing through the combustion zone (Zone II) normal to the wavefront where Zone 11
is where the reaction occurs (at 7;) and the burned gases are at 7. This type of com-
bustion is a deflagration and the Mach numbers are below 1 and the values of SL are

typically below 1 m/s (Fig. 12.2).
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Region of
conduction

D mm—
| Zone1 Region of I
To burning |I !

Y

Fig. 12.2 Mallard and Le Chatelier’s conceptual model

The approach taken is that of Mallard and Le Chatelier [10] where the energy
balance into and out of the control volume for Zone II is

T -T
f—’)A (12.18)

where A is the heat convection, p is density, C, is the specific heat, T is the final
temperature, T, is the initial temperature, 7; is the ignition temperature, 6 is the
width of the reaction zone, and #: is the mass rate into the control volume.

And

= pAu=pS,A (12.19)
Substitution of Eq. 12.18 into 12.17 results in
pS,C,(T,-T,)=A(T, ~T,)/5 (12.20)

And solving for S, results in
(12.21)

And a mass balance equation through Zone II is

% = pu=pS, =wd (12.22)



12.3  Premixed Deflagration (Laminar Flames) 307

Equation 12.21 is solved for ¢ and substituted into Eq. 12.20, which result in

)

i (Tf—,
)

S;=—"—
"G, (T -
A challenge with using Eq. 12.22 is that 7; is not properly known and another
form of Eq. 12.22 is determined in the next section that addresses this issue
among others.

(12.23)

SIS
o |8

12.3.2 Spalding’s Laminar Flame Speed Theory

Beginning with the energy equation, Eq. 12.15 [10],

ar 1 d[kiﬂ i AR
et _ L N P L (12.24)
dx ¢, dx Cp

And integrating both sides of Eq. 12.23 where the boundary conditions far
upstream are

T(—0)=T, andfl—i(—oo):o (12.25)

And far downstream are

dTr
— = 12.26
7)1 and 4L () =0 (12.26

The results of integration Eq. 12.23 with the given boundary conditions results in

dr
. ™) _ A,
i (T, ~T, )~ 9 ijdx (12.27)
c, dx %(7 ) <,

or

WV

m (T,-T,)= (12.28)

P
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Where the assumed temperature profile from T, to 7, is linear and the differential
appearing in the above integration and the endpoints of integration can be redefined
in terms of temperatures by using

T -T
ar _1, “ordx = J dar (12.29)
dx o T,-T,
And Eq. 12.27 becomes
. —Ah to
i’ (T, ~T,) = —= 0 [ringar (12.30)
cp T‘b _T; T,
where
s -
[rivydt = Srins (12.31)
b tut,
which is the average reaction rate and
" —Ah, =
m (T,-T,)= L onr (12.32)

CP
Equation 12.31 can be thought of as an algebraic expression with two unknowns
{riz", 1) } and we need another equation to solve for these two unknowns.
Resorting again to Eq. 12.29 but now the boundary conditions are
Far downstream

T(-0)=T, and £(—oo):O (12.33)
dx
And x:é
2
(9] Bt g 4T[0 LA (12.34)
2 2 dx \ 2 o

Additionally, in the interval xe (_00,%] - ;ur =0

Integration of Eq. 12.29 with the above boundary conditions results in

FA
m(T% —Tu)— k dr =0 (12.35)

c, dx %(700)
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or
'”(T'b-i—j; _Tuj_i(Tb_Tquo
c, 1)
and
m"[Tb_Ywuj_EETb_Tu):o

2 c, o
or

m_k1_,

2 ¢ o

S
and
m_k1_,
2 ¢,
Solving Eq. 12.39 for 6
s=k2
CP

And substituting Eq. 12.40 into Eq. 12.38 results in

il (1, -1,) = e iy {—i}

Cp Cp m

or

309

(12.36)

(12.37)

(12.38)

(12.39)

(12.40)

(12.41)

(12.42)
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And solving for 7" results in

%) (12.43)

s, =2 (12.44)
P,
and
a=_X (12.45)
p.C,
Further,
Ah =(S+1)c,(T,-T,) (12.46)

where S is the mass air to fuel ratio.
Substitution of Eqs. 11.44, 11.45, and 11.46 into Eq. 11.43 results in

S, = f—za(s+1)ﬁ (12.47)
P.

and
5o | 2P (12.48)
(S+1)rr
or
20
§="2 12.49
S ( )

Example 12.1 Laminar Flame Speed

Find the laminar flame speed for a stoichiometric mixture of propane and air at STP.
In order to determine the laminar flame speed for a stoichiometric mixture of

propane and air, several distinct steps are required to include:

1. Stoichiometric considerations
2. Reaction rate equation
3. Specific heat determined
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4. Determination of adiabatic flame temperature
5. Determination of heat diffusivity
6. Laminar flame speed calculations

Each step is discussed below.

Stoichiometric Considerations
A screenshot of this worksheet within the “Laminar Flame Speed” worksheet is
provided and essentially this worksheet determines the concentrations for fuel, oxi-
dizer (air), and products.

It should be noted that

T, = 300K,

Tye =%(Tw + Ty ) =1,280K

Burnt

T, =1,770K

T

Burnt

=T, =2,270K,

where T, is the ambient temperature, Tsy, is the temperature at the beginning of
the reaction zone, 754 is the temperature in the middle of the reaction zone, and
Tsume 1S the temperature at the end of the reaction zone where it is assumed fuel and
oxidizer have been completely consumed.

Also note the mass concentrations of fuel, air, and oxidizer are given at the ambi-
ent conditions and within the reaction zone.

C [kg/kmole]| 12.01
H [kgkmole] 1.01
o [kg/kmole] | 16.00
N |(kg/kmole]| 1401 Hydrocarbon Names
3 + Saturated hydrocarbons (alkanes) have
y ‘: general formula C H,, .,
a
+ CH, methane + C;H,; hexane
mair) [kel 15.7 * C.H; ethane * C;H,; heptane
mifuel) [kg) 1 + C;Hg propane + CgHg octane
« C;H,, butane * CyH,; nonane
MwW(oxygen) | [kg/kmole]| 29.00 + C.H,, pentane + C,H,, decane

Mw(fuel) [kykmole] 44,10

Nonpolar bonds, only London dispersion forces

(A/F)stoich 15.7
(A/F) 15.7
Phi 1.00
m 4.76a MW, .
- AIF) .. = air = air a=x+7
T g W= () =R /s
Y(fuel) 0.06
Y(Ox) 0.22) ' o (4/p) I
CoHy +a(0; + 3.76N;) = xC0; + /5 Hy0 + 3.76aN; = _m‘“(,; )
Yikfuel) 0.030 /r

¥(f,0x) 0.110
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Reaction Rate Equation
This worksheet within the spreadsheet “Laminar Flame Speed” determines the
parameters associated with a global reaction rate equation, which was discussed in
the previous chapter.

A global reaction rate equation engineering purposes and derived for deflagra-
tion was given in Chap. 11 as Eq. 11.113

k, = =AT" exp[— E, }[Fuel]m [Oxidizer]'
RT
where x is set to zero and {A, a, b} are determined through a regression method
that involves fitting the model for the laminar flame speed equation (the parameters
particular to a given fuel are given in the table below) and for a fuel of propane, the
coefficients are {8.60el1, 15098, 0.1, 1.65}.

Fuel X ¥ A E/R(u) m n
CH4 1 4| 1.30E+08 24,358 -0.3 1.3
CH4 1 4| 8.30E+05 15,098 -0.3 1.3
C2H6 2 6| 1.10E+12 15,098 0.1 1.65
C3H8 3 8| 8.60E+11 15,098 0.1 1.65
C4H10 4 10| 7.40E+11 15,098 0.15 1.6
C5H12 5 12| 6.40E+11 15,098 0.25 1.5
CeH14 6 14| 5.70E+11 15,098 0.25 1.5
C7H16 7 16| 5.10E+11 15,098 0.25 0.15
C8H18 8 18| 4.60E+11 15,098 0.25 0.15
C8H18 8 18| 7.20E+12 15,098 0.25 0.15
C9H20 9 20| 4.20E+11 20,131 0.25 0.15
C10H22 10 22| 3.80E+11 15,098 0.25 0.15
CH30H 3.20E+12 15,098 0.25 1.5
C2H50H 1.50E+12 15,098 0.15 1.6
C6H6 6 6| 2.00E+11 15,098 -0.1 1.85
C7H8 7 8| 1.60E+11 15,098 -0.1 1.85
C2H4 2 4| 2.00E+12 15,098 0.1 1.65
C3H6 3 6| 4.20E+11 15,098 -0.1 1.85
C2H2 2 2| 6.50E+12 15,098 0.5 1.25

Specific Heat Determination
A cubic relationship for specific heat constant pressure for air is utilized to deter-
mine the specific heat constant pressure at 7 equal to 1280 K (see below).


https://doi.org/10.1007/978-3-030-87387-5_11#Equ113
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Substance Beta(0) Beta(1) Beta(2) Beta(3)
Air 1.05 —0.365 0.85 —0.39
T (K] 1280

Theta [K] 1.28

C, [kJ/kg-K] 1.16

Adiabatic Flame Temperature
The adiabatic flame temperature constant pressure for several fuels is provided
below to include propane [7T(ad) = 2267 K].

Formula Fuel X y T(ad)
(K]

CH4 Methane 1 4 2226
C2H2 | Acetylene 2 2 2539
C2H4 Ethene 2 4 2369
C2H6 Ethane 2 6 2259
C3H6 Propene 3 6 2334
C3H8 Propane 3 8 2267
C4H8 1-Butene -4 8 2322
C4H10 | n-Butane -4 10 2270
C5H10 |1-Pentene 5 10 2314
C5H12 |n-Pentene 5 12 2272
Co6Hb6 Benzene 6 6 2342
C6H12 | 1-Hexene 6 12 2308
C6H14 | n-Hexene 6 14 2273

Thermal Properties
This worksheet within the spreadsheet “Laminar Flame Speed” determines the ther-
mal diffusivity based on the following equation evaluated at two temperatures
(300 K and 1280 K).

k(1280)
p(300)c, (1280)
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Air Properties

T Rho
(K]

Cp k*le3

[kg/m*3] [ki/kg-K] [W/m-K]

200 1.7458 1.007 18.1
300 1.1614 1.007 26.3
400 0.8711 1.014 33.8
500 0.6964 1.03 40.7
600 0.5804 1.051 46.9
700 0.4975 1.075 524
800 0.4354 1.099 57.3
900 0.2868 1121 62

1000 0.3482 1.141 66.7
1100 0.3166 1.159 T1.5
1200 0.2902 1.175 76.3
1300 0.2673 1.189 82

1400 0.2488 1.207 91

1500 0.2322 1.23 100
1600 0.2177 1.248 106
1700 0.2048 1.267 113
1800 0.1935 1.286 120
alpha  [m*2/s] 5.87E-05

k(T)
P —
p(T)C,(T)

1000
100
u —
= L
= 10
i
<
1 s
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—t—t—t
——r
—a—t—0

—we—Density —e—>Specific Heat

Laminar Flame Speed Calculations
In this worksheet, the laminar flame speed is calculated from the following equation

S

=-2a(%+1)%@1

T(1)
T(2)

T(1)
T(2)

T(1)
T(2)

1000 1500 2000

TIK

—w— Heat Tranfer

300  Rho{l) 11614
300  Rho{2) 11614
300 Rho 116

1,200 Cp(l) 11750

1,300  Cp(2) 1189

1,280 cp 119

1,200 K(1) 7%

1,300 K(2) 82

1,280 k 80.86

The real challenge in this worksheet is to get the mass rate of fuel in the correct
units. The following process was utilized to determine 7,

A [gmole/cm?-s] 8.60E+11 Original units

A [kmole/m?*-s] 4.84E+09 New units

E/R(u) 15,098

m 0.1

n 1.65

[Fuel] 0.00067901 Mass concentration

[Ox] 0.00342262 Mass concentration

k(G) 9.55E+05

d(omega)/dt [kmole/m?*-s] —2.43E+00 Units from reaction equation
dm(omega)/dt [kg/m?-s] -107.2 Appropriate units
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The complete worksheet is given below where the solution is S(L) = 43 cm/s.

Value Comments
Rho(0) [kg/m~3] 1.20
Rho(75%) [kg/m*3] 0.20
Rho(50%) [kg/m*3] 1.16
C(p,50%) [J/kg-K] 1150.00
Lambda(50%) 0.0809
Alpha [m~2/s] 5.86E-05
A [gmole/cm*3-5]| 8.60E+11 Original Units
A [kmole/m#3-s] | 4.84E+09 New Units
E/R(u) 15,098
m 0.1
n 1.65
[Fuel] 0.00067901 Mass Concentration
[Ox] 0.00342262 Mass Concentration
k(G) 9,55E405
d{omega)/dt | [kmole/m*3-s] | -2.43E+00 | Units from Reaction Equation
dm(omega)/dt| [kg/m"3-s] -107.2 Appropriate Units
S(L)2 0.17
S(L) [m/s] 0.42
S(L) [cm/s] 42
delta(L) [m] 2.81E-04

12.3.3 Metghalachi and Keck’s Correlations for Laminar
Flame Speed

315

Metghalchi and Keck [7] have developed accurate correlations that allow us to
determine the laminar flame speed for several fuels where the equations are given

below and the fuel-specific parameters are given as Table 12.2.

Table 12.2 Parameters associated with a particular fuel

Fuel Phi(M) B(M) [cm/s] B(2) [cm/s]

Methanol 1.11 36.92 —140.51
Propane 1.08 34.22 —138.65
Isooctane 1.13 26.32 —84.72
RMFD-303 1.13 27.58 —78.34
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7 B
wt| L, il
5, :st[Tme (Fj (1-2.1y,) (12.50)

And S} has the relationship

S =B, +B, (-9, ) (12.51)
where

T =298 K, P =1 atm (12.52)

And f has the relationship
B =—O.16+O.22(¢—1) (12.53)

And y has the relationship
y:2.18—0.8(¢—1) (12.54)
Utilizing the correlations given above and assuming the substance is RMFD-303,
a sensitivity analysis was performed to show the effects of increased temperature,
increased pressure, and increased dilution had on S(L). The results are given as

Figs. 12.3, 12.4, and 12.5 where

T . P
P =

T =
ref ° ref
T! P

(12.55)

It can be seen that increasing 7% has a drastic positive effect on S(L) and that
increasing P* or Y(dil) has a slight negative effect on S(L).

500 -
400 -
300 -

200 -~

S(1) [em/s]

100 -~

0 -
0 0.5 1 1.5 2
Phi

WTH=] g T*Z) e T3 T4

Fig. 12.3 S(L) versus Phi for increasing 7%
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30
25 A

S(L) [ch/s]
== N
U O Uun O

o

T T 1

0 0.5 1 1.5 2
Phi

B P¥=] e PF=) e PF=3 e P¥=4

Fig. 12.4 S(L) versus Phi for increasing P*

2R NN
o un o wun

S(L) [cm/s]

o

0 0.5 1 1.5 2
Phi
By (dil)=0% —e=y(dil)=5% —a—y(dil)=10% ==y(dil)=15%

Fig. 12.5 S(L) versus Phi for increasing dilution

12.4 Non-premixed Deflagration (Diffusion Flames)

In this section, the first attempt to model the height of a diffusion flame (non-
premixed flame) was by Burke and Schumann [2], which has been shown to work
well for circular burners. For burners of other geometries, buoyant forces become
more important and Burke and Schumann [2] ignored these considerations. Roper
[8, 9] addresses buoyant forces and the temperature dependence of diffusion.

The axi-symmetric conservation principles, to be used in this section, and that
include transport considerations presented in Chap. 8 are given below.

Conservation of Mass, Axi-symmetric Coordinates

la(rpvr)+ o(pv,)
r or ox

=0 (12.56)
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Conservation of Axial Momentum, Axi-symmetric Coordinates

r Oox r or r or

a[r 6vxj
la(rpvxvx)Jrl@(pvxvr) 1 Ho, (o -p)s

Conservation of Species, Axi-symmetric Coordinates

L
=m

i

lé’(rperi) . a(rpVin) _lﬁ(rpD%)
, Ox or ror or

where

Y, =1-Y,-Y

ox

12.4.1 Reacting, Constant Density Laminar Jet Flow
(Burke and Schumann)

Deflagration

(12.57)

(12.58)

(12.59)

In Burke and Schumann [2], the coordinate system is axi-symmetric and two con-
centric cylinders are utilized (see Figs. 12.6 and 12.7) where the inner cylinder
represents the fuel input and the outer cylinder represents the air (oxidizer); please

Fig. 12.6 Burke and
Schumann, conceptual
model [3]

E
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Fig. 12.7 Flame front [4]

Fuel I Alr
(vapor+

droplets+

inert gas)

note the radius of each cylinder is carefully selected to insure the velocities of air
and fuel are equal. Also shown in Fig. 12.6 is two flame configurations — “a” and “b”
where a represents a situation where there is an over-abundance of air for combus-
tion (over-ventilated) and b represents a situation where there is an under-abundance
of air for combustion (under-ventilated). We see for over-ventilation the flame
expands to a width equal to the inner cylinder and for an under-ventilated flame it
expands to the outer cylinder.

One of the assumptions to be made for a Burke and Schumann flame is that the
reaction is infinitely fast and that a “flame front” exists (see Fig. 12.7) where the
equivalence ratio is 1 and, theoretically, inside the flame front the composition is
fuel and outside the flame front the composition is air.

Consider two concentric cylinders where the outer cylinder (oxidizer cylinder)
has radius b and the inner cylinder (fuel) has radius a. The cylinders end at z =0 and
this is the zone where mixing begins. Let the initial mass fraction of fuel be Yy, and
the initial mass fraction of oxygen be Y,y The following assumptions are made
[2, 10]:

1. The average velocity is parallel to the z-axis of the ducts

2. The mass flux in the axial direction is constant

3. Axial diffusion is negligible when compared to transverse/radial diffusion

4. The flame is infinitely fast and occurs in a thin reaction sheet, Flame Front,
where the equivalence ratio is one

5. Effects of gravity (buoyancy) are ignored



320 12 Deflagration

Consider a very simple chemical reaction
Fuel + sO, — (1+ 5)Products + ¢ (12.60)

where s is the mass of oxygen and ¢ is the heat released per unit mass of fuel
consumed.
The following non-dimensional quantities are defined

Y, Y, . sY
V=g v =S = (12.61)
FO 00 00

The conservation of mass for the fuel and oxidizer are given as

pD O OV 0% @ (12.62)
r or\_ or 0z Yy
and
Qﬁ r% _pvaYO zsﬂ (12.63)
r or\_ or 0z Yo

where w is the number of moles of fuel burned per unit volume per time and, as
previously stated, pD = constant.

The necessary boundary conditions are

Within the inner cylinder,

atz=0,0<r<a,y,=1y,=0 (12.64)

Within the outer cylinder,

atz=0,a<r<b,y. =0,y, =1 (12.65)
and
oY, oY
atr=b,0<z<00,——=0,—2=0 (12.66)
or or

Equations 12.62 and 12.63 can be combined by using a linear combination of the
{vr,yo} where the new variable, mixture fraction is

Z :M (12.67)
S+1

forO<r<a—>Z=landa<r<b—>7Z=0
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Thus, assuming no fuel leaks outside of the flame front, nor any oxygen leaks
inside of the flame front. Please note S is the molar stoichiometric oxidizer to
fuel ratio.

Equations 12.62 and 12.63 where Z has been substituted reduces to

lﬁ(ra_zj_ﬂ(a_zj:o (12.68)
ror\_ or) pD\ 0z

Please note we have reduced two in-homogenous differential equations to one
homogenous differential equation, which reduces the complexity of the solution
considerably.

Going further, the following non-dimensional variables are introduced

4 nzﬂiz,c=3 (12.69)
b v b b

Substitutions of the equations given as Eq. 12.69 into Eq. 12.68 result in

10(.02) oz
L0l % 12.70
gag[gagj on ( )

With the following non-dimensional boundary conditions

atn =0and0<&<c—>Z=1 (12.71)
atn =0andc<é<1—>Z=0 (12.72)

and
até =land0<n <oo,—>g—§:O (12.73)

Equation 12.70 with boundary conditions 12.71, 12.72, and 12.73 has solution [6]

< 1 J (c?Ln) Y
Z(En)=¢c +2c;/1— le(%) Ty (c,)e " (12.74)

0
where J, and J, are the Bessel function of the first type and 4, is the nth root of
Ji(4) =0.

An approximate solution for Eq. 12.74 can be determined by noting that 4, = 3.83
and that only one term of the infinite series will be necessary because

e’iforn>1 e’ ~0 (12.75)

where 1,,,> A, forn=1,2,3...
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Approximate Solution for Burke Schumann Flames [11]
It has been assumed that the fuel and oxygen only co-exist into a thin shell known
as the flame front and so

outside the flame front — y, v, =0 (12.76)
and
inside the flame front — Sy, =y, (12.77)

And thus Z inside the flame front takes the value

—Z =— (12.78)

Se1-¢ " 202% 7 (l:) Jo(cA, )eil"z" (12.79)
where
S > 1 — under — ventilated case (12.80)
and
S <« 1— over — ventilated case (12.81)

And utilizing one term from Eq. 12.79 and setting £ = 0 (over-ventilated case)

1 2cJ, (cﬂq)
over =7 1D . (12.82)
T 7 Lzz—c )wm]

And utilizing one term from Eq. 12.79 and setting £ = | (under-ventilated case)

L[ 260 (ch) (12.83)
rlun er = _2 n °
‘ A (Zz _cz)z‘l‘,(? ()Ll)
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Example 12.2 Burke Schumann Flame
What’s the flame height for a circular burner with inner diameter of 10 cm, outer
diameter of 20 cm, a fuel with axial velocity of 0.05 m/s, density of 1.2 kg/m?, and
diffusion of le-4 m?%s?

The solution is given in the tables below from which we see the system is over-

ventilated and the flame height is 0.48 m.

Variable Units Value Comments

a [m] 0.1 Inner diameter

b [m] 0.2 Outer diameter

D [m?/s] 1.00E-04 Mass diffusion

% [m/s] 0.05 Velocity

p [kg/m?] 1.2 Density

r [m] 0.05 Distance from center line
b4 [m] 0.1 Distance above release

S 0.1 s*Y(F,0)/Y(0,0)

I3 0.25

n 0.005

c 0.5

S 0.1

Z(s) 0.91

Etta’ 0

Lambda(1) 3.83

Ventilation Over ventilated

J1(c*Lambal) 0.58

JO(Lambdal) —0.403

Etta #NUM! Under-ventilated
Etta 0.02 Over-ventilated
Flame height [m] #NUM! Under-ventilated
Flame height [m] 0.48 Over-ventilated

12.4.2 Reacting, Buoyant Laminar Jet Flow (Roper)

For the Burke and Schumann flame and a circular burner, assuming no buoyancy
and constant diffusion are assumptions that the errors tend to cancel each other out,
but for other burner geometries this is no longer the case. Besides, it is intuitively
obvious that the diffusion will change with location because of temperature as will
the density.

Roper provides a conservation principle given as

6C D o&C DoC
¢t x;0n” y; 08
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where C is concentration, D is diffusion, ¢ is time, x; and y; are coordinates, and
{n,&} are defined below

= [En=Le-2 (12.85)
0 vz

Roper, Circular Burner
For a circular port burner, a form of conservation principles was derived similar to
the beginning equation in Burke and Schumann [2], which is given as

2
5C—5(5 C+15—CJ (12.86)

5_y_v 8r* r br

where r and y are independent variables and k is the heat transfer coefficient and v
is the velocity.

The main difference is in the Roper equation the independent non-dimensional
variables have been defined as

d
9=I_Zz’n=i’§=l (12.87)
VX X

Xy f Yy
These stretched variables allow for changes in density and diffusion with
location.
A solution for a circular burner to the conservation principle posed in Roper [8]
is given as Eqs. 12.88, 12.89, 12.90, and 12.91.

DT,

0 =———"ful 12.88
72 vfuel Tﬂame ( )
c =l-ex (—Lj (12.89)
" Pl %0 '
%
2: ﬁ (12.90)
DOO TOO

and

c :L,whenzzH (12.91)
S+1
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where D is the diffusion coefficient at T}, D, is the diffusion coefficient at T, z is
the distance above the opening, T}, is the temperature of the fuel, Tj,,. is the tem-
perature of the flame, T, is the ambient temperature, r is the radius of the circular
opening, vy, is the velocity of the fuel, c,, is the concentration of fuel, and z is the
height of the flame.

Combining Eqgs. 12.91 and 12.89 results in

1 1
—=1- -—— 12.92
S+1 exp( 49) ( )
and
1 1 S
exp| —— |[=1-——=—"— 12.93
XP[ 49] S+1 S+1 ¢ )
Further,
ENLINSH B B P (12.94)
460 S+1 S
4In| ——
S+1

And substituting in for @ Eq. 12.88 and Eq. 12.90 for D results in

5T,

fuel __ _1

T;]ame 4 ln S
S+1

. (12.95)

fuel

H D 71fuel — H D00 (T;-o]

. H .
And solving for E gives us

=)
H o AT ) (12.96)

Q. 4rp, ln(l +1J
S

where Q. is the mixture flow rate reference to T, and is equal to

T,
Q, =Vl T;.O (12.97)
fuel
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Roper, Square Burner
For a square burner, the H/Q model is

2/3
y T,
H 16 «© 7I'lame

(12.98)
& ol ]
inver
1+S
where O, equals
T,
Q, =4r'v,, T;"’ (12.99)

fuel

where now r is the length of a side of the square opening.
It needs to be noted that for the range of S from methane (S = 9.52) to pentane

(S = 38.08) that the Eqgs. 12.96 and 12.98 will essentially predict the same g

Additionally, for circular and square geometries the “flow is unaffected by buoy-
ancy forces [8].”

Example 12.3 Comparison of Flow Rates and Heat Rates for Propane
and Methane
We want to operate a square port diffusion flame burner with a 100 mm high flame
in a laboratory. Determine the volumetric flow rate required if the fuel is methane.
What flow rate would be required if the fuel is propane?

In this problem, a SI version of the equation For square port burners will be uti-
lized and is given as

ool 2
Ais o \me) (12.100)

quel l:mz . ( 1 j :
inverf| ——
S+1
2

where D, =20 T =T, =300K,T,
S

flame

H
~1500K [9], please note that the 5
determined using this equation is reference to i,

The following equation was utilized to determine the heat rate

P = m Ahcombustion
where Ahgompusion Was determined from [10].

The results of the analysis are given below and it’s seen that even though propane
is a much heavier hydrocarbon (S = 23.80 versus S = 9.52), the heat rates are similar
(260 watts versus 243 watts).
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Substance Propane Methane
X 3 1

y 8 4

S 23.80 9.52
1/5qrt(S + 1) 0.20 0.31
Inverf(arg) 0.18 0.28
H/Q(fuel) [s/m?] 31874 13403

H [m] 0.10 0.10

0 [m¥/s] 3.14E-06 7.46E-06
Delta(h) [J/kg] 46,357,000 50,016,000
Density [kg/m?] 1.79 0.65
Power [watts] 260 243

For slot burners, the combustion system may be controlled by whether the flow

is dominated by momentum considerations, buoyancy considerations, or a mixture
of the two. In order to determine the regime of flow, an appropriate Froude number
is calculated.

Diffusion Flame Froude Number
The Froude number for a laminar flow into a stagnant environment [10] is

vlY,

2
Fr:% (12.101)
a

where v is the velocity,  is a constant associated with the shape of the velocity pro-
file, Yr. smoic s the mass fraction of fuel for a stoichiometric flow, a is an acceleration
term (given below as Eq. 12.107), and H is the height of the flame.

When

Fr > 1 —- Momentum Controlled
Fr ~ 1 - Mixed Conditions (12.102)
Fr <1 — Buoyancy Controlled

Roper, Slot Burner, Momentum Controlled
A process similar to the process for the derivation of H/Q for the circular burner
results for a slot burner where momentum controls and is given as

1/3
H T T
o :(%)(pz g _DI (_ﬂij (12.103)
© fuel © o

b) . . . . .
where (zj is the ratio of slot height to width, 7 is a momentum factor taken to be

1, and ¢ is given as
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6= ;] (12.104)
4inverf{ ——
S+1
For a slot burner Q equals
TOC
0, = vruelbLT— (12.105)

fuel

Roper, Slot Burner, Buoyancy Controlled
For a slot burner where buoyancy controls, the H/Q model is

H 1/3 T 22
L= {%m;w} Hame (12.106)
0 8 T

0

where a is an acceleration term and takes the value

©

T,
a zO.ég{%—l} (12.107)

Roper, Slot Burner, Transition Zone
And in the transition zone the H/Q model is

3 3 2/3
H H
HTmm={fHM} sl | 2 A -1 (12.108)
o H, 8 | H,

In Roper’s second paper [9], experimental validation for circular geometries
occurred where the flame height was determined by two means for various hydro-

. . . . . H
carbons and it was showed that a linear relationship exists between — versus

_ 1
ln{l +1}
S

shown mathematically

where S is the ratio of moles of oxygen to moles of fuel. It can also be

=S+% (12.109)
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Fig. 12.8 H/Q versus S +%

For Se(2,30)
The relationship developed in Roper [9] is given as

E{L} =o.00133=x<;1
ln{l +}
S

0| mm?
A relationship provided as Eqs. 12.96 and 12.110 is shown below as Fig. 12.8.
Experimental validation [9] was also conducted for slot geometries where either
momentum or buoyancy controlled.

(12.110)

12.5 Problems

Problem 12.1 Determination of the laminar flame speed using Spalding’s
presentation

Using Example 12.1 vary the equivalence ratio from 0.5 to 4 and show the effect
on the laminar flame speed.

Problem 12.2 Determine the laminar flame speed for propane using the correlation
given in Sect. 12.3.3 where the equivalence ratio varies from 0.5 to 4 and compare
against Problem 12.1.

Problem 12.3 Determine the flame height for a circular burner based on the
approximate solution for the Burke and Schumann for the following conditions
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A circular burner with inner diameter of 5 cm, outer diameter of 10 cm, a fuel
with axial velocity of 0.1 m/s, density of 1.2 kg/m?, and diffusion of 1e-4 m?/s?
Problem 12.4 Determine the flow rate for a square flame using Roper’s method for

the following conditions
2

Ethane and assume D, =20 T, =T, =300K.T,, . ~1500K
S

For 0 =10 what's the height [mm]?
S

Problem 12.5 Determine the flame height using Roper’s method for a circular and
square burner with the diameter equal to the square’s length and show that the solu-
tions are essentially the same.

Appendix 12.1: Laminar Flame Speed (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 12.2: Laminar Flame Speed Correlations (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 12.3: Burke and Schumann’s Model (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 12.4: Roper’s Model (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Chapter 13
Detonations

13.1 Preview

Please refer to Fig. 13.1 where the shock is moving from right to left and the initial
states are at “1,” the shock states are at “2,” and the reaction is complete at “3.”

We saw in Chap. 10 that using the conservation principles we can determine the
states after the shock (2) or at the endpoint of the reaction (3) based on the initial
conditions (1). This theory is known as the Rankine-Hugoniot theory and is based
solely on considerations of physics. In order to understand changes in states between
2 and 3, we need to delve into the chemistry of the problem.

The heat is not released instantaneously, and a reaction rate equation added to the
conservation principles will address this issue. When the heat release changes with
time (distance), so do the other states. This is the basis to a dynamic detonation
model or ZND model.

Development of the dynamic detonation model is a major theme of this chapter
in that it addresses some of the features of what is changing within the “reaction
zone.” You’ll notice in Fig. 13.1 there are actually two zones within the “reaction
zone” and these are (1) induction zone and (2) reaction zone. In order to properly
address these two regions a better dynamic detonation model would have two reac-
tion rate equations where the induction zone reaction rate equation doesn’t release
heat but delays the onset of heat release and a second reaction rate equation for the
reaction zone that releases all of the heat. Both forms of dynamic detonation model
will be discussed — one reaction rate and two reaction rates.

Combustion has traditionally been considered as either a constant volume pro-
cess or a constant pressure process. An example of constant pressure combustion is
the Brayton cycle; an example of a constant volume process is the Humphrey’s
cycle. Both types of combustion will be discussed in a simplified manner.

Electronic Supplementary Material: The online version of this chapter (https://doi.
org/10.1007/978-3-030-87387-5_13) contains supplementary material, which is available to
authorized users.

© Springer Nature Switzerland AG 2022 333
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Fig. 13.1 States within the detonation structure [9]

The chapter will end by showing how the detonation structure is much more rich
and strange than envisioned by the dynamic detonation models developed in this
chapter; this section is entitled Detonation Structure.

13.2 Constant Volume Combustion

“Combustion in closed vessels is accompanied by a pressure rise. Whereas in open
space the gas that is heated during combustion may expand freely and part of the
heat released in the chemical reaction can go into the work of expansion, in closed
vessels the walls prevent expansion of the gas and the heat of reaction goes solely
into raising the internal energy of the gas. Because of the pressure rise, combustion
in closed vessels involves a larger temperature rise than burning of the same mass of
fuel of the same composition in open space at constant pressure.” [13]

Theoretically, combustion chambers can be either constant pressure or constant
volume; a third type, general combustion, will also be discussed in Sect. 13.4. Given
below are the energy balance and entropy balance assuming homogenous flow and
“uniform” reactions.

The entropy and energy balance for constant volume combustion are

c,(T)dT
ds = ==———+ Pdv (13.1)

and (first law, closed system)

cT,+Aqg=c[T, (13.2)
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where ¢ is defined as
c
A==2T,-T)] (13.3)
q

For constant volume, Eq. 13.1 simplifies to

T T
s, =8, =c, ln(—2J=iln[—2] (13.4)
) ry-1 \T,
Additionally,
P
V2 ey (13.5)
Pv

T2

T

where X':vz/ and Y’:fy
v, I

Substituting Eq. 13.5 into Eq. 13.4 results in

R I ’
5, =S, :Eln(XY) (13.6)

A similar process can be utilized to define the energy equation (Eq. 13.3) in
terms of X" and Y’

R o
eqzﬁl)lvl[XY -1] (13.7)

13.3 Constant Pressure Combustion

The energy (first law, open system) and entropy balance for a constant pressure
combustor are

c,Ti+Aq=c,T, (13.8)
where
C
A ==[T,-T,|=yA (13.9)
q
and
Avdd Ry 1Avdd
s, =5, =¢,In(XY")=——In(X"Y") (13.10)

y—1
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13.4 Illustrated Example

The author of this book had the opportunity to work at the U.S. Air Force, Air Force
Research Laboratory at Wright Patterson Air Force Base where he worked on deter-
mining the entropy increase associated with the combustion step of the rotational
detonation engine [1], RDE (see Fig. 13.2). The RDE is a novel gas turbine that will
likely be more fuel efficient in terms of the specific impulse versus a given
Mach number.

The diagram the author was asked to create would look similar to what is given
below (see Fig. 13.3) where 2 —>3” is constant pressure combustion and 2->3’ is
constant volume compression. It will be shown there is a third distinct pathway
associated with the RDE, 2->3.

Fig. 13.2 RDE
Fig. 13.3 ds versus 2-2a-3 Detonation
temperature [2] 2-3' Constant -pressure hear addition
TA 2- 3" Constant-volume heat addition
ﬁ ’
28' 3
/ 3”
/
I
2,
How you add the
heat determines state 3
> S
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In order to do this work the following tasks were required:

e Task 1 — Develop first and second laws for constant volume and constant pres-
sure combustion, which are given as Sects. 13.2 and 13.3

e Task 2 — Develop first and second laws for the RDE, which were done through a
combination of using the Rankine-Hugoniot theory with partially combusted
reactants and data from a dissertation on the thermodynamics associated with an
RDE [4].

e Task 3 — Analysis of three scenarios

— Task 3a — Temperature versus lambda [Fuel]
— Task 3b — As versus lambda where 4 =1-— !

— Task 3¢ — T/T(0) versus iﬁ

¢

Each task is discussed below. Additionally, the complete analysis is given as
Appendix 13.1.

[Fuel],

Task 1 - First and Second Law for Constant Volume and Constant Pressure
Combustion
First Law, Constant Volume

e,T, =c,T,+A[F] Q (13.11)
and
Second Law, Constant Volume

as=c | |- K| L (13.12)
T y-1 \T

ref ref

First Law, Constant Pressure

¢,T,=c,T, +A[F], O (13.13)
and
Second Law, Constant Pressure
As=c In l =ﬁln i (13.14)
8 Tref y _1 Tref

For hydrogen/air the following conditions prevail:

From the developed equations above and the parameters given in Table 13.1
graphs of lambda versus temperature and lambda versus ds are developed for both
constant pressure and constant volume combustion (see Figs. 13.4 and 13.5).

Table 13.1 H,/air parameters

7(0) [K] 300

c, [cal/mole-deg] 5

Cp [cal/mole-deg] 7
Q*a(0) [cal/mole] 14,000
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Fig. 13.5 Lambda versus ds

Task 2 - First and Second Law for RDE
First Law, RDE

The states for the RDE {7, P} were determined through a combination of a run
of the RDE utilizing CFD modeling (see Fig. 13.6) with superposed Rankine lines
and Hugoniot curves.

From Fig. 13.6, a Rankine line was developed

From Fig. 13.7 and knowing the initial pressure-temperature (145 kPa and
226 K), the following table was developed for the states { P,T,p}.

Given the following equations from the Rankine-Hugoniot theory and Chapman-
Jouguet theory along with Table 13.2 above, a graph of X versus lambda was devel-
oped (see Fig. 13.8). This relationship was determined by solving for lambda when
Yre = Yuce for X = {0.2,0.55}.

Yo —1=y,Maj (1-X) (13.15)
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Fig. 13.6 Rankine line and Hugoniot curve for RDE [4]
Fig. 13.7 Rankine line 40
for RDE e,
30 : y =-43.75x + 44.75
o RZ2=1
g
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o
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0 L
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Table 13.2 States associated with Rankine line
X Y Rho Rho P T
[kg/m?] [kmoles/m?] [kPa] [K]
0.2 36 11.19 0.51 5220.00 1234.43
0.25 33.8125 8.95 0.41 4902.81 1449.27
0.3 31.625 7.46 0.34 4585.63 1626.62
0.35 29.4375 6.39 0.29 4268.44 1766.45
0.4 27.25 5.59 0.25 3951.25 1868.79
0.45 25.0625 4.97 0.23 3634.06 1933.62
0.5 22.875 4.48 0.20 3316.88 1960.94
0.55 20.6875 4.07 0.18 2999.69 1950.76
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Fig. 13.8 Development of graph for X versus lambda

or

Y —1=A(1-X) (13.16)
and

1-w’X+AE

Y. = 13.17

HC X_#z ( )
where

2
=214 (13.18)
Fyvy

where the detonation velocity D(cj) is determined from the following equation

2
u
y,Ma; =71 (13.19)

1

P

And the heat release (¢) is determined from the following equation

“12 zZ(y—l)q (13.20)

From the figure of X versus 4 and the table of states associated with the Rankine
line, the following figure was developed (Fig. 13.9).
Second Law, RDE
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The entropy change can be determined from either Eq. 13.21 or 13.22.

As= R | L) gm| £ (13.21)
}/_1 T;'ef I)ref
or
As =Rl I |s rin| 22 (13.22)
}/—1 T;'ef vref

Task 3 — Analysis of Three Scenarios

For the given parameters give in Table 13.3, graphs of A versus 7, A versus As, and
T/T(0) versus As/c,-bar were developed for constant volume, constant pressure, and
RDE style combustion and given below as Figs. 13.10, 13.11, and 13.12.

Some of the parameters utilized in Table 13.3 come from an analysis for thermo-
dynamic properties (see Appendix 13.1).

From Fig. 13.12, it can be seen that the RDE during the combustion step pro-
duces less entropy than the constant pressure and constant volume combustion and
should provide all else being equal a gas turbine with higher overall thermal
efficiency.



Table 13.3 Parameters for three scenarios [2]

Cp [kJ/Kg-K] 1.58
Gamma 1.32
Cy [kJ/Kg-K] 1.20
R [kJ/Kg-K] 0.37
Rho(0) [kg/m’] 2.24
P(0) [Pa] 145000.00
T(ad,CP) [K] 2348.48
T(ad,CV) [k] 3100.00
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Fig.13.10 A vs. T for Hy/air for constant volume, constant pressure, and general combustion (RDE)
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Fig. 13.11 1 vs. As for Hy/air for constant volume, constant pressure, and general combus-
tion (RDE)
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13.5 Dynamic Detonation Models

13.5.1 Introduction

We’ve already seen one model for the detonation structure, which is defined as the
modeling of states {7, p, P} between the initial conditions and the final conditions
where the reaction is 100% complete (also known as the CJ point) and this model is
the Rankine-Hugoniot model (Fig. 13.13).

The Rankin-Hugoniot system allows us to determine the states after the shock
(2) and at the CJ plane (3) for a given initial point (1); using the Chapman-Jouguet
theory allows us to determine states associated with the CJ plane (2) such as x(cj),
y(cj), and Ma(cj). The dynamic model developed in this section will allow us to
determine the states {7, p, P} between the von Neumann point (1) to the CJ point
(2) by coupling the conservation principles with an equation for the chemical reac-
tion (Arrhenius type reaction) where the chemical reaction is irreversible

A—>B (13.23)
Another model will then be developed around two irreversible chemical reactions

A—>B

B (13.24)
where the first reaction (R,;) is exothermic and the second reaction (Rpc) is
endothermic
The model developed with double reactions (Eq. 13.24) will show that the reac-
tion complete plane (4 = 100 % ) no longer coincides with the CJ point and these
types of detonations are known as pathological detonations.
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13.5.2 Reaction Rates

E
In this chapter the reaction rate equation will be of the form r = k (1 - /’L) exp (— R;" ] .

13.5.3 Derivation of Dynamic Detonation Model

In Sect. 8.2, a more general form of the conservation principles is presented that
includes considerations of

. Shear stress at the wall
. Area changes

. Heat release

. Unsteady flow

AW =

In this chapter, we will assume no shear stress, no area changes, and steady flow.
Given Eqs. 8.7, 8.18, and 8.47

dp du
u—+p—=0 13.25
dx pdx ( )

du dP
u—+—=0 13.26
pu— T ( )

ap »dp 2

U— —uc- — = pc-or 13.27
dx dx P ( )
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We’ll pursue two approaches to developing a dynamic detonation model:

1. The first approach is to reduce the three equations into one equation in terms of

du
E—f(X) (13.28)

And couple Eq. 13.28 with an appropriate equation for the reaction rate and
equations to relate the states.
2. The second approach is to reduce Egs. 13.25, 13.26, and 13.27 into three equa-
tions of the form

dp
—=f(X 13.2
0 f(X) (13.29)
du
o g(X) (13.30)
dP
E_h(X) (13.31)

And couple Eqgs. 13.29, 13.30, and 13.31 with an appropriate equation for the
reaction rate.

First Approach - Single Dynamic Equation [14]
Multiplying both sides of Eq. 13.25 by dx and dividing each term by puA we
can get to

Conservation of Mass

dp  du_,, (13.32)
p u
Multiplying Eq. 13.26 by dx results in
Conservation of Momentum
dP+ pudu =0 (13.33)

Conservation of Energy
Given

d(h+%u2J:Aqdl (13.34)
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or

dh+udu—AgdA =0

And substituting dh = ¢,dT for a perfect gas into Eq. 13.35 results in

¢,dT —AqdA +udu =0

Additionally, for an ideal, perfect gas the equation of state is

Equation of State

dp_dp  dr
P p T

Solving Eq. 13.36 for dT and diving by ¢, results in

dr _ g, _udu
T cpT cpT

And substituting Eq. 13.38 into Eq. 13.37 results in
dP _dp | Agdh _udu
P p c, T ¢T
Further, using Eq. 13.33
dP _ pudu

P P
And substituting Eq. 13.40 into Eq. 13.39 results in

_pudu_d_erAqdk_@

P P c,T ¢T
Substituting Eq. 13.32 into Eq. 13.41 results in

_pudu__@JrAqdﬂ,_@
p u c,T T

. du .
And solving in terms of — results in
u

—udu du  du AgdA
+—+u—-=

y u cpt T
P

du _ AgdA

u? u
+—+1|—
(1/) cpT u cpT
P

13 Detonations

(13.35)

(13.36)

(13.37)

(13.38)

(13.39)

(13.40)

(13.41)

(13.42)

(13.43)

(13.44)
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and

and

- +R
et B] e
chT u cpT

And using ¢, — ¢, = R results in

—u’ du Agdi
+1|—=——+
yRT u c,T

or

[1—Maz]@=Aq—d}L

u c,T
. du .
And finally solving for — results in
u
Agd A
@ 3 c, T
1-Ma®

Additionally,

d= k(l—/’L)eXp[_RET"j

dar . .
And Eq. 13.50 can be related to I through the following equation
X

. dA dA
A=—+u—
dt dx
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(13.45)

(13.46)

(13.47)

(13.48)

(13.49)

(13.50)

(13.51)
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And in a wave fixed frame of reference 62—)' =0 so that Eq. 13.49 becomes
t

A‘;;{
C
%: 1_”Ma2 (13.52)

In order to use Eq. 13.52 and assuming a constant c,, the following additional
models are required

1. Model for reaction rates, A , which is Eq. 13.50
2. Models for {T(x), P(x)}, {T(x),p(x)} or {p(x),P(x)} in order to determine 7(x)
and Ma(x)

Second Approach — Three Dynamic Equations [6, 7]
The second approach is more efficient mathematically and provides four equations
that relate {p, P, u, A}.

Starting from Eqgs. 8.7, 8.19, and 8.47 along with the reaction rate equation

wLos =0 (13.53)
pu%+i—i=0 (13.54)
uz—i—uczf{—f=pczar (13.55)
W42y (13.56)

dx

Equations 13.53, 13.54, 13.55, and 13.56 have a matrix form, which is

ap | T T
u p 100 Zx 0
0 u — of| &= o (13.57)
P dx 5
—uc®> 0 u 0 d_P pear
0 0 0 ufd| Lt "
i | dr
L dx |
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The determinant of this system is lAl = u?*(u? — ¢?)
And utilizing Kramer’s rule we can solve for {d_p’@’d_P’ﬁ} and these
equations are dx dx dx dx
0 p 0 0
0 u l 0
Jo}
pczor 0 u O
A 0 0 u
dp _|A]_| r _ (13.58)
dx |A| u (u —c )
u 0 00
0 0 1 0
Io)
—uc* pcfor u 0
A 0 0 0
du_|A| " (13.59)
dx |A| uz(uz_cz)
u p 00
0 u 00
—uc® 0 pclor 0
A 0o O 0 u
dar u (13.60)
dx |A| uz (u2 _Cz)
u p 00
0 u l 0
o}
-uc®> 0 u pclor
A 0 0 0 0
ar _|Af_ (13.61)

dx |A| uz(uz_cz)

Equations 13.58, 13.59, 13.60, and 13.61 simplify to
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d_pzﬂ (13.62)

dx u(u2 —cz)

ﬂ_ﬁ (13.63)

& (i e] |

dp _ upcor (13.64)

dx (u2 _Cz) :
dr _r (13.65)
dx u

And using the definition of Mach number, Eqgs. 13.62, 13.63, 13.64, and 13.65
further simplifies to

dp___ por p

—_Pk(erM 13.66

ac " a(ioa) (or,Ma) (13.66)
du_ _O" _K(orMa) (13.67)
dx 1-Ma;

dpP pucr

- = =—puK (orM 13.68
dx  1-Ma; puk (or.Ma) ( L
A E,
u;—r—k(l—k)exp(—RTj (13.69)

Please note in Approach I the system that is developed is an algebraic-differential
system and notoriously difficult to solve; in Approach 2, the system is purely dif-
ferential and we’ll use Approach 2 in the next two sections.

Given below are two sections that work through examples for a single-reaction
dynamic detonation model (one-step model) and a double-reaction dynamic detona-
tion model (two-step model). These two sections will also explore some issues asso-
ciated with each approach.

13.5.4 Dynamic Detonation Model with Single Reaction

In this section, Eqgs. 13.66, 13.67, and 13.68 along with a model for the reaction rate
(Eq. 13.69) are solved numerically.
The procedure to be utilized will be as follows
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1. Determine the states {p,u, P,Ma} associated with the shocked conditions. These
states will be where 1 =0
2. Set the following constraints

(a)

EH
= constant
T

R
(b) k=1
3. Determine Ax and solve for A(x + Ax), p(x + Ax), u(x + Ax), P(x + Ax)
4. Solve for Ma(x+Ax) = u(x+Ax) _ u(x+Ax)
c(x+Ax)  P(x+Ax)
p(x+Ax)

5. Repeat until 1 is near 1

Example 13.5 — Single Reactions

Given in Turns [12] is the discussion of the following detonation system (see
Table 13.4 and Fig. 13.1), which is a stoichiometric mixture of C,H, and air with the
following states at the initial conditions (state 1), von Neumann point (state 2’), and

.. E
CJ conditions (state 2). The value of R_ was set to 10 and k was 1.

Given the initial conditions, the states at 1’ and 2 were determined through the
Rankine-Hugoniot theory. Using the theory associated with dynamic detonation
systems (Eqgs. 13.66, 13.67, 13.68, and 13.69) and the following initial conditions
(see Table 13.5), results of solving the system of equations are given as Figs. 13.14,
13.15, 13.16, 13.17, and 13.18 where it is noted that the x-axis has not been properly
scaled and the values are approaching asymptotically the values at the CJ point.

Table 13.4 Detonation states for stoichiometric methane-air

Property Units State 1 State 1’ State 2
Rho [kg/m?] 1.17 6.34 2.11
Pressure [kPa] 101.3 3910 2087
T [K] 298 2119 3531
Ma 5.78 0.4 1

C [m/s] 345 845 1091
u [m/s] 1997 338 1091
C(P) [kJ/kg-K] 1.057 1.443 1.443
R(g) [kJ/kg-K] 0.290 0.273 0.273
Gamma 1.379 1.233 1.233
dq [kJ/kg] 3399
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Table 13.5 Initial conditions

13 Detonations

State Initial value Units
Density 6.34 [kg/m?]
Shock velocity 338 [m/s]
Pressure 3,910,000 [Pa]
Lambda 0

4.50E+06
4.00E+06
3.50E+06
3.00E+06
2.50E+06
2.00E+06 - T

0.00E+00 5.00E+06

Fig. 13.14 P versus x

0

.00 - T

T T 1

1.00E+07 1.50E+07 2.00E+07
X

0.00E+00 5.00E+06

Fig. 13.15 Mach versus x

1500.00

1000.00

500.00

1.00E+07 1.50E+07 2.00E+07
X

0.00 T
0.00E+00 5.00E+06

Fig. 13.16 u versus x

1.00E+07 1.50E+07 2.00E+07

X
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1.00

0.80

0.60

0.40

0.20

0.00 T T T )
0.00E+00 5.00E+06 1.00E+07 1.50E+07 2.00E+07

X

Lambda

Fig. 13.17 Lambda versus x

2.00
1.50 N—
1.00
0.50

0.00
0.00E+00 5.00E+06 1.00E+07 1.50E+07 2.00E+07

X

Sigma

Fig. 13.18 Sigma versus x

13.5.5 Dynamic Detonation Model with Double Reactions

If we go back to Fig. 13.1, we see that the reaction zone is actually two separate
zones — an induction zone followed by the actual reaction zone where the heat is
released.

In this section, a detonation structure will be discussed that includes two reaction
rate equations and the effect of two reaction rate equations on the determined final
conditions. Another form of Eqs. 13.66, 13.67, 13.68, and 13.69 [7] that includes
two reaction rate equations is given below.

d_Pz_p(Glrl +Gzrz)

(13.70)
dx u(l—Maf)
du_ (o +0un) (13.71)
dx 1-Ma; '
d_Pz_P”(Glrl +0,1,) (13.72)

dx 1-Ma;
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di, E
oy = (1= 2, )k, exp| ——- 13.73
u—t=n=( 1)1exp( erj (13.73)
dA E
ud—; =n=(4-4)k exp(— RYZ}J (13.74)

If we were to solve this system of equations where 7, is slightly endothermic
(induction zone) and r, is exothermic, then we’d see the final states are no longer at
the classic CJ conditions of A = 100 % and Mach = 1, but at some other values [7].
Another situation presented in the detonation literature is where the r; is exothermic
and r, is endothermic and again the final state are no longer at the classic CJ condi-
tions. The point of these exercises would be to show that there are detonation struc-
tures where the final conditions don’t converge to the classic CJ conditions, but that
the Rankine-Hugoniot and Chapman-Jouguet theory provide a reasonable estimate
of the final states for most engineering analysis.

More exact solutions can be determined through incorporating more combustion
chemistry with a more accurate numerical integration scheme and utilizing software
that is readily available at [10, 11], which is known as the Caltech’s Shock and
Detonation Toolbox.

13.6 Detonation Structures

We saw in Sect. 13.5 how states within the detonation structure change with dis-
tance, but even the dynamic detonation model is only an approximation to the real-
ity of a three-dimensional, transient detonation structure with instabilities (see
Fig. 13.19, 13.20, and 13.21). It was found in 1957 by [3] that putting soot on the

Fig. 13.19 Detonation cell
pattern

triple point
trajectory

transverse wave
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Fig. 13.20 Delineating regular and irregular detonation cell patterns [1]

Fig. 13.21 Experimental results of a detonation structure [8]
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inside of shock tubes and detonating the enclosed fuel/air mixture resulted in a par-
ticular fish scale pattern shown in Fig. 13.19 where 4 is a measure of the detonation
cells and related to other features of the detonation structure such as the intensity of
transverse waves, the distance between the shock and CJ plane, etc.

It was also found that adding various amounts of inert gases such as argon to the
fuel/air mixture resulted in a more regular detonation cell pattern (see Fig. 13.20)
where the top image is an example of a regular detonation cell pattern and the bot-
tom image is an example of an irregular detonation cell pattern. Please note all deto-
nations are inherently unstable and the literature will classify regular detonations as
(stable) and irregular detonations as (unstable).

Detonation stability is defined as the ability to estimate the states for a particular
time and location; as the detonation becomes more unstable, this estimation becomes
more unpredictable. There is a more exact, mathematical definition [2, 5, 8, 14], but
it’s beyond the scope of this book.

Given in Fig. 13.21 is an image of experiments within a shock tube where vari-
ous features of the detonation structure are given in the carton (Fig. 13.22).

As the Mach shock moves from right to left through the detonation cell the Mach
shock (Mach stem) velocity, D(cj), is not constant but cycles through a range of
values in a periodic fashion [8]. Transverse waves orthogonal to the Mach shock
sweep through the detonation cell and toward the end of the detonation that occurs
in each detonation cell a secondary combustion occurs as transverse waves collide.
The strength of the transverse waves can be measured by the distance between
waves and the detonation cell length (4) is also a measure of the strength of the
transverse waves. Triple points are the intersection of Mach stems and trans-
verse waves.

i Burned gases — Mach shock
High density unburned gases
Triple point
~ X . - -
x -
' -

Incident shock

Transverse shocks Triple point

ath of triple points
the cell boundariﬁ

Mach shock

Fig. 13.22 Cartoon of detonation structure [8]
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Regions of Stability

It has been found [3, 4, 10] that the ratio of the induction length (A;) divided by the
reaction length (Ay) is a measure of how stable a detonation structure is and Ng [4]
utilized this observation among others to define a non-dimensional stability param-
eter given as

A1
=e,—L 13.75
X A, (13.75)

where ¢ is “essentially the normalized activation energy of the induction reaction
with respect to the shock temperature [3]”, A, is the length of the induction zone,
and Ay is the length of the reaction zone.

In Fig. 13.23, detonations above the bold line are regular and those below
irregular.

When the detonation is regular, the effort to model various features of the detona-
tion structure or artifacts of the detonation is easier to accomplish. One example of
this is as follows. It was found that detonations in shock tubes can be affected by
boundary conditions when the inside diameter of the tube is below some critical
diameter (D,) and this phenomenon was the impetus to Fay’s work [2]. Graphs of
d% versus VV. for a regular and irregular detonation are given in Fig. 13.24
where the solid line is Fay’s theory. It obvious that Fay’s theory works for a regular
detonation and not an irregular detonation.

This section has provided the briefest of abstracts for a very active and very com-
plicated area within combustion — detonation structures and detonation shock
dynamics. The following resources take this discussion much further:

100 L] I 1 T
CH4+ 202 7
C.H +50

= 38 2%
o 10 .
ko] C2H2+ 2.502
g C,H,+2.50,+ 60%Ar [
= *
®© o,
o CZH2+ 2.502+ 85%Ar 6 2H+0
b 2 2
3 1k A 4
©
o 2H,+ 02+ 25%Ar 2H2+ 02+ 40%Ar

01 1 1 - 1

3 4 5 6 7 8

Detonation Mach number

Fig. 13.23 Regions of stability versus detonation Mach [4]
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Fig. 13.24 Detonation a
velocity deficit for

a stable (a) and unstable
(b) mixture [2].

(a) Stable mixture

(C,H; + 2.50, + xAr).

(b) Unstable mixture
[0.5(C,H, + 5 Ny) + 0.5Ar]

0.95

0.9 -

1
J
0O 0

0.85 -

08 ; > —-
0 20 40 60 80
dg/d

e Austin (2003). The role of instabilities in gaseous detonations; Ph.D. Thesis,
California Institute of Technology.

e Ng (2005). The effect of chemical reaction kinetics on the structure of gaseous
detonations; Ph.D. Thesis, McGill University.

e Oran, Weber, Steaniw, Lefebvre, and Anderson (1998). “A Numerical Study of a
Two-Dimensional H2-O2-Air Detonation Using a Detailed Chemical Reaction
Model”; Combustion and Flame, v. 113, pp. 147 to 163.

e Radulescu, Sharpe, Law and Lee (2007). “The hydrodynamic structure of unsta-
ble cellular detonations™; Journal of Fluid Mechanics; v. 580, n. 10, June,
pp. 31 to 81.

13.7 Problems

Problem 13.1 ZND Model, Single Reaction
Given a H,-air detonation system [7]
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Parameter | Units Value

y 1.4

MW Kg/kmole | 20.91

R J/kg-K 397.58
P(0) Pa 1.01325e5
T(0) K 298

p(0) Kg/m? 0.85521
v(0) M3/kg 1.1693

q J/kg 1.89566¢6
E J/kg 8.29352¢6
a 1/s 5e9

p 0

Where the reaction rate equation is

r—aT? exp{—RE}(l—l)

Model this system to determine how the following states change with distance
within the reaction/induction zone

e Pressure

* Density

* Mach

e Temperature
° A

Problem 13.2 ZND Model, Double Reactions
Results for the simple analysis (Problem 13.1) and detailed analysis [7] are
given below.

Parameter Simple analysis | Detailed analysis
L(rxn) 0.0l m 0.0l m
L(induction) | 0.001 m 0.0001 m
D(cj) 1991.1 m/s 1979.7 m/s
P(s) 2.80849¢6 Pa 2.8323e6 Pa
P(c)) 1.4553d6 Pa 1.6483¢6 Pa
T(s) 1664.4 K 1542.7K
T(cj) 2570.86 K 2982.1 K
Rho(s) 4.244 kg/m® 4.618 kg/m?
Rho(cj) 1.424 kg/m? 1.5882 kg/m?
M(0) 4.88887 4.8594

M(s) 0.41687 0.40779
M(cj) 1 0.93823




360 13 Detonations

Repeat Problem 13.1, but now there are two reactions where the first is exother-
mic and the second is endothermic [6]. It is assumed that

MW = MW, = MW, = MW.

And all other reaction rate parameters are the same {a, 3, R}
Given

Parameter | Units Value

y 1.4

MW Kg/kmole |20.91

R J/kg-K 397.58
P(0) Pa 1.01325e5
7(0) K 298

p(0) Kg/m? 0.85521
v(0) M3/kg 1.1693
q(1) J/kg 7.58265e6
02) J/Kg —5.68698e6
E J/kg 8.29352¢6
a 1/s 5e9

p 0

Where the reaction rate equation is

E
=qaT" = |(1=2
r=a exp{ }( )

Model this system to determine how the following states change with distance
within the reaction/induction zone

e Pressure

e Density

¢ Mach

e Temperature
e A

Appendix 13.1: Illustrated Example (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Appendix 13.2: Dynamic Detonation Model — One Step
Model (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Chapter 14
Blast Waves

14.1 Preview

G.I. Taylor was one of the greatest physicists of the twentieth century and worked
in classical mechanics. One area of interest for Mr. Taylor was blast waves associ-
ated with explosions and he had the privilege to work on the Manhattan Project that
developed the atomic bomb. Two classic papers [8, 9] he has written form the basis
to a theoretical model that estimated the energy released and states across the blast
wave associated with a very intense explosion.

Mr. Taylor reduced the partial differential equations (representing the conserva-
tion principles) into a system of ordinary differential equations (ODEs) and solved
these ODEs both numerical and provided approximate forms (algebraic equations)
for the non-dimensional states. He also utilized a dimensional analysis argument to
find a critical parameter, K(y), and showed that

E
PR’

' =K(y)~0(1) (14.1)

where E is energy release, p; is the density of air before the blast wave, R is the
radius of the spherical blast, and 7 is time after detonation (see Fig. 14.1).

Mr. Taylor’s work in this area will be discussed in this chapter. Mr. Taylor’s work
was in a particular coordinate system and a more general coordinate system associ-
ated with blast waves is the subject of J.H.S. Lee’s work [3] and will be reviewed.
As will the work of three undergraduate students, who applied the tools of G.I. Taylor
to solve a blast wave associated with certain stellar explosions and note other sys-
tems exist [1, 2, 5, 10].
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0.025 SEG. 100 METERS

Fig. 14.1 Trinity test site detonation

14.2 Euler’s Reactive Flow Equations

The Euler reactive flow equations given as Eqgs. 14.2, 14.3, and 14.4 provided dif-
ferential forms for the conservation principles and are a set of partial differential
equations. These equations represent the conservation principles across the shock
wave that includes blast waves. A blast wave is defined as “a shock wave whose
strength decreases as it propagates away from the source [8].”

L0 Ly LU (14.2)

Ot or or r

ou ou 1o0P
oo

—+u—+——=0 (14.3)
o or por

DP ou Pu
— 4+ yP—+jgy—=0( 14.4
Dt 4 or 7 r ( )

where p is density, 7 is time, u is velocity, r is the radius of the shock sphere, j is a
coefficient, P is pressure, and y is the thermodynamic constant particular to the gas.
Partial differential equations are not easily solved numerically and would have
been especially onerous in a time before computers and so are often reduced to
ordinary differential equations through various means where one method is the sim-
ilarity argument. Once Eqs. 14.2, 14.3, and 14.4 are reduced to ODEs, this new
system can be solved numerically, which will be explored further in Sect. 14.4.
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14.3 G.L Taylor’s Blast Theory (G.I. Taylor)

14.3.1 Overview

The equation of motion, continuity, and equation of state are given as Eqgs. 14.5,
14.6, and 14.7. These equations are partial differential equations (PDE) and difficult
to solve. G.I. Taylor used similarity arguments to reduce the set of PDEs into a set
of ordinary differential equations (ODE).

ou 8u_—16_P

—tu—=— (14.5)
ot or p oOr
a—p+ua—p+p %+2—u =0 (14.6)
ot or or r
(g+uﬁ L =0 (14.7)
o or)\p

where ¢ is time after detonation, u is the one-dimensional velocity, r is the radius of
the spherical shock wave, P is pressure, and p is density.
The resulting ODEs are

) 1f 3
—p)=-L-= 14.8
¢'(n-9) m— (14.8)
' ¢’+2¢
l”—=—/’7 (14.9)
v n—¢
3f+nf'+7l’/;(¢—n)f—¢'f'=0 (14.10)

With the following final conditions (come from the Rankine-Hugoniot theory)

T P 14.11
o()=7 e (14.11)
p_r+l
N=L_rr (14.12)
W() Po 7_1
2
f(1)=[{ _r+l (14.13)
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where y is a thermodynamic constant, u,, p;, y, represent the values of u, p, y imme-
diately behind the shock wave, and U is the radial velocity of the shock wave.

Variables utilized are defined below (the choice of certain non-dimensional
groups is determined by group theory)

-
=— 14.14
=% ( )
w=" (14.15)
Po
a2
f=1 " (14.16)
P
at =y~ (14.17)
Po

where r is the distance from the point of detonation, R is the current radius of the
detonation, p is air density, A is a constant to be determined, and P is pressure.
You’ll notice in Eqs. 14.8, 14.9, and 14.10 there is only one independent vari-
able, n and one parameter, y. G.I. Taylor numerically integrated these equations (for
y = 1.4) and the results are given in Fig. 14.2.
GI Taylor then derived an equation for the energy release, which is

E=Bp,A® (14.18)
and B is defined as
‘ 4r 4rr
B= 2njy/¢2r,2dn + J'fnzdn =2nl +——1, (14.19)
g r(r=1)3 y(r-1)
7
6
5
4
3
2
1
0
0.5 0.6 0.7 0.8 0.9 1
Etta

——f —#—Phi —&—Psi

Fig. 14.2 5 versus f, ¢ and ¢
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where A is a parameter determined experimentally from data of {7, R} given in
Fig. 14.3 and A is defined as

dR _ AR™"? (14.20)
dt

G.I. Taylor then developed algebraic expressions for f, ¢,and y, which are
given below.

szanb (14.21)
n b
p~~+an (14.22)
Y
v =an’ (14.23)

where the parameters {a, b} were determined from Egs. 14.11, 14.12, and 14.13 and
other considerations.

In Sect. 14.3.2, we show how Eqs. 14.5, 14.6, and 14.7 were reduced to Egs. 14.8,
14.9, and 14.10. In Sect. 14.3.3, more details of the numerical integration will be
discussed to include where the final values (Egs. 14.11, 14.12, and 14.13 come
from). It will be shown how the approximate forms were derived in Sect. 14.3.4 and
what the values of the parameters {a, b} are for Eqs. 14.20, 14.21, and 14.22. In
Sect. 14.3.5, we will discuss the form of the energy equation (Eqs. 14.18 and 14.19),
how A is estimated from experimental data for {#, R} and an estimate for the energy
released at the Trinity test site.

In Sect. 14.4, numerical solutions are provided for a more general set of ODEs
applicable to three coordinate systems — planar, cylindrical, and spherical.

0.0045
0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005

0@
0 1E+11 2E+11 3E+11
RAS [mA5]

y =1.7524E-14x
R? = 9.9959E-01

th2 [s72]

Fig. 14.3 7 versus R®
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G.I. Taylor developed two approaches to solving for states associated within very
intense blast waves: (a) numerical methods and (b) approximate solutions (alge-
braic equations). In Sect. 14.5, these two tools are applied to stellar explosions in
cylindrical coordinates.

14.3.2  Similarity Arguments

In this section, it will be shown the process of reducing one of the partial differential
equations (Egs. 14.5, 14.6 and 14.7) into an ordinary differential Equation (Eqs. 14.8,
14.9, and 14.10). This section will also derive the final conditions given as
Eqgs. 14.11, 14.12, and 14.13.

Much of this section comes from the excellent lecture notes of Dr. Joseph
Powers [4].

..... Transformations

The independent variables {r,} are transformed to {7,7}

{rit} = {n.7} (14.24)

And the following dependent variables are defined

P .
2o yZRf () (14.25)
R
P oy (n) (14.26)
Py
u=R"¢ (n) (14.27)
where

n=Land v =R _ 4pn (14.28)

R dt

The transformation also transforms the differential operators such as
{or.0t} — {dn.dr} (14.29)
where

o_mo ot

— (14.30)
ot ot on ot or
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and
on _-—rdR n dR U An
ot R dt R dt R R~
and
61 1
o

And substituting Eqs. 14.31 and 14.32 into Eq. 14.30 results in

o R¥on ot

0__ Mmoo

where i =0, therefore
ot
0 _ An 0

o R¥on

Also,
0 811 0 61’ o0 _1d

or aran or ot Rdn

.. Transform one of the conservation principles

Starting with

op 8p+p6 __ppu

——+tu
ot or or r

We want to transform each term

P _| Ao

uz—/: (R 3,2¢1}{1 d}{plvf}

p%={p W}{zlej }{Rmd)]}

and

_ﬂ:_%{plw}{wn@}

r

369

(14.31)

(14.32)

(14.33)

(14.34)

(14.35)

(14.36)

(14.37)

(14.38)

(14.39)

(14.40)
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Substituting Eqs. 14.37, 14.38, 14.39, and 14.40 into Eq. 14.36 results in

—An d_‘//+ﬂd_"’+L%__%W_¢l (14.41)

RS/Z dT) R5/2 dT[ R5/2 dT] nRS/Z

Simplifying results in
’ ’ ! 2
—-Any'+oy +1//[¢1 +;¢1}:O (14.42)
With the substitution ¢ = % into Eq. 14.42 results in
’ ’ ’ 2
-ny'+oy'+yv| ¢ +E¢ =0 (14.43)

Which is also Eq. 14.9
..... States associated with a large blast wave
Another form of the Hugoniot curve is

(y+u*)(x—p?)=24p7q' +1-p* (14.44)

where u’ _r=t
y+1

And it is assumed the thermodynamic properties are the same on both sides of
the shock.

If we substitute the Rankine line into Eq. 14.44, we get
({(1 +yMa; ) - }/Mafx} +u’ )(x -u’ ) =2Au’q" +1—pu* (14.45)

Or

—yMax* + [(1+yMaf)+ u’ +yMa12,u2Jx—(l + ;/Maf)/.t2 —24¢* =0  (14.46)
which is a quadratic in x and
A=—yMa;],B=1+yMa; (1+u* )+ u*,C =’ (1+yMa; +224 ) (14.47)

and has solution

2

B 1+yMa; (1+u2)+u
- 2yMa’
\/(1 +yMa’ (1 +u’ ) +u’ )2 —4yMa; i’ (1 +yMa’ + 2/’Lq')
+ 2
2yMa;

X

(14.48)
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Either before or after the shock and attached reaction zone, A = 0 and the solution
for Eq. 14.48 for these conditions is either

1
x=lorx= 1+ 14 2 14.49
7 yMaz( w) (14.49)

1

where the second solution is appropriate [9]
And as Ma’ —> oo implies that Eq. 14.49 goes to

w=Poo e 771 (14.50)
P y+1
and
1 y+1
=-=L"" 1451
(1) o (14.51)

Substituting x = y? into the Rankine Line results in

y :5 =(1+yMa} )-yMau® =1+yMa; (1- * ) = 1+ yMa; (ﬁ} (14.52)
0

And as Ma; — oo implies that Eq. 14.52 goes to

L =yMa’ 2z (14.53)
B y+1
Further,
J/Mal2 il = R’Sfl =R3A? iz (14.54)
Y+ a
and
2
(‘E—RJ =A’R” =i’ (14.55)
t

where u is the shock speed.
Substituting Eq. 14.55 into Eq. 14.54 results in

2 u?
J/Malz—zf—z

it (14.56)
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and

2r
erl_f(1) (14.57)

From the conservation of mass and in a laboratory frame of reference

u—-D —v 2 1 2
A 1+ 14.58
Dy H yMaf( ©) (14.58)

where

u— D = particle velocity and is in laboratory frame of reference (14.59)

And as Ma’ — oo implies that Eq. 14.58 goes to

u-D —v 3
- - 14.60
b Ty M (14.60)
and
U= R'1'5¢1 = R'1'5A¢ =u¢ (14.61)
And as such
u ) 2
o1t =—="=0(1 14.62
b ITH (1) (14.62)

14.3.3 Numerical Solutions

In order to numerically integrate the system of ordinary differential equations given
as Egs. 14.8, 14.9, and 14.10, we need to get the system in the form

ng(f,q;,l,,) (14.63)
%(n—¢)=g(f',¢,l//) (14.64)
W;'(n_q;):h((,y) (14.65)

Substituting Eq. 14.9 into Eq. 14.10 results in
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3f+nf’+y{¢'+2ﬂ(—f)—¢f’=0 (14.66)
and
(n—¢)f’=7{¢’+2ﬂf—3f (14.67)
, 1 (1f 3 ¢
@) f =y| —| = —Z¢ |+25- 14.68
(n-9)f y{n—fﬁ(yw 2¢)+ . }f (14.68)

And multiplying both sides by ( — ¢) results in

(n—¢)2f’=7M%5—%¢J+[2%—3J(n—¢)}f (14.69)

and
f’{(n—¢)2—i}f{—mw[%lyj—zyd’—} (14.70)
v 2 n
or
. —3n+¢(3+1yj—2y¢2
e 2 7 n (14.71)
(n-9) Ty
And from Eq. 14.8
¢ 1f1 3
) ==L —__= 14.72
(r ¢)¢ Yve 2 (7
And from Eq. 14.9
(n_¢)£:¢'+2ﬂ (14.73)
14 n

Equations 14.71, 14.72, and 14.73 are solved using Euler’s method and a small
time step with the final conditions given as Eqgs. 14.11, 14.12, and 14.13. As shown
in [8, 9], Euler’s method is a rather crude numerical integration technique, but in the
figures below shows good agreement with G.I. Taylor’s results (Figs. 14.4, 14.5,
and 14.6).
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14.3.4 Approximate Forms

In this section, approximate forms are developed from the ordinary differential
equations (Egs. 14.8, 14.9, and 14.10); parameters of these algebraic equations are
determined from the final conditions given as Eqs. 14.11, 14.12, and 14.13.
........... Deriving approximate form for ¢
From Eq. 14.67,
(n—¢)§=y¢’—3+2y% (14.74)

If we were to graph r versus 7, then we’d see for 17 < 0.6 the left-hand side of
Eq. 14.74 is essentially zbro and thus

0:y¢'—3+2y£ (14.75)
n
or
ﬂ+%¢=§ (14.76)
dm n vy

Which is a first-order, differential equation [6] with solution provided via an
integrating factor. Equation 14.76 is of the form

L p(x)y=0(x) (14.77)

With integrating factor
= T (14.78)

And for Eq. 14.76 p is
n=n (14.79)

And multiplying both sides of Eq. 14.76 by Eq. 14.79 results in

99 2 4 ong =3y (14.80)
dn Y
or
dr . 3,
A pel=3y (14.81)
pm ki il
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With solution

=1 (14.82)
4
Looking at the graph of ¢ versus 7 (see Fig. 14.4) there is a second portion to the

right-hand side of Eq. 14.82 to account for the nonlinear changes in ¢ as a func-
tion of 7

=" ran" (14.83)
v

Utilizing the final condition ¢(1) and Eq. 14.83, « is determined

21
)=—=—+a 14.84
$(1) 17 (14.84)
or
a=1771 (14.85)
yy+1

Determining » is more involved.
Using Eq. 14.74 and substituting in for ¢ and ¢’ the approximate forms just

determined one gets to
L(n —¢) = [1 +omy11""}—3+2Z

Mo
“+a (14.86)
f n{ ! }

4

Solving the right-hand side of Eq. 14.86 when 7 = 1 results in

L' - = - l = :7/__1
f(n ¢)=[1+any] 3+27/L/+a} ay(n+2) y+1(2+n) (14.87)

Solving for # — ¢ when 5 = 1 results in

n-¢=l-———41—=+__ (14.88)

7_—1L'=7_—1(2+n) (14.89)
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or whenn =1

L:2+n (14.90)
f
Additionally,
2
, —3n+¢(3+;yj—2y¢
; - u (14.91)
2
n-¢) -~
(n-9) -
And when 5 =1
_rHl a2y 42 (14.92)
y—l’ y+1’ y+1
Substituting Eq. 14.90 and Eq. 14.92 into Eq. 14.91 results in
2
' —3+21(3+£j—27/(21]
PAND S & v (14.93)
f ,
y-1) y+1
y+1 y+1
y—1
and
_3+6L§_ U
! v+ +1
L:n+2: 5 (7 )
f [y—lJ _27(7—1)
2
r+l 2 (v+1) (14.94)
By 1) +(r+6)(y+1) -8y 2y Ty +3
1-y° 1-y°
and

_ 2
o220 )=r) _2-2y (14.95)

(1+;/)(1—;/) 1—)/2
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Therefore,

“Ty+1 Ty-1

14.96
=7 o ( )
<evvere..... Deriving approximate form for f
Using Eq. 14.91,
L(n -¢)= y¢'—3+2y£ = [l+anyrl"'lJ—3
f n
+2y[l+om”l}z(n+2)ozyn"1 (14.97)
/4
and
| n
n-¢=n—-—-on (14.98)
4
Substitution of Eqs. 14.98 into Eq. 14.97 and solving for % results in
o (n+2)ayn” (n+2)ay’n"
r_d 1) m” | 1) 71 (14.99)
f n(l_)_ann (y=1)—am
4
With solution
1 1 n-2
jﬁ=(n+2)ij“’”,H (14.100)
f (r=1)—am
n-1 du n-2 :
Set b=y —-Lu=ayn", and — =ayn" “dn results in
n—
I _ntr2 p du (14.101)
f n-1" b-u
And set x=b — u and dx = — du results in
I _nx2 pdx (14.102)
f n—-1" x
Equation 14.102 has solution
(d 2 1
j—f=—"+ yIn[b—aym™] (14.103)

i n—1

n
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and
_ n-1
In[ 2L |- n(f)="F2y 10| Lo (14.104)
y+1 n—1 b-ay
or
_ n-1
In(f)=In| 2L | 2E2, 1y | Lo 0T (14.105)
y+1) n-1 b-oay
............ Deriving approximate form for y
Given
, ¢'+2£
Y- 1 (14.106)
vy n-¢

And approximate forms for ¢ and ¢ results in

lJrocm]”’1 +2[1+an"lj
14 14

v o_ 1 (14.107)
v n(y j_ o’
¥
and
3 n-2 3 n-2
, SHaym"?(n+2)  +aym"?(n+1)
v._n m— - (14.108)
v (r-1)-am b—ayn

Equation 14.108 won’t be solved but the solution is given by G.I. Taylor [8] as

n-1
ln(t//):ln(y—Hjeriln(n)—Z;i;ln(ﬂl;n j (14.109)

14.3.5 Energy Released

In this chapter, the initiation of the explosion and the geometry of the container have
been ignored. It can be shown that quickly after ignition, a very intense explosion
can be treated as a point explosion developing into a sphere. As such, the infinitesi-
mal volume is given as
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dv = {Surface Area} X {thickness} =4xr’dr (14.110)
And the differential mass of this shell is
dm = pdV = 4npr’dr (14.111)

The differential energy of the system includes internal energy plus kinetic energy
1 2 ] 2 2 1 2 2
dE = e+5u dm = e+5u pridr =4np e+§u ridr (14.112)
And the total energy is

E:J-R(’)4ﬂp(e+lu2jr2dr:.[R(l)47r L£+luz ridr
0 2 0 y-1lp 2
_ 4rn Ik(t)Przdr+2nIR(t)pu2r2dr (14.113)
y_l 0 0

= Total Thermal Energy + Total Kinetic Energy

Equation 14.113 is now put into a non-dimensional form based on Eqs. 14.14,
14.15, 14.16, and 14.17 where the transformations are given below.

P=PR’f,,r=Rn,dr=Rdn,p=py,u’ =R°§ (14.114)

Substitution of Eq. 14.114 into Eq. 14.113 results in

B= 7 g o) (rin) xR} (o an) 1419

0

and
Ar 0
E=—= [P fin*dn + 27 [pwgn’dn (14.116)
0 0
Further
4n lP()A2 2 l 222
E=—""-["" 1y dn+2njp0y/A ¢*n’dn (14.117)
y—19 < 0
and
P 1 1
E=anA*| 0 [fn*dn + 22 fyg*n’dn (14.118)
Co (}/ _1) 0 25
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or
1 1
E=4nA’p, j fnidn +— Iw¢2n2dn (14.119)
y(r=1)5 25
Additionally,
E=p,A’B (14.120)
where B is
1 A 4r
B:27rj1//¢2172d17+ Ifnzdn =2l +———1,  (14.121)
g y(r=1)3 y(r-1)

Please note than 7, and I, have only one parameter (y) and can be solved numeri-
cally using mathematical software.
The crux of the problem is to determine A, which can be surmised from how it

was originally defined

dR

= AR™? (14.122)
t
The solution to Eq. 14.122 is

Z/SR% = At (14.123)

In G.I. Taylor [9], experimental results of time after ignition [#] versus radius of

the spherical shock blast [R] are given. Graphing ¢ versus % R% provides an esti-
mate of A.

A graph of R’ versus #* is shown below (Fig. 14.7).

Given below is a reprint of G.I. Taylor’s Table 3 [8].

Table 14.1 Energy release from Trinity test site 8]

y 1.2 1.3 1.4 1.667
I, 0.259 0.221 0.185 0.123
L 0.175 0.183 0.187 0.201
K 1.727 1.167 0.856 0.487
Exle-20 [erg] 14.4 9.74 7.14 4.06

TNT 34,000 22,900 16,800 9,500
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Fig. 14.7 R’ versus # for Trinity test site

k=2 2l + 4z 1, (14.124)
25 1
and

E=Kpy— (14.125)

G.I. Taylor went on to prove that the likely gamma of the system is 1.4 and so the
energy released was near 16,800 T.N.T.!

14.4 More General Theory (JHS Lee)

The equations given in below [3] are a more general form of the equations given in
the sections on G.I. Taylor’s work given as Eqgs. 14.8, 14.9, and 14.10.

14.4.1 Reduced Forms
The reduced form of the PDE’s given as Eqs. 14.2, 14.3, and 14.4 are
{(qﬁ—é’)z ”;‘”uef—ew (¢—§)}

(¢—é){(¢—5)2—7ﬂ

’

l//:

(14.126)
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f ¢
—0p(p-&)+ 1| 20472
(9 €)+W( +VJ€j

¢ =
_ey_, L
(p-¢) &
—(¢—§)(20f+yj¢§fJ+7f¢0
f=
> f
(p-¢) o
where
W=£9¢= u(t)’ = fz) ’éz L

With final conditions
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Fig. 14.8 Etta versus non-dimensional states (j = 0)

383

(14.127)

(14.128)

(14.129)

(14.130)
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Fig. 14.10 Etta versus non-dimensional states (j = 2)

¢(1)=—"— (14.131)

f(1)=—"- (14.132)
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14.4.2 Numerical Solutions

Utilizing Eqs. 14.126, 14.127, and 14.128 and an Euler’s scheme with 4 = 0.01, the
following graphs were created for j equal to 0, 1, and 2 (Figs. 14.8, 14.9, and 14.10).

14.5 Illustrated Example (Explosions Associated
with Rotating Stars)

The author of this book had the pleasure of teaching a numerical analysis course
where we essentially worked through understanding G.I. Taylor’s two papers [6, 7]
and solved the system of ODEs using package differential equation solvers. This
author has also had the opportunity as a mentor for undergraduate research experi-
ence to lead three undergraduate researchers through these two papers and applying
the two developed tools (numerical integration and approximate forms) to a similar
system [10]. It was quite pleasing how well these tools applied to the particular
system chosen and the results of this work are given below.

The system discussed below is the conservation principles for an adiabatic flow
behind a cylindrical shock propagating in a rotational axi-symmetric flow of a per-
fect gas with initial density and velocity as a function of distance from the axis of
symmetry [10], which would model a very intense explosion from a rotating star.

14.5.1 Reduce Form

Given from [10]

2e(n-U
o 1 vig(n )_PYU_b(n_U)Ug_pd_ZbP (14.133)
yP-(-U)[ n n
oV (MQ) (14.134)
n-Uu{ n
w= W (14.135)
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g'=—g {g'+d+g}
n-u n

P'=E—bUg+(n—U)gU'
n

where
u=RU,v=RV,w=RW,p=p,,p=p,R°P

And final conditions are

1.00 ~
0.80 -

0.60 -

0.40 - = _1.8596x +2.3368

2 _
020 R? = 0.9966

0.00 T T T T

14 Blast Waves
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(14.137)
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Uu(l)=1-p (14.139)
V(l):i Zb;d (14.140)
W(l):g (14.141)
g(1) :% (14.142)
P(1)= y]:42 +1-p (14.143)

14.5.2 Numerical Solutions

Solutions for the five non-dimensional quantities are given below as Figs. 14.11,
14.12, 14.13, 14.14, and 14.15.

14.5.3 Approximate Forms

Referring to Fig. 14.11, there is a linear relationship between # and U, this linear
relationship will be exploited below.
Another form of Eqs. 14.133, 14.134, 14.135, 14.136, and 14.137 is

(n—U)§=U'+(d+%J (14.144)
(n—U)%,:b+:—l’]—:—; (14.145)
(n—U)%=b+% (14.146)
(n_U)%'zb (14.147)

and
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(n—U)%z(n—U)yi+d+2b—yd (14.148)
g

........... Deriving approximate form for U
It has been shown numerically that the relationship between & and U is linear for
the admissible range of parameters and as such

U=mn+k (14.149)

Given Eq. 14.149 the following relationships result

n-U=(1-m)n—-k (14.150)
U=m (14.151)
and

Uomk (14.152)

n n

W/
-U)—=b 14.153
(1-U)3; (14.153)

And subtracting Eq. 14.147 from Eq. 14.146 results in

Vw1 U

—_——— = (14.154)
V. W n-Un
Further, another form of Eq. 14.148 is
(n—U)isz'ng(l—b)—z (14.155)
P n
........... Deriving approximate form for W
Given
W__b b (14.156)

and
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1 dw b
- __ - 14.157
Wdn (1-m)n-k ( )
With solution
b
In(W)= In|(1- —k 14.158
n(W)=——In[(1=m)n k] (14.158)
or
W=W, [(1—m)n—k}%m (14.159)
........... Deriving approximate form for V
Given
V' b 1 U
A = = 14.160
V. (1-m)n-k (1-m)n ( )
and
V' 1 U
- - |p+= 14.161
v (1—m)71—k[ +n} en
and
vi__ 1t {mmﬂ} (14.162)
V. (1-m)n-k n

The solution to Eq. 14.162 is

k
bm n[(1-m)ny-k]+-" 1n[(1—m)n—k]+J¢dn

In(V)=
1- 1—m (I=m)n—k (14,163

where

X:(l—m)n—k,dX:(l—m)dn,andU+k =n

(14.164)

Substituting Eq. 14.164 into the integral within Eq. 14.163 results in
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k(l—m)

LI B VL S S
1-m u u +ku u(k+u)

Which has solution [7]

_dx 1.
x(a+bx) Ca

X

a+bx

........... Deriving approximate form for P

’

P U
~U)—=yU'+y—+s(1-b)-2
(n=U)F =rU'sy+s(1-0)
and

U’=m,g:m+ﬁ,n—U=(1—m)n—k
n n
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(14.165)

(14.166)

(14.167)

(14.168)

Substituting the relationships from Eq. 14.168 into Eq. 14.167 results in

’

[(1—m)n—k]%= ym+y[m+ﬂ+s(1—b)—2

and
ym+y m+ﬁ +s(1—b)—2
P n
P [(l—m)n—k]
and
ax k 1-m
X—(1—m)n—k,m—dnandm+;—m+X+k
Such that
1-m
ym+7/[m+X+kk}+s(1—b)—2
In(P)=] dx
X(l—m)

and

k

(14.169)

(14.170)

(14.171)

(14.172)
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1-m

m+ k
1_
In(P)=1" (X, 7 | <§+k ax+UZH)pdU 2 gdu
m

l-m X 1- l-m " U 1-m

The second integral can be simplified as

m
m+ k

y | Xtk g MY IdU-H/kJ de

1-m X I-m U X" +kX

........... Deriving approximate form for g

(n—u)g:u’+(d+£j

n

oQ

and
[(l—m)r]—k]g—,=m+d+m+£=2m+d+£
8 n n

or

With solution

2m+d
1 -
n(s) I(l—m)n—k (1=m)n—k
and
x=(1-m)n—k, dx =d

Substituting Eq. 14.179 into 14.178 results in

k
O - AU S P S B
1I1(g)_l—mj X dx+l—mjxdx+f(l—m)n—kdn
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(14.173)

(14.174)

(14.175)

(14.176)

(14.177)

(14.178)

(14.179)

(14.180)
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14.6 Problems

Problem 14.1 Reduce Eq. 14.6 to an ordinary differential equation.
Problem 14.2 Reduce Eq. 14.7 to an ordinary differential equation.

Problem 14.3 Using Matlab’s ODE solvers, solve Eqgs. 14.8, 14.9, and 14.10 with
the final conditions given as Egs. 14.11, 14.12, and 14.13.

Problem 14.4 Using Matlab’s ODE solvers, solve Eqs. 14.144, 14.145, 14.146,
14.147, and 14.148 with the final conditions given as Eqs. 14.139, 14.140, 14.141,
14.142, and 14.143.

Problem 14.5 Using Matlab develop a program to determine the value of /, and 1,
for a given value of y and compare against Table 14.1.

Problem 14.6 Develop approximate form (algebraic solution) for Eq. 14.128.
Problem 14.7 Reduce Eq. 14.2 to an ordinary differential equation.

Problem 14.8 Reduce Eq. 14.3 to an ordinary differential equation.

Appendix 14.1: Similarity Arguments (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 14.2: GI Taylor’s Work (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.

Appendix 14.3: JHS Lee’s Work (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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Appendix 14.4: Fisk, Tjandra and Vaughan’s Work (website)

An Excel Spreadsheet was developed to illustrate a particular concept and is given
on the companion website.
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A

Acentric factor, 12, 13

Acentricity (w), 9

Adiabatic flame temperature, 297
complete combustion in oxygen, 295
for complete combustion, 295
for a constant pressure system, 294
for a constant volume process, 294
energy balance for the system, 296
incomplete combustion in air, 297
incomplete combustion in oxygen, 296
mass balance for carbon, 296
mass balance for oxygen, 296

Adiabatic process, 80

Adiabatic system, 83

Adiabatic turbine, 97

Aircraft engine, 123

Air cycle, 66

Air Force Research Laboratory, 336

Air-to-fuel ratio, 268, 269

Algebraic solution, 393

Ambient conditions, 311

Amount of mass, 43

Approximate solution, 368

Area effects
on gas dynamics, 199, 200

Atomic bomb, 363

Avogadro’s law, 4

Avogadro’s number, 29

Axi-symmetric coordinates, 317, 318

B

Back work rate (BWR), 119, 120
Binary diffusion, 184, 188
Binary gas mixture, 183-186
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Blast waves
Euler’s reactive flow equations, 364
numerical solutions, 385
reduced form, 382, 383
rotating star
approximate forms, 388-392
numerical solutions, 388
reduce form, 385
trinity test site detonation, 364
Boiler, 70
Boltzmann constant (specific energy), 29
Boundary conditions, 307, 308
Boundary layers, 240, 250
Boyle’s law, 4
Brayton Cycles, 53
British thermal unit (BTU), 28
Bulk modulus (K), 156

C
Carnot cycle, 78, 80
Carnot engine, 79
Carnot heat engine
concepts, 77
problem, 93, 94
process, 78
reversible, 77, 79
T vs. S graph, 86
thermal efficiency, 80, 81
Carnot heat pump, 81, 94
Carnot refrigeration cycle, 77, 81, 94
Change in kinetic energy (AKE), 50
Chapman-Jouget (CJ) point, 240, 244, 245,
247,249, 261, 264, 265
derivation for Ma(cj), 248, 249
derivation for X(cj), 247, 248
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Chapman-Jouguet theory, 338
Charles’ law, 4
Chemical equilibrium, 276-279
chemical equilibrium constant, 285, 286
chemical potential, 277, 278
chemical reaction, 279-282
entropy, 276
fugacity, 282-284
gas phase reaction, 280
Gibb’s free energy, 276, 280-282
ideal gas, 278
internal energy (e) for ideal gas, 276
mole fractions, reactive species, 280
Chemical equilibrium constant, 284-287
Chemical kinetic complexity, 289-292
Chemical kinetics
equilibrium chemistry, 287
first-order reaction, 288
heterogeneous reactions, 287
higher order reactions, 289
homogenous reactions, 287
irreversible reactions, 287
reaction rate, 288
second-order reaction, 288
temperature effects on reaction rates, 293
zero-order model, 289
zero-order reaction, 288
Chemical reaction, 237, 271
Chocked pressure, 203
Choke flow, 198
Choke point, 195, 198, 201, 203, 224
Circular burners, 317, 323-325
CJ detonation, 260
Clapeyron equation, 125
Clausius-Clapeyron equation, 131
Clausius inequalities, 73
definition, 83
irreversible cycle, 81
irreversible heat engines, 82
reversible cycle, 81
reversible heat engines, 82
Closed system, 33, 43, 61
Closed vapor, 60
Coefficient of performance, 78, 103
Combustion chemistry, 292
Combustions
deflagration, 237
detonation, 237
properties, 238
from shock tubes, 237
ZND models, 237, 238
Combustion system, 237
Composition of a mixture
mass basis, 134
molar basis, 133

Index

Compressibility factor (Z), 9, 15
Compressible flow, 170, 179, 180, 193
Computed thermodynamic properties, 275
Connection horizontal section, 74
Conservation of energy, 151, 152
of non-premixed combustible
gases, 192
Conservation of mass, 47, 48, 153, 200
for steady, axial symmetric system, 192
Conservation of momentum, 153, 154
of non-premixed combustible gases, 192
Conservation of species mass with binary
diffusion, 188
Conservation principles
conservation of mass, 47, 48, 153
conservaton of energy, 152
conservaton of momentum, 153
for detonation systems, 170, 176, 177
for gaseous system, 151, 152, 169
conservation of energy, 171,
174-176, 178
conservation of mass, 170, 172, 178
conservation of momentum, 170, 172,
173,178
for non-premixed deflagration
system, 191
conservation of energy, 192
conservation of mass, 192
conservation of momentum, 192
for particular fluid phenomenon, 170
for premixed laminar flames
conservation of energy, 189-191
conservation of mass, 188
conservation of momentum, 188, 189
total derivative for internal energy, 176
Constant pressure process, 7, 335
Constant temperature process, 7
Constant volume process, 7, 334, 335
Control surface (cs), 48
Control volume, 33, 49
Converging-diverging nozzles, 201, 203
Critical flow, 198
annular flow, 208
at choke point, 198, 201
homogenous flows, 208
ideal gas (see Ideal critical flow)
in liquid/gas system, 207-212
single-phase flow, 195
single-phase fluid, 196
speed of sound (see Speed of sound)
for two-phase flow system, 219-231
van der Waal gas (see van der Waal
critical flow)
Critical point, 7, 9-11, 18
Critical pressure (P.), 9



Index

Critical temperature (T,), 9
Cubic equations of state (EOS)
acentric factor, 12, 13
attractive force, 10
considerations, 10
inter-molelcular attractive force, 10
Redlich-Kwong, 12-14
repulsive force, 10
van der Waal’s, 11, 12
Cycle on P vs. V graph, 41
Cycles, 33, 53

D
Deflagration, 237, 238, 240, 245, 247
buoyant laminar jet flow
buoyancy controlled, 328
conservation principles, 323, 324
diffusion coefficient, 325
flow rates, 326, 327
heat rates, 326, 327
heat transfer coefficient, 324
momentum controlled, 327
Roper equation, 324
slot burner, 327, 328
square burner, 326
temperature, 325
transition zone, 328
laminar flame, 301
qualitative differences, 302
RH theory, 301
system, 301
Density change, 177, 193
Derivation of AKE, 241
Detonation CJ point, 245
Detonations, 169, 170, 237-240, 245, 247,
250, 257
analysis, 341, 342
conservation principles, 333
constant pressure process, 333, 335
constant volume process, 333-335, 337
ds vs. temperature, 336
dynamic detonation model, 333
entropy, 336
H,/air parameters, 337
H,-air detonation system, 358
induction zone, 359
lambda vs. temperature, 338
RDE, 336, 338
reaction rate, 359
reaction zone, 333, 359
structure, 334
T vs. lambda, 341
X versus A, 340
ZND model, 333, 359, 360

397

Detonation structures
cartoon, 356
cell pattern, 354
fuel/air mixture, 356
regions of stability, 357
transverse waves, 356
Diaphragm, 237
Diatomic gases, 30, 31
Diatomic molecule, 29
Differential equations, 363, 385
Dimensional analysis, 363
Double linear interpolations, 60
Double product rules, 147
Dynamic detonation models
approach, 345
conservation of energy, 345
conservation of mass, 345
conservation of momentum, 345
conservation principles, 344
double reactions, 353, 354
equation of state, 346, 348
Rankine-Hugoniot model, 343
reaction rate, 344
single reaction, 350, 351
three dynamic equations, 348-350

E
Efficient pump and turbine, 109
Electric generators, 64
Energy balance, 334
boiler, 56
condenser, 57
pump, 55, 56
turbine, 56, 57
Energy diffusion, 183
Energy equation, 335
Energy vs. temperature modes, 30
Engineering devices
machine, 51
pump, 51
Rankine Cycle, 54, 55
Engineering efficiency, 97
irreversible devices, 89
reversible devices, 89
work in devices, 90-92
work out devices, 89, 90
Engineering thermal efficiency,
89,93
Enthalpy (h)
calculation methods, 32
changes, 32, 35, 36
cubic relationship, 37
definition, 29
derivative, 84
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Enthalpy (h) (cont.)
problems, 39
values, 33
Enthalpy and entropy as functions, 130
Clausius-Clapeyron equation, 131
constant temperature and pressure, 130
differentials, 129
equation of state, 130
ideal, perfect gas, 132
Maxwell relationship, 130
T and P, 128
van der Waal gas, 133
Enthalpy of formation, 270-273, 295
Entropy, 155
Entropy as State Function, 84, 85
Entropy balance, 87, 334
Entropy of gases
ideal and non-perfect gases, 88, 89, 95
ideal and perfect gases, 87, 88, 94
possible cases, 87
Entropy of liquids, 73, 87
Entropy of solids, 73, 87
Equations of conservation, 250
Equilibrium chemistry, 287
Equivalence ratio, 268, 269, 274, 290,
292,297
Euler reactive flow equations, 364
Euler’s method, 373
Evaporator, 112, 114, 123
Exact differentials, 126, 127
Expansion valve, 112

F
Fay’s system, 240, 250, 260, 261
Fick’s law of diffusion for binary gas,
184, 185
First law and second law systems, 59
First law of thermodynamics
closed systems, 49, 50
control volume, 49
cycles, 53, 57
description, 49
energy sources, 87
engineering devices, 52-53
open systems, 50, 51
reverse Rankine cycle, 115
First law, pump, 51
Flashing, 198, 231
Flow regimes for gas-liquid flow,
207, 208
Fugacity, 282-284, 286
of liquid water, 283

G
Gas cycles
assumptions, 116
Brayton cycle
assumptions and conditions, 116
energy balance, combustion
chamber, 117
energy balance, compressor, 116
energy balance, turbine, 118
problem statement, 120
quantity of interest, 119
state equations, 118
reverse Brayton cycle, 121, 122
Gas dynamics with area changes,
170, 171
Gas dynamics with heat transfer, 170,
171, 177
Gas dynamics with shear stress, 170-173
Gas mixtures, part I
ideal gas, 134
Kay’s rule, 135
specified state, 134
Gas mixtures, part IT
EOS, 136, 137
mole fraction, 137
van der Waals, 136
Gas models comparison, 19, 20
Gas molecules, 29
Gasoline engine, 93
Gibb’s free energy, 126, 276-282,
285,296
Gibbs Equations, 84

H
Heat and work sign convention, 49, 50
Heat diffusivity, 311
Heat engine, 73, 78

gas cycle, 103

thermal efficiency, 103

vapor phase cycle, 103
Heat pump, 73, 78
Heat transfer, 75, 169, 171, 183, 184
Helmholtz energy, 126
Homogenous equilibrium model, 224
Homogenous flows, 208
Homogenous frozen model, 224
Homogenous models, 198
Homogenous reactions, 287
Horizontal section dependent, 74
Hugoniot curve, 239, 240, 242, 244, 247,

253,256, 261

Hydrocarbon oxidation, 292

Index

250,
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I
Ideal critical flow, 201, 231
energy balance, 202-204
entropy balance, 201, 202
Ideal gas, 151, 163, 201-204. See also
Ideal critical flow
Ideal gas constants, 22
Ideal gas law, 38, 255
applications, 6, 7
assumptions, 3
Avogadro’s law, 4
Boyle’s law, 4
Charles’ law, 4
density, 5
experimentation, 4
kinetic theory of gases, 5
molecular weight, 5
observations, 5
particular substance, 5
relationship, 4
universal gas constant, 5
Ideal gas mixture, 134
Ideal gas problem
isobaric process, 16
isometric process, 15
isothermal process, 15
Incompressible flows, 193
Incompressible fluid field, 193
Induction zone, 237, 333, 353, 354, 357, 359
Infinitesimal work, 28
Integrating factor, 375
Internal energy (e)
calculation methods, 32
constant volume path, 29
thermodynamic energy, 25, 43
Irreversibilities, 54, 83
Irreversible engineering device, 89, 90
Irreversible heat engine, 76
Irreversible processes
creation factor, 26
gas, 26
low-/high-temperature body, 27
pulley example, 26
Irreversible reactions, 287
Irreversible system, 74
Irreversible turbine, 96
Isentropic flow, 170, 179, 180, 193, 197, 206
Isentropic path, 28, 118, 154, 223, 228
Isentropic process, 33
Isentropic relationship, 120
Isentropic system, 83
Isobaric process, 33
Isolated system, 33
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Isometric process, 33
Isothermal compressibility, 143
Isothermal process, 33

J
Jouget’s rules, 244-246

K

Kay’s rule, 135, 146

Kinetic energy (KE), 43, 276, 380
Kinetic theory of gases, 185-187
Kinetics, 267

Kramer’s rule, 349

L
Laminar flame speed
adiabatic flame temperature, 313
calculations, 314
Metghalachi and Keck’s Correlations,
315,316
reaction rate equation, 312
specific heat determination, 312
stoichiometric considerations, 311
thermal properties, 313
Laminar flame speed equation, 290
Latent enthalpy, 270, 271
Lee/Kessler chart, 7,9, 10, 17, 145
Lewis number, 183
Linear interpolations, 43, 44, 98

M
Ma(cj) for system, 256260
Mach number, 157, 161, 170, 179, 181, 182,
193, 259
Mass diffusion, 183, 187
Mass efflux, 195, 197
Mass flux, 201, 209, 210, 241, 242, 244, 252
gas, 210
liquid, 210, 230
Mass fraction of species, 134
Mass rate, 268, 297
Mass transfer, 169, 170
energy diffusion, 183
Fick’s law (see Fick’s law of diffusion for a
binary gas)
kinetic theory of gases (see Kinetic theory
of gases)
mass diffusion, 183
momentum diffusion, 183
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Material science considerations, 143
Maxwell relationships, 140, 146
definition, 125
entropy and specific volume, 125
mixture dome, 125
pressure and temperature, 125
Maxwell’s equations
closed system, 126
differentials, 126
Gibbs energy, 126
Helmholtz energy, 126
open system, 126
set of equations, 127
Mean density, 209
Mixture coefficients, 136
Mixture dome, 45, 130
Mole fraction of species, 133
Molecule classes, 30
Momentum diffusion, 183
Momentum transfer, 169, 170
Monatomic gases, 30, 31
Moving shock waves, 161, 167

N
National Institute of Standards and Testing
(NIST), 46
Nitrogen, 94
Nitrogen gas flows, 70
Noble gas, 30
Non-homogenous models, 198
Non-premixed deflagration, 169
average velocity, 319
Bessel function, 321
boundary conditions, 320
Burke Schumann flame, 323
concentric cylinders, 319
conservation of axial
momentum, 318
conservation of mass, 317, 320
conservation of species, 318 (see also
Conservation principles)
diffusion flame, 317
flame front, 319
fuel and oxygen, 322
in-homogenous, 321
linear combination, 320
non-dimensional boundary
conditions, 321
non-dimensional quantities, 320
Non-premixed laminar flames, 170
Normal shocks, 151, 157-162, 165
Numerical methods, 368

Index

(0]

Omega method, 208, 215, 218, 230, 231
One-step reaction, 350

Open system, 33, 43

Ordinary differential equations (ODE), 363, 365

P
Partial differential equations (PDE), 365
Partially complete combustion, 261
Partially complete reactions, 250
Perfectly irreversible pump, 92
Perfectly irreversible turbine, 91
Phase diagrams, 4
Piston-cylinder device, 40
Poisson’s ratio, 156
Polytropic process, 25
definition, 33
relationships, 35
types, 33, 34
work, 34, 37
Potential energy, 43, 196, 212, 220
Prandtl number, 183
Premixed deflagration, 169
chemical reaction, 304
component, 304
conservation of energy, 305
conservation of species, 304 (see also
Conservation principles)
density, 305
Fick’s law, 304
gas and oxidizer, 303
Mallard and Le Chatelier’s laminar flame
speed, 305-307
planar conservation principles, 303
Spalding’s laminar flame speed theory,
307, 308, 310
Premixed laminar flames, 170
Pressure (P), 3
Pressure versus % Methane (RK EOS), 139
Pressure vessel, 198, 204, 231
for ideal gas, 204
Pressures, 195
Pressurized vessel, 196
Product enthalpies, 275
Product thermodynamic properties, 274
Pure substance, 45

Q

Quality, 7

Quantities, 77
enthalpy (h), 25
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internal energy (e), 25

state and not state functions, 25, 26
thermodynamic tables, 125

work and heat, 25

R

Rankine cycle, 53-55, 76, 103
increase boiler pressure, 107
increase boiler temperature, 107
overall thermal efficiency, 109
reduce condenser pressure, 107
thermal efficiency, 107

Rankine Line, 241, 244-246, 250-252,

261, 371

Rankine-Hugoniot (RH) theory, 301, 338, 365

Rankine-Hugoniot system, 239, 240
Reactant enthalpies, 275

Reactant thermodynamic properties, 274
Reaction rate equation, 289-291

Reaction zone, 237, 239, 240, 250, 333, 353

Real heat engine, 76
Redlich Kwong EOS, 137
Redlich-Kwong equation of state, 12
Redlich-Kwong-Soave equations of
state, 13, 14
Reduced pressure, 9
Refrigeration cycle, 73, 78, 124
coefficient of performance, 103
Refrigeration problem, 94
Regions of stability, 357
Regressional model, 30, 32
Regular and irregular detonation
structures, 356
Relative error, 144
Resistance heater, 40
Reverse Brayton cycle, 121-123
Reverse heat engine, 78
Reverse Rankine cycle, 123
coefficient of performance, 114
energy balance
assumptions and conditions, 112
compressor, 112
condenser, 112
engineering device, 112
evaporator, 114
expansion valve, 112
enthalpies, 115
linear interpolation, 115
mixture, 115
processes, 111
working fluid, 115
Reversible and irreversible systems, 73

Reversible engine, 79
Reversible heat engine, 73-75
Reversible process

definition, 26

ideal gas, 27, 40

work minimization, 27
Reversible pump (work in device), 92
Reversible reactions, 287
Reversible system, 74, 83, 84
Reversible turbine, 97
RH theory, 246, 250
RK EOS, 21, 141
Roper’s theory, 317, 323-325, 328-330
Rotational detonation engine (RDE), 336

S

Saturated Ammonia, 64
Saturated liquid nitrogen, 65
Saturated mixture of steam, 71
Saturated nitrogen tables, 145
Saturated pressure range, 131
Saturated solid-liquid water tables, 145
Saturated table, 46

Saturated temperature, 45
Saturated vapor, 60

Saturated Water, 45
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Saturated water thermodynamic properties, 47

Schmidt number, 183

Second law of thermodynamics, 87

Sensible enthalpy, 270

Shock tubes, 237, 238, 250

Shock waves, 157

Slot burners, 327, 328

Specific heat, 25, 28, 30, 144

Specific heat constant pressure, 25, 29

Specific heat constant volume, 25, 29

Specific volume (v), 3

Speed of sound, 151, 153, 157, 199
for aluminum at STP, 164
condition of isentropic flow, 154
control volume for gas moving, 153
for gas mixture, 165
in ideal gas, 155, 156

for ideal and van der Waal gas, 163, 164

for liquid/gas flow, 208

in liquids and solids, 156

for single-phase gas, 198

for two-component gas, 198, 233

for two-phase gas flow, 212, 215, 220, 232

derived relationship, 212
homogenous flow, 214
omega method, 218
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Speed of sound (cont.)

water mixture, 215

weighted average of densities, 213

for van der Waal gas, 206

Square burners, 326, 330
SRK EOS, 22
Stagnation point, 195
Stagnation pressure, 179
Stainless Steel, 94
Standard enthalpy of formation, 271
State of system, 3
Static pressure, 179
Stoichiometry, 267, 268, 279, 297
Sub-Mach flow, 240
Substance, 7
Superheated vapor ammonia, 63
Superheated Vapor Water, 45
Supersonic nozzle, 196, 208

T
Taylor’s blast theory
approximate forms, 375-379
coordinate systems, 367
energy release, 366, 379-381
independent variable, 366
numerical integration, 367
numerical solutions, 372, 373
ODEzs, 365
PDEs, 365
similarity arguments, 368-370, 372
t?vs. RS, 367
thermodynamic constant, 366
nvs. f, @ and ¢, 366
Temperature (T), 3
Thermal efficiency (1), 57, 78-80
Thermicity, 177
Thermodynamic data, 146
Thermodynamic energy, 29
Thermodynamic properties, 273, 274, 341
Thermodynamics, 237
Thermodynamic tables, 37
Thermodynamic work, 27
Thermodynamics problem solving
procedure, 58, 59
Trailing wave, 162, 163

Index

Translational (kinetic) energy, 29
Triatomic gases, 30, 31

Trinity test site, 364, 367, 381, 382
Triple product rules, 147

Two-step reaction, 350

\%
van der Waal critical flow
energy balance, 205, 206
entropy balance, 206
real gas effects, 204
van der Waal equations of state, 11,
12,18
van der Waal gas, 18, 19, 198
van der Waal’s equation of state, 137
Vapor phase cycles
engineering efficiency effects, 109, 111
problem solving steps, 104
Rankine cycle, 104
energy balance, boiler, 106
energy balance, condenser, 106, 107
energy balance, pump, 104, 106
energy balance, turbine, 106
reverse Rankine (see Reverse
Rankine cycle)
Velocity distribution, 48
Virial coefficient, 21
Volumetric discharge, 48

w

Water Cycle, 69

Water-filled reactor, 62

Wave speed, 237, 245

Work and heat, 38, 39

Wright Patterson Air Force Base, 336

Y
Young’s modulus, 156, 164

Z
Zero-order model, 289
ZND models, 237, 238
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