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Preface

This guide is designed to be used by students in a calculus-based introduc-
tory course in electricity and magnetism. Students taking the subject at an
intermediate or advanced level may also find it to be a useful reference.

Appendix A offers a help to begin using Mathematica with no prior
knowledge. Jumping right in and typing things, making your own mistakes,
and then making use of the extensive inline documentation is a great way to
learn. The beginner will want to keep a notebook (.nb file) to cut and paste
from to avoid retyping of recurring expressions.

The first calculation in electric phenomena is likely to be using
Coulomb’s law, which needs for its input the fundamental electric charge
and the electric force constant as well as a distance scale. Even a simple cal-
culation is not likely to be done without a calculator. Example 1.6 appears in
Chap. 1.

Example 1.6 Calculate the magnitude of the force between 2 protons sepa-
rated by a distance of 1 nm.

The units have been specified in newtons (N) and if the expression does
not match units, it will not execute. This alone is worth its weight in gold for
both the beginner and the expert alike. Mathematica is the ultimate physics
calculator. The code can be used as a template for additional calculations and
is available for download.

A second place that Mathematica excels is in the calculation of line and
surface integrals that are needed for the concepts of electric potential and
flux. In an example from Chap 2, a charge is placed at an arbitrary position
inside a sphere.

xiii
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Example 2.5 Calculate the electric flux through the sphere when the charge
is inside.

Magnetic phenomena are famously confusing for beginners because there
are so many vectors involved due to the motion of charge. Examples are
carefully chose such that they can be used as templates to evaluate integrals
containing non-trivial operations such as multiple vector products.

Finally, Mathematica is extremely useful for its algebraic manipulation
of complicated expressions and to solve a system of simultaneous equations
such as appears in circuits with multiple branch points.
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Coulomb’s Law and
Electric Field

Three fundamental physical constants are encountered in electricity and mag-
netism, the elementary charge (e) of Sect. 1.1, the electric constant (ε0) of
Sect. 1.2, and the magnetic constant (µ0) of Chap. 4. They are given to four
significant figures in Tab. 1.1.

Table 1.1 Fundamental constants of electricity and magnetism.

1.1 ELECTRIC CHARGE

The source of the electric field is the electric charge. Charge is an intrinsic
property of particles. Electrons have negative charge and protons have posi-
tive charge. The symbol e is used to represent the proton charge, also referred
to as the “elementary charge.” It is the first fundamental constant listed in Tab.
1.1. The electron charge is −e. The symbols q and Q are often used to repre-
sent electric charge of arbitrary sign and magnitude. The elementary charge
is acquired with the function Quantity[“ElementaryCharge”].

1
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Example 1.1 Get the elementary charge.

The output of Ex. 1.1 is written in a slightly different shade in Math-
ematicata to distinguish its use as a physical quantity with units. The unit
of charge is the coulomb (C). The coulomb unit is acquired with Quan-
tity[“Coulombs”].

Example 1.2 Get the coulomb unit.

The function UnitConvert[quantity, targetunit] converts the expression
in the first argument to the unit specified in the second argument. It is a very
powerful feature of Mathematica that the code will fail if the unit of the ex-
pression does not match the specified unit. The default unit is in the Interna-
tional System (SI). In the strict definition of SI, the unit C is derived from
amp (A) second (s), so C must be specified or else the output will be in A · s.
The function N[expr,n] gives a numerical value of the expression to n figures.

Example 1.3 Get the numerical value of the elementary charge in C to 10
figures.

1.2 INVERSE SQUARE LAW

The experimental result known as Coulomb’s law says that the electric force
between two charges q1 and q2 is proportional to each of the charges and in-
versely proportional to the square of the separation distance r. The magnitude
of the force F is written

F =
kq1q2

r2 ,
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where k is a constant of proportionality to be determined from measurement.
Historically, the constant is written

k =
1

4πε0
,

where ε0 is called the electric constant. It is the second fundamental
constant listed in Tab. 1.1. The electric constant is obtained with Quan-
tity[“ElectricConstant”].

Example 1.4 Get the electric constant.

Example 1.5 Get the numerical value of 1
4πε0

.

With the definition of electric potential in Chap. 3 and the concept of
electric field (Sect. 1.5), a useful unit for the electric constant is C

m·V which is

equal to N·m2

C2 .
A semicolon after a command suppresses the output. In Ex. 1.6, the vari-

able r is set equal to 1 nm but this result is not output.

Example 1.6 Calculate the magnitude of the force between two protons sep-
arated by a distance of 1 nm.
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1.3 VECTOR NATURE OF THE FORCE

1.3.1 Simple Coordinates

Consider charges q1 and q2 separated by a distance r as shown in Fig. 1.1.
Take the origin to be at the location of q1. The force on q2 caused by q1 is

F =
q1q2

4πε0r2 r̂,

where r̂ is the unit vector in the direction of r which points from q1 to q2.
Note that the algebra automatically takes care of the sign of the charges. If
the charges are the same sign, the force is repulsive (along r̂). If the charges
have the opposite sign, the force is attractive (along −r̂). For this to hold true,
all one needs to remember is that the vector r points from the “source” to the
place where the force (or field of Sect. 1.5) is calculated. The charge q1 is the
source of the force on q2.

Newton’s third law pair is the force on q1 caused by q2. This force is
obtained by placing the origin at q2 as it becomes the source of the force on
q1.

Using r̂ = r/r, it is useful to write the force as

F =
q1q2

4πε0r3 r.

Figure 1.1 Diagram for the Coulomb force between two charges. The origin
is placed at the location of q1. The vector r points to q2. The force on q2

caused by q1 is in the direction r̂ (−r̂) if the charges are the same (opposite)
sign.
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1.3.2 General Coordinates

The physics cannot depend on the choice of coordinates. It is extremely use-
ful and often essential to have an arbitrary choice of origin as shown in Fig.
1.2. The vector r′ points to the source charge q1, and the vector r points to
q2. The vector that points from q1 to q2 is

RRR = r− r′.

Coulomb’s law reads

F =
q1q2

4πε0|r− r′|3
(r− r′) =

q1q2

4πε0R2 R̂
RR =

q1q2

4πε0R3R
RR.

Figure 1.2 Diagram for the Coulomb force between 2 charges. The origin is
placed at an arbitrary location. The vector r′ points to q1 and the vector r
points to q2. The force on q2 caused by q1 is in the direction R̂̂R̂R (−R̂RR) if the
charges are the same (opposite) sign.

The 3 vectors of Fig. 1.2 form a triangle with r′+RRR = r. A vector squared
is the square root of the dot product of the vector with itself. The magnitude
of RRR is

R =

√
(r− r′)2 =

√
r2 + r′2−2r · r′ =

√
r2 + r′2−2rr′ cosθ,

where θ is the angle between r and r′. This important result is known as the
law of cosines.

A vector is represented in Mathematica with {x, y, z} (see App. B). The
dot product of vectors, in this case R ·RR ·RR ·R, is written R.R, and R3 is written
(R.R)3/2.
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Example 1.7 Charge q1 = 1 nC is located at (x,y,z)= (1, 0, 0) m and q2 = 3 nC
is at (1, 2, 3) m. Calculate the force vector that q1 exerts on q2.

In evaluating the numerical expression for force in Ex. 1.7, the command
“/.” was used to substitute the numerical values of the charges q1 and q2. This
allows those symbols to be used as variables again without clearing them.

Thoroughly understanding the geometry of Fig. 1.2 will pay dividends
when it comes to understanding the magnetic force, the vector nature of
which is much more complicated. Ex. 1.7 serves as a template for calcu-
lating the Coulomb force. It is used in some variation in several following
examples.

1.4 SUPERPOSITION PRINCIPLE

The superposition principle is the most important concept in electricity and
magnetism. The force between any pair of charges does not depend on the
presence of other charges.

1.4.1 Three Charges

As mentioned, the code of Fig. 1.7 can be used as a template for more com-
plicated calculations. Figure 1.3 shows two source charges for the force. One
can make position vectors for each of them, r′1 and r′2, calculate R1R1R1 and R2R2R2,
and then add together the contributions to the total force.

Example 1.8 Calculate the force on q2 from the 2 q1 charges in the geometry
of Fig. 1.3.
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!!

!!

!""

#

#

$

%

Figure 1.3 Each charge q1 acts on q2 independently. The net charge of q2 is
calculated in Ex. 1.8.

Example 1.8 demonstrates a simple case of symbolic manipulation at
which Mathematica excels without peer.

1.4.2 Thirteen Charges Minus One

Thirteen identical positive charges q are placed at equal intervals around the
circumference of a circle of radius R. From symmetry, the electric field at the
center of the circle is zero. Now remove one of the charges (Fig. 1.4). The
potential due to the 12 charges by superposition must be equal to that due to
the 13 positive charges plus a negative charge −q placed at the location of the
charge that was removed.

Example 1.9 Calculate the electric field at the center of the circle from all
13 charges and also with one of the charges removed as indicated in Fig. 1.4.
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Figure 1.4 Thirteen identical positive charges are placed at equal intervals
around the circumference of a circle, and then one of them is removed.

The function Table[ ] provides a convenient way to do a repetitive calculation.
The electric field from all 13 charges is indeed zero. The electric field

with the charge on the x-axis removed is in the x direction and is positive for
positive q, pointing at the missing charge, at the position where a negative
charge would be placed together with the original 13 charges to solve the
problem by superposition.

1.4.3 Finding the Location of Zero Force

In another type of superposition problem, suppose two charges 2q and −q
are separated by a distance 2a as shown in Fig. 1.5. Is there a place where a
third charge would feel zero force? If so, that location must be on the x-axis.
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The function Solve[expr, var, domain] will solve the expression in the first
argument, for the variable in the second argument, over the domain specified
in the third argument.

!! !!" "
"

#

Figure 1.5 Charge 2q is located at x = −a, and −q is located at x = a. The
location where the force on a third charge is zero is solved in Ex. 1.10.

Example 1.10 Find the location where the force on a 3rd charge is zero. Let
the third charge be Q at x = d.

Note that in Ex. 1.10 one did not have to specify if d is positive or nega-
tive. The solution determines that. The parameter a is specified to be greater
than zero with the $Assumptions command. One has to be careful with the
use of subscripts in Mathematica code such that they do not interfere with
components of vectors. The first two lines of code are protecting the use of
subscripts as serial numbers such that they do not interfere with the vector
operations in Solve. They produce no output.

Figure 1.6 shows the force on a third charge placed to the right of −q (see
Fig. 1.5). The force is zero at a bit less than 6a as calculated exactly in Ex.
1.10. At large distnces, the force looks like that of a single charge q at the
origin.

Figure 1.7 illustrates a more involved calculation that is nevertheless
straightforward in Mathematica. Three equal charges are placed at the ver-
tices of an equilateral triangle. Find the place(s) where a fourth charge would
experience zero force. Clearly this cannot occur outside the triangle where
all charges would contribute to either repulsion or attraction.
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Figure 1.6 Force on a third charge (see Fig. 1.5) as a function of distance
along the x-axis from the origin.

Figure 1.7 Charge q is located at (x,y) = (−a,0), (a,0), and (0,
√

3 a) forming
an equilateral triangle. There are two locations along the vertical axis where
the force on a fourth charge would be zero as solved in Ex. 1.11 and two more
from symmetry.

Example 1.11 Find the solution along the y-axis of Fig. 1.7 where the force
would be zero on a fourth charge. Let d be this distance. Get the numerical
value.
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Two solutions are found for d. The first one cannot be put in closed form.
The second one is what was expected from symmetry.

Example 1.12 Find the place on the y-axis of Fig. 1.7 where the force is a
local maximum (other than the singularity at y =

√
3 a). Output the force, its

derivative, and the numerical solution. The expression F[[n]] is taking the nth
component of the vector F.
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Figure 1.8 The plot of the force on a fourth charge vs. y of Fig. 1.7 crosses
the horizontal-axis twice giving the two locations where the force is zero as
solved in Ex. 1.11. There are two more locations of zero force from symmetry
as indicated in Fig. 1.7.

The negative solution is the local minimum of Fig. 1.8, and the positive solu-
tion is the local maximum that occurs between the zeros.

1.5 ELECTRIC FIELD

The concept of electric field is born from the superposition principle.

1.5.1 Point Charge

In the example of the Coulomb force between two charges (Fig. 1.1), one can
factor out q2 to get

F = q2

(
q1

4πε0r2 r̂
)

= q2E,

where
E =

q1

4πε0r2 r̂
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is the electric field due to q1. For any distribution of charges, the force that
an additional “test” charge would get is qE where E is the electric field. Note
that the test charge is not part of the definition of electric field. The unit of
the electric field is N/C.

In Ex. 1.10 and Sect. 1.11, one determined the places where the electric
field was zero. The electric field has a deep and fundamental role in electricity
and magnetism as an ingredient of the electromagnetic wave (Chap. 10). The
above expression for the electric field of a point charge has the coordinate
system at the location of the point charge. If there are multiple charges, one
can no longer do this, and the notation of Fig. 1.2 is useful.

1.5.2 General Formula

From superposition, we can write the electric field for a line of charge with
density λ as

E =
1

4πε0

∫
d`′

λ

R2 R̂̂
R̂R,

for a surface charge with density σ as

E =
1

4πε0

∫
da′

σ

R2 R̂̂
R̂R,

and for a volume charge with density ρ as

E =
1

4πε0

∫
dv′

ρ

R2 R̂̂
R̂R.

The primed vector points to the location of the charge and is the integration
variable and the vector RRR is defined by Fig. 1.1 with the charge q2 replaced
by point P, the place where the field is being calculated.

1.5.3 Line of Charge

Consider a line of charge (Fig. 1.9) that stretches along the x-axis from −L to
L. The charge per length is λ.

The electric field is calculated by dividing the charge into infinitesimal
pieces dq,

dq = λdx′.

At x = 0 and a distance y from the line of charge, the infinitesimal piece of
the field is

dE =
dq

4πε0r2 r̂ =
λdx′

4πε0(x′2 + y2)
x′√

x′2 + y2
x̂ +

λdx′

4πε0(x′2 + y2)
y√

x′2 + y2
ŷ.
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Figure 1.9 For a line of charge, the vector r′ pointing to the charge becomes
the integration variable. Perpendicular to the midpoint, the x coordinate of
the observation point P is 0.

Notice that x′ is the integration variable, y is the coordinate of point P, and
they are both needed to specify the distance between pointP and a differential
piece of the charge. The total field is

E =
L/2∫

−L/2


λdx′

4πε0(x′2+ y2)
x′√

x′2+ y2
x̂+

λdx′

4πε0(x′2+ y2)
y√

x′2+ y2
ŷ
 .

This is an easy calculation with Mathematica because the vector integra-
tion (all three components) is done in one step as long as the vector RRR that
points to P is properly defined.

Example 1.13 Calculate the field perpendicular to the midpoint of a line of
charge. The distance is specified to be in the real domain (y ∈R) and not equal
to 0.
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Note that the Roman E is reserved for the exponential function e. The Greek
Epsilon is used here which looks similar in Mathematica. One should be a
little careful with this. The layout of the integral is taken from the “Basic
Math Assistant” palette. Alternately, one may use the function Integrate[f, z].

At large values of y, the field is that of a point charge, Q = λL. The func-
tion Series[ f , {x, x0,n}] generates a power series expansion of the function f
about x = x0 to order n.

Example 1.14 Calculate the field for the line charge of Fig. 1.9 at large val-
ues of y.

To get the answer for a very long line of charge, it is easy to take the limit
as L→∞.

Example 1.15 Calculate the limit as L→∞.

If the observation point is not on line perpendicular to the midpoint (Fig.
1.10), the integration to get the electric field is non-trivial. The change in code
needed for the Mathematica integration is just one letter in order to change
the observation point from (0,y,0) to (x,y,0).

Figure 1.10 The x and y coordinates of the observation point P are arbitrary.
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Example 1.16 Calculate the field off-axis due to a line of charge.

The command Together[expr] makes a common denominator and Full-
Simplify[expr] returns the simplest form it can find. The // is shorthand to
operate on the previous expression. This calculation will not be found in any
ordinary textbook. It is too hard to do without computerized symbolic ma-
nipulation. The electric field vector is shown in Fig. 1.11.

Example 1.17 Take the limit of the field calculated in Ex. 1.16 to reproduce
the result of Ex. 1.13.

Example 1.18 The expression of Ex. 1.16 in not valid at y = 0. Calculate the
field on the x-axis. for |x| > L/2.

The function Simplify[expr] runs faster than FullSimplify[expr] and does
the same thing for many cases.
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Figure 1.11 The vector electric field from a finite line of charge.

1.5.4 Ring of Charge

For a ring of charge (Fig. 1.12), along the symmetry axis, the electric field is
straightforward because every part of the charge is at the same distance, and
by symmetry the field points in the z direction. If the radius of the ring is a
and the ring lies in the x− y plane, then

r′ = acosφ′x̂+asinφ′ŷ,

where the angle φ′ runs from 0 to 2π.

Example 1.19 Calculate the electric field on the symmetry axis for a ring of
charge.

In the limit where z → ∞, the result must give that of a point charge
Q = 2πaλ.
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Figure 1.12 Along the symmetry axis, every part of a ring of charge is at the
same distance. The direction of the field for each piece, however, is different.

Example 1.20 Calculate the limit a z→∞ for a ring of charge (on axis).

The field off axis is a much harder problem. There is no closed-
form solution. The easiest way to look at the solution is to expand
in powers of r =

√
x2+ y2. In Mathematica this can be done with

AsymptoticIntegrate[ f , {x,a,b}, {x, x0,n}] which calculates the definite inte-
gral expanding about x0 to order n.

Example 1.21 Get the field for a ring of charge (off axis) for large r. There
is φ symmetry so take y = 0 with out loss of generality.
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Note that even though an angle variable was used, the calculation was
still performed in Cartesian coordinates. This is almost always the easiest
coordinate system to work in. The field is seen to be that of a point charge
Q = 2πaλ to lowest order in 1/r2.

Example 1.22 Get the field for a ring of charge (off axis) for large r to order
1/r4.

1.5.5 Disk of Charge

For a 2-dimensional charge distribution with charge per area σ, one divides
the charge into infinitesimal pieces,

dq = σdA′,

where dA′ = (dr′)(r′dφ) is the differential area in polar coordinates. A disk
of charge with radius a is shown in Fig. 1.13.

Example 1.23 Calculate the field due to a disk of charge on the symmetry
axis.

Example 1.24 Take the limit for an infinite disk.
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Figure 1.13 The field due to a disk of charge may be calculated by dividing it
into pieces and integrating.

The is a very important result, because any surface appears as a plane at
a tiny distance. The electric field due to an infinite plane of charge is directed
away (toward) from the plane for positive (negative) σ with magnitude

E =
σ

2ε0
.

This result is easily calculated by the technique of Gauss’s law in Chap. 2.
The ring formula may be used to get the field from the disk with E→ dE,

λ→ σdr′, and a→ r′ which gives

dE =
zr′σdr′

2ε0(r′2+ z2)3/2 ẑ.

This is easily integrated to get

E =
zσ
2ε0

a∫

0

r′dr′

(r′2+ z2)3/2 =
zσ
2ε0

[
−(r′2+ z2)−1/2

]r′=a

r′=0
=
σ

2ε0

(
1− z
√

a2+ z′2

)
.
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Figure 1.14 The field due to a disk of charge may be calculated by dividing it
into rings and using the ring formula.

The technique of using the known field from a simpler object to get the field
of another object is generally very useful.

1.5.6 Sphere of Charge

The field due to a sphere (shell) of charge as shown in Fig. 1.15 may be
calculated using the ring formula with E→ dE, a→ asinθ′, z→ r−acosθ′,
and λ→ σadθ′ which gives

dE =
σa2 sinθ′(r−acosθ′)dθ′

2ε0[a2 sin2 θ+ (r−acosθ′)2]3/2
r̂,

(Note ẑ and r̂ are the same in Fig. 1.15.) Integrating over θ′,

E =
σa2

2ε0

π∫
0

sinθ′(r−acosθ′)dθ′

[a2 sin2 θ+ (r−acosθ′)2]3/2
r̂.

This is a non-trivial integral. Mathematica can do a indefinite integral
much faster than a definite integral. The function f [x ] is defined to be the
indefinite integral, and then the limits are substituted in a second step. This is
only for speed of calculation.
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Figure 1.15 The field due to a sphere of charge may be calculated by dividing
it into rings and using the ring formula.

Example 1.25 Calculate the field outside a sphere of charge by adding rings.

This is a remarkable result. The field outside a sphere of charge is the
same as a point charge at the center of the sphere.

Example 1.26 Calculate the field inside a sphere of charge by adding rings.
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This is another remarkable result. The field inside a sphere of charge is
zero.

1.5.7 Ball of Charge

The field due to a ball of charge as shown in Fig. 1.16 may be calculated
using the disk formula with E→ dE, σ→ ρdz′, z→ r− z′, and a→

√
a2− z′

which gives

dE =
1

2ε0
ρdz′
1−

r− z′√
a2− z′2+ (r− z′)2

 r̂.

Integrating over z′,

E =
ρ

2ε0

a∫

−a

dz′
1−

r− z′√
a2− z′2+ (r− z′)2

 r̂.

Example 1.27 Calculate the field outside a ball of charge by adding disks.

The field outside a ball of charge behaves like all the charge is concen-
trated at the center.

It is already known that the field inside a sphere is zero. By superposition,
the field inside a shell of any thickness is also zero. That means that the field
inside the ball at distance r from the center is that due to the charge Q that is
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Figure 1.16 The field due to a ball of charge may be calculated by dividing it
into disks and using the disk formula.

less than radius r,

Q =
4πr3

3
ρ

and
E =

Q
4πε0r2 r̂ =

ρr
3ε0

r̂.

This can be directly checked using the disk formula, but one has to be careful
about the algebraic sign of the contributions. The ball must be divided into
two regions, z′ < r (positive contribution) and z′ > r (negative contribution).
For the positive contribution (integral −a to r) we may reverse the limits and
introduce a minus sign.

Example 1.28 Calculate the field inside a ball of charge by adding disks.
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1.6 AVERAGE FIELD ON A SPHERE OR BALL

Consider the field from a charge Q averaged over a sphere of arbitrary size
and position. The answer depends on whether the charge is inside or outside
the sphere.

Example 1.29 Calculate the average field from a point charge over a sphere
of radius a with arbitrary position. Choose coordinates such that the charge
is located at (0,0,R) where R is an arbitrary distance.

The field is seen to be zero if the charge is inside the sphere and

E = − Q
4πε0R2

if the charge is outside the sphere.
Averaging over a ball gives the same answer as averaging over a sphere.
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Example 1.30 Calculate the average field from a point charge over a ball of
radius a with arbitrary position. Choose coordinates such that the charge is
located at (0,0,R) where R is an arbitrary distance.

1.7 CURL OF THE FIELD

For the static case, the electric field may be written in the most general case
as a superposition of all charges, resulting in an integral over all space of the
charge density ρ,

E(r) =
1

4πε0

∫
dv′
ρ(r′) RRR
R3 .

The 2-dimensional case corresponds to

ρdV → σdA,

and the 1-dimensional case corresponds to

ρdV → λd�.

The electric field has an important property that its curl is zero,

∇∇∇×E = 0.

The derivatives in the curl are with respect to (x,y,z), and these unprimed
coordinates appear only in R. The curl is straightforward even if there are
several pieces to keep track of.
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Example 1.31 Calculate the curl of RRRR3 .

Therefore,

∇∇∇×E =
1

4πε0

∫
dv′ρ ∇∇∇×

(
RRR
R3

)
= 0.

1.8 STRENGTH OF THE ELECTRIC FORCE

Electricity and magnetism dominates over all other forces on the human scale
because it has a long range (1/r2), and it is enormously stronger than grav-
ity. The other two forces (weak and strong) have an extremely short range
compared to the atomic size.

The universal gravitational constant is called with Quantity[“Gravi-
tationalConstant ”] and the proton mass is called with Quantity[“ProtonMass”].

Example 1.32 Calculate the ratio of electric to gravitational force between
2 protons.
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Gauss’s Law

The key to Gauss’s law is the concept of electric flux.

2.1 ELECTRIC FLUX

The electric flux Φ through any surface is computed by defining a differential
area vector

dA = dAn̂.

where n̂ is the unit vector normal to the surface (Fig. 2.1). Notice there are 2
choices for n̂ and one of them must be chosen in order to define the sign of
the flux (Φ),

Φ =

∫
dA n̂ ·E.

Figure 2.1 The unit normal vector is perpendicular to the surface.

The simplest case is that of a constant field such as that due to an infinite
plane of charge (Ex. 1.24). Consider the flux through a surface of area A that
is oriented parallel to the plane of charge as indicated in Fig. 2.2. The unit
vector n̂ is taken to be in the same direction as E such that n̂ ·E = E. The flux
is

Φ = An̂ ·E = EA =
σA
2ε0

.

29
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The electric field is
E =

σ

2ε0
.

The direction is n̂ which was known from symmetry in order to be able to
evaluate the electric flux as a function E.

Figure 2.2 A surface element is parallel to an infinite plane of charge.

If the area element were tilted at an angle θ with respect to the original
direction of n̂, the the flux becomes

Φ =

∫
dA n̂ ·E = EAcosθ.

In general, both the magnitude and the direction of the electric field will
vary on the surface and a vector integration must be performed to evaluate
the flux. If there is enough symmetry, however, the vector integration may be
trivial and the evaluation of the flux provides a simple equation for E. Several
examples of this are shown in Sect. 2.4.

Consider the geometry of Fig. 2.3 with a charge located a distance d
above a square of side L. The vector r′ points to the charge so r′ = d. The
vector RRR points from the charge to the place the field is being calculated on
the square. The vector r points from the origin to an arbitrary position in the
x− y plane where the field is being calculated so that r =RRR+ r′ as usual. The
electric field is

E =
q

4πε0R3R
RR.

The flux through the square (unit normal defined to be ẑ) is computed by
integrating E · n̂ over the square,

Φ =

L/2∫
−L/2

dx

L/2∫
−L2

dy
(

q
4πε0R3R

RR

)(
r′

R

)
· ẑ =

L/2∫
−L/2

dx

L/2∫
−L2

dy
(

q
4πε0R3R

RR

)
·

(
r′

R

)
,

noting that E · n̂ picks out the z component of E and that ẑ = r′/r′.
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Figure 2.3 A charge q at a distance r′ = d along the z-axis from the center of
square of side L in the x− y plane.

Example 2.1 Calculate the electric flux through the square of Fig. 2.3.

At large distances d >> L, the electric field is constant on the square and
the flux is just

Φ = EL2 =
qL2

4πε0d2 .

Example 2.2 Calculate the flux for large values of distance d.
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2.2 FLUX THROUGH A CLOSED SURFACE

For a closed surface, the unit vector n̂ is always chosen to be outward, such
that the contribution to the electric flux from positive charges inside (outside)
the closed surface is positive (negative).

2.2.1 Charge at Center of a Sphere

The simplest geometry is that of a charge at the center of a sphere. The elec-
tric field has constant magnitude and has a direction that is parallel to n̂ ev-
erywhere on the sphere. The flux through a sphere of radius a is

Φ = (4πa2)
(

q
4πε0a2

)
=

q
ε0
.

This is a remarkable result that happens to hold true for any closed sur-
face. The reason for this is that the electric field drops as 1/r2 and so does
the solid angle subtended by a differential area element dA. This is often
explained with the concept of electric field line. Figure 2.4 shows a plot of
the vector electric field of a point charge. Every point in space gets a vector
assigned with magnitude and direction of the field. The electric field lines
follow the vector field directions. One draws an arbitrary number of lines
(enough to see the effect but now so many as to clutter the drawing) that em-
anate from the charge with arrows that point in the direction of the field. The
density of the lines then visually represents the relative strength and direction
of the field, and the flux is proportional to the number of lines. For any closed
surface that contains the charge, all the electric field lines must pass through
the surface giving the same flux for a surface of any shape.

For a charge outside a closed surface, all the electric field lines that enter
the surface (negative flux) must also exit the surface (positive flux), giving
zero net flux (Fig. 2.5).

2.2.2 Flux Through a Hemisphere

Consider a hemisphere of radius a in a uniform electric field (Fig. 2.6). There
is no charge inside it, so the flux is zero. This means that the flux through the
flat end, which is

Φflat = −πa2E,

must equal the negative of the flux though the curved part,

Φcurved = πa2E.
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Figure 2.4 Plot of the vector electric field of a positive point charge. Electric
field lines follow the vector directions and and point away from the charge.
The density of the field lines visually represents the relative strength of the
electric field.

Figure 2.5 For a charge q outside a closed surface, all electric field lines that
enter the surface must also exit.
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Every electric field line that passes through the flat part must also pass
through the curved part.

Figure 2.6 A hemisphere is placed in a uniform electric field.

Take the field to be in the z direction. For the round part,

E · n̂ = E cosθ,

where θ is the polar angle (the angle measured from the z-axis). The flux
through the round part is

Φ = 2πa

π/2∫

−π/2

dθ (E cosθ)(asinθ).

Example 2.3 Calculate the flux through the curved part of the hemisphere.

2.2.3 Flux Through a Cube

Consider a charge placed at the center of a cube with side L (Fig. 2.7). In Ex.
2.1, for d→ L/2, one gets the flux through one side of a cube.

Example 2.4 Calculate the flux in Ex. 2.1 for d→ L/2,
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Figure 2.7 A charge q is placed iat the center if a cube.

The flux though the entire cube from a charge at the center is

Φ = (6)
(

q
6ε0

)
=

q
ε0
.

2.2.4 Flux Through a Sphere from a Charge Inside

Figure 2.8 shows a charge q placed inside some spherical boundary of radius
a at an arbitrary position. The origin is chosen to be at the center of the sphere,
and the z direction is chosen to be along a line passing through q. The vector
r′ points to the charge. The vector r points to the sphere and the vector RRR
points from the charge to the sphere. At the arbitrary position r, the electric
field is

E =
q

4πε0R3R
RR.

The unit vector normal to the sphere is

n̂ = r̂.
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The angle θ is the angle between r and r′, and it is the polar angle (angle with
respect to the z-axis) because r′ is in the z direction. The electric flux is

Φ =

∫
dAn̂ ·E = q

4πε0

2π∫

0

dφ

π∫

0

dθ a2 sinθ
r̂ ·E
R3 .

Figure 2.8 A charge q is placed at an arbitrary position inside an arbitrary
spherical boundary.

Example 2.5 Calculate the electric flux through the sphere of Fig. 2.8 where
the charge is inside.
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2.2.5 Flux Through a Sphere from a Charge Outside

A charge outside the spherical boundary (Fig. 2.9) has a net zero flux through
the sphere. On one section of the sphere E · n̂ is negative, while on another
part E · n̂ is positive.

Figure 2.9 A charge q is placed at an arbitrary position outside an arbitrary
spherical boundary.

Example 2.6 Calculate the electric flux through the sphere of Fig. 2.9 where
the charge is outside the sphere.
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2.3 MAXWELL EQUATION

So far, only a single charge has been considered. By superposition, any charge
qi inside contributes to the flux with qi/ε0, and any charge outside contributes
zero. The electric flux through any closed surface is equal to the net enclosed
charge (qen) divided by ε0. ∮

dA ·E =
qen

ε0
.

This is the statement of Gauss’s law. The circle on top of the normal inte-
gral sign is the standard notation for a an integral over a closed surface. It
is understood that the unit normal vector in dA = dAn̂ is outward from the
surface. It is a remarkable (experimental) result. One should take note that
the electric field for a moving charge is complicated and that Coulomb’s law
does not hold when charges move close to the speed of light. Nevertheless,
Gauss’s law still holds and is relativistically correct. The field due to moving
charges is the subject of an advanced course on electromagnetism. Gauss’s
law is one of the four Maxwell equations that describe all of classical elec-
tromagnetism. The other three are encountered in Chaps. 4, 7, and 11. While
it is sometimes not used in a first course on electricity and magnetism, it is
probably good at least to know that this equation can be written in differential
form. The divergence of E is

∇ ·E =
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
.

It can be proven mathematically, a result called the divergence theorem, that∫
dv ∇ ·E =

∮
da ·E,

where the integral on the right is over the closed surface that surrounds the
volume that is integrated on the left. An example of the divergence theorem
is given in App. B.5. Using

qen =

∫
dv ρ,

where ρ is the charge density, one arrives at

∇ ·E =
ρ

ε0
.
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This is Gauss’s law in differential form. The use of the differential form re-
quires fluency in multivariable vector calculus and is typically reserved for a
higher level course.

The physical interpretation of Gauss’s law is that charge is the source of
electric field, the field diverges exactly at the place where charge is located,
and the field has zero divergence everywhere else. In higher mathematics,
the infinite divergence at the location of a point charge is described with the
Dirac delta function, δ(r). The Dirac delta function has the property that it is
zero everywhere except where its argument is zero, where it comes infinite in
a way that its integral is unity. The charge density of a point charge is

ρ = qδ(r),

where r is the location of the charge. The integral is∫
dv ρ = q

∫
dvδ(r) = q.

The electric field of the point charge is

E =
q

4πε0r2 r̂.

Gauss’s law says

∇ ·E =
q

4πε0
∇ ·

r̂
r2 =

qδ(r)
ε0

This means that
∇ ·

r̂
r2 = 4πδ(r).

The divergence of the electric field due to a point charge is zero everywhere
except at the location of the point charge where it is infinite.

2.4 APPLYING GAUSS’S LAW

To use Gauss’s law to calculate the field, there must be symmetry such that
the direction of the field is known. One then draws a simple closed surface
according to the symmetry, and then calculates the flux using the magnitude
of the field E as a variable. The flux is set equal to the enclosed charge divided
by ε0 giving an equation for E.
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2.4.1 Line of Charge

Consider a line of charge with constant charge density λ. The electric field is
cylindrically symmetric (has no φ dependence) and varies with radial distance
r. For the closed surface, one chooses a concentric cylinder with radius r and
length L (Fig. 2.10. Note that the choice of L does not matter as it will cancel
and the arbitrary distance r is the place where the field is evaluated. The key
features of the chosen surface is that the field is constant on the curved part
of the cylinder and in the same direction as the outward normal n̂ and that on
the flat ends E · n̂ = 0.

Figure 2.10 For a line of charge, a concentriic cylindrical gausian surface is
chosen.

The flux is
Φ =

∮
dA ·E = 2πrLE

and by Gauss’s law,

Φ = 2πrLE =
qen

ε0
=
λL
ε0
.

Solve for E,

E =
λ

2πε0r
.

and
E =

λ

2πε0r
r̂,

This is the same result as obtained by direct integration using Coulomb’s law
in Ex. 1.15.
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2.4.2 Plane of Charge

For an infinite plane of charge with constant charge density σ, the electric
field is normal to the plane by symmetry. For a closed surface, one chooses
what has come to be known as a “Gaussian pillbox,” which is a tiny con-
tainer with its flat surfaces (area A) placed parallel and equal distance to the
plane.Key features of this surface are that E is constant on the flat part and in
the same direction as the outward normal n̂ and that E · n̂ = 0 on the rest of
the surface. It does not matter if the box has a round or square cross-section.

Figure 2.11 For a plane of charge, a Gaussian surface is chosen with flat pieces
that are parallel to the plane.

The flux is
Φ =

∮
dA ·E = 2AE

and by Gauss’s law,

Φ = 2AE =
qen

ε0
=
σA
ε0
.

Solve for E,
E =

σ

2ε0
,

and if the charge is in the x− y plane,

E =
σ

2ε0
ẑ,

for positive z. Note that the field points away from the plane of charge if the
charge is positive. This is the same result as obtained by direct integration
using Coulomb’s law in Ex. 1.24.
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2.4.3 Ball of Charge

For a ball of charge of radius a, one chooses a spherical Gaussian surface
oriented such that the electric field is everywhere perpendicular to the surface.

Figure 2.12 For a ball charge, a gausian surface is chosen to be a concentric
sphere

Outside the ball, (Fig. 2.12) r > a. The flux is

Φ =

∮
dA ·E = 4πr2E

and by Gauss’s law,

Φ = 4πr2E =
qen

ε0
=

4πa3ρ

3ε0
.

Solve for E,

E =
a3ρ

3ε0r2 ,
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and

E =
a3ρ

3ε0r2 r̂ =
Q

4πε0r2 r̂,

where Q = 4
3πa3 is the total charge of the ball. This is the same result as

obtained by direct integration using Coulomb’s law in Ex. 1.27.
Inside the ball (Fig. 2.13), r < a.

Figure 2.13 For a ball charge, a Gaussian surface is chosen to be a concentric
sphere.

The flux is the same as before (r is just a parameter)

Φ =

∮
dA ·E = 4πr2E

but now only a fraction of the charge is enclosed, with Gauss’s law giving

Φ = 4πr2E =
qen

ε0
=

4πr3ρ

3ε0
.

Solve for E,
E =

ρr
3ε0

,

and
E =

ρr
3ε0

r̂.

This is the same result as that obtained by direct integration using Coulomb’s
law in Ex. 1.28.
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Electric Potential

The electric potential (V) is the potential energy (U) per charge. Only changes
in potential energy (∆U) have physical meaning and the same is true for
electric potential differences (∆V),

∆V =
∆U
q
.

The unit of the electric potential is J/C which is the definition of volt (V).

3.1 ELECTRIC POTENTIAL DIFFERENCE

The electric force is conservative, which means that the work (W) done in
moving a charge q from A to B does not depend on its path. The change in
potential energy is

∆U = UB−UA = −W = −

B∫
A

d`̀̀ ·F = −q

B∫
A

d`̀̀ ·E,

and

∆V =
∆U
q

= −

B∫
A

d`̀̀ ·E,

3.2 CURL OF E

The source of electric field is electric charge, and for a single charge the field
varies as 1/r2. The divergence has a singularity because the field depends on
r in the direction r̂. The field does not have components along θ̂̂θ̂θ or φ̂̂φ̂φ, so the
curl does not have such a singularity.

45
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Example 3.1 Calculate the curl of 1/r2 in spherical coordinates.

Example 3.2 Calculate the curl of 1/r2 in Cartesian coordinates.

Mathematically, it is the zero curl of the static electric field that allows us
to write ∫

da · (∇∇∇×E) = 0 =
∮

d��� ·E,

where the last step is from Stokes’ theorem. An example of Stokes’ theorem
is given in App. B.6. For any path that ends where it starts, the initial and
final potential must be identical.

3.3 POINT CHARGE

For a point charge,

∆V = −
B∫

A

d��� ·E = − q
4πε0

B∫

A

d��� ·
(

r̂
r2

)
=

q
4πε0

(
1
rB
− 1

rA

)
.

If the zero of the potential is placed at infinity, then the potential at any value
of r is

V =
q

4πε0r
.

3.3.1 Field from the Potential

The electric field may be obtained from the electric potential by taking its
negative derivative. In one dimension, or with sufficient symmetry, this is a
simple derivative, and the direction of the field is along the coordinate that is
being differentiated. For a point charge

E = − d
dr

(
q

4πε0r

)
r̂ =

q
4πε0r2 r̂.
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One needs to be careful here. The derivative can only be calculated this way
because the field is only in the r direction, and there is no angle dependence.

In three dimensions the derivative becomes the gradient. In Cartesian co-
ordinates,

E = −∇∇∇V = −dV
dx

x̂+−dV
dy

ŷ+−dV
dz

ẑ.

For the point charge,

Ex = −
d
dx


q

4πε0
√

x2+ y2+ z2

 =
qx

4πε0(x2+ y2+ z2)3/2 ,

Ey = −
d
dy


q

4πε0
√

x2+ y2+ z2

 =
qy

4πε0(x2+ y2+ z2)3/2 ,

and

Ez = −
d
dz


q

4πε0
√

x2+ y2+ z2

 =
qz

4πε0(x2+ y2+ z2)3/2 .

The field is
E =

q(xx̂+ yŷ+ zẑ)
4πε0(x2+ y2+ z2)3/2 ,

which is exactly what is meant by the spherical-coordinate form

E =
qr̂

4πε0r3 .

This is a very simple example, but the following code can be used as a
template to calculate the field for a more complicated example. The function
Grad[ f , {x1, x2, x3}] takes the gradient in the specified coordinate system, and
TransformedField[t, f , {x1, x2, x3} → {y1,y2,y3}] transforms from one coordi-
nate system to another.

Example 3.3 Calculate the electric field for a point charge from the elec-
tric potential in Cartesian coordinates and transform the result into spherical
coordinates.
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The definition of potential leads to a more intuitive unit for the electric
field, V/m. The electric field unit is

N
C
=

J/m
C
=

J/C
m
=

V
m
.

3.4 FORMULA FOR V

The integral expression for E together with E = −∇∇∇V allows us to write V
relative to infinity for a line of charge with density λ as

V =
1

4πε0

∫
d�′
λ

R ,

for a surface charge of density σ as

V =
1

4πε0

∫
da′
ρ

R ,

and for a volume charge of density ρ as

V =
1

4πε0

∫
dv′
ρ

R ,

These formulae follow from the general formula for E (Sect. 1.5.2).

3.5 LINE OF CHARGE

Consider a line of charge with uniform density λ as shown in Fig. 3.1. The
potential may be calculated with code very similar to Ex. 1.13, except the
integration is now scalar 1/r instead of vector r̂/r2.

Example 3.4 Calculate the electric potential (relative to infinity) along the
midpoint of the line of charge of Fig. 3.1.
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Figure 3.1 A line of charge with constant density λ extends from −L/2 < x <
L/2.

The electric field for an infinite line of charge was calculated in 1.5.3 to
be

E =
λ

2πε0r
r̂.

The potential difference between pointA and point B can be caculated with

∆V = −
B∫

A

d��� ·E = − λ
2πε0

B∫

A

dr
r̂ · r̂

r
=
λ

2πε0
ln
(
rA
rB

)
.

Example 3.5 Calculate the potential difference between point A and point
B of Fig. 3.1 forA→ y1 and B→ y2.

Note that pointA is at a higher potential than point B.
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3.6 RING OF CHARGE

For a ring of charge with uniform density λ (Fig. 1.12), the potential may be
calculated with code very similar to Ex. 1.19, except again the integration is
now scalar 1/r instead of vector r̂/r2.

Example 3.6 Calculate potential difference relative to infinity along the axis
of a uniform ring of charge of radius a.

This expression for the electric potential can be reproduced by integration
of the electric field that was determined in Ex. 1.19,

E =
azλ

2ε0(a2+ z2)3/2 ẑ,

which gives

∆V = −
∞∫

z

d��� ·E = − aλ
2ε0

∞∫

z

dz′
z′

(a2+ z′2)3/2 =
aλ

2ε0
√

a2+ z2
.

3.7 DISK OF CHARGE

The electric potential at a distance z on the symmetry axis of a disk of charge
(Fig. 1.13) with uniform charge density σ may be calculated by adding up
rings, where λ in the ring formula is replaced by σdr′ and the radius of the
ring a is replaced by r′. A differential piece of the potential is

dV =
r′σdr′

2ε0
√

r′2+ z2
.

Example 3.7 Calculate potential difference relative to infinity along the axis
of a uniform disk of charge of radius a.
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This expression for the electric potential can be reproduced by integration
of the electric field that was determined in 1.19,

E =
σ

2ε0

(
1− z
√

a2+ z2

)
ẑ,

which gives

∆V = −
∞∫

z

d��� ·E = − σ
2ε0

∞∫

z

dz′
(
1− z
√

a2+ z2

)
=
σ

2ε0

(
−z+

√
a2+ z2

)
.

3.8 SPHERE OF CHARGE

The potential outside a sphere of charge of radius a must be the same as a
point charge because the electric field is the same as a point charge. Nonethe-
less, this may be easily checked by adding up rings (Fig. 3.2). The radius of
a ring is asinθ, and the distance to the center is r−acosθ.

Example 3.8 Calculate the potential difference outside a sphere with uni-
form surface charge density σ.
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Figure 3.2 The electric potential due to a sphere of charge may be calculated
by dividing it into rings and using the ring formula.

Inside the sphere of charge, the electric field is zero, and the potential
does not change. It has the same value as it does on the surface (radius a),

V =
Q

4πε0a
.

3.9 BALL OF CHARGE

The potential outside a uniform ball of charge of radius a is also identical to
that of a point charge. We may calculate the potential due to a ball by adding
up disks using the result of Sect. 3.7. The charge density of each disk (Fig.
1.16) is

σ = ρdz′,

the distance to the center is
r− z′,

and the radius is √
a2− z′2.

Example 3.9 Calculate the potential difference outside a ball with uniform
volume charge density ρ.



Electric Potential � 53

3.10 ELECTRIC DIPOLE

A physical electric dipole consists of two charges q and −q separated by a
distance d (Fig. 3.3). The electric dipole is the most important example in
electricity and magnetism. The reason for this is that all matter is made of
atoms, and when atoms get stretched in electric fields, they form dipoles (see
Fig. 3.4).

Figure 3.3 Two charges q and −q separated by a distance d along the z axis
form an electric dipole.
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Figure 3.4 The electric fleld vector from a dipole makes loops that go from
the positive to negative charge.

The potential for a dipole is easy to write down,

V =
q

4πε0
√

x2+ y2+ (z+d/2)2
− q

4πε0
√

x2+ y2+ (z−d/2)2
.

Example 3.10 Calculate the exact formula for the dipole potential.
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One is interested in the limit where the separation distance is small com-
pared to the observation distance. This is referred to as an ideal dipole. A bit
of algebra is acquired to deduce the formula.

Example 3.11 Calculate the dipole potential to leading order in d (the ideal
dipole).

The ideal dipole formula in Cartesian Coordinates is

V =
qzd

4πε0(x2+ y2+ z2)3/2 .

Example 3.12 Calculate the electric field of the ideal dipole.

Example 3.13 Get the ideal dipole potential in spherical coordinates.

Example 3.14 Get the ideal dipole field in spherical coordinates.
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3.11 CONDUCTORS

Conductors are materials in which one or more electrons per atom are free to
move. The electrons move instantly if one tries to introduce an electric field,
until they are no longer pushed.

3.11.1 General Properties

Conductors have a remarkable number of properties:
a) There is zero electric field inside a conductor. If not, the electrons

would experience a net force inside the material and be pushed until the field
was zero.

b) The charge density inside the conductor is zero. If that were not true,
then the electric field would not be zero.

c) If a conductor is charged, all the charge must be on the surface. The
charge arranges itself such that the electric field is zero inside the conducting
material.

d) Every part of the conductor is at the same potential. Since the electric
field is zero inside the material, the potential difference between any 2 points
inside the conductor is zero.

e) The electric field just outside the conductor is perpendicular to the
surface. The electric potential may only change in the direction that is per-
pendicular to the surface.

3.11.2 Field Near the Surface

The electric field near a flat conductor with charge density σ may be found
using Gauss’s law (Fig. 3.5). Take the Gaussian surface to be a pillbox to
extend into the conductor and terminate inside. The field is non-zero only on
the face outside.

Figure 3.5 The field near a conducting surface appears flat and can be deter-
mined using Gauss’s law.
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∫
da ·E = AE =

σA
ε0
.

This gives
E =
σ

ε0
n̂.

3.12 CAPACITANCE

Capacitance is a measure of the ability of a conductor to hold charge. Con-
sider two conductors with charges Q and −Q that have a potential difference
of ∆V . Since the potential difference is proportional to Q, the ratio is constant
and is called the capacitance (C),

C =
Q
∆V
.

The SI unit of capacitance is the farad (F) which is a coulomb per volt.

3.12.1 Capacitance of a Ball or Sphere

Capacitance can also be calculated for a single conductor with respect to
another at infinity. The capacitance of a ball or a sphere of radius a is

C =
Q(
Q

4πε0a

) = 4πε0a.

Example 3.15 Calculate the capacitance of the earth.

One farad is seen to be an enormous capacitance corresponding to an
object of size 1000 times the radius of the earth. Capacitance is typically
measured in picofarads, corresponding to centimeter distance scales.

Example 3.16 Calculate the capacitance of a 1-cm radius sphere.



58 � Guide to Electricity and Magnetism

3.12.2 Parallel Plates

Consider a capacitor that is formed with parallel plates of area A separated by
distance d. The plates can be any shape but usually are taken to be either disks
or squares. The fringe fields can be neglected if d <<

√
A. If the plates have

charges Q and −Q, the magnitude of the electric field between the plates is
the superposition of two planes of charge, one positive and the other negative,
giving

E =
σ

ε0
=

Q
Aε0
.

The potential difference between the plates is

∆V = Ed

and the capacitance is

C =
Q
∆V
=

Aε0

d
.

!!

"!

Figure 3.6 Two parallel plates form a capacitor.

Example 3.17 Calculate the capacitance of parallel plate capacitor with A =
1 cm and d = 1 mm.

Capacitance is significantly enhanced when material is introduced be-
tween the plates because the atoms get polarized and produce a contribution
to the net electric field that is opposite the original field, thereby reducing
∆V . This is discussed in Chap. 9.

3.12.3 Coax cable

A coax cable consists of a cylindrical wire of radius a with a concentric cylin-
drical shell of inner radius b (Fig. 3.7).
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Figure 3.7 A wire and a concentric cylindrical shell (shown here in cross sec-
tion) form a coax cable.

The potential difference between the inner cylinder and the outer shell is
given by the calculation of Ex. 3.4 to be

∆V =
λ ln

(
b
a

)
2πε0

.

The capacitance for a length L of the coax, using Q = λL, is

C =
2πLε0

ln
(

b
a

) .
This formula has to be modified for the plastic material that separates the
conductors (see Sect. 9.3). Writing this additional factor as εr, the capacitance
per length becomes

C/L =
2πε0εr

ln
(

b
a

) .
Example 3.18 A coax cable has wire radius of 1.1 mm and and outer con-
ductor inner radius of 0.35 mm. The material between the conductors has
εr = 2. Calculate the capacitance per length.
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3.13 STORED ENERGY OF A CHARGE DISTRIBUTION

3.13.1 Point Charges

Consider a charge q1. If a second charge q2 is brought in from infinity to a
distance R12, the work done on the charge is

W2 =
q1q2

4πε0R12
.

If a third charge is brought in from infinity to distance R13 from q1 and R23
from q2, the work done is

W3 =
q1q3

4πε0R13
+

q2q3

4πε0R23
.

The total stored energy (U) is the work done to assemble the 3 charges,

U =W2+W3 =
q1q2

4πε0R12
+

q1q3

4πε0R13
+

q2q3

4πε0R23
.

In the assembly of n charges the stored energy is

U =
1

4πε1

n∑
i=0

n∑
j>i

qiq j

Ri j
,

where Ri j is the distance between charges qi and q j.
The potential energy of any distribution of charges can be easily calcu-

lated by putting the charges and their separations into an arrays and then
using the function Sum[ f , {i, imin, imax}].

Example 3.19 Calculate the stored energy for the charge configuration in
Fig. 3.8 for q1 = Q, q2 = −Q/3, q3 = 3Q/5, and q4 = −Q/2. Take the side of
the square to be d.
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!!

!! !"

!"

Figure 3.8 Four charges are assembled in a square.

3.13.2 Stored Energy in a Capacitor

Consider the parallel plate capacitor of Fig. 3.6. Suppose that plates are ini-
tially uncharged, and negative charge is moved a little bit at a time from the
top plate to the bottom plate. The energy dU required to move dq against
voltage difference ∆V(q) which depends on the amount of charge that has
been moved is

dU = dq∆V(q) = dq
q
C
.

The total stored energy after moving charge Q is

U =

Q∫

0

dq
q
C
=

Q2

2C
.

Since C = Q/∆V , the stored energy can also be written

U =
1
2

Q∆V
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or
U =

1
2

C(∆V)2.

3.13.3 Stored Energy in Terms of the Field

For the parallel plate capacitor, the stored energy may be written in terms of
the field using

E =
∆V
d

which gives

U =
1
2

(
ε0A

d

)
(Ed)2 =

ε0
2

AdE2.

The stored energy per volume u is

u =
U
Ad
=
ε0

2
E2.

This is an important result that is universally true.

Example 3.20 Calculate the stored energy in the capacitor of Ex. 3.17 if the
voltage is 10 V.

Example 3.21 How many electrons have been moved to make 10 V on the
capacitor?
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The Biot-Savart Law

4.1 MAGNETIC FORCE AND MAGNETIC FIELD

No magnetic charge has ever been observed. Magnetic forces occur when
electric charges move. Consider the two moving charges of Fig. 4.1. Both
charges have to be moving to have be a magnetic force.

Figure 4.1 Two moving charges experience magnetic forces that depend on a
double cross-product of the velocity vectors and the separation vector RRR.

Analogous to the electric case, the concept of magnetic field is used to
describe this force. Most of this chapter is concerned with how to calculate
magnetic fields from moving charges in the form of a steady current. Once
the field is known, the magnetic force on an additional charge q moving with
velocity vector v placed in a magnetic field B is

Fm = qv×B,

63
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and the total force, electric plus magnetic is

F = q(E+v×B).

This is known as the Lorentz force. Note that the charge q is not part of the
determination of the fields.

If the charges are not relativistic, then the field caused by q1 is

B =
µ0q1v1×RRR

4π
,

whereRRR is the vector that point from the location of q1 to the place where the
field is evaluated.

Example 4.1 Get the magnetic constant.

Example 4.2 Get the numerical value of the magnetic constant.

The magnetic constant is exactly

µ0 = 4π×10−7 kg ·m
s2 ·A

,

from the SI definition of the amp. A more convenient unit of µ0 is T ·m/A.

Example 4.3 Get the numerical value of µ0
4π in T ·m/A.

Example 4.4 An elementary charge at the origin moves with speed 106 m/s
in the z direction. Calculate the magnetic field along the x-axis at a distance
of 1 nm.
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The force F2 on q2 is given by the Lorentz force, where B is the field
caused by q1 at the location of q2,

F2 =

(
µ0q1q2

4πR3

)
v2× (v1×RRR).

This is an experimental result like Coulomb’s law. Both Coulomb’s law and
this magnetic force law are not valid relativistically.

Example 4.5 At the location of the magnetic field B calculated in ex. 4.4,
another elementary charge Q has a velocity vector V = (1,2,3) ×106 m/s.
Calculate the magnetic force on Q.

The magnetic force of q2 on q1 is

F1 =

(
µ0q1q2

4πR3

)
v1× [v2× (−RRR)],

The magnetic force F2 does not equal to −F1 as might be expected from
Newton’s third law. The third law does not generally hold in special relativity
because the forces on q1 and q2 do not even occur at the same time. The
expressions for the forces are only a non-relativistic approximation.

4.2 MAGNETIC FLUX

Even though there is no magnetic charge, the concept of magnetic flux is
equally useful to that of electric flux and is defined by

Φ =

∫
dan̂ ·B.

As in the electric case, there are two choices for the unit vector normal to the
surface and the choice gives the sign of the flux. For a closed surface, n̂ is
chosen to be outward.

4.3 MAXWELL EQUATION

Gauss’s law for magnetism reads
∮

da ·B = 0.
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This is one of the four fundamental Maxwell equations and is often referred
to as Gauss’s law for magnetic fields. It is relativistically correct.

The differential form is deceptively simple,

∇ ·B = 0.

The physics of Gauss’s law for magnetic fields is that since there is no source
of the field analogous to electric charge, the magnetic field can never diverge.
This means that magnetic field lines must be closed loops. They have no
beginning and no end.

4.4 ELECTRIC CURRENT AND THE BIOT-SAVART LAW

Moving charge is electric current and is measured in C/s which is called an
amp (A). A steady current consists of a group of charges moving together
such that the charge density remains constant. Moving point charges are ob-
viously not a steady current. The simplest example of a steady current is a
closed loop of moving charge.

The expression qv is a current I times a displacement vector d`̀̀ which
follows the path of the moving charge. This is referred to as a current element.
The current can be written as a vector and

Id` = Id`̀̀ .

It does not matter if the vector goes with the current or the displacement
because they are in the same direction. The Biot-Savart law states that the
contribution to the magnetic field from a current element is

dB =
µ0(Id`̀̀)×RRR

4πR3 .

This gives the field for a non-relativistic moving point charge with Id`̀̀ = qv.
The total field for an extended current is obtained by integration,

B =
µ0

4π

∫
(Id`̀̀)×RRR
R3 .

This is the experimentally determined magnetic parallel of the electric field
defined by Coulomb’s law. It is even relativistically correct as long as the
current is steady.

Since the Maxwell equations are relativistically correct, it is perhaps not
too surprising that the speed of light c is somehow present. It is given by

c =
1
√
ε0µ0

.
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The speed of light is obtained with Quantity[“SpeedOfLight”].

Example 4.6 Get the speed of light.

Example 4.7 Get the numerical value of the speed of light.

The “==” does a logical comparison.

Example 4.8 Compare the speed of light to 1/
√
ε0µ0.

4.5 CONTINUITY EQUATION

The continuity equation is a relationship between charge and current and is
an expression of local charge conservation. In words, it says that charge can
only be decreasing (increasing) in a region if there is a current that carries the
charge out of (into) the region. Mathematically,

∇∇∇ ·J = −∂ρ
∂t
.

Taking the volume integral of both sides and using the divergence theorem,
∫

dv′ ∇∇∇ ·J =
∮

da′ ·J = −∂q
∂t
,

where q is the volume integral of the charge density. The flux of current
density through a closed surface that surrounds a volume of charge is equal
to the rate that charge leaves the volume. The continuity equation is contained
in the complete Maxwell equations, and it motivates the need for a term with
the time derivative of the electric field in Ampère’s law (Sect. 10.1).
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4.6 LINE OF CURRENT

The current vector I may be written in terms of the linear charge density λ
and velocity v,

I = λv.
Consider a segment of a wire, which is a part of steady current, that extends
from −L/2 to L/2 along the z-axis (Fig. 4.2).

Figure 4.2 A segment of current extends along the z-axis.

Example 4.9 Calculate the magnetic field as a function of (x,y) at z = 0.

Example 4.10 Transform, the field into cylindrical coordinates.
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Example 4.11 Take the limit as L→∞.

Example 4.12 Calculate the magnetic field as a function of (x,y,z).

Example 4.13 Take the limit as L→∞.
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Example 4.14 Transform, the field into cylindrical coordinates.

4.7 CYLINDRICAL SHELL OF CURRENT

Consider a current in the z-direction in the shape of a cylindrical shell (Fig.
4.3). Such a 2-dimensional current can be written in terms of a surface cur-
rent density vector K which is the current per distance perpendicular to the
current. In this case,

K =
I

2πa
,

where a is the radius of the cylinder. The Biot-Savart law reads

B =
µ0

4π

∫
dA

K×RRR
R3 .

Figure 4.3 A surface current K is along a cylindrical shell..

Example 4.15 Calculate the magnetic field outside a cylindrical shell of cur-
rent. The direction of the current is along the axis of the cylinder.
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Example 4.16 Calculate the magnetic field inside a cylindrical shell of cur-
rent.

4.8 CURRENT LOOP

Consider a circular current loop of radius a in the x−y plane (Fig. 4.4). To in-
tegrate around a loop, use Cartesian coordinates and the polar angle variable
of cylindrical coordinates (Ex. C.8),

φ̂̂φ̂φ = −sinφ x̂+ cosφ ŷ

to get
Id��� = Iadφφφ = Ia(−sinφ x̂+ cosφ ŷ)

At an arbitrary location, the exact field from the loop is complicated,
involving elliptic integrals which can occur when having the square root of a
polynomial function in the integrand.

Example 4.17 Find the magnetic field at an arbitrary distance from a current
loop.
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Figure 4.4 A circular current loop lies in the x− y plane.

The integral may always be evaluated numerically.

Example 4.18 Find the magnetic field at (x,y,z) = (4,0,6) cm from a 2-cm
radius loop carrying 1 A.
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Along the axis of the loop, the field is simple.

Example 4.19 Calculate the magnetic field along the axis of a current loop.

Example 4.20 Calculate the magnetic field at the center of a current loop.

4.9 SOLENOID

The field along the axis of a solenoid may be calculated by adding rings using
the result of Ex. 4.19. (The field everywhere is evaluated in Sect. 5.3.4 using
Ampère’s law.) A differential portion of the field is given by

dB = nIdz,

where n is the number of loops per unit length along the axis.
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Example 4.21 Calculate the magnetic field along the axis and at the center
of a solenoid that extends from −L/2 to L/2.

Example 4.22 Take the limit for an infinitely long solenoid.

A second way to view the solenoid is that of a cylindrical surface current
in the φ̂̂φ̂φ direction and directly use the Biot-Savart law to integrate over the
surface of the cylinder. This is easiest in cylindrical coordinates.

Example 4.23 Repeat the calculation of the finite solenoid of Ex. 4.21 with
direct integration.

In this calculation I is the total current on the surface. To compare to Ex.
4.21, I→ nLI.

The solenoid can be integrated numerically for an arbitrary position both
inside and outside. Without loss of generality, one can take y = 0, a = 1, and
chose a random position for x.

Example 4.24 Calculate the field inside an infinite solenoid at a random po-
sition.
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Example 4.25 Calculate the field outside an infinite solenoid at a random
position.

This is a remarkable result. The field is uniform everywhere inside the
solenoid and zero everywhere outside the solenoid.

4.10 MAGNETIC DIPOLE

The square loop can be used to arrive at the formula for an ideal magnetic
dipole, where the observation distance is much larger than the dimension of
the current loop. The calculation of the square loop is just the sum of four
straight wire segments as calculated in Ex. 4.12.

Example 4.26 Calculate the magnetic field due to a square current loop.
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The output of Ex. 4.26 is exact. (Try doing that without Mathematica!).
One can make sense of it by taking the limit of small L. It is not good enough
to take the limit as L→ 0 because that just gives zero. A series expansion is
needed to extract the leading term.

Example 4.27 Find the leading non-zero term for small L.

This is the pure dipole formula, sometimes referred to as the “ideal” or
“perfect” dipole in Cartesian coordinates with magnetic dipole moment m
equal to

m = IL2ẑ.

It is perhaps more easily recognized in spherical coordinates.

Example 4.28 Transform to spherical coordinates.

The field for the magnetic dipole field is derived again in a completely
different way in Sect. 6.2.3 using the vector potential.

The magnetic dipole field has the same form as the electric dipole field
(Ex. 3.14) with

1
ε0
→ µ0,
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and the dipole strength
qd→ IL2.

In each case the direction of the dipole vector is along the z direction, which
defines the polar angle θ (App. C).

A straightforward (if somewhat lengthy) calculation shows that the mag-
netic field can be put in the so-called coordinate independent form using

r̂ = sinθcosφ x̂ + sinθ sinφ ŷ + cosθ ẑ

and
ẑ = cosθ r̂− sinθ θ̂̂θ̂θ.

which gives

B =
µ0

4π

[
3(m · r̂)r̂−m

r3

]
,

where m is taken to be in the z direction.
In Ex. 6.21 it is shown that the coordinate independent form of the dipole

field gives the same result as Ex. 4.28.
The electric version is

E =
1

4πε0

[
3(p · r̂)r̂−p

r3

]
,

where p is taken to be in the z direction.
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Ampere’s Law

Ampère’s law states that the line integral of B around a closed loop is equal
to the magnetic constant times the current enclosed by the loop,∮

d��� ·B = µ0Ien.

Ampère’s law may be derived from the Biot-Savart law as is done in Sect. 5.2.
In 5.1, the validity of Ampère’s law is verified with a variety of examples.

The simplest case is a long straight wire with a steady current. Outside
the wire, the magnetic field was calculated in cylindrical coordinates (Ex.
4.14) to be

B =
µ0I
2πr
φ̂̂φ̂φ.

The curl is zero.

Example 5.1 Calculate the curl of φ̂̂φ̂φ/r.

This is analogous to the divergence of the field due to a point charge
which is zero everywhere except at the location of the charge where it be-
comes infinite. In this case, the curl becomes infinite at the location of the
current (inside the wire), giving

∇∇∇×B = µ0J,

which is Ampère’s law in differential form. (Compare to ∇∇∇ ·E = ρ/ε0.) Inte-
grating over an arbitrary surface gives∫

dA n̂ · (∇∇∇×B) = µ0

∫
dA n̂ ·J.

79
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Using the mathematical identity called Stokes’ theorem,∫
dA n̂ · (∇∇∇×B) =

∮
d`̀̀ ·B,

where the area in the integral on the left is enclosed by the line integral on
the right. This gives Ampère’s law in integral from,∮

d`̀̀ ·B = µ0

∫
dA n̂ ·J = µ0Ien.

The physics statement of Ampère’s law is that the line integral of the
magnetic field around any closed loop is equal to µ0 times the current that
passes through the loop.

5.1 EXAMPLES OF AMPÈRE’S LAW

5.1.1 Square Loop

In Ex. 4.9 the field was calculated at the midpoint of a current segment,

B = −
µ0Iy

2π(x2 + y2)
x̂ +

µ0Ix
2π(x2 + y2)

ŷ.

Now consider the field at the center of a square loop (5.1).

Example 5.2 Integrate the B field around a square loop of arbitrary side (2a)
for a long wire at its center.

Figure 5.1 The integration path for Ex. 5.2 is a square loop of arbitrary size
that encloses the current.
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Figure 5.2 shows an integration path that does not enclose the current.

Figure 5.2 The integration path for Ex. 5.3 is a square loop of arbitrary size
(2a) and arbitrary distance (d) that does not enclose the current.

Example 5.3 Integrate the magnetic field around a square loop of arbitrary
side (2a) and arbitrary distance (d) that does not enclose the current.
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5.1.2 Circular Loop

Ampère’s law may be illustrated more elegantly with a circular loop as shown
in Fig. 5.3. In cylindrical variables, the integration direction is

φ̂̂φ̂φ = −sinφ x̂ + cosφ ŷ

(Ex. C.8). It is easiest to integrate around the loop using cartesian coordi-
nates with the angular parameter φ. With the origin placed at the wire, the
coordinates on the circle are

x = d + acosφ

and
y = asinφ.

The line integral of B around the circle is

∮
d`̀̀ ·B =

2π∫
0

dφ a
[
−Bx(φ) sinφ+ By(φ)cosφ

]
.

 x

y

ℐ
dℓ

Figure 5.3 The integration path for Ex. 5.4 is a circular loop of radius a with
its center placed at an arbitrary distance d along the x-axis. If d > a as shown,
the current is not enclosed by the loop. For d < a, the current is enclosed.

.

Example 5.4 Integrate B around a circular loop of arbitrary radius a whose
center is at a distance d from the origin.
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If a< d, the charge is not enclosed and the answer is 0. If a> d, the charge
is enclosed and the answer is µ0I.

5.2 DERIVATION FROM THE BIOT-SAVART LAW

Ampére’s law is obtained for a steady current by taking the curl of the Biot-
Savart law (compare to the relationship between the formula for electric field
and Gauss’s law as discussed in Sect. 2.3 where the divergence of the electric
field was needed). In this case, it means taking the curl of a cross-product,

∇∇∇× (J×RRR) = (RRR ·∇∇∇)J− (J ·∇)∇)∇)RRR+J∇∇∇ ·RRR−RRR∇∇∇ ·J.

Example 5.5 Verify the vector identity for curl of a cross-product.

There is a trick that will make the derivation easier, which is

−∇∇∇
(
Ri

R3

)
=∇∇∇′
(
Ri

R3

)
,

where Ri is some component of RRR (Rx,Ry or Rz), and ∇∇∇′ denotes differentia-
tion w.r.t. the primed variables (remembering RRR = r− r′).
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Example 5.6 Verify the gradient relationship.

An additional vector identity is also needed,

∇∇∇ ·
(
Ri

R3 J
)
=
Ri

R3∇∇∇ ·J+J ·∇∇∇
(
Ri

R3

)
.

Example 5.7 Verify that ∇∇∇ · (aJ) = a∇∇∇ ·J+J ·∇∇∇ (a) for any scalar function a.

Putting this together gives
∫

dv′J ·∇∇∇′
(
Ri

R3

)
=

∫
dv′∇∇∇′ ·

(
J
Ri

R3

)
−
∫

dv′
Ri

R3∇∇∇
′ ·J.

The last term is zero for a steady current. Using the divergence theorem, we
may take the integration surface out to infinity to get

∫
dv′∇∇∇′ ·

(
J
Ri

R3

)
=

∫
da′ ·
(
Ri

R3 J
)
= 0.

There is only one term left in the curl,

∇∇∇×B =
∫

dv′J∇∇∇ ·
(
RRR
R3

)
= µ0J,

where the last step follows from ∇∇∇ · (RRR/R3) = 4πδ3(RRR) (2.3).
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5.3 APPLYING AMPÈRE’S LAW

The application of Ampére’s law is analogous to Gauss’s law in that to use
it to calculate the magnetic field one must know its direction from symmetry
and be able to perform the line integral with B as a variable. One then solves
for B.

5.3.1 Straight Line of Current

If one integrates around a circle with a long wire passing through at its center
(Fig. 5.4), then from symmetry the magnetic field is in the φ̂̂φ̂φ direction,∮

d`̀̀ ·B = 2πrB,

and Ampère’s law reads
2πrB = µ0I,

giving an equation for the magnitude B,

2πrB = µ0I,

or
B =

µoI
2πr

.

Figure 5.4 The integration path for Ampère’s law is a circle of arbitrary radius
outside the wire at constant B.

Example 5.8 Calculate the magnetic field 1 cm from the center of a long
wire carrying 1 A.



86 � Guide to Electricity and Magnetism

5.3.2 Inside a Long Cylinder of Current

For a cylinder of current (for example, inside a wire) with current density J
and radius a, one chooses an integration path that is a circle with its center
along the cylinder axis and its plane oriented perpendicular to the cylinder
axis (Fig. 5.5).

Figure 5.5 The integration path for applying Ampère’s law inside a cylinder
of current is a circle of arbitrary radius inside the cylinder.

Now the current enclosed is only a fraction of the total current which
depends on the radius of the integration loop (the variable r). Ampère’s law
reads ∮

d��� ·B = 2πrB = µ0πr2J,

and
B =

1
2
µ0rJ =

µ0rI
2πa2 .

(Note that I = πa2J.)
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Example 5.9 Calculate the magnetic field 2 mm from the center of a long
wire of radius 4 mm carrying 10 A.

5.3.3 Sheet of Current

For a sheet of current density K, the integration path is parallel to the sheet
on each side with perpendicular connectors (Fig. 5.6).

Figure 5.6 The integration path for a current sheet is a rectangular loop where
two sides are parallel to the magnetic field.

If each segment parallal to the field has length L, then
∮

d��� ·B = 2LB = µ0KL,

and
B =

1
2
µ0K.

Example 5.10 Calculate the field for 10 A/m surface current.

5.3.4 Solenoid

In Sect. 4.9 the field of a solenoid on axis was calculated analytically, and the
field everywhere for a long solenoid was calculated numerically. Symmetry
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and Ampère’s law can be used to deduce the field of a long solenoid. Take the
axis of the solenoid to be the z direction. The current is in the φ direction and
can only make a field that is in the z direction according to the Biot-Savart
law. This can be seen from Ampère’s law because an integration loop around
φ (at constant z) is proportional to Bφ but that has zero current enclosed so
Bφ = 0, true both inside and outside the solenoid. The field can have no radial
component because if we change the direction of the current and turn it upside
down, we get the same configuration, again true both inside and out, Br = 0.
To get the field outside, make a rectangular integration loop that is in the z
direction on two sides and the r direction on the other sides. Since Br = 0,
only the path along z can contribute. The line integral of B (which encloses
no current) is ∮

d��� ·B = Bz2 L−Bz1 L = 0.

Since this must be zero along a path that extends to infinity, the field must be
zero everywhere. To get the field inside, make a rectangular path in r− z that
extends inside the solenoid. Ampère’s law gives

∮
d��� ·B = BzL = µ0NI,

where N is the number of turns enclosed by the loop. This result does not
depend on the location of the portion of the loop that is inside the solenoid
so the field is constant inside. The field depends on the number of turns per
length, n = N/L,

B = µ0nI.

Example 5.11 A long solenoid has 103 turns per meter. Calculate the current
needed to make a 1T field.

5.3.5 Toroid

A toroid has the shape of a solenoid bent into a circle (Fig. 5.7), and like
a solenoid, can have any shaped cross-section, although the most common
types are circular or rectangular.
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Figure 5.7 A toroid has the shape of a solenoid that is bent into a circle.

The integration path is along the φ direction to follow the direction of the
magnetic field. The path encloses all the turns of the coil,∮

d`̀̀ ·B = 2πr = µ0NI.

This gives

B =
µ0NI
2πr

,

where r is the distance to the origin which is placed at the geometrical center
(outside the coil). Outside the coil, the field is zero.

5.4 INCOMPLETE MAXWELL EQUATION

The Maxwell equation in differential form is

∇∇∇×B = µ0J,

and it states that the curl of B is zero everywhere except at the location of a
current. This rule is true only for steady currents. When the charge density
changes with time, there are time-varying electric fields that contribute to the
curl of B. The complete Maxwell equation is given in Sect. 10.1.
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Magnetic Vector
Potential

The vector potential A is the function whose curl gives the magnetic field,

∇∇∇×A = B.

The physical interpretation of A is that it represents the momentum per charge
in the same way that the electric potential is the potential energy per charge.
The units of A are kg·m

s·C = T ·m. Taking the space derivative of A with the curl
means that the unit of magnetic field must be kg · (m/s) per C per m, or kg

s·C .

Example 6.1 Verify that the units of magnetic field are kg
s·C .

The reason that we can define the magnetic field as the curl of a vector
potential is that

∇∇∇ ·B = 0,

and the divergence of the curl of any vector function is zero. In particular,

∇∇∇ · (∇∇∇×A) = 0.

Example 6.2 Define an arbitrary vector function and take the divergence of
the curl.

91
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6.1 DETERMINING A FROM B

It is not easy to get A from B in general because it is hard to undo a curl.
There are a few cases where symmetry makes the calculation easy.

6.1.1 Vector Potential of a Solenoid

The vector potential due to a long solenoid of radius b may be found by using
Stokes’ theorem (see Fig. 6.1),∫

da ·∇∇∇×A =

∮
d`̀̀ ·A.

Figure 6.1 A long solenoid has constant field perpendicular to its cross -
section. The area integral of the magnetic field over a disk is equal to the
line integral of the vector potential around the boundary of the disk.

Knowing the magnetic field to be constant, the surface integral is∫
da · ∇×A =

∫
da ·B = πb2B,

and the line integral is ∮
d`̀̀ ·A = 2πbA

because the direction of A is in the φ direction. This gives

A =
b
2

B =
1
2
µ0nbI
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for B = µ0nI (4.9 and 5.3.4). Thus,

A =
1
2
µ0nbI φ̂̂φ̂φ.

One can readily verify that the curl gives B.

Example 6.3 Calculate the magnetic field for a long solenoid from the vector
potential.

6.1.2 Vector Potential of a Sheet of Current

Consider a sheet with surface current density K in the x direction. Take the
z direction to be perpendicular to the plane of current. The magnetic field is
in the y direction (Sect. 5.3.3), so that the vector potential (which is in the x
direction) can only depend on z, so

A = f (z) x̂,

where f (z) is an arbitrary function. Thus,

∇∇∇×A = −∂ f
∂z

ŷ = B = ±1
2
µ0Kŷ,

where the magnetic field is in opposite directions on opposite sides of the
current sheet. This gives

A = ±1
2
µ0Kz x̂ = ±1

2
µ0zK.

A constant can be added to A without changing the magnetic field.

Example 6.4 Verify that this potential is correct for a current sheet by taking
the curl.
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6.1.3 Vector Potential of a Long Wire

Consider a long wire of radius b. Take the current to be in the z direction. By
symmetry, the vector potential can only depend on the distance to the wire r,
and one may write

A = f (r) ẑ.

Outside the wire
∇×A = −∂ f

∂r
φ̂̂φ̂φ =
µ0I
2πr
φ̂̂φ̂φ.

This gives

A = −µ0I
2π

ln
r
b
φ̂̂φ̂φ.

Example 6.5 Verify that the vector potential outside the wire is correct by
taking the curl.

Inside the wire
∇×A = −∂ f

∂r
φ̂̂φ̂φ =
µ0Ir
2πb2 φ̂̂φ̂φ.

This gives

A = − µ0I
4πb2 (r2−b2) φ̂̂φ̂φ.

Example 6.6 Verify that the vector potential inside the wire is correct by
taking the curl.

6.2 CALCULATING A BY DIRECT INTEGRATION

The vector potential may be written

A =
µ0

4π

∫
d�′

I
R .
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It is important to note that A is in the same direction as the current. This
integral expression for A is consistent with the Biot-Savart law. That this is
true can be seen by taking the curl with help from the vector identity

∇∇∇× ( f F) = f∇∇∇×F−F×∇∇∇ f .

Example 6.7 Show the vector identity holds.

For the present case,

f =
1
R ,

and
F = I�′.

The function F does not depend on the coordinates (x,y,z) that we are taking
the curl with respect to, but rather only on the dummy integration variables,
so it has zero curl and one is left with

∇∇∇×
(∫

d�′
I
R

)
= −
∫

d�′I× ∇∇∇
(

1
R

)
=

∫
d�′

I×RRR
R3 ,

and the Biot-Savart law is recovered.

Example 6.8 Show that ∇∇∇
(

1
R
)
= − RRRR3 .

For a surface current, the integral for A becomes

A =
µ0

4π

∫
da′

K
R ,

recalling that K is the current per length perpendicular to the direction of
current.
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For a volume current, the integral for A becomes

A =
µ0

4π

∫
dv′

J
R ,

recalling that J is the current per area perpendicular to the direction of cur-
rent.

6.2.1 Vector Potential of a Wire Segment

Consider a finite segment of current (Fig. 4.2) for which the magnetic field
was calculated using the Biot-Savart law (Ex. 4.9). The vector potential is
obtained by direct integration along the path of the current,

A =
µ0

4π

∫
dz′

I
R ẑ.

Example 6.9 Calculate the magnetic vector potential of a line segment ex-
tending from z1 to z2.

Calculating B from A is straightforward. For simple cases, one should
be comfortable with visualizing and calculating the curl by hand, while for
complicated cases Mathematica is a huge time saver.

In Ex. 6.9 the vector potential a distance r from the axis of an arbitrary
line segment was calculated. The direction of A is the z direction in cylindri-
cal coordinates. Taking the curl to get B is straightforward.

Example 6.10 Calculate the magnetic field from a line segment of current
extending from z1 = −L/2 to z2 = L/2 from the vector potential as calculated
in ex. 6.9.
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This is the same answer as that found from the Biot-Savart law in Ex.
4.10.

6.2.2 Vector Potential for a Spinning Sphere of Charge

Consider a sphere of charge of radius R and uniform surface charge density
σ that is spinning with uniform angular velocity ωωω (Fig. 6.2). The surface
current is

K = σv = σRsinθω φ̂̂φ̂φ.

Figure 6.2 A spinning sphere of charge has its rotation axis at an arbitrary
angle α, and the angle θ is the polar integration angle.

The direction of the current is in the φ direction in a coordinate system
where the polar angle is α. This integration is hard in these coordinates. It
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is much easier to choose the observation point P along the z-axis and let the
angular velocity vector make an arbitrary angle α with the z-axis. Then the
integration variable is the ordinary polar angle. After the integration, one can
then rotate back to a more natural coordinate system where ωωω points along
the z-axis. This one is harder to integrate without Mathematica.

The integration is easiest to set up in Cartesian coordinates. After the in-
tegration, one can convert to spherical coordinates. Since there is φ symme-
try, one may choose y = 0 without loss of generality. The current and vector
potential then point in the y direction, which becomes the φ direction after
rotating back to the frame whereωωω points in the z direction.

Example 6.11 Calculate the magnetic vector potential in a coordinate sys-
tem where the spinning sphere makes an angle α with the z axis.

The result of Ex. 6.11 holds both inside and outside the sphere.

Example 6.12 Evaluate the magnetic vector potential outside the sphere in
spherical coordinates.

The magnetic field is obtained by taking the curl of the vector potential.



Magnetic Vector Potential � 99

Example 6.13 Calculate the magnetic field outside the sphere in spherical
coordinates.

This is a remarkable result. The field outside the spinning sphere of
charge is a perfect dipole.

Example 6.14 Evaluate the magnetic vector potential inside the sphere in
spherical coordinates.

Example 6.15 Evaluate the magnetic field inside the sphere in spherical co-
ordinates.

This is just a constant field as can be seen by transforming coordinates
from spherical to Cartesian because

φ̂̂φ̂φ = cosθ x̂− sinθ ŷ.

Example 6.16 Transform the magnetic field inside the sphere into Cartesian
coordinates.
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This is a another remarkable result. The field inside the spinning sphere
of charge is constant.

Figure 6.3 The magnetic field from the spinning sphere of charge is constant
inside and a perfect dipole outside.

6.2.3 Vector Potential for a Dipole

The ideal dipole field comes from a current loop at large distances. The exact
integration of a current loop is not easy. Mathematica will find the limit at
large distances with the function AsymptoticIntegrate[ f , x, x→ x0] , where
the integral

∫
dx f is performed about x = x0, to any desired accuracy, for

the present case in powers of r, the distance to the center of the loop. The
integral is set up like normal, and then in a single calculation it will take the
limit to any specified order. For a current loop, the 1/r term is zero (would
correspond to a monopole which does not exist), so the leading term is 1/r2.
To set up the problem, work in Cartesian coordinates with angular variables.
Let the current loop be a circle in the x− y plane centered on the origin with
radius b. Since there is φ symmetry, take y = 0 without loss of generality. The
current and A are both in the φ direction which is the y direction in Cartesian
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coordinates at y = 0. The position coordinate is

r = r sinθ x̂+ r cosθ ẑ.

The vector that points to the current is

r′ = bcosφ x̂+bsinφ ŷ.

The current is
I = −I sinφ x̂+ I cosφ ŷ.

Example 6.17 Calculate the leading term to the vector potential from a cir-
cular current loop.

With the definition of magnetic dipole moment as

m = πb2I ẑ,

one gets

A =
µ0m× r̂

4πr2 .

The magnetic field is contained by taking the curl.

Example 6.18 Calculate the leading term to the magnetic field from a circu-
lar current loop.

The dipole magnetic field may be written in a coordinate independent
form as

B =
µ0

4π
3(r̂ ·m)r̂−m

r3 .
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Example 6.19 Show that the curl of the magnetic dipole vector potential
gives the above expression for B.

Example 6.20 A current loop of 1 A and radius 1 cm is oriented in the z
direction. Find the vector potential at a position (1 m, 0.5 m, 1 m) from the
center of the current loop.

Example 6.21 Find the magnetic field at a position (1 m, 0.5 m, 1 m) from
the center of the current loop.
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Faraday’s Law

7.1 THE FLUX RULE

The magnetic flux is

Φ =

∫
da n̂ ·B =

∫
da ·B.

The flux rule states that a change in magnetic flux through a closed loop
introduces an EMF (E) in a direction that opposes the flux change (Lenz’s
law),

dΦ
dt
= −E.

The unit of EMF is the volt and it represents a line integral of the electric
field around a closed loop, which unlike the static case, is not zero.

E =
∮

d��� ·E,

The name EMF comes from “electromotive force,” which is a misnomer.
It can be useful to think of E as a potential difference, albeit a special one
caused by the changing magnetic flux. The induced E can be present for
either a physical conductor (a wire, for example) or an imaginary loop in
empty space. The difference is that if a conducting loop is present, electrons
will get pushed by the induced electric field causing a current.

Example 7.1 A magnetic field is perpendicular to a d = 0.1 m square con-
ducting loop and oscillates as (1 T) sin(ωt). Calculate the maximum EMF for
for ω = 60 Hz.
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7.2 MAXWELL EQUATION

Faraday’s law is a general statement of the flux rule. In integral form, it reads∮
d`̀̀ ·E = −

d
dt

∫
da ·B.

The differential form comes from Stokes’ theorem,∮
d`̀̀ ·E =

∫
da · ∇×E, .

where the line integral on the left encloses the integration area on the right.
This gives the differential form

∇×E = −
∂B
∂t
.

This Maxwell equation is complete and relativistically correct. It pairs with
Gauss’s law for magnetic fields as the two Maxwell equations that have no
source terms (charges or currents):

∇ ·B = 0 ∇×E +
∂B
∂t

= 0.

For steady currents, we have

∇×B = µ0J,

which has the solution
B =

µ0

4π

∫
dv′

J×RRR
R3 .

For the special case of zero charge,

∇ ·E = 0 ∇×E = −
∂B
∂t
,

and the solution is
E = −

1
4π

∂

∂t

∫
dv′

B×RRR
R3 .

Example 7.2 A magnetic field of magnitude 0.005 T oscillates at 60 times
per second perpendicular to a circular conducting loop of radius 10 cm. Cal-
culate the EMF around the loop and the maximum electric field inside the
conducting loop.
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7.3 MUTUAL INDUCTANCE

Two conducting loops with currents I1 and I2 are near each other with arbi-
trary orientation (Fig. 7.1). The magnetic field produced by loop 2 makes a
flux in loop 1,

Φ1 =

∫
da1 ·B2 =

∫
da1 ·∇∇∇×A2 =

∮
d���1 ·A2,

where the last step is by Stokes’s theorem. Using the direct integral for A2,

A2 =
µ0I2

4π

∫
d���2
R ,

Φ1 =
µ0I2

4π

∫
d���1 ·d���2
R .

!""# $

!""# %

Figure 7.1 Two conducting loops that are near each other have mutual induc-
tance. The magnetic flux through loop 1 (loop 2) is proportional the current
in loop 2 (loop 1).
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Similarly, the flux in loop 2 caused by loop 1 is

Φ2 =
µ0I1

4π

∫
d���1 ·d���2
R .

Thus, the flux in one of the loops is proportional to the current in the other
loop. The constant of proportionality is called the mutual inductance M,

M =
µ0

4π

∫
d���1 ·d���2
R .

The unit of inductance is the henry (H). One H is a s·V/A.

Example 7.3 Show 1 H = 1 s·V/A.

7.3.1 Two-Loop Example

Consider a small loop with radius a and large loop with radius b (fig. 7.2). The
loops are parallel and share a common axis, and their centers are separated
by a distance d.

Figure 7.2 The center of a small loop is separated by a distance d from the
center of a large loop. The small loop approximates that of a perfect dipole
field at the position of the large loop and the large loop approximates a con-
stant field at the position of the small loop.

Example 7.4 Method 1: Take the field from the big loop to be constant at
the location of the small loop and calculate the mutual inductance.



Faraday’s Law � 107

Example 7.5 Method 2: Take the field of the small loop to be that of an
ideal dipole and calculate the mutual inductance. Note that the flux can be
most easily calculated by integrating the radial component of the dipole field
over an appropriate portion of a sphere.

The results from Ex. 7.4 and Ex. 7.5 agree as expected.

Example 7.6 Calculate the numerical value of the mutual inductance for a
= 0.5 cm, b = 10 cm, and d = 50 cm.
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7.3.2 Nested Solenoids

Consider a smaller solenoid inside a larger solenoid (Fig. 7.3). The flux
through the large solenoid is not easy to calculate because of the edge ef-
fects. The flux through the small solenoid is straightforward,

Φ = (µ0n2I)(πa2)(n1d),

where n1 (n2) is the numbr of turns per length of the smaller (larger) solenoid,
a and d are the radius and length of the smaller solenoid, and I is the current
in the larger solenoid. The mutual inductance is

M = µ0πa2n1n2d.

Figure 7.3 Two nested solenoids have a mutual inductance.

Example 7.7 Compute the mutual inductance for nested solenoids with a =
4 cm, d = 16 cm, n1 = 20 / cm, and n2 = 10 / cm.
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7.4 SELF-INDUCTANCE

For a single conducting loop, the self-inductance L is defined to be

L =
Φ

I
.

In this case, the current in the loop is making a field that passes though the
same loop.

Example 7.8 Calculate the self-inductance of a circular loop with radius 1
m and wire diameter 1 mm. Give a numerical answer in µH.
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It has been seen that the exact magnetic field due to a current loop is
complicated close to the loop. It even depends on the diameter of the wire.
The self-inductance of a current loop is a simple conceptual example whose
solution is non-trivial.

7.5 STORED MAGNETIC ENERGY

The magnetic energy stored in an inductor (a coil) with current I may be
written

W =
1
2

LI2

which corresponds to an EMF

E = −L
dI
dt
.

The flux is

Φ = LI =
∫

da ·B =
∫

da ·∇∇∇×A =
∮

d��� ·A.

This leads to an alternate expression for the stored energy,

W =
1
2

I
∮

d��� ·A = 1
2

∮
d�A · I = 1

2

∫
dvA ·J.

Now use the vector identity

∇∇∇ · (A×B) = B · (∇∇∇×A)−A · (∇∇∇×B).

Example 7.9 Verify the vector identity for divergence of a cross-product.

Since B =∇∇∇×A and ∇∇∇×B = µ0J, one gets the stored energy to be

W =
1

2µ0

[∫
dvB2−

∫
dv ∇∇∇ · (A×B)

]
.

The second term integrates to zero by the divergence theorem, taking a sur-
face at infinity. The stored energy in a magnetic field is

W =
1

2µ0

∫
dvB2.
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Example 7.10 Find the stored magnetic energy in a length d of a coax cable
(fig. 7.4) with inner radius a, outer radius b, and current I.

Figure 7.4 A coax cable has its inner conductor at radius a and its outer con-
ductor at radius b.

Calculating the stored magnetic energy is often the easiest way to calcu-
late the inductance.

Example 7.11 Calculate the inductance in nH for a = 1 mm, b= 4.5 mm, and
d= 1 m.
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Circuits

8.1 OHM’S LAW

Ohm’s law gives the relationship between voltage V and current I in a circuit
with resistance R,

V = IR.

In this expression, V is understood to be the potential difference between two
points that have resistance R. The unit of resistance is the ohm which is a volt
per amp.

Example 8.1 Verify that 1 Ω= 1 V/A.

8.1.1 Electric Field

The resistance can be written in terms of the resistivity ρ and the geometry of
the resistor. For a cylinder of length L and cross-sectional area A,

R =
ρL
A
.

Using J = I/A, the electric field is

E =
V
L
=

IR
RA/ρ

= Jρ =
J
σ
,

where σ = 1/ρ is the conductivity. Ohm’s law in terms of the field in vector
form is

J = σE.

113
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Example 8.2 Get the electrical conductivity (σ) of copper.

It is often stated that the electric field inside a conductor is zero, but this is
true only for the static case. For.a steady current (moving charge, there must
be an electric field present to cause the force that pushes the charge.

Example 8.3 Calculate the electric field for 1 A in a copper wire with with
radius 1 mm.

8.1.2 Drift Speed

The conduction electrons in a metal move randomly at a very high speed
that is just below being relativistic. They have a kinetic energy of a few eV.
This energy and corresponding speed are referred to as the Fermi energy and
Fermi speed (vF).

Example 8.4 Calculate the Fermi speed for a 4 eV electron in a conductor.

In addition to the large random (Fermi) speed, the electrons acquire a
tiny drift speed from the applied electric field. The relationship between the
current density J and the drift velocity vd is

J = ρvd = nevd,

where ρ is the density of electrons that are free to move, typically one per
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atom, which is expressed as the number density n times the elementary charge
e. This gives

vd =
J

ne
.

Example 8.5 Calculate the drift speed for 1 A in a wire having a radius of 1
mm.

The electric current is made up of a huge number of electrons that are
moving together very slowly. They are accelerated by the electric field until
they suffer a random collision with another electron.

vd = aτ =
eE
m
τ =

eE
m

d
vd
,

where d is the mean free path between collisions. This gives

J = nevd =
eE
m
τ =

ne2d
mvF

E.

This is Ohm’s law with

σ =
ne2d
mvF
.

Example 8.6 Estimate the mean-free-path for conduction electrons in cop-
per.

Example 8.7 Estimate the time between collisions.
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8.2 CIRCUITS WITH RESISTORS

8.2.1 Resistors in Series

Resistors in series have the same current. The sum of the potential drops
across the individual resistors equals the total potential drop, leading to an
equivalent resistance (Req)

Req = R1+R2.

8.2.2 Resistors in Parallel

Resistors in parallel have the same potential drop, leading to

1
Req
=

1
R1
+

1
R2
,

or
Req =

R1R2

R1+R2
.

Example 8.8 Calculate the equivalent resistance for R1,R2,R3 in parallel
(Fig. 8.1).

 

Figure 8.1 Three resistors are shown connected in parallel.
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Example 8.9 Calculate the equivalent resistance for R1,R2,R3,R4 in parallel.

8.3 KIRCHHOFF’S RULES

The first rule (conservation of charge) says that if we have a junction and the
current splits, the net incoming current must equal the net outgoing current.

The second rule states that if we take any closed loop in a circuit, the sum
of the voltage drops across each element equals zero. This follows from

∮
d��� ·E = 0.

One applies Kirchhoff’s rules in a circuit by picking a direction for the
current in each branch and then applying junction and loop rules giving si-
multaneous equations for the currents. The direction picked for the currents
does not matter, as the algebraic sign of the solution determines the actual
direction.

8.3.1 Two-Loop Circuit

The circuit of Fig. 8.2 has two junctions and three loops (counting the outer
loop). One junction and two of the loops give enough information to solve the
problem with the other junction and loop providing redundant information.
The junction rule at the upper junction gives

I1 = I2+ I3.

The loop rule on the left gives

E1− I1R1− I3R3 = 0,

and on the right gives
E2+ I3R3− I2R2 = 0.

The bottom junction rule and the outer loop rule do not add any additional
information.
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 


 

 



Figure 8.2 The circuit has two loops and a junction which give three indepen-
dent equations which can be solved for the currents.

Example 8.10 Calculate the currents I1, I2, I3 for the circuit of fig. 8.2.

8.3.2 Three-Loop Circuit

The circuit of Fig. 8.3 has two independent junctions and three independent
loops out of a total of four junctions and six possible loops. The junction rules

  

 





  

 

Figure 8.3 The circuit has three loops and two junctions which give five inde-
pendent equations that can be solved for the currents.
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give
I1 = I2+ I4

and
I2 = I3+ I5.

The loop rules give
E1− I1R1+E2− I4R4 = 0,

E2− I2R2− I5R5+ I4R4 = 0,

and
−E3+ I5R5− I3R3 = 0,

Example 8.11 Calculate the currents I1, I2, I3, I4, I5 for the circuit of Fig. 8.3.

Example 8.12 Calculate the currents I1, I2, I3, I4, I5 for the circuit of Fig. 8.3
for the special case where the resistors are all identical and the batteries are
identical.
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8.3.3 ∆−Y Transform

This example is a classic, the solution of which is straightforward, but the
algebra is tedious if done by hand. Suppose one has a configuration of 3
resistors RA,RB,RC , as shown in Fig. 8.4. What are the values of resistors
R1,R2,R3 that make the equivalent circuit of Fig. 8.5? The problem is solved
by noting that the points with the potentials Vx and Vy are connected by RC
in parallel with RA+RB in FIg. 8.4 and R1+R2 in Fig. 8.5. Therefore,

1
R1+R2

=
1

RC
+

1
RA+RB

.

Similarly,
1

R1+R3
=

1
RB
+

1
RA+RC

and
1

R2+R3
=

1
RA
+

1
RB+RC

.

Example 8.13 Solve for R1,R2,R3
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RC

RARB

Vx Vy

Vz

Figure 8.4 Three resistors are shown in the ∆ configuration.

R1 R2

R3

Vx Vy

Vz

Figure 8.5 Three resistors are shown in the Y configuration.

8.4 RC CIRCUIT

Kirchhoff’s loop rule applied to the RC circuit gives

Q
C
− IR = 0.

Using I = −dQ/dt, one obtains a differential equation for the charge,

dQ
dt

= −
Q

RC
.

This is a simple differential equation for Q(t) whose solution is an exponential
decay.
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Example 8.14 Solve the discharging capacitor for Q(t). Set the initial charge
equal to q at t = 0.

If the initial voltage on the capacitor is V0, then

Q(t) = V0Ce−
t

RC .

The product RC has units of time.

Example 8.15 Calculate the time constant for a 100 pF capacitor discharg-
ing with 100 Ω.

Example 8.16 Calculate the time for the capacitor of ex. 8.15 to be 99% dis-
charged.

8.5 ALTERNATING CURENT

Alternating current (AC) circuits have an oscillating, typically sinusoidal,
voltage source. This produces an AC current whose phase depends on the
circuit elements.

8.6 DRIVEN LR CIRCUIT

Figure 8.6 shows an LR circuit with an oscillating voltage source. Kirchhoff’s
loop rule gives

E0 cosωt−L
dI
dt
−RI = 0.
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The current and voltage are out of phase due to the derivative which turns a
cosine (sine) into a minus sine (cosine). The current may be written

I = I0 cos(ωt+φ),

where φ is the phase angle. The differential equation becomes

E0 cosωt+ωLI0 sin(ωt+φ)−RI0 cos(ωt+φ) = 0.







Figure 8.6 The circuit contains an oscillating voltage source, an inductor, and
a resistor.

Example 8.17 Solve for the current as a function of time.

The current has a transient term that decays exponentially. The steady
state solution may be obtained by expanding the trigonometric functions.

Example 8.18 Expand the trigonometric functions.

Since this must hold for all values of t, the expansion of ex. 8.18 gives 2
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equations that may be solved for I0 and φ because the sinωt and cosωt terms
must separately be equal to zero. This gives

ωLI0 cosφ+RI0 sinφ = 0,

and
E0+ωLI0 sinφ−RI0 cosφ = 0.

The solution for φ is easy from the first equation,

tanφ = −ωL
R
.

The solution for I0 involves some algebra.

Example 8.19 Solve for I0.

Example 8.20 Calculate numerical values of I0 and φ for E0 = 110 V, ω =
60 Hz, R = 100 Ω, and L = 2 H.

The current,

I = I0
E0√

R2+ω2L2
cos
(
ωt− tan−1 ωL

R

)
,

is seen to peak at a later time than the voltage (fig. 8.7),

E = E0 cosωt.
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Figure 8.7 The current in an AC RL circuit lags the voltage.

8.7 DRIVEN RC CIRCUIT

Kirchhoff’s loop rule for the RC circuit (Fig. 8.8) gives

E0 cosωt +
Q
C
−RI = 0.

Using Q = −dI/dt,

E0 cosωt +
Q
C

+ R
dQ
dt

= 0.

~ℰ

C

R

Figure 8.8 The circuit contains an oscillating voltage source, a capacitor, and
a resistor.

Example 8.21 Solve for the charge on the capacitor as a function of time.
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The charge has a transient term that decays exponentially. The steady
state solution may be obtained by expanding the trigonometric functions as
performed in Sect. 8.6. The current may be written

I = I0 cos(ωt+φ),

This gives

Q = −
∫

dt I = − I0

ω
sin(ωt+φ),

and
E0 cosωt− I0

ωC
sin(ωt+φ)−RI0 cos(ωt+φ) = 0.

The solution is identical to the LR circuit (8.6) with

−ωL→ 1
ωC
,

giving

tanφ =
1
ωRC

,

and

I = I0
E0√

R2+ 1
ω2C2

cos
(
ωt+ tan−1 1

ωRC

)
,

Example 8.22 Calculate numerical value of I0 and φ for E0 = 110 V, ω = 60
Hz, R = 100 Ω, and C = 1 nF.
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Figure 8.9 The current in an AC RC circuit leads the voltage.

8.8 DRIVEN LRC CIRCUIT

An LRC circuit is shown in Fig. 8.10. Krichhoff’s loop rule gives

E0 cosωt−L
dI
dt

+
Q
C
−RI = 0.

Using Q = −dI/dt,

E0 cosωt + L
d2Q
dt2 +

Q
C

+ R
dQ
dt

= 0.

~ℰ

L

R

C

Figure 8.10 The circuit contains an oscillating voltage source, an inductor, a
capacitor, and a resistor.

Example 8.23 Solve for the charge on the capacitor as a function of time.
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For the steady-state solution, the current may be written

I = I0 cos(ωt+φ),

This gives the capacitor charge and voltage to be

Q = −
∫

dt I = − I0

ω
sin(ωt+φ),

VC =
I0

ωC
sin(ωt+φ),

and the inductor voltage to be

VL = −i0ωLsin(ωt+φ).

The voltage sum is

VC +VL = −
(
ωL− 1

ωC

)
I0 sin(ωt+φ).

The capacitor and inductor always have the same phase (both out of phase
with the voltage), so for a given frequency, the circuit behaves as an LR circuit
with inductance

ωL′ = ωL− 1
ωC
.

From the results of Sect. 8.6,

I(t) =
E0√

R2+
(
ωL− 1

ωC

)2 cos(ωt+φ),

and
tanφ =

1
ωRC

.

At large frequencies, the inductor has an important effect on the current.
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Example 8.24 Solve for the maximum current and phase.
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C H A P T E R 9

Fields Inside Materials

9.1 POLARIZATION VECTOR

The polarization vector P is the dipole moment per volume from aligned
atomic dipoles. The volume integral of P gives the total dipole vector of the
material,

p =

∫
dv′ P.

The units of P are C/m2, the same as surface charge density.
The polarization might be caused by an external field or it might be per-

manent. If it is caused by an external field Eext, the material is referred to as
a (linear) dielectric and

P = ε0χeEext,

where χe is the electric susceptibility of the material (covered in Sect. 9.2.1).
Using the dipole potential (Ex. 3.13),

V =
p · r̂

4πε0r2 ,

one can divide the matter into tiny pieces,

dp = Pdv′,

to get

V =
1

4πε0

∫
dv′

P · R̂̂R̂R
R2 .

131
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9.1.1 Bound Charge Density

There is a trick to use to manipulate the integral for the potential into a more
useful and intuitive form. Notice that

∇∇∇′ 1
R =

RRR
R2 .

where the differentiation is w.r.t. the primed variables (recall R = |r− r′|).

Example 9.1 Verify the vector identity.

This gives

V =
1

4πε0

∫
dv′ P ·

(
∇∇∇′ 1
R

)
=

1
4πε0

∫
dv′ ∇′∇′∇′ ·

(
P
R

)
− 1

4πε0

∫
dv′

1
R∇
′∇′∇′ ·P.

Now use the divergence theorem on the first term on the right to get

V =
1

4πε0

∫
da′

P · n̂
R −

1
4πε0

∫
dv′
∇′∇′∇′ ·P
R .

The first term is a surface charge integral giving the interpretation of the
bound surface charge (σb) as

σb = P · n̂,

while the second term is a volume charge integral giving the interpretation of
the bound volume charge (ρb) as

ρb = −∇∇∇ ·P.

Note that the coordinate dependence of P must match the differentiation vari-
able.

9.1.2 Radially Polarized Cube

Consider a radially polarized cube (Fig. 9.1) of dimension a,

P = kr.
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Figure 9.1 A cube is radially polarized.

Example 9.2 Calculate ρb for the radially polarized cube.

The total bound volume charge is

Qb = −3ka3.

That was easy because the divergence of r is just 3. To calculate the bound
surface charge is a tad more involved because one must integrate P · n̂ over
the flat surfaces of the cube.

Example 9.3 Calculate the bound surface charge on each face of the cube.

The total surface charge is

Qs = 3ka3
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and it is seen that the total bound charge adds up to zero as a result of the
polarized molecules being electrically neutral.

9.1.3 Uniformly Polarized Ball

Consider a ball of radius a that is uniformly polarized in the z direction (Fig.
9.2).

Figure 9.2 A ball is uniformly polarized in the z direction.

The bound volume charge (inside the ball) is zero because ∇∇∇ ·P = 0. The
surface charge may be considered being due to the change in P from constant
to zero at the surface, i.e., P diverges at the surface. The bound surface charge
is

σb = P · n̂ = Pcosθ,

where θ is the polar angle (angle w.r.t the z axis). The potential is given by

V = P ·
 1

4πε0

∫
da′
R̂̂R̂R

R2

 .
The integral in parenthesis is known. It is the same as the integral for the
electric field of a ball of charge with constant charge density divided by the
charge density, giving r

3ε0
r̂ inside and a3r

3ε0r3 outside, using the calculation of
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Sect. 2.4.3 and then dividing by the density. Thus, inside

V =
P · r
3ε0
,

and outside

V =
a3P · r
3ε0r3 .

The electric field is the negative gradient of the potential.

Example 9.4 Calculate the electric field inside the uniformly polarized ball
in both spherical and Cartesian coordinates.

Amazingly, the electric field is uniform inside. It is in the opposite direc-
tion as the polarization vector.

Example 9.5 Calculate the electric field outside the uniformly polarized
ball.

This is another amazing result. The electric field outside the ball is that
of a perfect electric dipole at the center of the ball, with dipole moment

p =
4
3
πa3P.
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9.2 DISPLACEMENT VECTOR D

The total charge density ρ may be written as the sum of bound (ρb) and free
(ρf) charge densities,

ρ = ρb +ρf .

The Maxwell equation for Gauss’s law gives

ε0∇∇∇ ·E = ρ = ρb +ρf = −∇∇∇ ·P +ρf ,

or
∇∇∇ · (ε0E + P) = ρf .

Defining
D = ε0E + P,

one gets
∇∇∇ ·D = ρf .

There is a downside using D over E, even though the Maxwell equation looks
simpler, because there is no equivalent of electric potential for D. The curl of
D is not guaranteed to be zero for the static case. In fact,

∇∇∇×D =∇∇∇×P.

One needs to be very careful using D.

9.2.1 Linear Dielectric

A linear dielectric acquires a polarization that is proportional to the applied
electric field,

P = χeε0E,

where the electric susceptibility χe is a dimensionless constant.. Then,

D = ε0(1 +χe)E = εE,

where
ε = ε0(1 +χe).

The relative permittivity εr is defined as

εr =
ε

ε0
= (1 +χe).
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The effect of the dielectric is to reduce the electric field. For a point charge
Q inside a dielectric, Gauss’s law reads

D =
Q

4πr2 r̂,

and
E =

D
ε
=

Q
4πεr2 r̂.

9.2.2 Dielectric Ball in an External Electric Field

Consider a uniform dielectric ball in a uniform external field. There is a sub-
tlety in that the field that causes the polarization is the result of the combina-
tion of the applied field and the contribution of the field due to the polariza-
tion. Let the external field be E0 and the contribution to field inside the ball
caused by the polarization be E′in. Then the inside field is

Ein = E0+E′in.

The polarization is
P = χeε0E = (εr−1)ε0Ein.

Now comes an assumption, which must be verified in the solution, that the
resulting field inside is uniform. If the resulting field inside is uniform, then
the relationship between E′in and P is known from ex. 9.4,

E′in = −
P

3ε0
.

This gives

Ein = E0−
P

3ε0
.

Example 9.6 Solve for P.

The polarization is indeed uniform and the assumption is verified.
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Example 9.7 Solve for Ein.

9.3 CAPACITOR WITH A DIELECTRIC

If a capacitor has a dielectric filling, then the electric field is reduced by εr
and the potential is reduced by the same factor, so the capacitance increases
by εr . For a parallel plate capacitor (Sect. 3.12.2), ε0→ ε and

C =
εA
d
.

Consider the parallel-plate capacitor of Fig. 9.3. The plate separation is
d1+d2, and the area is A1 = A2. The potential difference ∆V is constant. Let
the charge density of the left (right) be Q1/A1 (Q2/A2). The electric fields in
the materials ε1, ε2, and ε3 are

E1 =
Q1

ε1A1
,

E2 =
Q1

ε2A1
,

and
E3 =

Q2

ε3A2
,

The potential difference is

∆V = E1d1+E2d2 = E3(d1+d2),

or
∆V =

Q1d1

ε1A1
+

Q1d2

ε2A1
=

Q2(d1+d2)
ε3A2

.

The capacitance is

C =
Q1+Q2

∆V
=

Q1
Q1d1
ε1A1
+

Q1d2
ε2A1

+
Q2

Q2(d1+d2)
ε3A2

.
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Figure 9.3 A parallel-plate capacitor is filled with three different dielectrics.

or
C =

1
d1
ε1A1

+
1
d2
ε2A1

+
1

(d1+d2)
ε3A2

.

This is the result for ε1 and ε2 in series and in parallel with ε3.

Example 9.8 Calculate the capacitance and give a numerical value for d1 = 2
mm, d2 = 3 mm, A1 = 1 cm2, A2 = 4 cm2, ε1 = 3ε0, ε2 = 2ε0, and ε3 = 2.5ε0.

9.4 POINT CHARGE NEAR A DIELECTRIC BOUNDARY

Consider a point charge Q at a distance d from the a dielectric boundary that
forms a plane. The surface bound charge density is

σb = P · n̂ = ε0χeEz,below,

where Ez,below is the electric field inside the dielecteic just below the surface.
The quantity Ez,below is the sum of two contributions, that of the bound sur-
face charge plus that of the point charge. These two contributions point in
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opposite directions. This gives an expression which can be used to solve for
the bound charge density.

σb = ε0χe

(
− σb

2ε0
− Qd

4πε0(r2+d2)3/2

)
.

Example 9.9 Solve for σb.

Example 9.10 Find the total bound charge.

The field is shown in Fig. 9.4.

9.5 MAGNETIZATION VECTOR

Magnetized matter is a collection of atomic magnetic dipoles. The magne-
tization vector M is defined to be the magnetic dipole volume density. The
volume integral of M gives the total dipole vector of the material,

m =
∫

dv′ M.

Using the ideal dipole formula for the vector potential (Sect. 6.2.3),

A =
µ0m× r̂

4πr2 ,



Fields Inside Materials � 141

Figure 9.4 The electric field lines from a point charge near a dielectric bound-
ary go from the point charge to the bound charge on the surface outside the
dielectric. At the boundary the electric field lines have a kink and are straight
lines that point to.the point charge.

the total potential is obtained by superposition,

dm = Mdv′,

dA =
µ0dm× r̂

4πr2 ,

and
A =

µ0

4π

∫
dv′

M×RRR
R3 .

9.5.1 Bound Currents

The calculation is similar to that of manipulating the scalar potential with the
polarization vector (Sect. 9.1), but this time one needs the curl of a scalar
function times a vector,

∇∇∇× (aM) = a∇∇∇×M−m× (∇∇∇a).

Example 9.11 Verify the vector identity.



142 � Guide to Electricity and Magnetism

The scalar function for this case is a = 1/R. One gets

A =
µ0

4π

∫
dv′M×∇∇∇′

(
1
R

)
=
µ0

4π

∫
dv′

1
R∇∇∇
′ ×M− µ0

4π

∫
dv′∇∇∇′ ×

(
M
R

)
.

The last term can be manipulated with a variation of the divergence the-
orem. Consider the divergence of a cross product.

∇∇∇ · (A×B) = B · (∇∇∇×A)−A · (∇∇∇×B).

Example 9.12 Verify the vector identity.

The last identity is applied with A=M/R and B=C where C is a constant
vector,
∫

dv′∇∇∇′ ·
(
M
R ×C

)
=C ·

∫
dv′∇∇∇′ ×

(
M
R

)
=

∮
da′ ·
(
M
R ×C

)
=C ·

∮
da′ ×M

R .

Example 9.13 Verify the the last step above is valid, that a · (b× c) = c · (a×
b).
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Since this result is true for any constant vector C, it is true for x̂, ŷ, and ẑ.
Therefore, ∫

dv′∇∇∇′×
(
M
R

)
=

∮
da′×

M
R
.

and
A =

µ0

4π

∫
dv′
∇∇∇′×M
R

+
µ0

4π

∮
M×da
R

.

The bound volume current can be identified as

Jb =∇∇∇×M,

and the bound surface current as

Kb = M× n̂.

The vector potential may be written in the convenient form

A =
µ0

4π

∫
dv′

Jb

R
+
µ0

4π

∮
da′

Kb

R
.

As in the case of polarization, this is a huge simplification because a com-
plicated integral over atomic dipoles is now reduced to integrals over volume
and surface currents.

9.5.2 Uniformly Magnetized Ball

Consider a ball of radius a with uniform magnetization (Fig. 9.5). The bound
volume current is zero,

Jb =∇∇∇×M = 0,

and the surface current is

Kb = M× n̂ = M sinθ φ̂̂φ̂φ.

The bound surface current in this problem is the same as form as the free
current from a spinning ball of charge (Sect. 6.2.2). The answer is that inside
the magnetic field is constant,

B =
2µ0

3
M,

and outside it is that of a perfect dipole at the center with dipole vector

m =
4
4
πa2M.
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Figure 9.5 A ball is uniformly magnetized in the z direction.

The direct integration for this problem is easy with a little trick. Since M
is uniform,

A =
µ0

4π
M×

∫
dv′
RRR

R3 .

This integral has been calculated using Gauss’s law It is the same one that
appears for the electric field of a uniform charge distribution (Sect. 2.4.3).
The answer inside was

E =
ρr
3ε0

r̂ =
1

4πε0
ρ

∫
dv′
RRR

R3 .

Therefore, ∫
dv′
RRR

R3 =
4πr
3

r̂,

and

A =
µ0

4π
M×

(
4πr
3

r̂
)

=
1
3
µ0Mr sinθ φ̂̂φ̂φ.

The vector potential makes circles (Fig. 9.6) because the direction of A is the
same as that of the bound surface current.
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Figure 9.6 The vector potential inside a uniformly magnetized ball makes
circles.

Example 9.14 Calculate B inside the magnetized ball.

Outside the ball,

E =
4
3πa

3ρ

4πε0r2 r̂ =
1

4πε0
ρ

∫
dv′
RRR
R3 .

(Note that Q = 4
3πa

3ρ.) Therefore,

∫
dv′
RRR
R3 =

4πa3

3r2 r̂,

and

A =
µ0

4π
M×
(
4πa3

3r2 r̂
)
=
µ0m× r̂

4πr2 .
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Figure 9.7 The vector potential outside a uniformly magnetized ball makes
circles.

(Note that m = 4
3πa

3M.) The vector potential again makes circles (Fig. 9.7).

Example 9.15 Calculate B outside the magnetized ball.

9.6 AUXILIARY FIELD H

The total current density J may be written as the sum of bound (Jb) and free
(Jf) current densities,

J = Jb+Jf .

A bound current is illustrated in Fig. 9.8. Ampère’s law for steady currents
becomes

∇∇∇×B = µ0(Jb+Jf) = µ0(Jb+∇∇∇×M),

or

∇∇∇×
(

B
µ0
−M
)
= Jf .
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The auxiliary field H is defined by

H =
B
µ0
−M,

which gives
∇∇∇×H = Jf .

Unlike D, the use of H is highly motivated because free currents are mea-
sured in the lab. One must be aware, however, that the divergence of H is not
necessarily zero,

∇∇∇ ·H = −∇∇∇ ·M.

The auxiliary field H diverges at a magnetic boundary, while B never di-
verges.

Figure 9.8 A magnetized material has a bound surface current.

9.6.1 Linear Materials

A word of caution is in order in the comparison of the formula for linear
materials in the electric and magnetic cases, because historically the magnetic
susceptibility χm is defined in terms of H instead of B,

M = χmH.
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(Compare to P = ε0χeE.) Another difference is that χm is positive for param-
agnets and negative for diamagnets, for which there is no electrical analogy.
In terms of the field

B = µ0(H+M) = µ0(1+χm)H = µH,

where
µ = µ0(1+χm).

Example 9.16 Get the electron configuration and the magnetic susceptibility
for aluminum.

Aluminum is paramagnetic (positive χm).

Example 9.17 Get the electron configuration and the magnetic susceptibility
for gold.

Gold is diamagnetic (negative χm)..

9.6.2 Magnetic Ball in an External Magnetic Field

The magnetic ball in an external magnetic field is similar to the electric case
(Sect. 9.2.2). It can be solved by a single iteration with the same technique
used in the case of polarization in a uniform electric field. An assumption is
made that the ball will produce a linear field that will then contribute to the
overall field that causes the magnetization. The assumption must be verified
to hold true. Take the direction of M to be in the z direction. The magnetic
field inside the ball is

Bin = B0+CB0,
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where the second term is the contribution from magnetization and C is a
constant. The magnetization is

M = χmH =
χm

µ0(1+χm)
Bin.

There is a bound surface current

Kb =M× n̂ = M sinθ φ̂̂φ̂φ.

This is the same current that was found for the spinning sphere of charge
(Sect. 6.2.2). The result was a constant field inside, 2

3µRσωẑ for a current
K = σRsinθω. For the present case, Rσω→ M, confirming the assumption
that the magnetization contributes linearly (proportional to M. This gives

CB0 =
2
3
µ0M ẑ =

2
3
µ0

χm

µ0(1+χm)
(B0+CB0),

Example 9.18 Solve for C.

The field inside is

Bin = B0+CB0 =

(
1+

2χm

3+χm

)
B0,

The field outside is a constant field plus that of a perfect dipole as was deter-
mined for the spinning sphere of charge.

9.7 BOUNDARY CONDITIONS

The boundary conditions at the junction of two magnetized materials (Fig.
9.9) may be written as

H⊥,above−H⊥,below = −(M⊥,above−M⊥,below),

and
H‖,above−H‖,below =Kf × n̂.
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Figure 9.9 The change in H at the coundary between 2 materials depends on
the M and Kf and the change in B depends on the total surface current K.
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Electromagnetic Waves

10.1 MODIFYING AMPÈRE’S LAW

Taking the divergence of Ampère’s law gives

∇∇∇ · (∇∇∇×B) = µ0∇∇∇ ·J = 0,

since the divergence of the curl of any vector function is zero.

Example 10.1 Calculate the divergence of the curl of an arbitrary function.

On the other hand, the continuity equation (4.5) says that

∇∇∇ ·J = −∂ρ
∂t
.

This inconsistency can be fixed if a term µ0ε0
∂E
∂t is added to the current den-

sity term in Ampère’s law,

∇∇∇×B = µ0J+µ0ε0
∂E
∂t
.

With this addition the divergence becomes

∇∇∇ · (∇∇∇×B) = µ0∇∇∇ ·J+µ0ε0
∂∇∇∇ ·E
∂t
= µ0∇∇∇ ·J+µ0

∂ρ

∂t
,

where Gauss’s law has been used for the divergence of E. The right-hand side
is now seen to be zero from the continuity equation.

151
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10.2 MAXWELL’S EQUATIONS WITH A MAGNETIC CHARGE

It is a standard exercise to write down what the Maxwell equations would
look like if a magnetic charge (monopole) existed. In this case, the equations
would need modification by the addition of both a magnetic charge density
(ρm) and a magnetic current (Jm). The modification should account for con-
servation of magnetic charge,

∇∇∇ ·Jm = −
∂ρm

∂t
.

The resulting equations are
∇∇∇ ·E =

ρ

ε0
,

∇∇∇ ·B = µ0ρm,

∇∇∇×E +
∂B
∂t

= −µ0Jm,

and
∇∇∇×B−µ0ε0

∂E
∂t

= µ0J.

Conservation of magnetic charge is easily verified by taking the divergence of
the modified Faraday’s law and substituting the expression for the modified
Gauss’s law for magnetic fields.

The Lorentz force law becomes

F = qe(E + v×B) + qm(B−v×E).

Since there is a minus sign in the source term for the modified Faraday’s law,
it follows that the electric v×E term also has this minus sign.

10.3 POYNTING VECTOR

The Poynting vector S is defined by

S =
1
µ0

E×B.

For the case of electromagnetic waves, the Poynting vector “points” in the di-
rection of the wave travel and when time-averaged gives the energy flux, en-
ergy per time per area. (Notice that this definition of flux differs from electric
or magnetic flux.) Even if there is no electromagnetic radiation, the fields can
still have components that are perpendicular to each other, giving a non-zero
Poynting vector, meaning that electromagnetic energy is being transported.
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The origin of the expression for the Poynting vector comes from energy
conservation. Starting with Ampère’s law, take the dot product of each term
with E to get

E ·∇∇∇×B−µ0ε0E · ∂E
∂t
= µ0E ·J.

This expression may be put in more convenient form by using the identity for
divergence of a cross product to replace the first term.

Example 10.2 Verify the vector identity.

Using Faraday’s law to eliminate the curl of E gives

E ·J = −1
2
∂

∂t

(
ε0E2+

1
µ0

B2
)
− 1
µ0
∇∇∇ · (E×B).

This expression can be identified with the change in energy as follows.
The work done by the fields (dWi) on a single moving charge qi in time dt is

dWi = F ·d��� = qi(E+v×B) · (vdt) = qiE ·vdt,

since (v×B) ·v = 0. Adding up all the charges and substituting J = ρv,

dW
dt
=
∑

i

dWi

dt
=

∫
dv′ ρE ·v+

∫
dv′ E ·J.

Thus
dW
dt
= E ·J = −1

2
∂

∂t

(
ε0E2+

1
µ0

B2
)
− 1
µ0
∇∇∇ · (E×B).

The energy per volume u stored in the fields is

u =
1
2
∂

∂t

(
ε0E2+

1
µ0

B2
)
.
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Example 10.3 Calculate the magnetic field that has the same stored energy
as an electric field of 1 V/m. Note that c = 1/

√
ε0µ0.

Thus, the statement of local conservation of energy (analogous to the
continuity equation) is

∇∇∇ ·S = −∂u
∂t
.

The Poynting vector is the “current” for energy density analogous to J being
the current for charge density.

10.3.1 Current in a Wire

A current-carrying wire (Fig. 10.1) has energy transported in the form of
Joule heating. There is an electric field that is in the direction of the current
(the field that pushes the charge to make the current) and a magnetic field that
curls around the current. The Poynting vector points toward the axis of the
wire and describes the flow of electromagnetic energy that appears as Joule
heating in the wire. The source of electromagnetic energy is the battery (for
example) that causes the current.

Figure 10.1 A wire carrying a current has an electric field in the direction of
the current and a perpendicular magnetic field. The Poynting vector points
toward the center of the wire.

For a wire of radius a with current I in the z direction and potential dif-
ference V over a length L, the electric field is

E =
V
L

ẑ,
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and the magnetic field is

B =
µ0I
2πa

φ̂̂φ̂φ.

The Poynting vector is

S =
1
µ0

E×B =
IV

2πaL
r̂.

Integrating over the surface of the wire,∮
da′ ·S = S (2πaL) = IV.

This is the answer expected from Joule heating.

10.3.2 Charging Capacitor

Consider a parallel plate (area A) capacitor that is charging (Fig. 10.2). Taking
the z direction to be perpendicular to the plates, the electric field between
plates having charge Q(t) is

E =
Q/A
ε0

ẑ =
It

Aε0
ẑ.

Figure 10.2 A charging capacitor has electric and magnetic fields between the
plates that are perpendicular to each other.

The magnetic field between the plates given by Ampère’s law,

∇∇∇×B = µ0ε0
∂E
∂t
,

or in integral form∮
d`̀̀′ ·B = 2πrB = µ0ε0

∂(Eπr2)
∂t

= µ0I.
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The magnetic field between the plates is

B =
µ0Ir
2A
φ̂̂φ̂φ,

the same as the field inside a wire with current I.

Example 10.4 Calculate u and S, and show that ∇∇∇ ·S = − ]∂u
∂t .

10.4 THE WAVE EQUATION

The Maxwell equations in vacuum are

∇∇∇ ·E = 0,

∇∇∇ ·B = 0,

∇∇∇×E+
∂B
∂t
= 0,

and
∇∇∇×B− 1

c2
∂E
∂t
= 0,
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The wave equation for E is obtained by taking the curl of Faraday’s law,

∇∇∇×∇∇∇×E+
∂

∂t
∇∇∇×B = 0,

and then substituting for the curl of B using Ampère’s law,

∇∇∇×∇∇∇×E+
1
c2
∂2E
∂t2 = 0,

The double curl has a vector identity

∇∇∇×∇∇∇×E =∇∇∇(∇∇∇ ·E)−∇2E.

Example 10.5 Verify the vector identity.

Since the divergence of E is zero in vacuum,

∇2E− 1
c2
∂2E
∂t2 = 0.

This is the vector wave equation for E; each component of E satisfies the
wave equation.

The vector wave equation for B is identical,

∇2B− 1
c2
∂2B
∂t2 = 0.

and is obtained by taking the curl of Ampère’s law and substituting for the
curl of E using Faraday’s law.

10.5 PLANE WAVES

The simplest wave is the plane wave, so called because the fields are constant
at any given time over a plane (usually taken to be the x − y plane). The
electric and magnetic fields are in the x− y plane and the wave travels in the
direction perpendicular to the plane (taken to be the z direction). The direction
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of the electric field, referred to as the polarization direction, may be chosen to
be any direction in the x− y plane. One can generally write the electric field
for the plane wave as

E(z, t) = E0 cos(kz−ωt).

Choosing the x direction, the electric field becomes

E(z, t) = E0 cos(kz−ωt) x̂.

The parameter k is called the wave number and it is related to the wavelength
λ by

k =
2π
λ
.

Thus, for z→ z+λ the electric field is not changed. The parameter ω is the
angular frequency which can be written in terms of the period T as

ω =
2π
T
= 2π f .

where f = 1/T . Thus, for t→ t+T the electric field is not changed. Applying
the wave equation to the electric field, it is seen to hold true provided that

ω

k
= c,

which is the same expression as λ f = c.
Faraday’s law gives the direction of B relative to E.

Example 10.6 Apply Faraday’s law to the plane wave.

Example 10.6 shows that the relationship between E and B for a plane
wave traveling in the z direction is

B =
k
ω

ẑ×E,

and that when E is in the x direction that B must be in the y direction.
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10.5.1 Time Average

Time-averaging is useful because electromagnetic waves typically have high
frequencies. The time average of the cosine (or sine) over one cycle is 1/2.

Example 10.7 Calculate the time average over 1 period of a time-dependent
cosine function with arbitrary phase.

10.5.2 Exponential Notation

The fields for electromagnetic plane waves are commonly expressed as com-
plex numbers,

E(z, t) = E0ei(kz−ωt),

and
B(z, t) = B0ei(kz−ωt),

The reason for doing this is that the derivatives which are needed for the
Maxwell equations become simple as one does not have to worry about sine
going to cosine and vice versa. One just has to remember that the physical
fields are the real parts of the complex expressions, noting that

ei(kz−ωt) = cos(kz−ωt)+ isin(kz−ωt).

If the wave direction is an arbitrary direction k̂ and the electric field is in
a direction n̂, then

E(r, t) = E0ei(kz−ωt) n̂,

and
B =

1
c

k̂×E,

10.6 WAVES IN MATTER

In the case of no free charge and no free current,

∇∇∇ ·D = 0,

∇∇∇ ·B = 0,
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∇∇∇×E = −
∂B
∂t
,

and
∇∇∇×H =

∂D
∂t
.

For linear media
D = εE,

and
H =

1
µ

B.

and homogeneous media (ε and µ constant),

∇∇∇ ·E = 0,

∇∇∇ ·B = 0,

∇∇∇×E = −
∂B
∂t
,

and
∇∇∇×B = εµ

∂E
∂t
.

The wave speed is

v =
1
√
εµ
.

The index of refraction n is defined by

n =

√
εµ

ε0µ0
.

The expressions for energy density, energy flux, and intensity are recov-
ered with the substitutions ε0→ ε, µ0→ µ, and c→ v, giving

u =
1
2
∂

∂t

(
εE2 +

1
µ

B2
)
,

S =
1
µ

E×B.

The intensity I (energy per area per time) of the wave is

I =
1
2
εvE2

0.



Electromagnetic Waves � 161

The boundary conditions are that parallel E and perpendicular B do not
change,

E‖1 = E‖2,

and
B⊥1 = B⊥2 .

The boundary conditions on perpendicular E and parallel B are

ε1E⊥1 = ε2E⊥2 ,

and
1
µ1

B‖1 =
1
µ2

B‖2.

10.7 REFLECTION AND REFRACTION

Consider a plane wave traveling in medium 1 in the x direction with the
electric field aligned along the x direction (Fig. 10.3). Take the wave speed
to be v1. The fields of the incident wave are written

EI = E0Iei(k1z−ωt)x̂,

and
BI =

1
v1

E0Iei(k1z−ωt)ŷ.

Assuming the electric field does not switch directions, the fields of the
reflected wave are

ER = E0Rei(−k1z−ωt)x̂,

and
BR = −

1
v1

E0Rei(−k1z−ωt)ŷ.

If the electric field switches direction, which depends on the relative indices
of refraction, then the solution for E0R will be negative.

The transmitted wave may be written

ET = E0Tei(k2z−ωt)x̂,

and
BT =

1
v2

E0Tei(k2z−ωt)ŷ.

The boundary condition on parallel E gives

E0I + E0R = E0T.
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Figure 10.3 An incoming wave in medium 1 is incident at a right angle to the
boundary between media 1 and 2 (shaded). Part of the wave gets reflected
back into medium 1, and a portion of the wave gets transmitted into medium
2.

The boundary condition on parallel B gives

1
µ1

(
1
v1

E0I−
1
v1

E0R

)
=

1
µ2

1
v2

E0T.

The solution may be written

E0I−E0R = βE0T,

with
β =
µ1v1

µ2v2
.

Example 10.8 Solve for E0R and E0T.

For the case µ1 = µ2 = µ0,

β =
v1

v2
,
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and
E0R =

v2− v1

v2+ v1
E0I =

n1−n2

n1+n2
E0I,

E0T =
2v2

v2+ v1
E0I =

2n1

n1+n2
E0I,

If n2 > n1, the electric field of the reflected wave switches direction.
The reflection (R) and transmission (T ) coefficients are calculated from

the ratios of intensities (field squared),

R =
IR

II
=

(
E0R

E0I

)2
,

and

T =
IR

II
=

(
E0T

E0I

)2
,

Example 10.9 Show that R+T = 1

10.8 OBLIQUE INCIDENCE

The angles of incidence (θI) and reflection (θr) are defined w.r.t. the direc-
tion perpendicular to the planar boundary (Fig. 10.4). Consider now the case
where the incident angle is not zero. For the first part of the calculation, the
polarization (E) direction will be kept arbitrary.

The fields for the waves are

EI = E0Iei(kI·r−ωt),

BI =
1
v1

k̂I×EI,

ER = E0Rei(kR·r−ωt),
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Figure 10.4 An incoming wave has an incident angle θi, relected angle θR, and
transmitted angle θT.

BR =
1
v1

k̂R×ER,

ET = E0Tei(kT·r−ωt),

and
BT =

1
v2

k̂T×ET.

All three waves have the same frequency (which came from the source),

ω = kIv1 = kRv1 = kTv2.

The wave numbers are related by

kI = kR =
v2

v1
kT =

n1

n2
kT.

10.8.1 Relationships Between the Angles

The boundary condition at z = 0 requires all the exponents to match,

kI · r = kR · r = kT · r,

for all values of x and y, giving

xkIx + ykIy = xkRx + ykRy = xkTx + ykTy.



Electromagnetic Waves � 165

Applying this at y = 0 gives

kIx = kRx = kTx,

and at x = 0 gives
kIy = kRy = kTy,

If the incident wave vector is in the x− z plane, then the reflected and trans-
mitted wave vectors are also in that plane. Since kI and kR are in the same
magnitude and have the same x and y components at z = 0, it follows that

θI = θR.

Similarly since kI and n1
n2

kT are the same magnitude and have the same x and
y components at z = 0, it follows that

kI sinθI = kT sinθT =
n2

n1
kI.

This gives Snell’s law of refraction,

n1 sinθI = n2 sinθT.

10.8.2 Choosing the Polarization

The details of the solution depend on the choice of polarization. Consider the
case where the electric field is in the x− z plane (Fig. 10.5).

The boundary condition on E⊥ gives

−ε1E0I sinθi +ε1E0R sinθR = −ε2E0T sinθT.

The boundary condition on E‖ gives

E0I cosθi + E0R cosθR = E0T cosθT.

The boundary condition on B‖ gives

1
µ1ε1

E0I−
1

µ1ε1
E0R =

1
µ2ε2

E0T.

Define
β =

µ1v1

µ2v2
,
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Figure 10.5 An incoming wave is polarized in the x− y plane.

and
α =

cosθT
cosθI

,

to give
E0I−E0R = βE0T,

and

E0I+E0R = αE0T,

Example 10.10 Solve for E0R and E0T.

These equations are known as the Fresnel equations for the case of po-
larization in the plane of incidence. The result agrees with normal incidence
when α = 1. At an incident angle of π/2, α → ∞ and the wave is totally
reflected.
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10.8.3 Brewster Angle

Examination of the reflected electric field shows that there is an incident angle
for which there is no reflected wave, occurring at

α = β =
µ1v1

µ2v2
=

n2

n1
.

From the definition of α together with Snell’s law,

α =
cosθT
cosθI

=

√
1− sin2 θT
cosθI

=

√
1− n1

n2
sin2 θI

cosθI
.

Thus,

αcosθI =
√

1− n1

n1
sin2 θI.

Squaring and using α = β = n2/n1,

β2(1− sin2 θI) = 1− sin2 θI

β2 ,

Example 10.11 Solve for sin2 θI.

The solution is

sin2 θI =
β2

1+β2 .

Labeling the incident angle as the Brewster angle θB,

cos2 θB = 1− sin2 θB = 1− β2

1+β2 =
1

1+β2 ,

and
tanθB = β =

n2

n1
.

Figure 10.6 shows a plot of E0R/E0I and E0T/E0I as a function of incident
angle. The Brewster angle is where the reflected wave crosses the x-axis.
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Figure 10.6 The ratios E0R/E0I and E0T/E0I are plotted as a function of inci-
dent angle

The reflected intensity relative to the incident intensity is given by the
square of the electric field ratio,

R =
(

E0R

E0I

)2
=

(
α−β
α+β

)2
.

The transmitted relative intensity has the additional factor

T =
ε2v2 cosθT
ε1v1 cosθI

(
E0T

E0I

)2
= αβ

(
2
α+β

)2
.

Figure 10.7 shows a plot of (E0R/E0I)2 and (E0T/E0I)2 as a function of inci-
dent angle.

Example 10.12 Show that R+T = 1.

Example 10.13 Find the incident angle at which the reflected intensity from
air off a diamond (n = 2.417) is 1%.
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Figure 10.7 The ratios (E0R/E0I)2 and (E0T/E0I)2 are plotted as a function of
incident angle

There are seen to be two unique angles as expected, corresponding to the two
possible values of the reflected field (see Fig.10.7).
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C H A P T E R 11

Fields in Moving Frames
of Reference

11.1 BASICS OF SPECIAL RELATIVITY

The two basic postulates of special relativity are that
1) the laws of physics are identical in all inertial frames of reference, and
2) the speed of light in vacuum (c) is the same for all observers.
This leads to the phenomena of time dilation, that time intervals are longer
on moving clocks,

∆t′ = γ∆t,

where γ is defined by the relative speed v of the moving frame

γ =
1√

1−β2
,

and β = v/c. The postulates of special relativity also lead to the phenomena
of length contraction,

L′ =
L
γ
,

where lengths of moving objects are measured to be shorter.
One should not get hung upon which variable is called “prime,” as it does

not matter. The moving clock has a longer time interval and the moving stick
is shorter.

Time dilation and length contraction go together hand-in-hand. For ex-
ample, a cosmic muon produced at the top of the atmosphere is, in the earth’s
frame, a moving clock that lives longer before spontaneous decay compared
to the rest frame of the muon where the surface of the earth is moving to-
ward it and is length-contracted. In the first frame, the lifetime is longer by

171
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gamma, and in the second frame the distance traveled is shorter by gamma.
As analyzed in each frame, the muon reaches the surface of the earth before
decaying, and in both frames the relative speed of the muon with respect to
the surface of the earth is v = ∆L/∆t.

11.2 FOUR-VECTORS

A four-vector is a quantity that transforms in a special way when going from
one frame to another with relative speed v. The four-vector X is written

X = (x0, x1, x2, x3),

where a zeroth piece has been added to an ordinary vector x. The length
squared of the four-vector is defined to be

X ·X = x2
0−x ·x = x2

0− (x2
1 + x2

2 + x2
3).

The product of two four-vectors A and B is

A ·B = A0B0− (A1B1 + A2B2 + A3B3).

Unfortunately, not everybody uses the same sign convention. The most
common alternative is to introduce a minus sign such that the length becomes
x · x− x2

0. This convention is generally used in astrophysics, while particle
physics generally uses the sign convention introduced here.

The convention is to use a Greek letter to specify a component of a four-
vector compared to the use of a Roman letter for an ordinary vector. The sign
is accounted for by defining “lower” four-vectors

Xµ = (x0,−x1,−x2,−x3)

and “upper” four-vectors

Xµ = (x0, x1, x2, x3).

Then the square (or product) is always a lower times an upper,
3∑
µ=0

XµXµ = x2
0− (x2

1 + x2
2 + x2

3).

A simple tensor g may be formed to transform between lower and upper
four-vectors (in either direction),

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,
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such that going from upper (lower) to lower (upper) is a simple matrix mul-
tiplication, 

x0
x1
x2
x3


= g



x0
−x1
−x2
−x3


,

and 

x0
−x1
−x2
−x3


= g



x0
x1
x2
x3


.

Example 11.1 Construct the tensor g and transform a lower four-vector to
an upper four-vector.

The length of a four-vector is then obtained from XgX where the X could
be either an upper or a lower.

Example 11.2 Calculate the length of a four-vector.

11.3 LORENTZ TRANSFORMATION

In transforming between frames with relative speed v, the Lorentz transfor-
mation Λ matrix preserves the length of the four-vector. The form of Λ for
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relative motion in the x direction with v = βc is

Λ =



γ βγ 0 0
βγ 1 0 0
0 0 1 0
0 0 0 1


.

To transform in the opposite direction, switch the sign of β.

Example 11.3 Construct the Lorentz transformation for relative motion in
the x direction with relative speed v = βc.

Example 11.4 Verify that the Lorentz transformation does not change the
length of a four-vector.

For a four-vector to carry any physical meaning, there must be a reason
that its length is the same in all frames of reference. For example, (ct, x,y,z)
makes a four-vector because the speed of light is invariant (the same in
all frames of reference). Other important examples of four-vectors include
energy-momentum (E,pc) because mass is invariant, charge-current density
(ρc,J) because charge is invariant, and scalar-vector potential (V/c,A) which
follows from the charge-current density four-vector. The electric and mag-
netic fields are not part of four-vectors. They do not have simple transforma-
tions.

11.3.1 Time Dilation

If times t1 and t2 are measured at the same position (x,y,z) in frame S,
then in frame S′ that is moving in the x direction with relative speed v, the
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corresponding time interval is given by the Lorentz transformation,

c(t′2− t′1) = (γct2+βγx)− (γct1+βγx) = γc(t2− t1),

or
t′2− t′1 = γ(t2− t1).

The time integral is longer in frame S′.

Example 11.5 Transform the time interval.

11.3.2 Length Contraction

Consider a stationary clock that measures the time interval ∆t for a stick
moving with speed v to pass (Fig. 11.1).

Figure 11.1 The length of a stick is measured with stationary and moving
clocks.

The speed of the stick is

v =
∆x
∆t
,

where ∆x is the length of the stick measured in that frame. Now perform
the same measurement in a frame where the stick is at rest and the clock is
moving with speed v. Now

v =
∆x′

∆t′
=
∆x′

γ∆t
,
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where the last step is from time dilation. Equating the two expressions for v
gives

∆x =
∆x′

γ
,

and the stick is measured to be shorter in the frame where it is moving.

11.4 ENERGY-MOMENTUM FOUR-VECTOR

Mass is a Lorentz invariant. It is calculated from the length of the energy-
momentum four-vector. The mass energy (energy that is stored as mass) is

E0 = mc2.

The total energy E is mass energy plus kinetic energy K

E = E0 + K.

The momentum, provided the speed is not zero, is

p =
mv√

1− (v/c)2
= γmv.

If the mass is zero, the momentum is calculated from the following equa-
tion which always is true and is the fundamental relationship between mass,
energy, and momentum,

E2 = (mc2)2 + (pc)2.

Thus,

mc2 =

√
E2− (pc)2,

and (E,pc) makes a four-vector with length equal to mc2.

11.4.1 Speed

A mass m at rest has a four-vector

P = (mc2,0).

Transforming it to frame where it has a speed, its new four-vector is

P′ = (γmc2,βγmc2).
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Example 11.6 Transform the four-vector for a mass m at rest to a frame
where it has speed v.

It is seen from the transformed four-vector that

β =
v
c
=

pc
E
.

If m is not zero, the total energy is

E =
√

(mc2)2+ (pc)2,

and a convenient expression for particle velocity is

v =
pc
E

c,

provided the mass is not zero. If the mass is zero, then pc = E and the particle
speed is c.

11.4.2 Total Energy

The expression for total energy is

E =
√

(mc2)2+ (pc)2 = mc2

√
1+

(pc)2

(mc2)2 .

Since mc2 = E/γ, pc/E = β, and β2 = 1−1/γ2,

E = mc2
√

1+γ2β2 = γmc2

as long as m is not zero.
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11.4.3 Kinetic Energy

The exact expression for kinetic energy is

K = E−mc2 =

√
(mc2)2+ (pc)2−mc2.

In the nonrelativistic limit, the kinetic energy is seen to reduce to the
familiar form

K =
p2

2m
=

1
2

mv2.

Example 11.7 Expand the square-root term in the exact expression for
kinetic energy to get the nonrelativistic approximation.

Consider an electron with momentum 1 MeV/c.

Example 11.8 Calculate the total energy.

Example 11.9 Calculate the kinetic energy.

Example 11.10 Calculate β.

Example 11.11 Calculate γ.
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11.4.4 Velocity Addition

The traditional derivation of the “addition” of velocities using the Lorentz
transformation of dx/dt is usually not useful. It is far easier and more intuitive
to transform the momentum. Consider two particles that are moving toward
each other with four-vectors P1 and P2 (Fig. 11.2).

Figure 11.2 Two particles with four-vectors P1 and P2 in frame S approach
each other. In frame S′ one of the particles is at rest and the velocity of the
other particle is the relative velocity of the two particles.

Let γ and β correspond to the transform that brings particle 1 to rest. Then
cβ is the speed of particle 1 in frame S,

β =
v1

c
.

The speed of particle 2 in S′ is given by

v2

c
=

p′2c

E′2
=
βγE2 +γp2c
γE2 +βγp2c

=
β+ p2c/E2

1 + p2c/E2
,

or
v′2 =

v1 + v2

1 + v1v2/c2 .

Speed is not a good variable in special relativity and most of the time it
is more intuitive to express the speed in terms of gamma. For this case

E′2
mc2 =

γE2 +βγp2c
mc2 = γγ2 +γβγ2β2.

Thus, if two particles having γ1 and γ2 approach each other, their relative γ
is

γ = γ1γ2(1 +β1β2).

Example 11.12 Show that γ1γ2(1 + β1β2) = 1/
√

1− (v/c)2 where v = (v1 +

v2)(1 + v1v2/c2).
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Example 11.13 Two particles approach each other each traveling at 0.9 c.
Calculate their relative speed and the corresponding γ.

11.5 EXAMPLES OF FIELDS IN MOVING FRAMES

11.5.1 Moving Capacitor

Consider a capacitor at rest in frame S with charge density σ0 (Fig. 11.3).
The electric field is

E =
σ0

ε0
.

Viewed in a frame S′where the capacitor is moving with speed v in a
direction parallel to the plates (Fig. 11.4), the charge is Lorentz-contracted
and the electric field is

E′ =
σ

ε0
=
γσ0

ε0
.

In a frame where the capacitor is moving in a direction perpendicular to
the plates (Fig. 11.5), the field is unchanged.
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Figure 11.3 A capacitor is at rest.

Figure 11.4 A capacitor is moving with speed v in a direction parallel to its
plates. The spacing of the charge is Lorentz-contracted along the direction of
motion.

Figure 11.5 A capacitor is moving in a direction perpendicular to the plates.
The charge distribution is unchanged.

11.5.2 Steady Current

Consider long lines of both positive and negative charges moving in opposite
directions to form a steady current (Fig. 11.6). For charge densities ±λ, the
current is I = 2λv, and the Lorentz force on a nearby charge q moving with
speed u is

F = quB = qu
µ0I
2πr

=
µ0qλuv
πr

.

Th magnetic force is attractive for positive q. There is no electric force on q.
Now consider the frame S′ where q is at rest (Fig. 11.7). The positive

charge is moving faster to the left and is Lorentz-contracted, while the nega-
tive charge is moving slower to the right and is expanded. In this frame there
are both electric and magnetic forces on q.
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Figure 11.6 In frame S, a steady current consists of positive and negative
charges moving in opposite directions with equal speeds.

Figure 11.7 In a frame S′, moving in the same direction as the motion of
the negative charges, the positive (negative) charges have a larger (smaller)
speed.

There are two velocity additions (Sect. 11.4.4) to solve, adding u to v
and subtracting u from v, then what is really needed are the γ factors that
correspond to these resulting speeds. Let γ correspond to the original speed
v of the charges,

γ =
1√

1− (v/c)2
.

Let γ+ (γ−) correspond to the motion of the positive (negative) charges,

γ+ =
1√

1− (v+/c)2
,

and
γ− =

1√
1− (v−/c)2

,

The speed v+ (v−) is just the relative speed of the point charge and the line
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of charges moving in the opposite (same) direction. The expressions for γ+

and γ− are just energy to mass energy ratios of a charge with speed u =
pc
E

boosted by γ,

γ+ =
γE +βγpc√

E2− (pc)2
=

1 + uc
c2√

E2− (pc)2
,

and

γ− =
γE−βγpc√

E2− (pc)2
=

1− uc
c2√

E2− (pc)2
,

The gamma factors give the Lorentz contraction of the charge in different
frames. Let λ0 be the “proper” charge density, the charge density in its rest
frame. The charge density in frame S is

λ = γλ0.

The charge densities in frame S′ are

λ+ = γ+λ0,

and
λ− = γ−λ0.

The total charge density λtot in frame S′ is

λtot = λ+ +λ− = λ0(γ+−γ−) = λ0γ
2uv/c2√
1− (u/c)2

.

The electric field in frame S′ is

E′ =
λtot

2πε0r
=
λ0γ

πε0r
uv/c2√

1− (u/c)2
=

λ

πε0r
uv/c2√

1− (u/c)2
.

Comparing to the magnetic field in frame S,

B =
µ0λv
πr

=
λv

πε0c2r
= γuuE′,

where
γu =

1√
1− (u/c)2

,

the gamma that corresponds to the speed of the charge in frame S. In frame
S′ there is no magnetic force and the electric force on q is

F′ = qE′ = γu
qλuv
πε0c2r

.
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In frame S there is no electric force and the magnetic force on q is

F =
µ0qλuv
πr

=
qλuv
πε0c2r

=
F′

γu
.

The magnetic force is smaller by a factor of γu. Examination of the momen-
tum transfer shows that in frame S

∆p = F∆t,

while in frame S′,
∆p′ = F′∆t′ = Fγu∆t′ = F∆t

due to time dilation. The momentum transfer is calculated to be identical in
each frame although one force is electric, larger, and acts for shorter time
while the other is magnetic, smaller, and acts for a longer time.

Example 11.14 Choose the charge to be a proton, v = c/2, u = c/4, λ =
10−6 C/m, and r = 1 m. Calculate the magnetic force in frame S and the
electric force in frame S′.

11.6 POINT CHARGE WITH CONSTANT VELOCITY

Take the velocity to be in the x direction. The charge will be analyzed in two
frames. In frame S the charge moves with a speed v in the x direction, and in
frame S′ the charge is at rest (Fig. 11.8).

In frame S′, the distance to the charge is

R′ =
√

x′2+ y′2+ z′2,



Fields in Moving Frames of Reference � 185

Figure 11.8 In frame S a point charge moves with velocity v in the x direction.
In frame S′ the charge is at rest.

and the electric field components are

E′x =
qx′

4πε0(x′2 + y′2 + z′2)3/2 ,

E′y =
qy′

4πε0(x′2 + y′2 + z′2)3/2 ,

and
E′z =

qz′

4πε0(x′2 + y′2 + z′2)3/2 .

In frame S,

R =

√
x2 + y2 + z2.

Transforming the coordinates,

x′ = γx y′ = y z′ = z.

(Notice that x is smaller than x′ because the charge is moving in frame S.)
Transforming the field, the x and y components of the field in S get a γ

factor (like the capacitor),

Ex =
qγx

4πε0[(γx)2 + y2 + z2]3/2 ,

Ey =
γqy

4πε0[(γx)2 + y2 + z2]3/2 ,

and
Ez =

γqz
4πε0[(γx)2 + y2 + z2]3/2 .
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Thus, each coordinate gets a factor of γ, x from the coordinate transfor-
mation, and y and z from the field transformation. This results in an electric
field that points in the same direction as R, which points from the present
position of the charge to point P. This is a remarkable result which is not
true in general if the charge is accelerating, because during the time that the
information about the position of the charge propagates to pointP, the charge
has moved to a different position.

In terms of the angle θ that R makes with the x axis,

E =
γqR

4πε0[(γRcosθ)2+ (Rsinθ)2]3/2 .

Example 11.15 Simplify the expression for E in terms of β = v/c.

The result of Ex. 11.17 gives

E =
(1−β2)qR

4πε0(1−β2 sin2 θ)3/2R3
.

The magnetic field for the moving point charge is calculated in Sect. 11.8
by transformation of the fields.

11.7 TRANSFORMATION OF THE FIELDS

There are six field transformations. One of them has been calculated from the
capacitor example (Sect. 11.5.1),

E′x = Ex.

Consider a solenoid oriented with its axis along the x direction. In the rest
frame of the solenoid, the magnetic field is

Bx = µ0nI.
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Figure 11.9 A solenoid is oriented with its axis along the x direction.

Viewed in a frame where the solenoid is moving, the number of turns per
length is multiplied by γ due to length contraction, but the current is reduced
by the same factor of γ due to time dilation. Therefore, the field is unchanged,

B′x = µ0(γn)(
I
γ

) = Bx.

The capacitor may be used to the other four transformations, but one
needs to transform a frame that contains both electric and magnetic fields.
This can be accomplished by starting with a moving capacitor (velocity u) in
frame S and then transforming it to frame S′ where it has a different velocity
(v).

Figure 11.10 A capacitor is moving in frame S.

In frame S, the charge density is σ and the electric field is

Ey =
σ

ε0
.

The currents on the plates are ±σu and the magnetic field is

Bz = −µ0σu.

In the frame S′, the capacitor moves with a speed v relative to frame S.
Let γ correspond to the speed v,

γ =
1√

1− (v/c)2
.
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The speed of the capacitor in frame S′ (Fig. 11.11) is then the relativistic
velocity addition of u and v.

Let the charge density in the rest frame of the capacitor be σ0. Let (γ∗)
correspond to the transformation from S′ to the rest frame of the capacitor. It
is given by velocity addition,

v∗ =

(
1 +

uv
c2

)
,

and
γ∗ = γγu

(
1 +

uv
c2

)
.

Figure 11.11 The moving capacitor is viewed in frame S′ where it has a ve-
locity v∗ resulting from a transformation of frame S with relative speed v.

In frame S′,
σ∗ = γ∗σ0,

E′y =
σ∗

ε0
=
γ∗σ0

ε0
=
γ∗σ

γuε0
= γ

(
1 +

uv
c2

)
σ

ε0
,

and
B′z = −µ0σ

∗v∗ = −µ0
γ∗σ

γu

u + v(
1 + uv

c2

) = −γµ0σ(u + v).

The transformations are given by comparing with the fields in frame S,

E′y = γ(Ey− vBz),

and
B′z = γ

(
Bz−

v
c2 Ey

)
.

Transformations of E′z and B′y are obtained by exactly the same technique
with the capacitor oriented in the x− z plane,

E′z = γ(Ez + vBy),

and
B′y = γ

(
By +

v
c2 Ez

)
.
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11.8 MAGNETIC FIELD OF A MOVING POINT CHARGE

Consider again the moving point charge of Fig. 11.8. In frame S′, the mag-
netic field is zero. From the transformation (Sect. 11.7), the magnetic field in
S is

Bx = 0,

By = γ
( v
c2 E′z
)
,

and
Bz = γ

(
− v

c2 E′y
)
,

The magnetic field may be written

B =
1
c2 v×E.

Thus,

B =
[1−β2]qv×R

4πε0c[1−β2 sin2 θ]3/2R3
.

For β << 1,

B =
qv×R

4πε0c2R3 =
µ0qv×R

4πR3 .

This is what you would get from the Biot-Savart law if the moving charge
was treated like a steady current. The moving charge is not a steady current
and the Biot-Savart law does not hold, but as seen above it does give an
approximate answer that holds true for a non-relativistic charge.

Example 11.16 Calculate the magnetic field directly at a position (1,2,3)
µm, from a proton moving with 0.9 c in the −x direction.
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Example 11.17 Calculate the magnetic field for the proton in Ex. 11.16 us-
ing the field transformation equations.



A P P E N D I X A

Mathematica Starter

A.1 CELLS

Mathematica notebooks have two types of cells: “text” cells that can only
display what is written and “input” cells that are executable. Input cells are
executed by typing (simultaneously)

SHIFT RETURN

which generates the label In[ ]:= with the output going to another input cell
with the label Out[ ]= (but it is still an input cell and can be executed).

Example A.1 Calculate 1+1.

A semicolon after a line of code means the code will still execute but the
output will be suppressed. This is a useful feature for debugging code.

Example A.2 Set x = 7 and y = 2 and output x+ y.

When a variable is set, its value may be used in other cells until cleared.
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A.2 PALETTES

The menu has several extensive palettes that are useful in formatting the in-
put. For example, there is a Writing Assistant that manages cells and fonts.
This is useful for quick access to Greek letters. There is a Math Assistant
that has templates for operations like division, raising to a power, summa-
tion, integration, etc. This makes it easy to enter something like a summation
of squares into an input cell in a very clean format.

Example A.3 Sum the squares of integers from 0 to 10.

A.3 FUNCTIONS

Mathematica functions always begin with a capital letter. When typing in
a cell, Mathematica will give autocomplete options for existing functions.
Mousing over a function gives extensive documentation for the function’s
use with examples. The function Clear [ ] clears a variable. It produces no
output.

Example A.4 Set x = 1 and clear x.

The function ClearAll[ ] is extremely useful to perform a global clear of
everything.

Example A.5 Clear all variables.

The function Simplify[ ] reduces the result algebraically.
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Example A.6 Calculate sin2 x+ cos2 x.

It can also be written as //Simplify, placed after the code.

Example A.7 Simplify x2−4x+4
x−2 .

The function D[ ] gives the dervative.

Example A.8 Calculate d cos x
dx .

A user may define a function by placing an underscore after the argument,
f [x ]. This allows the function to be evaluated for any value of the argument.

Example A.9 Define the function f (x) = x2 and evaluate it for x = 2.5.

A.4 RESERVED NAMES

There are a few names that are reserved and may not be user defined. One of
them is D which is reserved for differentiation. The reserved names always
begin with capital letters. Others include, E , I, and Pi, which stand for the
exponential e , imaginary i, and π.

Example A.10 Calculate eiπ+1.

A double equal sign makes a logical comparison.
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Example A.11 Compare Pi π .

A.5 PHYSICAL CONSTANTS AND THEIR UNITS

One can get physical constants in Mathematica by typing simultaneously (in
input cell)

CTRL +

and then typing into the natural language box that appears, for example,
“speed of light”.

Figure A.1 Typing “speed of light” into the natural language box..

Clicking outside the box gives (hopefully) what one was looking for, dis-
played in standard physics notation.

Figure A.2 Successful procurement of the speed of light.

The physical constant c is stored as a “unit,” and it appears in italics with a
different shading so you can recognize the difference between a unit and a
user-defined variable with the same name. The numerical value is displayed
together with units using the function UnitConvert[ ]. The default units will
be SI.

Example A.12 Get the numerical value of the speed of light.
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The units to be displayed may be specified. There are two ways to get a unit,
1) typing into the natural language box, and
2) using the function Quantity[ ].

Example A.13 Get the unit miles per second.

Example A.14 Get the numerical value of the speed of light in miles per
second.

The function N[ ] will calculate the numerical value to the specified num-
ber of significant figures. The value has been stored in the variable x and it
remains so until cleared.

Example A.15 Get the numerical value of the previous calculation of the
speed of light to three significant figures.

Example A.16 Get π to 50 figures.

The functions NumberForm [ ], and ScientificForm[ ] can also be used to
display a decimal answer with specified number of digits.
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Other useful physical constants are similarly obtained by typing the fol-
lowing into the natural language box: elementary charge, epsilon 0, planck’s
constant, hbar, electron mass, proton mass, boltzmann constant, etc. Physical
constants and their names are given in App. D.

Mathematica is extremely useful as a calculator because it will automati-
cally check the units of a calculation and report errors.

Example A.17 Try to get the speed of light in kg.



A P P E N D I X B

Vectors

B.1 NOTATION

Vectors are denoted with curly brackets. One has to be careful in Mathematica
with the use of subscripts so not to confuse them with vector components.
Subscripts are technically not legal variables and cannot be cleared. The first
two lines of code in Ex. B.1 allow the use of subscripts without interference
and produce no output.

Example B.1 Define the vector A with components (Ax,Ay,Az).

B.1.1 Scalar Product

The function Dot[a,b] takes the scalar (dot) product of the inserted vectors.

Example B.2 Define the vector B with components (Bx,By,Bz) and take the
dot product A ·B.
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The shortcut in standard form is just a period. In ex. B.3 the == does a
logical comparison. The conversion to standard form is available from the
cell menu.

Example B.3 Show the two ways of writing the dot product are equivalent.

B.1.2 Vector Product

The function Cross[a,b] takes the vector (cross-) product of the inserted vec-
tors.

Example B.4 Take the product A×B.

The shortcut in standard form is a small cross. This and other shortcuts
are available in the special characters palette for quick access.

Example B.5 Show the two ways of writing the cross-product are equiva-
lent.

B.2 DERIVATIVES

B.2.1 Gradient

In Cartesian coordinates, the gradient of a scalar function f (x,y,z) is

∇∇∇ f =
∂ f
∂x

x̂+
∂ f
∂y

ŷ+
∂ f
∂z

ẑ.

The gradient is obtained with the function Grad[ f ,{x,y,z}] which differenti-
ates f w.r.t. (x,y,z). In Ex. B.6 the gradient function has been put into stan-
dard form.
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Example B.6 Calculate ∇∇∇(
√

x2+ y2+ z2).

B.2.2 Divergence

In Cartesian coordinates, the divergence of a vector function A(x,y,z) is

∇∇∇ ·A = ∂Ax

∂x
=
∂Ay

∂y
=
∂Az

∂z
.

The divergence is obtained with the function Div[ f ,{x,y,z}], which differen-
tiates f w.r.t. (x,y,z). In Ex. B.7 the divergence function has been put into
standard form.

Example B.7 Calculate ∇∇∇ · (x,y,z).

B.2.3 Curl

In Cartesian coordinates, the curl of a vector function A(x,y,z) is

∇∇∇×A =
(
∂Az

∂y
−
∂Ay

∂z

)
x̂+
(
∂Ax

∂z
− ∂Az

∂x

)
ŷ+
(
∂Ay

∂x
− ∂Ax

∂y

)
ẑ.

The curl is obtained with the function Curl[ f ,{x,y,z}] which differentiates f
w.r.t. (x,y,z). In Ex. B.8 the curl function has been put into standard form.

Example B.8 Calculate ∇∇∇× (−y, x,0).
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B.3 LINE INTEGRAL

The line integral of a vector function f is written
∫ b

a d��� · f where a and b are
vector positions. In general, the integral depends on the path. Consider the
line integral of a vector function,

f = (y2,2xy−2x,0),

along two different paths. Path 1 goes in a straight line (y = x) from a =
(1,1,0) to b = (4,4,0), and path 2 goes along y = 1 and then x = 3 (Fig. B.1).

Figure B.1 The line integral is taken along two different paths.

Along path 1, y = x and dy = dx. The vector components are obtained by
the dot product with the unit vectors, fx = f · x̂ and fy = f · ŷ.

Example B.9 Calculate
∫ b

a d��� · f along path 1.

Along path 2, y = 1 for the horizontal part and x = 4 for the vertical part.
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Example B.10 Calculate
∫ b

a d��� · f along path 2.

There is a fundamental condition that makes the line integral path-
independent. This condition is that the curl of the vector function be zero.
Consider the function

f =
x

(x2+ y2+ z2)3/2 x̂+
y

(x2+ y2+ z2)3/2 ŷ,

which is the coordinate dependence of the electric field of a point charge.

Example B.11 Calculate the curl of f.

Example B.12 Calculate
∫ b

a d��� · f along path 1.

Example B.13 Calculate
∫ b

a d��� · f along path 2.
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B.4 FLUX INTEGRAL

An area integral
∫

da · f is often referred to as a “flux.” The direction of the
differential vector da is taken to be perpendicular to the surface,

da = da n̂,

where n̂ is the unit vector normal to the surface. There are two possible di-
rections for n̂. If the surface is closed, the direction is taken to be outward. If
the surface is not closed, the direction must be specified.

Consider the function

f = (2x2z, x+7,yz2−3y)

integrated over a square in the x− y plane at z = 2 as indicated in Fig. B.2.

Figure B.2 The integration area for a flux calculation is taken to be a square
in the x− y plane bounded by 1 < x < 4 and 1 < y < 4 at z = 2.

Example B.14 Calculate
∫

da · f over the square of Fig. B.2, taking the di-
rection of the normal vector to be ẑ.
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B.5 DIVERGENCE THEOREM

The divergence theorem states that
∫

dv ∇ ·E =
∮

da ·E,

where the integral on the right is over the closed surface that surrounds the
volume that is integrated on the left. It holds for any function and can be
proven mathematically.

Example B.15 Calculate the volume integral over a unit cube extending
from −1 < x < 1, −1 < y < 1, and −1 < z < 1 of the divergence of f.

Example B.16 Calculate the the flux of f on the unit cube.
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B.6 STOKES’ THEOREM

Stokes’s theorem states that if one takes the curl of any vector function f and
then calculates the flux of that curl through some area, then the result is equal
to the line integral around the boundary that encloses the area,

∫
da · (∇∇∇× f) =

∮
d��� ·E.

Consider the function

f = x2y x̂+ zy2 ŷ+ xy ẑ.

Example B.17 Calculate the flux of∇∇∇× f through a square in the x−y plane
bounded by 0 < x < 1 and 0 < y < 1.

Example B.18 Calculate the line integral of f around the perimeter of the
square.



A P P E N D I X C

Spherical and
Cylindrical Coordinates

C.1 SPHERICAL COORDINATES

Spherical coordinates are described with unit vectors r̂, θ̂θθ, φ̂φφ that are not
constant. The variable r is the distance to the origin in an arbitrary direction
and has a range 0 ≤ r ≤ ∞. The polar angle θ measured from the z-axis has
a range 0 ≤ θ ≤ π. The azimuthal angle φ measured in the x− y plane has a
range 0 ≤ φ ≤ 2π. The unit vectors are orthogonal (see Figs. C.1 and C.2) and
satisfy

r̂× θ̂θθ = φ̂φφ,

φ̂φφ× r̂ = θ̂θθ,

and
θ̂θθ× φ̂φφ = r̂,

Figure C.1 Spherical-coordinate unit vectors are shown in the r− z plane. The
r− z plane depends on the direction of r̂.
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Figure C.2 In spherical coordinates (r, θ,φ), the polar angle (θ) is the angle
between the vector r and the z-axis and the azimuthal angle (φ) is the angle
in the x− y plane.

While spherical coordinates are convenient to describe a geometry with
spherical symmetry, one must be very mindful that the unit vectors are
not constant. For example, this makes derivatives non-trivial to calculate.
Most of the time it is easiest to work in Cartesian coordinates (unit vec-
tors x̂, ŷ, ẑ) using the spherical variables (r, θ,φ). These are obtained with
FromSphericalCoordinates[{r, θ,φ}].

Example C.1 Get Cartesian coordinates (x,y, x) in terms of spherical vari-
ables r, θ,φ.

Example C.1 says that

r r̂ = r sinθcosφ x̂+ r sinθ sinφ ŷ+ r cosθ ẑ.

To go in the other direction and get the spherical variables from (x,y, x),
for example, use ToSphericalCoordinates[{x,y, x}].

Example C.2 Get spherical coordinates (r, θ,φ) in terms of Cartesian vari-
ables x,y,z.
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Example C.2 says that

x x̂+ y ŷ+ z ẑ =
√

x2+ y2+ z2 r̂+ tan−1


√

x2+ y2

z

 θ̂θθ+ tan−1
( y

x

)
φ̂φφ

To get a Cartesian unit vectors in terms of spherical unit vectors, use
TransformedField[“Cartesian”→ “Spherical”, f , {x,y, x} → {r, θ,φ}], where f
is the vector field to be transformed. Since the calculation is repetitive, sev-
eral shortcuts can be used. The symbol # is an abbreviation for the function
Slot which makes a substitution for the function after the &, and /@ is an
abbreviation for the function Map. The function IdentityMatrix[n] is a matrix
of unit vectors for n dimensions. The function Column outputs the vectors in
a column.

Example C.3 Get Cartesian unit vectors x̂, ŷ, ẑ in terms of spherical unit vec-
tors r̂, θ̂̂θ̂θ,φ̂̂φ̂φ and angles.

Example C.3 says that

x̂ = sinθcosφ r̂+ cosθcosφ θ̂̂θ̂θ− sinφ φ̂̂φ̂φ,

ŷ = sinθ sinφ r̂+ cosθ sinφ θ̂̂θ̂θ+ cosφ φ̂̂φ̂φ,

and
ẑ = cosθ r̂− sinθ θ̂̂θ̂θ.

Example C.4 Get spherical unit vectors r̂,θ̂θθ,φ̂φφ in terms of Cartesian unit vec-
tors x̂, ŷ, ẑ and angles.
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Example C.4 says that

r̂ = sinθcosφ x̂+ sinθ sinφ ŷ+ cosθ ẑ,

θ̂̂θ̂θ = cosθcosφ x̂+ cosθ sinφ ŷ− sinθ ẑ,

φ̂̂φ̂φ = −sinφ x̂+ cosφ ŷ.

C.2 CYLINDRICAL COORDINATES

Cylindrical coordinates keep the z-axis fixed, using unit vectors r̂, φ̂φφ, ẑ. The
variable r is the distance to the z-axis and has a range 0 ≤ r ≤ ∞. The az-
imuthal angle φ measured in the x− y plane has a range 0 ≤ φ ≤ 2π. The unit
vectors are orthogonal (see Figs. C.3 and C.4) satisfy

r̂× φ̂φφ = ẑ,

φ̂φφ× ẑ = r̂,

and
ẑ× r̂ = φ̂φφ,

Figure C.3 Cylindrical-coordinate unit vectors are shown in the r − z plane.
The r− z plane depends on the direction of r̂.

Example C.5 Get Cartesian coordinates (x,y, x) in terms of cylindrical vari-
ables r,φ,z.
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Figure C.4 In cylindrical coordinates (r,φ,z), the azimuthal angle (φ) is the
angle in the x− y plane.

Example C.5 says that

r r̂+ z ẑ = r sinφ x̂+ r sinφ ŷ+ z ẑ.

Example C.6 Get cylindrical coordinates (r,φ,z) in terms of Cartesian vari-
ables x,y,z.

Example C.6 says that

x x̂+ y ŷ+ z ẑ =
√

x2+ y2 r̂+ tan−1
( y

x

)
φ̂φφ+ z ẑ

Example C.7 Get Cartesian unit vectors x̂, ŷ, ẑ in terms of cylindrical r̂, φ̂̂φ̂φ,z.
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Note that in Ex. C.7 the coordinate z could not be used twice so z′ was
used for cylindrical. Example C.7 says that

x̂ = cosφ r̂− sinφ φ̂̂φ̂φ,

ŷ = sinφ r̂+ cosφ φ̂̂φ̂φ,

and
ẑ = ẑ′.

Example C.8 Get cylindrical unit vectors r̂, φ̂̂φ̂φ,z in terms of Cartesian x̂, ŷ, ẑ.

Example C.8 says that

r̂ = cosφ x̂+ sinφ ŷ,

φ̂̂φ̂φ = −sinφ x̂+ cosφ ŷ,

ẑ′ = ẑ.
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Physical Constants

Physical constants may be called in two ways. One way is to use the function
Quantity[ ] with the argument equal to the name of the constant. A second
way which makes a much cleaner look to the code is to use the defined sym-
bol obtained from the natural language box as described in A.5. Executing
Quantity[ ] produces the an output identical to that of the natural language
box.

Example D.1 Compare the elementary charge as obtained from the Quan-
tity[ ] function and the natural language box.

The names of the fundamental constants used in this book with their sym-
bols and values are shown in D.1 and derived combinations are shown in D.2.

Particle masses may be acquired with either the function Quantity[ ] or
the natural language box as described in A.5.

Example D.2 Get the numerical value of the electron mass using the natural
language box.

Particle masses are displayed in D.3.
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Table D.1 Mathematica names (symbol) and numerical values for physical
constants.

Table D.2 Mathematica names (symbol) and numerical values for derived
constants.
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Table D.3 Mathematica names (symbol) and numerical values for particle
masses.

Table D.4 Common names (symbol) and numerical values for sky objects.
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$Assumptions, Mathematica, 9

alternating current, 122
Ampère’s law, steady current, 89
Ampere’s law, steady current, 79
auxiliary field H, 146
average electric field, 25

ball of charge, 23, 42, 52
Biot-Savart law, 63, 66, 83
bound charge density, 132
bound current, 141
bound surface charge, 132
bound surface current, 144
boundary condition, 149, 161
Brewster angle, 167

capacitance, 57
capacitor, charging, 155
capacitor, moving, 180
capacitor, stored energy, 61
cells, Mathematica, 191
circuit, LR, 122
circuit, LRC, 127
circuit, RC, 121, 125
circuit, resistor, 117, 118
Clear, Mathematica, 192
coax cable, 111
complex wave notation, 159
conductivity, 113
conductors, 56
continuity equation, 67, 151, 156
coordinate system, 4
coulomb unit, 2
Coulomb’s law, 1, 4, 6

Cross, Mathematica, 198
curl of A, 91, 93, 94
curl of B, 89
curl of E, 26, 45
curl of cross product, 83
curl of curl, 157
curl of scalar times vector, 95
Curl, Mathematica, 199
current, circular, 71, 82
current, cylindrical, 70, 86
current, line, 68, 85, 94
current, sheet, 87, 93
current, square, 80
cylindrical coordinates, 208

Delta-Y transform, 120
derivative, Mathematica, 193
dielectric, 136
dielectric ball, 137
dielectric boundary, 139
dielectric, electric field in, 137
dielectric, inside capacitor, 138
dipole field, electric, 135
dipole potential, electric, 131
dipole, electric, 53
dipole, magnetic, 75, 100
disk of charge, 19, 50
displacement vector, D, 136
Div, Mathematica, 199
divergence, 84, 199
divergence of B, 65
divergence of E, 38, 39
divergence of cross product, 153
divergence of curl, 91, 151
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divergence theorem, 84, 203
Dot, Mathematica, 197
drift speed, 114

electric charge, 1
electric constant, ε0, 1, 3
electric field, 12
electric potential, 45, 48
electromagnetic wave, 151
elementary charge, e, 1, 2
EMF, E, 103
energy per volume, 153
energy, magnetic, 110

Faraday’s law, 103
Fermi speed, 114
field transformation, 186
fields in materials, 131
flux integral, 202
flux rule, 103
flux, electric, 29, 32
flux, magnetic, 65, 105
four-vector, energy-momentum, 176
four-vectors, 172
Fresnel equations, 166
FullSimplify, Mathematica, 16

Gauss’s law, 29, 39
Grad, Mathematica, 47, 198
gradient, 47, 83

inductance, mutual, 105
inductance, self, 109
inverse square law, 2

kinetic energy, 178
Kirchhoff’s rules, 117

length contraction, 171, 175
Lenz’s law, 103
line integral, 200

line integral of B, 79, 82
line of charge, 13, 40, 48
Lorentz force, 64, 152
Lorentz transformation, 173

magnetic charge, 152
magnetic constant, µ0, 1, 64
magnetic field, 63
magnetic force, 63
magnetization vector, M, 140
magnetized ball, 143, 148
Maxwell equation, 38, 65, 89, 104,

151
mean free path, 115
metric tensor, g, 172
moving point charge, 184, 189

Newton’s 3rd law, 4
notation, 4
numerical integration, 72

Ohm’s law, 113

palettes, Mathematica, 192
parallel plates, 58
permittivity, relative, 136
physical constants, 211
physical constants, Mathematica,

194
plane of charge, 41
plane wave, 157, 158
point charge, 12, 46
polarization vector, P, 131
polarized ball, 134
polarized cube, 132
polarized wave, 165
potential difference, 45
Poynting vector, 152

reflection, 161
reflection coefficient, 163
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refraction, 161
reserved names, Mathematica, 193
resistivity, 113
resistors, 116
ring of charge, 17, 50

scalar product, 197
semicolon, Mathematica, 3, 191
Simplify, Mathematica, 16
Snell’s law, 165
solenoid, 73, 87, 92, 108
special relativity, 171
speed of light, 67
sphere of charge, 21, 51, 97
spherical coordinates, 205
steady current, 181
Stokes’ theorem, 46, 80, 92, 105,

204
stored energy, 60
stored magnetic energy, 154
strength of electric force, 27
strength of gravity, 27
substitute, Mathematica, 6
superposition principle, 6
susceptibility, electric, 136
susceptibility, magnetic, 147

tesla unit, 91
time average, 159
time dilation, 171, 174
toroid, 88
total energy, 177
transmission coefficient, 163

UnitConvert, Mathematica, 2
units, Mathematica, 195

vector Laplacian, 157
vector potential, A, 91
vector product, 198
vector, Mathematica, 5, 197

velocity addition, 179

wave equation, 156
waves in matter, 159
wire segment, 96
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