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Preface

Thermodynamics is an essential subject in mechanical engineering and almost all
universities have a one- or two-semester course on thermodynamics. Accordingly,
there are numerous textbooks written on the subject. Thermodynamic texts have
progressively increased in volume, and the present-day books are close to a thousand
pages. The increase in volume is due to increase in the number of worked exam-
ples, homework problems, and various study aids such as computer software. The
scope of the subject has also increased to include current topics on renewable energy,
advanced propulsion, environmental issues, bioengineering, etc. Many thermody-
namic texts include chapters on compressible flow for which a separate course is
generally part of the curriculum.

The present book deals with the basic concepts of thermodynamics. These tend
to be overlooked in the context of covering a wide range of topics. The fundamentals
of thermodynamics are to a large extent governed by the first and second laws. The
first law is essentially the conservation of energy, which is generally discussed in a
first-level course in mechanics. The subtle contribution from the first law is in defin-
ing internal energy. The second law is the unique part of thermodynamics which is
distinctly very much different in approach from the other subjects. The major por-
tion of the book deals with the second law and its consequences.

The internal energy from the first law and entropy, reversible work, irrevers-
ibility and thermodynamic equilibrium from the second law are dealt with in the
different chapters. The relationships among the thermodynamic functions, proper-
ties and coefficients are obtained and their utility demonstrated. The treatment is
not restricted to ideal gases; rather the thermodynamic properties, functions and
processes are derived in a general manner and those for ideal gases are obtained
as limiting cases of the generalized results. The maximum work from a system is
determined and the importance of reversible paths during change of state is dis-
cussed. The role of the environment in influencing entropy and work is specifically
considered. Thermodynamic equilibrium is addressed through isolated systems and
systems interacting through heat, work and mass exchange. Thermal, mechanical,
chemical and phase equilibrium in simple systems are dealt with. Species formed at
equilibrium in a chemical reaction are also considered. The molecular basis for the
first law comprising internal energy, work and heat and the basis for the second law
from reversibility and entropy is briefly discussed.

The book would supplement and be a source of reference to go with the standard
textbooks that are in abundance. The book would, in particular, assist the undergrad-
uate, post-graduate and research students as well as practicing engineers to appreci-
ate the basics of thermodynamics and apply the concepts gainfully for solving issues
in the areas of energy, power, propulsion and environment.

xiii
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’I Fundamental Concepts

1.1  SYSTEM AND ENVIRONMENT

Thermodynamics is a study of the interaction of a system with its environment. A
system is part of the universe contained within a prescribed boundary that we deal
with. Everything outside the boundary is called the environment. Thus, the system
and its environment constitute the universe.

The boundary of a system may be a real physical boundary or could be imaginary.
The boundary may be of arbitrary shape and could move when the volume within the
boundary changes such as when the system expands or contracts when interacting
with the environment.

An isolated system has a boundary that does not permit mass or energy exchange
across it. For a closed system, the boundary permits only energy exchange. If mass
as well as energy is exchanged across the boundary, the system is called an open
system.

1.2 STATE OF A SYSTEM

The state of a system is defined by a set of measurable macroscopic parameters.
The state can be measured only if the variables defining the state are invariant with
respect to time and space within the system; that is, the system is in equilibrium. It
is the equilibrium state of a system that is defined by the state variables of a system.

State variables that depend on the mass of the system are called extensive vari-
ables, for example, energy and volume. State variables that are independent of the
mass are called intensive variables, for example, pressure, density and temperature.

The specific value of an extensive property is the extensive property divided by the

amount of substance, for example, specific volume v = —, where V is the volume and
. m
m is the mass.

1.3 SIMPLE SYSTEMS

We shall be dealing mostly with simple systems. A simple system is one which is
homogeneous, isotropic and chemically inert. It is sufficiently large in that surface
effects can be neglected. In other words, we may define its energy without consider-
ing the surface energy due to the boundary separating the system from the environ-
ment. The external forces arising from electromagnetic, gravitational and similar
environmental effects are also not considered in contributing to the energy of the
simple system. So the simple system can generally be defined solely by its energy U,
volume V and amount of mass in the system, that is, (U, V, m;) where m;, is the mass

[T

of the different chemical components “i” in the system.

DOI: 10.1201/9781003224044-1 1
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2 Fundamentals of Thermodynamics

1.4 MASS, MOLECULAR MASS AND MOLES IN A SYSTEM

The mass of a system is the number of molecules N contained in the system multi-
plied by the mass of each of the molecules in it. Since the mass of a molecule is very
small, it is measured in terms of the mass of a standard particle that is chosen to have

a mass one-twelfth the mass of an isotope of carbon 1Cz' . The mass of the standard
particle my, known as the atomic mass unit (a.m.u.), is 1.661x10-2*g.

The mass of a molecule of a substance is therefore expressed in units of the stan-
dard atomic mass unit m,, namely, mass of the molecule m divided by m,_that is,

m .
M = —. M is called the molecular mass.

ny
mH2

As an example, the molecular mass of a hydrogen molecule is given as My, =

m
where my, is the mass of the hydrogen molecule and m; is the mass of the standa(;d
particle. It is also spoken of as molecular weight since almost all experiments are
carried out in the vicinity of the Earth’s surface where the gravitational constant is
the same. We will use the words molecular mass and molecular weight without dif-
ferentiating between them.

The number of molecules in a macroscopic system is, in general, very large, and we
therefore measure it in the unit of mole. A mole is defined as the number of standard
particles N, in 1g of it, that is, Ny = n ! =6.023 % 1023, N, is called

mo 1661107
Avogadro number.

. . N
The number of the moles of a substance comprising of N molecules is n = —.
0
We can write the molecular mass as

M= N, (1.1

since moNy = 1g.

The molecular mass M therefore equals mN, in unit of grams and is the mass of
1 mole of the substance in grams. Thus, 1 mole of hydrogen has a mass equal to 2 g,
and 1 mole of nitrogen is 28 g and so on. Similarly, the number of moles n of a sub-
stance of mass m g is m/M.

For a mixture of gases consisting of N different constituents, the mole fraction of
the ith constituent in it is

i=N
where n; mole is the number of moles of the ith constituent in it and Zni is the total

i=1
number of moles in the mixture.

Similarly, if the mass of the ith constituent is m,, the mass concentration of the ith
constituent is
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m

i=1

_ i
i =

m;
The sum of the mole fractions and mass fractions is unity, namely,

1.5 INTENSIVE VARIABLES DEFINING A SYSTEM

Energy U, volume V and mass m or equivalently the moles n, which define a system,

. U .
are based on the extent of a system. The energy per unit mass u = — and the specific
m
Vv . . . .
volume v = — are independent of the extent and are intensive variables. In the fol-
m

lowing, we define the intensive variables pressure and temperature for defining a
simple system. These are independent of its extent and are the so-called intensive
variables.

1.5.1 PRESSURE

The pressure p is the force per unit area and acts normal to the surface and is inde-
pendent of the orientation of the surface. The unit of pressure is Newton per square
meter (force per unit area) and is called as Pascal (Pa). A standard atmosphere, which
is the atmospheric pressure at the standard sea level, is 1.01325 X 10° Pa. Pressure is
also denoted in bars and 1 bar = 10° Pa.

For a homogeneous system at equilibrium, the pressure is uniformly the same
throughout the system. For a system in mechanical equilibrium with its environment,
the pressure is the same across the system’s boundary.

1.5.2 TEMPERATURE

Temperature is an intensive variable that has its origin in thermodynamics. It is a
measure of the physiological sensation of “hot” and “cold”. The measurement of
temperature is based on the fact that two systems brought into thermal contact will
eventually reach the same state of “hotness”, that is, a state of thermal equilibrium
and will have the same value of temperature. This is the “zeroth” law of thermody-
namics that can be stated as follows: If system A is in thermal equilibrium with sys-
tem B (such as when brought in contact with each other) and system B is in thermal
equilibrium with system C, then systems A and C are also in thermal equilibrium.

The zeroth law permits us to choose a test system called a thermometer to com-
pare how “hot” the system of interest is and to determine its temperature.

The substances used in the thermometer should have a property that changes sig-
nificantly with temperature and can be measured precisely. Most substances change
their volume with temperature. Thus, the volume change can be calibrated to indicate
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the temperature change. A typical thermometric substance is a liquid (e.g., mercury,
alcohol) contained in a small thin-walled glass bulb, which connects to a fine-bore
capillary tube. The height of the liquid column in the capillary tube can then be cali-
brated to provide a scale to read the temperature. The property should also change
linearly with temperature for easy measurements.

The change of the electrical resistance with temperature or the voltage from a
thermocouple can also serve as a thermometer. The different measured parameters of
the various thermometers provide the different temperature scales. Practical consid-
erations require a thermometer to be sufficiently small so that it produces negligible
effect on the system whose temperature is measured.

In a gas thermometer, a small volume of gas containing n, moles is enclosed in a
bulb and either the volume change at constant pressure or pressure change at fixed
volume can be used to measure the temperature changes. A constant volume gas
thermometer is preferable since the pressure change with temperature can be accu-
rately measured using a manometer. Use of gas at low pressures appears to provide a
thermometric substance independent of the type of gas used.

1.5.2.1 Empirical Temperature 0

If X is the value of the thermometric property that changes with temperature param-
eter, for example, height of the mercury column in the capillary tube or pressure in
a constant volume gas thermometer, then the ratio of the thermometric property X
can be used to define the ratio of the temperature “6”. The temperature obtained
in this manner is an empirical temperature, and its value depends on the particular
thermometer used. When the thermometer is brought into thermal contact with heat
sources A and B and if the thermometer reads X, and X, respectively, we say that the
empirical temperatures 6, and 8, of A and B are in the ratio

Oa _ X (1.2)

08 X B
To obtain the empirical temperature scale, we need to assign a numerical value to
some chosen heat source, for example, temperature of steam at atmospheric pressure.
It is agreed upon that the triple point of water (equilibrium between ice, water and
steam) be used as a standard heat source and assigned a particular value 6,,. Thus,
we write Eq. 1.2 as

0= G,FXL (13)
p

where 6 is the temperature of the system to be measured, and X is the value of
the thermometric substance when the thermometer is in thermal equilibrium with
the system. 0,, and the corresponding X,, refer to the triple-point temperature and the
value of X when the thermometer is at thermal equilibrium with a system of ice,
water and steam at the triple point. From Eq. 1.2, we see that the ratio of the thermo-
metric substance differs for different thermometers and the empirical temperature 6
measured varies for different thermometers used.



Fundamental Concepts 5

1.5.2.2 Absolute Temperature T

For a gas thermometer, where we use the pressure of a constant volume gas at low
pressure to indicate the temperature, we write Eq. 1.3 as

6= etp(lf] (1.4)
tp

It was found experimentally that RN independent of the type of gas used in the
p
limit the amount of gas in the bulb (number of moles r, of it) approaching zero, that

is, lin%) P does not depend on the properties of the thermometric fluid. The tem-
np— ptp
perature so obtained is known as the absolute temperature and is given as

T=T, lim (pJ (1.5)

no—0 ptp

where T denotes the absolute temperature. It is measured in Kelvin (K).

1.5.2.3 Temperature in K and °C

Historically prior to the choice of the triple-point temperatures, the reference of ice
water and steam water at 1 atmosphere pressure was used to determine an empirical
temperature scale known as the Celsius scale. The temperature difference between
ice and steam was chosen to be 100, that is, 7, — 7; = 100. Here, Ty and 7; denote
the temperature of the reference steam water and ice water mixture. Thus, for a gas
thermometer,

I, _100+T _ . Ps (1.6)
1; I; =0 p;
and solving for 7; gives
T = 100
Py
Pi

Accurate measurement of 2 gives its value to be 1.3661. Thus, 7; = 273.15 K. The

temperature of the freezing [l)oint of water, which in degree Celsius is 0°C, is 273.15
in the Kelvin scale. Hence from Eq. 1.6, we write

T =273.15 lim (p)(K)

np—0 Di

We therefore shift the scale by 273.15 to convert °C to K, thatis, 7'(K) =0°(C) + 273.15.
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TABLE 1.1

Fixed Points for the International Practical Temperature Scale (1968)
Equilibrium Scale T (K) 0 (°C)
Triple point of equilibrium hydrogen 13.81 —259.34
Boiling point of hydrogen at 25.76 atm. 17.042 —256.106
Boiling point of hydrogen at 1 atm. 20.28 —252.87
Boiling point of neon at 1 atm. 27.402 —246.048
Triple point of oxygen 54.361 —218.789
Boiling point of oxygen at 1 atm. 90.188 —182.962
Triple point of water 273.16 0.01
Boiling point of water at 1 atm. 373.15 100
Freezing point of zinc 692.73 419.58
Freezing point of silver 1,235.08 961.93
Freezing point of gold 1,337.58 1,064.43

Triple-point temperatures for different substances are given in Table 1.1 and can
be used instead of the triple-point temperature of water.

The International Committee of Weights and Measures agreed in October 1968
on a number of fixed points in degree C and K as given in Table 1.1. Further inter-
polation procedures are also specified for obtaining the intermediate temperatures
using a platinum resistance thermometer and platinum rhodium thermocouples.

1.6 STATE OF A SYSTEM: STATE VARIABLES/
THERMODYNAMIC PROPERTIES

We have so far considered the simple single-phase homogeneous system. For this
simplest case, the state of the system is specified by the amount and type of matter, its
volume or mass or moles, pressure and temperature. These are the state variables or
thermodynamic properties of the system. The pressure and temperature are specified
when the system is in mechanical equilibrium and thermal equilibrium, respectively.
There may be more complex systems where there are different constituents or com-
ponents in it with multiple phases (e.g., liquid, solid, vapor) being present. Additional
state variables would be required to define the equilibrium state of the substance as
the system becomes more complex.

1.7 CHANGE OF STATE OF A SYSTEM: QUASI-STATIC,
REVERSIBLE AND CYCLIC PROCESSES

1.71 Quasi-StaTic PROCESS

There are various ways or paths by which the equilibrium state of a system could be
changed. A process refers to a particular path causing the change. The system may
not be in equilibrium at the different instants during the change; hence, the inter-
mediate non-equilibrium states cannot be defined and the path or process cannot be



Fundamental Concepts 7

specified. An important property of energy transfer process in thermodynamics is
that it has to be quasi-static.

A quasi-static process is one in which the change of state is effected very slowly so
that the state of the system, as well as the environment in which the system interacts
with, is arbitrarily close to equilibrium at all times during the process. A process there-
fore goes through a series of equilibrium states. It may be noted that the equilibrium
state corresponds to that of an isolated system when a definite invariant state is reached.

Real processes are not quasi-static since changes occur at finite rates. However,
if the time scale of the change is long compared to the relaxation time of the system
to equilibrate when perturbed, then the real processes can be approximated as being
quasi-static. The state of the system and the environment must also be arbitrarily
close to each other since finite gradients in the thermodynamic state will result in
finite acceleration and non-uniformities in the system and the environment.

Equilibrium thermodynamics does not involve time. When time appears, it is to
be understood that the rate is infinitesimally slow for the process to be quasi-static.

1.7.2  REVersiBLE PROCESS

Reversible processes are of importance in thermodynamics. A reversible process is
one in which both the system and the environment with which it interacts with are
returned to their original states when the direction of the process is reversed. The
system follows the same sequence of equilibrium states in the reverse direction.

A reversible process must necessarily be quasi-static, but a quasi-static process
may not be reversible, for example, when a dissipative process like friction is present.

It should be noted that a system can always be made to return to its initial state,
but a reversible path also requires that the environment is also returned to its origi-
nal condition. Internal irreversibility is associated with irreversible processes that
occur within the system, for example, diffusion of mass and heat when the system
approaches overall equilibrium. External irreversibility is associated with the inter-
action between the system and the environment, for example, heat exchange across
a finite temperature difference between the system and the environment. Chemical
reactions among the various chemical species within the system also give rise to inter-
nal irreversibility. Irreversibility also results when dissipation processes are involved.

Reversible processes seem to be highly restrictive, but they are very important to
provide a reference to assess real processes. Again the heat transfer process can be
quasi-static when carried out infinitesimally slowly, and further for heat transfer to
be reversible, the temperature difference across the boundary must be vanishingly
small. Heat transfer across a finite temperature difference is irreversible and in fact
constitutes the second law of thermodynamics.

1.7.3  Cvcuic Process: EFFiciENCY AND COEFFICIENT OF PERFORMANCE

A sequence of processes in which the initial and final states are the same is called a
thermodynamic cycle or a cyclic process. A cyclic process is necessary to run a heat
engine or a refrigerator or heat pump for continuously generating work or pumping
out or pumping in heat to a system.
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We can determine the work done in the cyclic process by summing the work done
in different processes constituting the thermodynamic cycle. The efficiency of an
engine operating in a cycle is defined as ratio of the work done by it to the energy sup-
plied. The performance of a refrigerator or heat pump is not defined by an efficiency
but rather by the term Coefficient of Performance (COP), which is the ratio of the
intended heat abstraction (for a refrigerator) or heat supply (for a heat pump) to the
work required to effect the heat transfer.

The processes in a reversible engine can be reversed to make it operate as a refrig-
erator or a heat pump.



2 Equation of State

2.1 INTRODUCTION

It is found that not all the state variables are independent of each other. As an exam-
ple, for a volume V m? of nitrogen gas having a mass m kg at a pressure p, the tem-
perature is fixed and cannot be varied arbitrarily. The relationship among the state
variables f (p, V, T, m or n) = 0 is called the equation of state of the substance. Given a
substance (e.g., a gas), the equation of state is determined experimentally by measur-
ing the p, V and T values for a given amount of m kg or n moles of it and empirically
fitting an equation for the dependence among p, V, T and m or n.

We have seen that the variable pressure for a system can be defined only when the
system is in mechanical equilibrium while the temperature is defined for a system
when in thermal equilibrium. Thermodynamics deals with systems in equilibrium
and the state variables define the equilibrium state of a system. The equation of state
therefore describes the relationships of the variables of the system when the sys-
tem is in thermodynamic equilibrium, that is, when it is in mechanical and thermal
equilibrium.

2.2 EQUATION OF STATE FOR AN IDEAL GAS

The simplest substance is the so-called ideal gas. A real gas at sufficiently low pres-
sure and high temperature behaves as an ideal gas. Low pressure and high tempera-
ture are relative to the critical pressure and critical temperature of the gas. At the low
pressures, number density of molecules in the volume is such that the intermolecular
potential energy is negligible as compared to the kinetic energies of the individual
molecules.

The values of the critical pressure and temperature of some common gases are
given in Table 2.1.

TABLE 2.1
Critical Pressure and Temperature
Critical Pressure Critical
S. No. Gas (Atmosphere) Temperature (K)
1 Nitrogen 33.5 126.0
2 Oxygen 49.7 154.3
3 Hydrogen 12.8 332
4 Carbon Monoxide 35 134
5 Helium 2.26 53
6 Argon 48 151
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As can be observed, for normal temperatures and pressures, the ideal gas assump-
tion should be valid.

The equation of state can be deduced for an ideal gas from the experimental
observations of Boyle (1662), Gay-Lussac (1802) and Charles (1687). For a given
amount of ideal gas, Boyle observed that at a given temperature, the product of pres-
sure and volume is a constant, that is,

pV = A(m,T) 2.1)

where A depends on the amount of gas m and the temperature 7. In 1802, Gay-Lussac
showed that the ratio of the volumes of a given mass of gas at the temperatures of
saturated steam and ice at a pressure of 1 atmosphere is a constant for all the gases
studied, that is,

% = Constant 2.2)

i

where V, and V; denote the volume at temperatures of saturated steam and ice, respec-
tively, at 1 atmosphere pressure. The constant was found to be 1.375, but later more
precise measurements gave the value to be 1.36609. Gay-Lussac mentioned that his
observations were also obtained by Charles in 1687. Gay-Lussac’s observation given
by Eq. 2.2 can be generalized to read

V =B(mp)T 2.3)

where B depends on the amount of gas m and the pressure p. Combining Boyle’s and
the so-called Gay-Lussac or Charles’ law, that is, Egs. 2.1 and 2.3, gives

p B(m,p) = Am,T) IT 2.4)
Since the left hand side in the above equation is a function of p and m, while the right
hand side is a function of m and 7, we must have both the sides equal to a function of
m only, that is, C(m). Thus,
p B(m, p) = A(m, T)/T = C(m)
and this on substituting the value of A(m, T) from Eq. 2.1 as pV gives:

pV=C(m)T

The volume increases with m by the same factor when 7T and p are kept constant. So
the value of C(m) must be linearly dependent on m. Thus, we write

pV = mRT 2.5)

where R is a constant for a given gas and is known as the specific gas constant. Here,
T is the absolute temperature in Kelvin as measured for the low-pressure gas by an
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ideal gas thermometer. Equation 2.5 gives a relationship between p, V, m and 7, and
is therefore an equation of state for an ideal gas. We can write Eq. 2.5 as

pv =RT (2.6)

where v = V/m is the specific volume per unit mass. Further, since the density of the
gas p = 1/v, we can also write Eq. 2.6 as

p=pPRT 2.7)
If M is the molecular mass of the ideal gas in g/mole, then Eq. 2.5 can be written as
pV=nRT (2.8)

where n is the number of moles given by n=m /M and R, = M X R. R, is referred to
as the universal gas constant and is the same for all gases, its value being

R, = 8.314 J/(mole K) 2.9)

Defining the specific volume on a molar basis as the volume per unit mole and denot-
ing it by v then v=V /n and Eq. 2.8 gives:

pi=R,T (2.10)

If instead of mass or moles of a gas, we were to consider the number of molecules N
in the ideal gas, Eq. 2.5 is written as

pV =NkT (2.1D)

where k is a constant with dimensions of energy for a molecule per unit temperature
and is given by

k= 1381 x 1072J/K (2.12)

when the pressure p is given in Pascal and volume V is in m>. k is referred to as the
Boltzmann constant.

2.3 EQUATIONS OF STATE FOR REAL GASES

2.3.1 ViriAL EQUATION OF STATE

The equation of state for an ideal gas is valid for vanishingly low pressures. Hence
for higher pressures, correction terms are required. From experimental measure-
ments of the pressure p and volume V at constant temperature, over a wide range of
pressures, it is found that the product of pressure and specific volume per mole can

. .. 1 .
be expressed in a power series in p or —, that is,
v
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pv=a+bp+cp’+dp’ +-- 2.13)
pﬁ:a(1+1{+fz+i+...) (2.14)
vy v

where a, b, ¢, d, ...b",c’,d’, etc. are referred to as the virial coefficients and depend on
temperature and the nature of the gas. For a gas at low pressure, that is, large specific
volume, Eqs. 2.13 and 2.14 reduce to the ideal gas equation of state in the limit and
the constant “a” must equal to R,T.

The form of Egs. 2.13 and 2.14 is called the virial equation of state. The virial
coefficients will have the appropriate units depending on the units of p and v. For
relatively low-pressure gases, it is sufficient to take the first couple of terms on the
right side of Egs. 2.13 and 2.14, for example, we write Eq. 2.14 as

pﬁ=a(1+b~) (2.15)
1
giving pv to be linearly dependent on l~ The behavior of pv versus pressure in the

v
range of 0 < p < 40 atm. at a temperature of 273.16 K is illustrated in Figure 2.1. It
can be seen that the value of the product pv for the different gases all asymptote to a

value of 22.414 =310

as the pressure tends to zero.
mole

From the definition of temperature in Kelvin as measured in an ideal gas ther-
mometer and given by Eq. 1.5 in Chapter 1

p:Pp=0\ Dy,

T=273.16 lim [”)

24+
231
H,
Py
(litrefatm) 224 N,
mole Air
211 , 0,
lim (p7) = 22.414 (‘7‘”"*““‘“)
P>0 mole
20 T T T T T T T 1

T
0 5 10 15 20 25 30 35 40 45
p, atm

FIGURE 2.1 Variation of product pv as a function of pressure for a few real gases.
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where p,, is the pressure measured in the ideal gas thermometer at the triple point of
water. We can write the above equation as

T=273.16 lim (”"

P.pp—0 v

ptpv

;{rgo(pt,, 7) ]

However, p,, =0.006 atmosphere and 11m ( Ppv ) from Figure 2.1 equals 22.414 L
Prp
atm./mole at the triple point temperature of 273.16 K. We therefore obtain

~ [22.414
pv=
273.16

]T: 0.0820544 T

when the pressure p — 0. Here, Ry = 0.0820544 in liter atm./(mole K) and in terms
of joules reduces to Ry = 8.314 J/(mole K). Thus to the lowest order in pressure, we
obtain the equation of state for an ideal gas.

Similarly, for higher pressures, we get

where the virial coefficient b is a function of temperature. As an example, for nitro-
gen, it is given by

4 6
b:39'5_1.00;10 _1.08471;10 o1

where T is in Kelvin.

2.3.2 vAN DER WAAL'S EQUATION OF STATE

van der Waal in 1873 developed an equation of state for real gases in an attempt to
correct the equation of state for an ideal gas. At higher pressures, the volume occu-
pied by the gas molecules is no longer negligible. Thus, the molar volume in the ideal
gas law is replaced by (¥ —b). To account for intermolecular attraction, the pressure

a a
is written as p + —,- The correction term —; for the attractive intermolecular force is
v
based on the fact that it depends on the number of molecules (i.e., the molar density

1 . . . . 1
p= :) and also the intermolecular distance (whlch also depends on density p = f).
v 1

. . 1 .
Thus, the pressure correction term varies as —;- The van der Waal equation of state
is thus written as v

p+ vaz = 2.18)
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with a and b to be determined experimentally. The constants a and b, however, actu-
ally depend on temperature and the values for a and b have to be determined for the
particular regions of pressure and temperature of interest.

But since the critical constant temperature line (isotherm) on a p — v diagram has
zero slope and curvature at the critical point, we have the conditions

2
ap) _o, ° P) ~0 (2.19)
T. T.

v ov’

c

where T¢ denotes the critical temperature, from which the van der Waal coefficients
a and b can be evaluated. Using Egs. 2.19 and 2.18, we obtain

) p) RoT. 2a
] ==+ 2520 (2.20)
), (be—b) ¥
’p 2R,I.  6a

= 0 =0 221
v’ )E (Fe—b) ¥t @20

where the subscript “c” refers to the critical state. Solving for a and b yields

_2T R RTe peve 3

a= ,b= , = (2.22)
64  pc 8pc RoTe 8

Thus from the critical point data for a given gas, the van der Waal coefficients a and
b can be obtained.

Note that Eq. 2.22 gives % = % =0.375, whereas experimentally it is found
~ 0LcC
that Y€ has values in the range of 0.2—0.3. It would be more accurate to fit the

0LcC
experimental data in the region of p and T of interest to determine the coefficients a

and b rather than using Eq. 2.22. The coefficients a and b for a few gases are given
in Table 2.2.

The van der Waal equation of state is of historical interest since it represents the
first attempt to correct the equation of state for an ideal gas taking into account the
real gas effects.

2.3.3 BerTHELOT AND DIETERICI EQUATIONS OF STATE

There are other two-parameter equations of state where the two constants can simi-
larly be obtained in terms of the critical pressure pc and temperature 7. Typical
examples are the Berthelot and Dieterici equations, that is,

R()T a

Berthelot: p= -
P T

(2.23)

Dieterici : p= ~R°T exp(— ) (2.24)
v

-b RTv
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TABLE 2.2
Constants for the van der Waal Equation of State a in bar/(m*/kmole)?, b in
m3/kmol

Substance a b Substance a b

Acetylene 4.410 0.0510 Ethylene 4.563 0.0574
Air 1.358 0.0364 Helium 0.034 0.0234
Ammonia 4.233 0.0373 Hydrogen 0.0247 0.0265
Benzene 18.63 0.1196 Methane 2.285 0.0427
n-Butane 13.8 0.1196 Nitrogen 1.361 0.0385
Carbon dioxide 3.643 0.0427 Oxygen 1.369 0.0315
Carbon monoxide 1.463 0.0394 Propane 9.315 0.0900
Refrigerant 12 (CC2F3) 10.78 0.0998 Sulfur dioxide 6.837 0.0304
Ethane 5.575 0.0650 Water 5.507 0.0304

The constants a and b in the above equations can be obtained using the critical point
conditions given by Eq. 2.19, to be

2TR1 T, RoT,
a= b=

) (2.25)
64 pc 8pc
for the Berthelot equation and
ARyT:? RoT,
a=—""5 b=""% (2.26)
Pce Pce

where e = 2.718 for the Dieterici equation.
The Berthelot equation corrects for the attractive term in the van der Waal equa-
tion when the temperature is high and the kinetic energies of the molecules are large
a

compared to the attractive potential energy. The correction term e would thus
v

diminish with increase of temperature. The Dieterici equation was developed to give
Pcve

better agreement with the quantity in Eq. 2.22 which is in considerable error in

0LC
the van der Waal equation when compared with experiments.

2.3.4 RepLicH—-KwONG EQUATION OF STATE

Another important equation of state used for high-pressure gases is the Redlich—
Kwong equation given as

_ R()T _ a
v—b T"5(v+b)

2.27)

where the constants are determined as a function of the critical temperature and
pressure as
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TABLE 2.3
Constants a and b for the Redlich-Kwong Equation of State
a Is in bar (m3/kmole)?(K)°®, b is in m3/kmole

Substance a b Substance a b

Carbon dioxide 64.64 0.02969 Oxygen 17.38 0.02199
Carbon monoxide 17.26 0.02743 Propane 183.070 0.06269
Methane 32.19 0.02969 Refrigerant R12 214.03 0.02110
Nitrogen 15.59 0.02681 Water 142.64 0.02110

27 25
a= 0.4275Ry"T¢ b= 0.0867R,T. (2.28)

Pc Pc

The Redlich—-Kwong gives good results for the high-pressure region. The constants a
and b for a few substances are given in Table 2.3.

2.4 COMPRESSIBILITY FACTOR AND GENERALIZED
COMPRESSIBILITY CHART

The equations of state for the real gases, in general, are quite difficult to use. For most
of the engineering problems, the compressibility chart provides a simple means to

account for the dense gas effects. For an ideal gas % =1 and for a dense gas, we

write 0
Po_g (2.29)

where Z is no longer equal to unity. Z is called the compressibility factor and varies

with the state variables, that is, Z(p, T). Different gases at the same p and T give dif-

ferent values of Z. However, if p and T are normalized with respect to the values at
.. . T

the critical state, that is, reduced temperature T = T_ and reduced pressure pg = L,

c Pc
then Z(Ty, pg) is a universal function valid for all gases. This is known as the theorem

of corresponding states. The theorem states that “Any pure gas at the same reduced
pressure and temperature should have the same compressibility factor”.

Zis plotted against py for various constant values of T, and is shown in Figure 2.2.
The figure replaces the equation of state and we can find the p, v and T data from it
for any gas.

The general procedure is to first calculate for the given p and 7, the reduced pres-
sure and temperature by normalizing with the critical pressure and temperature. The
value of Z is obtained from the compressibility chart (Figure 2.2) and thereafter
the value of the reduced molar volume vy, is calculated. If, however, vy is given, then
a value of V; = Vg Z, known as a pseudo reduced molar volume is used and plotted
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Compressibility factor, Z

T,=1.00

00 05 1.0 15 20 25 30 35 40 45 50 55 60 65 7.0

Reduced pressure, p,

FIGURE 2.2 Generalized compressibility chart.

in the generalized chart instead of the reduced volume ¥ as it is more convenient.
With v, and pyg (or Ty), we can find the other missing state variable directly from the
generalized compressibility charts in which constant v, lines are plotted.

2.5 MIXTURE OF IDEAL GASES

For a mixture of several constituents or components of gases in a volume V at a given
temperature 7, the pressure that each constituent of gas would exert, if it were alone
contained in the volume V, is its partial pressure. Let the partial pressure of the ith
constituent in the mixture of gases be denoted by p;, while the pressure of the mix-
ture of gases is p. When each of the constituent gases in the mixture and the mixture
of gases are ideal gases, then from the equation of state for an ideal gas pV = nR,T,

we get
N
D p=p 230)

since the sum of the number of moles of each of the constituent gas is the total num-
ber of moles in the mixture. Equation 2.30 is Dalton’s law of partial pressures for an
ideal gas mixture.

Similarly we have Amagat’s law of partial volume for a mixture of ideal gas. The
law states that the volume of a mixture of ideal gas is equal to the sum of the partial
volumes that each gas in the mixture would occupy if it existed in the mixture at the
same temperature and pressure, that is,
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N
2 V=V 2.31)
i=1

Dalton’s law of partial pressure at constant volume and temperature and Amagat’s
law of partial volume at constant pressure and temperature are valid only when each
of the constituent gases in the mixture and the mixture of gases are ideal gases.



3 First Law of
Thermodynamics

3.1 STATEMENT OF THE FIRST LAW

The first law of thermodynamics states “the increase in the internal energy of a sys-
tem is equaled to the heat transfer to the system minus the work done by the system”.
By convention, the heat transfer to and the work done by the system are considered
to be positive. Thus

AU =Q - W @B.D

Here, AU is the change in the internal energy, Q is the heat transfer and W is the work
done. The first law is in essence of the law of conservation of energy.

Work is a familiar concept in mechanics, but “internal energy” and “heat” are
novel to the first law.

3.2 INTERNAL ENERGY AND ADIABATIC WORK

Work done by a force is defined as the product of the force and the displacement in
the direction of the force. In thermodynamics, we are mostly concerned with work
associated with the volume changes of a system. If “p” denotes the pressure that the
system exerts on its boundary and “dV” is the volume change, then “p dV” is the
work done by the system when the system increases its volume by “dV”’.

The difference in the pressure across the boundary of the system must be infini-
tesimally small giving rise to a fully resisted motion of the boundary in order to
define work done by the system. The rate of expansion is thus sufficiently slow to
permit both the system and the environment that it interacts with to be in equilibrium
at all times.

The work done by the system between two equilibrium states is given by the
integral

Vi
W= J. pdV (3.2)

Vi

The above integral is a path integral and the path p(V) must be specified in order to
evaluate the integral. Also between the same two states, the work done is different for
different paths; we therefore say that the work is a path-dependent quantity.
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There are different kinds of work other than “p dV”” work and also the work may
not necessarily be associated with the change in the configuration of the system (like
the volume). For example, the work input to a system, such as by a paddle wheel as
mechanical work, does not involve a change in the configuration of the system. This
is generally defined as dissipative work where the mechanical work input to the sys-
tem is converted via viscous dissipation to heat, hence increasing the internal energy
of the system.

When the system is insulated and hence there is no heat exchange with the envi-
ronment, the work done either by or on the system is referred to as adiabatic work.
Experiments indicate that adiabatic work done by (or on) the system between two equi-
librium states is the same for different adiabatic processes. From Eq. 3.1, we can write

AU = — Wy (3.3)

where W,, is the adiabatic work done by the system. Since W, is path-independent,
the internal energy change between two states is also path-independent.

We can therefore define a state function “U” such that the change in the state func-
tion can be determined by measuring the adiabatic work input to the system.

Internal energy can be understood at a more fundamental level based on the atom-
istic view of matter. However, as per the first law, the internal energy difference
between two equilibrium states can be defined via a macroscopic measurement of the
adiabatic work input to the system.

3.3 HEAT

From experience, heat is transferred across a boundary where there is a temperature
difference. But by measuring the work done and the change in internal energy, the
heat transfer to the system can be obtained from the first law, that is,

Q=AU +W =W-W,u, 3.4

Heat is thus a measure of the non-adiabatic nature of the system. Depending on the
temperature gradient, the heat flow can be fo or from the system. However, the direc-
tion of heat flow is always from hot to cold as required by the second law.

Since work is path-dependent while internal energy is not, the heat transfer is also
path-dependent.

The first law in a differential form can be written following Eqs. 3.1 and 3.4 as

dU =60 —-6W
where dU denotes a perfect differential while §Q and 8W are imperfect differentials

being path-dependent. In applying the above differential form of first law to a cyclic
process and integrating over a cycle, we get

qiduzq')ég—cﬁo‘w
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Since ¢dU =0 as U is a path-independent state variable,

gﬁag:gﬁaw

This implies that in a cyclic process the sum of heat transfer is the same as the sum
of work done or stated differently; the heat and work interactions are equal for a sys-
tem undergoing a cyclic process. The equivalence between heat and work gives the
mechanical equivalent of heat.

Historically, the amount of heat was measured by the calorie. A calorie is the heat
required to raise the temperature of 1g of pure water at 14.5°C by 1°C. The work
equivalent of heat is 4.1858 J.

3.4 HEAT CAPACITY OF A SYSTEM

In the absence of phase changes, the heat transfer to a system results in a temperature
rise. The heat capacity “C” of a system is defined as

. Q 60
C =] _ 3.5
s90 AT dT G-
Since “Q” is a path-dependent quantity, 6Q in Eq. 3.5 is not a total differential.
Equation 3.5 should not be interpreted as the derivative of “Q” with respect to “7”. Since
0Q is path-dependent, we define the heat capacities for different heat transfer processes.
For a constant volume process, we write the heat capacity at constant volume as

60,
C, =l
AIYI"IBO AT

(3.6)

where 60, is the heat transfer under constant volume conditions. Similarly, for a con-
stant pressure process, we define heat capacity at constant pressure as

)
C, = lim %

3.7
aT—0 AT 3.7)

3.4.1 Heat CapaciTy AT CONSTANT VOLUME

For a simple hydrostatic system, the state can be specified by the variables p, Vand T.
If the equation of state is known, then it suffices to use any pair of the three variables,
for example, T"and V, p and T or p and V. Choosing 7 and V as independent variables,
we write the internal energy as U(7, V) and

dU(T,V):(g[]{) dT+(gg) av
\%4 T

and writing the first law in a differential form as

60 =dU + 6W = dU + pdV
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we obtain
oU oU
00=|—| dT+|| == | +p |dV 3.8
¢ &Tl HmJ,pJ .
In a constant volume process where dV =0, the heat capacity is therefore
90, =(8U) =C, 3.9
dr oT ),

The internal energy can then be written as
U:JCAﬁVMT
If C,, can be treated as constant for the temperature range of interest 7; and 7,, then
U=C,(T,-T) (3.10)

Using Eq. 3.9, we can also write Eq. 3.8 as

_ U
6Q—Cva’T+(p+(aV)T]dV 3.11)

3.4.2 Hear CapaciTy AT CONSTANT PRESSURE

The first law could also be expressed in terms of an enthalpy function H=U +pV
instead of internal energy. The law can then be written as

0Q =dH —Vdp (3.12)

If we choose p and T as independent variables, that is, H(p, T), we write

dH(p,T):(aH) ar+| 21 dp (3.13)
aT ), ap ),
Replacing dH in the first law (Eq. 3.12) by the expression in Eq. 3.13 gives
oH oH
00=|—| dT-|V—-|—| |4 3.14
o-(57), ( (ap)rj” o

Therefore for a constant pressure processes where dp =0, the above gives

oH
00p=| — | dT
QP(aTl
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and in terms of heat capacity

_ %0, _(aH)
Co="r= 57 ,, (3.15)

If the heat capacity is specified, we can determine the enthalpy function as

H= JCF (T,p)dT (3.16)

For constant values of heat capacity in the temperature range of 7, to 7,, we have the
enthalpy function as

H = C)(T:- T) (3.17)

3.4.3 ReLATiON BETWEEN HEAT CAPACITIES

If we write V as a function of p and 7, that is, V(p, T), we obtain

1% 1%
dV=() dT+() dp
aT ), ap ),

Substituting the above in Eq. 3.8, we get

5Q—Cv"”[p +(av)T)((aT)pdT+(ap)rdp)

For a constant pressure process where dp =0, the above becomes

50, (au) (av)
=C,=C, il i
ar =" J{’H v ), \ar ),
or
Cc,-C, aU)
= = 3.18
p+(av : (3.13)

aT ),
which is the relation between the heat capacities at constant pressure and constant
volume.

3.4.4 Sreeciric HEeATs

The heat capacity per unit mass (or mole) is the specific heat. Accordingly, the spe-
cific heats at constant volume and at constant pressure from Eqgs. 3.9 and 3.15 are
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) ( du ) ( du ) - ( di )
c,=Lim|—| =| — ;¢ = —
aT=0\ AT ), \dT ), dar ),

. (dh) (dh) . _(dn
c,=Lim|— | =l —=|:¢,=|—
AT\ AT}, dT » dr )

Here, ¢, and ¢, denote the specific heats at constant volume per unit mass and mole,
respectively, while ¢, and ¢, denote the specific heats at constant pressure per unit
mass and mole. The specific internal energy per unit mass and per unit mole are

denoted by u = v and i = g, respectively, and similarly enthalpy per unit mass and
m n

. H ~ H
per unit mole are denoted by h=— and h=—.
m n

3.5 INTERNAL ENERGY AND ENTHALPY FOR AN IDEAL GAS
For an ideal gas where pV=nRT,
(BV) _ Ry
or), p

and assuming constant values of heat capacities C, and C,, we have using Eq. 3.10
and the definition of enthalpy function H=U +pV,

H,- Hy= Uy,— Uj+nRy(T,- T)
and
C,-C,=nRy (3.19)
orc,—c,=Ry;c,—c, =R

Substituting Eq. 3.19 in Eq. 3.18, we get

oU
(av), =0 (3.20)

Thus for an ideal gas, the internal energy is a function of the temperature only.
Similarly, it can be shown that the enthalpy function for an ideal gas is a function of
its temperature alone.

3.6 EXPERIMENTAL VERIFICATION OF DEPENDENCE
OF INTERNAL ENERGY ON TEMPERATURE,
SPECIFIC VOLUME AND PRESSURE

Numerous attempts have been made to determine experimentally the dependence
of internal of a gas on its specific volume. The early attempts were by Gay-Lussac
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and Joule at about the middle of the nineteenth century. Their experiments were
based on the adiabatic-free expansion of a gas into vacuum where there is neither
heat transfer nor work done by the gas. The first law indicates that the internal
energy is a constant since there is neither heat nor work interaction. Careful mea-
surements were made of the temperature change and within experimental accu-
racy, no temperature change was detected. Note that the experiment is extremely
difficult to carry out because the temperature change, if any, is extremely small.
More refined experiments were carried out subsequently with better experimental
techniques to minimize heat losses and with higher accuracy of measurements for
temperature. However, within the experimental error, no temperature change in the
free expansion was observed. With no temperature change being observed after the
free expansion, it may be concluded that the internal energy does not depend on
the specific volume.
The experiments also attempted to measure the so-called Joule coefficient

n= (?)T) , which should be zero if the specific internal energy u (internal energy
v

per unit mass, viz. U/m) does not depend on the specific volume v (i.e., V/m). We can

u

readily show that the Joule coefficient is related to (gu) from calculus. The cyclic
Vir

)G -

rule gives

Further, since (au) =c,
oT

. " . dc .
where cy is the specific heat capacity at constant volume, ¢y = Tv and using the
m

reciprocal rule, we write

oT 1(ou
=l — | =—| =— 3.21
n (BV)M cv(av)T 32D
Since cy is finite, if(aT) =0, then (814) =0 and
v ), v )y
u#zf(v) (3.22)

The early experiments were inconclusive. The idea of a precise measurement of the
Joule coefficient was finally abandoned due to the difficulty of the direct measure-
ment of temperature change of a gas in a free expansion.
. . [ ou
The more modern method involves the measurement of a related quantity (8
PJr
when a gas undergoes an isothermal expansion (where heat is transferred and work
is done). The extensive experiments by Rossini and Frandsen in 1932 at the U.S.
National Bureau of Standards indicated that the internal energy of a gas is a function
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of both temperature and pressure. They found no pressure and temperature range in

which (814) =0. They reported a value of (au) =— 6.08 Joule/(mole atm.). In the
ap T ap T

pressure range of 1-40 atm., they observed (gu) is independent of pressure, that is,
Py

(2_’4) — £(T) (3.23)
Py

Thus in general u = f(T)+g(T) p
where f(T') and g(T) are functions of temperature.

3.7 EXPERIMENTAL VERIFICATION OF ENTHALPY TO BE
INDEPENDENT OF PRESSURE FOR AN IDEAL GAS

To prove that the enthalpy is independent of pressure, Joule and Thomson carried
out a related “throttling” experiment. In this experiment, steady flow of a gas in an
insulated pipe is carried out with a flow restriction placed in the pipe to create a pres-
sure drop. Temperatures upstream and downstream of the restriction were measured.

Application of the first law shows that the enthalpy is a constant in the throttling
process. From the cyclic rule in calculus, we write

(5], (57), () -

oH ) __(9H) (or) __
(5], (57 (50), =

Thus,

where

is called the Joule Thomson coefficient. The experiment measures the temperature
across the restriction for given pressure difference and thus the Joule Thomson
coefficient is determined. For an ideal gas, it was found that =0 and therefore the
enthalpy is independent of pressure for an ideal gas and is just a function of its tem-
perature. We will discuss further about the Joule Thomson coefficient in Chapter 8
on thermodynamic coefficients.

3.8 FIRST LAW APPLIED TO OPEN SYSTEMS

Open systems or control volumes permit mass as well as energy exchange across its
boundary. Since in general, mass enters and leaves the open systems continuously,
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open systems are flow systems. Associated with the mass transfer, energy is also
carried with the mass across the boundary. Further, displacement work is done on
the system when mass is pushed in and work is done by the system in displacing the
mass leaving the system.

An open system with fixed boundaries is shown in Figure 3.1. Mass and energy
enter at Section 1 and leave at Section 2. Heat at a rate Q is supplied at the boundaries
and work at the rate W is also delivered at the boundary as shown. Since the bound-
ary does not move, the work is not displacement work as considered earlier; it could
be shaft work from a turbine, electrical work, etc.

The increase of internal energy in the open system is related to the energy enter-
ing the control volume at Section 1 and energy leaving at Section 2, and the heat and
work (Q and Wy) interactions at the boundary (control surface).

In order to derive a relationship between the rate of heat and work interactions at
the boundary and the mass and energy entering and leaving the system, consider a
flow into the open system at Section 1 of mass flow rate sy at pressure p;, specific
volume v; and internal energy per unit mass u;. Let the flow rate out of the control
volume at Section 2 be 1, at pressure p,, specific volume v, and specific internal
energy u,. Let the mass in the control volume at any instant of time be m and its spe-
cific internal energy (per unit mass) be u. If we were to consider a small mass Am to
flow through Section 1 into the control volume over a short duration At, the energy
into the control volume over this short duration would be:

Am(u1 + plvl) = mlAt(ul + plvl) = 17'11 At hl (325)

Here, p,v, corresponds to the displacement work of unit mass of gas entering the open
system at Section 1 at pressure p;. The specific enthalpy per unit mass is & =u + pv.

Similarly, over the short duration At, energy outflow from the open system at
Section 2 is

mZAt(Mz + szz) = l/i’lz At h2 (326)

Neglecting the flow velocities and consequently the kinetic energy within the open
system, we have from first law the change in the internal energy of the open system as:

AU = Q — W, +nyAthy — myAth, (3.27)

FIGURE 3.1 Open system.
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Dividing the above equation by At gives:

% = Q - WS + n'11h1 - 7’i’l2h2 (328)

If in addition to the internal energy, the incoming and outgoing fluids at Sections 1
and 2 have kinetic energy from the flow velocities and potential energy from differ-
ent heights above the datum, these kinetic and potential energies have to be included
in Eq. 3.28. The kinetic energy within the system, however, is generally negligible
compared to the enthalpies. But we may not be able to neglect the kinetic energy of
the gas entering and leaving the system since the velocity at the entrance and exit
could be large. Equation 3.28 therefore becomes

au _ . v’ , V3
—=0-Ws+m| h+—+gz |—my| hh+-—+gz 3.29
d 0 s 1(1 ) gl] 2(2 2 822 ( )
Here,v, and v, denote the flow velocities at Sections 1 and 2 while z; and z, denote the
heights above the datum. Equation 3.29 gives the rate of increase of internal energy
in the control volume.

The rate of mass addition in the control volume is given by the conservation of
mass:

dm _

=nmy—n 3.30
dr ny —ny ( )

For steady state, the rate of mass flowing in and out is the same, that is, i,y =r, =m

and LiTlt] = 0. Substituting in Eq. 3.29 gives:

T —2 =2
Q .WS — h2 +vi+ gz |- hl +L+gzl (331)
7 2 2

This is the steady flow energy equation for an open system.
If the datum or the potential energy of the incoming and outgoing streams is the
same:

. . —2 —2
0~V :(h2+‘§)—(hl+w) (332)

When the control volume is adiabatic and there is no work leaving the control sur-
faces (boundaries), that is, Q =0 and W5 =0, we get from the above equation:

=2 =2
V2 Vi
h—h=—"—-— 3.33
1 2 2 ) ( )
which is the familiar form of the energy equation for adiabatic compressible flow.

If the kinetic energies are negligible at the inlet and outlet, we have for steady flow

O—Ws=m(h,—h) (3.34)
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We find that we deal with the rates of the work and heat transfer in case of open
systems. Representing wg and g as work and heat interaction per unit mass, we can
write Eq. 3.34 as

qg—ws=h—h (3.35)

If we were to consider unit mass entering the system and follow its path through the
system, we can write the first law for this unit mass following Eq. 3.12 as

dh=6q+ vdp (3.36)
Heat g refers to heat transfer per mass entering the open system. Integrating Eq. 3.36

between the entrance and exit of the open system, that is, between pressures p; and
P2, we write for a steady-state process

P
Ah=h2—hl=q+Jvdp (3.37)
A
Thus,
P2
—J-vdpzq—(hz—hl) (3.38)

P
and comparing the above with Eq. 3.35, we obtain

P,
W, =—J.vdp (3.39)
A

To evaluate the above integral, the path of the change is to be specified.
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4 Second Law of
Thermodynamics

4.1 STATEMENTS OF THE SECOND LAW

The second law of thermodynamics is generally defined through two equivalent
statements. The Clausius statement says that spontaneous heat flow from a cold to
a hot reservoir is not possible. The Kelvin-Planck statement says that a perpetual
motion machine of the second kind (PMM?2) is not possible. By spontaneous, it is
meant naturally without any energy input to aid the process. A reservoir is a body of
large thermal capacity such that heat transfer from it will not change its temperature.
A PMM2 is a machine that takes heat from a single heat reservoir and converts all
the heat to mechanical work.

4.2 EQUIVALENCE OF KELVIN-PLANK AND CLAUSIUS
STATEMENTS

To prove the equivalence of the two statements, we show that if one of the statements
is not true, then the other is also not true, and vice versa. For example, if Clausius
statement is not true, then spontaneous flow of heat from a cold reservoir to a hot res-
ervoir is possible. We operate in a cyclic process a heat engine to take heat O, from
the hot reservoir at temperature 7, and reject Q, to the cold reservoir at temperature
T, as shown in Figure 4.1. We then let Q, to flow spontaneously back to the hot reser-
voir. The arrangement is a PMM?2 that takes Q,—Q, from the hot reservoir and deliv-
ers work W = Q, —Q, (Figure 4.1). Thus, Kelvin-Planck statement is also not true.
If Kelvin-Planck statement is false, a PMM?2 is possible. We let the PMM?2 to take
heat Q, from the hot reservoir and deliver work W = Q,, as shown in Figure 4.2.

YO,-0,

AO, - PMM2
W

=Q1_Q2

FIGURE 4.1 Violation of the Clausius statement equivalent to violation of the Kelvin-Plank
statement.
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Hot Hot

Cold Cold

FIGURE4.2 Violation of the Kelvin-Plank statement to a violation of the Clausius statement.

We use the work to operate a heat pump that extracts Q, from the cold reservoir and
deliver Q, ., W = Q, + Q, to the hot reservoir. The combination of the PMM2 and the
heat pump would result in the spontaneous heat flow of Q, from the cold to the hot
reservoir (Figure 4.2). Thus, Clausius statement is not true. Hence, the statements are
equivalent.

Note that the two statements of the second law should be considered as “highly
improbable” rather than “not possible”.

4.3 CARNOT’S PRINCIPLE

Using the second law, it can be shown that “no engine, operating in a cyclic process,
can be more efficient than a reversible engine operating in a cyclic process between
the same hot and cold reservoirs”. This statement is referred to as Carnot’s principle.

To prove Carnot’s principle, consider an engine X and a reversible engine R both
operating between a hot reservoir at temperature 7; and a cold reservoir at 7, as
shown in Figure 4.3. It is to be noted that both the engines work in a cyclic pro-
cess. Let engine X take heat Q, from the hot reservoir and reject O, to the cold
reservoir (Figure 4.3). Similarly, operate R to take the same heat O, from the hot
reservoir but rejecting heat Q, to the cold reservoir. The work output of X and R

would be W, = O, -0, and Wy = Q, — O,, respectively. The efficiency of X would be

Ny = % = Qléile and similarly efficiency of R is g = % - %
Hot
9
Wo=0,-0y Wp=0,-0,
0,
Cold

FIGURE 4.3 Operation of two engines between a set of reservoirs.
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Hot

Wet0,=0,

NS~

Cold

FIGURE 4.4 Irreversible engine X with efficiency greater than a reversible engine R.

Qz_Qz'

Qz_ Qz'

T,

FIGURE 4.5 Irreversible engine with efficiency greater than reversible engine leads to
PMM2.

If n, > ng, then Wy > W, and we can take Wj from the output of X to operate
R backward as a reversible heat pump which takes Q, from the cold reservoir and
delivers Wy + O, = (O, — Q,) + O, = Q, to the hot reservoir as shown in Figure 4.4.
The combination of X and R would be a PMM2 that takes Q, — Q,. from the cold
reservoir and delivers work (Wy, — Wy) = (Q, — Q») — (O, — O,) = Q, — Oy as shown
in Figure 4.5. This violates the Kelvin-Planck statement and thus X cannot therefore
be more efficient than R, that is, 17, <1z where the equality sign applies if X is also
a reversible engine.

4.3.1 Errciencies oF REVERSIBLE ENGINES

A corollary of Carnot’s principle is that all reversible engines operating between the
same hot and cold reservoirs must have the same efficiencies. The proof is straight-
forward. Denote R, and R, as the reversible engines. If g, > 1;,, then call R, engine
X and we have just proven that 1y = g, < 7g,. Alternatively if R, is more efficient
than R, call R, engine X and we have proved that 11y =g, < Ng,. Thus Nz, =Nz, and
similarly all reversible engines operating between the same hot and cold heat reser-
voirs will have the same efficiency, that is, g =g, =Ng, = ————.
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4.4 HEAT TRANSFER AND TEMPERATURE

Perhaps the most fundamental cycle in thermodynamics is the reversible Carnot
cycle. A cycle, it may be recalled, consists of a series of processes in which the sys-
tem is returned to its initial state at the end of the cycle. The Carnot cycle consists of
four reversible processes with two of them being isotherms and the other two adia-
bats as illustrated in Figure 4.6.

Heat Q, is absorbed in the isothermal process a—b wherein heat is taken in revers-
ibly from the reservoir at temperature 7;, and heat Q, is rejected reversibly to the
cold reservoir at temperature 7, from c—d. No heat is exchanged in the adiabatic
processes from b—c and d—a. The efficiency can be written as

0-0 (03
e % 41
="y 0 @D

Note that the Q’s in the above equation have absolute values because the signs have
already been taken into consideration.

If the working fluid in the Carnot cycle has n moles of an ideal gas, then for the
isothermal process a — b taking place at temperature 7;:

Viy
0 =W, = j pdV =nRyTiIn(V, /'V,)

Va

since the change in internal energy for the isothermal process in an ideal gas AU = 0
and therefore from the first law Q = W. Similarly, the heat rejected Q, in the case of
an ideal gas is

Va
O, =Wy = pdV =nRLn (V,/V.)

Ve

Since V.>V,, the absolute value of Q, is written as

Isotherms

T,=const.

Adiabats

0, T,=const.

Vv

FIGURE 4.6 Carnot cycle.
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0, = n RyDln (V. /Vy)

The efficiency of the Carnot cycle is then

l’lR()B In &
Va

O nRyT In Yo
V,

a

Further, the states “b” and “c”, “d” and “a” are on the reversible adiabatic process.
We can write the first law in a differential form for the adiabatic process as

00=0=dU+86W =dU + pdV

where pdV is the incremental work done in the slow quasi-static expansion or com-
pression. The change in the internal energy dU for an ideal gas of mass m (corre-
sponding to moles 1) and specific heat ¢, when the temperature changes by a small
incremental value dT is mc,dT and therefore

me, dT =—pdV

For an ideal gas where pV = mRT and ¢, —c, = R, R being the specific gas constant,
that is,

R ..
¢, =——,gIving
y—1

dT dv
==

which on integrating gives InT + (J/ - l)an =C, C being a constant.
We therefore have

LV, = BV and BV, = TV,
Thus, V./V, = V,/V, and the efficiency becomes

ne=1-2-1-1

O I
The above equation gives the important result that the ratio of the heat transfer equals
the ratio of the temperatures of the reservoirs for the Carnot cycle wherein an ideal
gas is used as the working fluid. Since the equation of state for an ideal gas is used,
the temperature T is the absolute temperature. Hence, the ratio of heat transfer in the
Carnot cycle using an ideal gas is equaled to the ratio of the absolute temperatures
of the reservoirs.

@2)
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TES!

2

FIGURE 4.7  Set of reversible engines with one being a reversible Carnot engine.

From the corollary of Carnot’s principle, we see that the efficiencies of all
reversible engines operating between the same hot and cold reservoirs are the same,
that is,

T’Rl = nRz = nR3 =——— (43)

If one of the reversible engines is a Carnot engine using an ideal gas as the working
fluid, as shown by the last reversible engine in Figure 4.7, we obtain

T
nm:nm:---:nR:nc:l—f “4)
1

Thus, we obtain the general result that for a reversible engine, the ratio of the heat
transfer must be equal to the ratio of the absolute temperatures of the reservoirs, that

is, Q =2 irrespective of what reversible cycle is used and what working fluid the

O T

reversible engine is based upon.

4.5 THERMODYNAMIC TEMPERATURE

In the last section, it was seen that the ratio of heat transfers from the reservoirs
equals the ratio of the absolute temperatures of the reservoirs exchanging heat in
reversible engines. This absolute temperature being proportional to heat transfer
provides a thermodynamic definition of temperature, which is dealt with in the fol-
lowing. To be able to do so, we first prove that the efficiency of a reversible engine
must depend on the temperature of both the hot and cold reservoirs it operates on.
We specify the temperatures of the reservoirs to be some arbitrary temperature 6. A
reversible engine R, operates between reservoirs at temperatures 6, and 6,. Another
reversible engine R; operates between reservoirs at temperatures 8, and 65 as shown
in Figure 4.8.
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9,

0,

0,

Oy

FIGURE 4.8 Reversible engines operating between reservoirs at temperatures ,, 0, and 6

4.5.1 ErriciENcY OF REVERSIBLE ENGINE DEPENDS ON
TeEMPERATURE OF BOTH RESERVOIRS

We operate both R, and R; to take the same heat Q, from the hot reservoir at tem-

perature 6,. The efficiencies of R, and R; would be ng, = &,n& = Wes where W,

O O

and Wy, are the work produced by R, and R;. If the efficiency of a reversible engine
depends only on the temperature of one reservoir, then ng =nNg, and Wy, = Wy,
since both take Q, from reservoir at 4.

If the temperatures are such that 8;< 6,< 6,, then we can operate another revers-
ible engine R, to take O, from reservoir at 6, and deliver work W,, rejecting heat Qs
to reservoir 8;. The combination of R, and R, is another reversible engine operating
Wei + Wy
————and

O
will be greater than the efficiency of Rj; if the efficiency depends on a single reservoir
at @,. This would violate the Carnot principle.

If Mgk, = Mgy, then Wiy + Wiy = Wisand (Q) - Q) + (0, -05) = 0, 0y =0, -
Q5 or Q5 = Q5. Thus, all reversible engines taking the same heat from the hot res-
ervoir must also discharge the same amount of heat to the cold reservoir since their
efficiencies are also the same in accordance with Carnot’s principle. Thus, the effi-
ciency of a reversible engine must depend on the temperature of both reservoirs.

between reservoirs 6, and 6;. The efficiency of R\ +R, is then 1z, .z, =

4.5.2 THERMODYNAMIC TEMPERATURE RATIOS

With the efficiencies of reversible engines depending on both reservoirs, we can
write the efficiencies of the three engines R,, R, and R; as

9= 1 % % 0.0)=11(6.0) @5

0,,6,)= ;
M (B1.62)=" )
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TIR2(92’93): QZQ_2Q3 = 1—%; %Z 1—77R2(92,93):f$2(93’92) (4~6)
77R3(91,93): QlélQS ZI—%; %:l_nR3(01993):f31(63’91) “.7)

where f,,, 5, and f5, are arbitrary functions of the temperatures of the reservoirs.
Since

0,_0 0
o O O

we see that

f31(93,91):ﬁ2(93,92)><f21(92,91)

The left hand side of the above equation is a function of #; and 6,, whereas the right
hand side is a function of 8,, 8, and 6;. This can be satisfied only if the function f5,
(65,0, has the form

_:(6)
R840

where ¢(0) is an arbitrary function of 6.
Hence,

05(65) _ 62(62) _ 5(65)
$.(6,) ¢ (6) ¢(6)

¢5(65)
51(65,61) = = f32(65,6, 21(62,6,) =
i (05.00) = o5 = F2(60,62)% £ (63,6

Without loss of generality, we can simply write the function ¢(8) as 8 itself. Thus, the
ratio of heat transfer is a ratio of the temperature 0 of the reservoirs, that is,

% = % @.8)
1 1

The temperature € is the absolute temperature since the heat rejected to the cold
reservoir cannot be less than zero. We can therefore define the thermodynamic tem-
perature on an absolute temperature scale based on heat transfer of a reversible heat
engine.

4.5.3 THERMODYNAMIC OR ABSOLUTE TEMPERATURE SCALE

To obtain a temperature scale, one simply measures the efficiency of a reversible
engine (hence Q, / Q) between two chosen heat reservoirs. Different choices of a
judicial system and various assignments of its temperature result in different tem-
perature scales. As an example, for the Kelvin temperature scale, we keep the triple
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point of water as a standard reservoir and assign a temperature of 273.16 K for the
triple point of water. By measuring the ratio of the heat transfer between a reservoir
at temperature 7 to a reservoir at the triple point of water where we have assigned a
temperature of 273.16 K, the temperature of the reservoir can be written as

T 273.16(£) @9

1.p

We have replaced € by T in the above for the absolute temperature. Q is the heat
transfer from reservoir at temperature T while Q, , is from the reservoir at the triple
point temperature of 273.16 K. The advantage of the thermodynamic temperature
scale is that it is independent of the type of reversible engine and the working fluids
used in it.

4.6 CLAUSIUS INEQUALITY

Clausius inequality states that for a system undergoing a cycle and delivering work
Ws while exchanging heat from various reservoirs at different temperatures, the sum
of the heat transfer divided by the temperature of the reservoir over the cycle of
operation is negative or zero, that is,

o
Z 7 <0 4.10)

cycle;
i=1,2...

The cyclic system with the interacting reservoirs at temperatures 71}, 75, ..., T is
illustrated in Figure 4.9.

To prove Clausius inequality, we first arrange to have the system exchanging
heat with only one heat reservoir at temperature 7; using reversible engines and
reversible heat pumps as indicated in Figure 4.10. Here, the total system within the
boundary includes the original system S exchanging heat with reservoirs at tempera-
tures T}, T, ..., T;, T; and T, and doing work W and the reservoirs at temperatures

T,

I,
I}. k

FIGURE 4.9 Schematic of cyclic system interacting with reservoirs and doing work W
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Boundary

FIGURE 4.10 System exchanging heat with a single reservoir through reversible engines
and reversible pumps.

T, T,, ..., T, T;and T, exchanging heat with only a single reservoir at temperature 7j,
through reversible heat engines and heat pumps.
Applying the first law to the system within the boundary, we get the total work

Wr= D W+Wo= ) 0, @11)

i=1,2,— Cyclic:
i=1,2,—

Here, ZWi is the sum of the work done by reversible engines and on the heat pumps
(all R’s viz., R, Ry, ..., R;, R;. R;,) and W is the work done by the system. ZQoi is
the net heat exchanges with the reservoir at 7j,.

For the reversible engines or the reversible heat pumps, we have from the equality
of ratios of heat transfer and temperatures

Qi _To

O T

where Q; represents the heat transfers between the system and the reversible engine
or pump at temperature 7; as shown in Figure 4.10. We get from the above equation

0, =T % 4.12)

From second law, we have 2 Q. <0; otherwise we would have a PMM?2 that vio-

cyclic
i=12,..

lates the second law (Kelvin-Planck statement).
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Thus 2 0O, = 2 To%z b 2 %SO

cyclic cyclic cyclic
i=1,2,... i=12,.. i=12,...

or 2 %so 4.13)

cyclic;
i=12,..

where the equality sign applies when the system undergoes a reversible cycle. If the
system interacts with an infinite array of heat reservoirs whose temperatures differ
by an infinitesimally small value dT with each supplying an infinitesimal heat 6Q;,
we may write Clausius inequality as

50
SB <0 @.14)

or @%:0 4.15)

where 6Q,., denotes the reversible heat transfer.

We could also prove the equality sign for a reversible process by addressing the
work done by a system. Since the system within the boundary in Figure 4.10 interacts
with a single reservoir, the work cannot be positive; otherwise we would have a PMM?2,
which violates second law. However if the work is negative, that is, work done on the
system, then it is possible to have such a system. The work, in this case, is dissipative
work that heats up the system, which then transfers heat to the reservoir. Negative
work means negative sum of heat transfer to the system and is acceptable. Now for a
reversible cycle, the work cannot be dissipative work. So if the work cannot be positive
(PMM2) and cannot be negative (reversible cycle), the work for a reversible cycle must
be zero. Accordingly the sum of heat transfer must also be zero for a reversible cycle.
We thus have the equality sign in the Clausius inequality for a reversible process.

4.7 ENTROPY

Since the integral of 90 over a cycle vanishes (Eq. 4.15), QTWV is a total differen-
tial. Accordingly we define a state function
ds = 90y 4.16)

T

where S is called the entropy.

4.7.1 ENTROPY STATEMENT OF THE SECOND LAw

For an isolated system undergoing an irreversible process from states 1 to 2, we can
seek a reversible path from states 2 to 1 and form a cycle. Thus,
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2 1
J.6Q1H+J.6Qrev=¢ds=5iggo
4 T ) T T

6Qrev
T

and since dS = , the above gives

2
Aszsz—s.zj‘sQTi" @17)
1

For an isolated system where 8Q = 0, the above yields
AS)isolated 20 (418)

with the equality sign applicable if the isolated system undergoes a reversible pro-
cess. Equation 4.18 is another statement of the second law. It is equivalent to the
Clausius and Kelvin-Planck statements. This can be easily demonstrated as follows.

4.7.2 EQUIVALENCE OF ENTROPY STATEMENT OF SECOND LAw
AND CrAusius AND KELVIN-PLANK STATEMENTS

Consider an isolated system consisting of a hot and a cold reservoir at temperatures
T, and T, with 7} > T, as shown in Figure 4.11. Let heat Q flow from the cold to the
hot reservoir, that is, from 7, to 7;. The entropy change of the isolated system (within
the dotted boundary) is

ASisola\ted:g_g:g E_l (419)
L . T\T

Since T} > T,, ASisotaea < 0 and thus heat flow from cold to hot reservoir is not possible
as stated by Clausius.

To show the equivalence to the Kelvin-Planck statement, consider an isolated sys-
tem consisting of a reservoir at temperature 7 and a PMM2 that takes heat Q from the

7z N N
7 N
/// Hot T, s Isolated
/ N System
II \
1 1
I 1
! AQ 1
\ I'
\ 1
\ /
\ /
/
AN Cold T-. 2 it
N 7

FIGURE 4.11 Isolated system comprising hot and cold reservoirs with 7} > T,
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/// \\
/7 T AN Isolated
/ \
/ /System
/ \
1 \
| \
i Yo !
| I
\
\ /
\\ /I
/
N (emm2pw-g
7
\\ //

~= -

FIGURE 4.12 Isolated system consisting of reservoir and PMM2.

reservoir and delivers work W = Q. The reservoir and PMM2 constitute an isolated

system (Figure 4.12).
The entropy change of the isolated system is

AS = L <0 4.20)
T

and thus violates the entropy statement of the second law as given by Eq. 4.18.
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5 Entropy

5.1 ENTROPY BETWEEN TWO STATES

Entropy is an important state function. It was defined by Clausius inequality in
Chapter 4 on the second law of thermodynamics as

as=(%)
T rev

To determine the entropy change between two equilibrium states, we need to inte-
grate the above equation along a reversible path linking the two states. Since the
entropy S is a state function, it is path-independent and it is not important what
reversible path is chosen for its determination. It may be recalled that for a reversible
path, all processes must be reversible, that is, both the mechanical and the heat trans-
fer processes. The reversible processes must be quasi-static, that is, proceed through
a series of equilibrium states.

5.2 PATH INDEPENDENCE

That entropy is independent of the path is shown by considering two states of a
system of an ideal gas, namely, p;,V;,T; and p,,V,,T, with T} =T, = T. Thus, the two
states lie on an isotherm pV = nR,T =constant and is shown in Figure 5.1. The envi-
ronment is also considered to be at the same temperature (7, = 7). The isothermal
path is reversible and is chosen to determine the entropy change AS = S, —S;. Since
the internal energy of an ideal gas depends only on the temperature, we have for the
isothermal path dU = 0 and therefore the first law becomes 8Q,,, = pdV. Thus,

Vi

AS=J-6Q'€V =j£dv=nRoln& G.1)
T T v

1

Vi
1(py,V1.T))
Isothermal
/ (I,=T,=T=T,)

2(py, 15, T5)

FIGURE 5.1 Isothermal path for an ideal gas at the same temperature as the environment.
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1(p,V,T))
Isothermal
/ (T,=T,=T)

2py, V1)

FIGURE 5.2 Isothermal path with environment at temperature Tj different from path
T=T=T,.

We have assumed that the system exchanges heat with the environment at tem-
perature T, and Ty =T. If T; # T, then a reversible heat pump is used to effect the
reversible heat transfer as shown in Figure 5.2. Denoting 6Q, as the reversible heat
transfer during an infinitesimal part of the isothermal path from the environment at
temperature Ty, we have from the second law

80 _ 80 _ pdv
T, T T

The entropy change in the environment is therefore

AS., = —J' 9 _ Ry In Y2 (5.2)
T v

1

But
ASsys +AS.,, =0

in accord with the second law. This gives the entropy change between states 1 and
2 as

ASy =nR, ln& (5.3)
Vi
which is the same as Eq. 5.1 derived earlier.

We choose other paths between states 1 and 2: a reversible adiabatic path from 1
to 1" and a constant pressure heat addition path from 1" to 2 (Figure 5.3) or the revers-
ible adiabatic path 1 to 1’ followed by a constant volume heat addition path to give
the same state 2 (Figure 5.4).

For the reversible adiabatic path 1 to 1’, AS =0.
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Adiabatic path

pvY=const.
Constant pressure path

pPy=p;

P -1
T],:TZ(}T?) v

Environment at 7,

FIGURE 5.3 Path 1-2 comprising reversible adiabatic path 1—1" and constant pressure
path 1'=2 with reversible heat pump HP to ensure the reversible path.

l(pl,Vl,T1=T)

pVY=const.

2(p2>V25T2:T)

SWyp

FIGURE 5.4 Reversible adiabatic path followed by a reversible constant volume path.

For the constant pressure path 1' — 2 in Figure 5.3,

T
ASy, = j AT _c 2
T

T T;

where C,dT is the reversible heat transfer from the environment during an infinitesi-
mally small part of the constant path to make the path reversible. Hence,

=1 r-1

Ay, =C, ln[pl) " =c, 1n(V2) ’
D> Wi

and similarly for the constant volume path 1" — 2 in Figure 5.4

tcdr T. v
ASH2=J. T =CV1nT2=CV1n(V2)
T

I 1
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] L(p, V. T)
Reversible
constant volume

Reversible constant

pressure
2p,.V,.T)

6WHP, SQ:C],dT

Py=pPy @ 6WHP2

V.=V,

Li_py_ps

o [

FIGURE 5.5 Path 12 comprising reversible constant volume process 1—1" and reversible
constant pressure process 1'—2 with incorporation of heat pumps.

Since Cp ( y; ! ) =nRyand Cy (7/ - 1) =nR,, we obtained the entropy change as

Y
-t o
as=c,m| 2] =c,m| 2| =arym 22 (5.4)
" Vi v

in both the cases and is the same result as obtained before in Eqgs. 5.1 and 5.3.
We can try yet another reversible path: a constant volume heat transfer from 1 to 1’
followed by a constant pressure heat addition from 1’ to 2 as shown in Figure 5.5.
The entropy change is written as

T, T
AS=AS 1 +AS;, =CyIn—-+Cpln—
T T;

T Vs
=(Cp—Cy)In—=nRyIn— 5.5
(P V)nT]- nonv (3.5)

1

which is the same result obtained using different reversible paths from 1 to 2.

Although we chose a particular system of ideal gas, the results can be generalized to
any system.

5.3 GENERALIZED EXPRESSION FOR ENTROPY CHANGE

A convenient expression can be used to compute AS between two states. For a revers-
ible path linking two states, the first law can be written as

dU =80, — pdV
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where we write pdV for 6W,,. Since 6Q,., = Tds, we obtain

as=Lau+ PV (5.6)
T T

For a simple system described by variables p, V and 7, we can choose any combina-
tion of two of the three variables as independent variables, that is, 7, V; p, T; and p, V.

5.3.1 ENTROPY FROM INTERNAL ENERGY CHANGES: (VARIABLES T AND V)

Choosing 7, V as independent variables, we have U(7, V) and S(7, V) in Eq. 5.6 and
we write

(U U
dU(T,V)—(aT )V dT+(aV )T dv (.7)
0S aS
ds(T,V)= (BTJV dT+(aV)T dv (5.8)

Substituting for dU(T, V) from Eq. 5.7 in Eq. 5.6 and using Eq. 5.8,

1(oU 1 oU

(aU) can be expressed in terms of p, V and T and once the equation of state is
T

aT

given, we can then determine it. Since dS is a total differential, the differentiability

condition gives
2))-2(2)
ovilar ), ). or\\ov ), )/
9 l(a_U) _9f1 +(6_U)
avir\or), ) “ar\r{"\av ), )
(V) |9
T(p +(8V)TJ_(8T)V' o

WY _pfor) _
(E)V)T_T(BT)V p. 5.11)

Thus,

The above gives

and
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(g?) can be determined if the equation of state f(p,7,V)=0 is specified. As
14

an example, for an ideal gas where pV =nR,T, (81)) = 1Ry and (GU) =0.
or ), 'V av ),
This implies that for an ideal gas, the internal energy is not a function of V and is a
function only of temperature, a result noted in Chapter 3.
The entropy from Eq. 5.9 using Eq. 5.10 becomes

dS(T,V)=l(aU) dT+(ap) av (5.12)
T\oT ), aT ),
and for an ideal gas, the above reduces to

dS(T,V)zCVd%+nROd7V (5.13)

Hence, the entropy change from state 1 to state 2 for an ideal gas is

T
AS(T,V)= J'CV(T)(%T+nRO ln% (5.14)
T

5.3.2 ENTROPY FROM ENTHALPY CHANGES: (VARIABLES P AND T)

If p and T are chosen as independent variables, it is more convenient to use
the enthalpy function H=U + pV instead of internal energy U. In terms of
enthalpy, the first law is written as

dH =TdS +Vdp

and
1 1
ds(p.T) :?dH(p,T)—?Vdp (5.15)

We can write H(p,T) and S(p,T) as

dH(p,T)z(gI;J dT+(%Z) dp (5.16)

P T

dS(p,T)z(g;) dT+(ng dp (5.17)
p T

Combining the above, we obtain

_L(oH) o 1f, _[9H
dS(p,T)—T(aTdeT T(V (ap)ldp (5.18)
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The differentiability condition for dS gives

w(32)) (%))

Thus,
a(l(aﬂ) J :a[_l(v_(w) D
apTanTaTT apr
The above yields
1 oH oV
—\ V=== |=l=. 5.19
T[ (apl) (BT)p ©19)
Hence,

oH v
EIRCCIES

(aaH) can be evaluated if the equation of state is known. For an ideal gas, where,
Py

pV = nROT,(aV) = Ry and (BHJ = 0, that is, the enthalpy is independent of pres-
aT), p dp

sure and is only a function of the temperature as reported in Chapter 3.
Using Eq. 5.20, Eq. 5.16 gives

dH(p,T)=deT+(V—T(aV) ]dp (5.21)
o ),

and for an ideal gas
dH(T)=C,dT (5.22)

The entropy can be obtained from Eqgs. 5.18 and 5.20 as

dr (v
ds(p.T)=C —() dp (5.23)
"r \or),

For an ideal gas where (E)V) = n—RO, the above reduces to
aT ), p

ar - d
dS(p,T):Cp7—nR0?p
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or the change in entropy between two states 1 and 2 is

T
AS(T,V)= J.CP(T)dTT—nRO In 22 (5.24)
12

5.3.3 ENTROPY CHANGES AS A FUNCTION OF HEAT
CApACITIES: (VARIABLES P AND V)

If p and V are chosen as independent variables, we can obtain U ( p,V) and § ( D, V) in
a similar manner. We first write

du(p,v)= (gl;) dp +(g€) av

ds(p.v)= (gi) d +(§5) av

Using the chain rule for four thermodynamic variables, namely, U, p, T and V, we

have
W) (ar) () _
( oT )V ( Jp JV ( ou )V = 629

This chain rule for four variables is different from the cyclic rule for three variables,
which for variables U, T and p is

)
or )\ ap p J\oU
The derivation of the cyclic rule for the four variables can be seen as follows. For the

four variables V, U, p and T, we can express U in terms of 7 and V and 7T in terms of
Vand p to give

U oU
T. 2
dU = (BV) dV+(aT) d (5.26)
and
oT oT
dT = dv + d 5.27
(av)p (317) Y 27

Substituting dT from Eq. 5.27 in Eq. 5.26, we get

w(57), GG J ()5 e e
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However, U as a function of V and p gives

U U
dU=|— | dV+| — | d 5.29
(aV )p +(ap )V Y 62

Equating the coefficients of dp in Eqs. 5.28 and 5.29

U\ (ar U
) (ol | _f9U 5.30
(ST)V(SPJV (ap)v 30

This gives the chain relation between four state variables as

()G GE) -

Using this relation, we can write

W) _(U) (ar) _.(or
(apl _(aT )V(aP ) - C”(ap ) 63D

We can also write from the relation U = H — pV

(39) ) ) )

(5.32)
oT
coff) -
v ),
Thus, the internal energy change can be written as
oT oT
du(p,V)=C,| =— | dp+| C,| == | —p |dV. 5.33
(p ) (ap)v P [ ﬂ(av)p p] (5.33)
The above equation can be integrated for the particular case of an ideal gas where
pV =nR,T and ar -V and (BT) =L give
dp ), nR 1% , nR
dU=i(Vdp+pdV)=—id(pv)=c dT (5.34)
nRo nRO v '

Thus for an ideal gas, the internal energy is seen to be only a function of its tempera-
ture as obtained earlier.
Similarly, for the entropy, we write
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(5G] G5

(5.35)
_Cv[or
T \dp),
For the four variables S, V, T and p, we write
(), ()57, (50, (5)
ov ), \or),\ov ), T\ 9T J\ov ),
(5.36)
_Cr (BT)
~r\ov),
Thus from Egs. 5.35 and 5.36, we get
Cy(oT C (aT)
dsS(p,V)=—| — | dp+=L| — | dV 5.37
(p ) T(apl, vt T\ oV P ( )

Knowledge of the heat capacities C, and C,, and the equation of state will permit
Eq. 5.37 to be integrated.

5.4 ENTROPY CHANGES FOR AN IDEAL GAS

If we consider an ideal gas where T = V;(BTJ =L and substituting in
dp ), nR, \ oV , nR

Eq. 5.37 gives

ds(p,vV)=Cy b, C, dvv. (5.38)
p

For constant heat capacities C, and C,, the above integrates to yield

AS

pV7T =Ce® (5.39)

where y = —" is the ratio of the heat capacities and C is an integration constant.

\4
For a constant entropy process (isentropic process) where AS = 0; we obtain from
Eq. 5.39, the isentropic relation for an ideal gas to be

pV" =Constant (5.40)



6 Reversible Work,
Availability and
Irreversibility

6.1 REVERSIBLE WORK

It can be shown from Clausius inequality that the reversible work between two equi-
librium states is the same for all reversible paths linking the two states. It also follows
that the reversible work is the maximum work.

To prove the above, consider a real path X linking two equilibrium states. The
system exchanges heat with the environment at a temperature 7,,. For the real path X
linking states 1 and 2, as shown in Figure 6.1, the first law can be written as

AU =Qy — Wy 6.1)

where Oy and W, are the heat transfer to and work done by the system for path X.
Similarly for a reversible path R linking the two states (Figure 6.1), we write

We can form a cycle by going from state 1 to state 2 via a path X and return to state
1 by reversing along a reversible path R. For the cycle, we write

AU =0=(Qx - Wy)—(Qx — Wr)

Reversible
Path R

FIGURE 6.1 Reversible path R and irreversible path X linking states 1 and 2 with environ-
ment at temperature 7.
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Thus, Ox — QO = Wy — Wg. From Clausius inequality

ngo, Q. _Or
T Ty Tp

cycle

or

Ox—0r<0

The equality sign applies if X is also a reversible path. Hence, we obtain the result

Or 2 0x (6.3)

that is, the heat transfer for the reversible path is greater than that for a real path. It
follows that

Wy —Wr <0
and
Wi =Wy 6.4)

The equality sign in Eq. 6.4 applies if path X is also reversible. Further, the revers-
ible work is the same for all reversible paths linking the two states. The work from a
reversible path is therefore greater than that for a real (irreversible) path.

It also follows that the reversible work is the maximum work between two equi-
librium states, that is, W,,, =W,

rev ax*

6.2 WORK FROM DIFFERENT REVERSIBLE
PATHS BETWEEN TWO STATES

It would be of interest to show that the work done for different reversible paths
between two equilibrium states is indeed the same. Consider for simplicity, an ideal
gas whose state changes from p,, V, and 7] to p,, V, and 7,. Let us take T\, =T,=T,
thus, states 1 and 2 lie on the same isotherm (Figure 6.2).

The work done by the system when its state changes from 1 to 2 along the isother-
mal path at temperature 7 is

Vi

1
Vi

If the temperature T of the isothermal process in the system is different from the tem-
perature of the environment 7, and if 7> T, then a reversible heat pump is required
to transfer heat reversibly to the system during the isothermal expansion as shown in
Figure 6.2 to maintain reversibility. The heat pump work is given by
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FIGURE 6.2 Isothermal path 1-2 of system with reversible heat pump to transfer heat
reversibly from environment at temperature 7.

Wyp = | —— (6.6)

In the above expression, the coefficient of performance (COP) of the reversible heat
pump is the ratio of heat supplied by the heat pump to the system at temperature
T from the reservoir at T, to the work done on the heat pump. For reversible heat
exchange Q with the system at temperature 7 and Q, from the reservoir at tempera-
tures Ty, respectively, the coefficient of performance is

Q-0 T-T, (1_3
T

Substituting in Eq. 6.6 gives

T; V. V-
Wip = dev(l— 70) = nRoﬂnVZ’— nROToanZ

1 1

The work from the heat pump is supplied to the system and is negative. Thus, the
reversible work from 1 — 2 is

\% V2 \Z
W2 = nRyTIn——| nRyTIn — — nRyTpln —
12 = iy v (n 0 v nixglo V)

1 1 1

= nROToln& 6.7)
Vi
If we have an alternate path for the change 1—2; a reversible constant volume from
1— 1" and a reversible constant pressure from 1’ — 2 with the incorporation of heat
pumps, as shown in Figure 6.3,
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T o 101,11, 1)
Constant
volume path (reversible)

Constant pressure
path (reversible)
2(py, V5.7
d WHP, 80=C,dT
<33,
V=V, @ HP,
Py=pP
L_pe_p V)
T Py Dy V2 | TO l

FIGURE 6.3 Path 1—-2 comprising constant volume path 1—1" and constant pressure path
1'—2 with reversible heat pumps HP, and HP, to ensure the reversible path.

the work done for the first heat pump HP, to maintain a reversible constant volume
path is

o~ Jear(1-T)-c T
Wap, = C,dT -2 T, —T)-C,To)ln— 6.8
HP, COP ( 1 ) oln T (6.8)

Here, C,, is the heat capacity of the ideal gas in the system at constant volume. From
1" — 2, the work of the heat pump HP, is

T
o= | C 4 jc dT(l——) CT=T)-CThn - 69)
3

with C, being the heat capacity of the system at constant pressure.
The expansion work in the constant pressure process 1’ — 2 is

Vi
p2(Va=Vi)=nR,T (1—V‘) (6.10)
2

Thus, the total work 1 > 1" — 2 is

WHHQ=—(CV(TI,—T)—CvTolnE)— CP(T—TII)—C,,TOInl +nR,T -
T T, 1
(6.11)

Note that the heat pump work is taken to be negative as the work is done on the

reversible path 1 — 1" — 2. Since for the constant pressure process 1'— 2 for the ideal
I W

gas — = —, the above reduces to
T v
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1(p,V,T))

pVY=const.

2(py, Vo, T,=T,=T)

Wyp

FIGURE 6.4 Reversible path 1—=2 comprising of reversible adiabatic path 1—1" and con-
stant volume path 1'—2 with a reversible heat pump for the process to be reversible.

V;
Wisis2 = nRyThln =
Vi

6.12)

which is the same result as obtained previously in Eq. 6.7.

Consider a third alternate reversible path from 1 to 2 with a reversible adiabatic
(isentropic) path 1 — 1’ followed by a constant volume heat transfer from 1’ to 2
where V. =V,. This path is illustrated in Figure 6.4.

The work in the adiabatic expansion 1 — 1" is U, —=U,; = C, (T — Ty-). For the con-
stant volume heat transfer path 1’ — 2, the heat pump work is

T
Wip = jcv dT(l—%)=CV(T—Ty)—CVT01nTl 6.13)
T

1
The total work 1 — 1’ — 2 is therefore

-1
T VY vy
W52 = CyToln—=CyTy| — =nRyTyln— 14
151'52 violn V()(V) olo V. (6.14)

1 1

This is the same as obtained for the other reversible paths. Thus, this simple example,
using ideal gases, illustrates that the work for all reversible paths between two equi-
librium states is the same. The choice of the particular case of an ideal gas does not
influence the generality of the proof.

6.3 REVERSIBLE WORK OF A SYSTEM INTERACTING
WITH ENVIRONMENT: AVAILABILITY ©

An expression for the reversible or the maximum work can be obtained from the first
law. If Q.. is the heat transfer in the reversible path, we write

rev

vvrev = Wmax = Qrev -AU (615)
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FIGURE 6.5 Change of state of a system reversibly with use of reversible heat pump.

Consider a system that takes O, from the environment at temperature 7;, while going
from state 1 to state 2. If the temperature of the system differs from 7j, then to trans-
fer Q, to the system reversibly requires the use of a reversible engine (or reversible
heat pump).

Taking the system and environment as an isolated system, as illustrated in
Figure 6.5, the second law gives

ASisotaed = ASsystem + ASeny = ASgysiem — % (6.16)
0
where we have put AS,,,, =— &
But for the reversible heat troansfer in the isolated system
ASisotatea =0
Thus,
O = TOASsystem
and from the first law applied to the system, we write
AU =0y — Wy,
or
Wiey = Wanax = ToASys — AU = —A(U = T, S) 6.17)
=—-AD (6.18)

where @ =U —T;,S, is defined as the availability function. Note that the availability
function @ is not a state function since it depends also on the temperature of the
environment. Equation 6.18 states that the maximum work obtained between two
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equilibrium states of a system that interacts with the environment corresponds to the
decrease of the availability function.

6.4 REVERSIBLE WORK OF A SYSTEM INTERACTING
WITH RESERVOIR AND ENVIRONMENT

If the system takes O, from a heat reservoir at temperature 7y as well as O, from the
environment at 7, then the second law gives

AS et = Sy + ASp + ASpy = AS,y, — 28~ D0 _ 6.19)
where

ASres :_&; ASenv :_%

R Ty

Solving for Q,, we get

T
Qo = ToASeys + ToASws = ToASs = Or 6.20)
R
and substituting the above in the first law gives
Ty
Wmax = (QO + QR)_ AU = TaASsys + QR(1 - T_)_ AU
R
Ty
:—A(U—TOSSYS)+QR(1——J 6.21)
T
or
Ty
Wiax = AP+ Qg 1— — (6.22)
T

Note that to transfer heat reversibly from the environment and reservoir to the sys-
tem, reversible engines and heat pumps must be used. Further, if we transfer Q, from
the reservoir to the system, the heat received by the system is not Q. To transfer O
from the reservoir to the system, we first operate a reversible engine to take Q, from
the reservoir and discharge Qy (T;/Ty) to the environment. Then, we use a reversible
heat pump to take the heat from the environment and deliver it to the system. In other
words, we do not bypass the environment and go directly from the reservoir to the
system via a reversible engine. Figure 6.6 illustrates the system interacting with the
reservoir and the environment.
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R 0 -0 -
Environment R-T, Reservoir

FIGURE 6.6 System interacting with reservoir and environment.

It is important to remember what is specified in the above. We specify two
states of the system; hence ASs,; and AU. We specify the heat transfer from the
reservoir Q.. However, we do not specify the heat taken from the environment
Qo. The amount of heat Q, varies with the magnitude of W, and is defined in
Eq. 6.20.

6.5 REVERSIBLE WORK WHEN SYSTEM CHANGES ITS VOLUME

If the system changes its volume between states 1 and 2, that is, AV=V, - V,,
then displacement work pyAV is done by the system on the environment. This
displacement work would not be available for other purposes. Thus if we are
interested in the maximum useful work, then we have to subtract p,AV from
W_ .., that is,

max?

Wmax = Wmax — pOAV

useful
We can include ppAV in the availability function @ and define
D" = (U~ ToSys + PoViys) (6.23)

Thus, Eq. 6.22 is written as

Wmax = _Aq)y + QR (1 - ;:OJ (624)

useful R

Similarly, we modify Eq. 6.18 if the displacement work is taken into consideration,
that is,

Wanax = —AD" (6.25)

useful
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6.6 IRREVERSIBILITY OF A SYSTEM UNDERGOING A PROCESS

If the work obtained in an actual process between states 1 and 2 is W,,;, we can

compare this with the maximum work W, . given by Egs. 6.18 and 6.22. We define
the irreversibility I as

I =Woewar = Winax (6.26)
where I now serves as a qualitative measurement of how efficient a certain actual
process is. As defined in Eq. 6.26, the irreversibility / <0 with the equality sign hold-
ing good if the actual process is also reversible.

The irreversibility can also be expressed in terms of entropy change of the uni-

verse. Assuming both the actual and reversible processes take the same Q, and O,
from a heat reservoir at Ty, and the environment at 7T, respectively; AS,,, = —~~ and

R
ASey = _% Note that the entropy change of the environment and the reservoir do
0
not depend on the process that the system undergoes.

Writing the first law for the actual process in the system, we obtain
Wactual = —ToASeny — TAS s — AU (6.27)
For the reversible process,
Wiev OFf Wi = Qo + Or — AU
However, for a reversible process between the same two states,
AS niverse = ASgys + ASeny + ASes

)

To

+ ASgys + ASies =0

which gives
Qo = T)ASyys + ToAS e
Thus,
Winax = ToASsys + ToAS ey — TpAS s — AU
The irreversibility then becomes
I = Wacwal = Wnax

= (=TgAS1es = TyASeny — AU) = (TyAS,ys + TyASres — TrASre — AU)
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= _76 (ASsys + ASres + ASenv)

= —TyAS i (6.28)
Since
ASuniy 20
the irreversibility
I<0 (6.29)

Entropy is a useful state function that permits one to assess quantitatively the loss in
work potential of a real thermodynamic process.

6.7 TWO EXAMPLES ILLUSTRATING IRREVERSIBILITY

6.7.1 ExpansioN OF AN IDEAL GAs INTO VACUUM

Consider the example of the expansion of an ideal gas into vacuum inside an insu-
lated chamber as shown in Figure 6.7. Let n moles of a perfect gas be at initial state
(p,, V)) at temperature 7, to the left of the partition, which separates the gas from
the vacuum on the right side of volume V, — V,. The partition is removed and the gas
expands into the vacuum and the final state is (p,, V,) at temperature 7.

From the first law, we have for the expansion AU =0 and hence 7, =7, since no
work is done in the expansion into a vacuum. For an ideal gas whose equation of state
PV . Thus, the final state is p, = p‘ll—vl, T,=T,. The entropy

2 2

is pV=nR,T, we have p, =

. V; . .
change of the system is ASy,, = nRyln 72 The maximum work for the expansion is

1
obtained for an environmental temperature T, as
Winax = =AD = -AU + THASyy= nRToIn(V, / V) (6.30)
Thus, irreversibility of the process is

1= Wacl - Wmax =0- nRoToln% = _nRQToln& (631)
1 1

>
S

(Vz_Vl) —> Py Vs

FIGURE 6.7 Expansion of an ideal gas into vacuum.
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since the actual work W, of the process of expansion in vacuum is zero.
We can alternatively find I from /= — T)AS, Since the system is completely

isolated, it is the universe and thus

universe*

ASuniverse = ASsys = nRoln%

1

The irreversibility is therefore I = W, — Wy :—nRoToln%, which is the same
1
given in Eq. 6.31.

It is instructive to obtain the above results from basic considerations. Given state

1 (p;, V)) at temperature 7; and state 2 (p,, V,) at temperature T,, where 7, =T, and
Vi . .

P = P71 Gince states 1 and 2 lie on the same isotherm T, =T,=T=constant, the
2

total work of the reversible isothermal process is

v v,
av = [ nR,T % = uR,T 1n 2
J p Ty T,

1

If the environment 7, <7, then a reversible heat pump must be used for the heat
transfer (Figure 6.8). The work of the heat pump is

Wigp = J PV )R TInY2 —aR Ty Y2
U1-T,/T) 7 7

The maximum work is for the reversible path and is

Wmax =W- WHP = nR()T ln% — |:I’lROT 11'1% — nRoToln‘/z]

1 1 1

U=constant
/ (T=constant)

FIGURE 6.8 Expansion of an ideal gas into vacuum from state 1 to state 2.
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V,
=nRyToln—
040 V

1

Thus, the irreversibility is
I=Wy —Wyax =0— nR()Toln& = —nR()TOln&
Vi Vi

This is the same result obtained from the availability function.

6.7.2 CoolLING oF A Cup oF Hot COFFEE

We can consider another example of the cooling of a cup of hot coffee at 7} to room
temperature Tj illustrated in Figure 6.9.

The process is constant volume heat transfer from the coffee to the environment.
The heat exchange takes place across a finite temperature and the process is irrevers-
ible. The actual work of irreversible cooling is zero, W, ., =0. However, we cool the
coffee reversibly and obtain some work.

From first law analysis, the heat transfer is

Q=AU =mc(Ty-T)) 6.32)

where m is the mass of coffee and c is the specific heat.
The entropy change of the coffee is

AScoffee = mcln? (6.33)

1

The maximum work that can be obtained between the two states can be found from
the availability function, that is,

Wmax =-AD=-AU + T()AScoffee

= —mc(TO —Tl)+T0mcln?
1

= -mcT E—l +1n£
Ty A

Since W, . =0, the irreversibility is obtained as

FIGURE 6.9 Cooling of a cup of hot coffee in the environment.
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I =Wy — Wou =—mcT |:(Tl - 1] +1In T0:| (6.34)
T; T;

0 1

Alternatively, we can find the irreversibility from entropy considerations, that is,

I= _TOASuniverse = _’E) (AScoﬂ'ee + ASenv)

with AS.me = meln 2 and AS,., = me(hi = Tp)
T Ty

I =—-mcT, ﬁ—l +ln£ =mcT 1—5 +1n£
Ty T Ty Ty

which is the same result obtained earlier in Eq. 6.34.

We can also do the problem from basic considerations. We can find the maximum
work by reversibly cooling the coffee at constant volume using a reversible engine
between the hot coffee and the environment as shown in Figure 6.10.

The work of the reversible heat engine is

Thus,

Ty

T

T

Ti T:
=—mcTy| 1— Ll mcTyln -0
Ty T

=-mcTy|| 1—- Ul +ln£
Ty Ty

dQ = —mcdT = -dU

T,
AWy = d0 = (1—7")

T,
=—mecdT (l— TO)

Ty

FIGURE 6.10 Reversible engine between system and environment.
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Since constant volume heat transfer does not produce any work, the maximum work
is just the work from the reversible heat engine. This gives

I = Wi = Wy =meTy|[ 1= 20 |41 10
%) ",

which is the same result as obtained earlier in Eq. 6.34.

6.8 IRREVERSIBILITY IN OPEN SYSTEMS

Consider rate of heat transfer O, to an open system from the environment at 7, and
O from a reservoir at Tx. Thus, 0 =0y + Ox. For the process in the open system
where i1y and i, are the mass flow rates entering and leaving the open system with
specific enthalpies iy and h,, respectively, and U is the rate at which the internal
energy of the system increases, the non-pdV work done from the first law for open
systems (Chapter 3) gives

Wactwar = (Qo + Op o + Hihy — riyhy — U (6.35)

The kinetic and potential energies of the gases at the entry and exit are not consid-
ered in the above. For the maximum rate of work done, all processes must be revers-
ible. Thus to transfer heat reversibly from the environment and the reservoir to the
open system, reversible heat pump and engine must be used. The work required by
the heat pump and the work obtained from the engine are included in the work from
the system. The first law is now written as

Woax = (Qo '|'QR)e +mhy — myhy —
For maximum work, all processes must be reversible, thus giving
Suniverse = SSyS + Senv + SI‘GS = 0

The net entropy change of the environment is written as

: O . )
Seny = ——— — sy + 11,8,
Ty

where s; and s, are the specific entropies entering and leaving the system. The envi-
ronment loses entropy when the mass carrying the entropy #s; enters the system.

Similarly, the environment gains entropy when the mass is discharged from the
system to the environment. We therefore write

~ o« Qo . Ok
Suniverse = Ssys - —mys; +mys — =0
Ty k
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where the rate of entropy change in the reservoir of temperature 7}, with rate of heat
transfer across it is _Or = S

. R
Solving for Q,, we get

Qo = TOSsys - l:mm —1i1p8, — %:|To

R

Substituting the above expression for Q, into the first law, we write

1—%)4‘7;’!1(’11 —Y-E)Sl)_l’l.’lz(hz_T()Sz)_U (636)

R

Wmax = TOSsys + QR(

Defining the open system availability function ¥ per unit mass as

v =h-Tys (6.37)

similar to the closed system availability function as
O =U —TySy;s (6.38)
the maximum rate of work done by the open system is written as

1—;0)+n'11‘{’1 +m,¥, (6.39)

R

Wmax = _(b + QR (
For steady flow where 71, = ni1, = m and U= O,Ssys =0, we write
Wiax = qR(l_,Z:O)_A\P (640)

R

where AY =W, — ¥, Wy, is the maximum work per unit mass and gy is also the
heat transfer per unit mass that flows through the system.
The irreversibility can be obtained from Egs. 6.35 and 6.36, that is,

j = Wactual - Wmax (641)

orl/ :[QO +QR +mlhl_mzhz_U]_[Tz)Ssys'FQR(l_’TO)"'ml(hl _Tosl)_mz(l’lz _T()Sz)_U}

R

Noting that Se,, = _Q 1S, + Hiysy and Sp, = Y3
TO TR
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The above equation reduces to

I=-T, (Ssys + Senv + Sres) = —ToSuniverse (6.42)

The above result is similar to the irreversibility obtained for a closed system except
that for open systems, it is the rate of irreversibility.



Thermodynamic
State Functions

7.1 INTRODUCTION

Heat and work interactions among different systems depend on the relevant changes
of the thermodynamic states and the thermodynamic properties of the systems. The
thermodynamic properties could either be determined experimentally or from the fun-
damental properties of the molecules through statistical thermodynamics. The latter
is due to the large number of molecules in a system behaving as a group in a statistical
way. Some of the thermodynamic properties can be measured directly, for example,
pressure, temperature, volume and mass. Specific heats can also be obtained via calo-
rimetric measurements. However, thermodynamic state functions, which define the
equilibrium state of a system, irrespective of how the equilibrium state is reached, are
not directly measurable. Thermodynamic relationships must be developed to permit
the state functions such as internal energy and entropy to be obtained from the mea-
surable thermodynamic properties or variables. The thermodynamic properties that
cannot be directly measured could also be expressed in terms of those that can be
readily measured. In this chapter, the state functions and thermodynamic properties
are discussed and the relationships between them are derived.

7.2 STATE FUNCTIONS

7.2.1 INTERNAL ENERGY

The internal energy U was introduced in connection with the first law, that is,
dU =060 - 6W (7.1

where 00 is the heat transfer to the system and 6W is the work done by the system
when the system undergoes a process. The change in internal energy dU is path-inde-
pendent (i.e., a total differential), whereas §Q and 6W are path-dependent quantities.

A simple hydrostatic system is characterized by its internal energy U and its mass .
For simplicity, we initially consider a single component system and its state is charac-

terized by the internal energy per unit mass (specific internal energy) u = g
m

7.2.2 ENTROPY

The thermodynamic state function entropy was defined from the second law as

_ erev
T

ds (7.2)
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dQ.., in the above expression is the reversible heat transfer between two neighboring
states and is path-independent since the reversible heat transfer is the same for all
reversible paths. Thus, we write dQ,., as a total differential. The reversible work dW,,,
between two neighboring states is also a total differential since the reversible work is
the same for all reversible paths.

For a reversible process, the first law can be written as

dU =dQy, —dW,, =T dS—p dV (7.3)

Here, we have written dW,, = p dV and dQ,., =T dS. Comparing Eqs. 7.1 and 7.3,
we note that for an irreversible process 6Q # T dS and 6W # pdV. Since Eq. 7.3 is a
relationship expressing the change of a state function U, it is valid for all processes.

. . S.
If we were to define specific entropy as entropy per unit mass| s = — |in a man-

ner similar to specific internal energy u, Eq. 7.3 reduces to

du=T ds— pdv (7.4)

where v is the specific volume, that is, volume per unit mass. In the above, u(s, v), that
is, specific internal energy u is a function of specific entropy (s) and specific volume (v).

Although the relationship 7.4 is derived based on reversible process, that is,
dQwy =T dS and dW,, = pdV, it is a relation between state properties for two
neighboring states and is not process-specific. So if we have an irreversible process
between two states, the relation

dU =60 — W
applies and so does

du=T ds— pdv

though T dsis no longer 8Q and pdv is not 6W.

7.2.3  ENTHALPY

In a number of processes involving open systems, the state function enthalpy
H = U + pV is more convenient to use. The term “p V” can be thought of as the dis-
placement work done on a system for it to occupy a volume “V” in an environment at
a pressure “p”. Thus, the enthalpy is a more appropriate state function in open system
analysis involving mass transfer.

From definition of enthalpy, we can write Eq. 7.3 as

dH = TdS + Vdp (7.5)

i . . H .
Writing specific enthalpy (enthalpy per unit mass) as # = —, we can write the above
m

equation as
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dh=Tds+vdp (7.6)

which is the relationship between state properties.

7.2.4 HewmHoLTZ- AND GiBBS-FREE ENERGIES

Two other important state functions are the Helmholtz function “A” and the Gibbs-
free energy “G”. They are defined as follows:

A=U-TS (7.7)
and

G=H-TS (7.8)

. . . A . .
respectively. The specific Helmholtz function (az—) and specific Gibbs-free
m

energy ( g= %) from Egs. 7.7 and 7.8 become
a=u—"Ts (7.9)
and
g=h—Ts (7.10)
From the first law, we write for any system

SW =80 —-dU

and the second law gives 6Q < T dS. Therefore, the work done is an isothermal
process in which the system interacts with a single reservoir at the same temperature 7

OW <—d(U -T5)
or
oW <—dA (7.11)
Thus, the work done is less than the decrease in the Helmholtz function for any
isothermal process. The equality sign refers to a reversible process in which case, the
work is maximum and equal to the decrease of the Helmholtz function.
For an isobaric and isothermal process, we can write

SW =8W'+ pdV < —dA

where W' is the non-pdV work. The non-pdV work can be written as
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SW'S—dA-pdV =-d(A+pV) (7.12)
Since
A+pV=U-TS+pV=H-TS=G (7.13)
we obtain the result
OW'<—-dG (7.14)

that is, the non-pdV work done by a system for an isobaric and isothermal process
corresponds to the decrease in the Gibbs-free energy. The term free energy is there-
fore used for the Gibbs function to avoid any confusion. If there is no non-pdV work,
that is, 6OW'=0, then

0<-dG (7.15)

In other words, the change in Gibbs-free energy is negative or the system evolves in
the direction of decreasing Gibbs-free energy. At equilibrium for which no work is
possible dG = 0 or G is a minimum.

7.2.5 SUMMARY OF RELATIONSHIPS BETWEEN STATE PROPERTIES

Summarizing, the state functions are U, H, A and G and their change between two
neighboring states are:

du(S,V)=TdS - pdV (7.16)
dH (S,p)=TdS + Vdp (7.17)
dA(T,V)=-SdT — pdV (7.18)
dG(T,p)=-SdT +Vdp (7.19)

The above four state functions, U, H, A and G, can be written per unit mass, namely,
u, h,a and g as

du(s,v)=Tds — pdv (7.20)
dh(s,p) =Tds +vdp (7.21)
da(T,v)=—sdT — pdv (7.22)

dg(T,p)=—sdT + vdp (7.23)
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The state functions enthalpy, Helmholtz function and Gibbs-free energy could also
be mathematically derived using the Legendre transformation as given in the next
section.

7.3 DERIVATION OF STATE FUNCTIONS USING
THE LEGENDRE TRANSFORM

Consider a function z(x, y). We write

dz(x,y) = (gfc) dx + (aZJ dy = adx + a,dy

wherealz(gz) andazz(gz)
x y y X

If we write
aydx = d(ay,x)— xda,
then the above equation becomes
dz(x,y)=d(ax)— xda, + a,dy
and rearranging the above expression, we get
d(z—aix)=—xda, + a,dy
We can define a new function &; = z — a;x and obtain
do (a, ,y) = —xda, + a,dy (7.24)
Writing d (az, y) = a,dy + yda,, Eq. 7.24 can be rearranged to read
d(on —ary)=dos (ar,a,) = —xda, — yda, (7.25)
o (a1,a,) is now a function of the new variables @, and a,
The above manipulation is known as Legendre’s transformation and permits defi-
nition of new state functions.
Applying Legendre’s transformation to the first law, that is, Eq. 7.4
du=Tds — pdv =du(s,v)
we obtain

dh(s,p)zd(u+pv):Tds+vdp
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where the new function
h=u+ pv

is the specific enthalpy.
Writing Eq. 7.4 as

duszs—pdvzd(Ts)—sdT—pdv
we obtain
d(u—Ts)z—sdT—pdvzda(T,v)
where
a(T,v)=u—-Ts

is the Helmholtz function.
Similarly, we write for enthalpy

dh=d(T s)—sdT+vdp
ord(h=Ts)=-sdT +v dp=dg(T.p)
where
g(T.p)=h-Ts
is the Gibbs-free energy.

7.4 MAXWELL'S RELATIONSHIPS FOR STATE VARIABLES

The derivatives of the state functions u, 4, a and g are total differentials. Using the
condition for exact differentials, a number of important relationships can be obtained.
From Eq. 7.4 for specific internal energy,

du=Tds—pdv

we obtain

aT) __(9p
(2 l_ (2 ) (7.26)

Similarly from Eqgs. 7.6, 7.22 and 7.23, for specific enthalpy, Helmholtz and Gibbs-
free energy, we get
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ar) (av
(5] -3, a2
) (o
(av ) ‘(aT)v 729

ds v
() =), o

The above expressions (Eqs. 7.26—7.29) are referred to as Maxwell’s equations. They
relate to the state variables p, v, T and s in terms of partial derivatives. They do not
refer to a specific process, but relate to the various variables for a given equilibrium
state. It may be noted that though entropy is a state function, it can also be used as a
variable in the same way as internal energy is used as a state variable.

7.5 THERMODYNAMIC POTENTIALS AND FORCES

In Eq. 7.4, the internal energy is expressed as a function of entropy and volume, that
is, u(s,v). We can therefore write

du(s,v)z(gbst) ds+(§i) dv (7.30)

and equating the coefficients of ds and dv in the above with Eq. 7.4, we obtain

_(ou) _ (ou
T‘(asl’" (a) (730

Similarly from Eq. 7.6 for A(s, p)
dh(s,p)z(ah) ds+ a—h dp (7.32)
os » ap ),
and equating coefficients of ds and dp from Eq. 7.6
T:(ah) vz—(ahj (7.33)
ds ), ap ),

In a similar way, we write for da(T,v) and dg (T, )

da da
da(T,v)= (ﬁ)v dT+($)T dv (1.34)
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g g
dg(T,p)z(—) dT+(—] dp (1.35)
aT ), ap ),

Equating coefficients of d7, dv and dT and dp, respectively, in Eqs. 7.34 and 7.35 and
comparing with Eqs. 7.22 and 7.23 for da and dg, respectively, we obtain

_ (9a __(90a
o= (arl r= (a) (730

__(98) ,_[9
s = (aT)p v—(apl (7.37)

Equations 7.31, 7.33, 7.36 and 7.37 give the thermodynamic variables 7, p, v and s in
terms of gradients of state functions u, &, a and g. In analogy to mechanics, we can
interpret the state functions u, h, a and g as thermodynamic potential functions and
the state variables s, T, p and v as thermodynamic forces or properties.

and

7.6 DETERMINATION OF STATE FUNCTIONS

7.6.1 INTERNAL ENERGY

Equation 7.4 gives the internal energy u(s,v) as functions of entropy s and v. However,
entropy is not a directly measurable variable and it is more convenient to use the
measurable variables p, v and T as independent variables. Choosing 7 and v as inde-
pendent variables, that is, u(7,v) we write

du(T,v)=(au) dT+(au) dv (7.38)
v T

oT v
The specific heats are the heat capacities on a per unit mass (or mole) basis defined

. u .
as specific heat at constant volume ¢, =| — | and specific heat at constant pressure

oT
cp= () . Equation 7.38 therefore becomes
or J,

v

du(T,v)=c,dT +(8u) dv
v /),

Sincea=u—-"Ts

(o) -(5n) (),
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and from Eq. 7.36 and the Maxwell equation (7.28), we obtain

ou ap
— | =—p+T| = 7.39
(5:), (5 )
Thus,
Jp
du(T,v)=c,dT +| T or —plav (7.40)

(E)p) in the above equation can be evaluated from the equation of state f(p,v, T) =0.

oT

v

Hence the change in internal energy can be expressed in terms of measurable quantities,
that is, specific heat, thermodynamic properties and equation of state. As an example,
for an ideal gas where pv = RT, Eq. 7.39 indicates that

()

Hence, u is a function of T alone for an ideal gas, that is,
du=c,dT (7.41)

If p,T are chosen as independent variables, then

Ju Ju

du(p,T)=(aT)p dT+[apl dp (7.42)

From definition of specific enthalpy

h=u+pv
ou oh dv v
R I ) iy A e 7.43
(aT)p (BT)P p(aT)p r p(aT)p (7:43)

With a=u — Ts, we get
ERER O R
ap), \dp), ap),

we write

and using Eq. 7.36, we get
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S AT e
ap ), \ov/);\dp), op

Substituting the values of the partial derivatives from Eqs. 7.43 and 7.44 in Eq. 7.42
with Maxwell relation (7.29), we write

du(p,T)=|: - (g;) :ldT+l (g;)T—T(g;) :ldp (7.46)

Thus, the change in u(p,T) for the corresponding change in temperature and pres-
sure is expressed in terms of the specific heat ¢, the isothermal compressibility

v . v
— | and the volume expansion term | — | .
), aT ),
In terms of p,v as independent variables, we write

ou Jdu
du(p,v)—(g] dp+ (av) dv
a0 () () o2
dp), \dT )\ dp), "\ op )
Also with h=u+ pv
i), () o= ) (55 =l50) -
op), \av), """ \ar ) \av )P v ), 77
du(p,v)=[cv(aT) :ldp+|:c,,(aT) —pjldv (7.47)
ap ), v/,

For an ideal gas where, pv = RT, or 1 and (BT) =P giving
ap r), /), R

Since

Hence,

c c
du(p,v)=—"vdp+ p—l)dv
(pv) =" vdp p(R
With ¢, — ¢, = R for an ideal gas, the above becomes

du(p,v)= 2 (vdp+pdv) R d(pv) R (RdT)= c,dT
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We therefore obtain the same result du = ¢,dT for an ideal gas.

Internal energy changes can thus be obtained from Egs. 7.40, 7.46 and 747 as
functions of the changes in (v, T), (p, T) and (p, v) respectively. They all reduce to
du = ¢, dT for an ideal gas.

We can also show that the internal energy for an ideal gas is a function of tempera-
ture 7" and not v through the following alternate procedure.

We have for internal energy:

Jdu Ju
du(T,v)= (BT)V dT + (avl dv

and from the first law
00,y = du+ Wy, = du+ pdv
or
Tds = du+ pdv giving

ds= L du+Lay
77T

The above can further be written as

zﬁ:l(a“)cw+(a”)dT +Pay
T{\av), aT ), T

m:lvm)+p¢w+l(w)dT
\ov), " T r\or)

Js ds
Butds(v,T)=| — | d — | dT
ut ds(v,T) (BV)T v+(aT)v

) o) =) )

ov J,\dT ), oT J\ov ),

For an ideal gas therefore
a) l(au) :3) 1(3“) LR
ov).|T\aoT ) | o) |T\ov), v

Hence 1 0%u =1 o%u 1 (au)
"TOvoT ToTdv T*\ov),

Simplifying we get
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This gives

Ju
1 -0
(av)r

so that u # u(v) but u = u(T) alone for an ideal gas.

7.6.2 ENTHALPY

(7.48)

If it is desired to express the enthalpy as a function of T, p, that is, h(T, p) we write

oh oh
dh T,p)z() dT+(] dp
( aT ), ap ),

But
)
or), '

g=h—-Ts

(55 15)

From Eq. 7.37 and Maxwell’s equation (7.29), we have(g—g)
T

p

and using the Gibbs function

we write

and therefore

Hence,

ov

dh(p.T)= c,,dT+(v - T(aT)dep

For an ideal gas (ﬂ) _R and therefore
aT), p

dh(p,T)=dh(T)=c,dT

:v;(

as
dp

)

)
or ),

(7.49)
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that is, enthalpy of an ideal gas is a function of temperature only.
For specific enthalpy expressed as a function of temperature and specific volume

h(T,v), we first write
oh oh
dh(T dar + d
(T.v)= ( T) (aV)T !

Since h=u+ pv

oT v oT v aT oT v
Using the Gibbs-free energy, g = h—Ts

oh g ds dJg (8 ) (apJ
- = — T
We can express ( > )T ( 3 )T + (av )T (apj v ), oT ),

Here, we have used Maxwell equation (7.28), viz. ( ) (ap)

+

Further using Eq. 7.37, the above becomes

oh op Bp)

-y 22 T

(avl v(av)ﬁ (ar
and we obtain

dn(T, v)—(c +v(gT)deT+[ (?fv’lw(g;) )dv (7.50)

For an ideal gas where pv = RT

9p = 5, 81)) = —E and therefore the above equation becomes
oT ), ov Jr v?

(T )= (e, +R)dT+(—p+E)dv —(c+R)dT = c,dT
v

the same result as obtained previously indicating that #(7T') only.
Similarly for, h( p,v) we write

dh(p,v) = (g?)] dp+(gﬁ) dv
v 14

(3), 767 (50), == {5%),

where



84 Fundamentals of Thermodynamics

and for (g—h) we obtain using h =u+ pv

pPJ,
) () () (7] o,
apv_apv _BTvapv

Hence,
dh(p,v):c,,(aT) dv+|c, a—T +v |dp (7.51)
av » op ,
For an ideal gas where pv = RT and (BT) _P , . a—T = 1, we obtain
o), R dp), R

dh(p,v) = (cp %)dv +(cv %+ v)dp

c c
= }p(pdv-i-vdp) =}pd(pv) =c,dT

Enthalpy changes can thus be obtained from Eqs. 7.49, 7.50 and 7.51 as functions of
changes in (7, v), (p, T) and (p, v) respectively. They all reduce to dh = ¢,dT for an
ideal gas.

7.6.3 ENTROPY

Entropy is defined as

_ erev
T

ds

Thus to determine the specific entropy change between two states, one chooses a
reversible path to connect two states and compute the reversible heat transfer per unit
mass of the system. However, analytical expressions can also be obtained to determine
the entropy change. If T and v are the desired independent variables, we first write

ds ds
To)=| 25| ar+| 25| a
ds(T,v) (8T)vd +(8V)T v

We also note
323 -
or ), \ou)\or) T

. . ds Jap
Maxwell’s equation (7.28) gives | — — 1.
quation (7:28) & (av ) (aT)V
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Hence,

ds(T,v):cvdT+(ap) dv (7.52)

For s(p,T), we write

ds(p,T) =(§;) dp+(aa;) dar
T p

and using the relation
()220
or), \on)\oT), T

and also the Maxwell equation (7.29) which gives 9s = _(av) , we get
p ), oT

p

dT ( dv
ds(T,p)zc —() dp (7.53)
"1 \or),

For s(p,v), we first write

ds(p,v) =(§;) dp+(§‘s}) dv
v p

J can be written as
PJ,

o) () () (2) - e[
ap ), au‘,aTVava”apv

Similarly for (gs) , we have
v

r

(5:), G G ) (50 = (50)
av p_ oh ) ,\dT ) \ dv p_Tp v/,

ds(p,v)=cv(3§) dp+c"(g€) dv (7.54)
v p

A

The differential ( 5

Thus, we obtain

T T
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Equations 7.52-7.54 give entropy changes as function of changes in (7, v), (7, p) and
(p, v) respectively

For an ideal gas where pv = RT, (Bp) = 5 (av) = 5 Egs. 7.52-7.54 give
aT) v \dT) p
ds(T,v)chd—T+§dv (7.55)
T v
dT R
ds(T,p)=c,———4d
s(T.p)=c, T % (7.56)
ds(p,v)zcvd—p+cpﬂ (7.57)
p v

If specific heats ¢, (T) and ¢, (T') are given, we can readily integrate the above equa-
tions for an ideal gas to determine the change of entropy. For constant values of ¢,
and ¢,, the above equations integrate to yield

As(Tv) 1n(T2J(V]H (7.58)
¢ T )\ v '

r=1
As(Tp) n(TZ](”Z) ’ (7.59)
Cp Ti D
M — m(&)(ﬁ)y (7.60)
Cy )2 Vi

7.7 THERMODYNAMIC FUNCTIONS FOR DENSE GASES

The equation of state for dense gases is more complex. The p, v and T data may be
obtained from empirical equations of state or approximately from the compressibil-
ity chart. As an example, consider the van der Waal’s equation of state given below:

( p+%)(\7—b):ROT (7.61)

In the above expression, “a” and “b” are constants fitted for the experimental p, v and
T data in the region of interest. The specific volume is expressed on molar basis, that is,

.V
V=—
n

and R, is the universal gas constant.
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From Eq. 7.61, we write

R()T a
= -= 7.62
v—b (7.62)
and thus
ap RO
— | = 7.63
(57) =% as
Writing Eq. 7.40 for du(T, v) on a molar basis, we have
dii(T,7)=&,dT + T(ap) —p|dv
9 v aT ‘.)
and using Eqgs. 7.63 and 7.62, we get
dii(T,7) = &,dT +—d¥ (7.64)
%
which integrates to yield
T V2
A(T,7) = JEVdT + J%dﬁ
Ti v Y
b 11
= J.Ev dT—a(~—~) (7.65)
%) Vi
Ti
Similarly from Eq. 7.49, we express dh(p, T) on a molar basis as
~ ~ - ov
dh(T,p)=¢,dT +|v—T| = | |dp (7.66)
oT »
We use the cyclic rule for variables v,T, p to obtain (3;) , that is,
P
2)(E)) -
oT » op s v );
(57)
av -1 oT ),
had =— v 7.67
( aT)p | 767

((3),
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R,T

a .
- ——5» we obtain
v— v

From the equation p =

dp RT  2a 2a(v—b) —RTV
(avl (5-b)y ¥ P(v-b) 769
Using the above and (ap) = ~R0 , we then write
T), v=>b
() on
~ ~ ~3 (s
(av) _\dT); _ ] (v 2b) - R;)v (v ~b) i (7.69)
T ), (ap) 2a(¥-b)’ = RV RyTV* —2a(v - b)
9V )y 7 (v-b)

and using Eq. 7.69 in Eq. 7.66, we get

. s y RTV (v=D)
dh(T,p)=c,dT +| v— d 7.70
(T.p)=¢, ( RV —2a(5—b) )" 770

Alternatively, a simpler expression can be obtained using the definition of enthalpy,
that is,

h=u+ pv
to give
dh = dii+d(p?)

Substituting the value of change of the specific molar internal energy from Eq. 7.64,
that is,

a

du(T,v)=¢,dT + ——
u(T,v)=¢ 2

we obtain
~ a . ~
dh=c,dTl +_dv+ d(pv)
v
which integrates to yield
T 11
Aﬁ:jEvdT—a(N—~)+(p2\72—p1171) (1.71)

Voo
Ti
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The van der Waal’s equation (7.61) can be used for determining the product pv.
To determine the entropy s(7, v), we use Eq. 7.52, which gives

dT (dp
Tv)=c, 2 4| 22
ds(T,v)=c, T +(8T)Vdv

and using the value of

()
ar ).~ b

from the van der Waals equation, we get the entropy change per mole as

d~=aﬁd—T+(~R° )dﬁ
v—>b

which integrates to yield

T -
AS = J.Egd—T+Roln(~2 ~b) (172)
T (V1 —b)

T

For low pressures where the molar volume tends to infinity, the above reduces to
the entropy of an ideal gas. Similarly, it may be noted that the changes in internal
energy

Ai(T,v)

and enthalpy

Ah(T,V)

given by Eqgs. 7.65 and 7.71 reduce for an ideal gas to

T
Jév dr

T

and
T T
J.EV dT + (pzf/‘z - pl";l) = J.gf’dT
Ti il

respectively.



90 Fundamentals of Thermodynamics

7.8 GENERALIZED ENTHALPY AND ENTROPY CHARTS

For dense gases, the compressibility chart provides an approximate estimate of the p, v
and 7 data from the knowledge of the critical pressure and temperature of the substance.
Enthalpy and entropy functions for dense gases can be estimated from the so-called gen-
eralized enthalpy and entropy charts. Enthalpy as a function of 7, p is given by Eq. 7.49 as

~ ~ ~ av
dh(T,p) =c,dT +(V - T(BT)p]dp

which for an ideal gas where

gives
dh(T,p)=¢é,dT

and enthalpy is a function only of the temperature for an ideal gas. Departure from an
ideal gas behavior is given by the second term on the right hand side of the expression

for dfz(T,p), that is,
- ov
-T| — d
[V ( or )PJ P

Integrating dﬁ(T, p) along an isotherm, we write

fz(T,p)—fz(T,pO)zj.lﬁ—T(gi))]dp (7.73)

Po

If we let p, tend to zero, we have an ideal gas and
h(T,po)— k' (T)
where
W (T)

denotes the enthalpy of an ideal gas. Knowledge of an explicit equation of state per-
mits the integral in Eq. 7.73 to be evaluated.
However, the compressibility chart can also be used more conveniently. Using the
compressibility factor “Z”, we write
- ZR,T
V=
p

and
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(5] )
aT), p oT

Using the above, Eq. 7.73 becomes

oo [ (5712

where h*(T) denotes the enthalpy of an ideal gas where p, — 0. Normalizing the
pressure p and temperature 7 with respect to the critical pressure p, and temperature
T. to give relative pressure p, and relative temperature T, the above equation can be
rearranged to read

ﬁ*(T)—ﬁ(T,p)_”J’* 0z
R = | Tk o dln pg (7.74)

PR

po—0

The above is referred to as the enthalpy departure function on molar basis. The inte-
gral is carried out along an isotherm T = constant from given (p, v, T) data. A plot of

RyT.
against p, for constant 7} is referred to as generalized enthalpy chart and is shown

in Figure 7.1.
For enthalpy change between two states, we write

ha(T2.p2)
dﬁ = ]/~l2(T29p2) _I;I (Tl’pl) = _[I;Z*(T2)_ ]/;2 (Tz,Pz)]

i (Ti.p1)

A7 (1) = (Tp) [+ [0 (1) -1 (T)]

[hz( ) hz(Tz,Pz)

RoT.

:|R0Tc [ ()= (7]

+[h1( D)= (T, pl)}ROTC (775)
RoT;

Given (7, p), the departure function can be obtained from the generalized enthalpy
chart (Figure 7.1). The enthalpy change for an ideal gas

h'(T)—h'(T;)
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(D)= h(Tp,)

ROTC
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0.04 0.1 1 2 4 10 20 40 60 100
FIGURE 7.1 Generalized enthalpy chart.
can be determined using ideal gas tables or from integrating
¢, dT
if the specific heat E,,*(T) of ideal gas is known. Thus, Eq. 7.75 can be used to obtain

flz(Tz,Pz)—fh(Tl,Pl)

The specific molar entropy from Eq. 7.53 is given by

- dr ( ov
ds(T,p)=¢ —() dp (7.76)
"1 \or),

For the entropy of an ideal gas for which

(aﬁ) _R
JaT p_p

we have

Unlike the enthalpy, the entropy for an ideal gas depends on both p and T. Integrating
the above along an isotherm between pressures p, and p, we have
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§(T.p) p R
j dg*:g*(r,p)-g*(r,po):_j—odp
5(T,po) Po P

Subtracting the two expressions above for ideal and dense gases gives

§(1.p) 5 (T.po) |- [5(T.p) = 5(7.p0) ] = j[(g’;) _ Ijj:ldp

where p, is sufficiently low for the ideal gas equation to be valid.
Using compressibility factor Z, the above equation can be written as

s s oS

In the limit when

Po %O,E(T,po)—)E*(T,po)

Normalizing with respect to critical pressure p, and critical temperature 7, the above
expression becomes

Pr

. "
§(T.p)=3(T.p) _ B Te(0Z
R = J ((z=1)d In Pr)+ J PR(8T)pR dPy (177

Po—0 po—0

Equation 7.77 gives the departure of the entropy at (p, T) from the ideal gas value at
the same (p, T). The term

5(T,p)-5(T,p)
Ry

is referred to as the entropy departure function and is plotted against the reduced
pressure p, = p/p, for various reduced temperature Ty = 7/T.. Figure 7.2 shows the
entropy departure function.

From Eq. 7.74, where

~ ~ Pr

h'(T)-h(T,p) J . 0Z

et = | T | dI
RoT. R T, N n pg

we can also write the entropy departure function using Eq. 7.77 as

P,—0
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- Pr
§(T.p)=5(T.p) _ h (T)-h(T.p) _
m = I (z—1)d In Py (778)

P,—0

For the entropy change between two states p,, 7, and p,, T,, we can write

~ ~ 5, T, -5 T, ~ % ~ %
Sz(Pz,Tz)—Sl(Pl,Tl):—|:sz ( 2 Pz)R Sz( 2 Pz):|R0 +[Sz (T2,P2)—Sl (Tl,Pl)]
0

+|:§1*(717P1)—§1(7],P1):|R0

Ry

The entropy departure function in the above expression

[5*(T,p)—5(T,p)}

Ry

can be determined from the generalized entropy chart (Figure 7.2).
The entropy change for an ideal gas

52*(T2,P2)—§1* (Tl,Pl)]

can be obtained from the ideal gas tables or from integration if the variation of the
molar specific heat with temperature is given. Thus the entropy change between the
two states (T,, p;) and (T,, p,) is determined.

4r

2_

STp)—3(Tp)
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0.04 0.060.1 02 04 06 1 2 4 6 10 20 40 60 100

FIGURE 7.2 Entropy departure function.



8 Thermodynamic
Coefficients and
Specific Heats

8.1 THERMODYNAMIC COEFFICIENTS

The thermodynamic state variables such as pressure p, specific volume v and temper-
ature T can be measured directly. Fitting the experimental p, v and T data gives the
equation of state f ( p,v,T) =0 for the substance. The thermodynamic coefficients
defined in the following are determined from the p, v and T data, while the specific
heats are obtained from the dependence of the state functions internal energy and
enthalpy on temperature, pressure and volume. In this chapter, we discuss the ther-
modynamic coefficients and specific heats and how to determine them.

8.1.1 COEFFICIENT OF VOLUME EXPANSION

. . . d
The slope of a constant pressure curve at a point on the v — T diagram gives [8_;)

P
and normalizing with v, we define the coefficient of volume expansion 3 as

I( dv
=—| = 8.1
g V(aT)p &1
Values of 8 can be obtained and tabulated for a range of pressure and temperature.

8.1.2 ISOTHERMAL AND ISENTROPIC COMPRESSIBILITY

The slope of a constant temperature line on a p — v plot gives isothermal compress-

ibility K7, that is,
Ky = —l(av) 8.2)
viadp ),

The negative sign is used since for most substances the volume decreases with
increase of pressure and therefore permits positive values for the isothermal com-
pressibility K;. Compressibility under adiabatic (or isentropic) conditions gives isen-
tropic compressibility

DOI: 10.1201/9781003224044-8 95
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1( ov
K, = —v(apl (8.3)

[Tt}

K, is essentially the slope of an isentrope on the p —v diagram. The subscript “s” in
Eq. 8.3 denotes volume change with pressure at constant entropy, that is, correspond-
ing to a reversible adiabatic process.

8.1.3  PRrESSURE COEFFICIENT

A pressure coefficient a is defined as change in pressure with temperature under

constant volume, that is,
1(0
o= (p) 8.4)
p\dT ),

This is the slope of a constant volume curve on a p — T plot.

8.1.4 RELATIONSHIPS AMONG THE COEFFICIENTS

From calculus, a relationship between &,  and K; can be obtained. Using the cyclic
rule for the three variables p, v and T, we write

(575 -

» kra

B

Equation 8.5 permits any of the three coefficients, &, 8 and K, to be determined if
two of them are known.

The isentropic compressibility K, given by Eq. 8.3, is difficult to determine

experimentally. However, K; is related to the sound speed “a”, which can be mea-
sured more easily. The sound speed is defined as

2_[9p) __ 9P
a —(apl— v(avl (8.6)

since — = v, where v is the specific volume. With isentropic compressibility being

K, = _1(5») , we obtain
viadp

Hence,

1 8.5)

s
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or

K, = 8.7)

The isentropic compressibility is the inverse of pa’. Since p and a can readily be
measured, Eq. 8.7 can be used to give the isentropic compressibility K.

8.2 SPECIFIC HEATS

8.2.1 Seeciric Heats AT CONSTANT PRESSURE ¢, AND CONSTANT VOLUME ¢,

The specific heats ¢, and ¢, were defined as

AN
" \or), " \or),
The equations for entropy changes ds(7T,v) and ds(T,p) given by Eqgs. 7.52 and 7.53
in Chapter 7 and reproduced below are

dar ap
_ ar op
ds(?,v)—cv( )+( )Vdv

dT ( dv
ds(T,p)zc —() dp
"T \ar),

Equating them, we obtain

v

T —

oT
dT = P dp+
cp—c, cp—c,

(ar)
~d

v

The above can be written in terms of coefficient of volume expansion 3 and pressure
coefficient & as

ar =B, 0T, 8.8)

Cp—Cy ¢, —¢,

In the above equation, T is a function of p and v, namely, T(p,v). Hence, dT(p, v) is
written as

oT aT dp dv
dr =5 | A= 8.
(p.y) (Bp ) dp+(8v ),, V= ap By 52

and further equating the coefficients of dp and dv in the above relationships given in
Egs. 8.8 and 8.9, we obtain
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¢, —c, = BvopT (8.10)

Thus, the difference in specific heats can be related to the p — v — T data. Equation
8.10 expresses the difference in specific heats in terms of the thermodynamic coef-
ficients @ and f.

As an example, for an ideal gas for which the equation of state is pv = RT, we can

1 1 1 1
obtain o = (ap) =—andff= (av) = — and Eq. 8.10 gives for an ideal gas
p\oT ), T vloT ), T

c,—¢, =R (8.11)
which is a familiar relation between ¢, and ¢, for an ideal gas. If we define the specific
heat capacities as per mole of gas and denote them by ¢, and ¢, and with the equation of
state for an ideal gas being pv = RyT where v is the volume per mole of the gas, we get

¢

L —& =Ry 8.12)

From the definitions of a and f (i.e., Egs. 8.1 and 8.4), we can write Eq. 8.10 in terms

of partial derivatives as
v Jop
-, =T| =% 8.13
¢ (aT)p(aT)v @13

Using the cyclic rule for variables p, v and T we write
( ap) (8T) v _
oT dv ap .
i) = pary (o) = Lo (7)
ar ), (a_T) (ﬂ) or )\ ov J;

av ) \dp),

Hence, Eq. 8.13 can therefore be written as

Y (9p B?
—c,=-T| = | |25| =vr 2~ 8.14
@ (aT)p(av)T e ®19
v

2
() is always positive and the isothermal compressibility
P

b
2\or

1%

Since B> =

1 . o .
Kr = ——[ﬂj for all known substances is positive, Eq. 8.14 indicates that
viadp ),

c,—c, >0

or ¢, >c,
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for T positive. It is also seen from Eq. 8.14 that as the temperature tends to zero
(T — 0)eitherc, — ¢, or both ¢, and ¢, become zero. In fact the specific heat tending
to 0 as 7'— 0 is one of the statements of the third law of thermodynamics.

Equation 8.14 also indicates that for incompressible substances ¢, and ¢, are iden-
tical. Note that for the particular case of water at 4°C, where the density of water is a
v
oT

Equation 8.14 is useful in that it permits ¢, or ¢, to be determined when one of the
heat capacities is known. Since c,, in general, is difficult to measure, Eq. 8.14 can be
used to determine ¢, when ¢, is known.

maximum, that is,

=0 and thus ¢, = ¢, at 4°C.

8.2.2 Ratio oF SpeciFic HEATS

Equations 7.52 and 7.53 in Chapter 7 gave the incremental change of entropy for
variables T,v and T,p as

dT (dp
ds(T,v)=c,—+|=—=1| d
s(T,v)=c T +(8T)V v

and

dT ([ dv
ds(T,p)zc —() dp
"1 \or),

We use these two equations to obtain the ratio of specific heats for an isentropic pro-
cess for which ds = 0, that is,

) 4 ()
Cp _ oT » dps __ oT » (ap)
¢ (ap) dv, (ap) v ),

aT oT

where the subscript “s” denotes constant entropy. But the cyclic rule for three vari-
ables p,v,T from which Eq. 8.5 was derived gives

it

Further since
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we obtain for an isentropic process

S _ ke (8.15)
Cy kS

The ratio of specific heats is equal to the ratio of the isothermal and isentropic com-

pressibility k7 and k. For an ideal gas where the equation of state given by pv = RT,

kr = l and k, = L yields
p Yp

oy (8.16)

c,

the familiar relationship for the ratio of the specific heats for an ideal gas with con-
stant ¢, and ¢,

8.2.3 VARIATION OF SpeciFiC HEATS ¢, AND ¢, WITH
SPECIFIC VOLUME v AND PRESSURE p

We had shown in the last chapter that the internal energy per unit mass u could
be expressed in terms of variables temperature 7' and specific volume v, that is

u(T,v). Since
( )
Y oT )

¢, would also be a function of 7" and v, that is, ¢, (T,v). Writing

(3)-2)(E) )

Differentiating the above with respect to v gives

2
(5] =l rGr) ) o=l (50)
v ) “av\"\or), ), T avar T Tar\\av ), )

and using the Maxwell relation (as) = (ap) , the above becomes
av ), \dT ),
(5), 7o)
ov J,  dT\JdT ),
’p
=T 8.17
[aTz j 1)

Similarly for specific heat at constant pressure ¢, we have



Thermodynamic Coefficients and Specific Heats 101

(J (5 G5 (5

., 8 p ar " orl|la Pli),
and with the Maxwell relation [as] = , the above becomes
I ) p
% ( v )
ap ), oT
az
=T 8.18
(aTz] 819
. . ) ’p
The partial derivatives of ¢, and ¢, with respect to v and p are equal to T v and
9’y '
T respectively.
( oT*? Jp P Y

2 2
For an ideal gas where pv = RT, (gTIZ )v =0 and ( gT ) = 0. Thus, ¢, is not a
function of v and is a function of only 7, namely, ¢, (T) for an ideal gas. Similarly, c,,
is not a function of p and is only a function of 7, namely, ¢,(T) for an ideal gas. This
is in accord with the previous result that for an ideal gas u = u(T) and h = h(T).

8.3 JOULE THOMSON COEFFICIENT

The Joule Thomson coefficientuis defined as the change in temperature with
decrease in pressure due to throttling

oT
= — 8.19
(ap )H ( )

and can be measured in an adiabatic throttling experiment where a gas at high pres-
sure is throttled down to a low pressure via a porous plug in an insulated pipe. The
adiabatic throttling process is a constant enthalpy process. The Joule Thomson coef-
ficient is related to the other thermodynamic coefficients and heat capacity in the
following.

Considering the variables 7, p and A, the cyclic rule gives

(o) (30 (30), = (3), =
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Thus,
B -1
a3
Cpl =
aT ),
From the Gibbs function
g=h-Ts

we obtain

(5055,

and using the relationship (ag) = v and Maxwell’s equation (E)s) = _(8\))
ap ), ap), aT ),

oh v
| =y=T| ==
(apl ' (GT),,

Hence,
T(a—v) -V
-1 aT ),
u= = (8.20)
@,
"\ on),
With the volume coefficient being B = l(g;) , the Joule Thomson coefficient
%
P
becomes
T-1
u= % (8.21)

P

Knowledge of ¢, and ff permit the Joule Thomson coefficient to be found. It is seen

from Eq. 8.20 that for an ideal gas where L _R
aT), p
u:(ﬂ_v)i:o 8.22)
p Cp

Thus, u =0 for an ideal gas and there is no change in temperature for a throttling
process of an ideal gas. However, for a real gas, t # 0 and u can be positive or nega-
tive depending on the initial condition upstream of throttling.

The constant enthalpy curves in a plot of temperature and pressure corresponding
to different downstream and upstream pressures are illustrated in Figure 8.1. For a
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Inversion
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FIGURE 8.1 Iso-enthalpy curves and Joule Thomson expansion.

given upstream pressure p; and temperature 7;, the downstream or final temperature
T, (after throttling) either increases or decreases depending on the upstream and
downstream values of pressures. For higher values of p;, the downstream temperature
T initially increases as py is reduced. At some value of the downstream pressure py,
the downstream temperature 7, reaches a maximum and subsequent reduction in
pressure p; leads to a decrease of temperature. This is observed in Figure 8.1 for
all iso-enthalpy curves. The temperature at which the Joule Thomson coefficient
changes sign is known as inversion temperature and from Eq. 8.21, it is equal to

1 . .
T = — corresponding to i = 0. The locus of the maximum temperature values for

the different values of enthalpy, shown dotted in Figure (8.1), is referred to as the
inversion curve.

In the left side of the inversion curve wherein the temperature decreases (shown
in gray in Figure 8.1), a reduction of pressure leads to cooling. When the temperature
of the fluid, while undergoing iso-enthalpic expansion, is above the inversion tem-
perature, the coefficient is positive and the temperature of the expanded fluid will
increase. It is necessary to lower the temperature below the inversion temperature
while using the Joule Thomson expansion process for liquefaction of gases.

8.4 THERMODYNAMIC COEFFICIENTS FOR DENSE GASES

We had discussed the thermodynamic functions and properties for real gases in the
last chapter. In a similar way, we discuss the influence of non-ideality for the ther-
modynamic coefficients. Let us consider a dense gas for which the van der Waal’s
equation of state given by

(p+ & )o-0)=ror (8.23)

is valid. We obtained from Eq. 8.23,
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p=~R°T—%andal -5
v=>b ¥ or ), v-b

The coefficient of volume expansion can be obtained from the above; but first we use

the cyclic rule for variables v, T, p to obtain (g—;) , that is,
p

(57 (50 ), -
A =_(g§l 8.24)
)|

), )
apﬁaﬁT a“;r

From the van der Waals equation p = ~R0][; - %, we obtain
V- v
5 2 _ 3
(2] -l 2 2eC o T 5.25)
ov ); (v=0) Vv V(v =b)
Using the above and Bp) = ~R0 , we then write
or ), v-0
(ap) _ R
(ﬁ) _ ot ), _ (v —b) _ RV(G-Db) 8.26)
ar ), ( ap ) 2a(v - b)* =RV RyTv’ — 2a(V — b)* '
v ), P -b)?
We thus obtain the pressure coefficient o = l(g—;) , the coefficient of volume
p v
expansion f§ = l(av) and isothermal compressibility ky = L v
v\dT ), vidp ),
The Joule Thomson coefficient, that is,
T(av) -V
aT ),
U=
Cp
can also be obtained from Eq. 8.26 as
Ses 72 ~3
_ 1 2av(1; b) IE’OTbv2 8.27)
RyTV’ —2a(v — b)

It may be noted that in the above equation, the specific heat is on a per unit mole
basis instead of per unit mass and the universal gas constant R, is used instead of the
specific gas constant R.



9 Thermodynamic
Equilibrium

9.1 INTRODUCTION

The state of a system is defined by a set of thermodynamic variables. For a simple
compressible system, the state is defined by the internal energy, the volume and the
number of moles n of the substance in the system. Subsequent to an interaction with
the environment (e.g., heat and work exchange), the state of a system evolves from an
initial state to a final equilibrium state.

There are various kinds of equilibrium, for example, thermal, mechanical, chemi-
cal, phase, etc. The equilibration times are different for the different kinds of equi-
librium and the equilibration times can differ by orders of magnitude. For example, a
mixture of H, and O, can be at thermal and mechanical equilibrium with its environ-
ment; however, chemical equilibrium of the reactive mixture at room temperature
takes an “infinite” time to achieve. The composition of the system remains “constant”
for an indefinite period. But, if a platinized gauze is placed in the system, reactions
proceed rapidly to a final equilibrium mixture of H,, O, and H,O. Thus, the systems
are often in partial equilibrium. However, analysis can be carried out with the thermo-
dynamic variables of the “non-equilibrium” system as if the system is in equilibrium.

Thermodynamic equilibrium is defined when all the various kinds of equilibrium
(i.e., thermal, mechanical, chemical) are attained.

9.2 EQUILIBRIUM CRITERION

A fundamental problem in thermodynamics is to determine the final equilibrium
state subsequent to a process. Perhaps the simplest criterion to determine the final
equilibrium state is via an extremum principle, that is, the thermodynamic variables
are those that maximize (or minimize) some thermodynamic function. The most
important is perhaps the maximum entropy criterion for an isolated system. The
second law states that for an isolated system, spontaneous processes tend to increase
the entropy function “S™. Thus,

AS =20 9.1
provides a direction for the evolution of an isolated system and at equilibrium,
S =maximum. Since the entropy is an extremum at equilibrium, small departure

from equilibrium gives

ds=0 9.2)

DOI: 10.1201/9781003224044-9 105


https://doi.org/10.1201/9781003224044-9

106 Fundamentals of Thermodynamics

The entropy of a composite system is additive over the constituent subsystems, that is,

S:ZS,-

where S; is the entropy of the ith subsystem. The additive property of the subsystems
requires that entropy of a simple system to be first-order homogeneous function of
the extensive parameters. That is if the extensive parameters are scaled by a factor A ,
the entropy is scaled by the same factor A (Euler’s theorem), that is,

S(AU,AV,An) = AS(U,V,n)

The entropy is continuous and differentiable and is a monotonically increasing func-

tion of energy. This implies that the partial derivative 3—5 is a positive quantity

as '
— 0
(BU)wn>

The above derivative is the reciprocal of temperature, thus the above implies that
the temperature is always positive. The entropy vanishes at the state when tem-
perature approaches zero in accordance with the Nernst postulate (third law of
thermodynamics).

From the second law, we may derive the equilibrium criteria for systems other
than isolated system. For example, consider a simple system in contact with a heat
reservoir at temperature 7 . Taking the system together with the reservoir as an iso-
lated system, then the second law can be written as

AS® =(AS +ASg)=0

where S°, S and Sy are the entropies of the combined system, entropy of the system
and reservoir, respectively.

If a process receives heat AQ from the reservoir, the entropy change of the reser-
VOIr is

ASR = —g,
T

and from the second law

AS+ASR:AS—ATQZO

AQ < TAS
The first law for the system can be written as

AU = AQ - W
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and hence,

W <—AU + TAS < -A(U - TS) — SAT
where W is the work done by the system. If we separate the work as expansion work
pAV and other kinds of work W' (e.g., electromagnetic, paddle work, surface ten-
sion), then the above expression gives

W' < —AA — SAT — pAV 9.3)

where A = U — T8 is defined as the Helmholtz function. For an isothermal, isochoric
process AT = 0 and AV = 0 we write

W'<-AA ©.4)
that is, the non-expansion work W' is less than or equalled to the decrease of the
Helmbholtz function. The equality sign applies when the process is reversible. If there
is no other form of work done by the system, that is, W'= 0, and Eq. 9.4 gives

0<-AA ©.5)
The above gives the direction of evolution of the state of the system towards equilib-
rium and at equilibrium, A = minimum.
For a system interacting with both a heat and a large pressure reservoir, Eq. 9.3 gives
W’ <—AA - SAT — A(pV)+ VAp
and rearranging the above for an isothermal process gives
W' <-AU—-TS + pV)+VAp
Defining the Gibbs function (or the Gibbs-free energy) as
G=U-TS+pV

the above becomes

W’ <—AG + VAp

For an isobaric process p = constant, Ap = 0; thus
W'<-AG
If there is no other kind of work other than the pAV expansion work, then

0<-AG 9.6)
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Thus for a system interacting with a heat and pressure reservoir, the evolution of the
system toward equilibrium is in the direction of decreasing Gibbs-free energy and at
equilibrium G = minimum.

Summarizing, we see that for an isolated system, approach to equilibrium is toward
the increase in the entropy and S = maximum at equilibrium. For a system interacting
with a single heat reservoir, the approach to equilibrium for a system undergoing an
isothermal, isochoric process is via the decrease of the Helmholtz function and at
equilibrium, A = minimum. Similarly, a system undergoing an isothermal, isobaric
process, the approach to equilibrium is via the decrease of the Gibbs-free energy. At
equilibrium, the Gibbs-free energy G =minimum.

9.3 THERMAL EQUILIBRIUM

Consider an isolated system (A + B) consisting of two sub-systems A and B separated
by a partition as shown in Figure 9.1. Let the partition between A and B be rigid and
impermeable to mass exchange. Thus, the volumes V, and Vy are constant, and the
number of moles of the gas in each of the volumes n, and np are also constant. Let
the partition be diathermal so that heat exchange can take place; then the net internal
energy U = U, + Ug=constant, but U, and Uy are not constant since A and B can
exchange energy.

According to the second law, the evolution of the isolated system toward equilib-
rium is

AS = AS, +AS; >0 ©.7)

Since for A, S4(U,,V4,n,) and for B, Sz(Ug,Vy,ng), we write the net incremental
change in entropy as

dS:dSA +dSB
3s, 3s, 3s, 3S, 3S, 3S,
= dU dv, —= |d dU dv, — |d
(aUA) “(avA) A+(8nA) ””(aUBJ B+(av3) B+(an3] i

©9.8)

Since dV, =dVy =0, dny; =dng =0 and dU, =—dUy (U, +Up = constant), we
can write

Ve ng Uy Vg ng U

FIGURE 9.1 Isolated system with two subsystems separated by a diathermal partition.
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oU, U

and at equilibrium where dS = 0, we obtained

0S5, 9dSg
- =0 9.9
(aUA BUB) ©9

since dU 4 is arbitrary. For two systems in thermal contact, experience indicates that
. . as
the temperature of the two systems is equalled. Thus, the derivative U must be

some function of temperature.
We define

as)_ 1
(%)_ ; 9.10)

(-t
T, Tp

or T, = Tp. According to the second law AS > 0, we obtained

[ERARERI

and at equilibrium,

or(l—l]dUA >0 ©.11)
A TB

. 1 1 . . . .
Thus if T, > T, T < T hence dU, <0. This agrees with experience that if system

A B
A is hotter than system B, heat is transferred from A to B and the internal energy of
A decreases.

If “S” is a maximum at equilibrium, the derivative (gg) =0 and the second

2
derivative ( gUS; ) < 0. Taking the second derivative of (gg), we obtained

a2SA 2 a2SB 2
— |[dU du
( U, J : +(8UZB ?

If A and B are similar systems, the necessary condition for a maximum requires that

9%s

Ve <0
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for both A and B.

Since (BS) = l the second derivative gives
U T

a5 _a(%)_ 1(ar)

w* w1l
o 0’S oT . .
As T is positive, we see that for Ve <0, U >0 . The internal energy U is

an increasing function of temperature, for example, for a perfect gas U = Cy T . Thus,

oT)_ 1 . 0’S .
U = — and since C,>0, < 0. Hence, the entropy of systems A and B is

v U’
indeed a maximum at equilibrium.

9.4 MECHANICAL EQUILIBRIUM

If the partition separating A and B is movable, then V, and V; are no longer constant.
But V =V, + Vz=constant, we have dV, = —dVj. If the partition is diathermal and
energy can exchange between A and B, we have dU, = —dU3. Thus, dS is

dS =dS,+dSy
95, 95,4 95, 0S5 0S5 0S5
= du av, d — |dU — |dV, — |d
(8UA) A+(8VA) A+(an;,) 1 +(8UB) B+(8V3) B+(an3) i

9.12)

and with, dU, = —dUjg, dV, = —dVp and dn, = dny = 0, the above becomes

05, 0S5 S, A
ds = - du — |- == ||aV,
At equilibrium where dS = 0 and dU,, dV,, are arbitrary

9S4 LAY
- =0 9.13
[(aUA) (aUBH O

[(9S,) (0S5
2A 2B =0 9.14
()5 19

As described previously, for thermal equilibrium, 7, = T3, and thus for mechanical

equilibrium, 984 )_( 98 = 0. Experience indicates that the pressure across the
aV, Vs ) |

[739¢ 1]

partition is equaled, thus (gé) must be some function of the pressure “p”. From

. . . . . a5 ).
dimensional consideration, the units of (BV is pressure/temperature. Thus, we define
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aS p
— == 9.15
(BV) T O15)
and mechanical equilibrium gives
(p_A_&] =0 9.16)
T, T

Since the partition is diathermal and 7, = T3, we see that at equilibrium, p, = pp in
accord with experiments. With AS > 0, we have

(s

or
Pa_Ps gy, >0 9.17)
T, T;
. Pa  Ps . ..
Thus if Pa > Ps» (T_ - T_) >0 since T, = Tp. Thus, dV, >0, that is, if the pressure
A B

of A is greater than B, then the volume of A increases in accordance with experiments.

9.5 EQUILIBRIUM WITH MASS EXCHANGE

If the rigid partition separating A and B (Figure 9.1) is permeable to mass exchange,
then n, and ny will not be constant, but since n = n, + ng=constant, dn, = —dng
. Thus for a rigid, diathermal and permeable partition, we have dU, = —-dUj ,
dV, = —dVy = 0 and dn, = —dng. At equilibrium where dS = 0,

1 1 0S4 LAY
dS=| ——-—1|dU —| —|ldn, =0 9.18
(TA TB) 4 +{(anA] (anB ):| 1 ( )
Since T, = Tp, at equilibrium,
95, 0S5
—|-1=—1[|=0 9.19
G- 019

2

where u is known as chemical potential. Thus,

Hg  Ha
=== \dny = 9.21
(TB T, J N ( )

as dn, is arbitrary. We define



112 Fundamentals of Thermodynamics

and T, = T;;, we have u, = g at equilibrium.
According to the second law wherein AS > 0 for the composite isolated system,
we obtained

Hg  Ha
=== |dny >0 9.22
(b2, 022
Thus if g, > Up, the bracketed term < 0 and dn, < 0. In other words, if the chemical
potential 114 is greater than U, dn, < 0 and the mass flows from A to B in accordance
with thermal equilibration, wherein energy is transferred from a higher to a lower
temperature (T, > Tp,dU, < 0).

9.6 CHEMICAL POTENTIAL

In the previous section, we have considered the equilibrium of a system with mass

exchange and introduced the term chemical potential u = -T 9 . The chemical

nJvy

potential is important in the discussion of equilibrium of systems having multiple
component and phases. We wish to generalize the previous discussion to a more
general system of multiple components and multiple phases. A phase is defined as a
homogeneous and distinct part of a system, which is separated from the other part
by interfaces. Thus in the example considered in the previous section, subsystems A
and B can be thought as two phases separated by an interface across which particle
or mass exchange takes place.

As discussed in the previous chapters, the combination of the first and second law
for a closed system (of constant mass) is written as

dU =TdS — pdV .

Hence U(S,V) and we can write

dU:(aU) dS+(aU) av
as ), v ),

giving

oUu oU
T—(as)v”’“(avl 029

Alternatively, we can write the fundamental equation as S(U,V) and obtained
ds=Lav+Lav
T T
and

dS:(aS) dU+(aS) av
U ), v ),
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giving
1
:(35 ’p:(as) 9.24)
T \oU), T \oV),

Of importance is the enthalpy function H = U + pV, where we can write
dH =TdS + Vdp

and

oH OH
dH = 22 as+| 21| 4
(85),, +(3Pl P

oH oH
T —(as)p,v _(apl (9.25)

The two other thermodynamic functions of importance are the Helmholtz function
A=U—-TS and the Gibbs function (or free energy) G=U+ pV -TS =H - TS.
Combining the above with the first and second laws gives

dA = -8dT — pdV
(28] ar+(24] av
aT ), av ),
and equating the coefficients give

0A J0A
s=(57), 7= 020

Similarly for the Gibbs-free energy, we write

giving

dG = —SdT + Vdp

oG ) ( oG )
== | dlr+| = | dp
( aT ), p ),
which gives

oG oG
N (aT )p,v (ap )T, 9.27)
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We now consider a multicomponent system or phase where the number of moles of
the substance can vary (e.g., mass diffusion, chemical reactions). The state functions
are now dependent on the number of moles n; of the various components in addi-
tiontoU,V,T, p, etc. Thus we write U(S,V,ny,n,,n;,— — —n;,—) and accordingly for
component I

U U U
av s,V =22 as av o dn;
( " ) ( aS )V,ni +( aV )S,n] ’ Z( ani ] . "
= TdS - pdV + 2 Lisdn; 9.28)
where

U U U
r=(Y) (Y] . 9.29
(aslm" (avlmf“ (amlvmm 02

In Eq. 9.28 for the change of internal energy, y;dn; can be thought of as work done on
the system when dn; moles of component “i” is added to the system.
Similar to Eq. 9.28, we may write

dSU,V,n;) = (35) dU+(aS) dv + z(a ) dn;
V.nj n;

U.V,njjzi
—dU + P rav- Z Hign,

Thus,

1 (as) p (3S as
L_(os) p_(9S)  _ ; 9.30
T (BU)M_ T (av)l,ym H (an, )UVW 30

The expressions for the Helmholtz and Gibbs functions can be similarly obtained as

dA(T,V,n,»)z(g?) dT+(g€) dV+Z(§:) dn;
V.n; T,n; i i i

=—SdT - pdV + ) pdn,

giving

JdA JA J0A
s=—| 22 p=—| — = 9.31
(52), o= 50) w=(n) e
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oG oG JG
dG(T,p,n;) = () dT+( ) dp + () dn;
aT p-ni ap T,m Z ani

T.p.njjzi
— _SdT + Vdp + 2 Lsdn;

giving

Sz_(ac;) ,VZ(HGJ " :(E’GJ 932)
aT pn ap T,n; ani T.p.njjzi

Summarizing the chemical potential can be expressed in different variables depend-
ing on the thermodynamic potential involved, that is,

(), o)), )
on; SV .njijsi on UV njjsi on TV .njjzi on; T,p.nj;jzi

If only one species n; = n is present, we write

oG G .
u; = (a) =—=g(T,p) 9.34)
n; T n;

where g;(T, p) is the specific Gibbs function per mole.

Since the fundamental equations are homogeneous first-order equations, they have
the property that the extensive variables are scaled by a constant A, then the function
itself is scaled by A, for example as considered at the beginning of this chapter,

U(AS, AV, An;) = AU(S,V,n;)

This is known as Euler’s equation and to prove this we can differentiate the above
equation by A, that is,

QU(AS, AV, An;) O(AS) N QU(AS, AV, An;) d(AV) +

AAS) oA IAV) oA
QU(AS, AV, An;) d(An;) ©.33)
YAV, AN, n) _ .
2 A(An;) on UG V)

Simplifying, we get

OU(AS, AV, An;) . OU(AS,AV,An;) OU(AS, AV, An;)
S+ V+ —
A(AS) A(AV) 2 d(An;) (9.36)

=U(S,V.n)



116 Fundamentals of Thermodynamics

Since the above holds for any value of A, we take A = 1 and obtained

(aag)s + (gl‘f)v + Z(gZ)ni =U(S.V.m)
or TS = pV+ Yt =U
Differentiating the above gives
TdS + SdT — pdV — Vdp + 2 Liidn; + an.du,- —dU 9.37)
and noting that
dU =TdS - pdV + _pdn
the above equation reduces to
SdT - Vdp + Zn,»du,- -0 9.38)

The above is known as Gibbs Duhem equation. Similarly, since G =U + pV - T8,
we have on substituting for U = TS — pV + 2 U;n; in the expression for G

G=TS—pV+Zy,-n,-+pV—TS

= un 9.39)

The above is also referred to as Gibbs Duhem equation. And for one component
when n; = n, and all other n; = 0, we have

G=un
and
G .
p=-= g(T,p) (9.40)

where g(T, p) is the specific Gibbs function per mole.



’I O Equilibrium of Species
in a Chemically
Reacting System

10.1 INTRODUCTION

In chemically reacting systems, new species are formed and heat is either released or
absorbed from the environment. The release or absorption of heat is dependent on the
species formed in the reaction. The equilibrium concentration of the different spe-
cies in the reaction is governed by the pressure and temperature of the system. The
criterion for thermodynamic equilibrium for non-reacting systems, that is chemically
inert systems of the previous chapter, is extended for chemical reacting systems and
the concentration of the species is determined.

10.2 CHOICE OF BASIC DATUM FOR THE STATE
FUNCTIONS AND HEAT OF FORMATION

In a non-reacting system, the concentration of the various species of the mixture
do not change. The choice of a reference base for the state functions (i.e., enthalpy,
internal energy) can be arbitrary since when calculating the difference of the state
function between two equilibrium states, the reference datum cancels out. However,
for chemically reacting systems, species are destroyed and new ones are formed. It
becomes necessary to seek a common reference state for all substances. The standard
reference state is 298 K and 1 atm. pressure.

In general, heat is generated when a compound is formed. It is necessary to take
this energy release into consideration when defining the state function at the refer-
ence state. As an example, consider the formation of 1 mole of H,O from the reaction
H, +!/, 0,=H,0 at the reference state of 298 K and 1 atm. pressure. The enthalpy
change for the reaction at the reference state can be written as

AH = hy0(298) - {EHZ (298)+ %EOZ (298)} (10.1)

where /1 is the enthalpy per mole of the particular species as indicated by the subscripts.

If we were to arbitrarily assign zero values of enthalpy for all species at the reference
state of 298 K and 1 atm. pressure, then enthalpy or heat release AH = 0. However, exper-
iments indicate that 286.7kJ are released in the reaction at the reference state. To account
for the heat release when a substance is formed, the enthalpy of formation is used.
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The enthalpy of formation of a substance is defined as the heat release when 1
mole of the substance is formed from its naturally occurring stable elements at the
reference state (298 K and 1 atm.). The naturally occurring elements are gaseous oxy-
gen O,, nitrogen gas N,, chlorine gas Cl,, solid carbon C(s), etc. They are assigned
zero values for the enthalpy of formation at the reference state.

The enthalpy of formation is denoted by Afz_,-o where Aﬁf indicates the enthalpy
per mole of the substance over and above of its naturally occurring elements required
to form it, while the superscript “0” denotes that it is formed at the reference state.
Thus, we write for the heat of formation at temperature 7" assuming ideal gas and
constant specific heat to be valid as

T
hy (T)= Ah,° + J' ,dT (10.2)

298

For the case of H,0O, we write using Eq. 10.1 for the enthalpy change per mole of H,O
formed at the reference state as

ARG 120 = h 120 (298) = [1Y.12(298) +1/2 Y 5, (298)]

Since 286.7 kJ/mole is released in the reaction at 298 K, the enthalpy required to form
one mole of H,O from one mole of H, and %2 mole of O, is negative and therefore

Ahf 20 = —286.7 kJ/mole-

The heat of formation A/,° is at the reference state and is also known as the standard
heat of formation.

Similar to the enthalpy of formation, the internal energy of formation is defined as
the internal energy required to form one mole of the substance at the standard state
from its naturally occurring elements at the same standard state. It is denoted by Aii,’.

The relation between the internal energy of formation and enthalpy of formation is

iy’ = Ay = pv
where the pressure p is 1 atm. If the substance is an ideal gas,
AM)‘ = Ahf R() 0

with T, being 298 K.

The heat of formation and internal energy of formation are properties characteriz-
ing the chemical structure of the substance. The standard heat of formation is readily
available in literature for different substances.

The superscript “~” in the heat of formation and internal energy of formation,
which denotes per mole, is generally omitted and the standard heat and internal
energy of formation per mole of the substance are usually denoted by AkY and Aul,
respectively.
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10.3 ENTROPY OF THE SPECIES IN A CHEMICAL
REACTION: THIRD LAW OF THERMODYNAMICS

The third law of thermodynamics is used to define the absolute values of entropy. The
third law states that all pure crystalline substances have zero value for the entropy at
the absolute zero temperature. At absolute zero temperature, there is no random ther-
mal motion of the molecules and all crystalline substances have perfect order. Thus
for entropy of the ith specie at its partial pressure p; and temperature 7', we write

5(p:,T)=5%(T)= Ry In p; (10.3)

where 5, (T) is the absolute specific molar entropy of the ith specie at temperature T
and 1 atm. pressure. The value of the partial pressure p; in Eq. 10.3 is measured in
atmospheres. The partial pressure p; for an ideal gas was defined in Chapter 1 and
is given as p; = x; p, where x; is the mole fraction of the ith species and p is the total
pressure of the mixture in atmospheres. We can therefore write Eq. 10.3 as

5:(T,p)= 510 (T) - Ry In(x; p) (10.4)

The absolute entropy of a variety of ideal gases over a range of temperatures and at 1
atm. pressure is available in literature. Equations 10.3 and 10.4 are used to obtain the
entropy of species in chemically reacting systems.

10.4 ENTHALPY CHANGES

The enthalpy changes in chemically reacting systems at the reference state can be
obtained from changes of the standard heats of formation between the products and
the reactants once the chemical reaction is specified and the concentration of the
products and the reactants are known. In general, the product species concentrations
at given values of pressure and temperature are not known since the combustion may
not be complete at the specified pressure and temperature. Thus, there remains the
task of finding the equilibrium concentrations of the chemical species of a mixture at
given pressure p and temperature 7.

10.5 PRODUCT SPECIES IN A CHEMICAL REACTION
AT A GIVEN TEMPERATURE AND PRESSURE

The criterion for chemical equilibrium is defined by the minimum value of the
Gibbs-free energy. The state of a mixture is specified by (7, p, n;) where n,’s are the
moles of the species of the mixture under equilibrium conditions at temperature 7'
and pressure p. The Gibbs-free energy is given by G(T, p,n;) and the differential
change in the Gibbs-free energy for this state (T, p,n;) is given by

G G oG
dG =| — dT — d —_— dn; 10.5
(aTJ,,,n, +(ap ) ’”Z(ani) " (10

T.p:nj,jei
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But dG =0 at equilibrium when G takes on its minimum. At constant (p, T), we can
write Eq. 10.5 as

oG
iG=y |2 dn, =0 10.6
2( al’li )T,p,nj#i ! ( )

But gﬁ = g, where g, is the specific molar Gibbs-free energy of the ith specie (per
n;

mole of it). This was defined in the previous chapter. Thus at constant p and 7, we

have for the n; moles of specie i when the total number of species is N that is, i vary-

ing from 1 to V:

N
G= Z B, (10.7)
i=1

At equilibrium, G is a minimum. The values of »; are not independent, but are gov-
erned by the stoichiometric coefficients of the species and the number of species in
the reaction. The number of atoms of the elements in the chemical reaction is, how-
ever, conserved and this becomes a constraint. With N species in the reaction, the
value of i=1, 2, ..., N. As an example, in the reaction H, +!/, O,=H,0, N =3 with
ny, =1, no, =Y2 and ny,o = 1. The number of elements is two, these being H and O.

If in a reaction having N species there are M atoms, we have denoting each of the
atom as j, j=1, 2, ..., M, the equations for the conservation of each of the M atoms
in the reaction can be written as

N

N vin b =0j=12...M (10.8)

i=1

Here, v;; represents the atoms of element j in one mole of specie i and b jo is the total
number of atoms of the jth element in the reaction.

N
Denoting ZV ;i =b; for J=12,..M we get the equation for the constraint for

i=1
conserving the atoms as
b;—=b"=0; j=12,...M
N
In order to minimize G = z g:n; subject to the constraint b, — b,° = 0, we multiply

i=1
the equation for the constraint by Lagrange multipliers A; and define a quantity L as

M
L=G+Z,1,(b,- b))
=

Substituting the value of G from Eq. 10.7 and b;from Eq. 8 in the above expression
and differentiating, we get
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N M M
5L:2 g,-+2/1_,-vj,i dni+2(bj_b°j)dzj=0;fori= 1, 2,....N
i=1 Jj=1 J

i1

Since dn; and dA; are not zero being arbitrary independent variables, we have

M
§i+z&jv}-,i =0 fOI‘i= 1, 2,"'7N
j=1

(10.9)
N

and ) vy b’ =0 forj=12...M
i=1

The above set of equations give the values of v;;. Thus the equilibrium composition
can be determined from the known values of g; at the specified temperature and
pressure. This procedure is used in the different computer codes to determine the
equilibrium composition.

Instead of the above method of Lagrange multipliers to minimize the Gibbs-free
energy with the constraint that the atoms of the elements must be conserved, the
minimization of Gibbs-free energy could also be done using the method of equilib-
rium constants as given in the following.

From the definition of Gibbs-free energy,

gi = ]’/;i - TS"I- = I’;i —T(E,'()(T)_RO ln pl)

=h = T5°(T)+ RyT In p; = g°(T)+ Ry,TIn p;

where g’ (T) is the temperature-dependent part of g (p,T) while the pressure-
dependent part is given by Ry In p;.
As an example consider the reaction

H2+1/202= HzO (1010)

We find that when 1 mole of hydrogen disappears, ¥2 mole of oxygen also vanishes
and 1 mole of water is formed. Thus, the change in moles dr, is related by dny, = -1,
dno, = —1/2 and dny,o = 1.

In general for any chemical reaction between reactants A and B to form products
C and D, we could write

YaA+YpB=ycC+ypD 10.11)

where v 4,Y5,Yc,Yp are the stoichiometric coefficients. The change in the moles dn;’s
is related as
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_dﬂ:_d’iz_,_dﬂ:_,_d”izl (10.12)

Ya 14 Yc Yo

where y is defined as the degree of the reaction, 0 < y <1 (y =0 is unreacted and
x =1 signifies reaction is completed). Thus,

dny =—YaX, dng = ~YBX> dn¢ =+YcX, dnp = +Yp X (10.13)

and at equilibrium, we write
Zéidn,- = Zg,- i) =0 (10.14)

¥:1s negative for reactants and is positive for products. Since ¥, y is arbitrary, we have
at equilibrium from Eq. 10.14,

Z(gio +RyTInp)yix =0 (10.15)

The above equation involving the minimization of Gibbs-free energy is used to deter-
mine the species formed in equilibrium in a chemical reaction at the given pressure
and temperature.

We can express Eq. 10.15 for the general reaction given by Eq. 10.11 as

(=7a84° 738"+ 7ed +Vodn”) RT P P2 _ g 10.16
Y284 —7YB88 tYc8& t+Vp&p |t Ko npAVApByB - (10.16)

Defining
AG(T) = ~¥48s" — ¥585° +Vc&c" +¥p&n" 10.17)

Equation 10.16 can be written as

C}’C YD AGO T
lnl‘lj YA’;DYB = R; ):f(T) (10.18)
A B 0

Denoting the pressure ratios on the left side as an equilibrium constant K at tempera-
ture 7, we have
s YD YC, YD
K(T)= P Po = S 20 prestmicis (10.19)
pAYApByu XA xp"? ’

where for ith specie, the molar concentration is x; = — and the partial pressure is
. n
p; = x;p from Dalton’s law of partial pressures. Here, the total number of moles of

the mixture is n and the total pressure is p. The equilibrium constant K(7') is a func-
tion of temperature and is determined from the change in the Gibbs-free energy at
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the standard pressure and temperature 7, namely, that given in Eq. 10.17 divided
by R,T for the reaction. It may be kept in mind that the calculation of species is
based on the assumption that the reactants and products are ideal gases.

The equilibrium composition varies with temperature. The Gibbs-free energy
G = H - TS gives the incremental change dG = dH — TdS — SdT. For an ideal gas at
constant pressure dH = 1dS giving dG = —SdT and

a6 _
dTr
Substituting the value of S in the expression for G, we get

G:H+Td—G
dr

Dividing the above by T%and simplifying, we can express the equation as

d(G) __f
ar\r ), T’

and can be further written as

i(&) __AH
ar\'7 ), 72 (10.20)
Combining with Eq. 10.18 at the standard pressure of 1 atmosphere, we get

d AH

—\In K(T))=—=

o (n K(T) R (10.21)

The above is known as the van’t Hoff equation and is used in calculating the equilib-
rium constants with changes in temperature at the standard pressure of 1 atm.

10.6 EXAMPLE OF DETERMINING EQUILIBRIUM COMPOSITION

Consider a mixture CO,, O, and N, in volumetric proportion 1:/5:% at 3,000 K and
1 atm. pressure for which we require to determine the equilibrium composition. We
write the overall composition to be given by the products of the reaction

C02+ yz Oz+ yz NZICICO +bNO +CC02+d02+€N2 (1022)

where the moles a, b, ¢, d and e for CO, NO, CO,, O, and N, are not known. From the
conservation of the atoms in the above reaction, we write

Catoms:a+c=1
Oatoms:a+b+2c+2d=3
N atoms: b+2e=1
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Solving for ¢, d and e in terms of a and b, we get c=1 — a, d=1+(a—b)/2 and
e=(1-b)/2. We still need two more equations to solve for a, b, ¢, d and e and thus
determine the equilibrium concentration of the species.

The total number of moles of the product is given by

a+b+c+d+e=@+a)l2

Thus, the mole fractions for the various species are obtained as

2a
teo =4+a
2b
xNOZ4+a
2(1-a)
Yeo, = d+a
l+a->b
o, = 4+a
1-b
g :4+a

Two reactions among the species that provide the additional two equations are

Reaction 1: CO, < CO+%Oz (10.23)
. 1 1
Reaction 2 : 502 + ENZ < NO (10.24)

The equilibrium constant K is determined from Eqs. 10.18 and 10.19 as

AG(T
In(K(T)) = (;;).
0

In the case of reaction 1 (Eq. 10.23), the value of AG® (T)is given at T=3000 K as
AG°(3000) = gc0 (3000) + %§02(3000) — 8c02(3000). Using the values of the molar

Gibbs function g for the different species CO, O, and CO,, available in literature, at
different temperatures and 1 atm. pressure, we get at T = 3000 K

K, = 03273
Similarly the equilibrium constant for the Reaction 2 at 3000 K is obtained as
K, = 0.1222

Substituting the values in the equilibrium constants for Reactions 1 and 2 (Egs. 10.23
and 10.24), respectively, we get
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vz 1
K, = 03273 = M[)Hf1 giving
Xco,
1/2
( a ](”“_b ) ~ 03273 (10.25)
1-a 4+a
11 2 1/2
Ky= 01222 =N, 2or( 2 ] (4+a) giving
X0, 2XN, 4+a )\ 1+a-Db)1-0b)
2b
=0.1222 (10.26)

[(1-b)(1+a-0)]
Solving for a and b from Egs. 10.25 and 10.26 gives

a= 0.3745,b = 0.0675

Expressing ¢, d, and e in terms of a and b gives ¢ =0.6255, d=0.6535 and e =0.4663.

10.7 CHEMICAL EQUILIBRIUM OF SPECIES AT
GIVEN TEMPERATURE AND VOLUME

For chemical reactions taking place at constant volume, the Helmholtz function (A) is
used instead of the Gibbs-free energy. From the previous chapter on thermodynamic
equilibrium, we have

dA(T,V) = —SdT—pdVJr(a—A) dn;
V.T.nj zi

n;

At equilibrium dA=0 and A is a minimum. We derive an equation similar to
Eq. 10.15 for a given temperature at constant volume as

Z(&,«O(T) +RoTIn?,)y,7 =0 (10.27)

where g; is the specific Helmholtz function per mole for specie i. The partial volume
of specie i is ¥, per mole and is defined by Amagat’s law for partial volumes for
an ideal gas mixtures (Chapter 2). a’(T) denotes the temperature dependent part
of Helmbholtz function. The procedure in the last section is followed by replacing
Gibbs-free energy change AG® (T') in Eq. 10.18 by the change of the Helmholtz func-
tion AA° (T) for the reaction and defining the equilibrium constant K(7) at constant
volume. The species are determined at a given specified temperature and volume.

10.8 CORRECTIONS FOR REAL GAS: FUGACITY

The determination of the concentration of species under equilibrium assumed them
as ideal gases. At higher values of pressures and lower temperatures, the ideal gas
assumption may not be valid. The deviation from the idealized gas assumption is
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expressed by the pressure dependence of the Gibbs-free energy of a real gas by an
effective pressure known as fugacity.
For a single component system of real gas

du = dg = —5dT + vdp (10.28)

where g, § and v denote, as before, the specific Gibbs-free energy, specific entropy
and specific volume all per mole. At constant temperature, the change of chemi-
cal potential from a sufficiently low pressure p, to a higher value of pressure p is
therefore

jdﬂ = jf»dp (10.29)

Ho po

where u and i, correspond to the chemical potential at p and py, respectively.
- RT
For an ideal gas, the specific volume per mole is ¥ = —— and u — ty = R()Tlnl.

However, for a dense gas, the specific volume and chemical potential such as at lt)ﬁe
higher values of pressure p cannot be approximated by the expressions correspond-
ing to ideal gas. The fugacity f is defined as the corrected value of pressure so that
the chemical potential is the same as that in the real gas

L= o = Ronnfi (10.30)

0

where f=fugacity when pressure is p and f, when the pressure is p,. The use of
fugacity provides a fundamental way of determining equilibrium of chemical reac-
tions in real gases. Equation 10.30 can be integrated to give

=il ot
0

The Gibbs-free energy of a real gas following Eq. 10.30 can be written as

g=8 +RTIn S (10.31)
fo

The relation between fugacity f and the true value of pressure p is expressed as

f=0p (10.32)

where ¢ is the dimensionless fugacity coefficient which depends on temperature,
pressure and the gas species.

If the value of Gibbs-free energy per mole g is substituted for the chemical poten-
tial y in the integrated form of Eq. 10.28, we get
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po

#(p)=&(p)+ [ 7ap

P

which is valid for all gases whether ideal or real.

Substituting the form of Eq. 10.31 for fugacity in Eq. 10.33

_[ﬁdp =g(p)-&(p)=RT In S
. Jo

If the gas is ideal and its specific volume per mole is denoted by v;

P

J‘\‘;ldp = RoT In £
Po

po

The difference between Egs. 10.34 and 10.35 is

j(ﬁ — ¥ )dp =R, T ln|:f//fO:|

P/l Po

which can be rearranged to give

0 R
ln[fo/Po]_RoT (V Vl)dp

Po

When p, — 0 where the gas is ideal, we have

fo

“——>laspy, =0
Po

Under the above condition for the low pressures py,

1 -
ln(f/p)zR J(V—v,»)dp
0 0
With ¢=i
4
1 P
Ing=——|(v-v
ne R, T J.(v i
0
Since for an ideal gas
-  RT
Vi =

127

(10.33)

(10.34)

(10.35)

(10.36)

(10.37)

(10.38)
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while for a real gas

V=

Z R,T
p

where Z is the compressibility factor, we get

P
Ing = I Z=1, (10.39)
p

We have seen the variation of Z with pressure in the generalized compressibility
chart in the Chapter 2 on equation of state. The fugacity coefficient can thus be
determined and the fugacity related to the actual pressure. In general, over the range
of pressures for which Z< 1, that is, up to moderate values of pressure

f<p

and the Gibbs energy per mole is less than that of an ideal gas at the given value of
pressure.
However, for Z> 1, which takes place at sufficiently high pressures, ¢ > 1 and

f>p

with the Gibbs-free energy being greater than that of an ideal gas.

The temperature dependence of fugacity can be obtained from Eq. 10.31 by
substituting py = fy since at the low pressure limit the gas behaves as an ideal
gas and

Ag = R()T In i
Po

where the fugacity f corresponds to the high pressure gas. Using Eq. 10.20, we get
EYEA g
ar\'t ), 1

dinf\ _ Ai _h-h
dar ), R,T?* R,T?

Hence ( (10.40)

where A; is the enthalpy per mole of the gas in the ideal gas limit and is independent
of the temperature while 4 is the enthalpy of the real gas.
However,

p
J .UJTdeP
0
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where U7 is the Joule Thomson coefficient. The symbol u,is used to distinguish it
from the chemical potential u.
Thus,

P
J,UJTEp dp

dln f) O
= (10.41)
( ar ), R,T*?

The fugacity f so determined is used in place of pressure for estimating the equilib-
rium of the species in the chemical reaction.
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’I ’l Statistical
Thermodynamics

11.1  INTRODUCTION

Thermodynamics does not acknowledge the molecular structure of matter. However,
to acquire a better understanding of thermodynamics, it is necessary to discuss
the molecular structure of matter and the molecular basis of thermodynamics.
Microscopic description of the behavior of atoms and molecules, referred to as par-
ticles, is based on quantum mechanics.

The number of particles in a macroscopic system is very large, O[10%] particles.
Thus, macroscopic thermodynamic variables are averaged over the microscopic vari-
ables describing the molecules. This is the subject of statistical thermodynamics and
provides the formalism to link the microscopic variables to the macroscopic thermo-
dynamic variables like internal energy, entropy, temperature, pressure, etc.

It can be said that the central problem in statistical thermodynamics is to deter-
mine the equilibrium distribution of the particles among their accessible quantum
states. It is assumed that the equilibrium distribution corresponds to the most prob-
able distribution. The most probable distribution is considered to be the distribution
that corresponds to the maximum number of ways in which the distribution can be
realized subject to the macroscopic constraints of the system. Thus, the first step is to
determine the number of ways to realize a given distribution of the particles among
their accessible quantum states (or equivalently their energy levels).

11.2 DISTRIBUTION OF PARTICLES AND THEIR
ENERGY LEVELS: BOSE-EINSTEIN, FERMI-
DIRAC AND BOLTZMANN STATISTICS

Particles can be classified, in general, as Bosons and Fermions. For Bosons, there are
no restrictions on the number of particles that can occupy a quantum state. However,
for Fermions, the exclusion principle restricts that only one particle can occupy a
given state. Since the number of particles in a given energy level is generally very
small compared to the degeneracy of the energy levels, it is highly unlikely that more
than one particle would occupy a single degenerate state. Thus, the distribution of
particles for the Bosons and Fermions are essentially the same.

Let us first consider the Bosons. We would like to determine the number of ways
to distribute a total of N particles so that we have N, particles in energy level ¢,, N,
particles in energy level ¢,, ...., N, particles in energy level ¢;, N, particles in energy
level ¢; etc. The degeneracy of energy level ¢, is g, that is, number of quantum states
in energy level ¢, The question is to determine the many ways to distribute N, par-
ticles among g, quantum states corresponding to energy level ;.
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1 2 3 4 i—2 i—1
N Ny Ny| Nyf-------- No| N | N;
&I & & &|-------- 8ia| 8| &

FIGURE 11.1 g, Boxes with (i —1) partitions.

Consider the g; states to be g, number of boxes to distribute N, particles. Let the g;
boxes be defined by i — 1 partitions as illustrated in Figure 11.1.

Thus, a distribution consists of specifying the number of particles in each box,
that is, N, particles in box g;, N, particles in box g,, ..., N, particles in box g;, etc.

Assuming that the particles and the partitions to be distinguishable for the moment,
the number of ways to arrange (g; — 1+, distinguishable objects would be (g,—1 + N)!.
However, the particles as well as the partitions are indistinguishable, that is, interchang-
ing the partitions and the particles leave the distribution invariant. We therefore have
counted (g;— 1)! partitions and ;! way too much. Thus, the number of ways to realize
the distribution of N, distinguishable particles among g; states in energy level ¢; would be

Similarly the number of ways to distribute N, indistinguishable particles among g;
quantum states at energy level ¢; gives

i

.Z(Nj+gj—1)z

Since each particular combination in the ¢, level can be combined with the combina-
tions in the ¢; level, the total number of ways (or permutations) to distribute N; par-
ticles in energy levels ¢; and N; particles in ¢; would be W; W,.

Generalizing, we obtain

gl 1+N
W= H T L1

for the total number of ways to distribute N particles among their accessible energy
levels. The symbol IT denotes the product of i similar terms.

If g, >> N,, the general permutation formula given in Eq. 11.1 can be reduced to a
simple expression as follows. First, we write

————— (g,- -1+ N, —(N; —1))gi(g,- —1) (g,- —2)
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where we have approximated the g, terms as g;'. Thus, Eq. 11.1 can be written as

_ Ni(o 1)
W= HN+g,1_ gV (g —1)!

N;!(g —1)! N;!(g —1)!

g
orw=]1%, (11.2)

Thus, the total number of ways to realize a distribution of N, particles in energy level
&;, N, in energy level g, .... etc., is given by Eq. 11.2.

In the derivation of Egs. 11.1 and 11.2, no restrictions are stated for the number of
partitions or for particles that can occupy a quantum state. Thus, Eq. 11.1 is valid for
Bosons. For Fermions, only one particle is permitted per quantum state. Hence, it is
necessary that g;> N,. To obtain the number of ways to realize a given distribution of
Fermions, we reason as follows:

Consider the ¢, energy level with g; states; it is desirous that g;> N,. For the first
particle, there are g, states to choose from. Once the choice is made for the first parti-
cle, there are (g;,— 1) choices left for the second particle, and similarly (g;,— 2) choices
for the third particle. For the N particle, there are (g; — N;+ I) choices. Since each of
the g; choice for the first particle can go with (g, —/) choices for the second particle
and (g; —2) choices for the third and so on, we see that for N, particles there will be
atotal of g, (g,— 1) (g,—2)----(g; — N,+1) choices. Since the N, particles are indistin-
guishable, interchanging particles among the g; compartments leave the distribution
invariant and we have counted N;!too much. Thus, the distribution of N; particles in
the g; degenerate states of the energy level ¢; is

W= gi(gi-1)(g-2)————(gi—N;+1)
’ N;!

The above can be reduced to a more convenient form by writing the numerator in the
above expression as

gi(gi _1)(gi_2)____(gi_Ni+1)(gi_Ni)(gi _Ni_l)____((gi _Ni)_(gi_Ni_l))

(g =Ni)(g = Ni=1)===((g: = Ni) = (g = N; = 1))

g!
(gi_Ni)!

We therefore obtain

_ 8!
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and for a total of N Fermions among their accessible states for the various energy
levels, we obtain the distribution for Fermions to be given by

&i!
W = [ 1 — 114
H(gi_Ni)!Ni! o

Equation 11.4 is to be compared with Eq. 11.1 for Bosons. In the case of Bosons, if
gi>>N,;, we write

giving

Thus, Eq. 11.4 reduces to

Ni
W=H‘3’\'m

which is the same result as Eq. 11.2. The fact that the permutation formula for both
Fermions and Bosons reduces to the same limit for g; >>N;, that is, there are numer-
ous states for the N; particles to occupy. Thus, the probability of particles crowding
into one state is negligible and most of the g; states are unoccupied. Hence whether
the restriction as to the number of particles permitted per quantum state is imposed
or not makes little difference when g; >>N.,.

The permutation equation for Boson given by Eq. 11.1 is referred to as Bose-
Einstein statistics, whereas Eq. 11.4 is known as Fermi-Dirac statistics. In the limit
g:>>N;, Eq. 11.2 is referred to as Boltzmann statistics.

11.3 MAXWELL-BOLTZMANN DISTRIBUTION:
PARTITION FUNCTION

It is reasonable to assume that at equilibrium, the distribution corresponds to the
most probable one. We shall consider Boltzmann statistics given by Eq. 11.2 and
maximize W. In other words, we seek the distribution that maximizes the number of
ways to realize the distribution. Since InW is a monotonic function of W, it is more
convenient to maximize In W, that is,

W= Ning-Y NInN+D N,

where we have used Stirling’s formula for InN!=NInN - N.
Taking the variation of InW, we write
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SinW= Zm &SN — Z In N;SN; — Z5Ni + z(m
i i i I
- ZlnNi:(SN,-

The SN, ’s are not independent in the above equation, but subject to the constraint
ZN,- = N = constant and ZNigi = U = constant. Taking the variation of the con-

straints, we obtain 25N,» =0and 28,-5N,- = 0. Multiplying by the yet undermined
multipliers (Lagrange multipliers) @ and 3, that is, 2(15N,- =0and Z BedN; =0

and subtracting them from 6 InW, we get

51nW=2(1n§;—0(—ﬁ£,)5N,=0

The 6N;'s are now independent and thus we write

8i
In —o—Peg =0
N B

i

N = gie e Pei (11.5)

where we write the superscript N, to denote the equilibrium distribution.
Using the constraint N; = N, we obtain

Thus, Eq. 11.5 becomes

o Bei
NO=NS€ (11.6)
Z

where

e= ) gt (11.7)

is called the partition function. It expresses the distribution or partition of energies
over various energy levels.

Equation 11.6 is referred to as the Maxwell-Boltzmann distribution and is perhaps
the most important formula in statistical thermodynamics.

To determine the other multiplier 3, consider an isolated system consisting of two
systems A and B separated by a diathermal wall to permit exchange of heat. This is
shown in Figure 11.2. The combined system A + B is an isolated system.
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N, N; & N;=3N,| Ny N, & Ny =%

i

FIGURE 11.2 Systems A and B exchanging heat.

For systems A and B, we write

Ni
_ 8i
Wa=1 N,
and similarly for B, we write
N;
_ 8i
We = N

For the combined system A + B, the number of ways to realize a given distribution of
N; particles among energy levels €; in A and N; particles among levels £; in B is given
by W, = W, X Wy giving

ln WAB = ]n WA + anB

=Y Ning =Y NN+ > N+ Njng,— Y Nk, + Y N,

Taking the variation of W,, we obtain

Oln Wy = ZIn

The constraints for the above are

8i 8i 5w
5Nl~ + In2-6N;
N; Z N; /

ZNi = N, = constant

ZNI- = NB = constant

ZN,-E,- +z V;&; =U = constant

Here, U is the total energy of the combined system A + B and is a constant. Note that
because of heat exchange between A and B, we cannot specify the internal energy
of A or B individually. However, the internal energy of the combined system A+ B
is U=constant for the isolated system. Taking the variation of the constraints and

multiplying by, —c, — & and =B, that is,
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Z—aSNi =0
Y -asN, =0

Y ~BedN, - f,5N, =0

and adding to the expression for & In W, we obtain

SInW,z = Z(lnf}—a—ﬁ&}M +Z(1D 1%1_5;—[35/.)5](]] =0
> j

. i
1

The ON;'s and SN ;'S are now made independent via the Lagrangian multipliers.
Thus, we write the equilibrium distribution for systems A and B as

Nio — gie—ae—ﬁs;

The Lagrangian multipliers & and & which arise for the constraint of N; and N; in

subsystems A and B are to be related to N4 and N . The multiplier 3 is based on the
constraint of energy and is related to the general levels of energy.
Normalizing the above relations, we have

B
NY=nN, 8¢ (11.8)
Z
5., P&
~ ~ le
N0=Ny 8 : (11.9)

where the partition functions

<= theiﬁgi
7= Zgje"’é/ (11.10)

J

The sum is taken over i and j quantum states. The partition functions z and Z are
related to the equilibrium distribution.

The above result indicates that for the two systems separated by a diathermal
wall, their equilibrium distributions share the same value of the parameter f.
Thus, the parameter must be equivalent to the temperature of the systems. We
shall define
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1

P

where k is a constant with dimensions energy/degree (e.g., k=1.381x10-2J/K).

11.4 BOLTZMANN’S FORMULA

We note that the fundamental postulate of statistical thermodynamics is that at equilib-

rium, InW is a maximum. Further for two systems in thermal contact at equilibrium,

Wis = Wy X Wy and hence In Wyz =1n W, + In W, that is, the law has the additive

property. This led Boltzmann to formally equate In W to the entropy function, that is,
S=klnW° 11.11)

The above definition gives maximum entropy at equilibrium and the additive property

SAB =SA +SB

It is to be noted that W° corresponds to the equilibrium distribution. Further with
8i
dinW = In =~dN;,

and

1

In ==~ = o + Be;

dlnW = aZdN,- + BdZe,N,«

= BdU

as U:Z,Bei and ZNi =N

From thermodynamics,

ds="Lau+Lav
T T
(&) av+ (%) v
au ), av ),
and equating the coefficients gives

1 oS p N
L_(98). p_[98 1112
T (av)v T (av)u (2
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From Eq. 11.11,

Thus,

B=-— (11.13)
as indicated previously.

Using the equilibrium distribution given by Eq. 11.6, an expression for entropy as
defined by Boltzmann (Eq. 11.11) can be obtained as

S=klnW = kNln%+kﬂU+kN

With
1
p= kT
the above can be written as
s=ivinZ+Y iy (11.14)
N T

Thus from Eq. 11.12, we can obtain pressure as

dlnz
p= NkT( ) (11.15)
v ),

Since, the internal energy is

—Pei
z z i€
U= nE = & E;
Z

and with z = Zgie'ﬁs"

we can write

N| dz dlnz
U=——|=—=| =NkT

Z (aﬁ)v (alnT]V (110
sinceﬁ=kiT

Equations 11.14—-11.16 link the thermodynamic functions S, U and p in terms of the
partition function z, which is based on the molecular energy levels of the particles in
equilibrium.
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11.5 PARTITION FUNCTION FOR A MONOATOMIC
GAS: INTERNAL ENERGY, PRESSURE, EQUATION
OF STATE AND ENTROPY OF AN IDEAL GAS

A monoatomic gas stores energy in the translational modes at the temperatures of
interest. At low to moderate pressure and temperatures of interest, it can be consid-
ered as an ideal gas. The translational energy level of the individual particles in the
monoatomic gas is given by

2

(nx® +ny? +nz?) (11.17)

where £ is the Planck constant, m is the mass of the particle, V is the volume of the
system, and n,.,n,,n, are the quantum numbers. From Eq. 11.17, the partition function
can be evaluated as

0 oo oo 2 2 2. 2
_78kaV2/3(nX +ny~+nz )
= e

ny=1 ny=1 n;=1

Since the summation is over quantum states, we need not consider the degeneracy of
the energy levels. The values of the quantum numbers are very large for any appre-
ciable energy, the change of n,,n,,n, are very small and we can replace the summa-
tion by an integral, that is,

oo 2 oo 2 oo 2

h ) h ) h )
= J’ ¢ o) JEW( ) n, J‘eW( )an,

0 0 0

Each integral in the above is of the form

oo

J.e’“’rz dx = 1]m
2\Na
0
We therefore obtain
3/2
z= V( 2”}’;”) (11.18)

Hence,

1nz=1nV+31nT+31n(2nTk)
2 2 h

From the expression above, Eq. 11.16 gives

dlnz 3
U:NkT(alnTJ :ENkT (11.19)
%
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The pressure from Eq. 11.15 becomes

1
pszT(a an _ NkT
U

v Ty (11.20)

nRoT
or p=—
1%

which is the equation of state of an ideal gas.
The entropy from Eq. 11.14 can be readily obtained as

S:kNln£+g+kN
N T

3 v 2mmk \¥'* 5
:Nk|:21nT+lnN+ln( 2 ) +2:| (11.21)

If we consider 1 mole of a gas, that is, N=N,=6.023x10>* molecules per mole and
Nok = Ry, Eq. 11.21 becomes

§=C,InT + RyIn + R 1n1(2”mk)3/2+5R (11.22)
4 0 0 AW PR .
~ v . (3/2)R0 N .
where V= o’ Cy = n andn = N Eq. 11.22 was first obtained by Sakur and
0
Tetrode.

11.6 REVERSIBLE HEAT TRANSFER, WORK AND THE FIRST LAW

Since the internal energy is given by

U= zNiel-

we can write the change in internal energy as

du = ze,-dzv,- + ZN,«de,-

The first term Z&dNi on the right hand side denotes a change of internal energy

resulting from a change in the distribution of the particles among its energy levels.
This term represents reversible heat transfer at constant volume and therefore no
change in the energy levels &; occurs. Thus, we write

A0, = Zs,»dNi
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Writing the second term as

Y, 9 1y

dv
we see that it denotes a change in the energy level g; resulting from a change in the
volume of the system.

For the particular case of a monoatomic gas, Eq. 11.17 gives the energy level as a

function of the volume of the system. We may write

2

Ing = —zln V+In (nX2 +n’ +nzz)+ln —
3 8m
Thus
dei __2dv
& 3V
and
Nide; =—2Ni€i gy _2U gy
3V 3V

From Eqgs. 11.20 and 11.19, we have for a monoatomic gas

_ NKT 3

—— U= _NkT
P 1% 2
and therefore get
_2U
P=3y
Thus
N,‘dgi = —pdV

which corresponds to the work done by the system. However,

dU = Zs,-dN,- + ZNidsi

and corresponds to
dU = erev - pdV

which is the first law in macroscopic thermodynamics.

11.7 ENTROPY AND THE SECOND LAW

From Boltzmann’s equation where entropy is given by kIn W°, we can also provide
a microscopic interpretation of the entropy. When heat or work is added to a system
reversibly, the distribution is not influenced. However, due to either irreversible heat
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transfer or irreversible work, the orderly distribution gets to be more disorganized
or disorderly. Thus, the equation S = kInW provides a microscopic relation between
disorder and entropy.

At microscopic level, probability of distribution is a measure of disorder. W° rep-
resents the equilibrium distribution N,°; thus if In W is predominantly large and
fluctuation from In W is vanishingly small, we elucidate the second law that the
entropy is a maximum at equilibrium and fluctuation from equilibrium value is neg-
ligibly small. Expanding In W about the equilibrium value, we write

2
an(N,-)zanO(N,«O)+(aan] ,. l(a in W
NO

| AN -
IN; 2| on? ]N '

and since InW? is a maximum, the first derivative vanishes.

Thus,
’ln W
In W(N;)—1n W*(N,) = ( . ] AN} +———
ONZ ) o
Since
InW(N,)= ZN In 8- ZN
and
aan z 8
1 1
’ln W 1
N/ "ZE
Thus

WN) __INANE _ NN N (AN Y
an(N,-O)_ 22 N; - 2ZN(N1')

Since N;/N is the probability to find N; particles in level g;, the term inside the sum-
2

mation term is just the moment of (’) (i.e., the averaged value). Therefore,

i

W(N,)= W(N,»O)e_gﬁc?)

and for, N >>1, W(Ni) is negligibly small when AN; is finite. However, for small
systems, the fluctuation will be large and it is difficult to define an equilibrium state.
The above consideration provides a molecular interpretation of the second law in
thermodynamics.
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