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Preface
Thermodynamics is an essential subject in mechanical engineering and almost all 
universities have a one- or two-semester course on thermodynamics. Accordingly, 
there are numerous textbooks written on the subject. Thermodynamic texts have 
progressively increased in volume, and the present-day books are close to a thousand 
pages. The increase in volume is due to increase in the number of worked exam-
ples, homework problems, and various study aids such as computer software. The 
scope of the subject has also increased to include current topics on renewable energy, 
advanced propulsion, environmental issues, bioengineering, etc. Many thermody-
namic texts include chapters on compressible flow for which a separate course is 
generally part of the curriculum.

The present book deals with the basic concepts of thermodynamics. These tend 
to be overlooked in the context of covering a wide range of topics. The fundamentals 
of thermodynamics are to a large extent governed by the first and second laws. The 
first law is essentially the conservation of energy, which is generally discussed in a 
first-level course in mechanics. The subtle contribution from the first law is in defin-
ing internal energy. The second law is the unique part of thermodynamics which is 
distinctly very much different in approach from the other subjects.  The major por-
tion of the book deals with the second law and its consequences.

The internal energy from the first law and entropy, reversible work, irrevers-
ibility and thermodynamic equilibrium from the second law are dealt with in the 
different chapters. The relationships among the thermodynamic functions, proper-
ties and coefficients are obtained and their utility demonstrated. The treatment is 
not restricted to ideal gases; rather the thermodynamic properties, functions and 
processes are derived in a general manner and those for ideal gases are obtained 
as limiting cases of the generalized results. The maximum work from a system is 
determined and the importance of reversible paths during change of state is dis-
cussed. The role of the environment in influencing entropy and work is specifically 
considered. Thermodynamic equilibrium is addressed through isolated systems and 
systems interacting through heat, work and mass exchange. Thermal, mechanical, 
chemical and phase equilibrium in simple systems are dealt with. Species formed at 
equilibrium in a chemical reaction are also considered. The molecular basis for the 
first law comprising internal energy, work and heat and the basis for the second law 
from reversibility and entropy is briefly discussed.

The book would supplement and be a source of reference to go with the standard 
textbooks that are in abundance. The book would, in particular, assist the undergrad-
uate, post-graduate and research students as well as practicing engineers to appreci-
ate the basics of thermodynamics and apply the concepts gainfully for solving issues 
in the areas of energy, power, propulsion and environment.
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1

1 Fundamental Concepts

1.1  SYSTEM AND ENVIRONMENT

Thermodynamics is a study of the interaction of a system with its environment. A 
system is part of the universe contained within a prescribed boundary that we deal 
with. Everything outside the boundary is called the environment. Thus, the system 
and its environment constitute the universe.

The boundary of a system may be a real physical boundary or could be imaginary. 
The boundary may be of arbitrary shape and could move when the volume within the 
boundary changes such as when the system expands or contracts when interacting 
with the environment.

An isolated system has a boundary that does not permit mass or energy exchange 
across it. For a closed system, the boundary permits only energy exchange. If mass 
as well as energy is exchanged across the boundary, the system is called an open 
system.

1.2  STATE OF A SYSTEM

The state of a system is defined by a set of measurable macroscopic parameters. 
The state can be measured only if the variables defining the state are invariant with 
respect to time and space within the system; that is, the system is in equilibrium. It 
is the equilibrium state of a system that is defined by the state variables of a system.

State variables that depend on the mass of the system are called extensive vari-
ables, for example, energy and volume. State variables that are independent of the 
mass are called intensive variables, for example, pressure, density and temperature. 

The specific value of an extensive property is the extensive property divided by the 
V

amount of substance, for example, specific volume v = , where V is the volume and 
m

m is the mass.

1.3  SIMPLE SYSTEMS

We shall be dealing mostly with simple systems. A simple system is one which is 
homogeneous, isotropic and chemically inert. It is sufficiently large in that surface 
effects can be neglected. In other words, we may define its energy without consider-
ing the surface energy due to the boundary separating the system from the environ-
ment. The external forces arising from electromagnetic, gravitational and similar 
environmental effects are also not considered in contributing to the energy of the 
simple system. So the simple system can generally be defined solely by its energy U, 
volume V and amount of mass in the system, that is, (U, V, mi) where mi is the mass 
of the different chemical components “i” in the system.

DOI: 10.1201/9781003224044-1
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2 Fundamentals of Thermodynamics

1.4  MASS, MOLECULAR MASS AND MOLES IN A SYSTEM

The mass of a system is the number of molecules N contained in the system multi-
plied by the mass of each of the molecules in it. Since the mass of a molecule is very 
small, it is measured in terms of the mass of a standard particle that is chosen to have 

12
a mass one-twelfth the mass of an isotope of carbon C . The mass of the standard 
particle m0, known as the atomic mass unit (a.m.u.), is 1.661×10−24 g.

The mass of a molecule of a substance is therefore expressed in units of the stan-
dard atomic mass unit m0, namely, mass of the molecule m divided by m0, that is, 

m
M = . M is called the molecular mass.

m0
m

As an example, the molecular mass of a hydrogen molecule is given as M H2
H2 = ,  m0

where mH2  is the mass of the hydrogen molecule and m0 is the mass of the standard 
particle. It is also spoken of as molecular weight since almost all experiments are 
carried out in the vicinity of the Earth’s surface where the gravitational constant is 
the same. We will use the words molecular mass and molecular weight without dif-
ferentiating between them.

The number of molecules in a macroscopic system is, in general, very large, and we 
therefore measure it in the unit of mole. A mole is defined as the number of standard 

1 1
particles N0 in 1 g of it, that is, N 23

0 = = = ×6.023 10  N  is called 
m0 1.661× 10−24 , 0

Avogadro number.
N

The number of the moles of a substance comprising of N molecules is n = .
N0

We can write the molecular mass as

m
  M = = m N0 = mN0 (1.1)

m0 0m N0

since m0 0N  = 1 g. 
The molecular mass M therefore equals mN0 in unit of grams and is the mass of 

1 mole of the substance in grams. Thus, 1 mole of hydrogen has a mass equal to 2 g, 
and 1 mole of nitrogen is 28 g and so on. Similarly, the number of moles n of a sub-
stance of mass m g is m/M.

For a mixture of gases consisting of N different constituents, the mole fraction of 
the ith constituent in it is

n
 x i

i =

∑
i N=  

ni

i=1

i N=

where ni mole is the number of moles of the ith constituent in it and ∑ni  is the total 
i=1

number of moles in the mixture.
Similarly, if the mass of the ith constituent is mi, the mass concentration of the ith 

constituent is
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= m
 y i

i

∑
i N=  

mi

i=1

The sum of the mole fractions and mass fractions is unity, namely,

N N

 ∑ x yi = =1 , i 1
i= =1 1∑ i

1.5  INTENSIVE VARIABLES DEFINING A SYSTEM

Energy U, volume V and mass m or equivalently the moles n, which define a system, 
U

are based on the extent of a system. The energy per unit mass u =  and the specific 
mV

volume v =  are independent of the extent and are intensive variables. In the fol-
m

lowing, we define the intensive variables pressure and temperature for defining a 
simple system. These are independent of its extent and are the so-called intensive 
variables.

1.5.1  Pressure

The pressure p is the force per unit area and acts normal to the surface and is inde-
pendent of the orientation of the surface. The unit of pressure is Newton per square 
meter (force per unit area) and is called as Pascal (Pa). A standard atmosphere, which 
is the atmospheric pressure at the standard sea level, is 1.01325 × 105 Pa. Pressure is 
also denoted in bars and 1 bar = 105 Pa.

For a homogeneous system at equilibrium, the pressure is uniformly the same 
throughout the system. For a system in mechanical equilibrium with its environment, 
the pressure is the same across the system’s boundary.

1.5.2  TemPeraTure

Temperature is an intensive variable that has its origin in thermodynamics. It is a 
measure of the physiological sensation of “hot” and “cold”. The measurement of 
temperature is based on the fact that two systems brought into thermal contact will 
eventually reach the same state of “hotness”, that is, a state of thermal equilibrium 
and will have the same value of temperature. This is the “zeroth” law of thermody-
namics that can be stated as follows: If system A is in thermal equilibrium with sys-
tem B (such as when brought in contact with each other) and system B is in thermal 
equilibrium with system C, then systems A and C are also in thermal equilibrium.

The zeroth law permits us to choose a test system called a thermometer to com-
pare how “hot” the system of interest is and to determine its temperature.

The substances used in the thermometer should have a property that changes sig-
nificantly with temperature and can be measured precisely. Most substances change 
their volume with temperature. Thus, the volume change can be calibrated to indicate 
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the temperature change. A typical thermometric substance is a liquid (e.g., mercury, 
alcohol) contained in a small thin-walled glass bulb, which connects to a fine-bore 
capillary tube. The height of the liquid column in the capillary tube can then be cali-
brated to provide a scale to read the temperature. The property should also change 
linearly with temperature for easy measurements.

The change of the electrical resistance with temperature or the voltage from a 
thermocouple can also serve as a thermometer. The different measured parameters of 
the various thermometers provide the different temperature scales. Practical consid-
erations require a thermometer to be sufficiently small so that it produces negligible 
effect on the system whose temperature is measured.

In a gas thermometer, a small volume of gas containing n0 moles is enclosed in a 
bulb and either the volume change at constant pressure or pressure change at fixed 
volume can be used to measure the temperature changes. A constant volume gas 
thermometer is preferable since the pressure change with temperature can be accu-
rately measured using a manometer. Use of gas at low pressures appears to provide a 
thermometric substance independent of the type of gas used.

1.5.2.1  Empirical Temperature θ
If X is the value of the thermometric property that changes with temperature param-
eter, for example, height of the mercury column in the capillary tube or pressure in 
a constant volume gas thermometer, then the ratio of the thermometric property X 
can be used to define the ratio of the temperature “θ”. The temperature obtained 
in this manner is an empirical temperature, and its value depends on the particular 
thermometer used. When the thermometer is brought into thermal contact with heat 
sources A and B and if the thermometer reads XA and XB, respectively, we say that the 
empirical temperatures θA and θB of A and B are in the ratio

θ A X= A  (1.2)
θB XB

 

To obtain the empirical temperature scale, we need to assign a numerical value to 
some chosen heat source, for example, temperature of steam at atmospheric pressure. 
It is agreed upon that the triple point of water (equilibrium between ice, water and 
steam) be used as a standard heat source and assigned a particular value θtp. Thus, 
we write Eq. 1.2 as

θ = θ X
tp  (1.3)

Xtp

 

where θ is the temperature of the system to be measured, and X is the value of 
the thermometric substance when the thermometer is in thermal equilibrium with 
the system. θtp and the corresponding Xtp refer to the triple-point temperature and the 
value of X when the thermometer is at thermal equilibrium with a system of ice, 
water and steam at the triple point. From Eq. 1.2, we see that the ratio of the thermo-
metric substance differs for different thermometers and the empirical temperature θ 
measured varies for different thermometers used.
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1.5.2.2  Absolute Temperature T
For a gas thermometer, where we use the pressure of a constant volume gas at low 
pressure to indicate the temperature, we write Eq. 1.3 as

 p 
θ = θtp  )

 p   (1.4
tp 

 

p
It was found experimentally that  is independent of the type of gas used in the 

ptp

limit the amount of gas in the bulb (number of moles n0 of it) approaching zero, that 
 p 

is, lim    does not depend on the properties of the thermometric fluid. The tem-
n0→0  ptp 

perature so obtained is known as the absolute temperature and is given as

 p 
T T= tp lim

n0→0  p   (1.5)
tp 

 

where T denotes the absolute temperature. It is measured in Kelvin (K).

1.5.2.3  Temperature in K and °C
Historically prior to the choice of the triple-point temperatures, the reference of ice 
water and steam water at 1 atmosphere pressure was used to determine an empirical 
temperature scale known as the Celsius scale. The temperature difference between 
ice and steam was chosen to be 100, that is, T Ts i− = 100. Here, TS and Ti  denote 
the temperature of the reference steam water and ice water mixture. Thus, for a gas 
thermometer,

T 100 s + Ti p= = lim s  (1.6)
Ti T ni i→0 pi

and solving for Ti  gives

 
100

Ti =  ps − 1
pi

p
Accurate measurement of s  gives its value to be 1.3661. Thus, T

p
i  = 273.15 K. The 

i
temperature of the freezing point of water, which in degree Celsius is 0°C, is 273.15 
in the Kelvin scale. Hence from Eq. 1.6, we write

 p 
 T = 273.15 lim ( K) 

n0→0  pi 

We therefore shift the scale by 273.15 to convert °C to K, that is, T (K) = θ°(C) + 273.15.
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Triple-point temperatures for different substances are given in Table 1.1 and can 
be used instead of the triple-point temperature of water.

The International Committee of Weights and Measures agreed in October 1968 
on a number of fixed points in degree C and K as given in Table 1.1. Further inter-
polation procedures are also specified for obtaining the intermediate temperatures 
using a platinum resistance thermometer and platinum rhodium thermocouples.

1.6  STATE OF A SYSTEM: STATE VARIABLES/
THERMODYNAMIC PROPERTIES

We have so far considered the simple single-phase homogeneous system. For this 
simplest case, the state of the system is specified by the amount and type of matter, its 
volume or mass or moles, pressure and temperature. These are the state variables or 
thermodynamic properties of the system. The pressure and temperature are specified 
when the system is in mechanical equilibrium and thermal equilibrium, respectively. 
There may be more complex systems where there are different constituents or com-
ponents in it with multiple phases (e.g., liquid, solid, vapor) being present. Additional 
state variables would be required to define the equilibrium state of the substance as 
the system becomes more complex.

1.7  CHANGE OF STATE OF A SYSTEM: QUASI-STATIC, 
REVERSIBLE AND CYCLIC PROCESSES

1.7.1  Quasi-sTaTic Process

There are various ways or paths by which the equilibrium state of a system could be 
changed. A process refers to a particular path causing the change. The system may 
not be in equilibrium at the different instants during the change; hence, the inter-
mediate non-equilibrium states cannot be defined and the path or process cannot be 

TABLE 1.1
Fixed Points for the International Practical Temperature Scale (1968)

Equilibrium Scale T (K) θ (°C)

Triple point of equilibrium hydrogen 13.81 −259.34

Boiling point of hydrogen at 25.76 atm. 17.042 −256.106

Boiling point of hydrogen at 1 atm. 20.28 −252.87

Boiling point of neon at 1 atm. 27.402 −246.048

Triple point of oxygen 54.361 −218.789

Boiling point of oxygen at 1 atm. 90.188 −182.962

Triple point of water 273.16 0.01

Boiling point of water at 1 atm. 373.15 100

Freezing point of zinc 692.73 419.58

Freezing point of silver 1,235.08 961.93

Freezing point of gold 1,337.58 1,064.43
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specified. An important property of energy transfer process in thermodynamics is 
that it has to be quasi-static.

A quasi-static process is one in which the change of state is effected very slowly so 
that the state of the system, as well as the environment in which the system interacts 
with, is arbitrarily close to equilibrium at all times during the process. A process there-
fore goes through a series of equilibrium states. It may be noted that the equilibrium 
state corresponds to that of an isolated system when a definite invariant state is reached.

Real processes are not quasi-static since changes occur at finite rates. However, 
if the time scale of the change is long compared to the relaxation time of the system 
to equilibrate when perturbed, then the real processes can be approximated as being 
quasi-static. The state of the system and the environment must also be arbitrarily 
close to each other since finite gradients in the thermodynamic state will result in 
finite acceleration and non-uniformities in the system and the environment.

Equilibrium thermodynamics does not involve time. When time appears, it is to 
be understood that the rate is infinitesimally slow for the process to be quasi-static.

1.7.2  reversible Process

Reversible processes are of importance in thermodynamics. A reversible process is 
one in which both the system and the environment with which it interacts with are 
returned to their original states when the direction of the process is reversed. The 
system follows the same sequence of equilibrium states in the reverse direction.

A reversible process must necessarily be quasi-static, but a quasi-static process 
may not be reversible, for example, when a dissipative process like friction is present.

It should be noted that a system can always be made to return to its initial state, 
but a reversible path also requires that the environment is also returned to its origi-
nal condition. Internal irreversibility is associated with irreversible processes that 
occur within the system, for example, diffusion of mass and heat when the system 
approaches overall equilibrium. External irreversibility is associated with the inter-
action between the system and the environment, for example, heat exchange across 
a finite temperature difference between the system and the environment. Chemical 
reactions among the various chemical species within the system also give rise to inter-
nal irreversibility. Irreversibility also results when dissipation processes are involved.

Reversible processes seem to be highly restrictive, but they are very important to 
provide a reference to assess real processes. Again the heat transfer process can be 
quasi-static when carried out infinitesimally slowly, and further for heat transfer to 
be reversible, the temperature difference across the boundary must be vanishingly 
small. Heat transfer across a finite temperature difference is irreversible and in fact 
constitutes the second law of thermodynamics.

1.7.3  cyclic Process: efficiency and coefficienT of Performance

A sequence of processes in which the initial and final states are the same is called a 
thermodynamic cycle or a cyclic process. A cyclic process is necessary to run a heat 
engine or a refrigerator or heat pump for continuously generating work or pumping 
out or pumping in heat to a system.
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We can determine the work done in the cyclic process by summing the work done 
in different processes constituting the thermodynamic cycle. The efficiency of an 
engine operating in a cycle is defined as ratio of the work done by it to the energy sup-
plied. The performance of a refrigerator or heat pump is not defined by an efficiency 
but rather by the term Coefficient of Performance (COP), which is the ratio of the 
intended heat abstraction (for a refrigerator) or heat supply (for a heat pump) to the 
work required to effect the heat transfer.

The processes in a reversible engine can be reversed to make it operate as a refrig-
erator or a heat pump.
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2 Equation of State

2.1  �INTRODUCTION

It is found that not all the state variables are independent of each other. As an exam-
ple, for a volume V m3 of nitrogen gas having a mass m kg at a pressure p, the tem-
perature is fixed and cannot be varied arbitrarily. The relationship among the state 
variables f (p, V, T, m or n) = 0 is called the equation of state of the substance. Given a 
substance (e.g., a gas), the equation of state is determined experimentally by measur-
ing the p, V and T values for a given amount of m kg or n moles of it and empirically 
fitting an equation for the dependence among  p, V, T and m or n.

We have seen that the variable pressure for a system can be defined only when the 
system is in mechanical equilibrium while the temperature is defined for a system 
when in thermal equilibrium. Thermodynamics deals with systems in equilibrium 
and the state variables define the equilibrium state of a system. The equation of state 
therefore describes the relationships of the variables of the system when the sys-
tem is in thermodynamic equilibrium, that is, when it is in mechanical and thermal 
equilibrium.

2.2 � EQUATION OF STATE FOR AN IDEAL GAS

The simplest substance is the so-called ideal gas. A real gas at sufficiently low pres-
sure and high temperature behaves as an ideal gas. Low pressure and high tempera-
ture are relative to the critical pressure and critical temperature of the gas. At the low 
pressures, number density of molecules in the volume is such that the intermolecular 
potential energy is negligible as compared to the kinetic energies of the individual 
molecules.

The values of the critical pressure and temperature of some common gases are 
given in Table 2.1.

TABLE 2.1
Critical Pressure and Temperature 

S. No. Gas
Critical Pressure 

(Atmosphere)
Critical 

Temperature (K)

1 Nitrogen 33.5 126.0

2 Oxygen 49.7 154.3

3 Hydrogen 12.8 33.2

4 Carbon Monoxide 35 134

5 Helium 2.26 5.3

6 Argon 48 151

https://doi.org/10.1201/9781003224044-2
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As can be observed, for normal temperatures and pressures, the ideal gas assump-
tion should be valid.

The equation of state can be deduced for an ideal gas from the experimental 
observations of Boyle (1662), Gay-Lussac (1802) and Charles (1687). For a given 
amount of ideal gas, Boyle observed that at a given temperature, the product of pres-
sure and volume is a constant, that is,

 pV = A m( ),T  (2.1)

where A depends on the amount of gas m and the temperature T. In 1802, Gay-Lussac 
showed that the ratio of the volumes of a given mass of gas at the temperatures of 
saturated steam and ice at a pressure of 1 atmosphere is a constant for all the gases 
studied, that is,

V
  s = Constant (2.2)

Vi

where Vs and Vi denote the volume at temperatures of saturated steam and ice, respec-
tively, at 1 atmosphere pressure. The constant was found to be 1.375, but later more 
precise measurements gave the value to be 1.36609. Gay-Lussac mentioned that his 
observations were also obtained by Charles in 1687. Gay-Lussac’s observation given 
by Eq. 2.2 can be generalized to read

 V = B m( ), p T  (2.3)

where B depends on the amount of gas m and the pressure p. Combining Boyle’s and 
the so-called Gay-Lussac or Charles’ law, that is, Eqs. 2.1 and 2.3, gives

 p B ( )m p,  = A m( ,T T) /  (2.4)

Since the left hand side in the above equation is a function of p and m, while the right 
hand side is a function of m and T, we must have both the sides equal to a function of 
m only, that is, C(m). Thus,

 p B(m, p) = A(m, T)/T = C(m) 

and this on substituting the value of A(m, T) from Eq. 2.1 as pV  gives:

 pV = C m( )T  

The volume increases with m by the same factor when T and p are kept constant. So 
the value of C(m) must be linearly dependent on m. Thus, we write

 pV = mRT  (2.5)

where R is a constant for a given gas and is known as the specific gas constant. Here, 
T is the absolute temperature in Kelvin as measured for the low-pressure gas by an 
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ideal gas thermometer. Equation 2.5 gives a relationship between p, V, m and T, and 
is therefore an equation of state for an ideal gas. We can write Eq. 2.5 as

 pv = RT  (2.6)

where v = V/m is the specific volume per unit mass. Further, since the density of the 
gas ρ = 1/v, we can also write Eq. 2.6 as

 p R= ρ T  (2.7)

If M is the molecular mass of the ideal gas in g/mole, then Eq. 2.5 can be written as

 pV = n R0T  (2.8)

where n is the number of moles given by n = m M/  and R0 = M R× . R0 is referred to 
as the universal gas constant and is the same for all gases, its value being

 R0 = 8.314 J/ ( )mole K  (2.9)

Defining the specific volume on a molar basis as the volume per unit mole and denot-
ing it by v then v V = / n and Eq. 2.8 gives:

 pv = R T0  (2.10)

If instead of mass or moles of a gas, we were to consider the number of molecules N 
in the ideal gas, Eq. 2.5 is written as

 pV = N k T (2.11)

where k is a constant with dimensions of energy for a molecule per unit temperature 
and is given by

 k = ×1.381 10−23 J/K (2.12)

when the pressure p is given in Pascal and volume V is in m3. k is referred to as the 
Boltzmann constant.

2.3  EQUATIONS OF STATE FOR REAL GASES

2.3.1  virial eQuaTion of sTaTe

The equation of state for an ideal gas is valid for vanishingly low pressures. Hence 
for higher pressures, correction terms are required. From experimental measure-
ments of the pressure p and volume V at constant temperature, over a wide range of 
pressures, it is found that the product of pressure and specific volume per mole can 

1
be expressed in a power series in p or , that is,

v
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  pv� = +a bp c+ +p d2 3p +� (2.13)

  b′ c′ d ′  pv� = +a1 + 2 3+ +�  (2.14) v� �v v� 

where a, b, c, d, …b c′ ′, ,d ′, etc. are referred to as the virial coefficients and depend on 
temperature and the nature of the gas. For a gas at low pressure, that is, large specific 
volume, Eqs. 2.13 and 2.14 reduce to the ideal gas equation of state in the limit and 
the constant “a” must equal to R0

The form of Eqs. 2.13 and 2.14 is called the virial equation of state. The virial 
coefficients will have the appropriate units depending on the units of p and v. For 
relatively low-pressure gases, it is sufficient to take the first couple of terms on the 
right side of Eqs. 2.13 and 2.14, for example, we write Eq. 2.14 as

 b ' pv = +a1   (2.15) v 

1
giving pv  to be linearly dependent on . The behavior of pv  versus pressure in the 

v
range of 0 < p < 40 atm. at a temperature of 273.16 K is illustrated in Figure 2.1. It 
can be seen that the value of the product pv  for the different gases all asymptote to a 

L atm
value of 22.414  as the pressure tends to zero.

T.

mole
From the definition of temperature in Kelvin as measured in an ideal gas ther-

mometer and given by Eq. 1.5 in Chapter 1

 
 p 

T = 273.16 lim  
p p, 0tp→  p 

tp 
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FIGURE 2.1 Variation of product pv  as a function of pressure for a few real gases.
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where ptp is the pressure measured in the ideal gas thermometer at the triple point of 
water. We can write the above equation as

 
 pv 

T = 273.16 lim
p p, 0tp→  p v   

tp  

 lim ( )p vtp  
or lim ( )pv =  ptp→0 T  (2.16)

p→0  273.16 
 

 

However, ptp ≈ 0.006 atmosphere and lim ( )p vtp   from Figure 2.1 equals 22.414 L 
ptp→0

atm./mole at the triple point temperature of 273.16 K. We therefore obtain

 22.414  pv = T T= 0.0820544    273.16 

when the pressure p → 0. Here, R0 = 0.0820544 in liter atm./(mole K) and in terms 
of joules reduces to R0 = 8.314 J/(mole K). Thus to the lowest order in pressure, we 
obtain the equation of state for an ideal gas.

Similarly, for higher pressures, we get

 pv = +R T0 bp 

where the virial coefficient b is a function of temperature. As an example, for nitro-
gen, it is given by

1.00 ×104 61.084 ×10
  b = −39.5 − 2    (2.17)

T T

where T is in Kelvin.

2.3.2  van der Waal’s eQuaTion of sTaTe

van der Waal in 1873 developed an equation of state for real gases in an attempt to 
correct the equation of state for an ideal gas. At higher pressures, the volume occu-
pied by the gas molecules is no longer negligible. Thus, the molar volume in the ideal 
gas law is replaced by (v b − ). To account for intermolecular attraction, the pressure 

a a
is written as p + 2 . The correction term 2  for the attractive intermolecular force is 

v v
based on the fact that it depends on the number of molecules (i.e., the molar density 

1) ( 1ρ =  and also the intermolecular distance which also depends on density ρ = ). 
v v1

Thus, the pressure correction term varies as 2  The van der Waal equation of state 
vis thus written as

a R T
  p + = 0

v 

2  (2.18)
v b−
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with a and b to be determined experimentally. The constants a and b, however, actu-
ally depend on temperature and the values for a and b have to be determined for the 
particular regions of pressure and temperature of interest.

But since the critical constant temperature line (isotherm) on a p − v diagram has 
zero slope and curvature at the critical point, we have the conditions

∂p  ∂2 p
  = 0, 0

v v2 = )
∂    (2.19

Tc c

where TC denotes the critical temperature, from which the van der Waal coefficients 
a and b can be evaluated. Using Eqs. 2.19 and 2.18, we obtain

∂p  R T 2
   = − 0 c a

2 + =3 0 (2.20)
∂v 

T v bC vCc ( )−

∂2 p  2 6R T a
  = 0 c − = 0 (2.21)

∂v2 
c

where the subscript “c” refers to the critical state. Solving for a and b yields

27 R T2 2

 a = =0 C R T 

, b 0 C p v 3
, C c =   (2.22)

64 pC 8pC R T0 C 8

( )v b − 3

T


4
C vC

∂ 
T

Thus from the critical point data for a given gas, the van der Waal coefficients a and 
b can be obtained.

p v 3
Note that Eq. 2.22 gives C C = = 0.375, whereas experimentally it is found 

R T0 C 8
p v

that C C  has values in the range of 0.2–0.3. It would be more accurate to fit the 
R T0 C

experimental data in the region of p and T of interest to determine the coefficients a 
and b rather than using Eq. 2.22. The coefficients a and b for a few gases are given 
in Table 2.2.

The van der Waal equation of state is of historical interest since it represents the 
first attempt to correct the equation of state for an ideal gas taking into account the 
real gas effects.

2.3.3  berTheloT and dieTerici eQuaTions of sTaTe

There are other two-parameter equations of state where the two constants can simi-
larly be obtained in terms of the critical pressure pC and temperature TC. Typical 
examples are the Berthelot and Dieterici equations, that is,

R T a
 Berthelot :  p = 0 −

v b − Tv2  (2.23)

R T0  a 
 Dieterici :  p = exp −   (2.24)

v b −  R T0 v 
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The constants a and b in the above equations can be obtained using the critical point 
conditions given by Eq. 2.19, to be

27R T2 2

 a 0 C R T= =, b 0 C  (2.25)
64 pC 8pC

for the Berthelot equation and

4R T2 2 R T
 a = =0 C , b 0 C

p e2 p e2   (2.26)
C C

where e = 2.718 for the Dieterici equation.
The Berthelot equation corrects for the attractive term in the van der Waal equa-

tion when the temperature is high and the kinetic energies of the molecules are large 
a

compared to the attractive potential energy. The correction term 
Tv2  would thus 

diminish with increase of temperature. The Dieterici equation was developed to give 
p v

better agreement with the quantity C C  in Eq. 2.22 which is in considerable error in 
R T0 C

the van der Waal equation when compared with experiments.

2.3.4  redlich–KWong eQuaTion of sTaTe

Another important equation of state used for high-pressure gases is the Redlich–
Kwong equation given as

R T a
  p = 0 −

v b T v1/2  (2.27)
− ( )v b +

where the constants are determined as a function of the critical temperature and 
pressure as

TABLE 2.2
Constants for the van der Waal Equation of State a in bar/(m3/kmole)2, b in 
m3/kmol

Substance a b Substance a b

Acetylene

Air

4.410

1.358

0.0510

0.0364

Ethylene

Helium

4.563

0.034

0.0574

0.0234

Ammonia

Benzene

4.233

18.63

0.0373

0.1196

Hydrogen

Methane

0.0247

2.285

0.0265

0.0427

n-Butane

Carbon dioxide

Carbon monoxide

Refrigerant 12 (CC2F3)

Ethane

13.8

3.643

1.463

10.78

5.575

0.1196

0.0427

0.0394

0.0998

0.0650

Nitrogen

Oxygen

Propane

Sulfur dioxide

Water

1.361

1.369

9.315

6.837

5.507

0.0385

0.0315

0.0900

0.0304

0.0304
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0.4275R T2 2.5

0 0.0867R T
a = =C , b 0 c   (2.28)

pC pC

The Redlich–Kwong gives good results for the high-pressure region. The constants a 
and b for a few substances are given in Table 2.3.

2.4  COMPRESSIBILITY FACTOR AND GENERALIZED 
COMPRESSIBILITY CHART

The equations of state for the real gases, in general, are quite difficult to use. For most 
of the engineering problems, the compressibility chart provides a simple means to 

pv
account for the dense gas effects. For an ideal gas = 1 and for a dense gas, we 

R Twrite 0

pv
  = Z  (2.29)

R T0

where Z is no longer equal to unity. Z is called the compressibility factor and varies 
with the state variables, that is, Z(p, T). Different gases at the same p and T give dif-
ferent values of Z. However, if p and T are normalized with respect to the values at 

T p
the critical state, that is, reduced temperature TR =  and reduced pressure p

T
R = , 

C pC

then Z(TR, pR) is a universal function valid for all gases. This is known as the theorem 
of corresponding states. The theorem states that “Any pure gas at the same reduced 
pressure and temperature should have the same compressibility factor”.

Z is plotted against pR for various constant values of TR and is shown in Figure 2.2. 
The figure replaces the equation of state and we can find the p, v and T data from it 
for any gas.

The general procedure is to first calculate for the given p and T, the reduced pres-
sure and temperature by normalizing with the critical pressure and temperature. The 
value of Z is obtained from the compressibility chart (Figure 2.2) and thereafter 
the value of the reduced molar volume vR is calculated. If, however, vR is given, then 
a value of v v 'R = R Z , known as a pseudo reduced molar volume is used and plotted 

TABLE 2.3
Constants a and b for the Redlich–Kwong Equation of State  
a Is in bar (m3/kmole)2(K)0.6, b is in m3/kmole

Substance a b Substance a b

Carbon dioxide 64.64 0.02969 Oxygen 17.38 0.02199

Carbon monoxide 17.26 0.02743 Propane 183.070 0.06269

Methane 32.19 0.02969 Refrigerant R12 214.03 0.02110

Nitrogen 15.59 0.02681 Water 142.64 0.02110
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in the generalized chart instead of the reduced volume vR as it is more convenient. 
With v 'R  and pR (or TR), we can find the other missing state variable directly from the 
generalized compressibility charts in which constant v 'R  lines are plotted.

2.5  MIXTURE OF IDEAL GASES

For a mixture of several constituents or components of gases in a volume V at a given 
temperature T, the pressure that each constituent of gas would exert, if it were alone 
contained in the volume V, is its partial pressure. Let the partial pressure of the ith 
constituent in the mixture of gases be denoted by pi , while the pressure of the mix-
ture of gases is p. When each of the constituent gases in the mixture and the mixture 
of gases are ideal gases, then from the equation of state for an ideal gas pV = nR0T ,  
we get

N

 ∑ p pi =  (2.30)
i=1

since the sum of the number of moles of each of the constituent gas is the total num-
ber of moles in the mixture. Equation 2.30 is Dalton’s law of partial pressures for an 
ideal gas mixture.

Similarly we have Amagat’s law of partial volume for a mixture of ideal gas. The 
law states that the volume of a mixture of ideal gas is equal to the sum of the partial 
volumes that each gas in the mixture would occupy if it existed in the mixture at the 
same temperature and pressure, that is,
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 ∑N

 V Vi =  (2.31)
i=1

Dalton’s law of partial pressure at constant volume and temperature and Amagat’s 
law of partial volume at constant pressure and temperature are valid only when each 
of the constituent gases in the mixture and the mixture of gases are ideal gases.
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3 First Law of 
Thermodynamics

3.1 � STATEMENT OF THE FIRST LAW

The first law of thermodynamics states “the increase in the internal energy of a sys-
tem is equaled to the heat transfer to the system minus the work done by the system”. 
By convention, the heat transfer to and the work done by the system are considered 
to be positive. Thus

	 –U Q W∆ = 	 (3.1)

Here, ΔU is the change in the internal energy, Q is the heat transfer and W is the work 
done. The first law is in essence of the law of conservation of energy.

Work is a familiar concept in mechanics, but “internal energy” and “heat” are 
novel to the first law.

3.2 � INTERNAL ENERGY AND ADIABATIC WORK

Work done by a force is defined as the product of the force and the displacement in 
the direction of the force. In thermodynamics, we are mostly concerned with work 
associated with the volume changes of a system. If “p” denotes the pressure that the 
system exerts on its boundary and “dV” is the volume change, then “p dV” is the 
work done by the system when the system increases its volume by “dV”.

The difference in the pressure across the boundary of the system must be infini-
tesimally small giving rise to a fully resisted motion of the boundary in order to 
define work done by the system. The rate of expansion is thus sufficiently slow to 
permit both the system and the environment that it interacts with to be in equilibrium 
at all times.

The work done by the system between two equilibrium states is given by the 
integral

	

1

2

W pdV
V

V

∫= 	 (3.2)

The above integral is a path integral and the path p(V) must be specified in order to 
evaluate the integral. Also between the same two states, the work done is different for 
different paths; we therefore say that the work is a path-dependent quantity.

DOI: 10.1201/9781003224044-3
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There are different kinds of work other than “p dV” work and also the work may 
not necessarily be associated with the change in the configuration of the system (like 
the volume). For example, the work input to a system, such as by a paddle wheel as 
mechanical work, does not involve a change in the configuration of the system. This 
is generally defined as dissipative work where the mechanical work input to the sys-
tem is converted via viscous dissipation to heat, hence increasing the internal energy 
of the system.

When the system is insulated and hence there is no heat exchange with the envi-
ronment, the work done either by or on the system is referred to as adiabatic work. 
Experiments indicate that adiabatic work done by (or on) the system between two equi-
librium states is the same for different adiabatic processes. From Eq. 3.1, we can write

 ∆ =U W− ad (3.3)

where Wad is the adiabatic work done by the system. Since Wad is path-independent, 
the internal energy change between two states is also path-independent.

We can therefore define a state function “U” such that the change in the state func-
tion can be determined by measuring the adiabatic work input to the system.

Internal energy can be understood at a more fundamental level based on the atom-
istic view of matter. However, as per the first law, the internal energy difference 
between two equilibrium states can be defined via a macroscopic measurement of the 
adiabatic work input to the system.

3.3  HEAT

From experience, heat is transferred across a boundary where there is a temperature 
difference. But by measuring the work done and the change in internal energy, the 
heat transfer to the system can be obtained from the first law, that is,

 Q = ∆U W+ = W W − ad (3.4)

Heat is thus a measure of the non-adiabatic nature of the system. Depending on the 
temperature gradient, the heat flow can be to or from the system. However, the direc-
tion of heat flow is always from hot to cold as required by the second law.

Since work is path-dependent while internal energy is not, the heat transfer is also 
path-dependent.

The first law in a differential form can be written following Eqs. 3.1 and 3.4 as

 dU Q= −δ δW  

where dU denotes a perfect differential while δQ and δW  are imperfect differentials 
being path-dependent. In applying the above differential form of first law to a cyclic 
process and integrating over a cycle, we get

 
∫ dU = −

∫ δ δQ W
∫  
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Since 
∫ dU = 0 as U is a path-independent state variable,

 
∫ δ δQ W=

∫  

This implies that in a cyclic process the sum of heat transfer is the same as the sum 
of work done or stated differently; the heat and work interactions are equal for a sys-
tem undergoing a cyclic process. The equivalence between heat and work gives the 
mechanical equivalent of heat.

Historically, the amount of heat was measured by the calorie. A calorie is the heat 
required to raise the temperature of 1 g of pure water at 14.5°C by 1°C. The work 
equivalent of heat is 4.1858 J.

3.4  HEAT CAPACITY OF A SYSTEM

In the absence of phase changes, the heat transfer to a system results in a temperature 
rise. The heat capacity “C” of a system is defined as

δ
 C Q Q= =

∆ →
lim  (3.5)
T 0 ∆T dT

Since “Q” is a path-dependent quantity, δQ in Eq. 3.5 is not a total differential. 
Equation 3.5 should not be interpreted as the derivative of “Q” with respect to “T”. Since 
δQ is path-dependent, we define the heat capacities for different heat transfer processes. 
For a constant volume process, we write the heat capacity at constant volume as

δ
 C Q

v = lim v  (3.6)
∆ →T 0 ∆T

where δQv is the heat transfer under constant volume conditions. Similarly, for a con-
stant pressure process, we define heat capacity at constant pressure as

δ
 C Q

p = )
∆ →
li
T
m p   (3.7
0 ∆T

3.4.1  heaT caPaciTy aT consTanT volume

For a simple hydrostatic system, the state can be specified by the variables p, V and T. 
If the equation of state is known, then it suffices to use any pair of the three variables, 
for example, T and V, p and T or p and V. Choosing T and V as independent variables, 
we write the internal energy as U(T, V) and

 ∂U   ∂U 
 dU T( ),V =   dT +   dV    ∂T 

V T
 ∂V 

and writing the first law in a differential form as

 δQ d= +U Wδ = +dU p dV  
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we obtain

 ∂U    ∂U  
 δQ =   dT +   + p dV ∂T   8)

V r  ∂V    (3.


In a constant volume process where dV = 0, the heat capacity is therefore

δQ ∂U
 v  =   = C )

dT  ∂T  v (3.9
V

The internal energy can then be written as

 U = ∫C TV ( ),V dT  

If CV can be treated as constant for the temperature range of interest T1 and T2, then

 U = −C Tv ( )2 1T  (3.10)

Using Eq. 3.9, we can also write Eq. 3.8 as

  ∂U  
 δQ C= +vdT p +   dV

  ∂V    (3.11)
T 

3.4.2  heaT caPaciTy aT consTanT Pressure

The first law could also be expressed in terms of an enthalpy function H = U + pV 
instead of internal energy. The law can then be written as

 δQ d= −H Vdp (3.12)

If we choose p and T as independent variables, that is, H(p, T), we write

 H   ∂H 
 dH p( ) ∂

,T =   dT + dp  ∂T    (3.13)
p  ∂p 

T

Replacing dH in the first law (Eq. 3.12) by the expression in Eq. 3.13 gives

 ∂H    ∂H  
 δQ =   dT − −V dp     (3.14)

∂T 
P   ∂p 

T 

Therefore for a constant pressure processes where dp = 0, the above gives

 ∂H 
 δQP =   dT   ∂T 

P
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and in terms of heat capacity

δQp  ∂H 
 Cp = =    (3.15)

dT  ∂T 
p

If the heat capacity is specified, we can determine the enthalpy function as

 H C= ∫ p ( )T p, dT  (3.16)

For constant values of heat capacity in the temperature range of T1 to T2, we have the 
enthalpy function as

 H C= −p ( )T T2 1  (3.17)

3.4.3  relaTion beTWeen heaT caPaciTies

If we write V as a function of p and T, that is, V(p, T), we obtain

 ∂V   ∂V 
 dV =   dT + dp  T   ∂ p  ∂p 

T

Substituting the above in Eq. 3.8, we get

  ∂U     ∂V   ∂V  
 δQ C= +vdT  p +       dT + dp

 ∂ 
T p  ∂T      

V   ∂p 
T 

For a constant pressure process where dp = 0, the above becomes

δQp   ∂U    ∂V 
 = =C C

dT
p v + + p    ∂V      

T p  ∂T 

or

C C−  ∂U 
 p v = +p    (3.18)

 ∂V   ∂V 
  T

 ∂T 
p

which is the relation between the heat capacities at constant pressure and constant 
volume.

3.4.4  sPecific heaTs

The heat capacity per unit mass (or mole) is the specific heat. Accordingly, the spe-
cific heats at constant volume and at constant pressure from Eqs. 3.9 and 3.15 are
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 du   du   du  cv = Lim ;c =
T 0

  =      
∆ →  ∆T 

v v
 dT  v  dT 

v

 dh   dh   dh 
 cp = Lim

0
  c  

T
 =  ;  =

∆ →   ∆T    p
p pdT  dT 

p

Here, cv and cv denote the specific heats at constant volume per unit mass and mole, 
respectively, while cp and cp denote the specific heats at constant pressure per unit 
mass and mole. The specific internal energy per unit mass and per unit mole are 

U
denoted by u = U

 and u = , respectively, and similarly enthalpy per unit mass and 
m n

H H
per unit mole are denoted by h =  and h = .

m n

3.5  INTERNAL ENERGY AND ENTHALPY FOR AN IDEAL GAS

For an ideal gas where pV = nR0T,

 ∂V  nR
   = 0   ∂T 

p p

and assuming constant values of heat capacities Cp and CV, we have using Eq. 3.10 
and the definition of enthalpy function H = U + pV, 

 H H2 1– –= +U U2 1 nR0 2( )T T– 1  

and

 C Cp v– = n R0 (3.19)

 or ;c c p v− = R c0 p v− =c R 

Substituting Eq. 3.19 in Eq. 3.18, we get

 ∂U 
   = 0 (3.20) ∂V 

T

Thus for an ideal gas, the internal energy is a function of the temperature only. 
Similarly, it can be shown that the enthalpy function for an ideal gas is a function of 
its temperature alone.

3.6  EXPERIMENTAL VERIFICATION OF DEPENDENCE 
OF INTERNAL ENERGY ON TEMPERATURE, 
SPECIFIC VOLUME AND PRESSURE

Numerous attempts have been made to determine experimentally the dependence 
of internal of a gas on its specific volume. The early attempts were by Gay-Lussac 
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and Joule at about the middle of the nineteenth century. Their experiments were 
based on the adiabatic-free expansion of a gas into vacuum where there is neither 
heat transfer nor work done by the gas. The first law indicates that the internal 
energy is a constant since there is neither heat nor work interaction. Careful mea-
surements were made of the temperature change and within experimental accu-
racy, no temperature change was detected. Note that the experiment is extremely 
difficult to carry out because the temperature change, if any, is extremely small. 
More refined experiments were carried out subsequently with better experimental 
techniques to minimize heat losses and with higher accuracy of measurements for 
temperature. However, within the experimental error, no temperature change in the 
free expansion was observed. With no temperature change being observed after the 
free expansion, it may be concluded that the internal energy does not depend on 
the specific volume.

The experiments also attempted to measure the so-called Joule coefficient

 ∂T η =   , which should be zero if the specific internal energy u (internal energy  ∂v 
u

per unit mass, viz. U/m) does not depend on the specific volume v (i.e., V/m). We can 
 ∂u 

readily show that the Joule coefficient is related to    from calculus. The cyclic  ∂v 
T

rule gives

 ∂u   ∂v   ∂T 
       = −1  ∂v 

T u
 ∂T   ∂u 

v

 ∂u 
Further, since   = c ∂T  v

v

dC
where cV is the specific heat capacity at constant volume, c V

V =  and using the 
dm

reciprocal rule, we write

 ∂T  1  ∂u 
 η =   = −    (3.21) ∂v c

u v  ∂v 
T

 ∂T   ∂u 
Since cV is finite, if   = 0, then   = 0 and ∂v 

u
 ∂v 

T

  u f≠ ( )v  (3.22)

The early experiments were inconclusive. The idea of a precise measurement of the 
Joule coefficient was finally abandoned due to the difficulty of the direct measure-
ment of temperature change of a gas in a free expansion.

 ∂u 
The more modern method involves the measurement of a related quantity    

 ∂p 
T

when a gas undergoes an isothermal expansion (where heat is transferred and work 
is done). The extensive experiments by Rossini and Frandsen in 1932 at the U.S. 
National Bureau of Standards indicated that the internal energy of a gas is a function 
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of both temperature and pressure. They found no pressure and temperature range in 

 ∂u   ∂u 
which =  0. They reported a value of    = − 6.08 Joule/(mole atm.). In the 

 ∂p
T

 ∂p 
T

 ∂u 
pressure range of 1–40 atm., they observed    is independent of pressure, that is,

 ∂p 
T

 ∂u 
 =  f T( ) (3.23)

 ∂p 
T

Thus in general u f= +( )T g( )T p
where f ( )T  and g T( ) are functions of temperature.

3.7  EXPERIMENTAL VERIFICATION OF ENTHALPY TO BE 
INDEPENDENT OF PRESSURE FOR AN IDEAL GAS

To prove that the enthalpy is independent of pressure, Joule and Thomson carried 
out a related “throttling” experiment. In this experiment, steady flow of a gas in an 
insulated pipe is carried out with a flow restriction placed in the pipe to create a pres-
sure drop. Temperatures upstream and downstream of the restriction were measured.

Application of the first law shows that the enthalpy is a constant in the throttling 
process. From the cyclic rule in calculus, we write

 ∂H   ∂p   ∂T 
       = −1 

 ∂p 
T

 ∂T 
H p

 ∂H 

Thus,

 ∂H   ∂H   ∂T 
 = −   = − Cp µ   (3.24)

 ∂p 
T

 ∂T 
p  ∂p 

H

where

 ∂T 
 µ =    

 ∂p 
H

is called the Joule Thomson coefficient. The experiment measures the temperature 
across the restriction for given pressure difference and thus the Joule Thomson 
coefficient is determined. For an ideal gas, it was found that μ = 0 and therefore the 
enthalpy is independent of pressure for an ideal gas and is just a function of its tem-
perature. We will discuss further about the Joule Thomson coefficient in Chapter 8 
on thermodynamic coefficients.

3.8  FIRST LAW APPLIED TO OPEN SYSTEMS

Open systems or control volumes permit mass as well as energy exchange across its 
boundary. Since in general, mass enters and leaves the open systems continuously, 
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open systems are flow systems. Associated with the mass transfer, energy is also 
carried with the mass across the boundary. Further, displacement work is done on 
the system when mass is pushed in and work is done by the system in displacing the 
mass leaving the system.

An open system with fixed boundaries is shown in Figure 3.1. Mass and energy 
enter at Section 1 and leave at Section 2. Heat at a rate Q  is supplied at the boundaries 
and work at the rate WS is also delivered at the boundary as shown. Since the bound-
ary does not move, the work is not displacement work as considered earlier; it could 
be shaft work from a turbine, electrical work, etc.

The increase of internal energy in the open system is related to the energy enter-
ing the control volume at Section 1 and energy leaving at Section 2, and the heat and 
work (Q and WS) interactions at the boundary (control surface).

In order to derive a relationship between the rate of heat and work interactions at 
the boundary and the mass and energy entering and leaving the system, consider a 
flow into the open system at Section 1 of mass flow rate m1 at pressure p1, specific 
volume v1 and internal energy per unit mass u1. Let the flow rate out of the control 
volume at Section 2 be m 2 at pressure p2, specific volume v2 and specific internal 
energy u2. Let the mass in the control volume at any instant of time be m and its spe-
cific internal energy (per unit mass) be u. If we were to consider a small mass ∆m to 
flow through Section 1 into the control volume over a short duration ∆t, the energy 
into the control volume over this short duration would be:

 ∆ +m u( )1 1p v1 1= ∆m t ( )u p1 1+ =v m1 1 ∆t h1 (3.25)

Here, p v1 1 corresponds to the displacement work of unit mass of gas entering the open 
system at Section 1 at pressure p1. The specific enthalpy per unit mass is h u= + pv.

Similarly, over the short duration ∆t, energy outflow from the open system at 
Section 2 is

 m 2 2∆ +t u( )p v2 2 = ∆m t2 2h  (3.26)

Neglecting the flow velocities and consequently the kinetic energy within the open 
system, we have from first law the change in the internal energy of the open system as:

  ∆ =U Q − +W ms  1 1∆ −th m t2 2∆ h  (3.27)

m1

p1, v1, u1 p2, v2, u2 

�U m2

Q

1 2

Ws

FIGURE 3.1 Open system.
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Dividing the above equation by ∆t gives:

dU
 = −Q W 

S + −m h 1 1 m h2 2 (3.28)
dt

If in addition to the internal energy, the incoming and outgoing fluids at Sections 1 
and 2 have kinetic energy from the flow velocities and potential energy from differ-
ent heights above the datum, these kinetic and potential energies have to be included 
in Eq. 3.28. The kinetic energy within the system, however, is generally negligible 
compared to the enthalpies. But we may not be able to neglect the kinetic energy of 
the gas entering and leaving the system since the velocity at the entrance and exit 
could be large. Equation 3.28 therefore becomes

dU  v 2
1   v 2

 = −Q W  + +m h 1 1 + − + 2 
S + gz  m h

dt  2 2
1 2  2 gz2   (3.29)

 

Here,v1 and v2 denote the flow velocities at Sections 1 and 2 while z1 and z2 denote the 
heights above the datum. Equation 3.29 gives the rate of increase of internal energy 
in the control volume.

The rate of mass addition in the control volume is given by the conservation of 
mass:

dm
 = −m m 1 2 (3.30)

dt

For steady state, the rate of mass flowing in and out is the same, that is, m 1 2= =m m  
dU

and = 0. Substituting in Eq. 3.29 gives:
dt

Q W −   2

  S v 2

= +h 2   v
gz h 1 

gz


2 + 2 1− + +  1  (3.31)
m  2 2  

This is the steady flow energy equation for an open system.
If the datum or the potential energy of the incoming and outgoing streams is the 

same:

Q W − 

S  v 2
2   v 2

 = + 1 
 h

m
2 − +  h

 2 2 1   (3.32)
 

When the control volume is adiabatic and there is no work leaving the control sur-
faces (boundaries), that is, Q  = 0 and WS = 0, we get from the above equation:

v v2 2

 h h 2 1
1 2− = −  (3.33)

2 2

which is the familiar form of the energy equation for adiabatic compressible flow. 
If the kinetic energies are negligible at the inlet and outlet, we have for steady flow

 Q − =W m

S  ( )h h2 1−  (3.34)
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We find that we deal with the rates of the work and heat transfer in case of open 
systems. Representing wS and q as work and heat interaction per unit mass, we can 
write Eq. 3.34 as

 q w− =S h h2 1−  (3.35)

If we were to consider unit mass entering the system and follow its path through the 
system, we can write the first law for this unit mass following Eq. 3.12 as

 dh q= +δ vdp (3.36)

Heat q refers to heat transfer per mass entering the open system. Integrating Eq. 3.36 
between the entrance and exit of the open system, that is, between pressures p1 and 
p2, we write for a steady-state process

P2

 ∆ =h h2 1− =h q + ∫ v dp (3.37)
P1

Thus,

p

 −∫
2

v dp q= − ( )h h2 1−  (3.38)
p1

and comparing the above with Eq. 3.35, we obtain

P2

 w vs = −∫ dp (3.39)
P1

To evaluate the above integral, the path of the change is to be specified.
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4 Second Law of 
Thermodynamics

4.1  �STATEMENTS OF THE SECOND LAW

The second law of thermodynamics is generally defined through two equivalent 
statements. The Clausius statement says that spontaneous heat flow from a cold to 
a hot reservoir is not possible. The Kelvin-Planck statement says that a perpetual 
motion machine of the second kind (PMM2) is not possible. By spontaneous, it is 
meant naturally without any energy input to aid the process. A reservoir is a body of 
large thermal capacity such that heat transfer from it will not change its temperature. 
A PMM2 is a machine that takes heat from a single heat reservoir and converts all 
the heat to mechanical work.

4.2 � EQUIVALENCE OF KELVIN-PLANK AND CLAUSIUS  
STATEMENTS

To prove the equivalence of the two statements, we show that if one of the statements 
is not true, then the other is also not true, and vice versa. For example, if Clausius 
statement is not true, then spontaneous flow of heat from a cold reservoir to a hot res-
ervoir is possible. We operate in a cyclic process a heat engine to take heat Q1 from 
the hot reservoir at temperature T1 and reject Q2 to the cold reservoir at temperature 
T2 as shown in Figure 4.1. We then let Q2 to flow spontaneously back to the hot reser-
voir. The arrangement is a PMM2 that takes Q1–Q2 from the hot reservoir and deliv-
ers work W = Q1 –Q2 (Figure 4.1). Thus, Kelvin-Planck statement is also not true.

If Kelvin-Planck statement is false, a PMM2 is possible. We let the PMM2 to take 
heat Q1 from the hot reservoir and deliver work W  =  Q1, as shown in Figure 4.2. 

T1 T1

T2

Q2W5Q12Q2
W5Q12Q2

PMM2

Q12Q2
Q1

Q2

FIGURE 4.1  Violation of the Clausius statement equivalent to violation of the Kelvin-Plank 
statement.

https://doi.org/10.1201/9781003224044-4
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We use the work to operate a heat pump that extracts Q2 from the cold reservoir and 
deliver Q2 + W = Q1 + Q2 to the hot reservoir. The combination of the PMM2 and the 
heat pump would result in the spontaneous heat flow of Q2 from the cold to the hot 
reservoir (Figure 4.2). Thus, Clausius statement is not true. Hence, the statements are 
equivalent.

Note that the two statements of the second law should be considered as “highly 
improbable” rather than “not possible”.

4.3  CARNOT’S PRINCIPLE

Using the second law, it can be shown that “no engine, operating in a cyclic process, 
can be more efficient than a reversible engine operating in a cyclic process between 
the same hot and cold reservoirs”. This statement is referred to as Carnot’s principle.

To prove Carnot’s principle, consider an engine X and a reversible engine R both 
operating between a hot reservoir at temperature T1 and a cold reservoir at T2 as 
shown in Figure 4.3. It is to be noted that both the engines work in a cyclic pro-
cess. Let engine X take heat Q1 from the hot reservoir and reject Q2' to the cold 
reservoir (Figure 4.3). Similarly, operate R to take the same heat Q1 from the hot 
reservoir but rejecting heat Q2 to the cold reservoir. The work output of X and R 

would be WX = Q1 – Q2' and WR = Q1 – Q2, respectively. The efficiency of X would be 

WX Q Q1 2− ' W Q Q−ηX = =  and similarly efficiency of R is η R 1 2

Q1 Q
R = =

1 Q1 Q1

PMM2

Cold Cold

Hot Hot

HP

Q11Q2Q1

Q2

Q2

W5Q1

FIGURE 4.2 Violation of the Kelvin-Plank statement to a violation of the Clausius statement.

Cold

Hot

X R

Q1
Q1

Q2Q29

WX5Q12Q29 WR5Q12Q2

FIGURE 4.3 Operation of two engines between a set of reservoirs.
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If ηx R> η , then WX > WR and we can take WR from the output of X to operate 
R backward as a reversible heat pump which takes Q2 from the cold reservoir and 
delivers WR + Q2 = (Q1 – Q2) + Q2 = Q1 to the hot reservoir as shown in Figure 4.4. 
The combination of X and R would be a PMM2 that takes Q2 − Q2’ from the cold 
reservoir and delivers work (WX – WR) = (Q1 – Q2') – (Q1 – Q2) = Q2 – Q2' as shown 
in Figure 4.5. This violates the Kelvin-Planck statement and thus X cannot therefore 
be more efficient than R, that is, ηx R≤ η  where the equality sign applies if X is also 
a reversible engine.  

4.3.1  efficiencies of reversible engines

A corollary of Carnot’s principle is that all reversible engines operating between the 
same hot and cold reservoirs must have the same efficiencies. The proof is straight-
forward. Denote R1 and R2 as the reversible engines. If ηR R1 2> η , then call R1 engine 
X and we have just proven that ηX R= ≤η η1 2R . Alternatively if R2 is more efficient 
than R1, call R2 engine X and we have proved that ηX R= ≤η η2 1R . Thus ηR R1 2= η  and 
similarly all reversible engines operating between the same hot and cold heat reser-
voirs will have the same efficiency, that is, ηR R1 2= =η ηR3 = − − − −.

Q1

Hot

Cold

X R

Q29 Q2

WX2WR

WR1Q25Q1

WR

FIGURE 4.4 Irreversible engine X with efficiency greater than a reversible engine R.

PMM2 Q22Q29

Q22Q29

T2

FIGURE 4.5 Irreversible engine with efficiency greater than reversible engine leads to 
PMM2.
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4.4  HEAT TRANSFER AND TEMPERATURE

Perhaps the most fundamental cycle in thermodynamics is the reversible Carnot 
cycle. A cycle, it may be recalled, consists of a series of processes in which the sys-
tem is returned to its initial state at the end of the cycle. The Carnot cycle consists of 
four reversible processes with two of them being isotherms and the other two adia-
bats as illustrated in Figure 4.6.

Heat Q1 is absorbed in the isothermal process a→b wherein heat is taken in revers-
ibly from the reservoir at temperature T1, and heat Q2 is rejected reversibly to the 
cold reservoir at temperature T2 from c→d. No heat is exchanged in the adiabatic 
processes from b→c and d→a. The efficiency can be written as

Q Q
 1 2− Qη 1 2

C = = −  (4.1)
Q1 Q1

Note that the Q’s in the above equation have absolute values because the signs have 
already been taken into consideration.

If the working fluid in the Carnot cycle has n moles of  an ideal gas, then for the 
isothermal process a → b taking place at temperature T1:

Vb

 Q1 0= =W pab ∫ dV = nR T V1ln( )b a/ V  
Va

since the change in internal energy for the isothermal process in an ideal gas ΔU = 0 
and therefore from the first law Q = W. Similarly, the heat rejected Q2 in the case of 
an ideal gas is

Vd

 Q2 0  l= =W pcd ∫ dV = n R T V2 n ( d c/ )V  
Vc

Since Vc>Vd, the absolute value of Q2 is written as

p
a

b

c

d

Isotherms

Adiabats

T25const.

Q1

Q2

T15const.

V

FIGURE 4.6 Carnot cycle.
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 Q2 0= n R T V2ln ( /c dV ) 

The efficiency of the Carnot cycle is then

V
nR0 2T In c

Q V ηC = −1 12 = − d  
Q V

1 nR T In b
0 1

Va

Further, the states “b” and “c”, “d” and “a” are on the reversible adiabatic process. 
We can write the first law in a differential form for the adiabatic process as

 δQ d= =0 U W+ =δ dU + pdV  

where pdV  is the incremental work done in the slow quasi-static expansion or com-
pression. The change in the internal energy dU for an ideal gas of mass m (corre-
sponding to moles n) and specific heat cv  when the temperature changes by a small 
incremental value dT is mc dv T  and therefore

 mc dv T = − pdV  

For an ideal gas where pV = mRT  and cp v− =c R, R being the specific gas constant, 
that is,

R
 cv = ,giving 

γ −1

dT dV
 = − γ 1

T
( )−  

V

which on integrating gives lnT V+ −( )γ 1 ln = C , C being a constant.
We therefore have

 TV γ γ− −1 an γ γ
b cT V 1 1 1

1 = =2 dT V − −
2 d aTV1  

Thus, Vc/Vd = Vb/Va and the efficiency becomes

Q
  1 12 Tη 2

C = − = −  (4.2)
Q1 T1

The above equation gives the important result that the ratio of the heat transfer equals 
the ratio of the temperatures of the reservoirs for the Carnot cycle wherein an ideal 
gas is used as the working fluid. Since the equation of state for an ideal gas is used, 
the temperature T is the absolute temperature. Hence, the ratio of heat transfer in the 
Carnot cycle using an ideal gas is equaled to the ratio of the absolute temperatures 
of the reservoirs.
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From the corollary of Carnot’s principle, we see that the efficiencies of all 
 reversible engines operating between the same hot and cold reservoirs are the same, 
that is,

 ηR R1 2= =η ηR3 = − − − (4.3)

If one of the reversible engines is a Carnot engine using an ideal gas as the working 
fluid, as shown by the last reversible engine in Figure 4.7, we obtain

 η  1 2
R R1 2= =η η= =R Cη = − T

 (4.4)
T1

Thus, we obtain the general result that for a reversible engine, the ratio of the heat 
transfer must be equal to the ratio of the absolute temperatures of the reservoirs, that 

Q T
is, 2 = 2  irrespective of what reversible cycle is used and what working fluid the 

Q1 T1

reversible engine is based upon.

4.5  THERMODYNAMIC TEMPERATURE

In the last section, it was seen that the ratio of heat transfers from the reservoirs 
equals the ratio of the absolute temperatures of the reservoirs exchanging heat in 
reversible engines. This absolute temperature being proportional to heat transfer 
provides a thermodynamic definition of temperature, which is dealt with in the fol-
lowing. To be able to do so, we first prove that the efficiency of a reversible engine 
must depend on the temperature of both the hot and cold reservoirs it operates on. 
We specify the temperatures of the reservoirs to be some arbitrary temperature θ. A 
reversible engine R1 operates between reservoirs at temperatures θ1 and θ2. Another 
reversible engine R3 operates between reservoirs at temperatures θ1 and θ3 as shown 
in Figure 4.8. 

R1

T1

T2

R2 R3 R C

FIGURE 4.7 Set of reversible engines with one being a reversible Carnot engine.
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4.5.1  efficiency of reversible engine dePends on 
TemPeraTure of boTh reservoirs

We operate both R1 and R3 to take the same heat Q1 from the hot reservoir at tem-
W W

perature θ1. The efficiencies of R1 and R R1 R3
3 would be ηR1 3= =,ηR  where W

Q Q R1 
1 1

and WR3 are the work produced by R1 and R3. If the efficiency of a reversible engine 
depends only on the temperature of one reservoir, then ηR R1 3= η  and WR1  =  WR3

since both take Q1 1

If the temperatures are such that θ3< θ2< θ1, then we can operate another revers-
ible engine R2 to take Q2 from reservoir at θ2 and deliver work WR2, rejecting heat Q3' 
to reservoir θ3. The combination of R1 and R2 is another reversible engine o perating 

W W+
between reservoirs θ1 and θ3. The efficiency of R1+R2 is then ηR R1 2+ = R R1 2  and 

Q1

will be greater than the efficiency of R3 if the efficiency depends on a single  reservoir 
at θ1. This would violate the Carnot principle.

 from reservoir at θ .

If ηR R1 2+ = ηR3 , then WR1 + WR2 = WR3 and (Q1 – Q2) + (Q2 – Q3') = Q1 –Q3' = Q1 – 
Q3 or Q3 = Q3'. Thus, all reversible engines taking the same heat from the hot res-
ervoir must also discharge the same amount of heat to the cold reservoir since their 
efficiencies are also the same in accordance with Carnot’s principle. Thus, the effi-
ciency of a reversible engine must depend on the temperature of both reservoirs.

  

4.5.2  Thermodynamic TemPeraTure raTios

With the efficiencies of reversible engines depending on both reservoirs, we can 
write the efficiencies of the three engines R1, R2 and R3 as

Q Q− Q Q
 ηR R1 1( )θ θ, 1= 1 2 2 ; 12

2 = − = − η θ1 ( )1 2, ,θ θ= f
Q

21 ( )2 1θ  (4.5)
1 Q1 Q1

Q1

Q1

Q3

R1

Q2

WR15Q12Q2

Q2

R2

R3

Q39

WR25Q22Q39

WR35Q12Q3

u1

u2

u3

FIGURE 4.8 Reversible engines operating between reservoirs at temperatures θ1, θ2 and θ3.
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−ηR R( ) Q Q= 2 3 Q

2 2, 1 3 Qθ θ3 = − ; 13 = − η θ( ), ,
Q Q Q 2 2 3θ θ= f32 ( )3 2θ  (4.6)

2 2 2

Q Q− QηR R3 1( ) Qθ θ, 1= 1 3 3
3 = − ; 13 = − η θ

Q 3 ( )1 3, ,θ θ= f
Q

31 ( )3 1θ  (4.7)
1 1 Q1

 

where f21, f32 and f31 are arbitrary functions of the temperatures of the reservoirs.
Since

Q
 3 Q2 Q= ⋅ 3  

Q1 Q1 Q2

we see that

 f31 ( )θ θ3 1, ,= ×f f32 ( )θ θ3 2 21 ( )θ θ2 1,  

The left hand side of the above equation is a function of θ3 and θ1, whereas the right 
hand side is a function of θ1, θ2 and θ3. This can be satisfied only if the function f31 
(θ3,θ1) has the form

φ θ
 f31 ( )θ θ3 1, 3 3( )=  

φ θ1 1( )

where φ( )θ  is an arbitrary function of θ.
Hence,

φ θ
 f ( )θ θ, ,3 3( ) φ θ

f f( )θ θ ( )θ θ, 3 3( ) φ θ2 2( ) φ θ= = × = × = 3 3( )
31 3 1 32 3 2 21 2 1  

φ θ1 1( ) φ θ2 2( ) φ θ1 1( ) φ θ1 1( )

Without loss of generality, we can simply write the function φ( )θ  as θ itself. Thus, the 
ratio of heat transfer is a ratio of the temperature θ of the reservoirs, that is,

Q2 θ
 = 2  (4.8)

Q1 θ1

The temperature θ is the absolute temperature since the heat rejected to the cold 
reservoir cannot be less than zero. We can therefore define the thermodynamic tem-
perature on an absolute temperature scale based on heat transfer of a reversible heat 
engine.

4.5.3  Thermodynamic or absoluTe TemPeraTure scale

To obtain a temperature scale, one simply measures the efficiency of a reversible 
engine (hence Q2 1/ Q ) between two chosen heat reservoirs. Different choices of a 
judicial system and various assignments of its temperature result in different tem-
perature scales. As an example, for the Kelvin temperature scale, we keep the triple 
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point of water as a standard reservoir and assign a temperature of 273.16 K for the 
triple point of water. By measuring the ratio of the heat transfer between a reservoir 
at temperature T to a reservoir at the triple point of water where we have assigned a 
temperature of 273.16 K, the temperature of the reservoir can be written as

 Q 
 T = 273.16 )

 Q   (4.9
t p. 

We have replaced θ by T in the above for the absolute temperature. Q is the heat 
transfer from reservoir at temperature T while Qt,p is from the reservoir at the triple 
point temperature of 273.16 K. The advantage of the thermodynamic temperature 
scale is that it is independent of the type of reversible engine and the working fluids 
used in it.

4.6  CLAUSIUS INEQUALITY

Clausius inequality states that for a system undergoing a cycle and delivering work 
Ws while exchanging heat from various reservoirs at different temperatures, the sum 
of the heat transfer divided by the temperature of the reservoir over the cycle of 
operation is negative or zero, that is,

Q
 i 0 )

icycl

∑ ≤  (4.10
T

e;
i=1,2

The cyclic system with the interacting reservoirs at temperatures T1, T2, …, Tk is 
illustrated in Figure 4.9.

To prove Clausius inequality, we first arrange to have the system exchanging 
heat with only one heat reservoir at temperature T0 using reversible engines and 
reversible heat pumps as indicated in Figure 4.10. Here, the total system within the 
boundary includes the original system S exchanging heat with reservoirs at tempera-
tures T1, T2, …, Ti, Tj and Tk and doing work WS and the reservoirs at temperatures 

T1

Q

T2
T3

1 Q2

Q3

Ti

Qi

Qj
Qk

System S

Qe

Tj
Tk

Te

WS

FIGURE 4.9 Schematic of cyclic system interacting with reservoirs and doing work WS.
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T1, T2, …, Ti, Tj and Tk exchanging heat with only a single reservoir at temperature T0 
through reversible heat engines and heat pumps.

Applying the first law to the system within the boundary, we get the total work

  W WT i= +∑ ∑W Qs = oi  (4.11)
i= −1,2, − Cyclic:

i= −1,2, −

Here, ∑Wi  is the sum of the work done by reversible engines and on the heat pumps 

(all Ri’s viz., R1, R2, …, Ri, Rj. Rk,) and WS is the work done by the system. ∑Qoi  is 
the net heat exchanges with the reservoir at T0.

For the reversible engines or the reversible heat pumps, we have from the equality 
of ratios of heat transfer and temperatures

Q
 oi T= 0  

Qi iT

where Qi represents the heat transfers between the system and the reversible engine 
or pump at temperature Ti  as shown in Figure 4.10. We get from the above equation

Q
 Qoi = T i

0  (4.12)
Ti

From second law, we have ∑ Qoi ≤ 0; otherwise we would have a PMM2 that vio-
cyclic
i=1,2,

lates the second law (Kelvin-Planck statement).

W1
W2R2

T2 T1

R1Rk

Q0k

Qk

Qk

Rj

Ws

Ri
Wi

Wj

Wk

Tk

Tj Ti

System S

BoundaryQ0j Q0i Q02

Q2

Q2

Qj

Qj

Q01

Qi

Qi

Q1

T0

Q1

FIGURE 4.10 System exchanging heat with a single reservoir through reversible engines 
and reversible pumps.
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 ∑ ∑ Q
Thus Q T i

oi = =i
0 T0 ≤ 0  

T Ticyclic cyclic cyclic

∑ Q
 

i

i= =1,2, i 1,2, i=1,2,

Q
or 0i ≤

Ticyclic

∑  (4.13)
;

i=1,2,

 

where the equality sign applies when the system undergoes a reversible cycle. If the 
system interacts with an infinite array of heat reservoirs whose temperatures differ 
by an infinitesimally small value dT with each supplying an infinitesimal heat δQi, 
we may write Clausius inequality as

 
∫ δQ ≤ 0 (4.14)

T

 or 0
∫ δQrev =  (4.15)

T

where δQrev denotes the reversible heat transfer.
We could also prove the equality sign for a reversible process by addressing the 

work done by a system. Since the system within the boundary in Figure 4.10 interacts 
with a single reservoir, the work cannot be positive; otherwise we would have a PMM2, 
which violates second law. However if the work is negative, that is, work done on the 
system, then it is possible to have such a system. The work, in this case, is dissipative 
work that heats up the system, which then transfers heat to the reservoir. Negative 
work means negative sum of heat transfer to the system and is acceptable. Now for a 
reversible cycle, the work cannot be dissipative work. So if the work cannot be positive 
(PMM2) and cannot be negative (reversible cycle), the work for a reversible cycle must 
be zero. Accordingly the sum of heat transfer must also be zero for a reversible cycle.  
We thus have the equality sign in the Clausius inequality for a reversible process.

4.7  ENTROPY
δQ

Since the integral of rev δQ
 over a cycle vanishes (Eq. 4.15), rev  is a total differen-

T T
tial. Accordingly we define a state function

δQ
 dS = rev  (4.16)

T

where S is called the entropy.

4.7.1  enTroPy sTaTemenT of The second laW

For an isolated system undergoing an irreversible process from states 1 to 2, we can 
seek a reversible path from states 2 to 1 and form a cycle. Thus,
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 ∫
2

δ δ
1

Qirr rQ ev



Q
dS 0

T T T
1

∫ ∫ δ+ = = ≤  
2

δQ
and since dS = rev , the above gives

T

2
Q

 S S irr
2 1S ∫ δ∆ = − ≥  (4.17)

T
1

For an isolated system where δQ = 0, the above yields

 ∆ ≥S) 0isolated  (4.18)

with the equality sign applicable if the isolated system undergoes a reversible pro-
cess. Equation 4.18 is another statement of the second law. It is equivalent to the 
Clausius and Kelvin-Planck statements. This can be easily demonstrated as follows.

4.7.2  eQuivalence of enTroPy sTaTemenT of second laW 
and clausius and Kelvin-PlanK sTaTemenTs

Consider an isolated system consisting of a hot and a cold reservoir at temperatures 
T1 and T2 with T1 > T2 as shown in Figure 4.11. Let heat Q flow from the cold to the 
hot reservoir, that is, from T2 to T1. The entropy change of the isolated system (within 
the dotted boundary) is

Q Q Q  T
 ∆ =S − = 

2 
isolated −1  (4.19)

T1 2T T2  T1 

Since T1 > T2, ∆ <Sisolated 0 and thus heat flow from cold to hot reservoir is not possible 
as stated by Clausius.

To show the equivalence to the Kelvin-Planck statement, consider an isolated sys-
tem consisting of a reservoir at temperature T and a PMM2 that takes heat Q from the 

Hot T1

Cold T2

Isolated

System

Q

FIGURE 4.11 Isolated system comprising hot and cold reservoirs with T1 > T2.
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reservoir and delivers work W = Q. The reservoir and PMM2 constitute an isolated 
system (Figure 4.12).

The entropy change of the isolated system is

Q
 ∆ =S − < 0 (4.20)

T

and thus violates the entropy statement of the second law as given by Eq. 4.18.

T Isolated

System

Q

W ��QPMM 2

FIGURE 4.12 Isolated system consisting of reservoir and PMM2.
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5 Entropy

5.1 � ENTROPY BETWEEN TWO STATES

Entropy is an important state function. It was defined by Clausius inequality in 
Chapter 4 on the second law of thermodynamics as

	
rev

dS
Q
T

δ= 



 	

To determine the entropy change between two equilibrium states, we need to inte-
grate the above equation along a reversible path linking the two states. Since the 
entropy S is a state function, it is path-independent and it is not important what 
reversible path is chosen for its determination. It may be recalled that for a reversible 
path, all processes must be reversible, that is, both the mechanical and the heat trans-
fer processes. The reversible processes must be quasi-static, that is, proceed through 
a series of equilibrium states.

5.2  �PATH INDEPENDENCE

That entropy is independent of the path is shown by considering two states of a 
system of an ideal gas, namely, , ,1 1 1p V T  and , ,2 2 2p V T  with 1 2T T T= = . Thus, the two 
states lie on an isotherm 0pV nR T=  = constant and is shown in Figure 5.1. The envi-
ronment is also considered to be at the same temperature ( 0T T= ). The isothermal 
path is reversible and is chosen to determine the entropy change 2 1S S S∆ = − . Since 
the internal energy of an ideal gas depends only on the temperature, we have for the 
isothermal path 0dU =  and therefore the first law becomes Q pdVrevδ = . Thus,

	 lnrev
0

2

1
1

2

S
Q
T

p
T

dV nR
V
V

V

V

∫ ∫δ∆ = = = 	 (5.1)

DOI: 10.1201/9781003224044-5

1(p1,V1,T1)

2(p2,V2,T2)

Isothermal

(T15T25T5T0)

FIGURE 5.1  Isothermal path for an ideal gas at the same temperature as the environment.
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We have assumed that the system exchanges heat with the environment at tem-
perature T0 and T T0 = . If T T0 ≠ , then a reversible heat pump is used to effect the 
reversible heat transfer as shown in Figure 5.2. Denoting δQ0 as the reversible heat 
transfer during an infinitesimal part of the isothermal path from the environment at 
temperature T0, we have from the second law

δ δQ
 0 Q pdV= =  

T0 T T

The entropy change in the environment is therefore

∫ δQ V
 ∆ =S − =0

env −nR 2

T
0 ln  (5.2)

0 V1

But

 ∆ +S Ssys e∆ =nv 0 

in accord with the second law. This gives the entropy change between states 1 and 
2 as

∆ = V
 S nsys 0R ln 2  (5.3)

V1

which is the same as Eq. 5.1 derived earlier.
We choose other paths between states 1 and 2: a reversible adiabatic path from 1 

to 1′ and a constant pressure heat addition path from 1′ to 2 (Figure 5.3) or the revers-
ible adiabatic path 1 to 1′ followed by a constant volume heat addition path to give 
the same state 2 (Figure 5.4). 

For the reversible adiabatic path 1 to 1′, ∆ =S 0.

1(p1,V1,T1)

2(p2,V2,T2)

Isothermal

(T15T25T)

T0

HP

dWHP

dQ

dQ0

FIGURE 5.2 Isothermal path with environment at temperature T0 different from path 
T T= =1 2T .
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For the constant pressure path 1' → 2 in Figure 5.3,

T2

C dT T
 ∆ =S p

1' 2 ∫ = C ln 2
→  

T
p

T1'
T1'

where C dp T  is the reversible heat transfer from the environment during an infinitesi-
mally small part of the constant path to make the path reversible. Hence,

γ −1 γ −1

 p
 S C1 2 ln 1  γ  V∆ = 2  γ

′→ p p=  C ln   
 p2   V1 

and similarly for the constant volume path 1′ → 2 in Figure 5.4

T

∫
2

  γ −1
C dT T V

 ∆ =S v
1' 2 = =C ln 2

→ C ln  
T

v v 
2

  
T1'  V1 

T1'

p195p2

1 Adiabatic path

Constant pressure path
pvg5const.

19 2

dWHPHP

Environment at T0

dQ5CpdT

g21
gT195T2

p2
p1( (

FIGURE 5.3 Path 1→2 comprising reversible adiabatic path 1→1′ and constant pressure 
path 1′→2 with reversible heat pump HP to ensure the reversible path.

HP T0

dWHP

19

2(p2,V2,T25T)

1(p1,V1,T15T)

pV g5const.

dQ5CvdT

V195V2
g21

T195T1
V1
V2

( (

FIGURE 5.4 Reversible adiabatic path followed by a reversible constant volume path.
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 γ −1
Since C nP =  R0 and C nV ( )γ − =1 R0, we obtained the entropy change as

 γ 

γ −1

 p  V  V
 S C ln 1  γ −1

γ
∆ = = C ln 2 = nR ln 2

p v    p2   0   (5.4)
V1  V1

in both the cases and is the same result as obtained before in Eqs. 5.1 and 5.3.
We can try yet another reversible path: a constant volume heat transfer from 1 to 1′  

followed by a constant pressure heat addition from 1′ to 2 as shown in Figure 5.5.
The entropy change is written as

 ∆ =S S∆ + T
1 1' 1S C' 2 ln 1'
→ →∆ = + T

V PC ln  
T T1'

T
 = ( ) V

C C ln nR0 ln 2
P V− =  (5.5)

T1' V1

which is the same result obtained using different reversible paths from 1 to 2. 
Although we chose a particular system of ideal gas, the results can be generalized to 
any system.

5.3  GENERALIZED EXPRESSION FOR ENTROPY CHANGE

A convenient expression can be used to compute ∆S  between two states. For a revers-
ible path linking two states, the first law can be written as

 dU Q= −δ rev pdV  

1(p1,V1,T)

19
2(p2,V2,T)

Reversible

constant volume

Reversible constant

pressure

dQ5CpdT

dQ5CvdT

p195p2

V195V1

T19

T

HP2

HP1

dWHP
2

dWHP
1

T0

T0

5
p19

p1

p2

p1
5

FIGURE 5.5 Path 1→2 comprising reversible constant volume process 1→1′ and reversible 
constant pressure process 1′→2 with incorporation of heat pumps.
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where we write pdV  for δWrev. Since δQ Trev = ds, we obtain

1 pdV
 dS = +dU . (5.6)

T T

For a simple system described by variables p, V and T, we can choose any combina-
tion of two of the three variables as independent variables, that is, T, V; p, T; and p, V.

5.3.1  enTroPy from inTernal energy changes: (variables T and V)

Choosing T, V as independent variables, we have U(T, V) and S(T, V) in Eq. 5.6 and 
we write

U U 
 d ( )  ∂   ∂

U T ,V =   dT +   dV  (5.7) ∂T 
V T

 ∂V 

 ∂S   ∂S 
 dS T( ),V =   dT +   dV  (5.8) ∂T 

V T
 ∂V 

Substituting for dU(T, V) from Eq. 5.7 in Eq. 5.6 and using Eq. 5.8,

1 1 ∂U    ∂U  
 dS T( ),V =   dT + +p   dV )

T  ∂T 
V TT  . (5.9

  V  ∂ 

 ∂U 
   can be expressed in terms of p, V and T and once the equation of state is  ∂T 

T
given, we can then determine it. Since dS is a total differential, the differentiability 
condition gives

∂   ∂S   ∂   ∂S  
   =

V  T T       V   . 
∂  ∂ V 

T
∂  ∂ T 

V

Thus,

∂  1 1 ∂U   ∂    ∂U   
    =  p +     

∂V T  ∂T T  
V  V 

TT
∂  T   ∂   

V

The above gives

1   ∂U    ∂p 
 p +   =   . (5.10)

T   ∂V 
T V  ∂T 

and

 ∂U   ∂p 
   = T   − p. (5.11) ∂V 

T V
 ∂T 
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 ∂p 
    can be determined if the equation of state f ( ,p T , )V = 0 is specified. As  ∂T 

V

 ∂p  nR  ∂U 
an example, for an ideal gas where pV = nR0T ,   = 0  and   = 0.   ∂T 

V V  ∂V 
T

This implies that for an ideal gas, the internal energy is not a function of V and is a 
function only of temperature, a result noted in Chapter 3.

The entropy from Eq. 5.9 using Eq. 5.10 becomes

 ( ) 1  ∂U   ∂p 
dS T ,V =   dT +   dV  (5.12)

T  ∂T 
V V

 ∂T 

and for an ideal gas, the above reduces to

dT dV
 dS T ,V C= +V nR0  (5.13)

T V
( )

Hence, the entropy change from state 1 to state 2 for an ideal gas is

T

 ∆ =( ), l∫
2

S T V CV ( ) dT V
T + nR 2

0 n  (5.14)
T V1

T1

5.3.2  enTroPy from enThalPy changes: (variables p and T)

If p and T are chosen as independent variables, it is more convenient to use 
the  enthalpy  function H U= + pV  instead of internal energy U. In terms of 
enthalpy, the first law is written as

 dH T= +dS Vdp 

and

( ) 1 1
 dS p,T = −dH p T, Vdp

T
( )  (5.15)

T

We can write H p( ),T  and S p( ),T  as

( )  ∂H   ∂H 
 dH p,T =   dT +    dp (5.16)

∂T p  ∂p 
T

( )  ∂S   ∂S 
 dS p,T =   dT + dp (5.17) ∂T   

p  ∂p 
T

Combining the above, we obtain

1 1 ∂H   ∂
 dS p( )  H  

,T =   dT − −V dp
T  ∂T       (5.18)

p T   ∂p  
T
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The differentiability condition for dS gives

∂   ∂S   ∂   ∂S  
     = ∂p       

∂T T
p  ∂  ∂p 

TT
 

p

Thus,

∂  1 1∂H  ∂    ∂H    
     =  − −V  ∂p T  ∂     

T Tp  ∂  ∂
TT  T  p   

p

The above yields

1   ∂H    ∂V 
 V − =     . (5.19)

T   ∂p 
T   ∂T 

p

Hence,

 ∂H   ∂V 
 = −  V T    (5.20)

 ∂p 
T

 ∂T 
p

 ∂H 
   can be evaluated if the equation of state is known. For an ideal gas, where, 
 ∂p 

T

 ∂V  nR
pV nR 0  ∂H 

= 0T ,  =  and =  0, that is, the enthalpy is independent of pres- ∂T 
p p  ∂p 

sure and is only a function of the temperature as reported in Chapter 3.
Using Eq. 5.20, Eq. 5.16 gives

 


( )  ∂V  
dH p,T C= +pdT V T−    dp (5.21)

  ∂T 
p 

and for an ideal gas

 dH T( ) = C dp T  (5.22)

The entropy can be obtained from Eqs. 5.18 and 5.20 as

dT V
 dS p( )  ∂ 

,T C= −p   dp (5.23)
T  ∂T 

p

 ∂V  nR
For an ideal gas where   = 0 , the above reduces to ∂T 

p p

dT dp
 dS p( ),T C= −p nR0  

T p
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or the change in entropy between two states 1 and 2 is

T

∫
2

( ) dT p
 ∆ =S T , lV C T nR 2

p ( ) −
T

0 n  (5.24)
p1

T1

5.3.3  enTroPy changes as a funcTion of heaT 
caPaciTies: (variables p and V)

If p and V are chosen as independent variables, we can obtain U ( )p V,  and S p( ),V  in 
a similar manner. We first write

U  ∂U 
 dU p( )  ∂ 

,V =  dp +   dV  
 ∂p 

v
 ∂V 

p

( )  ∂S   ∂S 
 dS p,V =   dp +   dV  

 ∂p
v

 ∂V 
p

Using the chain rule for four thermodynamic variables, namely, U, p, T and V, we 
have

 ∂U   ∂T   ∂p 
    = 1    (5.25)

∂T 
V  ∂p 

V
 ∂U 

V

This chain rule for four variables is different from the cyclic rule for three variables, 
which for variables U, T and p is

 ∂U   ∂T   ∂p 
   1  ∂      = −

T  ∂p   ∂U 

The derivation of the cyclic rule for the four variables can be seen as follows. For the 
four variables V, U, p and T, we can express U in terms of T and V and T in terms of 
V and p to give

 ∂U   ∂U 
 dU =   dV +   dT . (5.26) ∂V 

T V
 ∂T 

and

 ∂T   ∂T 
 dT =   dV + dp  ∂    (5.27)

V P  ∂p 
v

Substituting dT from Eq. 5.27 in Eq. 5.26, we get

  ∂U   ∂U   ∂T    ∂U   ∂T 
 dU =    +      dV +   dp 

  ∂ 
T v

 ∂T   ∂V 
p V  ∂T    (5.28)

V  ∂p 
V
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However, U as a function of V and p gives

 ∂U   ∂U 
 dU =   dV + dp ∂V     (5.29)

p  ∂p 
V

Equating the coefficients of dp in Eqs. 5.28 and 5.29

 ∂U   ∂T   ∂U 
   = 0) ∂T       (5.3

V  ∂p 
V V

 ∂p 

This gives the chain relation between four state variables as

 ∂U   ∂T   ∂p 
   1 T      =  

∂ V  ∂p 
V

 ∂U 
V

Using this relation, we can write

 ∂U   ∂U   ∂T   ∂T 
 =      = C

∂p 
V

 ∂T 
V V

 ∂P  v    (5.31)
  ∂p 

V

We can also write from the relation U = −H pV

 ∂U   ∂H   ∂H   ∂T 
  =   − =p     − p
 ∂V 

P P
 ∂V   ∂T 

P p
 ∂V 

  (5.32)
 ∂T = Cp   − p
 ∂V 

p

Thus, the internal energy change can be written as

( )  ∂T    ∂T  
 dU p,V C= v   dp + Cp   − p d V . (5.33)

 ∂p  V
v   ∂ 

p 

The above equation can be integrated for the particular case of an ideal gas where 

 ∂T  V  ∂T  p
pV = nR0T  and =   and   =  to give

 ∂p 
V

nR0  ∂V 
p nR0

C C
 dU = +V V( )Vdp pdV = − d p( )V C= V dT  (5.34)

nR0 0nR

Thus for an ideal gas, the internal energy is seen to be only a function of its tempera-
ture as obtained earlier.

Similarly, for the entropy, we write



54 Fundamentals of Thermodynamics

 ∂S   ∂S   ∂T  1  ∂U   ∂T 
=  =    ∂p  T

V
 ∂   

V  ∂p T T
V

   ∂ V  ∂p 
V

  (5.35)
CV  ∂T 

=  T  ∂p 
V

For the four variables S, V, T and p, we write

 ∂S   ∂S   ∂T  1  ∂H   ∂T 
  =     =     ∂V 

P P
 ∂T   ∂V T

P P
 ∂T   ∂V 

P
  (5.36)

CP  ∂T =  T  ∂V 
P

Thus from Eqs. 5.35 and 5.36, we get

 dS p( ) C T C ∂T
,V V  ∂ 

dp + p  =     dV  (5.37)
T  ∂p 

V
T  ∂V 

p

Knowledge of the heat capacities Cp and CV and the equation of state will permit 
Eq. 5.37 to be integrated.

5.4  ENTROPY CHANGES FOR AN IDEAL GAS

 ∂T  V  ∂T  p
If we consider an ideal gas where =  ;  =  and substituting in 

 ∂p 
V

nR0 0 ∂V 
p nR

Eq. 5.37 gives

dp dV
 dS p( ),V C= +V pC . (5.38)

p V

For constant heat capacities Cp and CV, the above integrates to yield

∆S

 pV γ = CeCv  (5.39)

C
where γ = p  is the ratio of the heat capacities and C is an integration constant.

CV
For a constant entropy process (isentropic process) where ∆ =S 0; we obtain from 

Eq. 5.39, the isentropic relation for an ideal gas to be

 pV γ = Constant (5.40)
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6 Reversible Work, 
Availability and 
Irreversibility

6.1 � REVERSIBLE WORK

It can be shown from Clausius inequality that the reversible work between two equi-
librium states is the same for all reversible paths linking the two states. It also follows 
that the reversible work is the maximum work.

To prove the above, consider a real path X linking two equilibrium states. The 
system exchanges heat with the environment at a temperature T0. For the real path X 
linking states 1 and 2, as shown in Figure 6.1, the first law can be written as

	 U Q WX X∆ = − 	 (6.1)

where QX and WX are the heat transfer to and work done by the system for path X. 
Similarly for a reversible path R linking the two states (Figure 6.1), we write

	 U Q WR R∆ = − 	 (6.2)

We can form a cycle by going from state 1 to state 2 via a path X and return to state 
1 by reversing along a reversible path R. For the cycle, we write

	 0U Q W Q WX X R R( ) ( )∆ = = − − − 	

DOI: 10.1201/9781003224044-6

Reversible

Path R

WX

WR

QX

QR

2

1

Real Path X

FIGURE 6.1  Reversible path R and irreversible path X linking states 1 and 2 with environ-
ment at temperature 0T .

https://doi.org/10.1201/9781003224044-6
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Thus, QX R− =Q WX R− W . From Clausius inequality

Q Q Q
 ∑ ≤ −0, x R ≤ 0  

T T 0 0T
cycle

or

 QX R− ≤Q 0  

The equality sign applies if X is also a reversible path. Hence, we obtain the result

 QR X≥ Q  (6.3)

that is, the heat transfer for the reversible path is greater than that for a real path. It 
follows that

 W WX R− ≤ 0 

and

 W WR X≥  (6.4)

The equality sign in Eq. 6.4 applies if path X is also reversible. Further, the revers-
ible work is the same for all reversible paths linking the two states. The work from a 
reversible path is therefore greater than that for a real (irreversible) path.

It also follows that the reversible work is the maximum work between two equi-
librium states, that is, Wrev = Wmax.

6.2  WORK FROM DIFFERENT REVERSIBLE 
PATHS BETWEEN TWO STATES

It would be of interest to show that the work done for different reversible paths 
between two equilibrium states is indeed the same. Consider for simplicity, an ideal 
gas whose state changes from p1, V1 and T1 to p2, V2 and T2. Let us take T1 = T2 = T; 
thus, states 1 and 2 lie on the same isotherm (Figure 6.2).

The work done by the system when its state changes from 1 to 2 along the isother-
mal path at temperature T  is

V2

V
 W p 2

1 2→ = =∫ dV nR0Tln  (6.5)
V1

V1

If the temperature T of the isothermal process in the system is different from the tem-
perature of the environment T0 and if T > T0, then a reversible heat pump is required 
to transfer heat reversibly to the system during the isothermal expansion as shown in 
Figure 6.2 to maintain reversibility. The heat pump work is given by
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 = ∫ dQ
WHP  (6.6

COP
)

In the above expression, the coefficient of performance (COP) of the reversible heat 
pump is the ratio of heat supplied by the heat pump to the system at temperature 
T from the reservoir at T0 to the work done on the heat pump. For reversible heat 
exchange Q with the system at temperature T and Q0 from the reservoir at tempera-
tures T0, respectively, the coefficient of performance is

 
Q T 1

COPHP = = =  
Q Q− 0 0T T−  T

1− 0 
 T 

Substituting in Eq. 6.6 gives

T
 W p= −∫ dV 1 l0  V V

nR n ln 2
HP = −0T

2 nR0 0T   T  V1 V1

The work from the heat pump is supplied to the system and is negative. Thus, the 
reversible work from 1 → 2 is

V 
 1 2 = −0 ln 2 V V 

W n→ R T  nR
 0Tln 2 − nR T ln 2  

V1 V
0 0 

1 V1 

 = V
nR 2

0 0T ln  (6.7)
V1

If we have an alternate path for the change 1→2; a reversible constant volume from 
1→ 1′ and a reversible constant pressure from 1′ → 2 with the incorporation of heat 
pumps, as shown in Figure 6.3,

HP

dWHP

dQ
2(p2,V2,T )

pV = nR0T =const. 

(Isothermal)

1(p1,V1,T )

T0

FIGURE  6.2 Isothermal path 1→2 of system with reversible heat pump to transfer heat 
reversibly from environment at temperature T0.



58 Fundamentals of Thermodynamics

the work done for the first heat pump HP1 to maintain a reversible constant volume 
path is

T1′
C dT  T  W V 0 T1′

HP1 = =∫ C dv V1 l− = −C T( )T C− T T  ′
COP ∫ T 1 0v n  (6.8)

T
T

Here, CV is the heat capacity of the ideal gas in the system at constant volume. From 
1′ → 2, the work of the heat pump HP2 is

T T
C dT  T  W p

HP2 = =∫ ∫C dp pT 1 l− 0 = −C T( ) T
T C−  ′

CO
1 0pT n  (6.9)

P T T1′
T1′ T1′

with CP being the heat capacity of the system at constant pressure.
The expansion work in the constant pressure process 1′ → 2 is

 V 
 p V( )− =V nR T 1− 1

2 2 1 0′    (6.10)
 V2

Thus, the total work 1 → 1′ → 2 is

 T   T   V 
 W C 1

1 1 ln ′
→ → = − T T− − C T − −C T( )T C− T ln + −nR T 1 1

' 2   v v( )1′ 0   p p′  T 
1 0

T 
0

1′  V2 

  (6.11)



Note that the heat pump work is taken to be negative as the work is done on the 
reversible path 1 → 1′ → 2. Since for the constant pressure process 1'→ 2 for the ideal 

T
gas 1 1′ = V

, the above reduces to
T V2

1(p1,V1,T)

19
2(p2,V2,T)

Constant

volume path (reversible)

Constant pressure

path (reversible)

dQ5CpdT

dQ5CvdT

V195V1

p195p2

T19 V1

HP2

HP1

dWHP
2

dWHP
1

T0

p19 p2

T V2 T0

5 p1 p1
5 5

FIGURE 6.3 Path 1→2 comprising constant volume path 1→1′ and constant pressure path 
1′→2 with reversible heat pumps HP1 and HP2 to ensure the reversible path.
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 → → = V
W n 2

1 1' 2 R T0 0ln  (6.12)
V1

which is the same result as obtained previously in Eq. 6.7.
Consider a third alternate reversible path from 1 to 2 with a reversible adiabatic 

(isentropic) path 1 → 1′ followed by a constant volume heat transfer from 1′ to 2 
where V1' = V2. This path is illustrated in Figure 6.4.

The work in the adiabatic expansion 1 → 1′ is U1 1− =U C' 1v ( )T T− ′ . For the con-
stant volume heat transfer path 1′ → 2, the heat pump work is

 

T

 T  T
W C 0

HP = −∫ v VdT 1 l= −C T( )T C− T T  1 0′ V n  (6.13)
T1′

T1'

The total work 1 → 1′ → 2 is therefore

T  V  γ −1
V

 W C1 1→ →' 2 = =V VT 2
0ln C T0   = nR T ln 2

T1′  V1  0 0  (6.14)
V1

This is the same as obtained for the other reversible paths. Thus, this simple example, 
using ideal gases, illustrates that the work for all reversible paths between two equi-
librium states is the same. The choice of the particular case of an ideal gas does not 
influence the generality of the proof.

6.3  REVERSIBLE WORK OF A SYSTEM INTERACTING 
WITH ENVIRONMENT: AVAILABILITY Φ

An expression for the reversible or the maximum work can be obtained from the first 
law. If Qrev is the heat transfer in the reversible path, we write

 W Wrev m= =ax Q Urev − ∆  (6.15)

HP T0

19

2(p2,V2,T25T15T)

1(p1,V1,T1)

pV g5const.

dQ5CvdT
V195V2

g21
T195T1

V1
V2( (

dWHP

FIGURE 6.4 Reversible path 1→2 comprising of reversible adiabatic path 1→1′ and con-
stant volume path 1′→2 with a reversible heat pump for the process to be reversible.
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Consider a system that takes Q0 from the environment at temperature T0 while going 
from state 1 to state 2. If the temperature of the system differs from T0, then to trans-
fer Q0 to the system reversibly requires the use of a reversible engine (or reversible 
heat pump).

Taking the system and environment as an isolated system, as illustrated in 
Figure 6.5, the second law gives

Q
 ∆ =S S 0

isolated ∆ +system ∆ =S Senv s∆ −ystem  (6.16)
T0

Q
where we have put ∆ =S 0

env −
T0

But for the reversible heat transfer in the isolated system

 ∆ =Sisolated 0 

Thus,

 Q0 0= ∆T Ssystem 

and from the first law applied to the system, we write

 ∆ =U Q0 r− W ev 

or

 W Wrev m= =ax T S0 s∆ −ys ∆ =U U−∆( )− T S0  (6.17)

 = −∆Φ (6.18)

where Φ = U T− 0 sS ys is defined as the availability function. Note that the availability 
function Φ is not a state function since it depends also on the temperature of the 
environment. Equation 6.18 states that the maximum work obtained between two 

T0
Q0

Wrev

System at T

HP

FIGURE 6.5 Change of state of a system reversibly with use of reversible heat pump.
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equilibrium states of a system that interacts with the environment corresponds to the 
decrease of the availability function.

6.4  REVERSIBLE WORK OF A SYSTEM INTERACTING 
WITH RESERVOIR AND ENVIRONMENT

If the system takes QR from a heat reservoir at temperature TR as well as Q0 from the 
environment at T0, then the second law gives

Q Q
 ∆ =S Sisolated ∆ +sys r∆ +S S R 0

es ∆ =env s∆ −S ys − = 0 (6.19)
TR 0

where

Q Q
 ∆ =S R

res e− ∆; ;S 0
nv = −  

TR T 0

T

Solving for Q0, we get

 Q0 0= ∆T Ssys 0+ ∆T Sres 0= ∆ T
T S 0

sys − QR  (6.20)
TR

and substituting the above in the first law gives


 W Qmax 0= +( ) T

Q U 0 
R o− ∆ = ∆T Ssys + −QR 1  − ∆U 

 TR 

= ( ) T 
 −∆ U T− +0 sS Qys R 1− 0

  (6.21)
 TR 

or

 T 
 W Qmax = −∆Φ + −1 0

R   (6.22)
 TR 

Note that to transfer heat reversibly from the environment and reservoir to the sys-
tem, reversible engines and heat pumps must be used. Further, if we transfer QR from 
the reservoir to the system, the heat received by the system is not QR. To transfer QR 
from the reservoir to the system, we first operate a reversible engine to take QR from 
the reservoir and discharge QR (T0/TR) to the environment. Then, we use a reversible 
heat pump to take the heat from the environment and deliver it to the system. In other 
words, we do not bypass the environment and go directly from the reservoir to the 
system via a reversible engine. Figure 6.6 illustrates the system interacting with the 
reservoir and the environment.
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It is important to remember what is specified in the above. We specify two 
states of the system; hence ∆SSys and ∆U . We specify the heat transfer from the 
reservoir QR. However, we do not specify the heat taken from the environment 
Q0. The amount of heat Q0 varies with the magnitude of Wmax and is defined in 
Eq. 6.20. 

6.5  REVERSIBLE WORK WHEN SYSTEM CHANGES ITS VOLUME

If the system changes its volume between states 1 and 2, that is, ΔV = V1 – V2, 
then displacement work p V0∆  is done by the system on the environment. This 
displacement work would not be available for other purposes. Thus if we are 
interested in the maximum useful work, then we have to subtract p V0∆  from 
Wmax, that is,

 W Wmax = −max 0p V∆  
useful

We can include p V0∆  in the availability function Φ and define

 Φ =* ( )U T− +0 sS pys 0 sV ys  (6.23)

Thus, Eq. 6.22 is written as

 T 
 W Qmax = −∆Φ* + −1

useful


0
R   (6.24)

 TR 

Similarly, we modify Eq. 6.18 if the displacement work is taken into consideration, 
that is,

 W *
max = −∆Φ  (6.25)
useful

T0 TR

T0
TR

HP

HE

System
T Wrev

Q02QR  .

QR

Work Work

Environment Reservoir
T0
TR

QR  .

T0
TR

QR 12( (

FIGURE 6.6 System interacting with reservoir and environment.
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6.6  IRREVERSIBILITY OF A SYSTEM UNDERGOING A PROCESS

If the work obtained in an actual process between states 1 and 2 is Wactual, we can 
compare this with the maximum work Wmax given by Eqs. 6.18 and 6.22. We define 
the irreversibility I as

 I  = −W Wactual max (6.26)

where I now serves as a qualitative measurement of how efficient a certain actual 
process is. As defined in Eq. 6.26, the irreversibility I ≤ 0 with the equality sign hold-
ing good if the actual process is also reversible.

The irreversibility can also be expressed in terms of entropy change of the uni-
verse. Assuming both the actual and reversible processes take the same QR and Q0 Q
from a heat reservoir at TR and the environment at T0, respectively; ∆ =Sres − R  and 

TR

Q∆ =S − 0
env  Note that the entropy change of the environment and the reservoir do 

T0
not depend on the process that the system undergoes.

Writing the first law for the actual process in the system, we obtain

 W Tactual 0= − ∆ −S Tenv rR∆ −S Ues ∆  (6.27)

For the reversible process,

 W Wrev mor ax = +Q Q0 R − ∆U  

However, for a reversible process between the same two states,

 ∆ =S Suniverse s∆ +ys ∆ +S Senv r∆ es 

Q
 = − +0 ∆ +S Ssys r∆ =es 0 

T0

which gives

 Q0 0= ∆T Ssys 0+ ∆T Sres 

Thus,

 W Tmax 0= ∆S Tsys 0+ ∆S Tres r− ∆R S Ues − ∆  

The irreversibility then becomes

 I = −W Wactual max

 = ( )− ∆T SR Rres 0− ∆T Senv 0− ∆U T− ∆( )S Tsys 0+ ∆S Tres r− ∆S Ues − ∆
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 = − ∆T S0 s( )ys + ∆S Sres e+ ∆ nv

  = − ∆T S0 univ (6.28)

Since

 ∆ ≥Suniv 0

the irreversibility

 I ≤ 0  (6.29)

Entropy is a useful state function that permits one to assess quantitatively the loss in 
work potential of a real thermodynamic process.

6.7  TWO EXAMPLES ILLUSTRATING IRREVERSIBILITY

6.7.1  exPansion of an ideal gas inTo vacuum

Consider the example of the expansion of an ideal gas into vacuum inside an insu-
lated chamber as shown in Figure 6.7. Let n moles of a perfect gas be at initial state 
(p1, V1) at temperature T1 to the left of the partition, which separates the gas from 
the vacuum on the right side of volume V2 – V1. The partition is removed and the gas 
expands into the vacuum and the final state is (p2, V2) at temperature T2.

From the first law, we have for the expansion ΔU = 0 and hence T2 = T1 since no 
work is done in the expansion into a vacuum. For an ideal gas whose equation of state 

p V
is pV = nR T, we have p = 1 1 p V

p = 1 1
0 2 . Thus, the final state is 2 , T2 = T1. The entropy 

V2 V2
V

change of the system is ∆ =S nsys 0R ln 2 . The maximum work for the expansion is 
V1

obtained for an environmental temperature T0 as

 W Umax 0= −∆Φ = −∆ + T S∆ sys 0= lnR T V0 2n( / )V1  (6.30)

Thus, irreversibility of the process is

 I = − V V
W Wact = −0 l 2 2

max 0nR T0 n l= −nR0 0T n  (6.31)
V1 V1

p1 , V1 (V2�V1) p2 , V2

FIGURE 6.7 Expansion of an ideal gas into vacuum.
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since the actual work Wact of the process of expansion in vacuum is zero.
We can alternatively find I from I = − T0ΔSuniverse. Since the system is completely 

isolated, it is the universe and thus

 ∆ =S Suniverse s∆ = V
0ln 2

ys nR  
V1

V
The irreversibility is therefore I = −W W 2

act max 0= −nR T0ln , which is the same 
V1

given in Eq. 6.31.
It is instructive to obtain the above results from basic considerations. Given state 

1 (p1, V1) at temperature T1 and state 2 (p2, V2) at temperature T2, where T2 = T1 and 

p 1 1
2 = p V

. Since states 1 and 2 lie on the same isotherm T1 = T2 = T = constant, the 
V2

total work of the reversible isothermal process is

V2 V2

dV V
 ∫ ∫pdV n= =R T ln 2

0 0nR T  
V V1

V1 V1
pV =C

If the environment T0 < T, then a reversible heat pump must be used for the heat 
 transfer (Figure 6.8). The work of the heat pump is

 pdV  V V
 W = ∫ 2

HP   = −nR0T ln nR0 0T ln 2  
 1/(1− T T/ ) V 0  1 V1

The maximum work is for the reversible path and is

V
 W W 2  V2 V2 

max H= − W nP 0= −R T ln nR0T − ln nR0 0T ln  
V1  V1 V1 

1

2

U5constant
(T5constant)

HP

T0 T0 <T

WHP

FIGURE 6.8 Expansion of an ideal gas into vacuum from state 1 to state 2.
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 = V
nR 2

0 0T ln  
V1

Thus, the irreversibility is

V
  I = −W Wact max 0= −0 lnR T0 n l2 = − V

nR0 0T n 2   
V1 V1

This is the same result obtained from the availability function.

6.7.2  cooling of a cuP of hoT coffee

We can consider another example of the cooling of a cup of hot coffee at T1 to room 
temperature T0 illustrated in Figure 6.9.

The process is constant volume heat transfer from the coffee to the environment. 
The heat exchange takes place across a finite temperature and the process is irrevers-
ible. The actual work of irreversible cooling is zero, Wactual = 0. However, we cool the 
coffee reversibly and obtain some work.

From first law analysis, the heat transfer is

  Q = ∆U m= −c T( )0 1T  (6.32)

where m is the mass of coffee and c is the specific heat.
The entropy change of the coffee is

 ∆ = T
S m 0

coffee cln  (6.33)
T1

The maximum work that can be obtained between the two states can be found from 
the availability function, that is,

 W Umax 0= −∆Φ = −∆ + T S∆ coffee 

mc( ) T= − −T T0 1 + T m0 cln 0   
T1

 T T= − −mcT 1  
0  1 1 + n 0

 T0  T 
1 

 

 

Since Wactual = 0, the irreversibility is obtained as

T0T1 T0

FIGURE 6.9 Cooling of a cup of hot coffee in the environment.
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 T T 
 I W Wact max 0= −mcT 

1 = −  − 1 l+ 0
 n  (6.34)

 T0  T1 

Alternatively, we can find the irreversibility from entropy considerations, that is,

 I = −T S0∆ =universe 0− ∆T S( )coffee e+ ∆S nv

T
w ∆ = 0 mc( )T T

ith S mcoffee cln  and ∆ = 1 0−
Senv  

T1 T0

Thus,

 T = − 1  T  T T
 I mc 0  1 l + n 10  

T  −  = −mcT 
1 ln 1

  + 
 T0  0

T1   T0  T0 

which is the same result obtained earlier in Eq. 6.34.
We can also do the problem from basic considerations. We can find the maximum 

work by reversibly cooling the coffee at constant volume using a reversible engine 
between the hot coffee and the environment as shown in Figure 6.10.

The work of the reversible heat engine is

 

T0

T0
HE = −∫    1W mcdT −   T 

T 1

 T T− −mcT0 1 l1 =   + mcT0 n 0  
 T0  T1

 T 
= − −mc 1  T

T0 
1

1 l + n   
 T0  T0 

 

 

T

T0

dQ ���mcdT ���dU

T0
TdWHE ��dQ �����HE � �

T0
T�������������mcdT����� �

FIGURE 6.10 Reversible engine between system and environment.
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Since constant volume heat transfer does not produce any work, the maximum work 
is just the work from the reversible heat engine. This gives

 T  T 
 I = −W Wact max 0= −mcT 1 l1 1

 + n  
 T0  T0 

which is the same result as obtained earlier in Eq. 6.34.

6.8  IRREVERSIBILITY IN OPEN SYSTEMS

Consider rate of heat transfer Q0 to an open system from the environment at T0 and 
QR from a reservoir at TR. Thus, Q = +Q Q0



R. For the process in the open system 
where m1 and m 2 are the mass flow rates entering and leaving the open system with 
specific enthalpies h1 and h2, respectively, and U  is the rate at which the internal 
energy of the system increases, the non-pdV  work done from the first law for open 
systems (Chapter 3) gives

 W Q

actual 0= +( ) Q mR act + − 1 1h m2 2h U−   (6.35)

The kinetic and potential energies of the gases at the entry and exit are not consid-
ered in the above. For the maximum rate of work done, all processes must be revers-
ible. Thus to transfer heat reversibly from the environment and the reservoir to the 
open system, reversible heat pump and engine must be used. The work required by 
the heat pump and the work obtained from the engine are included in the work from 
the system. The first law is now written as

  W Q

max 0= +( ) Q mR + − h m1 2h U2 − 

  rev

For maximum work, all processes must be reversible, thus giving

 S S   

universe s= +ys S Senv r+ =es 0 

The net entropy change of the environment is written as

Q
 S 0

env = − − +m s 1 1 m s2 2  
T0

where s1 and s2 are the specific entropies entering and leaving the system. The envi-
ronment loses entropy when the mass carrying the entropy m1 1s  enters the system.

Similarly, the environment gains entropy when the mass is discharged from the 
system to the environment. We therefore write

Q
 S S = − 0 Q

universe sys − +m s 1 1 m s2 2 − =R 0 
T0 TR
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where the rate of entropy change in the reservoir of temperature TR with rate of heat 
Q

transfer across it is − R = Sres
TR

Solving for Q0, we get

 Q 
 Q 

0 0= −T Ssys 1m s 1 2− −m s R
2 0T   

 TR 

Substituting the above expression for Q0 into the first law, we write

 T 
 W T

max 0= +S Q 

0
sys R 1 (−  + −m h 1 1 T s0 1) (− −m h2 2 T s0 2) − U  (6.36)

 TR 

Defining the open system availability function Ψ per unit mass as

 ψ = −h T0s (6.37)

similar to the closed system availability function as

 Φ = U T− 0 sS ys (6.38)

the maximum rate of work done by the open system is written as

 T 
 W Q 

0
max = −Φ + 

R 1−  + Ψm m 

  1 1 + Ψ2 2 (6.39)
TR

For steady flow where m 1 2= =m m  and U = =0,Ssys 0, we write

 T
 max = −1 0 

w qR  − ∆Ψ (6.40)
 TR 

where ∆Ψ = Ψ2 1− Ψ , wmax is the maximum work per unit mass and qR is also the 
heat transfer per unit mass that flows through the system.

The irreversibility can be obtained from Eqs. 6.35 and 6.36, that is,

 I = −W Wactual m


ax (6.41)

  T  
or 1I Q = +   + − −  − + 0 1Q m h m1 2h U2 0

 

 T S 0
R Rsys Q  −  + −m h 

  1 1( )T s0 1 − −m h2 2( )T s0 2 − U
 T R 

Q Q
Noting that S 0

env = − − +m s 1 1 m s2 2 and Sres = − R

T0 TR
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The above equation reduces to

  I = −T S0 s( ) 

ys + +S Senv r
 

es = −T S0 universe (6.42)

The above result is similar to the irreversibility obtained for a closed system except 
that for open systems, it is the rate of irreversibility.
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7 Thermodynamic 
State Functions

7.1 � INTRODUCTION

Heat and work interactions among different systems depend on the relevant changes 
of the thermodynamic states and the thermodynamic properties of the systems. The 
thermodynamic properties could either be determined experimentally or from the fun-
damental properties of the molecules through statistical thermodynamics. The latter 
is due to the large number of molecules in a system behaving as a group in a statistical 
way. Some of the thermodynamic properties can be measured directly, for example, 
pressure, temperature, volume and mass. Specific heats can also be obtained via calo-
rimetric measurements. However, thermodynamic state functions, which define the 
equilibrium state of a system, irrespective of how the equilibrium state is reached, are 
not directly measurable. Thermodynamic relationships must be developed to permit 
the state functions such as internal energy and entropy to be obtained from the mea-
surable thermodynamic properties or variables. The thermodynamic properties that 
cannot be directly measured could also be expressed in terms of those that can be 
readily measured. In this chapter, the state functions and thermodynamic properties 
are discussed and the relationships between them are derived.

7.2 � STATE FUNCTIONS

7.2.1  �Internal Energy

The internal energy U was introduced in connection with the first law, that is,

	 δ δ= −dU Q W 	 (7.1)

where δQ  is the heat transfer to the system and δW  is the work done by the system 
when the system undergoes a process. The change in internal energy dU  is path-inde-
pendent (i.e., a total differential), whereas δQ  and δW  are path-dependent quantities.

A simple hydrostatic system is characterized by its internal energy U  and its mass m.  
For simplicity, we initially consider a single component system and its state is charac-

terized by the internal energy per unit mass (specific internal energy) =u
U

m
.

7.2.2 � Entropy

The thermodynamic state function entropy was defined from the second law as

	 rev=dS
dQ

T
	 (7.2)

https://doi.org/10.1201/9781003224044-7
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dQrev in the above expression is the reversible heat transfer between two neighboring 
states and is path-independent since the reversible heat transfer is the same for all 
reversible paths. Thus, we write dQrev as a total differential. The reversible work dWrev 
between two neighboring states is also a total differential since the reversible work is 
the same for all reversible paths.

For a reversible process, the first law can be written as

 dU d= −Q drev rW Tev = −dS p dV  (7.3)

Here, we have written dW prev = dV  and dQ Trev = dS. Comparing Eqs. 7.1 and 7.3, 
we note that for an irreversible process δQ T≠ dS and δW ≠ pdV . Since Eq. 7.3 is a 
relationship expressing the change of a state function U, it is valid for all processes.

 S If we were to define specific entropy as entropy per unit mass  s =   in a man- m 
ner similar to specific internal energy u, Eq. 7.3 reduces to

 du T= −ds pdv  (7.4)

where v is the specific volume, that is, volume per unit mass. In the above, u(s, v), that 
is, specific internal energy u is a function of specific entropy (s) and specific volume (v).

Although the relationship 7.4 is derived based on reversible process, that is, 
dQ Trev = dS and dW prev = dV , it is a relation between state properties for two 
neighboring states and is not process-specific. So if we have an irreversible process 
between two states, the relation 

 dU Q= −δ δW  

applies and so does 

 du T= −ds pdv  

though T dsis no longer δQ  and pdv is not δW .

7.2.3  enThalPy

In a number of processes involving open systems, the state function enthalpy 
H = U + pV is more convenient to use. The term “p V” can be thought of as the dis-
placement work done on a system for it to occupy a volume “V” in an environment at 
a pressure “p”. Thus, the enthalpy is a more appropriate state function in open system 
analysis involving mass transfer.

From definition of enthalpy, we can write Eq. 7.3 as

 dH T= +dS Vdp (7.5)

H
Writing specific enthalpy (enthalpy per unit mass) as h = , we can write the above 

m
equation as
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 dh T= +ds vdp (7.6)

which is the relationship between state properties.

7.2.4  helmholTz- and gibbs-free energies

Two other important state functions are the Helmholtz function “A” and the Gibbs-
free energy “G”. They are defined as follows:

 A U= − TS  (7.7)

and

 G H= − TS (7.8)

 A respectively. The specific Helmholtz function  a =   and specific Gibbs-free  m 
 G energy  g =   from Eqs. 7.7 and 7.8 become m 

 a = −u Ts (7.9)

and

 g h= − Ts (7.10)

From the first law, we write for any system

 δW Q= −δ dU 

and the second law gives δQ T≤ dS. Therefore, the work done is an isothermal 
 process in which the system interacts with a single reservoir at the same temperature T

 δW d≤ − ( )U T− S  

or

 δW d≤ − A (7.11)

Thus, the work done is less than the decrease in the Helmholtz function for any 
 isothermal process. The equality sign refers to a reversible process in which case, the 
work is maximum and equal to the decrease of the Helmholtz function.

For an isobaric and isothermal process, we can write

 δW W= +δ ' pdV ≤ −dA 

where δW ' is the non-pdV  work. The non-pdV  work can be written as
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 δW d' ≤ − A − =pdV − +d A( )pV  (7.12)

Since

 A p+ =V U − +TS pV = −H TS G=  (7.13)

we obtain the result

 δW d' ≤ − G (7.14)

that is, the non-pdV  work done by a system for an isobaric and isothermal process 
corresponds to the decrease in the Gibbs-free energy. The term free energy is there-
fore used for the Gibbs function to avoid any confusion. If there is no non-pdV  work, 
that is, δW ' 0= , then

 0 ≤ −dG (7.15)

In other words, the change in Gibbs-free energy is negative or the system evolves in 
the direction of decreasing Gibbs-free energy. At equilibrium for which no work is 
possible dG = 0 or G is a minimum.

7.2.5  summary of relaTionshiPs beTWeen sTaTe ProPerTies

Summarizing, the state functions are U, H, A and G and their change between two 
neighboring states are:

 dU S( ),V T= −dS pdV  (7.16)

 dH S( ), p T= +dS Vdp (7.17)

 dA T( ),V = −SdT − pdV  (7.18)

 dG T( ), p = −SdT + Vdp (7.19)

The above four state functions, U, H, A and G, can be written per unit mass, namely, 
u, h, a and g as

 du s( ),v T= −ds pdv (7.20)

 dh s( ), p T= +ds vdp (7.21)

 da T( ),v s= − dT − pdv (7.22)

 dg T( ), p s= − dT + vdp (7.23)
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The state functions enthalpy, Helmholtz function and Gibbs-free energy could also 
be mathematically derived using the Legendre transformation as given in the next 
section.

7.3  DERIVATION OF STATE FUNCTIONS USING 
THE LEGENDRE TRANSFORM

Consider a function z(x, y). We write

 ∂z   ∂z 
 dz x( , y) =   dx + dy = +

   a d
∂ 1 2x a dy 

x 
y  ∂y 

x

 ∂z   ∂z 
where a1 =    and a

 ∂  2 =  x y  ∂y 
x

If we write

 a1 1dx = −d a( ),x xda1 

then the above equation becomes

 dz x( ), y d= −( )a x1 1xda a+ 2dy 

and rearranging the above expression, we get

 d ( )z a− =1 1x x− +da a d2 y 

We can define a new function α1 1= −z a x  and obtain

 dα1 1( )a y, = −xda a1 2+ dy (7.24)

Writing d ( )a y2 2, = +a dy yda2, Eq. 7.24 can be rearranged to read

 d ( )α α1 2− =a y d a2 1( ),a x2 1= − da − yda2 (7.25)

α2 1( )a a, 2  is now a function of the new variables a1 and a2

The above manipulation is known as Legendre’s transformation and permits defi-
nition of new state functions.

Applying Legendre’s transformation to the first law, that is, Eq. 7.4

 du T= −ds pdv = du( )s v,  

we obtain

 dh s( ), p d= +( )u pv T= +ds v dp 
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where the new function

 h u= + pv  

is the specific enthalpy.
Writing Eq. 7.4 as

 du T= −ds p dv d= −( )T s s dT − pdv  

we obtain

 d ( )u T− =s s− −dT p dv d= a T( ),v  

where

 a( )T v, = −u T s 

is the Helmholtz function.
Similarly, we write for enthalpy

 dh d= −( )T s s dT v+ dp 

 or ,d h( )− =T s − +sdT v dp = dg ( )T p  

where

 g T( ), p h= − T s 

is the Gibbs-free energy.

7.4  MAXWELL’S RELATIONSHIPS FOR STATE VARIABLES

The derivatives of the state functions u, h, a and g are total differentials. Using the 
condition for exact differentials, a number of important relationships can be obtained. 
From Eq. 7.4 for specific internal energy,

 du T= −ds p dv 

we obtain

 ∂T   ∂p 
   = −   (7.26)

 ∂v 
s T

 ∂s 

Similarly from Eqs. 7.6, 7.22 and 7.23, for specific enthalpy, Helmholtz and Gibbs-
free energy, we get
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 ∂T   ∂v 
 =     (7.27)

 ∂p 
s

 ∂s 
p

 ∂s   ∂p 
   =    (7.28)

 ∂v 
T v

 ∂T 

 ∂s   ∂v 
 = −     (7.29)

 ∂p 
T

 ∂T 
p

The above expressions (Eqs. 7.26–7.29) are referred to as Maxwell’s equations. They 
relate to the state variables p, v, T and s in terms of partial derivatives. They do not 
refer to a specific process, but relate to the various variables for a given equilibrium 
state. It may be noted that though entropy is a state function, it can also be used as a 
variable in the same way as internal energy is used as a state variable.

7.5  THERMODYNAMIC POTENTIALS AND FORCES

In Eq. 7.4, the internal energy is expressed as a function of entropy and volume, that 
is, u s( ),v . We can therefore write

 du s( )  ∂u   ∂u 
,v =   ds +   dv (7.30)

 ∂s 
v s

 ∂v 

and equating the coefficients of ds and dv in the above with Eq. 7.4, we obtain

 ∂u   ∂u 
 T =   p = −   (7.31)

 ∂s 
v s

 ∂v 

Similarly from Eq. 7.6 for h s( ), p


 ( )  ∂h  ∂h 

dh s, p =   ds +
   dp (7.32)

∂s 
p  ∂p 

s

and equating coefficients of ds and dp from Eq. 7.6

 ∂h   ∂h 
 T =   v = −

    (7.33)
∂s 

p  ∂p 
s

In a similar way, we write for da T( ),v  and dg T( ), p

 ( )  ∂a   ∂a 
da T ,v =   dT +   dv (7.34)

 ∂T 
v T

 ∂v 
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 ∂
 ( ) g   ∂g 

dg T , p =   dT +   dp (7.35)
 ∂T 

p  ∂p
T

Equating coefficients of dT, dv and dT and dp, respectively, in Eqs. 7.34 and 7.35 and 
comparing with Eqs. 7.22 and 7.23 for da and dg, respectively, we obtain

 ∂a   ∂a 
 s = −  p = −   (7.36)

 ∂T 
v T

 ∂v 

and

 ∂g   ∂g 
 s = −  v =  )

    (7.37
∂T p  ∂p

T

Equations 7.31, 7.33, 7.36 and 7.37 give the thermodynamic variables T, p, v and s in 
terms of gradients of state functions u, h, a and g. In analogy to mechanics, we can 
interpret the state functions u, h, a and g as thermodynamic potential functions and 
the state variables s, T, p and v as thermodynamic forces or properties.

7.6  DETERMINATION OF STATE FUNCTIONS

7.6.1  inTernal energy

Equation 7.4 gives the internal energy u s( ),v  as functions of entropy s and v. However, 
entropy is not a directly measurable variable and it is more convenient to use the 
measurable variables p, v and T as independent variables. Choosing T and v as inde-
pendent variables, that is, u T( ),v  we write

 ∂
 u T( ) u   ∂u 

d ,v =   dT +   dv (7.38)
 ∂T 

v T
 ∂v 

The specific heats are the heat capacities on a per unit mass (or mole) basis defined 
 ∂u 

as specific heat at constant volume cv =    and specific heat at constant pressure 
 ∂T 

 ∂h  v

cp =   . Equation 7.38 therefore becomes
 ∂T 

P

 ∂u 
 du T( ), v c= +vdT   dv 

 ∂v 
T

Since a = −u Ts

 ∂u   ∂a   ∂s 
   =   + T    

 ∂v 
T T

 ∂v   ∂v 
T
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and from Eq. 7.36 and the Maxwell equation (7.28), we obtain

 ∂u   ∂p 
   = − p T+    (7.39)

 ∂v 
T v

 ∂T 

Thus,

  ∂p  
 du T( ),v c= +vdT   − T p d

  ∂T   v  (7.40)
v 

 ∂p 
   in the above equation can be evaluated from the equation of state f ( )p v, ,T = 0.  
 ∂T 

v
Hence the change in internal energy can be expressed in terms of measurable quantities, 
that is, specific heat, thermodynamic properties and equation of state. As an example, 
for an ideal gas where pv = RT , Eq. 7.39 indicates that

 ∂u   R    = − p T+   = 0 
 ∂v 

T
 v 

Hence, u is a function of T alone for an ideal gas, that is,

 du c= vdT  (7.41)

If p T,  are chosen as independent variables, then

 du p( )  ∂u   ∂u 
,T =   dT +

 ∂    dp (7.42)
T p  ∂p

T

From definition of specific enthalpy

 h u= + pv  

we write

 ∂u   ∂h   ∂v   ∂v 
   =   − p  = −c pp    (7.43)

 ∂T 
p p

 ∂T   ∂T 
p

 ∂T 
p

With a=u T− s, we get

 ∂u   ∂a   ∂s 
 = +    T    (7.44)

 ∂p 
T T

 ∂p   ∂p 
T

and using Eq. 7.36, we get
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 ∂a   ∂a   ∂v   ∂v 
 =    = −  p   (7.45)

 ∂p 
T

 ∂v 
T  ∂p 

T T
 ∂p 

Substituting the values of the partial derivatives from Eqs. 7.43 and 7.44 in Eq. 7.42 
with Maxwell relation (7.29), we write


( )  ∂v     ∂v   ∂v  

 du p,T = −c pp   dT + − p −  T   dp (7.46)
 ∂      T p   ∂p ∂T

T p 

Thus, the change in u p( ),T  for the corresponding change in temperature and pres-
sure is expressed in terms of the specific heat cp, the isothermal compressibility 
 ∂v   ∂v 
   and the volume expansion term   .
 ∂p 

T
 ∂T 

p

In terms of p v,  as independent variables, we write

 ( )  ∂u   ∂u 
du p,v = +  dp   dv 

 ∂p
v

 ∂v 
p

Since

 ∂u   ∂u   ∂T   ∂T 
 =    = c

 ∂   ∂       
p

v
T v  ∂p  v

v
 ∂p 

v

Also with h u= + pv

 ∂u   ∂h   ∂h   ∂T   ∂T 
 =    − =p     − =p c   − p 

 ∂p  ∂v   ∂T
p p p

  ∂v  p  ∂v 
p

Hence,

   
 du p( )  ∂T   ∂T 

,v c=  v   dp + c   − p d v (7.47)
  ∂p  p   ∂v

v  p 

 ∂T  v  ∂T  p
For an ideal gas where, pv = RT , =   and   =  giving

 ∂p 
v

R  ∂v 
p R

 ( ) c  du p, 1v = +v c
vdp p

p −  dv 
R  R 

With cp v− =c R for an ideal gas, the above becomes

c
 du p( ),v = +v v( )vdp pdv = =c

d p( ) c
v v ( )RdT c= vdT  

R R R
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We therefore obtain the same result du c= vdT  for an ideal gas.
Internal energy changes can thus be obtained from Eqs. 7.40, 7.46 and 7.47 as 

functions of the changes in (v, T), (p, T) and (p, v) respectively. They all reduce to  
du = cvdT for an ideal gas.

We can also show that the internal energy for an ideal gas is a function of tempera-
ture T and not v through the following alternate procedure.

We have for internal energy:

( )  ∂u   ∂u 
 du T ,v =   dT +   dv 

 ∂T 
v T

and from the first law

 δQ drev r= +u Wδ ev = +du pdv 

or

 Tds d= +u pdv giving

1 p
 ds = +du dv 

T T

 ∂v 

The above can further be written as

1  ∂u   ∂u   p
 ds =   dv +   dT  + dv 

T  ∂v 
T v

 ∂T   T

Simplifying we get

 1 1 ∂u  p   ∂u 
 ds =    + dv +   dT  

 T  ∂v 
T vT  T  ∂T 

 ∂s   ∂s 
But ds v( ),T =   dv +   dT

 ∂v 
T v

 ∂T 

∂   ∂s  ∂   ∂s 
and    =   ∂v 

T v
 ∂T T ∂ 

v T
 ∂v 

For an ideal gas therefore

∂   1 1 ∂u   ∂    ∂u  R 
      =     +  

∂v T
T v  ∂T T  ∂ 

v T T  ∂v  v 

1 1∂2 2u ∂ u 1  ∂u 
Hence, = −

∂ ∂ ∂ ∂ 2  T v T T T v T  ∂v 
T
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This gives

 ∂u 
   = 0 (7.48)

 ∂v 
T

so that u u≠ ( )v  but u u= ( )T  alone for an ideal gas.

7.6.2  enThalPy

If it is desired to express the enthalpy as a function of T p, , that is, h T( ), p  we write

 ∂
 ( ) h   ∂h 

dh T , p =   dT +
 ∂   dp 

T p  ∂p
T

But

 ∂h 
   = c

 ∂T  p 
p

and using the Gibbs function

 g h= − Ts 

we write

 ∂h   ∂g   ∂s 
 = +    T    

 ∂p 
T T

 ∂p   ∂p 
T

 ∂g   ∂s   ∂v 
From Eq. 7.37 and Maxwell’s equation (7.29), we have = = −  v;     ∂p

T T
 ∂p   ∂T 

p

and therefore

 ∂h   ∂v 
 = −  v T    

 ∂p 
T

 ∂T 
p

Hence,

 
h p( ) ∂v  

 d ,T c= +pdT  v T−    dp (7.49)
  ∂T 

p 

 ∂v  R
For an ideal gas   =  and therefore

 ∂T 
p p

 dh p( ),T d= =h T( ) c dp T  
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that is, enthalpy of an ideal gas is a function of temperature only.
For specific enthalpy expressed as a function of temperature and specific volume 

h v( )T, , we first write

 ∂h   ∂h 
 dh v( )T, =   dT +   dv 

 ∂T 
v T

 ∂v 

Since h u= + pv

 ∂h   ∂u   ∂p   ∂p 
   =   + v  = +c vv    

 ∂T 
v v

 ∂T   ∂T 
V

 ∂T 
v

Using the Gibbs-free energy, g h= − Ts

 ∂h   ∂g   ∂s   ∂g   ∂p  ∂p 
we can express   =   + T   = +

          T  ∂v T T∂v ∂v T  ∂p
T

 ∂v 
T v

 ∂T 

 ∂s   ∂p 
Here, we have used Maxwell equation (7.28), viz.   =   ∂v 

T v
 ∂T 

Further using Eq. 7.37, the above becomes

 ∂h   ∂p   ∂p 
   = v  + T    

 ∂v 
T T

 ∂v   ∂T 
v

and we obtain

  ∂p     ∂p   ∂p
 ( )  

dh T ,v c= + v v  + dT  v   + T  T  dv (7.50)
  ∂ 

v T   ∂v   ∂T 
v 

For an ideal gas where pv = RT
 ∂p  R  ∂p  RT
  = ,   = − 2 , and therefore the above equation becomes
 ∂T 

v Tv  ∂v  v

 d ( )  RT
h T ,v c= +( )v vR dT p+ − +  dv = +( )c R dT = c dT v  p  

the same result as obtained previously indicating that h T( ) only.
Similarly for, h p( ),v  we write

 ( )  ∂h   ∂h 
dh p,v = dp +    dv  

 ∂p 
v

 ∂v 
p

where

 ∂h   ∂h   ∂T   ∂T 
   =     = c    

 ∂v 
p p

 ∂T   ∂v  p

p
 ∂v 

p
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 ∂h 
and for    we obtain using h u= + pv

 ∂p 
v

 ∂h   ∂u   ∂u   ∂T 
 = + = +    v     v  

 ∂p 
v v

 ∂p   ∂T 
v  ∂p 

v

Hence,

 ( )  ∂T    ∂T  
dh p,v = cp   dv +  c + p

  v d  (7.51)
∂v  v

p   ∂p 
v 

 ∂T  p  ∂T  v
For an ideal gas where pv = RT  and   = , . =  , we obtain

 ∂v 
p R  ∂p 

v
R

 ( )  p   v dh p,v c= p vdv + +c v dp  R   R 

c
 = p p( ) c

pdv + =vdp d p( )v c= pdT  
R R

Enthalpy changes can thus be obtained from Eqs. 7.49, 7.50 and 7.51 as functions of 
changes in (T, v), (p, T) and (p, v) respectively. They all reduce to dh = cpdT for an 
ideal gas.

7.6.3  enTroPy

Entropy is defined as

dQ
 ds = rev  

T

Thus to determine the specific entropy change between two states, one chooses a 
reversible path to connect two states and compute the reversible heat transfer per unit 
mass of the system. However, analytical expressions can also be obtained to determine 
the entropy change. If T and v are the desired independent variables, we first write

( )  ∂s   ∂s 
 ds T ,v =   dT +   dv 

 ∂T 
v

 ∂v 
T

We also note

 ∂s   ∂s   ∂u  1
   =     = c  

 ∂T 
v v

 ∂u   ∂T T v

v

 ∂s   ∂p 
Maxwell’s equation (7.28) gives   =   .

 ∂v 
T v

 ∂T 
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Hence,

 ( ) dT  ∂p 
ds T ,v c= +v   dv (7.52)

T  ∂T 
v

For s ( )p T, , we write

( )  ∂s   ∂s 
 ds p,T = +  dp   dT  

 ∂p 
T

 ∂T 
p

and using the relation

 ∂s   ∂s   ∂h  1
   =     = cp  ∂T 

p p
 ∂h   ∂T T

p

 ∂s   ∂v 
and also the Maxwell equation (7.29) which gives = −    , we get

 ∂p 
T

 ∂T 
p

 ( ) dT  ∂v 
ds T , p c= −p   dp (7.53)

T  ∂T 
p

For s ( )p v, , we first write

 ( )  ∂s   ∂s 
ds p,v = +  dp   dv 

 ∂p 
v

 ∂v 
p

 ∂s 
The differential    can be written as

 ∂p 
v

 ∂s   ∂s   ∂u   ∂T  1  ∂T 
 =      =

 ∂       c    
p

v
∂u v v∂T   ∂p T v

v
 ∂p 

v

 ∂s 
Similarly for   , we have

 ∂v 
p

 ∂s   ∂s   ∂h   ∂T  1  ∂T 
   =       = c    

 ∂v 
p

 ∂h   p

p p p
 ∂T   ∂v T  ∂v 

p

Thus, we obtain

 ( ) c  ∂T  c  ∂T 
ds p,v = v + p

  dp   dv (7.54)
T  ∂p 

v
T  ∂v 

p
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Equations 7.52–7.54 give entropy changes as function of changes in (T, v), (T, p) and 
(p, v) respectively

 ∂p  R  ∂v  R
For an ideal gas where pv = RT ,   = ,   = , Eqs. 7.52–7.54 give

 ∂T  v  ∂T  p

 ds T( ) dT R
,v c= +v dv (7.55)

T v

dT R
 ds T( ), p c= −p dp (7.56)

T p

dp
 ds p( ) dv

,v c= +v pc  (7.57)
p v

If specific heats cp ( )T  and cv ( )T  are given, we can readily integrate the above equa-
tions for an ideal gas to determine the change of entropy. For constant values of cp 
and cv, the above equations integrate to yield

∆s T( ),v  T   v  γ −1

 = ln
2

 
2

  (7.58)
cv  T1   v1 

γ −1

∆s T( ),p  T   p  γ
 = ln

2


2
   (7.59)

cp  T1   p1 

∆s p( ),v  p v
 = ln 2   γ

2 
     (7.60)

cv  p1   v1 

7.7  THERMODYNAMIC FUNCTIONS FOR DENSE GASES

The equation of state for dense gases is more complex. The p, v and T data may be 
obtained from empirical equations of state or approximately from the compressibil-
ity chart. As an example, consider the van der Waal’s equation of state given below:

 a   p + 2  ( )v b − = R T0  (7.61) v 

In the above expression, “a” and “b” are constants fitted for the experimental p, v and 
T data in the region of interest. The specific volume is expressed on molar basis, that is,

 v = V
 

n

and R0 is the universal gas constant.
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From Eq. 7.61, we write

 p = R T0 − a

v b − v2  (7.62)

and thus

 ∂p  R
   = 0  (7.63)

 ∂T 
v v b −

Writing Eq. 7.40 for du(T, v) on a molar basis, we have

  ∂p  
 du T ( ),v c= + vdT   − T p d

 ∂   v 
 T v 

and using Eqs. 7.63 and 7.62, we get

 du T ( ) a
,v c= +vdT



2 dv (7.64)
v

which integrates to yield

T

∫ ∫
2 v2

a
 ∆ =u T ( ),v cvdT + 2 dv  

v
T1 v1

T

∫
2

 1 1 
 = c dv T a− −   (7.65)

 v v 2 1 
T1

Similarly from Eq. 7.49, we express dh(p, T) on a molar basis as




  ( )  ∂v  
dh T , p c= + pdT  v T−    dp (7.66)

  ∂T 
p 

 ∂v 
We use the cyclic rule for variables v T, , p to obtain   , that is,

 ∂T 
p

 ∂v   ∂T   ∂p 
     = −1 

  ∂T 
p  ∂p 

v
 ∂v 

T

 ∂p 
  ∂v  −1  ∂T 

   = = − v  (7.67)
 ∂T 

p  ∂T   ∂p   ∂p 
      ∂p  v   ∂v 

v
 ∂  T T
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R T a
From the equation p = 0 −

v b − v2 , we obtain

 ∂p  R T0 2a 2a v( ) − −b R2

  = − 0Tv3

 2 + =3 2  (7.68)
 ∂v  ( )v b − v v v 

3
T ( )− b

 ∂p  R
Using the above and   = 0 , we then write

 ∂T 
v v b −

 ∂p  −R
 

0

 ∂v   ∂T  ( )v b − R v 

3
v v b−




0 ( )
  = = =  (7.69)

 ∂T 
p  ∂p  2 2a v( ) − −b R2 Tv3

 − −
  0 R T0 v a3 ( )v b 2

 ∂v  v v 

3
T ( )− b 2

and using Eq. 7.69 in Eq. 7.66, we get

 R Tv v 

3 − b 
 dh T

( )( ), p c= + dT − 0
p  v 2  dp (7.70)

 R Tv a 

3
0 − −2 ( )v b 

Alternatively, a simpler expression can be obtained using the definition of enthalpy, 
that is, 

 h u = + pv

to give

 dh d = +u d ( )pv  

Substituting the value of change of the specific molar internal energy from Eq. 7.64, 
that is,

a
 du T ( ),v c= +vdT

v d 

2  
v

we obtain

 dh c = + a
vdT 2 dv + d pv

v
( ) 

which integrates to yield

T

∫
2

 1 1 
 ∆ =h c

v dT − −a  + −( )p v
 

2 2 p v
 1 1  (7.71)

v v2 1 
T1
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The van der Waal’s equation (7.61) can be used for determining the product pv .
To determine the entropy s(T, v), we use Eq. 7.52, which gives

 ( ) dT  ∂p 
ds T ,v c= +v   dv 

T  ∂T 
v

and using the value of

 ∂p  R
   = 0  

 ∂T 
v v b −

from the van der Waals equation, we get the entropy change per mole as

dT  R
 ds c = +  0 

v  dv 
T  v b − 

which integrates to yield

T


  ∫
2

dT ( )v b2 −∆ =s cv + R0ln  (7.72)
T v b1 −

T1
( )

For low pressures where the molar volume tends to infinity, the above reduces to 
the entropy of an ideal gas. Similarly, it may be noted that the changes in internal 
energy 

 ∆u T ( ),v

and enthalpy

 ∆h T( ),v

given by Eqs. 7.65 and 7.71 reduce for an ideal gas to

T2

 ∫C d

v T  
T1

and

T2 2

 ∫ ∫
T

c d v T p+ −( )2 2v p1 1v c = p dT  
T1 T1

respectively.
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7.8  GENERALIZED ENTHALPY AND ENTROPY CHARTS
For dense gases, the compressibility chart provides an approximate estimate of the p, v 
and T data from the knowledge of the critical pressure and temperature of the substance. 
Enthalpy and entropy functions for dense gases can be estimated from the so-called gen-
eralized enthalpy and entropy charts. Enthalpy as a function of T, p is given by Eq. 7.49 as

 
dh T( ) ∂v

 

 
, p c= + pdT  v T−    dp 

  ∂T 
p 

which for an ideal gas where

 pv = R T0  

gives

 dh T ( ), p c= pdT 

and enthalpy is a function only of the temperature for an ideal gas. Departure from an 
ideal gas behavior is given by the second term on the right hand side of the expression 
for dh T ( ), p , that is,

  ∂v  
  v T −    dp 

  ∂T 
p 

Integrating dh T ( ), p  along an isotherm, we write


 ( ) ( ) ∫

p

 ∂v  
 h T , ,p h− =T p0 v T −   dp (7.73)

 ∂T 
p

p0
 

If we let p0 tend to zero, we have an ideal gas and

 h T ( ), p h*
0 → ( )T  

where

h T

*
 ( ) 

denotes the enthalpy of an ideal gas. Knowledge of an explicit equation of state per-
mits the integral in Eq. 7.73 to be evaluated.

However, the compressibility chart can also be used more conveniently. Using the 
compressibility factor “Z”, we write

ZR
 v = 0T  

p

and
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 ∂v  ZR
  

0 0R T  ∂Z = +    
 ∂T 

p pp p  ∂T 

Using the above, Eq. 7.73 becomes

p
 R T 2 ∂Z 

 h T ( ), p h− =* ( ) ∫ −  0  
T   dp 

∂ 
→0  p  T p

po


where h*(T) denotes the enthalpy of an ideal gas where po → 0. Normalizing the 
pressure p and temperature T with respect to the critical pressure pc and temperature 
Tc to give relative pressure pR and relative temperature TR, the above equation can be 
rearranged to read

 

pR

h T* ( ) − h T( ), p  ∂Z 
 = ∫ T 2

 d pln )
R T

R 
0 c  ∂T  R (7.74

R
p0 →0 pR

The above is referred to as the enthalpy departure function on molar basis. The inte-
gral is carried out along an isotherm TR = constant from given (p, v, T) data. A plot of

h T 

* ( ) − h T( ), p
 R  

R T0 c

against pR for constant TR is referred to as generalized enthalpy chart and is shown 
in Figure 7.1.

For enthalpy change between two states, we write

h2 2( )T p

∫
, 2

dh = −h T( ),p h T ( ), ,p h= −  *
2 2 2 1 1 1 T h  2 ( )2 2− ( )T p2 2 

h T1 1( ), p
 

1
 

+ −  

*  * *
h T1 ( )1 1h T( )1 1, p h + −  

 ( )T h2 ( )T1 

 h T 

*
2 ( )2 2− h T( )2 2, p 

= −   R T0 2c + −h T 

* ( ) h T*
2 1 ( )1 

 R T0 c




 h T 

*
1 ( )1 1− h T( ), p

+ 
1 

 R T0

 R T
c  (7.75)

0 c 

Given (T, p), the departure function can be obtained from the generalized enthalpy 
chart (Figure 7.1). The enthalpy change for an ideal gas

 h T 

* *
2 ( )2 1− h T( )1  
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can be determined using ideal gas tables or from integrating

 c *
p dT  

if the specific heat c *
p ( )T  of ideal gas is known. Thus, Eq. 7.75 can be used to obtain

 h T 

2 2( ), ,p h2 1− ( )T p1 1  

The specific molar entropy from Eq. 7.53 is given by

dT
d ( )  ∂v 

 s T , p c= −p   dp (7.76)
T  ∂T 

p

For the entropy of an ideal gas for which

 ∂v  R
   = 0  

 ∂T 
p p

we have

 ds T 

* ( ) dT R
, p c= − 0

p dp 
T p

Unlike the enthalpy, the entropy for an ideal gas depends on both p and T. Integrating 
the above along an isotherm between pressures p0 and p, we have

h*(T)2h(T,pR)
R0Tc

T R
5

2
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FIGURE 7.1 Generalized enthalpy chart.
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s T

* ( ), p

 ∫ ∫
p

ds 

* = −s T* *( ), ,p s ( ) R
T p = − 0

0 dp 
p

*s ( )T p, 0 p0

Subtracting the two expressions above for ideal and dense gases gives

p

   

* *
 

s T( ), ,p s− ( )T p0 0 − −  s T ( ) ( )  ∂v  R
, ,p s T p  = ∫ 

  − 0 dp 
 ∂ 

0
 T p p

p 

where p0 is sufficiently low for the ideal gas equation to be valid.
Using compressibility factor Z, the above equation can be written as

p

∂
 s T* *

   
 ( ), ,p s ( ) R R T Z − T p  − −  s T , ,p s0 0T p = −∫ 1 0 0+  ( ) ( ) ( )z   dp 

p
0
 p  ∂T 

p
p



In the limit when

 p s0 0→ →0,  ( )T p, ,s T* ( )p0  

Normalizing with respect to critical pressure pc and critical temperature Tc, the above 
expression becomes

s T 

P
* ( ), ,p s− ( )T p

 = −∫ ∫
R R

( )
P

∂( ) T  Z 
z d1 ln PR + R

  dP )
R0 PR  ∂T  R  (7.77

P
p → →0 0p R

o 0

Equation 7.77 gives the departure of the entropy at (p, T) from the ideal gas value at 
the same (p, T). The term

s T 

* ( ), ,p s− ( )T p
  

R0

is referred to as the entropy departure function and is plotted against the reduced 
pressure pR = p/pc for various reduced temperature TR = T/Tc. Figure 7.2 shows the 
entropy departure function.

From Eq. 7.74, where

h T 

P
* ( ) − h T( ), p

R

 ∂Z 
 = T 2

  d pln  
R T

R
0 c  ∂T 

P
∫ R

R P
o →0 R

we can also write the entropy departure function using Eq. 7.77 as
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s T 

* ( ), ,p s− ( )T p h T

* ( ) − h T( ) P
, p

 = + −∫
R

( )z d1 ln PR (7.78)
R0 R T0 c RT

Po

For the entropy change between two states p1, T1 and p2, T2, we can write

( ) ( )  s T 

*
2 ( )2 2, ,p s− 2 2( )T p2 

s  + −*
2 2p T, ,2 1− =s p1 1T −   R s0 2  ( )T p2 2, ,s T*

1 ( )1 1p 
 R0 

  
 s T 

*
1 ( )1 1, ,p s− 1 1( )T p 

+ 
1

 R0

 R0 

The entropy departure function in the above expression

 s T 

* ( ), ,p s− ( )T p 
   

 R0 

→0

can be determined from the generalized entropy chart (Figure 7.2).
The entropy change for an ideal gas

   

*
2 ( )2 2, ,− *

s T p s1 ( )T p1 1  

can be obtained from the ideal gas tables or from integration if the variation of the 
molar specific heat with temperature is given. Thus the entropy change between the 
two states (T1, p1) and (T2, p2) is determined.

4
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FIGURE 7.2 Entropy departure function.
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8 Thermodynamic 
Coefficients and 
Specific Heats

8.1  �THERMODYNAMIC COEFFICIENTS

The thermodynamic state variables such as pressure p, specific volume v and temper-
ature T can be measured directly. Fitting the experimental p, v and T data gives the 
equation of state ( ) =f p v T, , 0 for the substance. The thermodynamic coefficients 
defined in the following are determined from the p, v and T data, while the specific 
heats are obtained from the dependence of the state functions internal energy and 
enthalpy on temperature, pressure and volume. In this chapter, we discuss the ther-
modynamic coefficients and specific heats and how to determine them.

8.1.1  �Coefficient of Volume Expansion

The slope of a constant pressure curve at a point on the −v T  diagram gives 
∂
∂







v

T p

 

and normalizing with v, we define the coefficient of volume expansion β as 

	 β = ∂
∂





v

v

T p

1
	 (8.1)

Values of β can be obtained and tabulated for a range of pressure and temperature.

8.1.2  �Isothermal and Isentropic Compressibility

The slope of a constant temperature line on a −p v plot gives isothermal compress-
ibility KT, that is,

	 = − ∂
∂







K
v

v

p
T

T

1
	 (8.2)

The negative sign is used since for most substances the volume decreases with 
increase of pressure and therefore permits positive values for the isothermal com-
pressibility KT. Compressibility under adiabatic (or isentropic) conditions gives isen-
tropic compressibility

DOI: 10.1201/9781003224044-8
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1  ∂v 
 Ks = −    (8.3)

v  ∂P 
s

κ s is essentially the slope of an isentrope on the p − v diagram. The subscript “s” in 
Eq. 8.3 denotes volume change with pressure at constant entropy, that is, correspond-
ing to a reversible adiabatic process.

8.1.3  Pressure coefficienT

A pressure coefficient α is defined as change in pressure with temperature under 
constant volume, that is,

1  ∂p 
 α =    (8.4)

p  ∂T 
v

This is the slope of a constant volume curve on a p T−  plot.

8.1.4  relaTionshiPs among The coefficienTs

From calculus, a relationship between α , β and KT can be obtained. Using the cyclic 
rule for the three variables p, v and T, we write

 ∂v   ∂p   ∂T 
       = −1 

 ∂p
T

 ∂T 
v p
 ∂v 

Hence,

k α
 p T = 1 (8.5)

β

Equation 8.5 permits any of the three coefficients, α , β and KT, to be determined if 
two of them are known.

The isentropic compressibility Ks, given by Eq. 8.3, is difficult to determine 
experimentally. However, Ks is related to the sound speed “a”, which can be mea-
sured more easily. The sound speed is defined as

2 2 ∂p   ∂p 
 a = = −  v    (8.6)

 ∂ρ 
S

 ∂v 
s

1
since = v, where v is the specific volume. With isentropic compressibility being 

ρ
1  ∂v 

Ks = −   , we obtain
v  ∂p 

s

v 1
 a2 = =  

K Ks sρ
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or

1
 Ks =

ρa2  (8.7)

The isentropic compressibility is the inverse of ρa2. Since ρ and a can readily be 
measured, Eq. 8.7 can be used to give the isentropic compressibility Ks.

8.2 SPECIFIC HEATS  

8.2.1  sPecific heaTs aT consTanT Pressure cp and consTanT volume cv

The specific heats cp and cv were defined as

 ∂h   ∂u 
 cp =   c =   ∂T  v  

p
 ∂T 

v

The equations for entropy changes ds T( ),v  and ds T( ),p  given by Eqs. 7.52 and 7.53 
in Chapter 7 and reproduced below are

 dT   ∂p 
 ds T( ,v c) = v   +   dv  T   ∂T 

v

 ( ) dT  ∂v 
ds T ,p = −cp   dp 

T  ∂T 
p

Equating them, we obtain

 ∂v   ∂p T   T ∂   T  ∂T 
 dT = p dp + v dv  

c cp v− c cp v−

The above can be written in terms of coefficient of volume expansion β and pressure 
coefficient α  as

T vβ α pT
 dT = dp + dv (8.8)

c cp v− c cp v−

In the above equation, T is a function of p and v, namely, T p( ,v). Hence, dT(p, v) is 
written as


 T p( )  ∂T  ∂T  dp dv

d ,v = dp +   = +  dv  (8.9)
 ∂p 

v
 ∂v 

p α βp v

and further equating the coefficients of dp and dv in the above relationships given in 
Eqs. 8.8 and 8.9, we obtain
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 cp v− =c vβ α pT  (8.10)

Thus, the difference in specific heats can be related to the p v− − T  data. Equation 
8.10 expresses the difference in specific heats in terms of the thermodynamic coef-
ficients α and β.

As an example, for an ideal gas for which the equation of state is pv = RT , we can 
1 1 ∂p  1 1 ∂v 

obtain α =   =  and β =   =  and Eq. 8.10 gives for an ideal gas
p  ∂T T

v v  ∂T T
p

 cp v− =c R (8.11)

which is a familiar relation between cp and cv for an ideal gas. If we define the specific 
heat capacities as per mole of gas and denote them by cp and cv and with the equation of 
state for an ideal gas being pv = R T0  where v is the volume per mole of the gas, we get

 c p v− =c R0 (8.12)

From the definitions of α and β (i.e., Eqs. 8.1 and 8.4), we can write Eq. 8.10 in terms 
of partial derivatives as

 ∂v   ∂p 
 cp v− =c T      (8.13)

 ∂T 
p v

 ∂T 

Using the cyclic rule for variables  p, v and T  we write

 ∂p   ∂T   ∂v 
     = −1 

 ∂   T v p
 ∂v   ∂p 

T

 ∂p  1  ∂v   ∂p 
 or   = − = −     

 ∂T 
v  ∂T   ∂v   ∂T   ∂ 

 
p Tv

   ∂v p  ∂p 
T

Hence, Eq. 8.13 can therefore be written as

 ∂v  2  ∂p  β 2

 cp v− =c T−     = vT  (8.14)
 ∂T 

p T
 ∂v  KT

2 1  ∂v  2

Since β = 2    is always positive and the isothermal compressibility 
v  ∂T 

p

1  ∂v 
κ T = −    for all known substances is positive, Eq. 8.14 indicates that

v  ∂p 
T

 cp v− >c 0 

 or c cp v>  
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for T positive. It is also seen from Eq. 8.14 that as the temperature tends to zero 
(T → 0) either cp v→ c  or both cp and cv become zero. In fact the specific heat tending 
to 0 as T → 0 is one of the statements of the third law of thermodynamics.

Equation 8.14 also indicates that for incompressible substances cp and cv are iden-
tical. Note that for the particular case of water at 4oC, where the density of water is a 

∂vmaximum, that is,  
0 h C. =  and t us  c = c

∂T p

Equation 8.14 is useful in that it permits cp or cv to be determined when one of the 
heat capacities is known. Since cv, in general, is difficult to measure, Eq. 8.14 can be 
used to determine cv when cp is known.


p v at 4°



8.2.2  raTio of sPecific heaTs

Equations 7.52 and 7.53 in Chapter 7 gave the incremental change of entropy for 
variables T v,  and T ,p as

 ( ) dT  ∂p 
ds T ,v c= +v   dv 

T  ∂T 
v

and

( ) dT  ∂v 
 ds T , p c= −p   dp 

T  ∂T 
p

We use these two equations to obtain the ratio of specific heats for an isentropic pro-
cess for which ds = 0, that is,

 ∂v   ∂v −   
cp

 ∂T 
p dps

 ∂T 
p  ∂p 

 = = −    
cv  ∂p  dv  ∂p   ∂v 

 
s

  s

 ∂T 
v

 ∂T 
v

where the subscript “s” denotes constant entropy. But the cyclic rule for three vari-
ables p v, ,T  from which Eq. 8.5 was derived gives

 ∂v 
  ∂T   ∂v 

 p = − =  vkT  
 ∂p   ∂p 
  T

 ∂T 
v

Further since

1  ∂v 
 ks = −    

v  ∂p 
s
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we obtain for an isentropic process

c k
 p = T  (8.15)

cv kS

The ratio of specific heats is equal to the ratio of the isothermal and isentropic com-

pressibility kT  and ks . For an ideal gas where the equation of state given by pv = RT , 
1 1

kT =  and ks =  yields
p γ p

c
 p = γ  (8.16)

cv

the familiar relationship for the ratio of the specific heats for an ideal gas with con-
stant cp and cv

8.2.3  variaTion of sPecific heaTs cv and cp WiTh 
sPecific volume V and Pressure p

We had shown in the last chapter that the internal energy per unit mass u could 
be expressed in terms of variables temperature T and specific volume v, that is 
u T( ),v . Since

 ∂u 
 cv =    

 ∂T 
v

cv would also be a function of T and v, that is, cv ( ,T v). Writing

 ∂u   ∂u   ∂s   ∂s 
 cv =   =     = T    

 ∂T 
v v

 ∂s   ∂T 
v v

 ∂T 

Differentiating the above with respect to v gives

 ∂cv  ∂   ∂s   ∂2 s ∂   ∂s  
   = T   =

   T = T    
T v∂     ∂v v ∂T 

T
∂ ∂v T ∂T   ∂v 

T 
v

 ∂s   ∂p 
and using the Maxwell relation   =   , the above becomes

 ∂v 
T v

 ∂T 

 ∂c p 
 

v  ∂  ∂
 = T    

 ∂v 
T v∂T  ∂T 

 ∂2 p 
 = T   ∂T 2  (8.17)


v

Similarly for specific heat at constant pressure cp, we have
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 ∂h   ∂u   ∂s   ∂s 
 cp =   =     = T    

 ∂T 
p p

 ∂s   ∂T 
p p

 ∂T 

 ∂c  ∂   ∂s   ∂2 s ∂   ∂s 
 p 

=  T    = T =  T  ∂       
p p

T
∂  ∂T p  ∂ ∂p T ∂T   ∂p 

TT


p

 ∂s   ∂v 
and with the Maxwell relation =    , the above becomes

 ∂p
T

 ∂T 
p

 ∂cp  ∂  ∂v =  T  
  ∂p  ∂T  ∂T

T


p 

 ∂2 v 
 = T   ∂T 2  (8.18)


p

 ∂2 p 
The partial derivatives of cv and cp with respect to v and p are equal to T   ∂T 2  and 


v

 ∂2 v 
T  ∂T 2  respectively.

 
p

 ∂2 p   ∂2 v 
For an ideal gas where pv = RT , = = 2  0 and  2  0. Thus, c  

 ∂T 
v

 ∂T  v is not a 
p

function of v and is a function of only T, namely, cv ( )T  for an ideal gas. Similarly, cp 
is not a function of p and is only a function of T, namely, cp ( )T  for an ideal gas. This 
is in accord with the previous result that for an ideal gas u u= ( )T  and h h= ( )T .

8.3  JOULE THOMSON COEFFICIENT

The Joule Thomson coefficient μ is defined as the change in temperature with 
decrease in pressure due to throttling

 ∂T 
 µ =    (8.19)

 ∂p 
H

and can be measured in an adiabatic throttling experiment where a gas at high pres-
sure is throttled down to a low pressure via a porous plug in an insulated pipe. The 
adiabatic throttling process is a constant enthalpy process. The Joule Thomson coef-
ficient is related to the other thermodynamic coefficients and heat capacity in the 
following.

Considering the variables T, p and h, the cyclic rule gives

 ∂T   ∂p  ∂h   ∂p 
   µ    = cp   = −1 

 ∂p 
h

 ∂h 
T p

 ∂T   ∂h 
T
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Thus,

−1
 µ =  

 ∂p 
cp   ∂T 

T

From the Gibbs function

 g h= − Ts 

we obtain

 ∂h   ∂g   ∂s 
 = +    T    

 ∂p 
T T

 ∂p   ∂p 
T

 ∂g   ∂s   ∂v 
and using the relationship =  v and Maxwell’s equation = −    ∂p 

T
 ∂p 

T
 ∂T 

p

 ∂h   ∂v 
 = −  v T    

 ∂p
T

Hence,

  ∂v  
T   − v

−1   ∂T  µ = = p
 (8.20)

 ∂p  c
c p

p   ∂h 
T

 ∂T 
p

1  ∂v 
With the volume coefficient being β =   , the Joule Thomson coefficient 

v  ∂T 
p

becomes 

v T( 1β − )
 µ =  (8.21)

cp

Knowledge of cp and β permit the Joule Thomson coefficient to be found. It is seen 
 ∂v  R

from Eq. 8.20 that for an ideal gas where   =
 ∂T 

p p

 RT  1
 µ = − = v 0 (8.22)

 p  cp

Thus, µ = 0 for an ideal gas and there is no change in temperature for a throttling 
process of an ideal gas. However, for a real gas, µ ≠ 0 and µ can be positive or nega-
tive depending on the initial condition upstream of throttling.

The constant enthalpy curves in a plot of temperature and pressure corresponding 
to different downstream and upstream pressures are illustrated in Figure 8.1. For a 



103Thermodynamic Coefficients and Specific Heats

given upstream pressure pi  and temperature Ti, the downstream or final temperature 
Tf  (after throttling) either increases or decreases depending on the upstream and 
downstream values of pressures. For higher values of pi , the downstream temperature 
Tf  initially increases as pf  is reduced. At some value of the downstream pressure pf ,  
the downstream temperature Tf  reaches a maximum and subsequent reduction in 
pressure pf  leads to a decrease of temperature. This is observed in Figure 8.1 for 
all iso-enthalpy curves. The temperature at which the Joule Thomson coefficient 
changes sign is known as inversion temperature and from Eq. 8.21, it is equal to 

1
T =  corresponding to µ = 0. The locus of the maximum temperature values for 

β
the different values of enthalpy, shown dotted in Figure (8.1), is referred to as the 
inversion curve.

In the left side of the inversion curve wherein the temperature decreases (shown 
in gray in Figure 8.1), a reduction of pressure leads to cooling. When the temperature 
of the fluid, while undergoing iso-enthalpic expansion, is above the inversion tem-
perature, the coefficient is positive and the temperature of the expanded fluid will 
increase. It is necessary to lower the temperature below the inversion temperature 
while using the Joule Thomson expansion process for liquefaction of gases.

8.4  THERMODYNAMIC COEFFICIENTS FOR DENSE GASES

We had discussed the thermodynamic functions and properties for real gases in the 
last chapter. In a similar way, we discuss the influence of non-ideality for the ther-
modynamic coefficients. Let us consider a dense gas for which the van der Waal’s 
equation of state given by

 a   p + 2  ( )v b − = R T0  (8.23) v 

is valid. We obtained from Eq. 8.23,

pf

Tf

Ti

ppi

T
Inversion

Curve

Cooling

(m > 0; Tf < Ti )

(pi, Ti )

(pf , Tf )

Heating

(m < 0; Tf > Ti )

h

dT
dp 50(

(

h

dT
dp 50(

(

FIGURE 8.1 Iso-enthalpy curves and Joule Thomson expansion.
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R T a  ∂p  R
 p = 0 − 2 and  = 0  

v b − v  ∂T 
v v b −

The coefficient of volume expansion can be obtained from the above; but first we use 
 ∂v 

the cyclic rule for variables v T, , p to obtain   , that is,
 ∂T 

p

 ∂v   ∂T   ∂p 
   = −

 ∂      1 
T p  ∂p 

v
 ∂v 

T

 ∂p 
  ∂v  −1  ∂T 

   = = − v  (8.24)
 ∂T 

p  ∂T   ∂p   ∂p 
      ∂p   ∂  ∂v

v
 T






v  T

R T a
From the van der Waals equation p = 0 − , we obtain

v b − v2

 ∂p  R T 2 2a a v( ) − −b R2 Tv3

   = − 0 + = 0

 ∂v 
T ( )v b − 2 v3 v v 

3 2  (8.25)
( )− b

 ∂p  R
Using the above and   = 0 , we then write

 ∂T 
v v b −

 ∂p  R
  − 0

 ∂v   ∂T 


( )v b − R v3

   = − v = = 0  ( )v b−
 (8.26)

 ∂T 
p  ∂p  2 (a v − −b R)2

0Tv3 R T0 v a 

3 2− −2 (v b)
  ∂v  3 2

T v v ( )− b

We thus obtain the pressure coefficient α =   , the coefficient of volume 
p  ∂T 

v

1  ∂v  1  ∂v 
expansion β =    and isothermal compressibility k = −

  T  v ∂T p v  ∂p 
T

The Joule Thomson coefficient, that is,

  ∂v  
T   − v ∂  T  µ = p

 
cp

∂ p1

can also be obtained from Eq. 8.26 as

1 2 av ( )v b− 2 R Tbv3 
 µ = 

0
 )

cp  R T 3 2  (8.27
0 v a − −2 (v b) 

It may be noted that in the above equation, the specific heat is on a per unit mole 
basis instead of per unit mass and the universal gas constant R0 is used instead of the 
specific gas constant R.
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9 Thermodynamic 
Equilibrium

9.1  �INTRODUCTION

The state of a system is defined by a set of thermodynamic variables. For a simple 
compressible system, the state is defined by the internal energy, the volume and the 
number of moles n of the substance in the system. Subsequent to an interaction with 
the environment (e.g., heat and work exchange), the state of a system evolves from an 
initial state to a final equilibrium state.

There are various kinds of equilibrium, for example, thermal, mechanical, chemi-
cal, phase, etc. The equilibration times are different for the different kinds of equi-
librium and the equilibration times can differ by orders of magnitude. For example, a 
mixture of H2 and O2 can be at thermal and mechanical equilibrium with its environ-
ment; however, chemical equilibrium of the reactive mixture at room temperature 
takes an “infinite” time to achieve. The composition of the system remains “constant” 
for an indefinite period. But, if a platinized gauze is placed in the system, reactions 
proceed rapidly to a final equilibrium mixture of H2, O2 and H2O. Thus, the systems 
are often in partial equilibrium. However, analysis can be carried out with the thermo-
dynamic variables of the “non-equilibrium” system as if the system is in equilibrium.

Thermodynamic equilibrium is defined when all the various kinds of equilibrium 
(i.e., thermal, mechanical, chemical) are attained.

9.2  �EQUILIBRIUM CRITERION

A fundamental problem in thermodynamics is to determine the final equilibrium 
state subsequent to a process. Perhaps the simplest criterion to determine the final 
equilibrium state is via an extremum principle, that is, the thermodynamic variables 
are those that maximize (or minimize) some thermodynamic function. The most 
important is perhaps the maximum entropy criterion for an isolated system. The 
second law states that for an isolated system, spontaneous processes tend to increase 
the entropy function “S”. Thus,

	 ∆ ≥S 0	 (9.1)

provides a direction for the evolution of an isolated system and at equilibrium, 
S  = maximum. Since the entropy is an extremum at equilibrium, small departure 
from equilibrium gives

	 =dS 0	 (9.2)
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The entropy of a composite system is additive over the constituent subsystems, that is,

 S S= ∑ i

i

where Si is the entropy of the ith subsystem. The additive property of the subsystems 
requires that entropy of a simple system to be first-order homogeneous function of 
the extensive parameters. That is if the extensive parameters are scaled by a factor λ ,  
the entropy is scaled by the same factor λ (Euler’s theorem), that is,

 S U( )λ λ, ,V nλ λ= S U( ), ,V n  

The entropy is continuous and differentiable and is a monotonically increasing func-
 ∂S 

tion of energy. This implies that the partial derivative    is a positive quantity
 ∂U 

v n,

 ∂S 
   > 0  

 ∂U 
v n,

The above derivative is the reciprocal of temperature, thus the above implies that 
the temperature is always positive. The entropy vanishes at the state when tem-
perature approaches zero in accordance with the Nernst postulate (third law of 
thermodynamics).

From the second law, we may derive the equilibrium criteria for systems other 
than isolated system. For example, consider a simple system in contact with a heat 
reservoir at temperature T . Taking the system together with the reservoir as an iso-
lated system, then the second law can be written as

 ∆ =S S0 ( )∆ + ∆ ≥SR 0 

where S0, S  and SR are the entropies of the combined system, entropy of the system 
and reservoir, respectively.

If a process receives heat ∆Q from the reservoir, the entropy change of the reser-
voir is

∆Q
 ∆ =SR − , 

T

and from the second law

∆Q
 ∆ +S S∆ =R ∆ −S ≥ 0 

T

 ∆ ≤Q T∆S 

The first law for the system can be written as

 ∆ =U Q∆ − W  
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and hence,

 W U≤ −∆ + T S∆ ≤ −∆( )U T− −S S∆T  

where W is the work done by the system. If we separate the work as expansion work 
p V∆  and other kinds of work W ' (e.g., electromagnetic, paddle work, surface ten-
sion), then the above expression gives

 W A' ≤ −∆ − S T∆ − p V∆  (9.3)

where A U= − TS  is defined as the Helmholtz function. For an isothermal, isochoric 
process ∆ =T 0 and ∆ =V 0 we write

 W A' ≤ −∆  (9.4)

that is, the non-expansion work W ' is less than or equalled to the decrease of the 
Helmholtz function. The equality sign applies when the process is reversible. If there 
is no other form of work done by the system, that is, W ' 0= , and Eq. 9.4 gives

 0 ≤ −∆A (9.5)

The above gives the direction of evolution of the state of the system towards equilib-
rium and at equilibrium, A = minimum.

For a system interacting with both a heat and a large pressure reservoir, Eq. 9.3 gives

 W A′ ≤ −∆ − S T∆ − ∆ +( )pV V p∆  

and rearranging the above for an isothermal process gives

 W U′ ≤ −∆ −( )TS + +pV V p∆  

Defining the Gibbs function (or the Gibbs-free energy) as

 G U= − TS + pV  

the above becomes

 W G′ ≤ −∆ + V p∆  

For an isobaric process p = constant, ∆ =p 0; thus

 W G' ≤ −∆  

If there is no other kind of work other than the p V∆  expansion work, then

 0 ≤ −∆G   (9.6)
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Thus for a system interacting with a heat and pressure reservoir, the evolution of the 
system toward equilibrium is in the direction of decreasing Gibbs-free energy and at 
equilibrium G = minimum.

Summarizing, we see that for an isolated system, approach to equilibrium is toward 
the increase in the entropy and S = maximum at equilibrium. For a system interacting 
with a single heat reservoir, the approach to equilibrium for a system undergoing an 
isothermal, isochoric process is via the decrease of the Helmholtz function and at 
equilibrium, A = minimum. Similarly, a system undergoing an isothermal, isobaric 
process, the approach to equilibrium is via the decrease of the Gibbs-free energy. At 
equilibrium, the Gibbs-free energy G = minimum.

9.3 THERMAL EQUILIBRIUM  

Consider an isolated system (A + B) consisting of two sub-systems A and B separated 
by a partition as shown in Figure 9.1. Let the partition between A and B be rigid and 
impermeable to mass exchange. Thus, the volumes VA and VB are constant, and the 
number of moles of the gas in each of the volumes  nA and nB are also constant. Let 
the partition be diathermal so that heat exchange can take place; then the net internal 
energy U = +U UA B = constant, but UA and UB are not constant since A and B can 
exchange energy.

According to the second law, the evolution of the isolated system toward equilib-
rium is

 ∆ =S S∆ +A B∆ ≥S 0 (9.7)

Since for A, S UA A( ,V nA A, ) and for B, S UB B( ,V nB B, ), we write the net incremental 
change in entropy as

 dS d= +S dA BS   

 ∂SA   ∂SA   ∂SA   ∂SB   ∂SB   ∂S 
 =   dUA +   dVA +   dnA +   dUB +   dVB + 

B
 dn   ∂UA   ∂VA   ∂nA   ∂UB   ∂VB   ∂ B

nB 
 (9.8)

Since dV dA B= =V 0, dn dAi = =nBi 0 and dU dA B= − U  (U UA B+ = constant), we 
can write

A

VA      nA      UA

B

VB      nB      UB

FIGURE 9.1 Isolated system with two subsystems separated by a diathermal partition.
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 ∂S ∂S 
 dS = 

A − B
 dU

 ∂UA ∂UB  A 

and at equilibrium where dS = 0, we obtained

 ∂S ∂S 
 

A − B
 = 0 (9.9)

 ∂UA ∂UB 

since dUA is arbitrary. For two systems in thermal contact, experience indicates that 
 ∂S 

the temperature of the two systems is equalled. Thus, the derivative    must be 
 ∂U 

some function of temperature.
We define

 
 ∂S  1
  =  (9.10)
 ∂U T

and at equilibrium,

 
 1 1 
 −  = 0 
 T TA B 

or T TA B= . According to the second law ∆ ≥S 0, we obtained

 ∂S   ∂S  
 

A
 − 

B
  ∆ ≥U 0 

 ∂U ∂ A
A   UB  

 1 1 
 or  −  dU ≥ 1)

 T T
A 0 (9.1

A B 

1 1
Thus if TA > TB, < , hence dUA < 0. This agrees with experience that if system 

T TA B
A is hotter than system B, heat is transferred from A to B and the internal energy of 
A decreases.

 ∂S 
If “S” is a maximum at equilibrium, the derivative   = 0 and the second 

 ∂U 
 ∂2 S   ∂S 

derivative < 2  0. Taking the second derivative of   , we obtained
 ∂U   ∂U 

 ∂2 S   ∂2 S 
 A dU 2 + B

   dU 2  
 ∂UA  A  ∂U 2

B  B

If A and B are similar systems, the necessary condition for a maximum requires that

∂2 S
  < 0

∂U 2  
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for both A and B.
 ∂S  1

Since   = , the second derivative gives
 ∂U T

 1 
∂2 ∂ S  T  1  ∂T 

 = = −  ∂U 2 2  
∂U T  ∂U 

 ∂2 S   ∂T 
As  T  is positive, we see that for 2 < >  0,   0 . The internal energy U  is 

 ∂U   ∂U 
an increasing function of temperature, for example, for a perfect gas U = C TV . Thus, 
 ∂T  1  ∂2 S 
  =  and since C  > 0, < 0. Hence, the entropy of systems A and B is 
 ∂U C v  U 2 

V ∂ 
indeed a maximum at equilibrium.

9.4 MECHANICAL EQUILIBRIUM  

If the partition separating A and B is movable, then VA and VB are no longer constant. 
But V = +V VA B = constant, we have dV dA B= − V . If the partition is diathermal and 
energy can exchange between A and B, we have dU dA B= − U . Thus, dS is

 dS d= +S dA BS  

 ∂SA   ∂SA   ∂SA   ∂S   ∂S   ∂S =   dUA +   dVA +   dnA +
B

 dU + 
B

 dV + 
B

 dn
  ∂UA   ∂VA   ∂nA    ∂U  B  ∂V  B  ∂n  B

B B B  
 (9.12)

and with, dU dA B= − U d, V dA B= − V  and dn dA B= =n 0, the above becomes

 ∂SA   ∂SB    ∂S   ∂S  
 dS =   −   dUA.

+ 
A

 − 
B

 dV  
 ∂UA   ∂UB  A

  ∂VA   ∂VB    

At equilibrium where dS = 0 and dU dA A, V , are arbitrary

 ∂S S
  A   ∂ B  

  −    = 0 (9.13)
 ∂UA   ∂UB  
 ∂SA   ∂S  

    − 
B

  = 0 (9.14)
 ∂VA   ∂VB  

As described previously, for thermal equilibrium, T TA B= , and thus for mechanical 

 ∂S  ∂S
equili rium, A 


B  

b   −   = 0. Experience indicates that the pressure across the 
 ∂VA   ∂VB  

 ∂S 
partition is equaled, thus    must be some function of the pressure “

 ∂ 
p”. From 

V
 ∂S 

dimensional consideration, the units of    is pressure/temperature. Thus, we define
 ∂V 



111Thermodynamic Equilibrium

 
 ∂S  p
  =  (9.15)
 ∂V  T

and mechanical equilibrium gives

 p p 
 

A − B
 = 0 (9.16)

 TA TB 

Since the partition is diathermal and T TA B= , we see that at equilibrium, p pA B=  in 
accord with experiments. With ∆ >S 0, we have

 ∂S   ∂S  
 

A
 − 

B
 dV > 0 

 ∂VA   ∂V
A

B  

or

 pA pB 
  −  dV >

 TA TB  A 0 (9.17)

 p p 
Thus if p pA B> −, 0

A B
 >  , since   T TA B= . Thus, dV

TA T A > 0, that is, if the pressure 
B

of A is greater than B, then the volume of A increases in accordance with experiments.

9.5  EQUILIBRIUM WITH MASS EXCHANGE

If the rigid partition separating A and B (Figure 9.1) is permeable to mass exchange, 
then nA and nB will not be constant, but since n = +n nA B = constant, dn dA B= − n
. Thus for a rigid, diathermal and permeable partition, we have dU dA B= − U  , 
dV dA B= − V = 0 and dn dA B= − n . At equilibrium where dS = 0,

 1 1   ∂S   ∂S  
 dS = −  dUA + 

A
 − 

B
 dnA = 0 (9.18)

 T TA B   ∂nA   ∂nB  

Since T TA B= , at equilibrium,

 ∂S   ∂S 
 

A
 − 

B 
  = 0 (9.19)

 ∂nA B

as dnA is arbitrary. We define

 ∂S   µ    = −    (9.20)
 ∂n T  

where µ is known as chemical potential. Thus,

 µ µ 
 

B − A
 dn =

 T TB A  A 0 (9.21)

  ∂n  
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and TA = TB, we have µA B= µ  at equilibrium.
According to the second law wherein ∆ >S 0 for the composite isolated system, 

we obtained

 µ µ 
 

B − A
 dn > )

 B A  A 0 (9.22
T T

Thus if µA B> µ , the bracketed term < 0 and  dnA < 0. In other words, if the chemical 
potential µA is greater than µB, dnA < 0 and the mass flows from A to B in accordance 
with thermal equilibration, wherein energy is transferred from a higher to a lower 
temperature (T TA B> <, 0dUA ).

9.6 CHEMICAL POTENTIAL  

In the previous section, we have considered the equilibrium of a system with mass 
 ∂S 

exchange and introduced the term chemical potential µ = −T   . The chemical 
 ∂n 

V U,

potential is important in the discussion of equilibrium of systems having multiple 
component and phases. We wish to generalize the previous discussion to a more 
general system of multiple components and multiple phases. A phase is defined as a 
homogeneous and distinct part of a system, which is separated from the other part 
by interfaces. Thus in the example considered in the previous section, subsystems A 
and B can be thought as two phases separated by an interface across which particle 
or mass exchange takes place.

As discussed in the previous chapters, the combination of the first and second law 
for a closed system (of constant mass) is written as

 dU T= −dS pdV . 

Hence U( ,S V ) and we can write

 ∂U   ∂U 
 dU =   dS +   dV  

 ∂S 
V S

 ∂V 

giving

 ∂U   ∂U 
 T =   , p = −   (9.23)

 ∂S 
V S

 ∂V 

Alternatively, we can write the fundamental equation as S U( ,V ) and obtained 
1 p

dS = +dU dV
T T

and

 ∂S   ∂S 
 dS =   dU +   dV  

 ∂U 
V U

 ∂V 
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giving

1  ∂S  p  ∂S 
 =   , =    (9.24)

T  ∂U 
V UT  ∂V 

Of importance is the enthalpy function H U= + pV , where we can write

 dH T= +dS Vdp 

and

 ∂H   ∂H 
 dH =   dS +   dp 

 ∂S 
p  ∂p 

S

giving

 ∂H   ∂H 
 T =   ,V =

    (9.25)
 ∂S p  ∂p 

S

The two other thermodynamic functions of importance are the Helmholtz function 
A U= − TS  and the Gibbs function (or free energy) G U= + pV − =TS H T− S . 
Combining the above with the first and second laws gives

 dA = −SdT − pdV  

 ∂A  ∂A
 =   dT +   dV   

 ∂T 
V T

 ∂V 

and equating the coefficients give

 ∂A  ∂A
 S = −  , p = −   (9.26)

 ∂T 
V T

 ∂V 

Similarly for the Gibbs-free energy, we write

 dG = −SdT + Vdp 

 ∂G   ∂G 
 =   dT +  

 ∂    dp 
T p  ∂p 

T

which gives

 ∂G   ∂G 
 S = −  ,V =   , (9.27)

 ∂T 
p  ∂p 

T
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We now consider a multicomponent system or phase where the number of moles of 
the substance can vary (e.g., mass diffusion, chemical reactions). The state functions 
are now dependent on the number of moles ni of the various components in addi-
tion to U , ,V T , ,p  etc. Thus we write U( ,S V , ,n n1 2 , ,n n3 − − − i , )−−  and accordingly for 
component i

 ∂U   ∂U   ∂U 
dU ( ,S V , )ni =   dS +   dV +

 ∂   ∂  ∑  dn
S V n V S n  ∂n

i

, , ii 1


i S V, ,nj j; ≠i

 = TdS − +pdV ∑µidni  (9.28)
i

where

 ∂U   ∂U   ∂U 
 T =   , ,p = −  µ

 ∂  i =    (9.29)
S V n, ,i i

 ∂V 
U n  ∂ni 

S V, ,nj j; ≠i

In Eq. 9.28 for the change of internal energy, µi idn  can be thought of as work done on 
the system when dni moles of component “i” is added to the system.

Similar to Eq. 9.28, we may write

 ∂S   ∂S   ∂S 
 dS U( ,V n, )i =   dU +   dV +

 ∂U 
V n, ,i i

 ∂V 
U n

∑  dn  


i
∂n

i
i 

U V, ,nj j; ≠i

1 p
 ∑ µ= dU + −dV i dn  

T T T
i

i

Thus,

1  ∂S  p  ∂S   ∂S 
 =   , ,=   µ  

T
i = −T   (9.30)

 ∂U 
V n, ,i i

T  ∂V 
U n  ∂ni 

U V, ,nj j; ≠i

The expressions for the Helmholtz and Gibbs functions can be similarly obtained as

 ∂A  ∂A  ∂A 
 dA( ,T V , )ni =   dT +   dV + ∑  dn

V n, , n
i   ∂T 

i i
 ∂V 

T n  ∂ i 
i T V, ,nj j; ≠i

 = − −SdT pdV + ∑µidni  
i

giving

 ∂A  ∂A  ∂A 
 S = −  , ,p = −  µ

 ∂  i =    (9.31)
T V n, ,i i

 ∂V 
T n  ∂ni 

T V, ,nj j; ≠i
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 ∂G   ∂G   ∂G 
 dG T( , p n, )i =   dT + dp +    dn  

 ∂T 
p n, i

 ∂p 
T n, 1

∑
i

∂n  i
i

T p, ,nj j; ≠i

 = − +SdT Vdp d+ ∑µi ni 
i

giving

 ∂G   ∂G   ∂G 
 S = −  , ,V = µ =

 ∂       (9.32)
T p n, i

 ∂p  i

, i
 ∂niT n


T p, ,nj j; ≠i

Summarizing the chemical potential can be expressed in different variables depend-
ing on the thermodynamic potential involved, that is,

 ∂U   ∂S   ∂A   ∂G 
 µi =   = T   =   =    (9.33)

 ∂ni 
S V, ,n ≠ ≠

 ∂ni  i ij j; ;i jU V, ,n
 n

j i
∂n 

T V, ,nj j; ;≠ ≠i j
 ∂ 

T p, ,n j i

If only one species ni = n is present, we write

 ∂G  G
 µi =   = = g T ( , p

 ∂ni  i ) (9.34)
iT p, n

where g T ( , p) is the specific Gibbs function per  mole.i

Since the fundamental equations are homogeneous first-order equations, they have 
the property that the extensive variables are scaled by a constant λ, then the function 
itself is scaled by λ, for example as considered at the beginning of this chapter,

 U( ,λ λS V , )λ λn Ui i= ( ,S V , )n  

This is known as Euler’s equation and to prove this we can differentiate the above 
equation by λ, that is,

∂U S( ,λ λV n, )λ i i∂( )λS U∂ ( ,λ λS V , )λn ∂( )λV+ +
∂( )λS ∂λ ∂( )λV ∂λ

  (9.35)

∑ ∂U S( ,λ λV n, )λ i ∂( )λni = U S( ,V n, )
∂( )λn ∂λ i

i

Simplifying, we get

∂U S( ,λ λV n, )λ i i∂U S( ,λ λV n, )λ ∑ ∂U S( ,λ λV n, )λ
S + V + i n

( ) ( ) ( )
i

 ∂ λS ∂ λV ∂ λni   (9.36)

= U S( ,V n, )i
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Since the above holds for any value of λ, we take λ = 1 and obtained

 ∂U   ∂U   ∂U 
   S +   V +   n U= ( ,S V , )n   ∂S   ∂V  ∑ ∂n  i i

i

 or TS − +pV ∑µi in U=  

Differentiating the above gives

 TdS + −SdT pdV − +Vdp d∑ ∑µ µi in n+ =i id dU  (9.37)

and noting that

 dU T= −dS pdV + ∑µi idn  

the above equation reduces to

 SdT − +Vdp n∑ i idµ = 0 (9.38)

The above is known as Gibbs Duhem equation. Similarly, since G U= + pV − TS , 

we have on substituting for U = −TS pV + ∑µi in  in the expression for G

 G T= −S pV n+ +∑µi i pV − TS  

 = ∑µi in  (9.39)

The above is also referred to as Gibbs Duhem equation. And for one component 
when ni = n, and all other ni = 0, we have

G = μn

and

G
 µ = = g T( , p)  (9.40)

n

where g T( , p) is the specific Gibbs function per mole.
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10 Equilibrium of Species 
in a Chemically 
Reacting System

10.1  �INTRODUCTION

In chemically reacting systems, new species are formed and heat is either released or 
absorbed from the environment. The release or absorption of heat is dependent on the 
species formed in the reaction. The equilibrium concentration of the different spe-
cies in the reaction is governed by the pressure and temperature of the system. The 
criterion for thermodynamic equilibrium for non-reacting systems, that is chemically 
inert systems of the previous chapter, is extended for chemical reacting systems and 
the concentration of the species is determined.

10.2  �CHOICE OF BASIC DATUM FOR THE STATE 
FUNCTIONS AND HEAT OF FORMATION

In a non-reacting system, the concentration of the various species of the mixture 
do not change. The choice of a reference base for the state functions (i.e., enthalpy, 
internal energy) can be arbitrary since when calculating the difference of the state 
function between two equilibrium states, the reference datum cancels out. However, 
for chemically reacting systems, species are destroyed and new ones are formed. It 
becomes necessary to seek a common reference state for all substances. The standard 
reference state is 298 K and 1 atm. pressure.

In general, heat is generated when a compound is formed. It is necessary to take 
this energy release into consideration when defining the state function at the refer-
ence state. As an example, consider the formation of 1 mole of H2O from the reaction 
H2 +1/2 O2 = H2O at the reference state of 298 K and 1 atm. pressure. The enthalpy 
change for the reaction at the reference state can be written as

	    { }( ) ( ) ( )∆ = − +H h h hH H298 298
1

2
298O O2 2 2 	 (10.1)

where h is the enthalpy per mole of the particular species as indicated by the subscripts.
If we were to arbitrarily assign zero values of enthalpy for all species at the reference 

state of 298 K and 1 atm. pressure, then enthalpy or heat release ∆ =H 0. However, exper-
iments indicate that 286.7 kJ are released in the reaction at the reference state. To account 
for the heat release when a substance is formed, the enthalpy of formation is used.

DOI: 10.1201/9781003224044-10
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The enthalpy of formation of a substance is defined as the heat release when 1 
mole of the substance is formed from its naturally occurring stable elements at the 
reference state (298 K and 1 atm.). The naturally occurring elements are gaseous oxy-
gen O2, nitrogen gas N2, chlorine gas Cl2, solid carbon C(s), etc. They are assigned 
zero values for the enthalpy of formation at the reference state.

The enthalpy of formation is denoted by ∆h 0
f  where ∆h f  indicates the enthalpy 

per mole of the substance over and above of its naturally occurring elements required 
to form it, while the superscript “0” denotes that it is formed at the reference state. 
Thus, we write for the heat of formation at temperature T  assuming ideal gas and 
constant specific heat to be valid as

 ( ) ∫
T

 h T 

f f= ∆h c0 + p dT  (10.2)
298

For the case of H2O, we write using Eq. 10.1 for the enthalpy change per mole of H2

formed at the reference state as

 ∆ =h h 

0 0 − +h h 

f H, 2O f , 2H f0 (298) [ 0
, 2H f(298) 1 2 (0

. 2O 298)] 

O 

Since 286.7 kJ/mole is released in the reaction at 298 K, the enthalpy required to form 
one mole of H2O from one mole of H2 and ½ mole of O2 is negative and therefore

 ∆ =h0
f H, 2O −286.7 kJ/mole-

The heat of formation ∆h 0
f  is at the reference state and is also known as the standard 

heat of formation.
Similar to the enthalpy of formation, the internal energy of formation is defined as 

the internal energy required to form one mole of the substance at the standard state 
from its naturally occurring elements at the same standard state. It is denoted by ∆u 0

f .
The relation between the internal energy of formation and enthalpy of formation is

 ∆ =u h

0 0∆ −

f f pv 

where the pressure p is 1 atm. If the substance is an ideal gas,

 ∆ =u h

0 0∆ −

f f R T0 0  

with T0 being 298 K.
The heat of formation and internal energy of formation are properties characteriz-

ing the chemical structure of the substance. The standard heat of formation is readily 
available in literature for different substances.

The superscript “~” in the heat of formation and internal energy of formation, 
which denotes per mole, is generally omitted and the standard heat and internal 
energy of formation per mole of the substance are usually denoted by ∆h0

f  and ∆u0
f , 

respectively.
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10.3  ENTROPY OF THE SPECIES IN A CHEMICAL 
REACTION: THIRD LAW OF THERMODYNAMICS

The third law of thermodynamics is used to define the absolute values of entropy. The 
third law states that all pure crystalline substances have zero value for the entropy at 
the absolute zero temperature. At absolute zero temperature, there is no random ther-
mal motion of the molecules and all crystalline substances have perfect order. Thus 
for entropy of the ith specie at its partial pressure pi  and temperature T , we write

 s ( ,p Ti i) (= −s T0 ) lR p0 n  (10.3)

where s 0
i ( )T  is the absolute specific molar entropy of the ith specie at temperature T 

and 1 atm. pressure. The value of the partial pressure pi  in Eq. 10.3 is measured in 
atmospheres. The partial pressure pi  for an ideal gas was defined in Chapter 1 and 
is given as p xi i= p, where xi is the mole fraction of the ith species and p is the total 
pressure of the mixture in atmospheres. We can therefore write Eq. 10.3 as

 s i i( ,T p ) (= −s T0
i i) lR x0 n( p) (10.4)

The absolute entropy of a variety of ideal gases over a range of temperatures and at 1 
atm. pressure is available in literature. Equations 10.3 and 10.4 are used to obtain the 
entropy of species in chemically reacting systems.

10.4 ENTHALPY CHANGES  

The enthalpy changes in chemically reacting systems at the reference state can be 
obtained from changes of the standard heats of formation between the products and 
the reactants once the chemical reaction is specified and the concentration of the 
products and the reactants are known. In general, the product species concentrations 
at given values of pressure and temperature are not known since the combustion may 
not be complete at the specified pressure and temperature. Thus, there remains the 
task of finding the equilibrium concentrations of the chemical species of a mixture at 
given pressure p and temperature T .

10.5  PRODUCT SPECIES IN A CHEMICAL REACTION 
AT A GIVEN TEMPERATURE AND PRESSURE

The criterion for chemical equilibrium is defined by the minimum value of the 
Gibbs-free energy. The state of a mixture is specified by (T, p, ni) where ni’s are the 
moles of the species of the mixture under equilibrium conditions at temperature T 
and pressure p. The Gibbs-free energy is given by G T( , p n, )i  and the differential 
change in the Gibbs-free energy for this state ( ,T p, )ni  is given by

 ∂G   ∂G   ∂G 
  dG =   dT + +

    dp   dn  (10.5)
∂T p n, i

 ∂p    i
i, i

∑ n
T n i

∂
T p, ,nj j, ≠i
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But dG  = 0 at equilibrium when G takes on its minimum. At constant (p, T), we can 
write Eq. 10.5 as

∑ ∂G 
 dG =   dn =

 ∂ni  i 0 (10.6)
T p, ,nj j, ≠i

∂G
But = gi, where gi is the specific molar Gibbs-free energy of the ith specie (per 

∂ni
mole of it). This was defined in the previous chapter. Thus at constant p and T, we 
have for the ni moles of specie i when the total number of species is N that is, i vary-
ing from 1 to N:

 G g= ∑
N

ini (10.7)
i=1

At equilibrium, G is a minimum. The values of ni are not independent, but are gov-
erned by the stoichiometric coefficients of the species and the number of species in 
the reaction. The number of atoms of the elements in the chemical reaction is, how-
ever, conserved and this becomes a constraint. With N  species in the reaction, the 
value of i = 1, 2, …, N. As an example, in the reaction H2 +1/2 O2 = H N = 32O,  with 
nH2  = 1, nO2  = ½ and nH O2  = 1. The number of elements is two, these being H and O. 

If in a reaction having N species there are M  atoms, we have denoting each of the 
atom as j, j = 1, 2, …, M, the equations for the conservation of each of the M  atoms 
in the reaction can be written as 

 ∑
N

ν j i n bi j− =0
, 0; j M= …1,2, ,  (10.8)

i=1

Here, ν j i,  represents the atoms of element j in one mole of specie i and b 0
j  is the total 

number of atoms of the jth element in the reaction.

∑
N

Denoting ν j i, n bi j=  for j M=1,2,... ,we get the equation for the constraint for 
i=1

conserving the atoms as

 b bj j− =0 0 ; j M= 1,2,,

N

In order to minimize G g= ∑ i in  subject to the constraint b bj j− =0 0, we multiply 
i=1

the equation for the constraint by Lagrange multipliers λ j  and define a quantity L as

M

 L G= + ∑λ j j( )b b− 0
j  

j=1

Substituting the value of G from Eq. 10.7 and bjfrom Eq. 8 in the above expression 
and differentiating, we get
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N 
 δ = +∑ ∑  ∑

M  M

L gi jλ ν j i,  dni j+ −( )b b0
j d iλ j = =0;for 1, 2, .… ,N  

i
 

= =1  j=1  j 1

Since dni and dλ j  are not zero being arbitrary independent variables, we have

�i j+ =∑
M

g vλ j i, 0 for i N= 1, 2,…,
j=1

   (10.9)
N

and   0∑v nj i, i j− =b j0 for 1= ,2, ,… M
i=1

The above set of equations give the values of ν j i, . Thus the equilibrium composition 
can be determined from the known values of gi at the specified temperature and 
pressure. This procedure is used in the different computer codes to determine the 
equilibrium composition.

Instead of the above method of Lagrange multipliers to minimize the Gibbs-free 
energy with the constraint that the atoms of the elements must be conserved, the 
minimization of Gibbs-free energy could also be done using the method of equilib-
rium constants as given in the following.

From the definition of Gibbs-free energy,

g h= − i i Tsi i= −h T ( )s T

o
i ( ) − R p0 ln i   

 = h T

i i− +s T 

0 ( ) R T0 ln p gi i= +0 ( )T R0T pln i  

where g T

0
i ( ) is the temperature-dependent part of g pi ( ),T  while the pressure-

dependent part is given by R0 ln pi .
As an example consider the reaction

 H + 1
2 / O2 2 = H2O (10.10)

We find that when 1 mole of hydrogen disappears, ½ mole of oxygen also vanishes 
and 1 mole of water is formed. Thus, the change in moles dni is related by dnH2 = −1,  
dnO2 = −1 2 and dnH O2 = 1.

In general for any chemical reaction between reactants A and B to form products 
C and D, we could write

 γ A BA B+ =γ γ C DC D+ γ  (10.11)

where γ A B, ,γ γ C D,γ  are the stoichiometric coefficients. The change in the moles dni’s 
is related as
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dnA dn C dn
 − = − B dn= + = + D = χ  (10.12)

γ γA B γ γC D

where χ  is defined as the degree of the reaction, 0 1≤ ≤χ  (χ  = 0 is unreacted and 
χ  = 1 signifies reaction is completed). Thus,

 dn dA A= −γ χ , ,n dB B= −γ χ n dC C= +γ χ , nD D= +γ χ  (10.13)

and at equilibrium, we write

 ∑g d i in g= =∑ i i( )γ χ 0 (10.14)
i

γ i is negative for reactants and is positive for products. Since γ i χ  is arbitrary, we have 
at equilibrium from Eq. 10.14,

 ∑( lg R

0
i + =0T pn )i iγ χ 0 (10.15)

i

The above equation involving the minimization of Gibbs-free energy is used to deter-
mine the species formed in equilibrium in a chemical reaction at the given pressure 
and temperature.

We can express Eq. 10.15 for the general reaction given by Eq. 10.11 as

 (− −γ γg g  + +  ) p pγ γC D
0 0

A A B B γ γC Cg g0 0
D D + =R T0 ln c D

γ γA 0  (10.16)
p p B

A B

Defining

 ∆ =G T0 0( ) − −γ γA Ag g 

0 0
B B + +γ γC Cg g 

0
D D  (10.17)

Equation 10.16 can be written as

p pγ γC D
c D ∆G T0 ( )

  ln γ γ = − = f T( )
p pA  (10.18)

B
A B R T0

Denoting the pressure ratios on the left side as an equilibrium constant K at tempera-
ture T, we have

  ( ) p pγ γC D x xγ γC D

K T = =c D C D
A pγ γC D+ −γ γA B−  (10.19)

p pγ γ B
A x xγ γA B

B A B

n
where for ith specie, the molar concentration is xi = i  and the partial pressure is 

n
p xi i= p from Dalton’s law of partial pressures. Here, the total number of moles of 

the mixture is n and the total pressure is p. The equilibrium constant K(T) is a func-
tion of temperature and is determined from the change in the Gibbs-free energy at 
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the standard pressure and temperature T, namely, that given in Eq. 10.17 divided 
by R0T for the reaction. It may be kept in mind that the calculation of species is 
based on the assumption that the reactants and products are ideal gases.

The equilibrium composition varies with temperature. The Gibbs-free energy 
G H= − TS  gives the incremental change dG = dH – TdS – SdT. For an ideal gas at 
constant pressure dH = TdS giving dG = −SdT and

dG
 = −S 

dT

Substituting the value of S in the expression for G, we get

dG
 G H= + T  

dT

Dividing the above by T 2and simplifying, we can express the equation as

d  G  H
   = −

dT  T 
p T 2

and can be further written as

d  ∆G  ∆H
   = −

dT   2  (10.20)
T p T

Combining with Eq. 10.18 at the standard pressure of 1 atmosphere, we get

d
 ( ) ∆( ) H

ln K T =
dT R T 2  (10.21)

0

The above is known as the van’t Hoff equation and is used in calculating the equilib-
rium constants with changes in temperature at the standard pressure of 1 atm.

10.6  EXAMPLE OF DETERMINING EQUILIBRIUM COMPOSITION

Consider a mixture CO2, O2 and N2 in volumetric proportion 1:½:½ at 3,000 K and 
1 atm. pressure for which we require to determine the equilibrium composition. We 
write the overall composition to be given by the products of the reaction

 CO2+ O1
2 2+ N1

2 2 2= Ca bO + NO + Cc dO + O +2 2eN  (10.22)

where the moles a, b, c, d and e for CO, NO, CO2, O2 and N2 are not known. From the 
conservation of the atoms in the above reaction, we write

C atoms: a + c = 1
O atoms: a + b + 2c + 2d = 3
N atoms: b + 2e = 1
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Solving for c, d and e in terms of a and b, we get c = 1 – a, d = 1 + (a−b)/2 and 
e = (1−b)/2. We still need two more equations to solve for a, b, c, d and e and thus 
determine the equilibrium concentration of the species.

The total number of moles of the product is given by

 a + +b c + +d e = +(4 a) / 2 

Thus, the mole fractions for the various species are obtained as

2a
 xCO =  

4 + a

2b
 xNO =  

4 + a

2 1( )− a
 xCO2 =  

4 + a

1 + −a b
 xO2 =  

4 + a

1 − b
 xN2 =  

4 + a

Two reactions among the species that provide the additional two equations are

1
 Reaction 1 : CO2 2⇔ CO+ O  (10.23)

2

1 1
 Reaction 2 :  O2 2+ ⇔N NO (10.24)

2 2

The equilibrium constant K  is determined from Eqs. 10.18 and 10.19 as

 ( ) ∆G T0 ( )
ln K T( ) = − .

R T0

In the case of reaction 1 (Eq. 10.23), the value of ∆G T0 ( )is given at T = 3000 K as
1∆ =G g0 (3000) ( CO 3000) + −g gO C2 2(3000) ( O 3000). Using the values of the molar 
2

Gibbs function g for the different species CO, O2 and CO2, available in literature, at 
different temperatures and 1 atm. pressure, we get at T = 3000 K

 K1 = 0.3273  

Similarly the equilibrium constant for the Reaction 2 at 3000 K is obtained as

 K2

Substituting the values in the equilibrium constants for Reactions 1 and 2 (Eqs. 10.23 
and 10.24), respectively, we get

= 0.1222  
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x x 1/2 1
+ +

 K = =
1 1

0.3273   gCO O2
1 p 2 iving  

xCO2

 a   1 + −a b 
1/2

     = 0.3273 (10.25) 1 − a   4 + a 
1/2

x 1 1
1− −NO 2 2  2b   ( )4 + a 2 

 K2 = =0.1222 1/2 p or      
x x 1/2 giving

O2 2N  4 + a   ( )1 1+ −a b ( )− b 
2b

  
[ ]

 (1
( ) 1/2 = 0.1222 0.26)
1 1− +b a( )− b

Solving for a and b from Eqs. 10.25 and 10.26 gives

 a = =0.3745,b 0.0675 

Expressing c, d, and e in terms of a and b gives c = 0.6255, d = 0.6535 and e = 0.4663.

10.7  CHEMICAL EQUILIBRIUM OF SPECIES AT 
GIVEN TEMPERATURE AND VOLUME

For chemical reactions taking place at constant volume, the Helmholtz function (A) is 
used instead of the Gibbs-free energy. From the previous chapter on thermodynamic 
equilibrium, we have

 ∂ 
 dA T( ) A

,V = −SdT − +pdV   dn  
 ∂n

i
i 

V T, ,nj i,,≠

At equilibrium dA = 0 and A is a minimum. We derive an equation similar to  
Eq. 10.15 for a given temperature at constant volume as

 ∑( (a T

0
i ) l+ =R T0 n )ν γi iχ 0 (10.27)

i

where ai is the specific Helmholtz function per mole for specie i. The partial volume 
~of specie i is vi per mole and is defined by Amagat’s law for partial volumes for 

an ideal gas mixtures (Chapter 2). a0
i ( )T  denotes the temperature dependent part 

of Helmholtz function. The procedure in the last section is followed by replacing 
Gibbs-free energy change ∆G T0 ( ) in Eq. 10.18 by the change of the Helmholtz func-
tion ∆A T0 ( ) for the reaction and defining the equilibrium constant K(T) at constant 
volume. The species are determined at a given specified temperature and volume.

10.8  CORRECTIONS FOR REAL GAS: FUGACITY

The determination of the concentration of species under equilibrium assumed them 
as ideal gases. At higher values of pressures and lower temperatures, the ideal gas 
assumption may not be valid. The deviation from the idealized gas assumption is 
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expressed by the pressure dependence of the Gibbs-free energy of a real gas by an 
effective pressure known as fugacity.

For a single component system of real gas

 dµ = =dg − +sdT vdp (10.28)

where g, s and v denote, as before, the specific Gibbs-free energy, specific entropy 
and specific volume all per mole. At constant temperature, the change of chemi-
cal potential from a sufficiently low pressure p0 to a higher value of pressure p is 
therefore

  ∫ ∫
µ p

d vµ = dp (10.29)
µ0 0p

where µ and µ0 correspond to the chemical potential at p and p0, respectively.
R T p

For an ideal gas, the specific volume per mole is v = 0  and µ − =µ0 0R T ln . 
p p0

However, for a dense gas, the specific volume and chemical potential such as at the 
higher values of pressure p cannot be approximated by the expressions correspond-
ing to ideal gas. The fugacity f is defined as the corrected value of pressure so that 
the chemical potential is the same as that in the real gas

f
 µ − =µ0 0R Tln  (10.30)

f0

where f = fugacity when pressure is p and f0 when the pressure is p0. The use of 
fugacity provides a fundamental way of determining equilibrium of chemical reac-
tions in real gases. Equation 10.30 can be integrated to give

 µ µ− 
 f = f 0

0 exp  
 R T0 

The Gibbs-free energy of a real gas following Eq. 10.30 can be written as

f
  g g = +0 0R T ln  (10.31)

f0

The relation between fugacity f and the true value of pressure p is expressed as

 f = φ p (10.32)

where φ  is the dimensionless fugacity coefficient which depends on temperature, 
pressure and the gas species.

If the value of Gibbs-free energy per mole g is substituted for the chemical poten-
tial µ in the integrated form of Eq. 10.28, we get
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0

 ( ) ∫
p

g p = +g p( )0 vd p (10.33)
p

which is valid for all gases whether ideal or real.
Substituting the form of Eq. 10.31 for fugacity in Eq. 10.33

  ∫
p

f
vd p g= −( )p g ( )p R0 0= T ln  (10.34)

f0
p0

If the gas is ideal and its specific volume per mole is denoted by vi

 ∫
p

p
v di p R= 0T ln  (10.35)

p0
p0

The difference between Eqs. 10.34 and 10.35 is


 ∫

p
( ) f f/

v v − = 0
i dp R T0 ln   

p p
p

 / 0
0



which can be rearranged to give

 f p/ 
 ln   = −∫

p
1 ( )v v 

f p/ R T
i dp (10.36)

 0 0  0
p0

When p0 → 0 where the gas is ideal, we have

f
 0 → →1 as 0p0  

p0

Under the above condition for the low pressures p0,

 ( ) ∫
p

1
ln f p/ = −( )v v i dp (10.37)

R T0
0

f
With φ =

p

 φ = −∫
p

1
ln ( )v v i dp (10.38)

R T0
0

Since for an ideal gas

R T
 vi = 0  

p
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while for a real gas

Z R0T
 v =  

p

where Z is the compressibility factor, we get

 lnφ = ∫
p

Z − 1
dp (10.39)

p
0

We have seen the variation of Z with pressure in the generalized compressibility 
chart in the Chapter 2 on equation of state. The fugacity coefficient can thus be 
determined and the fugacity related to the actual pressure. In general, over the range 
of pressures for which Z < 1, that is, up to moderate values of pressure

 f < p 

and the Gibbs energy per mole is less than that of an ideal gas at the given value of 
pressure.

However, for Z > 1, which takes place at sufficiently high pressures, φ > 1 and 

 f  > p 

with the Gibbs-free energy being greater than that of an ideal gas.
The temperature dependence of fugacity can be obtained from Eq. 10.31 by 

substituting p f0 0=  since at the low pressure limit the gas behaves as an ideal 
gas and

f
 ∆ =g R 0T ln  

p0

where the fugacity f corresponds to the high pressure gas. Using Eq. 10.20, we get

d  ∆g  ∆h
   = −

dT  T  T 2  
p

 d fln  ∆h h h− 

 Hence    = − = i

 dT 
p R T 2

0 R T 2  (10.40)
0

where hi  is the enthalpy per mole of the gas in the ideal gas limit and is independent 
of the temperature while h is the enthalpy of the real gas.

However,

p
 ∂− = ∫ ∫h 

p

 h h 

i = ( )µ  dp c d p  
 ∂p 

JT p

0 0T
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where µJT is the Joule Thomson coefficient. The symbol µπis used to distinguish it 
from the chemical potential µ.

Thus,

p

µJT c dp p
 ∂ ln f  ∫

   = 0

 ∂T 
p R T 2  (10.41)

0

The fugacity f  so determined is used in place of pressure for estimating the equilib-
rium of the species in the chemical reaction.
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11 Statistical 
Thermodynamics

11.1  �INTRODUCTION

Thermodynamics does not acknowledge the molecular structure of matter. However, 
to acquire a better understanding of thermodynamics, it is necessary to discuss 
the molecular structure of matter and the molecular basis of thermodynamics. 
Microscopic description of the behavior of atoms and molecules, referred to as par-
ticles, is based on quantum mechanics.

The number of particles in a macroscopic system is very large, O[1023] particles. 
Thus, macroscopic thermodynamic variables are averaged over the microscopic vari-
ables describing the molecules. This is the subject of statistical thermodynamics and 
provides the formalism to link the microscopic variables to the macroscopic thermo-
dynamic variables like internal energy, entropy, temperature, pressure, etc.

It can be said that the central problem in statistical thermodynamics is to deter-
mine the equilibrium distribution of the particles among their accessible quantum 
states. It is assumed that the equilibrium distribution corresponds to the most prob-
able distribution. The most probable distribution is considered to be the distribution 
that corresponds to the maximum number of ways in which the distribution can be 
realized subject to the macroscopic constraints of the system. Thus, the first step is to 
determine the number of ways to realize a given distribution of the particles among 
their accessible quantum states (or equivalently their energy levels).

11.2  �DISTRIBUTION OF PARTICLES AND THEIR 
ENERGY LEVELS: BOSE–EINSTEIN, FERMI–
DIRAC AND BOLTZMANN STATISTICS

Particles can be classified, in general, as Bosons and Fermions. For Bosons, there are 
no restrictions on the number of particles that can occupy a quantum state. However, 
for Fermions, the exclusion principle restricts that only one particle can occupy a 
given state. Since the number of particles in a given energy level is generally very 
small compared to the degeneracy of the energy levels, it is highly unlikely that more 
than one particle would occupy a single degenerate state. Thus, the distribution of 
particles for the Bosons and Fermions are essentially the same.

Let us first consider the Bosons. We would like to determine the number of ways 
to distribute a total of N particles so that we have N1 particles in energy level ε1, N2 
particles in energy level ε2, …., Ni particles in energy level εi, Nj particles in energy 
level εj etc. The degeneracy of energy level εi is gi, that is, number of quantum states 
in energy level εi. The question is to determine the many ways to distribute Ni par-
ticles among gi quantum states corresponding to energy level εi.

DOI: 10.1201/9781003224044-11
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Consider the gi states to be gi number of boxes to distribute Ni particles. Let the gi 
boxes be defined by i − 1 partitions as illustrated in Figure 11.1.

Thus, a distribution consists of specifying the number of particles in each box, 
that is, N1 particles in box g1, N2 particles in box g2, …, Ni particles in box gi, etc.

Assuming that the particles and the partitions to be distinguishable for the moment, 
the number of ways to arrange (gi – 1 + Ni) distinguishable objects would be (gi−1 + Ni)!. 
However, the particles as well as the partitions are indistinguishable, that is, interchang-
ing the partitions and the particles leave the distribution invariant. We therefore have 
counted (gi − 1)! partitions and Ni! way too much. Thus, the number of ways to realize 
the distribution of Ni distinguishable particles among gi states in energy level εi would be

( )g N− +
 Wi = i i1 !

N gi i! 1( )  
− !

Similarly the number of ways to distribute Nj indistinguishable particles among gj 
quantum states at energy level εj gives

( )N g+ −
 Wj = j j 1 !

N gj j! 1( )  
− !

Since each particular combination in the εi level can be combined with the combina-
tions in the εj level, the total number of ways (or permutations) to distribute Ni par-
ticles in energy levels εi and Nj particles in εj would be Wi Wj..

Generalizing, we obtain

( )
 = ∏ g N− +

W
i i1 !

( )  (11.1)
g Ni ii

− 1 ! !

for the total number of ways to distribute N particles among their accessible energy 
levels. The symbol Π denotes the product of i similar terms.

If gi >> Ni, the general permutation formula given in Eq. 11.1 can be reduced to a 
simple expression as follows. First, we write

( )g Ni i+ − 1 ! = −( )g Ni i1 1+ −( )g Ni i+ − 1 1( )g Ni i− + − 2

− − − − −  1( )g Ni i− + − −( )N gi i1 1( )g gi i− −( )2
  

− − − − ( –g g( ) g gni
i i − ≈1 1i ( )i − !

1 2 3 4 i22

g1

N1 N2 N3 N4

g2 g3 g4 gi-2

Ni-2

i21

gi-1

Ni-1

gi

Ni

FIGURE 11.1 gi Boxes with (i −1) partitions.
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where we have approximated the g  terms as g Ni
i i . Thus, Eq. 11.1 can be written as

( )N g+ − 1 ! g gNi ( )− 1 !
 W = ∏ ∏i i = i i

( )  
N gi i! 1( )− ! N gi i! 1− !

 W = ∏ g Ni

or  i  (11.2)
Ni !

Thus, the total number of ways to realize a distribution of Ni particles in energy level 
ε i, Nj in energy level ε j, …. etc., is given by Eq. 11.2.

In the derivation of Eqs. 11.1 and 11.2, no restrictions are stated for the number of 
partitions or for particles that can occupy a quantum state. Thus, Eq. 11.1 is valid for 
Bosons. For Fermions, only one particle is permitted per quantum state. Hence, it is 
necessary that gi > Ni. To obtain the number of ways to realize a given distribution of 
Fermions, we reason as follows:

Consider the εi energy level with gi states; it is desirous that gi > Ni. For the first 
particle, there are gi states to choose from. Once the choice is made for the first parti-
cle, there are (gi − 1) choices left for the second particle, and similarly (gi – 2) choices 
for the third particle. For the N th

i  particle, there are (gi – Ni + 1) choices. Since each of 
the gi choice for the first particle can go with (gi −1) choices for the second particle 
and (gi −2) choices for the third and so on, we see that for Ni particles there will be 
a total of gi (gi − 1) (gi − 2)----(gi – Ni + 1) choices. Since the Ni particles are indistin-
guishable, interchanging particles among the gi compartments leave the distribution 
invariant and we have counted Ni ! too much. Thus, the distribution of Ni particles in 
the g  degenerate states of the energy level  isi εi

g g( )− −1 2( )g g− − − −( )− +N 1
 Wi = i i i i i

 
Ni !

The above can be reduced to a more convenient form by writing the numerator in the 
above expression as

 
g gi i( )− −1 2( )g gi i− − − −( )− +N gi i1 1( )− −N gi i( )N gi i− − − − −( )( )− −N g

( )
i i( )− −Ni 1

( )g Ni i− −( )g Ni i − 1 1− − − ( )  
g Ni i− − ( )g Ni i− −

g !
 = i

( )  
g Ni i− !

We therefore obtain

g !
 Wi = i

( )  (11.3)
g Ni i− ! !Ni
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and for a total of N Fermions among their accessible states for the various energy 
levels, we obtain the distribution for Fermions to be given by

 W = ∏ gi !

( )  (11.4)
g Ni i− ! !Nii

Equation 11.4 is to be compared with Eq. 11.1 for Bosons. In the case of Bosons, if 
g Ni i>> , we write

 g gi i! 1= −( )g gi i( )− 2 (− − − − − g Ni i– 1+ −) !( )g Ni i  

giving

 gi i! != −g g NN ( )i i  

Thus, Eq. 11.4 reduces to

W = ∏ g Ni
i

Ni !   
i

which is the same result as Eq. 11.2. The fact that the permutation formula for both 
Fermions and Bosons reduces to the same limit for g Ni i>> , that is, there are numer-
ous states for the Ni particles to occupy. Thus, the probability of particles crowding 
into one state is negligible and most of the gi states are unoccupied. Hence whether 
the restriction as to the number of particles permitted per quantum state is imposed 
or not makes little difference when g Ni i

The permutation equation for Boson given by Eq. 11.1 is referred to as Bose-
Einstein statistics, whereas Eq. 11.4 is known as Fermi-Dirac statistics. In the limit 
g Ni i>> , Eq. 11.2 is referred to as Boltzmann statistics.

>> .

11.3 MAXWELL–BOLTZMANN DISTRIBUTION: 
PARTITION FUNCTION
 

It is reasonable to assume that at equilibrium, the distribution corresponds to the 
most probable one. We shall consider Boltzmann statistics given by Eq. 11.2 and 
maximize W. In other words, we seek the distribution that maximizes the number of 
ways to realize the distribution. Since lnW  is a monotonic function of W, it is more 
convenient to maximize lnW , that is,

 ln W N= −∑ i iln g N∑ i iln N N+ ∑ i  

where we have used Stirling’s formula for ln N N! l= −n N N .
Taking the variation of lnW , we write
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 δ ln W g= −∑ ln i iδ N N∑ ln iδ δ δN N Ni i i− +  
i i

∑
i

∑
I

 = ∑ g
ln

i δ N
N

i  
ii

The δ Ni ’s are not independent in the above equation, but subject to the constraint 

∑N Ni = = constant and ∑N Ui iε = = constant. Taking the variation of the con-

straints, we obtain ∑δ Ni = 0 and ∑ε δi iN = 0. Multiplying by the yet undermined 

multipliers (Lagrange multipliers) α  and β, that is, ∑αδ Ni = 0 and ∑βε i iδ N = 0 

and subtracting them from δ lnW , we get


 δ α= −∑ g 

ln W  ln i − βε δ N = 0
 N

i i  
i 

 

The δ N si '  are now independent and thus we write

g
 ln i − −α βε =

N
i 0 

i

 N 0 = g e− −α βe εi
i i  (11.5)

where we write the superscript N 0
i  to denote the equilibrium distribution.

Using the constraint ∑N Ni = , we obtain

 ∑N N0
i i= = e g− −α β∑ e εi  

Thus, Eq. 11.5 becomes

g e−βεi

 N 0
i = N i  (11.6)

z

where

 z = ∑g e−βεi
i  (11.7)

i

is called the partition function. It expresses the distribution or partition of energies 
over various energy levels.

Equation 11.6 is referred to as the Maxwell–Boltzmann distribution and is perhaps 
the most important formula in statistical thermodynamics.

To determine the other multiplier β, consider an isolated system consisting of two 
systems A and B separated by a diathermal wall to permit exchange of heat. This is 
shown in Figure 11.2. The combined system A + B is an isolated system.
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For systems A and B, we write

 W = ∏ g Ni
i

A  
Ni !i

and similarly for B, we write

g
W = ∏ 

N i

 i
B  

N i !i

For the combined system A + B, the number of ways to realize a given distribution of 
Ni particles among energy levels ε i in A and N j particles among levels ε j in B is given 
by W WAB = ×A BW  giving

ln W WAB = +ln A BlnW

 
= −∑ ∑N gln ∑ ∑N Nln ∑  ln  − + ln ∑  

i i i i + +N Ni j g Nj j N Nj j


Taking the variation of WAB , we obtain

∑ ∑gi g
 δ ln WAB = +ln δ δN j N

N
i ln

i N
j 

j

The constraints for the above are

 ∑N Ni A= = constant 

  ∑N Ni B= = constant  

 ∑N Ni iε ε+ =∑ 

j j U = constant 

Here, U is the total energy of the combined system A + B and is a constant. Note that 
because of heat exchange between A and B, we cannot specify the internal energy 
of A or B individually. However, the internal energy of the combined system A + B 
is U = constant for the isolated system. Taking the variation of the constraints and 

multiplying by, −α α, −   and −β , that is,

A

NA   Ni   �i   NA  � SNi ÑB   Ñj   �j   ÑB  � SÑj

B

˜

FIGURE 11.2 Systems A and B exchanging heat.
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 ∑− =αδ Ni 0 

∑− =αδ N j 0  

∑− −βε i iδ βN Nε δ j j
 = 0  

 

 

and adding to the expression for δ lnWAB, we obtain

 

 δ α= −∑ ∑g   
lnW  ln i g

AB − βε i δ αNi + −j
 ln  − βε δ  = N 0

 Ni   N
j

ji j


j  

δ The δ Ni 's and N sj '  are now made independent via the Lagrangian multipliers. 
Thus, we write the equilibrium distribution for systems A and B as

 N 0 = g e− −α βe εi
i i  

 N 0 = g e − −α β e εi
i i  

The Lagrangian multipliers α  and α  which arise for the constraint of Ni and N i in 
subsystems A and B are to be related to N A and NB . The multiplier β is based on the 

constraint of energy and is related to the general levels of energy.
Normalizing the above relations, we have

g e−βεi

 N 0 i
i A= N  (11.8)

z

g e −βε
 

j

N N0 = i
 j B  (11.9)

z

where the partition functions

 z = ∑g e−βεi
i  

i

 z = ∑g e −βε j
j  (11.10)

j

The sum is taken over i and j quantum states. The partition functions z and z  are 
related to the equilibrium distribution.

The above result indicates that for the two systems separated by a diathermal 
wall, their equilibrium distributions share the same value of the parameter β .  
Thus, the parameter must be equivalent to the temperature of the systems. We 
shall define
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1
 β =  

kT

where k is a constant with dimensions energy/degree (e.g., k = 1.381 × 10−23 J/K).

11.4 BOLTZMANN’S FORMULA  

We note that the fundamental postulate of statistical thermodynamics is that at equilib-
rium, lnW  is a maximum. Further for two systems in thermal contact at equilibrium, 
W WAB = ×A BW  and hence ln W WAB = +ln A Bln W , that is, the law has the additive 
property. This led Boltzmann to formally equate ln W  to the entropy function, that is,

  S k= ln W 0 (11.11)

The above definition gives maximum entropy at equilibrium and the additive property

 S SAB = +A BS  

It is to be noted that W 0 corresponds to the equilibrium distribution. Further with

g
 d ln W = ∑ ln i dN

N
i 

ii

and

g
 ln i = +α βε

N
i 

i

d ln W d= +α β∑ N di i∑ε Ni
  

= βdU

as U = ∑βε i  and ∑N Ni =

From thermodynamics,

1 p
 dS = +dU dV  

T T

 ∂S   ∂S 
 =   dU +   dV  

 ∂U 
V U

 ∂V 

and equating the coefficients gives

1  ∂S  p  ∂S 
 =   ; =    (11.12)

T  ∂U 
V UT  ∂V 
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From Eq. 11.11,

 ∂S  ∂ In W 1
   = k = =βk  

 ∂U 
V ∂U T

Thus,

1
 β =  (11.13)

kT

as indicated previously.
Using the equilibrium distribution given by Eq. 11.6, an expression for entropy as 

defined by Boltzmann (Eq. 11.11) can be obtained as

z
 S k= =lnW kN ln + +k Uβ kN  

N

With

1
 β =  

kT

the above can be written as

z U
 S k= +N ln + kN  (11.14)

N T

Thus from Eq. 11.12, we can obtain pressure as

 ∂ ln z 
 p N= kT    (11.15)

 ∂V 
U

Since, the internal energy is

∑ ∑ g e−βεi

 U = =ni iε εi
i 

z

and with z = g e−βεi
i  ∑

we can write 

N  ∂z   ∂ ln z 
U Nk  = − =  T    (11.16)z  ∂β   ∂ ln T

V 
V

1
since β =

kT

Equations 11.14–11.16 link the thermodynamic functions S, U and p in terms of the 
partition function z, which is based on the molecular energy levels of the particles in 
equilibrium.
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11.5  PARTITION FUNCTION FOR A MONOATOMIC 
GAS: INTERNAL ENERGY, PRESSURE, EQUATION 
OF STATE AND ENTROPY OF AN IDEAL GAS

A monoatomic gas stores energy in the translational modes at the temperatures of 
interest. At low to moderate pressure and temperatures of interest, it can be consid-
ered as an ideal gas. The translational energy level of the individual particles in the 
monoatomic gas is given by

h2

 ε i X= +( )n n2 2
Y Z+ n 2  

mV 2/3 (11.17)
8

where h is the Planck constant, m is the mass of the particle, V is the volume of the 
system, and nx y, ,n nz are the quantum numbers. From Eq. 11.17, the partition function 
can be evaluated as

∑
∞

∑
∞

∑
∞ h2

− +( )2 2n n + 2n
 z =

X Y Z

e 8 2/3mkTV  
nx =1 ny =1 nz =1

Since the summation is over quantum states, we need not consider the degeneracy of 
the energy levels. The values of the quantum numbers are very large for any appre-
ciable energy, the change of nx y, ,n nz are very small and we can replace the summa-
tion by an integral, that is,


∫ ∫
∞ 2h ( )   ∞ 2h  h

nX Yn 
8 2/3mkTV mkTV ∫

∞
− 2 − −

8 2/3 ( )
2

2

8 2/3mkTV
( )2 


n

 =  n ex  dn  Z

z e d e dn
  

z 


y   
  0   0   0 

Each integral in the above is of the form

∫
∞

− 2ax 1 π
 e dx =  

2 a
0

We therefore obtain

 2πmkT  3/2

 z = V  2   (11.18) h 

Hence,

3 3  2πmk  ln z V= +ln ln T + ln  
2 2  h2  

From the expression above, Eq. 11.16 gives

 ∂ ln z  3
U N  = kT   = NkT  (11.19) ∂ ln T  2

V
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The pressure from Eq. 11.15 becomes

 ∂ ln z  NkT
 p N= kT   =  (11.20)

 ∂ V  V
U

nR T
 or p = 0   

v

which is the equation of state of an ideal gas.
The entropy from Eq. 11.14 can be readily obtained as

Z U
 S k= +N ln + kN 

N T

 3 V  2πmk  3/2 5 
 = +Nk  ln T ln + ln   + 2  2   (11.21)

 N h 2 

If we consider 1 mole of a gas, that is, N = N0 = 6.023×1023 molecules per mole and 
N0 0k R= , Eq. 11.21 becomes

1 2π 5
  

 mk  3/2

S C= +V lnT R0 0ln v R + ln  2  + R0 (11.22)
N0  h  2

V ( )3/2 R
where v = =, c 0 N

v , and n = . Eq. 11.22 was first obtained by Sakur and 
n n N0

Tetrode.

11.6  REVERSIBLE HEAT TRANSFER, WORK AND THE FIRST LAW

Since the internal energy is given by

 U = ∑Ni iε  

we can write the change in internal energy as

 dU d= +∑ε εi iN N∑ i id  

The first term ∑ε i idN  on the right hand side denotes a change of internal energy 
resulting from a change in the distribution of the particles among its energy levels. 
This term represents reversible heat transfer at constant volume and therefore no 
change in the energy levels ε i occurs. Thus, we write

 dQ drev = ∑ε i iN  
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Writing the second term as

 ∑ dε
N i

i dV
dV   

we see that it denotes a change in the energy level ε i resulting from a change in the 
volume of the system.

For the particular case of a monoatomic gas, Eq. 11.17 gives the energy level as a 
function of the volume of the system. We may write

2 h2

 ln ε i x= − ln V + +ln ( )n n n2 2
x z+ +2 ln  

3 8m

Thus
d dε i 2 V

 = −  ε i 3 V

and

2 Ni iε 2 U
 N di iε = − dV − dV  3 V 3 V

From Eqs. 11.20 and 11.19, we have for a monoatomic gas

NkT 3
 p = =; U NkT  

V 2

and therefore get

2 U
 p =  

3 V

Thus
 N di iε = − pdV  

which corresponds to the work done by the system. However,

 dU d= +∑ε εi iN N∑ i id  

and corresponds to

 dU = −dQrev pdV  

which is the first law in macroscopic thermodynamics.

11.7  ENTROPY AND THE SECOND LAW

From Boltzmann’s equation where entropy is given by k Wln 0, we can also provide 
a microscopic interpretation of the entropy. When heat or work is added to a system 
reversibly, the distribution is not influenced. However, due to either irreversible heat 
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transfer or irreversible work, the orderly distribution gets to be more disorganized 
or disorderly. Thus, the equation S k= lnW  provides a microscopic relation between 
disorder and entropy.

At microscopic level, probability of distribution is a measure of disorder. W 0 rep-
resents the equilibrium distribution N 0

i ; thus if ln W 0 is predominantly large and 
fluctuation from ln W 0 is vanishingly small, we elucidate the second law that the 
entropy is a maximum at equilibrium and fluctuation from equilibrium value is neg-
ligibly small. Expanding ln W  about the equilibrium value, we write

0 0( )  ∂ 2

( ) ln W  1  ∂ ln W 
 lnW Ni i= +ln W N   ∆ +N ∆ + − − −  N 2  

 ∂ i 1
Ni  ∂NiN i

 2
0 2  0Ni

and since lnW 0 is a maximum, the first derivative vanishes.
Thus,

 ∂2 W
 W N( ) 1 ln 

ln i i− =ln W N0 0( ) ∆N 2 + − − − 2  ∂N 2 i  
i  0Ni

Since

g
 ln W N( )i i= +∑N ln i N

N
i

i
∑  

and

∂ln W
 i

Ni
∑ g= ln

∂ Ni

∂2 ln W
 ∑ 1= −

∂N N2  
i i

Thus

 
W N( ) 1

ln ( )
i
0

= −
W Ni 2 2∑ ∑∆ 2  ∆

2
Ni N N N = − i i

 Ni N  Ni 

Since Ni /N  is the probability to find Ni particles in level ε i, the term inside the sum-
 ∆  2

N
mation term is just the moment of i

   (i.e., the averaged value). Therefore,
 Ni 

N N ∆  2

− i

 ( )  
W Ni i= W N( )0 e 2  Ni   

and for, N >> 1, W N( )i  is negligibly small when ∆Ni is finite. However, for small 
systems, the fluctuation will be large and it is difficult to define an equilibrium state. 
The above consideration provides a molecular interpretation of the second law in 
thermodynamics.
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concentration 2, 119
equilibrium constant method 122, 124
minimizing Gibbs function 121

cooling of hot coffee
irreversibility 66–68

corresponding states
theorem of 16

critical pressure 9, 16
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disorder 138, 143
ideal gas 54, 86
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from internal energy 49, 50
isothermal process 45, 46
path independence 45
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Redlich-Kwong 15
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chemical 111–112
chemical reaction 117
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exact differential 20
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irreversibility 64–66
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first law of thermodynamics 19
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specific 10
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definition 20
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inequality of Clausius 39
inexact differential 20
intensive variable 1, 3
internal energy 19, 71–72

determination 78–81

formation 118
ideal gas 24, 80, 81, 82
real gas 26

International temperature scale 6
inversion curve 103
irreversibility

open systems 68–70
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molecular interpretation
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reversible heat 141
reversible work 142
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second law 143
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open systems 1, 26, 68
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rate of irreversibility 69, 70



147Index

partial pressure
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permeable 111, 112
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process

constant pressure 47, 48
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dissipative 20, 41
free expansion 25, 64
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real 55
reversible 7
reversible adiabatic 46, 47
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quantum state 131
quasi-static process 6

real gas
entropy change 52–54, 90
fugacity 125

Redlich-Kwong equation of state 15, 16
reduced

molar volume 11, 16, 17
pressure 16, 17, 91, 93
temperature 16, 17, 91, 93

relationship among
coefficients 96
state properties 74

relaxation time 7
reservoir 31

second law of thermodynamics 31
Clausius statement 31
entropy statement 41, 42
Kelvin-Plank statement 31

specific heat 23, 24
at absolute zero 99
ratio 99, 100
variation 100, 101

standard datum state 116, 117
standard Gibbs function 73
state function relationships 74

state functions
enthalpy 22, 24, 82–84
entropy 41, 45, 84–86
Gibbs function 73, 74
Helmholtz function 73, 74
internal energy 19, 24, 26, 80–82
mathematical derivation 76

state variable relationships 74
Stirling approximation 134
Stoichiometric coefficient 121

degree of reaction 122
surroundings 1
system

composite 64, 108, 135, 136
definition 1
open 1, 26
simple 1

T-dS equations 74
temperature
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Celsius 5
critical 9
empirical 4
fixed points 6
ice point 5
inversion 103
Kelvin 5, 38, 39
steam 5, 10
thermodynamic 36
thermodynamic scale 38, 39
triple point 4, 5, 6, 39

theorem of corresponding states 16
thermodynamic coefficients 95

dense gases 101, 103, 104
thermodynamic functions 71
thermodynamic pressure 111
thermodynamic temperature

absolute temperature scale 36, 39
ratios 37

thermometer 3
gas 5

thermometric
functions 3
substance 4

third law of thermodynamics 99, 119
throttling process 26, 101
Triple point temperature 4

Universal gas constant 11
Universe 1

van der Waals equation of state 13
van’t Hoff equation 123
virial expansion 11, 12
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path dependent 19

path independent
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reversible 55
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