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PREFACE
The contents of this book is somewhat different from the other. The basic 
principles are defined to make this book very remarkable. The book covers 
two semesters or one year course and I hope that the materials covered in 
the present book will be beneficial for those students who specially have 
interest in studying the electricity and magnetism. Moreover, if the students 
have more difficulty in solving the problems using first principle and they 
stand in such a situation where they are unable to treat the problems, this book 
is designed keeping all such problems in mind. At the end of each chapter, 
the solved problems are given which boosts the students for understanding 
the basic concepts. It is obvious that the present book is intended first year 
undergraduate students with the elementary knowledge of the mathematical 
analysis. The many important illustrative examples are worked out using 
simple mathematics.

Chapter-1 provides and idea of the charge and Coulomb’s Law. In the 
Chapter–2 and 3, the electric field is introduced with some mathematical 
techniques and Gauss’s theorem is derived in different way. However, some 
other special topics are given in detail. The electric potential is described in 
the Chapter-4. The applications of the electric potential play an important 
role in stimulating and empowering the students with intuitive feel. Chapter-5 
describes the concepts of the capacitors and dielectrics. It provides an 
information, “How is energy stored in the electric field?”. Moreover, how does 
the electric field change when the matter is placed in the electric field. The 
Chapter-6 deals with the resistance and concerned laws. On the other hand, the 
solutions of the Laplace and Poisson equations are discussed in the Chapter-7. 
No section is omitted from the chapter. The concept of magnetic field in detail 
is given in the Chapter-8. Biot-Savart Law, Ampere’s Law and Faraday Law 
have been discussed with suitable applications. Moreover, paramagnetism, 
diamagnetism and ferromagnetism and their properties are also given in detail.

In Chapter-9, Alternating currents are encountered and contains a fairly 
detailed treatment of the necessary and desired circuits containing different 
passive elements. In the Chapter-10, much of the material on and no topic is 
avoided but treated with all trappings. Maxwell’s equations and proceeding via 
electromagnetic wave equation are described in the Chapter-11. This chapter is 
also devoted to the section of scalar and vector potentials.
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1.1. ELECTRIC CHARGE
In our universe, there are many particles which are the sources of the 
electromagnetic radiation. Many of them have definite amount of charge 
which creates the electromagnetic field. In the atom, the negatively charged 
electrons move around the positively charged nucleus, Although, nucleus 
consists of neutrons and protons where the neutrons do not have any charge, 
while the protons have positive charge. In this way, we can say that the charge 
is a fundamental property of the particle and it is bound to the matter. If a rod 
of amber is rubbed with fur, it acquires the property of attracting the small 
pieces of the papers. In this way, we can say that the some electrons are rubbed 
off the fur that is why, it acquires the property of the attraction. Further more, if 
a glass rod is rubbed with silk cloth, the glass rod becomes positively charged.

1.1.1. Kinds of the Electric Charge
There are two kinds of the electric charge, one is positive charge and another 
is negative charge. The positive charge is said to be the source of the electric 
field and the negative charge is the sink of the electric field. Thus, we write

(1) Positive charge: a source of the electric field.
(2) Negative charge: a sink of the electric field.

It is observed that the like charges repel each other and unlike charges attract 
each other.

1.1.2. The Unit of Charge
We know that the smallest charge exists in the nature is the charge of an 
electron. The magnitude of an electronic charge is 1.60219 × 10–19 coulomb. 
Thus, we can write,

e = 1.6 × 10–19 coulomb ...(1.1)

where coulomb (C) is the unit of the electric charge. The charge is an invariant 
quantity. The invariant means that its value does not depend on the choice of 

CHAPTER

1 Electric Charge and 
Coulomb’s Law



2 Elements of Electricity and Magnetism Theory and Applications

the frame of reference and the laws of physics do not deteriorate their form 
when a positive charge is replaced by a negative charge. Thus, we may say that 
the charge of all matters is quantized and it is equal to the integral multiple of 
the electronic charge e, that is,
 q = ne ...(1.2)

1.1.3. Conservation of the Charge
The law of nature is that the charge remains conserved every where. If we 
consider a closed system consisting of a large number of particles, this closed 
system must obey the law of the electric charge conservation. The conserve 
means that the electronic charge can not be created or destroyed. However, the 
charge can be transferred from one body to another. Moreover, the sum of all 
positive and the negative charges remains conserved, that is,

 qn
n
∑  = constant ...(1.3)

1.2. ELECTRIC CONDUCTORS AND INSULATORS
The electrical conduction is defined as the motion of the electrons in a 
substance. All substances are not good conductors of the electricity. The 
electrical conductors are those having large numbers of free electrons for 
carrying the current and the conductors have very low electrical resistance. 
On the other hand, the insulators are those having no free electrons for the 
conduction of the electricity. In the insulators, all electrons are tightly bound 
to the nucleus. Thus, the insulators have a very high resistance. The examples 
of the insulators are mica, rubber, wood and glass. More-over, when a glass 
rod is rubbed with fur, only the rubbed portion of the rod becomes charged and 
this induced charge is known as static or stationary charge. This static charge 
can not move to another part of the rod. This is because that the glass rod is 
an insulator. However, if we take a metallic rod, the induced charge spread 
over the whole region of the rod. This metallic rod cannot attract the piece of 
papers, thus, as a result it can be said that the conductors can not be charged.
Experiment: Fig. 1.1 shows a phenomenon of the electrostatic induction. It 
shows, how a conductor does accumulate the charge without touching it. Now, 
take a negatively charged rubber rod R and the rod R is brought near to the 
conductor AB, the negatively charged particles (electrons) will face a repulsive 
force due to the presence of the electrons at the end of the rubber rod. As a 
result, some of the electrons move away from the end A and thus, the positive 



Electric Charge and Coulomb’s Law 3

charges are accumulated at the end A of the rod AB. This accumulation of the 
positive charges are due to the migration of the electrons from the edge A. 
Now, when the end B of the conductor AB is connected to the earth as shown 
in fig. 1.1, all the electrons are repelled to the earth and as a result, the positive 
charges are left on the other end.

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

A B

–
–
–

–
–
–

–
–
–

Rod – R

+
+
+

+
+
+

+
+
+

A B

Fig. 1.1. The phenomenon of electrostatic induction

Moreover, if the conductor AB is grounded, all the positive charges have 
been distributed uniformly over the whole surface of the conductor AB.

1.3. COULOMB’S LAW OF FORCE
In 1784, a French scientist Charles Coulomb measured the electric force 
between the two charge bodies using torsion balance. This electric interaction 
between two charged bodies is observed as a coulomb’s law, which states that 
the electric interaction between two static point charges is proportion to the 
product of the magnitude of two charges and to the inverse of the square of the 
distance between them. Note that this force is directed along the line joining 
the two charges. The force between two like charges is repulsive and the 
force between two unlike charges is attractive in nature. Moreover, the force 
between any two charges is independent of the presence of the other charges. 
Suppose that the two point charges q1 and q2 are separated by a distance r as 
shown in fig. 1.2.

+ +

F21

r

F12

q1 q2

Fig. 1.2. Illustration of the coulomb’s Law

According to coulomb’s law, the force exerted by q1 on q2 is,

F ∝ 
q q
r
1 2

2

or F = k
q q
r

r1 2

2

� ...(1.4)

where r�  is the unit vector along the distance r.
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If we denote the force exerted by the charge q1 on the charge q2 as F
→

12 , then

 F
→

12  = k
q q
r

r1 2

2

�  ...(1.5)

Therefore, The Newton’s third law gives.

 F
→

12  = – F
→

12  ...(1.6)

where k is the constant of proportionality.

In M.K.S. system of units, The force F
→

12  is taken in Newton, r in meters 
and the charge in coulomb.
Thus, k is given by

 k = 1

4
9 10

9 2 2

π ∈
= × −

0

Nm c  ...(1.7)

where ∈0 is called the permittivity of the free space. The quantitative value of 
∈0 is given by
 ∈0 = 8.85 × 10–12 C2N–1m–2 ...(1.8)

Thus, the Eq. (1.5) takes a standard form as

 F
→

12 = 
1

4

1 2

2π ∈
0

q q
r

r�  ...(1.9)

Furthermore, consider a situation if charges q1 and q2 are opposite in 
nature, Then, the force between them is attractive as illustrated in the fig. 1.3.

+ –

F12

r

F21

q1 q2

Fig. 1.3. Force between two opposite charges

Example 1.1. Compute the force between two equal charges q1 = q2 = 1C, 
separated by a distance r = 1 metre.
Solution: According to coulomb’s Law

 F = 
1

4

1 2

2π ∈
0

q q
r

  = 9 × 109 . 1 1

1

C C×
m

or F = 9 × 109 Newton
F is repulsive in nature.
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In the example 1.1, the force between two equal charges, separated by 
a distance 1.0 m apart, comes out 9 × 109 N. From this argument, we can 
define one coulomb as “one coulomb is that charge which repels or attracts 
the similar charge placed 1.0 m apart in the vacuum, with a force of 9 × 109 N.

Units of Charge: In S.I. units, the unit of charge is coulomb and in C.G.S. 
system of units, it is stat coulomb.

 1 C = 3 × 109 stat coulomb

  = 3 × 109 e.s.u.

1.4. LIMITATIONS OF COULOMB’S LAW
We have following limitations on coulomb’s law.

 (1) The coulomb’s law can be applied to any pair of the point charges.

 (2) The system of charges must be in stationary position.

1.5. SUPERPOSITION PRINCIPLE
Since coulomb’s law determines the force, when two point charges are situated 
at a distance r apart, it may also be applied to a system consisting of large 
numbers of charges. Then, the net force on any charge is the vector sum of 
the forces due to rest charges. This is known as principle of superposition. If 
we consider a system of three charges q1, q2 and q3 as shown in fig. 1.4, the 
resultant force on the charge q1 will be the vector sum of the forces due to 
charges q2 and q3. Thus,

 F
→

1  = F F
→ →

+12 13  ...(1.10)
q1 q2

q3

r12

r13

r23

Fig. 1.4. System of three point charges

Moreover, for the system of N charges, the net force experienced by the 
charge q1 will be
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 F
→

1  = F F F F
→ → → →

+ + + +12 13 14 1... N

  = F
q q
r

r
N o

→
∑ ∑=

∈
1

1

2

1

4
N

N

IN

IN

N = 2

N

π
�  ...(1.11)

Example 1.2. A charge q is divided into two parts  q1, and q – q1. If these 
charges are placed at a distance x for which they experience maximum coulomb 
repulsion, Find the relation between q and q1.

Solution: The force between q1 and q – q1 is

 F = 
1

4

1 1

2π ∈
−

0

q q q
x

( )

For the force to be maximum, we have

 
dF
dq1

 = 0

or    
1

4
2

1

1 1

2

π ∈
−

o x
d
dq

qq q( )  = 0

or q1 = 
q
2

and d F
dq

2

1

2
 = –2(– ve)

The F will be maximum if q = 2q1

Example 1.3. Two identical metallic charged balls, each of mass m, are 
suspended at a common point c by threads of negligible mass and length l as 
shown in fig. 1.5. Each ball carries a charge q, so that the balls repel each other. 
Show that the system comes in equilibrium at a distance

 x = 
q l2

13

2π ∈





0
mg

/

 q2 = 16
2 2π θ θ∈o lmg sin tan .

Solution: Let q be the angle made by the thread to the vertical at the position 
of the equilibrium,
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x

T sin � T sin �

FF

T cos � T cos �

�

�

mg mg

Fig. 1.5. Two charged balls.

 F = 1

4

2

2π ∈
0

q
x

\ T sin q = F = 1

4

2

2π ∈
0

q
x

and T cos q = mg
on dividing the equations, we get, for small q,

 sin q = tan q = 
x
l

q
x2

1

4

2

2
=

∈π
0 mg

Thus, x = 
q l2

13

2π ∈





0
mg

/

Since, tan q = 
q
x

2

2
4π ∈

0
mg.

\ q2 = 4p∈0 mg x2 tan q

for small q,  x = 2l sin q

Thus, q2 = 16
2 2π θ θ∈

0
mg l sin tan .

1.6. PERMITTIVITY AND DIELECTRIC CONSTANTS
When two charges are placed at a some distance apart in a medium, the force 
between these two charges is affected, due to the medium. Thus, the permittivity 
of the medium is defined as the property of the medium which determines the 
forces between two point charges. Consider the two point charges q1 and q2 
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separated by a distance r. In the medium, the force between two point charge 
is given by

 Fm
→

 = 1

4

1 2

2π ∈
q q
r

r�  ...(1.12)

On the other hand, if two charges are placed in a vacuum, the force will be

 F
→

 = 
1

4

1 2

2π ∈
0

q q
r

r�  ...(1.13)

This force may be attractive or repulsive, it depends on the nature of the 
charges. In the Eq. (1.12) the subscript m represents the force between two 
charges q1 and q2 in the medium and ∈ is the absolute permittivity of the 
medium. On dividing Eq. (1.13) by the Eq. (1.12), we get,

 F
Fm

 = 
∈
∈0

 ...(1.14)

This ratio ∈/∈o is called the relative permittivity of the medium, Thus, we 
write

 ∈r = ∈
∈0

 ...(1.15)

Hence, the relative permittivity of the medium is defined as the ratio of the 
absolute permittivity of the medium to the permittivity of the free space.
Example 1.4. Consider three charges q1, –q2 and –q3, where the charge q1 
is situated at origin as shown in fig. 1.6. The distances r12 = a and r13 = b. 
Compute the net force on the charge q1 exerted by q2 and q3.
Solution: We have

 F
→

1  = F F
→ →

+12 13

y

x

F1

a

a

q3

q1
q2

�

Fig. 1.6. Force between charges.
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Now, F
→

12  = 1

4

1 2

12

2
12

π ∈
0

q q
r

r�

  = 1

4

1 2

2π ∈
0

q q
b

i�

and F
→

13  = 
1

4

1 3

2π ∈
0

q q
a

j�

The force on the charge q1 will be

 | F1 | = F F
12

2

13

2+

The direction of the force F
→

1  with x-axis is given by

 tan q = F
F

13

12

or q = tan
− 





1 13

12

F
F

Example 1.5. Two charges of Q coulombs each are placed at two opposite 
corners of a square. What should be the value of the additional charges-q 
placed at each of the other two corners that will reduce the resultant force on 
each of the charges Q to zero.
Solution: Consider a square of side a as shown in fig. 1.7.

F

F2

F1

Q

Q– q

– q

45º

Fig. 1.7. System of charges.

\ F
→

1  = F F
→ →

+1 245 45cos cos

  = 2F1 cos 45

\ F1 = 1

4
2π∈

0

q Q
a
.
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and F = 
1

4 2

2

2π∈
0

.
Q
a

Thus, 1

4 2

2

2π∈
0

.
Q
a

 = 
2

4
2π∈

0

qQ
a

Thus, Q = 2 2 q

Example 1.6. The three point charges are placed at the equal distance along 
the straight line as shown in fig. 1.8. What should be the magnitude of the 
charge Q in order to make the net force on the charge at the origin to be zero.
Solution: 

q1 – q2 QF2 F (q, Q)1

a a

y

x

Fig. 1. 8. Three point charges.

we have two forces, F1(q1, Q) and F2(–q2, Q)
Thus, F1 = F2

 1

4 2

1

2π∈
0

q Q
a( )

 = 
1

4

2

2π∈
0

q Q
a

Thus, we get,
 q1 = 4q2

EXERCISES
 1.1. What is the electric charge? A body has the charge of 1µC, what does it 

mean.
 1.2. Find the number of the electrons in
 (a) a charge of 1C.
 (b) a charge of 1µC.
 1.3 A positively charged rubber bar is 

brought near the two uncharged metallic 
spheres X and Y as shown in fig. 1.9. These spheres are at insulated 
stands.

+
+
+

+
+
+

+
+
+

X Y

Fig. 1.9. Conductors.
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 (a) what happens, if the bar is brought near to the sphere X.
 (b) What happens, when the bar is removed.
 (c) When bar is removed and the spheres X and Y are separated.
 1.4. An isolated metallic sphere is given a positive charge. Does it mass 

increases, decreases or remains same.
 1.5. Two similar charges, 1 cm distance apart experience a force of 1.0 × 10–2 

N. Compute the magnitude of each charge.
 1.6. Two charges of –4µC and 6µC are separated by a distance of 1.0 cm. 

Compute the force between them.
 1.7. Four equal point charges are placed at the four corners of a square of 

the side L. Find the magnitude of the charge placed at the centre of the 
square for which the system should be in equilibrium.

 1.8. Two positive point charges are placed at a distance d apart. The sum of 
the both charges is Q. Compute the values of the charges if coulomb 
force between them is maximum.

 1.9. Three point charges, each having magnitude q, are placed at the vertices 
of an equilateral triangle. Find the force on a charge Q placed at the 
centre of the triangle.

 1.10. The three charges q1 = 5µC, q2 = –3µC and q3 = 7µC are placed in a 
triangle as shown in fig. 1.10. Compute the net force on the charge q3 if 
a = 3 cm, and b = 4 cm.

y

x

b

a
q1 q2

q3

Fig. 1.10. Charge system.

 1.11. A thin metallic ring of the radius a has the charge q. What should be the 
tension in the wire, if the charge Q is placed at the centre of the ring.


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The gravitational force is a common force that acts between two distant 
masses. Similarly, the coulomb force acts between two stationary charges. The 
limitation of the coulomb force is that it acts between two point charge. If there 
is a distribution a charges, then the concept of the electric field is a powerful 
tool to handle such a system. A stationary charge acts an electrostatic force on 
the other charges in the region of space. It mean that a single charge creates an 
electric field in the space near by it. In this chapter, we shall discuss the electric 
field and its applications.

2.1. THE ELECTRIC FIELD
Since the static charge produces an electric field surrounding it, thus, the 
electric field at a given point in the region of space may be defined as the force 
experienced by a positive test charge in that region of space. The concept of 
the positive test charge is very interesting that it is a tool to defect whether 
field is present or not in the region of space. The magnitude of the test charge 
in negligibly small. The electric field is a vector field because it measures the 
force. We know that a charge q produces an electric field, then a positive test 
charge q0 is placed at a point where the electric field is to be determined. As 
a result, the test charge q0 experiences a force due to the interaction of the 
electric field produced by the charge q. Thus, the force on the test charge q0
will be 

F
→

= 1

4 2π∈o
oq q

r
r

. �  ...(2.1)

where r is a distance of a point from the charge q at which the electric field is 
to be computed.

Thus, the electric field strength or electric field intensity is defined as,

E
→

= Lim
q o oo

F
q→

→

 ...(2.2)

2 The Electrostatic Field

CHAPTER
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Hence,

 E
→

 = 
1

4 2π∈o

q
r
r�  ...(2.3)

Thus, the electric field intensity at a point in the region of space is defined as 
the force per unit test charge. However, it is a field surrounding the charge q. 
Moreover, a test charge is taken into the electric field to measure the strength 
and direction of the electric field. The presence of the test charge q0 does not 
affect the original electric field. To understand this point consider a point 

charge q which generates an electric field E
→

 directed away from the charge q, 
as shown in fig. 2.1. Now, to compute the electric field at a point P at a distance 
r from the point charge q,

+

r

E

+q0

q

Fig. 2.1. A test charge qo is placed at a distance r 
  from the positive point charge q.

on placing the positive test charge q0, the electric field at a point P is given by

 E
→

 = 
F
q

q
r
r

o o

→

=
∈

1

4 2π
�  ...(2.4)

where r�  is the unit vector in the direction of r
→

. Since two positive charges 

repel each other, the direction of the force F
→

 will be the direction of the electric 
field. The positive test charge experiences the different forces at the different 
points in the region of space. Thus, the electric field varies from the point 
to point in the region. As a result, one may say that there are many electric 
fields due to the several charges in the region of space. Using super-position 
principle, the total electric field in the space is equal to the vector sum of the 
electric fields due to the individual charges. Hence,

 E
→

 = E E E
→ → →

+ + +1 2 3 ...

or E
→

 = En
n

→

=

∞

∑
1

 ...(2.5)

In general, the electric field at any point is given by

 E
→

 = 
1

4 2π∈ ∑
o

i

ii

q
r
r�  ...(2.6)

The unit of the electric field E is newton/coulomb (N/C).
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2.2.  ELECTRIC FIELD DUE TO UNIFORM CHARGE 
DISTRIBUTION

Suppose that the charges are distributed in the region, such a distribution of 
charges is known as continuous charge distribution. We can, now, compute the 
electric field intensity by taking a charge element dq. Thus, the electric field 
strength at a point P at a distance r from the charge element dq is given by

 dE
→

 = 
1

4 2π∈o

dq
r
r�  ...(2.7)

where r�  is unit vector along r
→

. Now, according to principle of superposition, 

the net electric field intensity E
→

 is the vector sum of all such electric fields 
produced by the individual elements. Thus,

 E
→

 = dEi
i

∑  ...(2.8)

  = 1

4 2π∈ ∑
o

i

i
i

i

dq
r
r�

or E
→

 = 
1

4 2π∈ ∫
o

dq
r
r�  ...(2.9)

Example 2.1. The four point charges q1 = 1C, q2 = 2C, q3 = 3C and q4 = –2C 
are placed at the four corners of a square of side 2 m. Compute the electric field 
strength at the centre of the square.
Solution: The four charges q1, q2, q3 and q2 are situated at the four corners of 
the square of side 2 m as shown in fig. 2.2.

q = 1c1 q = 1c2

q = –2c4 q = 3c3

E3

E4

E2 E1

O

Fig. 2.2. Four charges on square.

 E1 = 1

4
9 10

1

2

4 5 10
1

1

2

9

2

9

π∈
= × × = ×

o

q
r ( )

. N/C
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 E2 = 1

4
9 10

2

2
9 0 10

2

2

2

9 9

π∈
= × × = ×

o

q
r

. N/C

 E3 = 
1

4
9 10

3

2
13 5 10

3

3

2

9 9

π∈
= × × = ×

o

q
r

. N/C

and E4 = 1

4
9 10

2

2
9 10

4

4

2

9 9

π∈
= × × = ×

o

q
r

N/C

Thus, E′1 = E3 – E1 (since E1 and E3 are opposite)
  = 9 × 109 N/C
and E′2 = E2 + E4 (since E2 and E4 are in same directions)
  = 18.0 × 109 N/C

The net electric field at the centre ‘O’ will be

 E = ′ + ′E E
1

2

2

2

  = 15.58 × 109 N/C

2.3.  MOTION OF A CHARGED PARTICLE IN THE UNIFORM 
ELECTRIC FIELD

There are two cases for the motion of the charged particle in the uniform 
electric field, viz,
 (a) When the charged particle is moving parallel to the electric field,
 (b) When the charged particle is moving perpendicular to the electric field.

(a) Consider a charged particle, having a charge q, moving between two 
parallel plates as shown in fig. 2.3. These plates consist of opposite charges. 

+

+

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

–

–

–

+ +

u = 0

q v

E

y

x

z

Fig. 2.3. A positive charge is moving parallel to the electric field.

When the charge q moves in a uniform electric field, it experiences an 
electrostatic force,
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 F
→

 = q E
→

 ...(2.10)
Since the field is uniform, the intensity of the electric field, will remain 

same every where. Suppose that the initial velocity of the charge is zero, the 
charge will move in a straight line in the direction of the electric field with a 
constant acceleration. 

Thus, the acceleration of the charge q is given by

 a
→

 = F
m

→

or a
→

 = 
q E
m

→

 ...(2.11)

where m is the mass of the charged particle. Since the electric field E is along 
x-axis, we have

 E
→

 = E ix �  ...(2.12)

Substituting the value of E
→

 from the Eq. (2.12) in the Eq. (2.11), we get

 a
→

 = 
qE
m
ix �  ...(2.13)

The positive charge q experiences a force when placed initially between 
the plates, and it starts moving towards the negatively charged plates. The 
velocity gained by the charged particle at the time t may be obtained as 

 v
→

 = v at
→ →

+  ...(2.14)

or v
→

 = at
→

 v = 
qE t
m
x  ...(2.15)

If x is the distance travelled by the charge q in the time t,

 x = ut at+ 1

2

2  ...(2.16)

  = 
1

2
at

or x = 
1

2

2qE
m
tx  ...(2.17)
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Moreover, if v is the final speed before it strikes the negative charged plate, 
Thus,
 v2 = 2ax ...(2.18)

  = 
2qE x
m
x

or v = 
2

1 2qE x
m
x





/

 ...(2.19)

Again, the Kinetic energy of the charge q after after attaining the velocity 
v is given by

 K.E. = 
1

2

2mv

  = 
1

2

2
m

q E x
m
x

.
. .

  = qEx.x

 K.E. = F.x ...(2.20)
The Eq. (2.20) is the direct consequence of the work-energy theorem.
(b) When the motion of the charged particle is perpendicular to the 

electric field. Suppose that a particle of mass m, charge q enters into an electric 
field with the initial velocity velocity v0 as shown in fig. 2.4. The electric field 
E is uniform and the particle experiences an upward force,

 F
→

 = q E
→

 ...(2.21)

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

(x, y)

E

q

v0

Fig. 2.4. Motion of a charge q in a uniform electric field.

The electric field is uniform every where, the acceleration of the electron 
will be 
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 a
→

 = F
m

→

 a = 
qE
m

 ...(2.22)

Let (x y) be the position coordinate of the particle at any time t, thus, 
 x = vot ...(2.23)

and y = 
1

2

2at  ...(2.24)

Substituting the value of a from the Eq. (2.22) in the Eq. (2.24), we get

 y = 
1

2

2qE
m
t  ...(2.25)

Now, eliminating t from the Eq. (2.25) by using the Eq. (2.23), we get

 y = 
1

2 0

2

2
qE
mv

x






 ...(2.26)

Since the kinetic energy of the particle is 

 K = 
1

2
0

2mv ,

thus,

 y = 
qE
K

x
4

2



  ...(2.27)

The Eq. (2.27) shows that the trajectory of the particle between the plates 
is a parabola.
Example 2.2. An electron is released between the plates of a cathode ray 
oscilloscope and there is a uniform electric field of 2 × 105 N/C. If the initial 
kinetic energy of the electron is 1 KeV, find the deflection of the electron if it 
enters perpendicular to the field. The length of assembly is 4 cm.
Solution: Using Eq. (2.27),

 y = 
qE
K
x

4

2
.

  = 
1 6 10 2 10 4 4 10

4 10 1 6 10

19 5 4

3 9

.

.

× × × × × ×
× × ×

− −

−

  = 8 × 10–2 = 8 × 10–2 m = 8 cm.
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2.4. ELECTRIC LINES OF FORCE
Michael Faraday introduced the concept of the electric lines of force to visualize 
the nature of the electric field. The concept of the electric lines of force is very 
useful when dealing with the spatial electric field problems. It is due to the 
fact that the force between two point charges depends on the distance between 
them. The electric lines of force are imaginary lines that predicts the pictorial 
visualization of the field. Moreover, tangent to these lines of force at any point 
represents the direction of the electric field at that point.

Properties of the Electric Field Line
We have following properties of the electric field lines,

 (1) The electric field lines originate from the positive charge which is called 
the source of the field lines and end-up on the negative charge which is 
known as the sink. The electric field lines for the positive and negative 
charges are shown in fig. 2.5. 

+ –

(a) (b)

Fig. 2.5. Electric lines of force for (a) positive charge (b) negative charge.

 (2) The tangent at any point to the electric lines of force predicts the direction 
of the electric field at that point.

+ –

A B

EA

EB

Fig. 2.6. Directions of the electric fields at different points.

  In Fig 2.6. EA
→

 represents the direction of the electric field at the point A and 
  EB

→
 at the point B. The directions of the electric fields at the points A and 

B are different.
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 (3) The number of field lines originating from the positive charge and end 
on negative charge is proportional to the magnitude of the charge. In 
the fig. 2.7, more and more lines originate from the charge 2q than the 
charge q.

+2q +q

(a) (b)

Fig. 2.7. Density of lines depends on the magnitude of charge.

 (4) Greater the density of electric lines of force, greater the electric field 
strength.

 (5) Since there are no closed field lines in electrostatics, the electric field is 
irrotational. That is, the curl of the electric field must be zero.

 (6) Two electric field lines never intersect each other. That is, the direction 
of the electric field is unique. If it is not, then, at the point of intersection, 
the electric field will have two directions which is not possible.

 (7) The electric field lines emerging from a conductor are perpendicular to 
its surface. To visualize this argument, consider a conducting sphere as 
shown in fig. 2.8. The total charge reside on the surface of the sphere, and 
the electric lines of force are emerging, normally, from its conducting 
surface. 

Fig. 2.8. Lines of force from a conductor.
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 (8) The electric field about a point charge is isotropic. If we take an isolated 
point charge, the electric field lines emerge in all direction as shown in 
fig. 2.5.

 (9) The electric field lines do not penetrate the conductor, since the electric 
field inside the conductor is zero. Moreover, the electric field lines for 
the charges are shown in fig. 2.9.

+ +
N

Fig. 2.9. Electric field lines for positive charges.

In this pattern, there is a point, where the electric field E
→

 = 0. This point is 
known as null point and no electric line of force will pass through it.

If the electric field lines are curved, the electric field does not follow the 
field lines. Fig. 2.10, shows that the direction of the electric field lines are 
radially outward for the +ve charge and radially inward for the negative charge.

–+

Fig. 2.10. Source and sink for field lines.

It can also be seen that the electric field lines are symmetrical.
Example 2.3. Compute the electric field strength due to a point charge using 
the concept of electric field lines.
Solution: Suppose that a positive charge is situated at a point O, and we 
compute the electric field strength at a distance r from the point O, as shown 
in fig. 2.11.
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+

r

q

Fig. 2.11. Field lines from a charge.

Thus, sketch a spherical surface of the radius r around the charge +q. 
Since the spherical surface is uniform, the electric lines of force pass through a 
spherical surface normally. Thus, the surface area of the sphere,
 s = 4pr2

The charge density s = 
Charge

Area

  = 
q
r4

2π

the electric field intensity at a point on the spherical surface will be

 E = 
σ
∈o

  = 
1

4
2∈





o

q
rπ

 E = 
q
ro4

2π ∈

2.5. CHARGE DENSITIES
If the source of the electric field is the continuous charge distribution, the 
electric field may be calculated by considering a small charge element and 
integrated it over the region of the space. Since, large number of charges are 
distributed uniformly over the region, as shown in fig. 2.12, the integration 
of the electric field intensity due to the small charge element gives the total 
electric field produced by the uniform charge distribution in the region of the 
space. We have the following charge densities, viz,
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y

x

z

dy

dx

dz

r dE

P

Fig. 2.12. Charge element inside a uniform  
                     charge distribution region of space.

 (a) Volume charge density
 (b) Surface charge density
 (c) Line charge density.

Now, we shall discuss all the charge densities.
(a) Volume Charge Density: Consider a system where the charge 

is uniformly distributed and the volume of the system is divided into large 
number of small elements. Let us consider such an element of volume dx dy dz 
and consisting of the charge dq. If the charge dq is positive, the electric field 
at a point P due to this element points away. The volume charge density r(v) 
is given by 

 r(v) = 
charge of the small element

volume

  = 
dq

dxdy dz
or dq = r(v) dy dy dz ...(2.28)

Thus, the total charge of the system is given by

 q = dq
v
∫  ...(2.29)

  = ρ( )v dxdy dz
v
∫

or q = ρ( )v dV
v
∫  ...(2.30)

where dv = dx dy dz is the volume of the element. Here, r is a scalar function.
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(b) Surface Charge Density: If the charge is distributed uniformly over 
a surface of the area S in the region of space, we must define a surface charge 

density over a small surface area dS
→

. The surface charge density is denoted 
by s. Thus, we write,

 s = 
dq
dS

 ...(2.31)

or dq = s dS ...(2.32)
The net charge may be computed as 

 q = σ dS
s

→

∫  ...(2.33)

(c) Line Charge Density: If the charge distribution is along a line (one 
dimension), we must define a line charge density and it is represent by l. 

+ + + + + + + + + +

dx

Fig. 2.13. Line element

Let us consider a line of length l consisting of a positive charge distribution 
uniformly over the length l. Let dx be a line element having charge dq, thus, 
the line charge density

 l = dq
dx

 ...(2.34)

net charge of the line will be

 q = dq∫
 q = λ dx∫  ...(2.35)

2.6. THE ELECTRIC DIPOLE
An electric dipole is an arrangement of two equal and opposite charges 
separated by a small distance as shown in fig. 2.14.

–

P

+

rq q

Fig. 2.14. An electric dipole

Suppose that two charge –q and +q are situated at a distance r
→

, the 

electric dipole moment p
→

 is defined as 
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 p
→

 = q r
→

 ...(2.36)

The electric dipole moment is a vector quantity and its magnitude | p
→

| is equal to the product of the magnitude of either charge and the distance 
of separation. The direction of an electric dipole is taken from negative 
charge to the positive charge. The line joining the two charges is called the 
axis of the dipole. In M.K.S units, the unit of dipole is coulomb metre. For a 
system of charges, the electric dipole moment is given by 

 p
→

 = q ri i
i

∑  ...(2.37)

where 
i

∑  is the summation over all dipole moments. All the polar molecules 

like, HCl, HBr, CO and H2O etc possess the electric dipole moment. For 
example we take HCl molecule as 
 H+ _____ Cl–

In HCl molecule the positive and negative ions (charges) are separated 
by the certain distance, thus, it possesses the electric dipole moment. On the 
other hand, the non-polar molecules do not possess the electric dipole moment 
because the positive and negative charges are not separated for these molecules. 
Since two point charges are connected, the electric field due to a dipole may be 
computed in a simple way and without using integration.

2.7.  THE ELECTRIC FIELD DUE TO AN ELECTRIC DIPOLE AT A 
POINT ALONG ITS AXIS

Suppose that an electric dipole is lying along the x-axis as shown in fig. 2.15.

– +

q q

P

E– E+
O

a a

r

y

Fig. 2.15. Electric field due to dipole.

Let us consider an axial point P at a distance r from the centre of the 
dipole. The dipole moment of the system is

 p
→

 = 2qa i�  ...(2.38)
where 2a is the separation of the charges. If E– and E+ are the electric fields at 
a point P due to charges –q and +q respectively, Thus,
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 E– = 1

4
2π∈ +

−
0

q
r a

i
( )

( )
�  ...(2.39)

and E+ = 
1

4
2π∈ +

+
0

q
r a

i
( )

( )
�  ...(2.40)

Then, the resultant electric field at P will be 
 E = E+ + E–

  = 
q

r a r a
i

4

1 1

2 2π∈ −
−

+










0
( ) ( )

�

or E = 2

4

2

2 2 2

q ar i
r aπ∈ −0

�

( )

 ...(2.41)

since, p = 2aq,

 E = 
2

4

2

2 2 2

q pr i
r aπ∈ −0

�

( )

if we take r >> a,

 E = 
1

4

2

3π∈
0

p
r
r�  ...(2.42)

The direction of the electric field is along (+x) and p is (–x).

2.8.  THE ELECTRIC FIELD AT A POINT ON THE 
PERPENDICULAR BISECTOR OF THE DIPOLE AXIS

Suppose that the two charges are separated by a distance 2a constituting a 
dipole of the dipole moment

 p
→

 = 2aq i�  ...(2.43)
Consider a point P at a distance y on the perpendicular bisector of the 

dipole axis as shown in fig. 2.16.

– +
O

q q

y

x

r

E–

E+

y

a a

�

P

Fig. 2.16. Electric field due to dipole at a perpendicular bisector.
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The electric field at a point P due to +q charge is,

 E
→

+  = 
1

4
2π∈

+
0

q
r
r�  ...(2.44)

where r�+  is a unit vector, given by

 r�+  = cos sinφ φi j� �+  ...(2.45)
Again, the electric field due to –q charge is given by

 E
→

−  = 1

4
2π∈

0

q
r
r�  ...(2.46)

where r�−  = − −cos sinφ φi j� �  ...(2.47)
The resultant electric field at the point P is

 E
→

 = E E
→

+
→

−+  ...(2.48)

  = 2

4
2

q
r

i
π

φ
∈

−
0

cos
( )
�  ...(2.49)

since cos f = 
a
r

Thus, E
→

 = 2

4
3

aq
r

i
π ∈

−
0

( )
�

or E
→

 = 
1

4
3π ∈

−
→

0

p
r

i( )
�  ...(2.50)

Here, it can be observed that the electric field points in –x direction, and falls 

off as 
1

3r
. Moreover, the electric field due to a dipole along its axis is twice 

the electric field at a point lying on perpendicular bisector.

2.9. AN ELECTRIC DIPOLE IN UNIFORM ELECTRIC FIELD
An electric dipole consists of two charges of equal magnitude and at a distance  
2a apart. Now consider an electric dipole in a uniform electric field at an angle 
q as shown in fig. 2.17. The electric field acts from left to right or along x-axis. 
Thus, the forces acting on the dipole are given by
 F+ = qE ...(2.51)
and F– = –qE
where | F+ | = | F– |, that is, the two forces are equal in magnitude but pointing 
in opposite directions. Since, field is uniform, the dipole moment is given by 
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 p = 2aq ...(2.52)

F–

F+

y

x
�

�

O

–

+

E

Fig. 2.17. An electric dipole in a uniform electric field.

Here, two equal and opposite forces are acting on the dipole, net force on 
the dipole will be 
 Fnet = F+ + F–
  = qE – qE = 0 ...(2.53)

Thus, the net force on the dipole is zero. However, two forces acting 
in opposite directions produce a torque which rotates the electric dipole in 
clockwise direction, as a result of this, the electric dipole becomes parallel to 
the electric field. Now, the torque on the dipole is, then,
 t = F+ . a sin q + F– . a sin q
\ F = F+ = F– = qE

Thus, t = 2aF sin q� ...(2.54)

or t = 2a qE sin q ...(2.55)
Since, p = 2aq, we have

 t = PE sin q ...(2.56)
In vector form, it is written as

 τ
→

 = p E
→ →

×  ...(2.57)

Now, we have two cases.
 (1) The torque t will be maximum, when q = 90
   t = PE
  That is, the torque acting on the dipole will be maximum if the 

electric dipole is along y-axis, a direction perpendicular to the 
electric field.
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 (2) The torque t is minimum if q = 0
    t = 0
  if the dipole is along the electric field direction, the torque acting on 

the dipole becomes zero.
Example 2.4. An electric dipole consists of two equal and opposite charges of 
magnitude 2µC separated by a distance of 1.0 cm. If the dipole is placed at an 
angle of 30° in a uniform electric field of 105 N/C, calculate the,
 (a)  dipole moment.
 (b)  torque on the dipole.
Solution:  q = 2 × 10–6 C
 2a = 1.0 × 10–2 m
 E = 105 N/C
 q = 30°.

(a) Dipole moment
 p = 2aq
  = 1.0 × 10–2 × 2 × 10–6

 p = 2 × 10–8 C-m
(b) Torque

 t = pE sin q
  = 2 × 10–8 × 105 × sin 30°
  = 1.0 × 10–3 N.m

2.10.  AN ELECTRIC DIPOLE IN A NON-UNIFORM ELECTRIC 
FIELD

Consider an electric dipole in a non-uniform electric field as shown in fig. 2.18. 

–q

+q

qE–

qE+

Fig. 2.18. Dipole in a non-uniform electric field.
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The dipole moment is given by
 p = 2aq ...(2.58)
where 2a is the distance between the two charges. Since the dipole is in a non-
uniform electric field, a net force acts on the dipole. As a result, a net torque 
would act on the dipole which depends on the orientation of the dipole in the 
electric field. Now, suppose that E– and E+ are the electric fields at the charges 
–q and +q respectively, where E+ and E– are given by
 E+ = E(Z + 2a)
 E– = E(Z) ...(2.59)

Expanding E(Z + 2a) using Taylor series, we get

 E(Z + 2a) = E Z a dE
dZ

a d E
dZ

( )
( )

...+ + +2
2

2

2 2

2
 ...(2.60)

neglecting higher order terms, we write

 E(Z + 2a) = E(Z) + 2a
dE
dZ  ...(2.61)

Here, we have assumed that the dipole is lying in z-direction and the 
electric field varies along the z-direction. Due to the variation in the electric 
field, the dipole consists of two types of motion, linear motion and rotation 
about its axis. Now, we compute the net force acting on the dipole as,
 F = qE ...(2.62)
or F = q(E+ – E–) ...(2.63)

Now, substituting the values of E+ and E– from the Eqs (2.59) and (2.61) 
in the Eq (2.63) we get,

 F = q E z a dE
dZ

E z( ) ( )+ −





2

 F = 2aq dE
dZ

 ...(2.64)

Since, p = 2aq, we can write the Eq. (2.64) as

 F = p
dE
dZ

 ...(2.65)

The Eq. (2.65) represents the net force acting on a dipole in the non-
uniform electric field.
Example 2.5. An electric dipole is placed in a non-uniform electric field as 
shown in fig. 2.19.
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– +

q qP
O

2a – x x

y

x

Fig. 2.19. Dipole in non-uniform field.

Derive an expression for the electric field gradient at a point P from the 
centre O. Compute also the field gradient at x = a.
Solution: The electric field for the system is given by

 E = 
1

4

1 1

2
2 2π∈

−
−











0
x a x( )

 ∂
∂






E
x

 = −
∈

+
−











2

4

1 1

2
2 3

q
x a xπ

0
( )

 
∂
∂





 =

E
x x a

 = 
1

4

4

4π∈
0

.
aq
a

 ∂
∂





 =

E
x x a

 = 1

4

2

4π∈
0

.
p
a

2.11. POTENTIAL ENERGY OF DIPOLE IN AN ELECTRIC FIELD
Suppose that a dipole is placed in the uniform electric field, a couple acts on 
the dipole which tends to rotate the dipole. Thus, a work is done by the field to 
rotate the dipole and this work in rotating the dipole is stored as the potential 
energy. If the dipole is rotated through a small angle dq, the work done will be 
 dw = t dq
or dw = pE sin q dq ...(2.66)

Now, the net amount of the work done by the electric field to rotate the 
dipole from q = qo to q = q is given by

 w = dw∫

  = τ θ
θ θ

θ
d

=
∫

0

  = pE dsin

0

θ θ
θ

θ

∫
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or U = –pE (cos q – cos qo) ...(2.67)
This expression shows that a negative work is done by the electric field.
If initially, the electric dipole is at right angle to the electric field, we have 

qo = 90°. From the Eq. (2.67), we may write the potential energy of the dipole as 
 U = –pE cos q ...(2.68)

or U = −
→ →
p E.  ...(2.69)

Example 2.6. In the example 2.4, compute the work done by the electric field 
in rotating the dipole from q = 0° to q = 180°.
Solution: The work done by the electric field is 
 w = –pE (cos q – cos qo)
  = –2 × 10–8 × 105 × (cos 180 – cos o)
 w = 4 × 10–3 J
Example 2.7. Find the electric field at the centre of a hemisphere of the radius 
a and of uniform charge density s.
Solution: Consider a hemi-sphere of the radius a as shown in fig. 2.20.

x
O

�

d� a

A

B

M

y

Fig. 2.20. Electric field due to hemi-sphere

Let us consider a ring on the hemi-sphere of the radius AM, where AM =  
a cos q and OM = a sin q

Now, the thickness of the ring AB = adq,
and area = 2p (a cos q) adq
  = 2p a2 cos q dq

Thus, The charge on the ring is given by
 dq = s area
  = 2p a2 s cos q dq

Now, the electric field at O due to the ring is given by 

 dE = 
dq a

a a4
2 2 2 2 3 2π

θ
θ θ∈ +0

sin

[ cos sin ]
/
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  = 
σ π θ θ

π
θ. cos sin2

4

2

3

a d a
a∈

0

  = 
σ θ θ θ

2 ∈
0

cos sin d

The net electric field at a point O due to hemi-sphere will be 

 E = dE
0

π/2

∫

  = 
σ θ θ θ

π

2

2

∈ ∫
0 0

sin cos

/

d

 E = 
σ

4 ∈
0

Example 2.8. A uniform charged rod of length L is bent into a semicircle 
of radius r as shown in fig 2.21. Find the magnitude and the direction of the 
electric field at the centre of the semi-circle.

dE sin �

O

dE cos �

dE cos �

� d�

y

x

A

B

dl

Fig. 2.21. Charged semicircular rod.

Let l be the line charge density and given by 

 l = q
L

where q is the charge on the rod. Suppose that dl is the charge element whose 
charge is given by
 dq = l dl
  = l . rdq
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From the fig 2.21, it is clear that the y component of the electric field is 
zero and the x-component of the electric field is then,

 Ex = dE sinθ∫  = 
1

4
2π

θ
∈∫

0

.
sindq
r

  = 1

4π
λ θ θ

π

∈ ∫
0

0r
dsin

 Ex = λ
π π2

1

2∈
=

∈
0 0
r r

q
L

but, r = 
L
π

\ Ex = q
L2

2∈
0

Ex is along +x axis.

EXERCISES
 2.1. Find the electric field intensity at a point P due to a point charge q at the 

origin as shown in fig. 2.22.
y

x

P(x, y)

Fig. 2.22. A charge in a system.

  Hint:  E
→

 = 1

4
0

2π∈
= +

→q
r
r r xi y j� � �
,

 2.2. Define the electric dipole moment and obtain an expression for the 
torque when the dipole is placed in the uniform electric field.

 2.3. Obtain an expression for the force when an electric dipole is placed in a 
non-uniform electric field.

 2.4. If an electric dipole is placed in a uniform electric field, find the 
expression for its potential energy.

 2.5. When a dipole of moment p = 2aq C-m is placed in an electric field which 
varies as x3 along the x-axis. Compute the force acting on the dipole.
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 2.6. Compute the electric field at a point on the axis perpendicular to disc 
surface and passing through its centre. The disc has a uniform charge 
density s, sketch the electric field also.

 2.7. Compute the electric field at a point lying on the axis of the ring of 
uniform charge density l.

 2.8. The four point charges are placed at the vertices of a square of side a as 
shown in fig. 2.23. compute

4q 2q

q – 2q

O

A

Fig. 2.23. Charges on a square.

 (a) The magnitude and direction of the electric field at the centre ‘O’.
 (b) The electric field at point A.
 2.9. Determine the magnitude and the direction of the electric field at the 

point P shown in the fig. 2.24.

q qOa a

P

y

Fig. 2.24. Charge system.

 2.10. Three charges, q1 = 1C, q2 = 2C, q3 = –2C are placed at the vertices of an 
equilateral triangle of side 2 cm. Compute the electric field at the centre 
of the triangle.

 2.11. A particle of charge 2µC experiences a force of 10–5 N downward. 
Compute the magnitude and direction of the electric field.





In the previous chapters, we have discussed the force between two charges 
and the applications of the electric field. We have investigated the electric field 
due to a charge or an assembly of the charges using the concept of positive 
test charge q0. In this chapter we shall solve the electrostatic problems using 
Gauss’s law.

3.1. ELECTRIC FLUX
Since the positive and negative charges are the source and sink of the electric 
lines of force, we can define the density of the electric field lines passing 
through a given surface. In this way we can develop a relation between the 
electric field and the electric flux (density of the field lines).

The electric flux is defined as the number of the electric field lines 
passing through the given surface area. It is denoted by fe. The electric flux 
fe is directly proportional to the electric charge where the electric field lines 
originate. Suppose that a spherical surface is at some distance apart from a 
charge q situated at a point ‘O’ as shown in fig. 3.1.

O
q

Fig. 3.1. Electric field lines passing through a curved surface.

3 Gauss’s Law

CHAPTER
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Thus, the electric flux through the surface is equal to the number of electric 
field lines passing through the area of the surface. Then, we write

 fe = E S
→ →

⋅  ...(3.1)
where S is the area of the surface. Now, consider a plane surface in a uniform 
electric field E

→
 as shown in fig. 3.2.

E

Fig. 3.2. Flux passes through a plane surface.

In this case, the flux through the surface is 

 fe = E S
→ →

⋅
Where S denotes the area of the plane surface.

or fe = E nS
→

⋅ �

  = ES ...(3.2)

where n�  is a unit normal vector to the surface S
→

. Moreover, if the plane surface 
is parallel to the electric field, no field line passes through the surface and 

 fe = 0
Now, consider a case where the electric field lines make an angle q at the 

surface. That is, the surface is neither parallel nor perpendicular to the electric 
field lines. Consider such a arbitrary surface as shown in fig. 3.3.

E

�

dS

Fig. 3.3. Field lines passing through a closed surface.
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Assume that the whole surface is divided into infinitesimally small patches 
such that for each patch, we have a flat surface. Here, the electric field E

→
 

varies over the curved surface S. Now to determine the electric flux passing 
through the whole surface S, consider an electric field vector Ei

→
 at the ith 

patch whose are vector is dSi
→

.

where dSi
→

 = ndS ni� �,  is a unit normal vector. The electric flux passing through 
the area dSi

→
 is given by

 dfe = Ei
→

· dSi
→

 ...(3.3)

The dot product of electric field vector Ei
→

 and surface area vector dSi
→

 is 
purely a scalar quantity.

Thus, the net flux passing through the surface will be,

 fe = E dSi i
i

→ →
⋅∑  ...(3.4)

or fe = E dS
s

→ →
⋅∫  ...(3.5)

This surface integration can be evaluated by specifying the surface S. 
Since the vector E

→
 makes an angle q with the surface area vector dS

→
, we may 

write the Eq. (3.5) as,

 fe = E dS
S

cosθ∫  ...(3.6)

3.2. CONCEPT OF SOLID ANGLE
To understand the concept of the solid angle, it is important to have a look at 
the simple angle as shown in fig. 3.4. Let dq be the angle made by an arc dl, 
then

 Angle = 
Arc

Radius
 ...(3.7)

d�

r

dl

Fig. 3.4. Angle subtended by an arc.
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\ dq = 
dl
r

 ...(3.8)

or dl = r dq ...(3.9)

The ratio 
dl
r

 is very meaningful. In a similar way, we can define a solid 

angle. For this, consider two concentric spheres of radii r1 and r2 respectively 
as shown in fig. 3.5.

d� dS1

r2

r1

dS2

Fig. 3.5. Solid angle

Here, area dS1 and dS2 are proportional to r1
2 and r2

2 respectively. Thus,

 
dS
r

1

1

2
 = 
dS
r

d2

2
2 = Ω  ...(3.10)

where dW is known as solid angle and is used to define the solid angle of 
the cone as shown in fig. 3.5. The unit of the solid angle is steradian. The 
steradian is defined as the solid angle subtended at the centre of a sphere of 
radius 1.0 meter by an area of 1.0 m2 lying on the surface of the sphere. It is 
clear that solid angle increases with the surface area dS. Since the surface area 
of a sphere of radius r is 4pr2.

Then, the maximum solid angle is given by

 W = 4
2

2

πr
r

 = 4p ...(3.11)

To prove that Eq. (3.11). Consider a sphere of radius r as shown in fig. 3.6.
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�

d�

r

d�

�

d�

z

x

y

Fig. 3.6. Geometry of solid angle

In spherical coordinates, the surface area is given by
 dS = (r dq) (r sin q df)
  = r2 sin q dq df ...(3.12)
The elementary solid angle dW is now,

 dW = dS
r

d d
2

= sinθ θ φ

total solid angle W = d
S

Ω∫

  = sinθ θ φ π
φ

π

θ

π
d d =

==
∫∫ 4

0

2

0

 ...(3.13)

3.3. GAUSS’S LAW OF ELECTROSTATICS
Since electric field can be evaluated algebraically using coulomb’s law, Gauss’ 
law provides an easy way for computing the electric field for the uniform 
charge distribution. K.F. Gauss, a German mathematician derived a relation 
between the electric field and the charge in a closed system. Actually, this idea 
was derived from the fluid dynamics. Suppose that a charge q is situated at 
the centre of a sphere, the electric field lines are perpendicular to the surface 

and hence the electric field E
→

, at every point on the surface of the sphere, is 
perpendicular to the surface as shown in fig. 3.7. Thus, at the surface of the 
sphere, the electric field is given by 
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 E
→

 = 1

4
2π∈

0

q
r
r�  ...(3.14)

where r is the radius of the sphere.

O

q

dS1

dS2

Fig. 3.7. Electric field lines passing through the segments dS1 and dS2.

It is clear that the flux passing through the segment dS1 is equal to the flux 
through the areal segment dS2. Thus, we write

 E1dS1 = E2 dS2 ...(3.15)
Since the electric flux depends on the magnitude of the charge, consider 

the concept of the solid angle to prove the Eq. (3.15). Let dW be the solid angle 
subtended at the centre of the sphere by the surfaces dS1 and dS2 as shown in 
fig. 3.8.

O

q

d�

dS1

E1

dS2

E2

P1
P2

Fig. 3.8. Solid angle subtended by the area elements dS1 and dS2.
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Thus, we have

 dW = dS
r

dS
r

1

1

2

2

2

2
=  ...(3.16)

where OP1 = r1 and OP2 = r2. Thus, the electric field at the point P1 is

 E1 = 1

4
1

2π∈
0

q
r

 ...(3.17)

and the electric field at the point P2 is given by

 E2 = 1

4
2

2π∈
0

q
r

 ...(3.18)

Now, we calculate the electric flux passing through the surface dS1 is 

 f1 = E1 dS1 = q dS
r4

1

1

2π∈
0

 ...(3.19)

Similarly, electric flux passing through the area dS2 is given by

 f2 = E dS dS
r2 2

2

2

2

1

4
=

∈π
0

 ...(3.20)

since, we know that
 f1 = f2 ...(3.21)

or E1 dS1 = E2 dS2 ...(3.22)
Thus, for an arbitrary surface dS, we write

 f = E dS q
r
dS

S S

→ →

∫ ∫=
∈

·
1

4
2π

0

  = 1

4
2π∈ ∫

0

·
dS
rS

 ...(3.23)

Here dS
rS 2∫  is the solid angle dW, which has value 4p.

\ fe = q d
S4π ∈ ∫

0

Ω  ...(3.24)

  = q q
4

4
π

π
∈

⋅ =
∈

0 0

 fe = E dS q
S

→ →
⋅ =

∈∫
0

 ...(3.25)

Thus, Gauss’s Law states that the net flux through any closed surface is 
proportional to the net charge enclosed by the surface. If there are large number 
of charges enclosed by the surface, we write,
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  = q1 + q2 – q3 – q4 ......
That is, qi

i
∑  represents the algebraic sum of all the charges which enclosed

by the gaussian surface. If we consider a irregular body as shown in fig. 3.9. 
we may use the concept of solid angle to prove the Gauss’s law.

O

q

d�

dS

E

r

P

�

Fig. 3.9. Illustration of the flux, from a charge q,  
passing through solid angle in irregular body.

Now, the electric filed at point P is given by 

 E = q
r4

1

2π∈
0

 ...(3.26)

The flux through the element dS which makes an angle q from the electric 

field E
→

, is  d E dSeφ = ⋅
→ →

 and total flux is then,

 fe = E dS
S

→ →
⋅∫

  = E dS
S

cosθ∫  ...(2.27)

Substituting the value of E from the Eq. (3.26) in the Eq. (2.27), we get

 fe = 
q dS

rS4
2π

θ
∈ ∫

0

cos

  = 
q d q

S4 4
4

π π
π

∈
=

∈
⋅∫

0 0

Ω  ...(2.28)
Hence,

	 fe = q
∈0

 ...(2.29)
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It terms of charge density, Gauss’s law many be given as

	 fe = E dS dV
S

V

→ →
⋅ =

∈∫ ∫�
1

0

ρ  ...(2.30)

where q = ρdV
V∫  is the total charge enclosed by the volume and r is called 

volume charge density.

3.4. GAUSSIAN SYMMETRICAL SURFACES
Gauss’s law is applicable for any charge distribution in a closed surface. 
By knowing the charge distribution, we can evaluate the surface integration 

E dS
→ →

⋅∫�  for the flux passing through the gaussian surface, a symmetrical 
surface. We have following gaussian surfaces for corresponding symmetries.

System Gaussian Surface
Sphere Sphere

Infinite Rod Coarcial cylinder
Plane Sheet Pill box

3.5.  ELECTRIC FIELD OF A SPHERICAL CHARGE 
DISTRIBUTION

Gauss’s law can be used to find the electric field of a sphere with a uniform 
charge distribution. Now, consider a sphere of radius a with a charge q 
distributed uniformly over the sphere. Thus, the electric field is directed 
away from the surface of the sphere. It is noted that the electric field must be 
constant at all the points on the surface of the sphere. Now, we have two cases 
for evaluating the electric field, viz,
Case I: We evaluate the electric field at a point outside the sphere, in the 
region r > a as shown in fig. 3.10.

O

a

r

P

dS E

Gaussian

surface

Fig. 3.10. Electric field at a point P(r > a).
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Now, we draw a gaussian surface of the radius r, such that, it encloses all 
the charges present on the surface of the sphere. The electric field at a point P 
is evaluated as 

 E dS
→ →

⋅∫�  = q
∈0

 ...(3.31)

 E dS�∫  = q
∈0

or E · 4pr2 = q
∈0

or E = 1

4
2π ∈

0

q
r

 ...(3.32)

Since the charge is distributed uniformly over the surface on the sphere, 
we define charge density 

 s = Charge

Surface area
 ...(3.33)

or s = q
a4

2π
 ...(3.34)

The electric field at the surface may be obtained by substituting r = a in 
the Eq. (3.32), we get

 E = 1

4 2π
σ

∈
=

∈
0 0

q
a

 ...(3.35)

Case II: We shall, now evaluate the electric field at a point P lying inside the 
sphere (r < a), and we draw the gaussian surface which passes through the 
point P as shown in fig. 3.11.

O

r

a

Gaussian

surface

P

Fig. 3.11. Electric field at a point p lying in the region r < a.

Since all the charge q reside on the surface of the sphere, and the gaussian 
surface does not enclose any charge, hence q = 0. The electric field is 
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then, E dS
→ →

∫ .  = q
∈

=
0

0

or E = 0 for r < a ...(3.36)
The plot of electric field E with the distance is shown in fig. 3.12.

E

r

E = 0

r = a

E = = constant
1

4��0

q

a
2

1

r
2

E �

O

Fig. 3.12. Plot of E
→

 Vs distance r.

In the Fig. 3.12., It is shown that E varies as 1

2r
 for the region r > a and 

E = 0 for r < a. It is clear that E is constant at r = a.

3.6.  ELECTRIC FIELD OF AN INFINITE LONG WIRE (LINE CHARGE)
Let there be an infinite long wire of negligible radius having a uniform line 
charge density l, such that 

 l = q
L

 ...(3.37)

The long wire consists of cylindrical symmetry as shown in fig. 3.13 and 
the magnitude of the electric field is constant over the cylindrical surface.

+ + + + + + + + + + + + + + +

L

r

S1dS2

S2

S3

dS3

E EdS1 E

Fig. 3.13. Gaussian surface of a line charge.
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It can be seen that the electric field points radially away from the wire. 
As illustrated in the fig. 3.13, the gaussian surface consists of three parts for 
computing the electric field, viz,

 (1) curved surface S1,

 (2) left surface S2 and

 (3) right surface S3.
Now, applying Guass’s Law on the cylindrical surface, then, the electric 

flux through the Gaussian surface is 

 fe = E dS
S

→ →
⋅∫�  ...(3.38)

  = E dS E dS E dS
S S S

→ → → → → →
⋅ + ⋅ + ⋅∫ ∫ ∫1 2 3

1 2 3
� � �

  = E dS E dS E dS
S S S1

0 90 90
1 2 3

cos cos cos� � �∫ ∫ ∫+ +

  = E dS
S 1

0 0
1

+ +∫�
 fe = E ⋅ 2pr L ...(3.39)

The second and third integral for the surfaces S1 and S2 become zero, 

since the electric field E is perpendicular to the surface elements dS
→

1  and dS
→

2
. Moreover,

 fe = 
q

∈0
 ...(3.40)

\ E · 2prL = 
q

∈0

or E = q
L r2

1

π ∈
⋅

0

 ...(3.41)

From the Eq. (3.37), the Eq. (3.41) takes form,

 E = λ
π2 ∈

0
r

 ...(3.42)

or E ∝ 1
r

 ...(3.43)

Thus, the electric field E is proportional to 1
r





 . The plot of E versus r is 

shown in fig. 3.14.
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F

rO

1

r
E �

Fig. 3.14. Evs distance r.

Example 3.1. Obtain Coulomb’s law using Gauss’s law of electrostatics.
Solution: We may obtain coulomb’s law from the Gauss’s law of electrostatics. 
For this, suppose that an isolated positive charge q is situated at a point o as 
shown in fig. 3.15.

Gaussian

surface

E

dS
r

O

+q

Fig. 3.15. Gaussian surface for isolated charge

We have a spherical gaussian surface for a positive isolated charge. The 
electric field lines point outward from the charge. The Guass’s law is given by 

 E dS
S

→ →
⋅∫�  = q

∈0
since, the gaussian surface encloses the net charge q, we have

 E dS
S�∫  = q

∈0

or E ⋅	4pr2 = q
∈0

or E = 
1

4
2π∈

0

q
r

Now, if we put a point charge Q on the gaussian surface, then, the force on 
the point charge Q will be 

 F
→

 = QE
→
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or F
→

 = 1

4
2π∈

0

qQ
r

r· �

this is known as coulomb’s law.

3.7. ELECTRIC FIELD NEAR AN INFINITE PLANE SHEET
Gauss’s law can be used to compute the electric field near a large plane sheet 
with a uniform surface charge density. Consider a large plane sheet with 
a uniform charge density s in yz plane as shown in fig 3.16, where charge 
density s is given by 

 s = 
q
S

 ...(3.44)

Here, S is the area of the plane sheet.
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E

E

y

x

z

O

Fig. 3.16. Infinite plane sheet

It has a planner symmetry, and the gaussian surface is a pill box as shown 
in fig. 3.17.
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+
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+

+

+

+

+

+

+

+

+

Pillbox

Plane sheet

dS3

E

E

dS1

E

dS1

Fig. 3.17. Gaussian pill box
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We know that the electric field must be perpendicular and uniform and 
points outward from the charged plane sheet. Thus, we write

 E
→

 = E0 ...(3.45)
The gaussian pill box contains three parts of its surface, viz.

 (1) Surface S1
 (2) Surface S2
 (3) a curved surface S3.

According to Gauss’s law, we have

 E dS
S

→ →
⋅∫�  = q

∈0
 ...(3.46)

or   E dS E dS E dS
S S S

→ → → → → →
⋅ + ⋅ + ⋅∫ ∫ ∫1 2 3

1 2 3
� � �  = q

∈0

 ES + ES + 0 = q
∈0

or E = q
S2 ∈

0

 ...(3.47)

Using Eq. (3.44), we have

 E = σ
2 ∈

0

 ...(3.48)

The direction of the electric field is along ±x axis and E is constant.
Example 3.2. Compute the electric field for two distant parallel infinite non 
conducting plane sheets using Gauss’s law.
Solution: We have three cases for the two plane sheets.
Case I: Consider two positively charged parallel plane sheet, both having a 
uniform charge density s as shown in fig. 3.18.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

E1

E2 E2

E1 E1

E2

Sheet – 1 Sheet – 2

A B C

Fig. 3.18. Two positively charged sheets
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Now, suppose that E
→

1  and E
→

2  are the electric fields due to the charged 

sheets 1 and 2 respectively and E
→

1  and E
→

2  are given by

 E1 = σ
2∈

0

 E2 = σ
2∈

0

Therefore, we shall compute the electric field at the points A, B and C. The 
electric field at the point A is,

 EA = E1 + E2

or EA = σ σ σ
2 2∈

+
∈

=
∈

0 0 0

The electric field at the point B is given by 
 EB = E1 + (–E2)

  = σ
2∈

0

 – σ
2∈

0

 = 0

and the electric field at the point C is 
 EC = E1 + E2

or EC = σ σ σ
2 2∈

+
∈

=
∈

0 0 0

Case II: Now, let the sheet-1 be positively charged and the sheet-2 negatively 
charged as shown in fig. 3.19.

+

+

+

+

+

+

+

–

–

–

–

–

–

–

E1

E2

E1 E1

E2

A B C

E1 E2

E2

Fig. 3.19. Two charged sheets.

The directions of the fields E1 and E2 are computed by placing a positive 
test charge q0 at the points A, B and C. To calculate the electric fields at the 
point A, B and C, applying the superposition principle, 
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Thus,
 EA = E1 + (–E2)

  = 
σ σ

2 2
0

∈
−

∈
=

0 0

and
 EB = E1 + E2

  = σ σ σ
2 2∈

+
∈

=
∈

0 0 0

The electric field at point C is
 EC = E1 + (–E2)

or EC = 
σ σ

2 2
0

∈
−

∈
=

0 0

Case III: If the both plane sheets are negatively charged, as shown in fig. 3.20.
–

–

–

–

–

–

–

–

–

–

–

–

–

–

A B C

E1

E2

E1

E2

E1

E2

Fig. 3.20. Same charged sheets.

The electric field at the points A, B and C is given by 
at point A, EA = E1 + E2

  = σ
∈0

at point B,
 EA = E1 – E2
  = 0

at point C,
 EC = E1 + E2

  = σ
∈0
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3.8. GAUSS’S LAW IN DIFFERENTIAL FORM
The Gauss’s law is applied for the computation of the symmetrical fields. There 
are many problems in electrostatics which can be solved using Gauss’s law. 
But there is a restriction that the field should have a symmetry. The Gauss’s 
law in integral form is very useful for solving many problems, however, the 
differential form of Gauss’s law is very useful for calculating the fields in 
rectangular coordinates. Now, consider a parallopiped of sides dx, dy and dz 
along the axes as shown in fig. 3.21.

O

A

B

E

F

D H

G

y

x

z

C

Fig. 3.21. Electric flux passing through a parallelopiped.

The electric field is given by

 E
→

 = E i E j E kx y z
� � �+ +  ...(3.49)

The electric flux at the surface ABCD is 

                           Ex − 1

2
 ⋅ 

∂
∂
E
x
dxx

The electric flux entering per second through the face ABCD is 

                         E
E
x
dx dydzx

x−
∂
∂







1

2
 ...(3.50)

and the flux leaving per second through the face EFGH face will be 

                         E
E
x
dx dydzx

x+
∂
∂







1

2
 ...(3.51)

Thus, the net flux in the x-direction is obtained by subtracting the Eq (3.50) 
from the Eq. (3.51), we have

                         
∂
∂
E
x
dxdy dxx  ...(3.52)
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Similarly, net flux in y and z directions are given by 

                         
∂
∂
E
y
dxdy dxy

 ...(3.53)

and

                         ∂
∂
E
z
dxdy dxz  ...(3.54)

Thus, the electric flux passing through the parallelopiped is give by

                        ∂
∂

+
∂
∂

+
∂
∂







E
x

E
y

E
z

dxdy dzx y z  ...(3.55)

or        ∇⋅
→
E dV  ...(3.56)

where ∇ is called del operator and is given by

 ∇ ≡ ∂
∂

+ ∂
∂

+ ∂
∂x

i
y
j

z
k� � �  ...(3.57)

But,

 f = q
∈0

  = ρ dV
∈0

 ...(3.58)

Combining the Eq. (3.56) and (3.58), we get

 ∇⋅
→
E  = ρ

∈0
 ...(3.59)

The Eq. (3.59) can be proved using a concept of continuous charge 
distribution. In integral form, Gauss’s low is given by 

 E dS
S

→ →
⋅∫�  = q

∈0
 ...(3.60)

the net charge q, in terms of the charge density is given by 

 q = ρdV
V∫  ...(3.61)

Thus, the Eq. (3.60) takes the form as

 E dS
S

→ →
⋅∫�  = 1

∈ ∫
0

ρ dV
V

 ...(3.62)

Using Gauss’s divergence theorem to change the surface integral into 
volume integral, as,

 E dS
S

→ →
⋅∫  = ∇⋅

→

∫ E dV
S

 ...(3.63)
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Thus, in the light of the Eq. (3.63), the Eq. (3.62) becomes

 ∇⋅
→

∫ E dV
S

 = 1

∈ ∫
0

ρ dV
V

 ...(3.64)

Now, for any arbitrary volume, we may write the Eq. (3.64) as

 ∇ · E = ρ
∈0

 ...(3.65)

Here, r is called the charge per unit volume at a point where the electric field is E
→

.  

The ∇⋅
→
E  represents the electric flux per unit volume, and the ∇·E is 

proportional to the volume charge density r.

Moreover, E = J
σ

 ...(3.66)

Thus, the Eq. (3.65) reduces to 

 ∇⋅
→
J  = ρσ

∈0
 ...(3.67)

We know that the charge continuity equation is given by 

 ∇⋅
→
J  = – ∂

∂
ρ
t

 ...(3.68)

thus, we get

 – ∂
∂
ρ
t

 = ρσ
∈0

 

or ∂ρ
ρ

 = – σ
∈

∂
0

t  ...(3.69)

integrating

 ∂∫ ρ
ρρ

ρ

0

 = −
∈ ∫σ

0 0
dt
t

 

we get,

 r = ρ σ
0

0e t− ∈/  ...(3.70)

3.9. ELECTRIC FIELD DUE TO NON-CONDUCTING SPHERE
Consider a non-conducting sphere of the radius a having uniform charge 
density r. The symmetry of the charge distribution is spherical and the electric 
field points radially outward. Now, we have two cases as,
Case I: In this case, we shall calculate the electric field for the region r < a. We 
define the volume charge density as,
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 Volume charge density r = net charge

volume

or r = q

a4

3

3π





 ...(3.71)

where q is the total charge contained by the sphere of radius a.

E, dS

O

a

Gaussion

surface

r

Fig. 3.22. Sphere of radius a.

For the region r < a, let q′ be the charge enclosed by the gaussian surface 
of radius r as shown in fig. 3.22.

Thus,

 q′ = ρdV
V∫  ...(3.72)

  = ρ ρ
π

πdV q

a
r

V∫ =






4

3

4

33

3
·  

 q′ = q r
a







3
 ...(3.73)

According to Gauss’s law,

 E dS
→ →

⋅∫�  = 
′

∈
q

0
 ...(3.74)

or E·4pr2 = 1
3

∈






0

q r
a

or E = 1

4
3π ∈

0

r
a

 ...(3.75)

The Eq. (3.75) shows that the electric field varies linearly with the distance 
r and at r = a it becomes constant.
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Case II: Now, we shall compute the electric field intensity for the region r > 
a. Consider a point P, where E is to be calculated and we draw the gaussian 
surface passing through the point P as shown in fig. 3.23. In this case, all the 
charge q is enclosed by the gaussian surface.

O

a

r

P

dS

E

Gaussian

surface

Fig. 3.23. Gaussian surface for r > a.

Now, Gauss’s law is 

 E dS
→ →

⋅∫�  = 
q

∈0
 ...(3.76)

 E·4pr2 = 
q

∈0
 

or E = 1

4 2π ∈
0

q
r

 ...(3.77)

The plot of E versus r is shown in fig. 3.24. we can see that there is a 
discontinuity at r = a.

E

r
r = a

E =
1

4��0 a
2

1

r
2

E �

O

E r�

Fig. 3.24. Variation of E with the distance r.
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Example 3.3. Suppose that a point charge q is located at the centre of the flat 
surface of a hemi-sphere of the radius a, Fig. 3.25. Find the electric flux
 (a) through the curved surface and
 (b) through the flat surface.
Solution: The electric field at the curved surface of the hemi-sphere is given 
by

 E = 1

4 2π ∈
0

q
a

This electric field points radially outward direction.

E

O

q

Fig. 3.25. Hemi-sphere.

(a) The flux through the curved surface will be

 f1 = E dS
→ →

⋅∫�
  = E ⋅ S

  = 
1

4
2

2

2

π
π

∈
⋅ ⋅

0

r
a

a

 f1 = q
2 ∈

0

(b) The flux through the flat surface is then given by
 f2 = – f1

  = – q
2 ∈

0

since, f1 + f2 = 0

3.10. CHARGE ON CONDUCTORS
We are already familiar with the fact that the electrons are free to move inside 
the conductor. It is remarkable fact that the electric field is zero inside an 
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isolated conductor just as the gravitational attraction inside a sphere is zero. It 
is clear that the charge resides on the surface of a conductor. To describe it in a 
pictorial way, consider a charged conductor as shown in fig. 3.26.

E = 0

+ + + + +
+

+

+

+

+

+++++

+

+

+

+

Gaussian

surface

Fig. 3.26. The electric field E
→

 is zero inside the conductor.

Since the conductor is charged positively, the mutual repulsion between 
the charges derives the excess charge to the surface of the conductor and as 
a result, there is no charge inside the gaussian surface, thus the electric field

 E
→

 = 0 ...(3.78)
inside the conductor, shown by fig. 3.26. On the other hand, suppose that there 
is a charge present in-side a non-conductor, we have a gaussian surface which 
encloses the net charge and therefore, according to Gauss’s law,

 E dS
→ →

⋅∫�  = qi
i ∈∑

0
 ...(3.79)

Thus, the electric field will not be zero. In case of good conductor, the 
charge equilibrium state is achieved very rapidly, because the excess charge 
would flow to the surface of the conductor quickly. Moreover, consider a 
conducting sphere in a uniform electric field EC as shown in fig. 3.27.

–
–

–
–
–
–
–
–
–

+
+
+
+
+
+

+
+

E = 0

ES

EC

Fig. 3.27. The pattern of field lines in a conductor.
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As a result, the positive and negative charges move towards the 
corresponding polar regions of the sphere and creating an electric field ES in 
opposite direction. This is due to the fact that the electric field lines entering 
the conducting sphere produce negative charges and leaving from the right 
produce positive charges at the surface of the sphere. The motion of the 
charges is such that the induced electric field ES will cancel the external field 

EC inside the conductor. Hence, E
→

 = 0 inside the conductor. However, there is 
no penetration of the electric field lines into the conductor.

Furthermore, if there is an empty cavity inside a conductor, from Gauss’s 
law

 E dS
→ →

⋅∫�  = q
∈0

 = 0 ...(3.80)

Thus,
 E = 0 ...(3.81)
Because, there is no charge in the cavity, q = 0, fe = 0 and E = 0.
Again, suppose that a charge cavity is present inside the conductor as 

shown in fig. 3.28.
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–q

E

Fig. 3.28. A charge cavity in the conductor.

Due to the presence of +q charge inside the cavity, the – q charge is 
induced inside the surface of the cavity. As a result, +q charge appears on the 
surface of the conductor as shown in fig. 3.28. Now, consider a case, where 
a charge +q′ is present on the surface on the conductor. There should be no 
confusion between cavity and the conductor. The total charge on the surface 
will be equal to q + q′. Moreover, since charge is present in the cavity, the 
gaussian surface encloses the net charge +q – q = 0. Again, the electric field 



62 Elements of Electricity and Magnetism Theory and Applications

E
→

 is just perpendicular to the surface of the conductor and pointing outward, 
as shown in fig. 3.29.

+
+

+

+

+

+
+

+

+

+

+

+ E

Fig. 3.29. Direction of E
→

 of a charged conductor.

The tangential component Et of the electric field E
→

 is zero at the surface of 
the conductor, if it were non-zero initially, the charge on the surface will move 
in such a way that it becomes zero quickly and only the normal component of 
the electric field exists.
Example 3.4. For a conductor having uniform charge density s, calculate the 
electric field.
Solution: We can consider a conductor of any shape, Fig. 3.30.

+ + + + + + + + + + + + + + + + + +

E = 0t

En

E = 0

(a) (b)

Fig. 3.30. Et = 0 and normal component of electric field En exists.
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Let q be the charge on the conductor, then 

 s = q
S

where S is the surface area of the conductor. To compute the electric field, 
draw a pill-box, and Et = 0. According to Gauss’s law,

 E dS
→ →

⋅∫�  = q
∈0

or EnS = q
∈0

or En = σ
∈0

.

Example 3.5. The electric field for a given region is proportional to the square 
root of the distance, That is,
 E ∝ x1/2

or E = k x1/2

then, compute

 (a) The electric flux through the face of the cube of side L, Fig. 3.31.

 (b) Net charge confined to the cube.
Solution: by Gauss’s law, the flux through the small surface dS is given by

 df = E dS
→ →

.

or fe = E dS
→ →

∫ .

O

y

x

z

A E

B F

GC

D H

L
dy

dz

Fig. 3.31. Flux through the surface of the cube.
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Net electric flux through the cube would be 
 fnet = fEFGH – fABCD

But fABCD = E dS
ABCD

→ →

∫ .

  = K L1/2 dy dz
L L

0 0∫ ∫
  = K L5/2

Again,

 fEFGH = E dS
EFGH

→ →

∫ .

  = K (2L)1/2 dy dz
L L

0 0∫ ∫
  = K 2  L5/2

net flux through the cube is 
 fnet = K L5/2 ( 2  – 1)

But fnet = 
Σq
∈0

\ Sq = K∈0L5/2 ( 2  – 1)
Example 3.6. Show that tangential component of the electric field is zero at 
the surface of the conductor of any arbitrary shape.
Solution: Consider a conductor of any arbitrary shape as shown in fig. 3.32. 
By Gauss Law, the excess charge must be distributed over the surface of the 
conductor, and no electric field may exist within a conductor. i.e.
 E = 0 (inside the conductor).

E (E )normal n

E

E (E )tangential t

A

B

D

C

dy

dx

Fig. 3.32. Components of electric field at the surface of the conductor.

Now, by Maxwell’s equation,

 E dl
l

→ →
⋅∫�  = 0
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or E dl
ABCDA

→ →
⋅∫�  = 0

or   Et dx – En dy + 0.dx + En dy = 0
As dx → 0, we have
 Et = 0
Thus, the tangential component of the electric field on the surface of the 

conductor is zero and the surface of conductor will remain in electrostatic 
equilibrium.
Example 3.7. A point charge is placed at the centre of the cube. Calculate the 
electric flux passing through the cube.
Solution: Consider a cube of sides L and a point charge is situated at the centre 
of the cube as shown in fig. 3.33.

y

x

z

E

A

B

O

q

r

dy

dz

dS

D

C

Fig. 3.33. Cube.

Again, consider an area element dS
→

 whose position vector is r
→

. Therefore, 

dS
→

 is given by 

 dS
→

 = dy dz i�

the electric field due to point charge q is given as

 E
→

 = 1

4
3π∈

→

0

q
r
r

  = 1

4
3π∈

+ +
0

q
r

xi y j zk( )
� � �

where r2 = x2 + y2 + z2
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The electric flux through small area dS
→

 would be 

 df = E dS
→ →

⋅

  = 1

4
2 2 2 3 2π∈
+ +

+ +0

q xi y j zk dy dz i
x y z

( )·

( )
/

� � � �

 dfe = 1

4
2 2 2 3 2π∈ + +0

q x dy dz
x y z( )

/

But x = L (side of cube)

\ dfe = qL dy dz
L y z4

2 2 2 3 2π∈ + +0 ( )
/

Now, total flux through the surface (face) ABCD is

 fABCD = 4

4
2 2 2 3 2

qL dy dz
L y z

LL

π∈ + +∫∫
0

00 ( )
/

  = qL dy
z

L y L y z

L
L

π∈ + + +








∫

0 0
0 ( )( )

/2 2 2 2 2 1 2

  = qL dy
L y L y

L2

2 2 2 2 1 2
2π∈ + +∫

0
0 ( )( )

/

  = qL
L

y
L y

L2

2

1

2 2 1 2

1

2π∈ +










−

0 0

· tan

( )
/

  = q
π∈

−

0

tan
1 1

3

  = q q
π

π
∈

=
∈

0 0

·
6 6

net flux through the cube is the 6 times of the flux through one face of the cube.

\ fcube = q
6

6
∈

⋅
0

or fcube = q
∈0

.
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EXERCISES
 3.1. Compute the charge density r, if the electric field is given  by

   E
→

 = E xi0
�

  Hint:  ∇⋅
→
E  = ρ

∈0
.

 3.2. If in a certain volume of the space, the ten thousand electric field lines 
enter and four thousand leaving the volume, compute the net charge 
within the volume.

  Hint: fe = q
∈0

, q = f·∈o = 6000 × 8.85 × 10–12 coulomb.

 3.3. A spherical charge distribution has the charge density

   r = 
ρ

0

otherwise

( )a r r a− ≤ ≤



0

0

  Find the expression for flux.

  Hint: fe = q
∈0

 = 1 1 2
2

∈
=

∈∫ ∫∫∫
0 0

000
ρ ρ θ θ φ

ππ
dV r dr d d

V

a
sin

 3.4. Prove that there can be no existence of the net electric charge inside a 
hollow conductor

  Hint: Gauss’s Law.
 3.5. Determine the expression for the electric field for a conducting sphere for  

(a) r < a (b) r ≥ a, where a is the radius of the sphere.
 3.6. Compute the electric field at a point outside a long cylinder of radius a 

and having a uniform charge density.
 3.7. For a given volume, the electric field is given by 

   E
→

 = 2xi y j k� � �+ +

  Compute the charge density.
 3.8. Two non conducting charged plates X and Y are placed at a distance d 

apart as shown in fig. 3.34. Both plates have uniform charge distribution. 
Find the electric field at the points A, B and C.
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+

+

+

+

+

+

+

–

–

–

–

–

–

–

A B C

( )� (2 )�

Fig. 3.34. Charged plates.

 3.9. Suppose that a square of the edge ‘a’ is placed at a distance ‘a’ from a 
positive charge q as shown in fig. 3.35. Compute the electric flux passing 
through the square.

a

Fig. 3.35. A square plane.

 3.10. A sphere of uniform charge density r and radius a contains a spherical cavity 

  of radius 
R
2

 as shown in fig. 3.36. Compute the electric field at point A 
and B.

R

2 RA
B

Fig. 3.36. Spherical cavity.





CHAPTER

We are familiar with the electrostatic force that may be presented in terms of 
the electric field. Since electric field is a vector field, the electrostatic force is 
conservative force. In the experimental physics, the concept of the electric field 
may be transformed into the electric potential. The concept of electric potential 
or potential difference plays an important role in electrical engineering.

4.1. LINE ELEMENT AND LINE INTEGRAL
When an electrostatic force acts between the two point charges, we have 
associated with the electrostatic potential energy of the system. Thus, the 
concept of the potential energy is concerned with the work done by the 
conservative force. To calculate the amount of work done when a conservative 
force moves a particle along a path in the space, the line integral plays an 
important role. To understand the concept of the potential, suppose that a 
particle of mass m moves from the initial point A to the final point B under the 
influence of the force F

→
, as shown in fig. 4.1.

A

B

F

dl

Fig. 4.1. The motion of a particle along the path AB.

To calculate the work, the path AB is divided into several small segments 
and using one such path element dl. dl is also known as line element and is 
given by 

dl
→

= dxi dy j dz k� � �+ +  ...(4.1)

4 Electric Potentials
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where dy, dy and dz are the path elements in rectangular co-ordinates. The line 
element, in cylindrical coordinates, is 

 dl
→

 = r dr rd k dz� � �+ +φ φ  ...(4.2)
and in spherical polar coordinates is given by 

 dl
→

 = r dr rd r d� � �+ +θ θ φ θ φsin  ...(4.3)

Now, the scalar product of the force and the line element dl is F dl
→ →

⋅  which 

represents the work done for the small displacement dl
→

. That is,

 dw = F dl
→ →

⋅  ...(4.4)
The total work done in moving a particle from the initial point A to final 

point B is then, given by 

 w = F dl
A

B → →
⋅∫  ...(4.5)

or w = F dx F dy F dzxA

B
yA

B
zA

B
∫ ∫ ∫+ +  ...(4.6)

Since work done by the force F
→

 depends on the initial and final points 
A and B respectively, and is independent of path, the force F

→
 is called the 

conservative force. Moreover, if the work done by force is path dependent, it 
is known as non-conservative force.

4.2. ELECTRIC POTENTIAL AND POTENTIAL DIFFERENCE
Suppose that a positive point charge q0 is allowed to move in an electric field 
E
→

, an electrostatic force F
→

 = q0E acts on the charge q0 and this force F
→

 is 
governed by the coulomb’s law. If the charge q0 moves from an initial point A 
to the final point B, the potential difference is, often, written as
 dV = VB – VA ...(4.7)
Let WAB be the work done by the electrostatic force in moving a positive charge 
q0 from the point A to B, Thus, we write,

 VB – VA = W
q
AB

0
 ...(4.8)

Therefore, the potential difference between any two points A and B is equal to 
the work done in moving a positive charge q0 from the point A to B against the 
field. Moreover, since field is conservative and F

→
 = q0 E

→
, then, work done by 
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the electrostatic field in moving the charge q0 through a small displacement 
dl is given by 

 dw = – F dl
→ →

⋅

  = – q E dl0
→ →

⋅  ...(4.9)

The negative sign denotes that the electric field E
→

 points in the direction 
of decreasing the electric potential.

Thus, the total work done in moving the charge q0 from the point A to 
B is, 

 WAB = dw
A

B
∫  ...(4.10)

  = −
→ →

∫ q E dl
A

B
0

·

  = −
→ →

∫q E dl
A

B
0

·  ...(4.11)

The potential difference is 

 VB – VA = 
W
q
AB

0
 ...(4.12)

Hence,

 VB – VA = − ⋅
→ →

∫ E dl
A

B
 ...(4.13)

If we assign a point in the space as a reference point where the potential is 
assumed to be zero, then, this point will be infinite where V → 0. Consider the 
point A at infinite, so that VA = 0, from the Eq. (4.13) we write,

 VB = V = – − ⋅
→ →

∞∫ E dl
B

or V = − ⋅
→ →

∞∫ E dl
B

 ...(4.14)

The Eq. (4.14) states the electric potential at any point in the field. It states 
that the electric potential at any point in the electrostatic field is equal to the 
work done in bringing a positive charge q0 from the infinite to the point in the 
field. If the potential difference is negative, it means that the work is being 
done by the force F

→
 = q0E, and if dV is positive, there is a gain in the 

potential energy. Since potential is a scalar quantity, it is easy to calculate 
rather than electric field. The unit of work is joule and that of charge is 
coulomb. Then, unit of potential or potential difference is volt. Now,
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 1 volt = 1

1

joule

coulomb

In CGS system, unit is stat volt.
Example 4.1. If the work of 2 × 10–4 J is required in carrying a charge of 2µC 
from a point A to point B calculate the potential difference and which point is 
at higher potential.

Solution: VB – VA = 
W
q
AB

0
 = 2 10

2 10

4

6

×
×

−

−
J

C

 = 100 volts

Since VB – VA = +ve, VB is at higher potential.

4.3. ELECTRIC POTENTIAL OF A POINT CHARGE
The electric field may be computed directly for the distribution of charges. 
However, in computing the electric field for a uniform charge distribution, 
there is a mathematical difficulty in solving the problems. We have, now, a 
concept of the electric potential in solving the field related problems. Thus, 
two fundamental laws are there.
 (1) For the system of stationary charges, the work done by the conservative 

force in carrying a positive test charge q0 around a closed path is zero.
 (2) The electric flux density is expressed in terms of Gauss’s law.

To obtain an expression for the electric potential due to a point charge q, we 
must compute the potential difference between A and B as shown in fig. 4.2.

dlr

dr

r

�

A

q

B

r
A

r
B

P

Fig. 4.2. The potential difference between two points A and B.
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For the charge q, the electric field at a point P is given by 

 E
→

 = 1

4 2π ∈o

q
r
r�  ...(4.15)

where r�  is a unit vector along the position vector r
→

.

Since r dl� ⋅
→

 = dl cos q = dr ...(4.16)
then, potential difference between the point A and B is given by

 dV = VB – VA = − ⋅
→ →

∫ E dl
A

B
 ...(4.17)

  = −
∈∫ q dr
rr

r

A

B

4
2π

0

  = q
r rB A4

1 1

π ∈
−



0

 ...(4.18)

Thus, dV is the potential at a point B with respect to A. If it is assumed that 
the point A is at infinity, VA = 0 because at rA → ∞, VA → 0. Therefore, we 
write

 VB – V(∞) = q
rB4π ∈

0

  ...(4.19)

we can choose an arbitrary path the evaluate the electric potential, in the 
reference, of the Eq. (4.19), the potential at any arbitrary point will be 

 V(r) = 1

4π ∈
0

q
r

 ...(4.20)

If we look at the equation (4.17), it is obvious that the line integral E dl
→ →

⋅∫�  
must be zero for any closed path, that is,

 E dl
→ →

⋅∫�  = 0 ...(4.21)
Thus, the potential difference dV = VB – VA does not depend on the path, 
it is the difference of the potentials at the points A and B. The potential is 
negative or positive, it depends on the sign of the charge.

4.4.  POTENTIAL DUE TO CONTINUOUS CHARGE 
DISTRIBUTION

In the previous section, we have obtained the expression for the potential 
difference between two points A and B. If there are several charges  

q1, q2, q3 ... are located at the points with the position vectors r r r
1 2 3

→ → →
, , ...,  

the potentials are additive, Thus, we write
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 V = 1

4

1

4

1

1

2

2

π π∈ −
+

∈ −
+→ → → →

0

q

r r

q

r ro
| | | |

...   ...(4.22)

or V = 1

4π∈ −
→ →∑

0

q

r r

i

ii | |

  ...(4.23)

For the uniform charge distribution, we must have charge elements 
with the different charge densities. Thus,

 V = 
1

4

1 2

π
ρ

∈ −
→ →∫

0

dV

r r
V

| |

  ...(4.24)

or V = 1

4

1 2

π
σ

∈ −
→ →∫

0

dS

r r
S

| |

  ...(4.25)

and V = 1

4

1 2

π
λ

∈ −
→ →∫

0

dl

r r
l
| |

  ...(4.26)

Example 4.2. Suppose that the three charges q1 = 0.1 µC, q2 = 0.2 µC and  
q3 = –0.1 µC are situated at the three corners of a square of side 2 m as shown 
in fig. 4.3.

q
1

A

B

2 m

q
2

q
3

Fig. 4.3. A square.

Find the potential at the points A and B and also VB – VA.
Solution: The potential at the point A will be 

 VA = 1

4

1

1

2

2

3

3π∈
+ +



o

q
r

q
r

q
r

  = 9 10
0 1

2

0 2

2 2

0 1

2
10

9 6× + −





× −. . .
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  = 9 10 2 10
9 7× × × −

  = 12.72 × 102 = 1272 volts

 VB = 1

4

1

1

2

2

3

3π∈
+ +



o

q
r

q
r

q
r

  = 9 10
0 1

2

0 2

2 2

0 1

2
10

9 6× + −





× −. . .

  = 9 10
1

2

636
2× × = volts

\ VB – VA = 636 – 1272 = –636
The VB is at lower potential.

4.5. NEGATIVE GRADIENT OF THE POTENTIAL
Let V be the function of the rectangular coordinates as 
 V = V(x, y, z) ...(4.27)
Now, we use the concept of partial differentiation and we take

 dV = ∂
∂

+ ∂
∂

+ ∂
∂

V
x
dx V

y
dy V

z
dz  ...(4.28)

The Eq. (4.28) may be given in cylindrical and spherical polar 
coordinates,

 dV = ∂
∂

+ ∂
∂

+ ∂
∂

V
r
dr V d V

z
dz

φ
φ  

...(4.29)
and dV = ∂

∂
+ ∂

∂
+ ∂

∂
V
r
dr V d V d

θ
θ

φ
φ

The potential difference between two points A and B is given by

 dV = – E dl
→ →

⋅  ...(4.30)

Here, the electric field E
→

 and the line element dl
→

 are expressed (in the 
rectangular coordinate system) as,

 E
→

 = E i E j E kx y z
� � �+ +  ...(4.31)

and dl
→

 = dxi dy j dz k� � �+ +

The components of E
→

 are shown in fig. 4.4.
Using the Eq. (4.31), The Eq (4.30) takes the form
 dV = –(Exdx + Eydy + Ezdz) ...(4.32)









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y

z

x

Ey

Ez

Ex

E

Fig. 4.4. The components of the electric field E
→

  
      in cartesian coordinates system.

Now, from the Eq. (4.32), the components of E
→

 are given by 

 Ex = − = − = −dV
dx

E dV
dy

E dV
dzy z, , and  ...(4.33)

Moreover, E
→

 is then,

 E
→

 = E i E j E kx y z
� � �+ +  ...(4.34)

  = − + +





dV
dx
i dV
dy

j dV
dz
k� � �

  = −
∂
∂

+ ∂
∂

+ ∂
∂





x

i
y
j

z
k V� � �

or E
→

 = –∇V ...(4.35)

Again, E
→

 = –grad V ...(4.36)
Thus, the rate of change of potential V(x, y, z) in any direction at a given 

point is called the gradient of the potential at that point.
The Eq. (4.35) can be represented in cylindrical and spherical polar 

coordinates.

 E
→

 = – r
r r

k
z
V� � �∂

∂
+ ∂

∂
+ ∂

∂






φ
φ

1
 

...(4.37)
and E

→
 = – r

r r r
V� � �∂

∂
+ ∂

∂
+ ∂

∂






θ
θ

φ
θ φ

1 1

sin









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Physical Interpretation of E
→

 = –∇V
The grad V is an operation of the ∇ on the potential at a point. However, 
it provides the information in the region near the point P(say) where it is 
evaluated. We have following properties of the ∇V,
 (1) The grad V is pointed in the direction of increasing potential.
 (2) For the surface where V is constant, ∇V is assumed to be perpendicular 

to this surface. It is known as the concept of equipotential surface 
where E

→
 is always perpendicular to the surface.

 (3) The magnitude of the grad V is equal to the maximum of the rate of 
change of V. For example 

 | |∇ =V dV
dx

 = maximum for E in the direction of x.

 (4) If E is perpendicular to the dx,

 dE
dx

 = 0 ...(4.38)

  or                E  = constant

4.6. ELECTRIC POTENTIAL DUE TO A DIPOLE
Consider a pair of equal and opposite charges separated by a distance of 2a as 
shown in fig. 4.5.

r

y

P

x

qq
a O a

– +
�

r2

r1

r 1

–
r 2

(

(

Fig. 4.5. An electric dipole

The potential at a point P due to –q charge is 

 V1 = 1

4
1

π∈
−

0

( )q
r

 ...(4.39)

and the potential at point P due to the +q charge is given by
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 V2 = 1

4
2

π∈
0

q
r

 ...(4.40)

Thus, the net potential at the point P will be 
 V = V1 + V2

  = 1

4

1 1

2 1π∈
−



o r r

  = 1

4

1 2

1 2
π∈

−
→ →

o

r r
r r

| |  ...(4.41)

If the distance between two charges 2a, is very small as compared to the 

distance r of the point P, we may write, r1 r2 = r2 and | |r r
1 2

→ →
−  = 2a cos q.

Thus, we get

 V = 1

4

2

2π
θ

∈
0

aq
r
cos  ...(4.42)

Since dipole moment of the system is given by 
 p = 2aq, ...(4.43)

using the Eq. (4.43), the Eq. (4.42) takes the form

 V = 1

4
2π

θ
∈

0

p
r
cos  ...(4.44)

Moreover, the electric field is then calculated as 

 E
→

 = –∇V = – r V
r r

V� �∂
∂

+ ∂
∂





θ

θ
1  ...(4.45)

Here, ∂
∂
V
r

 = −
∈

2

4
3

p
r

cosθ
π

0

 

...(4.46)
and ∂

∂
V
θ

 = −
∈
p

r
sin θ

π4
2

0

Substituting the Eq. (4.46) in the Eq. (4.45) we get,

 E
→

 = p
r

r
4

2
3π

θ θ θ
∈

+
0

( cos sin )
� �  ...(4.47)

\ | E
→

| = p
r4

3 1
3

2

π
θ

∈
+

0

( cos )  ...(4.48)

which is the expression for the electric field.









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Example 4.3. Consider an electric dipole as shown in fig. 4.6. Then, find 
 (a) the potential at any point on the axis of the dipole.
 (b) the electric potential at the centre of the dipole and,
 (c) if the negative charge is replaced by a positive charge of same magnitude, 

the potential at the centre of the dipole.
Solution: The dipole moment is given by

 p = 2aq

+

y

q

x

P

O

x

q2a

–

Fig. 4.6. Electric diple.

 (a) To find the electric potential at a point P, we have to find out the potential 
at the point P due to both charges, the potential at P due to – q charge is 

   V1 = 1

4π∈
+
+

0

( )

( )

q
a x

  and the potential due to +q is

   V1 = 1

4π∈
+
+

0

( )

( )

q
a x

  Thus, the net potential at P is then,

   V = V1 + V2  = q
a x a x4

1 1

π∈ +
−

−




0

( ) ( )

   V = 
2

4
2 2

qx
a xπ∈ −

0
( )

 (b) The potential at point ‘0’, x = 0
   V = 0

  Moreover, V(q) = 1

4π∈
0

q
a

  and V(–q) = 1

4π∈
−

0

( )q
a

  Thus, V = V(q) + V(–q) = 0
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 (c) If the charge –q is replaced by +q, then, the potential at O due to the both 
charges are given by

   V1 = V2 = 1

4π∈
0

q
a

  \ V = V1 + V2 = 2

4

q
aπ∈

0

4.7. THE EQUIPOTENTIAL SURFACES
The equipotential surface is a surface that has same electrical potential at the 
every point lying on the surface. We know that the potential difference at the 
two points A and B is given by 

 VB – VA = − ⋅
→ →

∫ E dl
A

B
 ...(4.49)

Now, according to the definition of the equipotential surface,
 VA = VB

Thus, we write the Eq. (4.49) as

 E dl
A

B → →
⋅∫  = 0 ...(4.50)

(b)(a)

E

V V + dV

Electric

field lines

V1

V2

V3

Equipotential

plane or line

Fig. 4.7. Equipotential surface (a) Equipotential plane or line  
(b) for positive charge, V1, V2 and V3.

The Eq. (4.50) shows that the electric field E is perpendicular to the 
displacement. It means that the electric lines of force are perpendicular to the 
equipotential surface as shown in fig. 4.7. Moreover, by the Eq. (4.50), we have
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 F dl
A

B → →
⋅∫  = 0 ...(4.51)

The Eq. (4.51) predicts that no work is done in moving a charge from a 
point A to B along the equipotential line (a line on the equipotential surface).

From the fig. 4.7, it is clear that the electric field E
→

 is always perpendicular 
to the surface. In fig. 4.7 (a) we have two equipotential surfaces or lines that 
have potentials V and V + dV. However, in fig 4.7 (b), there are three spherical 
equipotential surfaces at the potentials V1, V2 and V3. We have mentioned earlier 
that the potential is always same at every point on the equipotential surface but 
it is not true in case of the electric field. The magnitude of the electric field may 
be different at the different points on the equipotential surface.

Furthermore, we may prove that the electric field E
→

 is perpendicular to 
an arbitrary equipotential surface. For this, consider the equipotential curves 
as shown in fig. 4.8. These curves are characterised by the constant potential* 
V(x, y, z).

y

O

z

x

P1

P2

V1 = V

V2 = V + dV

V3

�V

E

Fig. 4.8 Arbitrary equipotential surfaces.

Suppose that there are three surfaces at the constant potentials V1 = V,  
V2 = V + dV and V3. The electric field E

→
 can be written as a negative gradient 

of the electric potential, that is,

 E
→

 = –∇V ...(4.52)

* Classical Electricity and magnetism by Panofsky and Phillips, Addison-Wesley
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Let the potentials at the points P1 and P2 be V(x, y, z) and V(x + dx, y + dy, 
z + dz) respectively. Thus, the potential difference between the points P1 and 
P2 is given by 

 dV = V(x + dx, y + dy, z + dz) – V(x, y, z) ...(4.53)
The first term is expanded using Taylor series and neglecting the higher 

order terms, we get

 dV = V x y z V
x
dx V

y
dy V

z
dz V x y z( , , ) ( , , )+ ∂

∂
+ ∂

∂
+ ∂

∂






−  

or dV = ∂
∂

+ ∂
∂

+ ∂
∂

V
x
dx V

y
dy V

z
dz  ...(4.54)

  = ∂
∂

+ ∂
∂

+ ∂
∂







+ +
V
x
i V

y
j V

z
k dxi dy j dzk� � � � � �

·( )

or dV = ∇V · dl
→

 ...(4.55)
on using the Eq. (4.52), the Eq. (4.55) takes form as 

 dV = – E dl
→ →

⋅  ...(4.56)

Since the surface is equipotential and the displacement dl
→

 is assumed to 
be along the tangent to the surface, thus, we have dV = 0, hence

 E dl
→ →

⋅  = 0 ...(4.57)

The Eq. (4.57) shows that the E
→

 is always perpendicular to the equipotential 
surface.
Example 4.4. Find the electric potential at a point on a perpendicular bisector 
of a uniformly charged rod.
Solution: Consider a uniformly charged rod of length 2L as shown in fig. 4.9.

2L

y

P

ar

x

O

x

Fig. 4.9. Charged rod.
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Let dx be the length element at a distance x from the origin. The length 
element has the charge
 dq = l dx

Thus, the potential at a point due to the charge element is given by 

 dV = 1

4π∈
0

dq
r

since r2 = x2 + a2

\ dV = 1

4
2 2 1 2π

λ
∈ +0

dx
a x( )

/

Total potential is then,

 V = dV∫

  = λ
π4

2 2 1 2∈ +−
∫

0

dx
a xL

L

( )
/

  = 2

4
2 2 1 2

λ
π ∈ +∫

0 0

dx
a x

L

( )
/

Using integration 

 dx
a x( )

/2 2 1 2+∫  = log [ ]e x a x+ +2 2

Thus,

 V = λ
π2

2 2 2

∈ + + 
0

0
log ( )x a x

L

or V = λ
π2

2 2

∈
+ +



0

loge
L a L

a

4.8. PROPERTIES OF EQUIPOTENTIAL SURFACES
The properties of the equipotential surface are as follows;
 (1) The equipotential surfaces are closer in the region of the strong electric 

field and farther in the region of weak electric field.
 (2) The electric field lines are perpendicular to the equipotential surfaces.
 (3) The field lines are pointed from the higher potential to the lower potential.
 (4) No work is done in moving a charge particle along the equipotential surface.
 (5) Two equipotential surfaces cannot intersect each other otherwise two values 

of the potential exist at the point of intersection, which is impossible.
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 (6) The equipotential surfaces for a constant electric field are the planes 
perpendicular to the electric field.

 (7) For a positive point charge, the equipotential surfaces are concentric 
spheres as shown in fig. 4.7 (b).

 (8) The tangential component Et of the electric field is zero, if Et is non zero, 
the work done in moving a test charge along the surface would not be zero.

4.9. ELECTRIC POTENTIAL ENERGY
Since the electric field is a conservative field, the external work done in 
moving a charge from a point A to B, does not depend on the path between 
A and B. Thus, the potential energy is a function of the position only. The 
electric potential energy at a point in the electric field is defined as the amount 
of work done in carrying a unit positive charge from the infinitely to that point. 
Mathematically, we may write,

 U = − ⋅
→ →

∞∫ q E dl
P

 ...(4.58)

Moreover, suppose that a charge qo moves from the point A to the point B, 
then, the change in potential energy of the system is given by
 dU = q0(VB – VA) ...(4.59)

or U = −
→ →

∫q E dl
A

B
0

·  ...(4.60)

If q0 is negative, the potential energy U is positive. Thus, the potential 
energy of the system increases. From the Eq. (4.58), it is clear that U = +Wext, 
that is, on moving the charge from infinity to the point P, work W is positive. 
That is, the work done by the external agent is positive, when assembling a 
system of charges. Now, we want to assemble a system of two charges q1 and 
q2 as shown in fig. 4.10.

y

z

P

O
x

r12

q2

q1

Fig. 4.10. Assembly of two charges q1 and q2.
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The potential at the point P due to the charge q1 is 

 V1 = 
1

4

1

12
π∈

0

q
r

 ...(4.61)

Now, work done by the external agent in carrying the charge q2 from the 
infinite to the point P is given by 
 W1 = V1 q2 ...(4.62)

or U12 = W1 = 
1

4

1 2

12
π∈

0

q q
r

 ...(4.63)

If the sign of the charges q1 and q2 are same, there is an electrostatic 
repulsion between the charges and this is overcome by doing a positive work 
against the repulsion. In this way U12 positive. Further-more the third charge 
can be added to this system of two charges and the work is done against the 
interaction exerted by the charge q1 and q2, Fig. 4.11. Thus.
 W2 =  Potential energy at the point Q due to the charges q1 

and q2.

or W2 = 
1

4

1

4

1 2

13

2 3

23
π π∈

+
∈

0 0

q q
r

q q
r

 ...(4.64)

y

z

P

O
x

r12

q2

q1

r13

r23

q3

Q

Fig. 4.11. Assembly of three charges q1, q2 and q3.

The potential energy for the assembly of three charges will be 
 U = W1 + W2

  = 
1

4

1 2

12

2 3

23

1 3

13π∈
+ +





0

q q
r

q q
r

q q
r  ...(4.65)
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In this way, we may extend the above expression, Eq. (4.65) for the N 
point charges

 U = 1

2

1

4
1

·

,
π∈ =

≠

∑
0

q q
r
i j

iji j
i j

N
 ...(4.66)

The expression for U contains 1

2
 because summation counted each pair 

twice. For example.

 q q
r
1 2

12

 = 
q q
r
2 1

21

To avoid this ambiguity, dividing the expression by 2. Moreover,

 U = 1

2

1

4
q

q
ri
j

ijji
π∈









∑∑

0

 ...(4.67)

or U = 1

2
q Vi

i
∑  ...(4.68)

where Vi is the potential at a point i due to all charges. The unit of the 
electrostatic potential energy is electronvolt (eV).
 1 eV = e × 1 volt
  = 1.6 × 10–19 C × 1 volt
or 1 eV = 1.6 × 10–19 joules ...(4.69)
Example 4.5. Four charges are placed at the corners of a square of side a as 
shown in fig. 4.12. Find the potential energy of the system.
Solution: 

–q

A B

2 m

q

q

–q

CD

Fig. 4.12. A system of charges.

Let ABCD be a square of side a, we have
 AB = BC = CD = DA = a
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and AC = BD = 2 a
The potential energy of the system is

 U = 1

4

2 2 2 2 2 2

π∈
− − − − + +





0

q
AB

q
BC

q
CD

q
DA

q
AC

q
BD

  = q
a a a a a a

2

4

1 1 1 1 1

2

1

2π∈
− − − − + +



0

  = q
a a

2

4

4 1

2π∈
− +



0

 U = q
a

2

4

2 4

π∈
−

0

( )

Example 4.6. A charge q0 is placed at a point A in a uniform electric field as 
shown in Fig. 4.13. This charge is allowed to move from a point A to the point 
B and covers a distance d. Find the

E

A d B

Fig. 4.13. Charge in the electric field.

 (1) potential difference, VB – VA.
 (2) which point is at higher potential.
 (3) workdone is moving a charge q0 from A to B.
 (4) change in potential energy of the charge.
 (5) change in kinetic energy of the charge
 (6) velocity of the charge.

Solution: Suppose that an electric force F q E
→ →

= 0  carries a positive charge q0 
from a point A to B, in the direction parallel to the field. The distance between 
points A and B is d. In carrying the charge q0 from A to B the work done is 
 (1)  W = q0(VB – VA)
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  or VB – VA = W
q

E dl
A

B

0

= −
→ →

∫ ·

    = –Ed
  Thus,
   VB – VA = –Ed
 (2) Since VB – VA = –Ed, a negative quantity, thus the point A is at higher 

potential.
 (3) The workdone in moving a charge q0 from A to B is
   W = q0(VB – VA)
  or W = –q0Ed
 (4) When charge qo moves in the direction of the electric field, the kinetic 

energy of the charge increases and the electric field lines always point 
from a higher potential to the lower potential, the change in potential 
energy of the system is 

   dU = q0(VB – VA)
    = –q0Ed
  If qo is positive, dU is negative, Thus the potential energy of the charge 

decreases.
 (5) The change in K.E. is
   KB – KA = q0dV = q0(VB – VA)
  or DK = –q0Ed.
 (6) Since KA = 0,

  Thus, KB = 1

2

2mv

  where m is the mass of the charge particle,

  or 1

2

2mv  = q0Ed

  or v = 2q Ed
m
0

Example 4.7. A charge q is situated at the vertix A of an equilateral triangle 
of side a as shown in fig. 4.14. compute the work done in carrying a charge q0 
from the point B to C.
Solution:
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A
q

aa

B
a

C

Fig. 4.14. Equilateral triangle.

The potentials at B and C are given by 

 VB = 1

4π∈
0

q
a

and VC = 1

4π∈
0

q
a

The work done in moving a charge q0 from the point B to C is given by 
 WBC = q0(VC – VB) = 0.
since, VC = VB.
Example 4.8. Suppose that the eight identical water drops are charged to a 
same potential V. If these eight drops coalesce into one drop, Find its potential.
Solution: Let r and R be the radius of small and large drops respectively. Then,

 4

3

3πR  = 8 4

3

3
· πr

or R = 2r
The potential of each small drop is 

 V = 1

4π∈
0

q
r

and the potential of the large drop is then

 V′ = 1

4π∈
0

q
R

where Q = 8q  and  R = 2r,

Thus, V′ = 1

4

8

2π∈
0

·
q
r

  = 4
1

4
·

π∈
0

q
r

or V′ = 4V.
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Example 4.9. A non conducting sphere of the radius a has a uniform charge 
density r. Find the potential
 (a) at a point outside the sphere.
 (b) at a point inside the sphere.
Solution: Consider a sphere of the radius a as shown in fig. 4.15.

O

Q

P

a

Fig. 4.15. None-conducting sphere.

The electric fields for the point P and Q are given by

 E = 

q
r
r r a

q r
a
r r a

4

4

2

3

π

π

∈
>

∈
>













→
0

0

for

for

�

�

where r = q

a4

3

3



 π

(a) The electric potential at the point P is given by 

 VP(r) – V(∞) = −
→ →

∞∫ E dr
r

  = −
∈∞∫
q dr

r
r

4
2π

0

  = 1

4π∈
0

q
r

Since V(∞) = 0, again, the potential at the point Q is then,

 VQ – V(∞) = −
→ →

∞∫ E dr
r

or VQ – V(∞) = − > − <
∞∫ ∫E r a dr E r a dr
a

a

r
( ) ( )

  = −
∈

−
∈∞∫ ∫q dr

r
q rdr

a
a

a

r

4 4
2 3π π

0 0
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  = 1

4

1

4 2
3

2 2

π π∈
−

∈
−

0 0

· ( )
q
a

q
a

r a

or  VQ = 
1

8
3

2

2π∈ −




0

q
a

r
a

 

Example 4.10. If a charge q is distributed uniformly over the surface of a 
conducting sphere of the radius a. Find the potential inside and outside the 
sphere. Sketch the potential also.
Solution: The electric field for a conducting sphere is given by 

 E = 
1

4

0

2π∈
⋅ >

<






0

q
r
r r a

r a

�
,

,

Now, the electric potential for the region r > a is

 V(r) – V(∞) = q dr
r

r

4
2π ∈∞∫

0

 V(r) = 1

4π ∈
0

q
r

The electric potential for the region r < a is given by 

 V(r) – V(∞) = E r a dr E r a dr
a

a

r
( ) ( )> − <

∞∫ ∫
  = −

∈∞∫
q dr

r
a

4
2π

0

 V(r) = 1

4π∈
0

q
a

A plot of V(r) versus r is shown in fig. 4.16.

V �

1

r

q

a
V =

1

4�

0

V(r)

O r = a r

Fig. 4.16. Plot of V with r.
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Example 4.11. Find the potential at a point lying on the axis of a uniformly 
charged ring of the radius a.
Solution: Consider a uniformly charged ring of radius a as shown in fig. 4.17. 
Let dl be a charge element on the circumference of the ring. The charge of the 
element is 
 dq = ldl
where l is a line charge density.

y

z

O x

y r

dl

P

�

Fig. 4.17. Charged ring.

Thus, the potential at a point on the y-axis due to charge element dl

 dV = 1

4π∈
0

dq
r

  = 1

4
2 2 1 2π

λ
∈ +0

dl
a y( )

/
,

net potential at P is then obtained as 

 V = dV∫
  = 1

4 2 2 1 2π
λ

∈ + ∫
0 ( )

/a y
dl

  = 1

4

2

2 2 1 2π
λ π

∈ +0

.

( )
/

a
a y

since l = a
a2π

,

\ V = 1

4
2 2 1 2π∈ +0

q
a y( )

/
, a < 1
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Example 4.12. Consider two spherical conductors with the radii r1 and r2. 
A charge q is uniformly distributed on these two conductors and both are 
connected by a wire. Find the
 (1) charge on the sphere
 (2) ration of electric field (E1/E2).
Solution: Let q1 and q2 be the charges on the spheres of the radii r1 and r2 
respectively. Since charge flows continuously until an equilibrium is reached, 
both conductors are at same potential, Fig. 4.18.
\ q = q1 + q2

r1 r1

Fig. 4.18. Two spherical conductors.

we have,
 V1 = V2

 1

4

1

1
π∈

0

q
r

 = 1

4

2

2
π∈

0

q
r

or q
q

1

2

 = r
r
1

2

and q = q1 + q2
Thus, we get

 q1 = r
r r

q1

1 2
+

and q2 = r
r r

q2

1 2
+

 (2)  The electric fields at the surface of both spheres are 

   E1 = 1

4

1

1

2π∈
0

q
r

  and

   E2 = 1

4

2

2

2π∈
0

q
r

  on dividing, we get
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E
E

1

2

 = 
r
r

q
q

2

1

2

1

2







    =  
r
r

r
r

2

1

2

1

2







  or 
E
E

1

2

 = r
r
2

1

Example 4.13. Consider two concentric spherical conducting shells with the 
radii r1 and r2, where r1 > r2. The outer shell consists of a charge q. Compute 
the charge of the inner shell if it is grounded.
Solution: Suppose that Q is the charge on the inner shell. Then, the potential 
of the inner shell is the sum of the potentials due to charges q and Q. Thus,

 V = 1

4

1

4
1 2

π π∈
+

∈
0 0

· ·
q
r

Q
r

Since inner shell is grounded, V = 0

 q
r

Q
r

1 2

+  = 0

or Q = –
r
r

q1

2







Example 4.14. In spherical polar coordinates, the potential at a point is given 
by 

 V = V
r

0
cos sinθ φ

2

where Vo is a constant. Find the components of the electric field.
Solution: In spherical polar coordinates, the components of the electric field 
intensity are given by

 Er = – dV
dr

,

 Eq = – 1
r
dV
dθ

,

and

 Ef = – 1

r
dV
dsin θ φ

\ Er = – d
dr

V
r

0
cos sinθ φ

2






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  = 2

3

V
r

0
cos sinθ φ

 Eq = – 1

2r
d
d

V
rθ
θ φ

0
cos sin





  = V
r

0
sin sinθ φ

3

and

 Ef = − 





1

2r
d
d

V
rsin

cos sin

θ φ
θ φ

0

  = −V
r

0
cot cosθ φ

3

Example 4.15. Suppose that the two rings of some radius are placed coaxially 
at a distance a. If q1 and q2 are the charges of the rings, compute the work done 
in bringing a charge q0 from the centre of one ring to the another.
Solution: Let V1 and V2 be the potentials at the centres of rings and a be the 
radius of each ring, fig. 4.19, then

 V1 = 1

4 2

1 2

π∈
+





0

q
a

q
a

and

 V2 = 1

4 2

2 1

π∈
+





0

q
a

q
a

q1 q2

a

P Q
a

Fig. 4.19. Coaxial rings.

The potential difference
 dV = V1 – V2

  = ( )q q
ao

1 2

4

2 1

2

−
∈

−







π
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Now, work done in bringing a charge q0 from P to Q will be 
 W = q0 dV

  = q q q
a

0

0

( )
1 2

4

2 1

2

−
∈

−



π

EXERCISES

 4.1. Describe the potential and potential difference and show that

   V(r) – V(∞) = – E dr
r → →

∞
⋅∫

 4.2. Derive an expression for the potential at any point at a distance r from 
the centre of the electric dipole.

 4.3. What is the difference between electric potential and the potential energy 
and obtain an expression for the electric potential energy of a system 
consisting of N point charges.

 4.4. The electric field for a non-conducting sphere having uniform charge 
density is given by

   E
→

 = 

Kq
r
r r a

Kq r
a

r a

2

3

�
for

for

>

>











→

  where a is the radius of the sphere. Find the electric potential and sketch 
the potential also.

 4.5. Show that the total work needed to charge a sphere of radius a to q0 is 
given by 

   W = 1

2
q V

0

  Hint: V = q
a4π∈

0

   W = V dq q
a
dq q V

q q

0
0

0
0

0 0∫ ∫=
∈

=1

4

1

2π

 4.6. For a conservative field, show that
   E = –∇V
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 4.7. The electric potential at a point in a plane is given by 

  (a) V = α βy
y z y z( ) ( )

/ /2 2 312 2 2 1 2+
+

+
  where a, and b are constants. Find the components of the electric field 

intensity.
 4.8. A particle of charge 2C is placed in a field as given by

   E
→

 = a yzi zx j xyk( )
� � �+ +

  where a = 4 N/m2. If the corresponding potential at the origin is 15V, 
Compute the potential at the point (3, 2, 4). 

  Hint:  V = – E dr xyz⋅ =∫
 4.9. The four charges are placed at the four corners of a square of side a in 

the xy plane as shown in fig. 4.20.
y

q –2q

O

q
q

x

Fig. 4.20. A square.

  Hint: p
→

 acts from –q to +q, p aqi p aq j p p p
1 2 1 2

→ → → → →
= − = − = +� �

, ,

 4.10. Consider twenty seven identical water drops at the same potential V and 
all the drops coalesce to form a big drop. Find the potential of the big 
drop. If V = 100 Volts estimate the potential of the big drop. Ans. 900V.

 4.11. Two charges 2µC and –6µC are separated by a distance of 4 m. Find the 
position of the null point from the charge 2µC. Ans. 1.0 m.

 4.12. Three point charges 2µC, –4µC and 6µC are placed at the three vertices 
of an equilateral triangle of side 4 m. Compute the 

  (a) Work needed to assemble the system
  (b) electrostatic potential energy.
 4.13. Four charges 2µC, –1µC, 3µC and 6µC are placed at the corners of a 

square of side 1 m. Find the electrostatic energy.
 4.14. A disc has a uniform charge density s. Compute the potential at a point 

lying on the axis of the disc of the radius a, sketch the potential also.
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 4.15. Find the potential at the centre of a uniformly charged ring of the  
radius a.

 4.16. How much work is done to assemble eight identical point charges, each 
of magnitude q, at the corners of a cube of side a.

  Hint: W = qV, find electrostatic energy.
 4.17. The electric field is given as

   E
→

 = 2 3 4i j k� � �+ +
  Compute the potential difference between the points A(1, 2, 0) and  

B(2, 3, 3).

  Hint:  VB – VA = – E dr
→ →

∫
    = – E dx E dy E dzx y z∫ ∫ ∫− − = 17 volts.

 4.18. Consider two hollow concentric conducting spheres of radii r1 and r2 
as shown in fig. 4.21. If the inner sphere is charged with q and the outer 
sphere is grounded. Compute the potential at any point P in the region  
r > r2.

r 1

r
2

r

P

O

Fig. 4.21. Hollow conducting spheres.

  Hint: The outer sphere gets charge –q, potential at P is V = Kq
r

Kq
r

− = 0

 4.19. Compute the electric field for yukawa potential,
   V = q0V0 e–ar

 4.20. Compute the electric field at a point (1, 1, 1) from the origin for the 
following potential

  (a) V = x i y j z k2 2 2� � �+ +

  (b) V = x i zy j k2 2� � �+ +
 4.21. Suppose that there is a spherical cavity of the radius a in a conductor as 

shown in fig. 4.22. If the conductor has a uniform surface charge density 



Electric Potentials 99

s, compute the electric potentials and fields at the point P, Q and R. 
Where the potential at the point R is V0.

O
r

q P Q
R

+

–

+

+

+

+
+

+

+

– –

––

– –

–

+

Fig. 4.22. A cavity.

Solution: Due to induction, the cavity surface has – q charge.
The potential at R is V0
The electric field at R is

 ER = σ
∈0

The electric field inside the conductor (at point Q) is
 Ea = 0
and the potential VQ = V0

Moreover, potential at the point P will be 

 VP = q
r

q
a
V

4 4π π∈
−

∈
+

0 0

0

and

 EP = – dV
dr
P

  = q
r
r

4

1

2π∈
0

�


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We have already solved the various potential or field problems with known 
charge distribution. If the potential is known, charge q, electrostatic force, 
electric field etc may be computed easily. In solving such problems, an 
integration method is employed, that is, in other words, we take an integration 
over a definite charge distribution. We known that the electric field is given by 

E = –∇V ...(5.1)
that is, E can be taken as a negative gradient of the potential, this is because, 
the electric field is a conservative field. In this way, we can assume that the 
potential function V is associated with a given region of space. If the region 
of the space is not bounded, it has some difficulty in obtaining the solution to 
the potential problems. That is, there is a no unique solution to the problem. 
The uniqueness theorem helps in obtaining the solution to the electrostatic 
problems. This solution can be obtained using certain boundary conditions. 
In this way, a complex problem may be solved to a high degree of accuracy. 
Thus, Laplace and Poisson’s equations provide a good solution of the potential 
problems with known boundary conditions.

5.1. UNIQUENESS THEOREM
The uniqueness theorem states that, within a given boundary, if these exists a 
solution to the Laplace equation is only the unique and exact solution. In other 
words, a solution to the potential equation satisfying the boundary conditions 
is only an exact solution. However, there can be the number of solutions of 
the Laplace equation, but there will be a solution which satisfies the boundary 
conditions of the particular problem. The uniqueness theorem may also be 
applied to the Poisson’s equation with known boundary conditions. We can 
prove this theorem by contradiction.
Suppose that there are two solutions V1 and V2 for the Laplace equation and 
both solutions satisfy the boundary conditions. Now, we have

CHAPTER

5 Methods for the Solution 
of Electrostatic Problems
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 ∇2V = 0 ...(5.2)
Since V1 and V2 both are solutions to the Eq. (5.2), we write
 ∇2V1 = 0

 ...(5.3)
and ∇2V2 = 0

At the boundary, the solutions V1 and V2, and their normal derivatives are 
equal, that is,
 V1 = V2 ...(5.4)
and ∇V1 = ∇V2

Now, according to Gauss’s theorem,

 F dS
S

→ →
⋅∫∫  = ∇⋅

→

∫∫∫ F dv
V

 ...(5.5) 

Taking F V V
→

= ∇ , and substituting in the Eq. (5.5.) we get

 V V dS
S

∇ ⋅
→

∫∫  = ∇ ∇∫∫∫ ·( )V V dV
V

  = ( · )∇ ∇ + ∇∫∫∫ V V V V dV
V

2

  = [( ) ]∇ − ∇∫∫∫ V V V dV
V

2 2  ...(5.6)

Now, we substitute V = V1 – V2 in the Eq. (5.6) we get,

( ) ( )·V V V V dS
S 1 2 1 2

− ∇ −
→

∫∫  = [{ ·( )} ( ) ( )]∇ − + − ∇ −∫∫∫ V V V V V V dV
V 1 2

2

1 2

2

1 2

 ...(5.7)
Using boundary condition on the surface

 V1 = V2
then the Eq. (5.7) reduces to 

 [ ( )]∇ −∫∫∫ V V dV
V 1 2

2  = 0 ...(5.8)

or ∇(V1 – V2) = 0 ...(5.9)
or ∇V1 = ∇V2 ...(5.10)
or V1 = V2 + C (a constant) ...(5.11)

The Eq. (5.11) shows that the two potential solutions V1 and V2 are differing 
with a positive constant C only and it does not make any contribution to the 
gradient of the potential, since
 ∇C = 0 ...(5.12)

Thus, we conclude that the potentials V1 and V2 provide the same electric 
field E

→
. Hence, there exists a unique solution of the Laplace equation. The 








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uniqueness theorem may be proved using Poisson equation with the similar 
steps. When we solve any potential problem, we should have following in our 
mind.
 (1) A potential equation which is to be solved.
 (2) The region of space, that is, for example, a sphere, a cone, an infinite 

plate etc.
 (3) Boundary conditions associated with the problem.

5.2. POISSON’S AND LAPLACE’S EQUATIONS
In electrostatics, Gauss’s law in differential form is given by 

 ∇⋅
→
E  = ρ

∈0
 ...(5.13)

since electric field is a conservative field, we can write

 E
→

 = –∇V ...(5.14)

Substituting the value of E
→

 from the eq. (5.14) in the Eq. (5.13), we get

 ∇· (∇V) = – ρ
∈0

or ∇2V = – ρ
∈0

 ...(5.15)

The Eq. (5.15) is known as Poisson’s equation, and r is volume charge density 
for free charges.

In Cartesian Coordinates System
Since,

 ∇2 = 
∂
∂

+ ∂
∂

+ ∂
∂

2

2

2

2

2

2x y z
thus,

 
∂
∂

+ ∂
∂

+ ∂
∂

2

2

2

2

2

2x y z
 = – ρ

∈0
 ...(5.16)

In Cylindrical Coordinates
The transformation equations are given by 
 x = r cos f  r2 = x2 + y2

 y = r sin f  tan f = y
x

 ...(5.17)
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Therefore,

  ∇2V = 1 1

2

2

2

2

2r r
r V
r r

V V
z

∂
∂

∂
∂





 + ∂

∂
+ ∂

∂
= −

∈φ
ρ

0

 ...(5.18)

In Spherical Polar Coordinates
The transformation equations are 
 x = r sin q cos f
 y = r sin q sin f ...(5.19)
 z = r cos q
and

∇2V = 1 1 12

2 2 2

2

2r r
r V

r r
V

r
V∂

∂
∂
∂





 + ∂

∂
∂
∂





 + ∂

∂
=

sin
sin

sinθ θ
θ

θ θ φ
−−
∈

ρ

0

 ...(5.20)

In a region where there is no free charge, r = 0 thus the Eq. (5.15) reduces to 

 ∇2V = 0 ...(5.21)
which is Laplace’s equation. Thus, the following steps are taken to solve the 
potential equation.
 (a) Since V is a function of variables V = V(x, y, z) or V = V(r f z) or  

V = V(r, q, f), solve it by integrating directly.
 (b) If V has only one variable it can be solved using step (a). Otherwise 

solve it using he method of separation of variables.
 (c) Apply the suitable boundary conditions to get a unique solution of the 

potential equation.
 (d) On obtaining the expression for the potential V, we can obtain other 

physical parameters given as,
 (1) Electric Field:
   E

→
 = –∇V

   Er = – ∂
∂
V
r

   Eq = – 1
r
V∂

∂θ
 ...(5.22)

  and Ef = – 1

r
V

sin θ φ
∂
∂

 (2) Surface Charge Density.

   s = – ∈0
dV
dr

 ...(5.23)
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 (3) Electric Displacement vector:

   D
→

 = –∈0 E
→

 ...(5.24)
 (4) Current Density:

   J
→

 = s E
→

 ...(5.25)

Example 5.1. Prove that V = k
r

 is a solution of the Laplace equation.

Solution: Laplace equation is given by 
 ∇2V = 0

The radial part of the equation is 

 1

2

2

r
d
dr

r dV
dr





  = 0

since, V = k
r

,

 
d
dr

r d
dr

k
r

2 ⋅



  = 0

or –
d
dr

r k
r

2
2⋅



  = 0

or – dk
dr

 = 0

since k is a constant, so differentiation of a constant is zero. Thus, V = k
r

 
satisfies the Laplace equation.
Example 5.2. In spherical polar coordinates, the potential is given by V = V0 lnr, 
compute the volume charge density.
Solution: The Poisson equation is

 ∇2V = – ρ
∈0

in spherical polar coordinates, it is given by

 1

2

2

r r
r V

r
∂
∂

∂
∂





  = – ρ

∈0

or 
1

2

2

r r
r V

r
∂
∂





·

0  = – ρ
∈0
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or 
1

2r
V⋅

0  = – ρ
∈0

or r = – ∈
0 0
V
r2

Example 5.3. The plates of a parallel plate capacitor are located at x = 0 and  
x = L. The plate at x = 0 is grounded and the plate at x = L has a constant 
potential V0. Compute the 
 (a) potential
 (b) electric field
 (c) surface charge density s.
Solution:

y

z

O x

x = L

�

_

_

_

_

_

+

+

+

+

+

Fig. 5.1. Capacitor.

The Laplace equation is

d V
dx

d V
dy

d V
dz

2

2

2

2

2

2+ +  = 0 

since there is no variation of the potential V in y and z directions, we write,

 
d V
dx

2

2  = 0

on integration, we have,

 dV
dx

 = A

Where A is the constant of integration, on integrating it again, we get 
 V = Ax + B

To determine the constants A and B we require boundary conditions which 
are
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 V = 0 at x = 0
 V = V0  at x = L

Applying boundary conditions, we have
 V = 0 at x = 0
⇒ B = 0

Thus,
 V = Ax

Again, V = V0 at x = L

⇒ A = V
L
0

Thus we get potential as

 V = V x
L
0

(b) The electric field

 Ex = − dV
dx
i�

  = 
−V
L
i0 �

(c) The surface charge density is given by

 s = – ∈0
dV
dx

or s = – ∈0 0V
L

and s = ∈0 0V
L

5.3.  SOLUTION OF LAPLACE’S EQUATION IN 
RECTANGULAR COORDINATES

The Laplace equation, in rectangular coordinates is given by 

 ∇2V = 
∂ + +

2

2

2

2

2

2
V

dx
d V
dy

d V
dz

 ...(5.26)

The solution of Laplace equation can be obtained in the rectangular 
coordinates satisfying the required boundary conditions by the method of 
separation of the variables. 

We assume that the Eq. (5.26) has the solution of the form
 V(x, y, z) = V1(x) V2(y) V3(z) ...(5.27)
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where V1(x), V2(y) and V3(z) are the functions of x, y, and z respectively. On 
substitution V(x, y, z) in the Eq. (5.26) we get,

   V V d V
dx

VV d V
dy

VV
d V
dz2 3

2

1

2 1 3

2

2

2 1 2

2

3

2
+ +  = 0 ...(5.28)

Dividing the Eq. (5.28) by V1V2V3 we get

  
1 1 1

1

2

1

2
2

2

2

2
3

2

3

2V
d V
dx V

d V
dy V

d V
dz

+ +  = 0 ...(5.29)

Since all the three terms are independent of each other, each term must be 
equal to a constant, thus, we write

 1

1

2

1

2V x
d V
dx( )

 = K1
2 ...(5.30.a)

 1

1

2

1

2V x
d V
dx( )

 = K2
2 ...(5.30.b)

 1

1

2

1

2V x
d V
dx( )

 = K3
2 ...(5.30.c)

with the condition,
 K1

2 + K2
2 + K3

2 = 0 ...(5.31)
The differential equations given by the Eq. (5.30) are second order 

differential equations and the unique solutionis of these equation must depend 
on the K1

2, K2
2 and K3

2.
Example 5.4. Two parallel conducting disks of radius 30 cm each, are 
separated by a distance of 10 mm as shown in fig. 5.2. The disk at x = 0 is at the 
potential of 100 V and disk at x = 10 mm is at the potential of 200V. Compute 
the electric field and charge densities on the disks.

y

z

O x

a

L

Fig. 5.2. Conducting disks.



Methods for the Solution of Electrostatic Problems 109

Solution: Consider two parallel disks each of radius a separated by a distance 
L as shown in fig. 5.2.

The Laplace equation for the system is

 
d V
dx

2

2  = 0

On integration, we get

 dV
dx

 = A

Integrating again w.r.to x, we get
 V = Ax + B
where A and B are constants and can be determined with the boundary 
conditions.
 V = V1 at x = 0
and
 V = V2 at x = L
we get

 B = V1, A = V V
L

2 1
−

Thus,

 V = ( )V V x
L

V2 1

1

−
+

The electric field is 

 E = − =
−dV

dx
V V
L

( )
2 1

  = ( )200 100

10 10
3

−
× −

  = 1.0 × 104 V/m
E points in –x direction.
The surface charge densities
 sS = ±Dn
  = ±∈0E
  = ±8.85 × 10–8 c/m2

5.4.  SOLUTION OF LAPLACE’S EQUATION IN CYLINDRICAL 
COORDINATES

The Laplace’s equation in cylindrical coordinates is given by
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     1 1

2

2

2

2

2r
d
dr

r dV
dr r

d V
d

d V
dz





 + +

φ
 = 0 ...(5.32)

To solve the Eq. (5.32), we use the method of separation of variables. If 
we write
 V(r, f, z) = R(r) F(f) Z(z) ...(5.33)

On substituting V(r, f, z) and multiplying by r2/V(r, f, z) in the Eq. (5.32) 
we get

     1 1
2 2

2

2

2r
d
dr

r dR
dr

r
Z
d Z
dz

d
d





 + = −

Φ
Φ

φ
 ...(5.34)

The left side of the Eq. (5.34) contains the functions of r and z while the 
right side has the function of f only which is possible if each side is equal to a 
constant n2, say. Thus, we have

 d
d

n
2

2
2Φ Φ

φ
+  = 0 ...(5.35)

and

      r
R
d
dr

r dR
dr

r
Z
d Z
dz





 +

2 2

2  = n2

or     1 1
2

2

2

2rR
d
dr

r dR
dr

n
r Z

d Z
dz





 − = −  ...(5.36)

The left side of this equation has the function of r only and right side has 
function of z which is possible if it is equal to a constant –l2, Thus we have

 
d Z
dz

Z
2

2
2− λ  = 0 ...(5.37)

and

     r d
dr

r dR
dr

r n R



 + − =( )λ2 2 2

0  ...(5.38)

(a) Solution of F equation: The solution of F(f) equation is given by 
 F(f) = A e± in f ...(5.39)

where A is a constant, and n is an integer having values
 n = 0, ±1, ±2, ±3 ...
(b) Solution of Z equation: The solution of the Eq. (5.37) is given by 
 Z(z) = A elz + Be–lz ...(5.40)

where A and B are constants and can be determined by the boundary conditions 
of the given problem.
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(c) Solution of R(r) equation: To obtain the solution of the Eq. (5.38) we 
make a substitution as

 r = lr
and

 d
dr

 = λ
ρ
d

d
 ...(5.41)

Thus, we obtain the Eq. (5.37), on substitution the Eq. (5.41) into Eq. 
(5.37),

     ρ
ρ

ρ
ρ

ρd
d

dR
d

n R





+ − =( )
2 2

0  ...(5.42)

or

     ρ
ρ

ρ
ρ

ρ2

2

2

2 2
0

d R
d

dR
d

n R+ + − =( )  ..(5.43)

Now, we look for a series solution of the Frobenius type, and we assume 
that the solution of the equation (5.43) is of the form,

 R(r) = a s

v
ν

νρ +

=

∞

∑
0

 ...(5.44)

 
dR
dρ

 = a s s

v
ν

νν ρ( )+ + −

=

∞

∑ 1

0

 ...(5.45)

and

 d R
d

2

2ρ
 = a s s s

v
ν

νν ν ρ( ) ( )+ + − + −

=

∞

∑ 1
2

0

 ...(5.46)

on substituting in the Eq. (5.43), we get

  a s s a ss

v

s

v
ν

ν
ν

νν ν ρ ν ρ( ) ( ) ( )+ + − + ++

=

∞
+

=

∞

∑ ∑1

0 0

        a n as

v

s

v
ν

ν
ν

νρ ρ+ +

=

∞
+

=

∞

∑ ∑− =2

0

2

0

0  ...(5.47)

To obtain recursion relation, equating the coefficients of rν
 
+ s, we get

   [(ν + s) (ν + s – 1) + (ν + s) – n2] aν + aν – 2 = 0 ...(5.48)

or aν = 
a

s n
ν

ν
−

+ −
2

2 2
( )



112 Elements of Electricity and Magnetism Theory and Applications

or aν = –
a

s n s n
ν

ν ν
−

+ + + −
2

( )( )
 ...(5.49)

The indicial equation is
 s(s – 1) + s – n2 = 0
or s = ±n ...(5.50)

First we look for s = n, and the solution is a Bessel function as given by,  
ν = 2 m, that is series starts with 

 Jn(r) = ( )

!
( )

− 



+ +

+

=

∞

∑ 1

21

2

0

m

m n

n m

n m Γ
ρ  ...(5.51)

ao and ν is always even. Again, we have
 J–n(r) = (–1)n Jn(r) ...(5.52)

 Jo(r) = 
sin ρ

ρ

 J1(r) = 
sin ρ

ρ
 – cos ρ

ρ

and J2(r) = 
3 1 3

3 3ρ ρ
ρ

ρ
ρ−





−sin cos

However, we have a simple problem of electrostatics.
Example 5.5. Two semi-infinite conducting planes are at an angle f = p/3 
and are joined along the z-axis. The plane at the angle f = 0 is grounded while 
other plane which is at the angle f = p/3 has potential of 200 V. Compute the 
potential and electric field.
Solution: The Laplace equation is,

 1
2

2r
d V
dφ

 = 0

on integrating twice, we get
 V = Af + B
where A and B are constants. The boundary conditions are 
 V = 0, when f = 0
and V = 200 V at f = p/3

Thus, we have,

 V = 
3Vo
π

φ



Methods for the Solution of Electrostatic Problems 113

since V0 = 200 V

 V = 
600

3 14.
φ

or V = 191.08 f
The electric field is 

 E = –
1
r
dV
dφ

φ�

  = – 600

rπ
φ�

or E = −191 08.

r
φ�

5.5.  SOLUTION OF LAPLACE’S EQUATION IN SPHERICAL 
POLAR COORDINATES

The Laplace’s equation in spherical polar coordinates is given by 

 ∇2V = 1 1 1

2

2

2 2 2

2

2r r
r V

r r r
V

r
V∂

∂
∂
∂





 + ∂

∂
∂
∂





 + ∂

∂sin
sin

sinθ
θ

θ θ φ
== 0  ...(5.53)

The Eq. (5.53) can be solved by the method of separation of variables and 
we assume that 

 V(r, q, f) = R(r) H(q) f(f) ...(5.54)
On substituting for V from the Eq. (5.54) in the Eq. (5.53) and dividing by 

V(r, q, f), we get,

1 1 1 1

2

2

2 2 2

2

R r
d
dr

r dR
dr r

d
d

d
d r

d



 + 



 +

H
H

sin
sin

sinθ θ
θ

θ θΦ
ΦΦ

dφ2
 = 0 ...(5.55)

To eliminate r2 sin2 q in F term, we multiply by r2 sin2q through the Eq. 
(5.55) we get

sin

( )

sin
sin

2

2

2

2

1θ θ
θ

θ
θ φR r

d
dr

r dR
dr

d
d

d
d

d
d





 + 



 = −

H
H

Φ
Φ  ...(5.56)

The left hand side contains the functions of r and q only while right 
handside has a function of f only and it is possible when each side is equal to 
a constant m2, say, we have

 d
d

m
2

2
2Φ Φ

φ
+  = 0 ...(5.57)
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Now, from the Eq. (5.56), we have

1 12

2

2R
d
dr

r dR
dr

d
d

d
d

m



 = − 



 = −

H
H

sin
sin

sinθ θ
θ

θ θ
 ...(5.58)

The left hand side of the Eq (5.58) has function of r only and right hand 
side is q only which is possible if it is equal to a constant n(n + 1), Thus

 
1 2

R
d
dr

r dR
dr





  = n(n + 1)

or 
d
dr

r dR
dr

n n R2
1





 − +( )  = 0 ...(5.59)

and 1

H
H

sinθ θ
θ

θ
d
d

d
d

sin




  = –n(n + 1)

or  1
1

2

2sin θ θ
θ

θ θ

d
d

d
d

n n m
sin ( )

sin

H H



 + + −









  = 0 ...(5.60)

(a) Solution of F equation: The solution of the Eq. (5.57) is given by 
 F = A e±imf ...(5.61)

where A is a constant.
(b) Solution of radial equation: Since potential varies as power in r, we 

have solution of the equation (5.59), as
 Rn(r) = A rn + Br–(n + 1) ...(5.62)

where A and B are any arbitrary constants.
(c) Solution of H (q) equation: Now substituting x = cos q in the Eq. 

(5.60), we have
\ x = cos q
 dx = –sin q dq ...(5.63)

and d
dθ

 = –sin q d
dx

On substituting the Eq. (5.63) in the Eq. (5.60), we get

 
d
dx

x d
dx

n n m
x

( ) ( )

( )

( )1 1

1

0
2

2

2
−





+ + −
−













=H H θ  ...(5.64)

or                 ( ) ( )1 2 1 0
2

2

2
− − + + =x d

dx
x d
dx

n nH H H  ...(5.65)

Here we have assumed that the electric field has a azimuthal symmetry, 
that is, the potential V is independent of the angle f, and replacing function H 









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with Legendre’ polynomial Pn(x), thus,

  ( ) ( ) ( )1 2 1 0
2

2

2
− − + + =x

d P
dx

x
dP
dx

n n P xn n
n  ...(5.66)

which is called Legendre’s equation, which has the solution as 
 Pn(x) = Pn(cos q)

or Pn(x) = 1

2

1
2

n

n

n
n

n
d
dx

x
!

( )−  ...(5.67)

The orthogonality condition is 

 P x P x dxn m( ) ( )

−
∫
1

1

 = 
2

2 1n mn+
δ  ...(5.68)

where dmn is known as Kronecker delta and is defined as 

 dmn = 
1

0

if =

if

m n
m n≠





 ...(5.69)

The first few terms are
 P0(x) = 1
 P1(x) = x

 P2(x) = 1

2
3 1

2
( )x −

 P3(x) = x x
2

5 3
2

( )−  ...(5.70)

 P4(x) = 1

8
35 30 3

4 2
( )x x− +

 P5(x) = x x x
8

63 70 15
4 2

( )− +

The complete solution to the potential equation in spherical polar coordinates, 
when electric field has azimuthal symmetry is given by
 V(r, q) = [An rn + Bn r–(n + 1)] Pn(cos q) ...(5.71)
This solution depends on the boundary conditions of the given problem.

5.6. A CONDUCTING SPHERE IN A UNIFORM ELECTRIC FIELD
Consider a conducting sphere of the radius a in a uniform electric field pointing 
in +z direction. We know that the electric field is quite uniform in between the 
plates of a capacitor. Thus, a sphere is placed in the capacitor as shown in  
fig. 5.3.
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(b)(a)

Z Z

E0

�

a

+

+

+

+

_

_

_

_

P

r

Fig. 5.3. A conducting sphere in a uniform electric field  
and a uniform electric field points in z-direction.

The conducting sphere distorts the electric field lines. The positive and 
negative charge in equal amount are induced at the sphere. Thus the conducting 
sphere has zero potential. Therefore, the boundary conditions are 

 V = 
0 for 

for

r a
E z E r r ao o

=
− = − >>



 cosθ

 ...(5.72)

The Laplace’s equation in spherical polar coordinates with axial symmetry 
is given by 

1 1

2

2

2r r
r V

r r
V∂

∂
∂
∂





 + ∂

∂
∂
∂





sin

sin
θ θ

θ
θ

 = 0 ...(5.73)

The general solution of the Eq. (5.73) is given by 

 V(r, q) = A r P B r Pn
n

n
n n

n
n

n=

∞
− +

=

∞

∑ ∑+
0

1

0

(cos ) (cos )
( )θ θ  ...(5.74)

At r = a, V = 0, we have

A a P B r Pn
n

n
n n

n
n

n=

∞
− +

=

∞

∑ ∑+
0

1

0

(cos ) (cos )
( )θ θ  = 0 ...(5.75)

Multiplying Pm(cos q) and integrating from x = cos q = –1 to x = cos q = 
1, we get

A a P P d

B a P P d

n
n
n m

n
n

n m

(cos ) (cos ) (cos )

(cos ) (cos )
( )

θ θ θ

θ θ

−

− +

∫

+

1

1

1
((cos )θ =

−
∫ 0

1

1
 ...(5.76)
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Using the orthogenality of the Legendre’s polynomial as,

P P d n
m n

m n
m n(cos ) (cos ) (cos )θ θ θ

−
∫ = +

=

≠





1

1 2

2 1

0

if 

if 

 ...(5.77)

The Eq. (5.76) reduces to 

    A a
n

B a
nn

n
n

n2

2 1

2

2 1
0

1

+




 +

+




 =− +( )  ...(5.78)

From the Eq. (5.74), it is clear that the solutions exist only for n = 0 and  
n = 1 which satisfy the boundary condition. Thus, we have

 V = A B
r

A r B
r0

0+ + +
1

1

2
cos

cosθ θ  ...(5.79)

The boundary condition at r → ∞, gives the potential
 V = –E0 r cos q = A0 + A1 r cos q ...(5.80)
This is true for all values of q, A0 = 0 and A1 = –E0 since for n = 1, we have
 –E0 r P1(cos q) = A1 r P1(cos q)

or A1 = –Eo ....(5.81)
All An are zero (for n > 1) and similarly all Bn are zero except B1. At the r 

= a, V = 0, from the Eq. (5.79) we have

     B
a

E a B
a

0

0
− +cos cosθ θ1

2
 = 0 ...(5.82)

since B0 = 0, B1 = E0a3

Thus, the potential is given by

 V(r, q) = − +E r E a
r0

0
cos cosθ θ

3

2
 ...(5.83)

The components of the electric field are given by

 Er = − = +dV
dr

E a E
r0

0
cos

cosθ θ2
3 3

3

or Er = E a
r

r
0 1

2
3

3
+







cosθ �  ...(5.84)

and

 Eq = − = − +1
3

3r
dV
d

E E a
rθ

θ θ
0

0
sin

sin
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or Eq = − −






E a
r

0 1

3

3
sinθ  ...(5.85)

Now the radial and tangential components of the electric field on the 
surface of the sphere are 

 Er = −
=

dV
dr r a

or Er = 3E0 cos q ...(5.86)

and
 Eq = 0 ...(5.87)

The surface charge density

 s = − ∈
=

0
dV
dr r a

or s = 3 ∈0 E0 cos q ...(5.88)

Furthermore, the dipole moment is given by 

       
V E a

r

V p
r

(
cos

(
cos

dipole) =

dipole)

0

3

2

2

θ

θ∝










 ...(5.89)

 P = E0 a3 ...(5.90)
Thus, the dipole moment is proportional to E0 and a3, that is, volume of 

sphere.

5.7. METHOD OF ELECTRICAL IMAGES
In 1848, Lord Kelvin introduced the method of electrical images to solve the 
problems of the electrostatics. The method of electrical images is a powerful 
tool for calculating the coulomb force, electric potential, electric field intensity 
and the charge density of an electrical system. In the method of electrical 
images, we have a charge and a conducting plane along with the image of the 
charge. Now, suppose that a positive point charge q is situated at a distance 
r from a grounded conducting plane which acts as a mirror, then, the image 
of the charge q is –q will also be at a distance r from the conducting plane as 
shown in fig. 5.4.
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Conducting

Plane

(a) (b)

Point

Charge

+q

+q –q

r r r

Fig. 5.4. A charge +q near a grounded plane (a) and its image (b).

The grounded plane has a zero potential and it is observed that there are two 
electric fields which are equivalent to one another. Furthermore, consider two 
grounded perpendicular semi-infinite conducting planes as shown in fig. 5.5. If 
a point charge q is placed near a right angle corner, we obtained three images 
of the charge +q, Fig. 5.5.

–q +q

+q –q

Fig. 5.5. Point charge near a right angle conducting  
planes and its three images.

In the first quadrant, we have a true electric field due to the image charges. 
Moreover, when two semi-finite conducting planes are inclined at an angle q, 
the number of images of a point charge are given by 

 n = 360
1

θ
−



  ...(5.91)

For example, consider a case of two semi-infinite conducting planes are at 
q = 90°, then, the number of images of a charge q, Fig. 5.5, will be 
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 n = 360
1

θ
−





or n = 360

90
1−





or n = 3
There are three images of a charge situated in first-quadrant.

5.8. CONDUCTING SPHERE
The method of electrical images is also useful in demonstrating a procedure of 
computing the electrical parameters such as potential, field and charge density 
of many problems. Now, we take a situation in which a point charge is near a 
grounded conducting sphere, Fig. 5.6.

OL

a

+q

Fig. 5.6. A positive point charge q near a grounded conducting sphere.

Suppose that a point charge q is situated at a distance L from the centre of 
a grounded conducting sphere of radius a. If we ignore the conducting sphere 
and try to compute the magnitude and the position of the image charge q′ at a 
distance l from the centre of the conducting sphere, as shown in Fig. 5.7.

O
l

a

q L q�

r�

�

Q
P

r

Fig. 5.7. Image charge q′ in the sphere.

The symmetry of the sphere suggests that the charge q′ must lie on the line 
joining the charge q and the centre of the conducting sphere. Since the sphere 
is taken as grounded, the potential at every point on the surface of the sphere 
is zero. The potential at the point P is



Methods for the Solution of Electrostatic Problems 121

 
q
L a

q
a l( ) ( )−

+ ′
−

 = 0 ...(5.92)

Again, for the point Q, we write

 
q
L a

q
a l( ) ( )+

+ ′
+

 = 0 ...(5.93)

Now,

 cos q = a l r
al

2 2 2

2
+ − ′  ...(5.94)

and cos q = a a L r
a a L

2 2 2

2

+ + −
+

( )

( )
 ...(5.95)

On solving the Eqs. (5.92) and (5.93) we get

and

 

′ = − 





′ = − 














q l
a
q

q a
L
q

 ...(5.96)

Then, 

 l = a
L

2
 ...(5.97)

In the similar triangles having common angle q, we write

 a
l

 = L
aThus, we have

 a
r

 = 
l
r ′

Therefore,

 q
r

q
r

+ ′
′

 = 0 ...(5.98)

or 
q
r

q
r4 4π π∈

+ ′
∈ ′

0 0

 = 0 ...(5.99)

where the expression for r and r′ are 

 r2 = a2 + (a + L)2 – 2a(a + L) cos q 
...(5.100)

and r′2 = a2 + l2 – 2al cos q






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From the Eq. (5.99), it is clear that the total potential is zero on the surface 
of the sphere. Moreover, the force of attraction is given by 

 F = 
qq
L a l

′
∈ + −4

2π
0

[ ]
 ...(5.101)

It the sphere were not grounded, there will be a constant potential at the 
surface of the sphere.
Example 5.6. Two semi-infinite grounded conducting planes are along x and 
y axes and meet at the origin as shown in fig. 5.8. A positive point charge is 
situated at the position (a, a), then compute the 
 (a)  The force on the charge q.
 (b) Potential at a point P(x, y).
 (c) The work done in bringing a charge q from infinity to a point (a, a).

q (a, a)

P(x, y)

y

x

Fig. 5.8. Two conducting planes.

Solution: The images of the charge q is shown in fig. 5.9. and there are three 
images.

F1

F3

F2
�

y

O

–q
+q

(a, a)(–a, a)

(–a, –a)
+q –q

(a, –a)

x

Fig. 5.9. Mirror images of charge q.
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 (a) The forces F F F
1 2 3

→ → →
, and  are

 F1
→

 = q
a

j
2

2
4 2π ∈

−
0

( )

( )
�

 F
→

2  = q
a

j
2

2
4 2π∈

−
0

( )

( )

  and

 F
→

3  = q a i j
a

2

2 3 2

2

4 8

( )

( )
/

+
∈π

0

  The net force on the charge q will be

 F
→

 = F F F
→ → →

+ +1 2 3

  = 
q

a a
i

a a
j

2

2 2 2 2
16

1

2 2

1 1

2 2

1

π ∈
−





+ −















0

� �

  = q
a

i j
2

2
16

1 2 2

2 2π ∈
− +

0

( )
( )
� �

  or F = 
q

a
i j

2

2
32 2

1 2 2

π ∈
− +

0

·
( )

( )
� �

 (b) To compute the potential at a point P(x, y), suppose that r1, r2, r3 and 
r4 are the distances of the point P(x, y) from the charges as shown in  
fig. 5.10.

r2

y

O

–q
+q (a, a)

(–a, a)

(–a, –a)

+q –q

(a, –a)

r3

r4

r1

P(x, y)

x

Fig. 5.10. Conducting planes.
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  The potential at a point P due to the charges is given by

   V = q
r r r r4

1 1 1 1

1 2 3 4π∈
− + −



0

    = q
x a y a x a y a4

1 1

2 2 1 2 2 2 1 2π∈ − + −
−

+ + −





0
[( ) ( ) ] [( ) ( ) ]

/ /

     + 
1 1

2 2 1 2 2 2 1 2
[( ) ( ) ] [( ) ( ) ]

/ /x a y a x a y a+ + +
−

− + +





 (c) The work done in bringing a charge q from infinite to a point P(a, a) will 
be, Fig. 5.11.

y

x

–q
+q (a, a)

(–a, a)

(–a, –a)

+q
–q (a, –a)

Fig. 5.11. Conducting planes.

   W = Vq

    = 1

4 2 2 2 2 2 2 2 2

2 2 2 2 2 2

π∈
− − − − + +











0

q
a

q
a

q
a

q
a

q
a

q
a

    = 1

4

2 1

2π∈
− +








0
a a

  or W = q
a

2

4

1 2 2

2π∈
−

0

( )

Example 5.7. Consider two concentric metallic spherical shells centered at 
origin. The inner and outer radii are a and b. In the region a < r < b, the charge 
density r = 0 and potential V = 0 at r = a and V = V0 at r = b. Compute the 
potential in the region a < r < b.
Solution: Laplace’s equation is 
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 1

2

2

r
d
dr

r dV
dr





  = 0

on integration, we get

 r dV
dr

2  = K

or dV
dr

 = K
r2

where K is a constant. Integrating it again, we have

 V = − +K
r

A

where r = a, V = 0,

⇒ A = K
a

\ Potential is

 V = − −



K

r a
1 1

using boundary condition at r = b, V = Vo

 V0 = − −



K

b a
1 1

or V0 = K
a b
1 1−





or K = V ab
b a

0

( )−
Thus, the potential is 

 V = V ab
b a a r

0

( )−
−





1 1

Example 5.8. Consider two infinite conducting cones with common vertex 

having angles π π
6 3

and  as shown in fig. 5.12. The inner cone is grounded and 

V = V0 at q = π
3

. Find the expression for potential and electric field.
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�/6

�/3

Fig. 5.12. Conducting cone.

Solution: Consider azimuthal symmetry, we have

   ∇2V = 1

2r
d
d

dV
dsin

sin
θ θ

θ
θ





  = 0

or d
d

dV
dθ

θ
θ

sin




  = 0

on integration we get

 sin θ
θ
dV
d

 = A

or dV
dθ

 = A
sin θ

where A is a constant. Integrating it again, we get

 V = A
dθ

θsin
∫

  = A dθ
θ θ2 2 2sin / cos /

∫
Now, dividing numerator and denominator by cos2 q/2, we get

 V = A dsec /

tan /

2
2

2 2

θ θ
θ∫

or V = A Bln tan
θ
2

+

The boundary conditions are
 V = 0,     q = p/6
and V = V0,   q = p/3
 0 = A ln tan p/12 + B
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Thus,
 V = A[ln tan q/2 – ln tan p/12]

or V = A ln 
tan /

tan /

θ
π

2

12







once again,

 Vo = A ln 
tan /

tan /

π
π

6

12







 A = V
0

ln
tan /

tan /

π
π

6

12







\ V = V0

ln
tan /

tan /

ln
tan /

tan /

θ
π
π
π

2

12

6

12













or V = 1.44 V0 ln tan

tan

θ
π

2

12







and Eq = – 1 44.

sin

V
r

0

θ
Example 5.9. Consider two concentric conducting cylinders of inner radius a 
and outer radius b as shown in fig. 5.13. If r = 0 in a < r < b and inner cylinder 
is grounded, find the expressions for potential and electric field. The potential 
V = V0 at r = b, also compute V and E if a = 10 mm, b = 20 mm and V0 = 100V.
Solution: 

 1
r
d
dr

r dV
dr





  = 0

on integration, we get

 r dV
dr

 = A

or dV
dr

 = A
r

on integration again, we get
 V = A ln r + B
where A and B are constants and are to be 
determined with boundary conditions.

O

a

b

v = 0

v
0

Fig. 5.13. Conducting 
cylinder.
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The boundary conditions are 
 V = 0     r = a
 V = V0,  r = b
on using boundary conditions
 B = –A ln a

and A = V
b a
0

ln ( / )

Thus,

 V = V
b a
0

ln ( / )
 ln(r/a)

The electric field 

 Er = – dV
dr

or Er = – V

a b
a

r
0

ln

·






1

Given a = 10 mm, b = 20 mm, Vo = 100 V,

 V = 144.3 ln r
10





  volts.

and Er = 1 44 10
4

.
( )

× −
r

r�

Example 5.10. Consider a thin conducting plane passing through the origin 
of the coordinates system and perpendicular to the z-axis as shown in fig. 5.14. 
The two charges q1 and q2 are situated at the positions (0, 0, a) and (0, 0, –a) 
respectively. Then compute, using cylindrical coordinates,
 (a)  The potential at a point P(x, y, z)
 (b) The Electric field
 (c) Net surface charge on the plane as a function of the distance r from the 

z-axis
 (d) Total induced charge
 (e) The net force on the charge q1.
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Solution:
z

x

y

q1 (0, 0, a)

P (x, y, z)

conducting

plane

q2

(0, 0, –a)

Fig. 5.14. Thin conducting plane.

 (a) The potential at a point P(x, y, z) is

  V(x, y, z) = 1

4

1

2 2 2 1 2

2

2 2 2 1 2π∈ + + −
−

+ + +










0

q
x y z a

q
x y z a[( ( ) ] [( ( ) ]

/ /

  Since q2 is the image of q1 so it is considered as negative.
 (b) The electric field is then given by 

   E
→

 = –∇V(x, y, z)

  or E
→

 = –
∂
∂

+ ∂
∂

+ ∂
∂







V
x
i V

y
j V

z
k� � �

    = 
1

4

1

2 2 2 3 2

2

π∈
+ + −

+ + −
− + + +

0

q xi y j z a k
x y z a

q xi y j z a k( ( )

[ ( ) ]

( ( )

/

� � � � � ��

[ ( ) ]
/x y z a2 2 2 3 2+ + +











  Now,

   E z
→

=( )0  = ( )

( )
/

q q a
x y a

k1 2

2 2 2 3 2
4

2+
∈

−
+ +









π

0

�

   E
→

 = ( )

( )
/

q q a
r a

k1 2

2 2 3 2
4

+
∈

−
+









π

0

�

  Thus, E is perpendicular to the plane.
 (c) The surface charge is given by 
   sS = ∈0 E
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  or sS = − +
+

( )
·

( )
/

q q a
r a

1 2

2 2 3 22

1

π

  where r2 = x2 + y2

 (d) The total induced charge will be

   q = σS
yx

dxdy
= −∞

∞

= −∞

∞

∫∫

    = σ φ
φ

π

S
r

r dr d
==

∞

∫∫
0

2

0

    = − +
+

∞

∫( )

[ ]
/

q q a rdr
r a1 2 2 2 3 2

0

   q = –(q1 + q2) · a
a

  or q = –(q1 + q2)
 (e) The force between q1 and the plane is 

   F
→

 = q
a
k1

2

2
4 2π∈

0
( )

�

  or F
→

 = q
a
k1

2

2
16π∈

0

�

EXERCISES
 5.1. Solve the Poisson’s equation for the p-n junction diode.
 5.2. Two semi-infinite conducting planes, which are grounded, intersect each 

other at an angle 30°. Find the number of images of a charge q placed 
between them. Draw the diagram also.

 5.3. The electric potential of a conducting sphere of radius R in a uniform 
electric field E = E0 k�  is given by 

   V(r, q) = – E r E R
r0 0

cos cosθ θ+
3

2

  where r is the distance from the centre of the sphere and q is the angle 
that the r makes with z-axis. Then

 (a) What is the dipole moment acquired by the sphere.
 (b) Compute the radial and tangential components of the electric field, 

Er and Eq, on the surface of the sphere.
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 (c) Compute the surface charge density.

  Hint: V(dipole) ∝ p
r
cosθ

2
, \ p = E0R3

   Er = 3 E0 cos q
   Eq = 0
   sS = 3∈0 E0 cos q
 5.4. Consider two metallic spheres each of radius a placed at a distance r 

from the centres as shown in fig. 5.15. The spheres carry charges q and 
–q, then compute

q –q

r

P

Fig. 5.15. Two metallic spheres.

 (a) The potential difference between the spheres
 (b) Electric field at the point P.
 5.5. Compute the charge distribution in cylindrical coordinates if the potential 

is given by 
   V = V0 r2 (3 cos2 f – 1)
 5.6. If potential, in spherical polar coordinates system, is given by 
   V = V0 r2 (3 cos2 f – 1)
  Compute the charge density.
 5.7. Consider a dielectric sphere of radius a and dielectric constant k in the 

presence of uniform electric field E = E0 k� .
  The potentials in-side and outside the sphere is given by

   V1 = −
+

3

2

E r
k
0

cosθ

  and V2 = ( )

( )

cosk
k

E a
r

E r−
+

−1

2

3

2

0

0
cos

θ θ

 (a) Compute the radial and tangential components of the electric field.
 (b) Compute the dipole moment acquired by the sphere.
 (c) Surface charge density sS.
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 5.8. Compute the electric field and charge distribution if the potential is 
given by

   V = 
V r

a
r a

V a
r

r a

0

0

3

2

2
−







<

>










  where V0 and a are constants.

  Hint:  Er = – dV
dr

,

   r = − ∈0
dV
dr

 5.9. Determine the charge distribution for a spherically symmetric potential

   V = 
V
r
0     r > a

    = V r
a

0 1

3

3
−







  r > a 

 5.10. Compute the electric field and charge density for the potentials

  (a) V = α β γx y z
r

2 2 2

3

+ +

  (b) V = V0(x2 + y2 + z2)
  Hint: E = –∇V
   s = –∈0∇V
 5.11. How much work is required to assemble a sphere of the radius R with a 

volume charge density r.
  Hint:

dr

r
O

R

Fig. 5.16. A sphere.
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  Charge of the layer is
   dq = r.4pr2dr

  \ V = q
r

q

r4 4

3

3π
ρ

π∈
0

and =,

  \ V = 1

3

2

∈
0

r ρ

  \ dW = V dq = 4

3

2 4π ρ
∈

0

r dr

   W = dW R
R

0 0

∫ =
∈

4

15

2 5π ρ

 5.12. A wire is connected to the earth from a conducting sphere of radius a as 
shown in fig. 5.17.

O

a

q

r

Fig. 5.17. Conducting sphere.

  Compute the
 (1) potential V
 (2) charge density s
 (3) a force on the charge q due to the sphere.


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We know that a work is needed to form a group of charges and this system 
consists of an electrostatic energy. In the early days, Volta used the concept of 
the electrical capacity in analogy with the heat capacity. The electric potential 
energy is the result of force between the charges. We can produce a useful 
device by placing two conductors at a distance that can store an electric energy. 
Thus, a device that can store the electric energy is called the capacitor. In this 
chapter we shall study about the capacitor and dielectrics.

6.1. THE CAPACITOR
It is also known as the condensor. The capacitor is an electrical device used 
for storing the electric charge. A capacitor consists of two conducting plates 
which are insulated from one another as shown in fig. 6.1. It stores the energy 
between the plates which are separated by a distance d.

q

d

q
+ +

+

++

+

+ +

+ –

– –

––

––

– –

–

+

+

Fig. 6.1. A typical Capacitor

It is a fundamental component of an electric circuit. Our emphasis is on a 
quantity of importance called capacitance of a capacitor. If a capacitor stores 
a charge q, it means that one plate of a capacitor is at higher potential (+q) 
and other plate will be at lower potential having a charge –q. Thus, there is a 
potential difference between the plates of the capacitor. Hence, we say that the 
capacitance is a capacitor is a measure of the capacity of storing the charge 
for a given potential. However, the net charge on a capacitor is equal to zero 
(q – q = 0).

CHAPTER

6 Capacitors and 
Dielectrics
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 (a) Symbol. The symbols of the capacitor are shown in fig. 6.2

(a) (b)

Fig. 6.2. Symbols of a capacitor.

 (b) Types of capacitor: The capacitors are of different types and these can 
vary in size and shapes. The types of the capacitors are as follows.

 (1) Cylindrical capacitor
 (2) Tubular capacitor
 (3) Electrolyte capacitor
 (4) Paper coated capacitor
 (5) Miniature capacitor
 (6) Variable capacitor, etc.
  The concept of the capacitor is that, it has two conductors carrying equal 

and opposite charges and these conductors are electrically isolated from 
each other.

 (c) Capacitance of a Capacitor: If a charge q is given to one conductor, the 
charge is moved until it creates a –q charge on the other conductor and 
a potential difference is produced between the conductors. If there is a 
potential difference V, then,

   q ∝ V
  or q = CV ...(6.1)
  where C is a positive proportionality constant and is called capacitance 

of a capacitor. Moreover,

   C = q
V

 ...(6.2)

  If we increase the charge, the potential difference V between the 
conductors increases. Thus, the capacitance of a capacitor is defined as 
the charge required to increase the potential of a capacitor by unity. The 
capacitance C depends on the following parameters.

 (a) shape and size of the capacitor.
 (b) material used between the plates (conductors).
  However, capacitance C does not depend on the material of the 

conducting plates.
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 (d) Unit of Capacitance: In SI units, the unit of capacitance is coulombs/
volt. The unit of C is farad also, in the honor of Faraday. Keeping always 
in mind that capacitance C is a positive quantity. Moreover,

   1 Farad = 1coulomb

1 volt

  The other small units of C are given as
   1 µf = 10–6 f
   1 nf = 10–9 f
   1 pf = 10–12 f

6.2. CAPACITANCE OF A PARALLEL PLATE CAPACITOR
Consider a parallel plate capacitor as shown in fig. 6.3. The configuration 
contains two parallel plates of equal area and separated by a small distance d.

+q

+

+

+

+

+

+

+
d

–

–

–

–

–

–

–

–q

gaussian

surface

E

dS

Fig. 6.3. Parallel plate capacitor of plate area A and the separation d.

Initially, the charge on each plate of the capacitor is zero. In the process of 
charging, the electrons move from one 
conductor to another and as a result, the 
conductors have equal and opposite 
charges. Thus, a uniform electric field is 
confined in the region between the plates. 
However, the electric field is not uniform 
near the edges of the plates as shown in 
fig. 6.4. 

The plate having +q charge is at 
higher potential and –q charge is at lower 
potential. To calculate the capacitance C, 
let A be the area of each plate. According 
to Gauss’s law,

+

+

+

+ –

–

–

–

–

–

–+

+

+

Fig. 6.4. Electric field between 
the plates of a capacitor
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 E dS
→ →

⋅∫�  = q
∈0

 ...(6.3)

or EA = q
∈0

Thus,

 E = q
A∈0

 ...(6.4)

Since electric field is uniform between the plates, the potential across the 
capacitor is 

 V = dV∫  ...(6.5)

  = – E dr
d→ →

∫ ·

0

  = q
A∈0

· d ...(6.6)

The capacitance of a parallel plate capacitor is given by 

 C = q
V

A
d

= ∈0

or C = ∈0 A
d

 ...(6.7)

It is experimentally observed that the capacitance C is proportional to the 
area of the plates A and inversely proportional to the separation between the 
plates d. That is,

 C ∝ A
d

 ...(6.8)

It can be seen that the capacitance C is a function of the geometry and the 
dielectric material used between the plates, and plates having large area can 
store more charge.

6.3.  THE CAPACITANCE OF AN ISOLATED CONDUCTOR 
(SPHERE)

We know that the electric field lines emerge from the positive charge and end 
on the negative charge. In case of truly isolated conductor, the electric field 
lines leave the conductor and extend to infinity. For this, consider an isolated 
conducting sphere of the radius R. The potential of the conducting sphere of 
charge q is 
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 V = − ⋅ = −
∈

→ →

∞ ∞∫ ∫E dr qdr
r

R R

4
2π

0

  = q
R4π ∈

0

 ...(6.9)

Thus, the capacitance of an isolated sphere is given by 

 C = q
V

or C = 4p∈0R ...(6.10)
The capacitance C depends on the geometry of the sphere and independent 

of charge q.
Example 6.1. Suppose that there are two concentric spherical shells of the 
radius a and b. The inner shell of radius a has +q charge and the outer shell of 
radius b has –q charge. Compute the capacitance of the spherical conductor.
Solution: Suppose that there are two concentric spherical shell, the inner shell 
of radius a and outer shell of the radius b as shown in fig. 6.5. Now,

–q

q

a

r

b

gaussian

surface

Fig. 6.5. Spherical Capacitor.

applying Gauss’s law,

 E dS⋅∫�  = q
∈0

 E· 4pr2 = q
∈0

or E = 1

4
0

2π∈
q
r
r�

The potential difference between two shells is 

 V = dV
a

b
∫
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  = – E dr
a

b → →
⋅∫

  = q dr
ra

b

4
0

2π∈
−∫

 V = q
a b4

1 1

0
π∈

−





Thus, the capacitance of the spherical capacitor is 

 C = q
V

or C = 4

1 1

0
π∈

−



a b

6.4. CAPACITANCE OF A CYLINDRICAL CAPACITOR
The cylindrical capacitor is a combination of two coaxial cylindrical conductors. 
Let a and b be the radii of the inner and outer conductors respectively. We 
assume that the inner conductor has +q charge and outer surface has –q charge 
as shown in fig. 6.6.

O

a

q

–q

b

L

Fig. 6.6. Cylindrical capacitor of length L.

To find the capacitance of a cylindrical capacitor of the length L, first we 
obtain an expression for the potential V in the region a < r < b. According to 
Gauss’s law.

 E dS⋅∫�  = q
∈0

 ...(6.11)

 E· 2prL = q
∈0
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or E = 1

2
0

π∈ L
q
r

 ...(6.12)

The potential difference between two conductors is 

 V = dV
a

b
∫  ...(6.13)

  = – E dl Edr
a

b

a

b→ →
⋅ = +∫ ∫

Thus,

 V = q
L
dr
ra

b

2
0

π∈∫  ...(6.14)

  = q
L

b a
2

0
π∈

ln ( )/  ...(6.15)

\ Capacitance C is given by

 C = q
V

\ C = 
2

0
π∈ L
b aln /

 ...(6.16)

Here, we can see that C ∝ L and C also depends on the radii of the inner 
and outer conductors.

6.5.  SERIES AND PARALLEL COMBINATIONS OF 
CAPACITORS

We have many experimental situations where in electrical circuits, we use 
more than one capacitor. In this way, we have two types of combinations of 
the capacitors.

(1) Series combination of capacitors
(2) Parallel combination of capacitors.
(1) Series Combination of Capacitors: Fig. 6.7 shows the series 

combination of the capacitors. Consider three capacitors of capacitances C1, 
C2, and C3 connected in series. When a potential difference V is applied, the 
plates of the capacitors acquire +q and –q charges as shown in fig. 6.7. Let V1, 
V2 and V3 be the potential difference across the capacitors.

Now, the potential V will be the sum of the potential differences across the 
three individual capacitors. Thus, we have

 V = V1 + V2 + V3 ...(6.17)
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where

 V1 = q
C

V q
C

V q
C

1

2

2

3

3

, ,= =

C
1

+q

+

+

+

+ –

–

–

–

–q

+

C
2

+q

+

+

+

+ –

–

–

–

–q

–

C
3

+q

+

+

+

+ –

–

–

–

–q

V
1

V
2

V
3

V

Fig. 6.7. Series combination of capacitors.

Therefore,

 V = q
C

q
C

q
C

1 2 3

+ +  ...(6.18)

or V
q

 = 1 1 1

1 2 3
C C C

+ +  ...(6.19)

If the equivalent capacitance of the combination is C, then,

 C = q
V

Substituting it in Eq. (6.19), we get

 1
C

 = 1 1 1

1 2 3
C C C

+ +  ...(6.20)

It is clear that the equivalent capacitance of a series combination is always 
less than any individual capacitance in the combination.

(2) Parallel Combination of Capacitors: Consider three capacitors of 
capacitances C1, C2 and C3 connected in parallel as shown in fig. 6.8.

In parallel combination, we see that the potential difference across the 
each capacitor will remain same and the charge on each capacitor is different 
from one another. We can write the total charge as,

 q = q1 + q2 + q3 ...(6.21)
where q1 = C1V, q2 = C2V and q3 = C3V. On substituting in the Eq (6.20) we get
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+q1 +q2 +q3

–q1 –q2 –q3

C1 C2 C3

– – – – – – – – – – – –

+ + + + + + + + + + + +

V

+

–

Fig. 6.8. Parallel combination of capacitors

 q = C1V + C2V + C3V

or q
V

 = C1 + C2 + C3 ...(6.22)

If C represents the equivalent capacitance of the parallel combination,

 C = q
V

 = C1 + C2 + C3

or C = C1 + C2 + C3 ...(6.23)

It is clear that the equivalent capacitance C is larger than any of the single 
capacitor.
Example 6.2. Compute the equivalent capacitance of the combination of 
capacitors between the points A and B as shown in fig. 6.9.

4 µf

A

B

1 µf

1 µf

1 µf

1 µf

4 µf

Fig. 6.9. Combination of capacitors.

Here, all the capacitors of 1µf are in parallel, thus
 C ′ = C1 + C2 + C3 + C4
  = 1 + 1 + 1 + 1 = 4µf

Now, all the capacitors of 4µf are in series, thus, equivalent capacitance is 

 
1
C

 = 1

4

1

4

1

4

3

4
+ + =

 C = 
4

3
 = 1.33 µf.
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6.6. ELECTROSTATIC ENERGY STORED IN A CAPACITOR
When the process of charging of a capacitor takes place, there is a transfer of 
the charge from one plate to other. In this way, a capacitor stores the charge. 
Now, a question arises that, where is the charge stored. The answer of this 
question is that the charge or energy is stored in the electric field. To calculate 
the energy stored in the capacitor, suppose that the infinitesimally small charge 
dq is brought to a capacitor at a constant potential V, so, the work done is 
 dW = V dq ...(6.24)

Since V varies during the charging of a capacitor, we have 

 V = q
C

 ...(625)

Thus, on substituting the V from Eq. (6.25) in Eq. (6.24) we get

 dW = q
C

dq ...(6.26)

We assume that the maximum charge on the capacitor is q0, we can 
integrate the Eq. (6.26) to obtain the total work done by the electric field to 
charge the capacitor to q0. Thus,

 W = q
C
dq

q

0
0∫

or W = 1

2

2q
C
0  ...(6.27)

Again, q0 = CV

\ W = 1

2

2CV  ...(6.28)

This work stored as an electrostatic energy, hence,

 U = 1

2

1

2

2

2q
C

CV=  ...(6.29)

The charge q is in coulomb, C is in farad and V in volts, the energy U is 
in joules. Actually, this electric potential energy is not due to the mechanical 
work in bringing the charge from one plate to another. But it is a chemical 
energy of the battery that transformed into potential energy. Now, we may find 
a relation between the energy and the electric field where the energy is stored. 
Consider a parallel plate capacitor of the plate area A and the plates separation 
d. Then, capacitance C of parallel plate capacitance is 

 C = ∈0 A
d

 ...(6.30)
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Now, the work required to charge a capacitor to q is 

 U = 1

2

2q
C

 ...(6.31)

since q = sA
where s is the surface charge density, Thus,

 U = 1

2

2σ Ad
∈

0

 ...(6.32)

The electric field between the plates of the parallel plate capacitor is given by 

 E = σ
∈0

On substituting in the Eq. (6.32) we get

 U = 1

2

2∈
0
E Ad·  ...(6.33)

If V is the volume of the space between the plates, V = Ad, Thus,

 U
V

 = U Ed = ∈1

2

2

0

or Ud = 1
2

2∈
0

E  ...(6.34)

where Ud is the energy density. Thus, the energy stored per unit volume (energy 
density) depends on the square of the electric field. In general, the electrostatic 
energy is given by 

 U = 1

2

2∈ ∫0
E dV

V
 ...(6.35)

Example 6.3. Consider two capacitors of capacitances C1 = 2µf and C2 = 4µf 
in series. The capacitor C1 has voltage of 6 volts and C2 of 12 volts across their 
plates. compute the charge and energy stored in each capacitor.
Solution: Given,
 C1 = 2µf
 V1 = 6 volts
and
 C2 = 4µf
 V2 = 12 volts
\ Charge
 q1 = C1V1 = 12 µC
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and q2 = C2V2 = 48 µC
Now,

 U1 = 1

2

1

2
2 10 36

1 1

2 6C V = × × ×−

or U1 = 3.6 × 10–5 joules
and

 U2 = 1

2

1

2
4 10 144

2 2

2 6C V = × × ×−

or U2 = 2.88 × 10–4 joules.

6.7. FORCE BETWEEN PLATES OF A CAPACITOR
Since potential energy is stored in the electric field between the plates of a 
capacitor, it allows us to calculate the force between the plates of the capacitor. 
For this, consider a parallel plate capacitor of plate area A and the separation 
between the plates d. Then, capacitance C is 

 C = ∈0 A
d

 ...(6.36)

and associated stored energy is given by 

 U = q
C

2

2

  = q d
A

q
A
d

2 2

2 2∈
=

∈





0 0

 ...(6.37)

Suppose that the electric force between the plates is F and the plates 
separation increases by an amount dx where dx is known as the virtual 
displacement, then,

 dW = –F dx
or dU = –F dx ...(6.38)
with the analogy of Eq. (6.37), for a small displacement dx, we have the change 
in electric energy as

 dU = q
A

2

2 ∈
0

dx ...(6.39)

on comparing the Eqs. (6.38) and (6.39), we get

 F = – q
A

2

2 ∈
0

 ...(6.40)



Capacitors and Dielectrics 147

Here, negative sign indicates that there is an attractive force between the 
plates of a capacitor.
Example 6.4. A spring is connected to a parallel plate capacitor as shown in 
fig. 6.10. If the capacitor is charged to q0, show that the expansion in the spring 
is given by 

 x = q
k

2

2

σ
∈

0

where k is force constant.

Solution: Let s be the charge density, s = q
A
0 .

+q0–q0
k

Fig. 6.10. A capacitor with a spring.

The restoring force acting on the right plate of the capacitor is,
 F = –kx

The electric force due to right plate will be 

 F = q0E = q0
σ

2 ∈
0

Since restoring force is balanced by the electric force, we have 

 q
0

0

σ
2 ∈

 = –kx

or x = q
k

0

0

σ
2 ∈

6.8. ELECTRIC ENERGY STORED IN CONDUCTING SPHERE
Consider the conducting sphere of radius R as shown in fig. 6.11. The electric 
field for r < R is zero.

R

Fig. 6.11. Conducting sphere 

and electric field at a distance r from the centre of the sphere is 
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 E = 1

4
2π∈

0

q
r

 ...(6.41)

The electrostatic energy is given by

 U = 1

2

2∈ ∫0
E dV  ...(6.42)

For r > R, consider a spherical shell of radius r and thickness dr, the 
volume of the shell is 
 dV = 4pr2dr ...(6.43)

Then,

 U = 1

2 4
4

2

2

2∈
∈







∞
∫ 0

0

q
r

r dr
R π

π  ...(6.44)

  = q dr
rR

2

2
8π ∈

∞
∫

0

 U = q
R

2

8π ∈
0

 ...(6.45)

Since the potential at the surface of the sphere, is given by,

 V = 
1

4π ∈
0

q
R

 ...(6.46)

then, substituting Eq. (6.46) in the Eq. (6.45), we get 

 U = 
1

2
qV  ...(6.47)

6.9. DIELECTRIC MATERIALS
In the previous sections, we have discussed the electrostatic problems in 
the absence of the dielectric materials and all the discussions are taken with 
the air or vacuum. Now, we shall discuss the electrostatic problems with the 
dielectric materials. Dielectric material have no free charges and these are non-
conducting materials such as mica, glass, rubber, wood or plastic etc. When 
a dielectric material is filled between the plates of a capacitor, the potential 
difference between the plates decreases. Thus, the capacitance C of the 
capacitor increases by a dimensionless quantity k which is called the dielectric 
constant of the material.

In the absence of the dielectric, a capacitor of capacitance C0 has the charge 
q0 as shown in fig. 6.12(a), the potential difference across the plate is given by 
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 V0 = q
C

0

0
 ...(6.48)

Now, suppose that a dielectric material such as mica or glass is placed 
between the plates of a capacitor as shown in fig. 6.12.(b), the capacitance 
increases to a value given by

 C = kC0 ...(6.49)
where k is known as dielectric constant of the material.

+

+

+

+ –

–

–

–

q0 q0

(a) (b)

Fig. 6.12. Capacitor without dielectric (a) and with dielectric (b)

Therefore, the potential difference between the plates decreases to 

 V = V
k
0  ...(6.50)

The charge q0 on the capacitor does not change, thus, we can write,
 q0 = C0V0 = CV ...(6.51)

or

 C
Co

 = V
V

k0 =  ...(6.52)

If a dielectric slab is placed between the plates of a parallel plate capacitor, 
as shown in fig. 6.13, its capacitance is given by 

 C = ∈






0 A
d
k

or C = k A
d
∈0  ...(6.53)

A

d

Fig. 6.13. Capacitor with dielectric slab.
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where A is the area of plate and d is the separation between the plates. The 
dielectric constant k is just a number and is always greater than 1. That is,  
k > 1. The dielectric constant for various materials are listed in the table 6.1. 
Each dielectric has its own characteristic value of the electric field which is 
known as dielectric strength. By placing the a dielectric material between the 
plates of a capacitor, we have 
 (1) A maximum operating voltage for a capacitor.
 (2) The capacitance of a capacitor increases by a factor k.
 (3) It solves the mechanical problem between the conducting plates of a 

capacitor.
Table 6.1.

Material Dielectric constant
Free space 1.00000

Dry Air 1.0006
Bakelite 4.9

Glass ~6
Mica 3 – 7.5
Paper 3.7
Water 80

Rubber 2.95
Transformer oil 2.0

Benzene 2.3

6.10. POLARISATION
In the solid materials, the atoms are arranged in a defined pattern and is known 
as crystal structure. In conductors, there are large number of free charge to 
move throughout the lattice. However, there are many solids in which the 
electrons are bound tightly to the atomic nuclei. Such solids are called the 
dielectrics. The behavior of the dielectrics depends on the electrical nature. 
The dielectric materials are unable to conduct the current. It contains the 
positive and negative charges in equal amount, it is electrically natural. In the 
materials, the binding is divided into two types.
 (1) covalent binding.
 (2) ionic binding.

In covalent binding, the atoms are tightly bound together, and the positive 
and negative atoms are not separated. In case of ionic crystals the positive 
ions may or may not be separated from the negative ions. But there are certain 



Capacitors and Dielectrics 151

materials that have separation of the positive ions with the negative ions. Such 
materials possess permanent electric dipole moment. Thus, the polarisation 
at a point is defined as the vector sum of the electric dipole moments per 
unit volume of the material. We can explain the increase in the capacitance 
of a capacitor with dielectric on the basis of atomic or molecular point of 
view. When a conductor is placed in the electric field, there is a redistribution 
of charges on the surface of the conductor. Thus, the electric field inside the 
conductor is zero. Moreover, in case of dielectric, no charge is there to move, 
therefore a question arises that, how are the charges occur on the surface of the 
dielectric material. In this way, to answer the question, the dielectric materials 
are divided into two types as, 

(1) Polar dielectric
(2) Non-polar dielectric
(1) Polar dielectrics: Such type of dielectrics have permanent electric 

dipole moment. The examples of polar dielectrics are HCl, HBr and H2O etc. 
In polar dielectrics, the centre of negative charge does not coincide with the 
centre of positive charge as shown in fig. 6.14. The electric dipole moment 
of HCl is 3.40 × 10–30 coulomb-meter. In water molecule, the two hydrogen 
atoms are situated at an angle of 105° as shown in fig. 6.14(b).

p

H
+

Cl
–

p1

p2

p
O

–2

H
+

H
+
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p2

p1

(a) (b) (c)

Fig. 6.14. Dipole moment of HCl and H2O molecules.

For H2O molecule, the resultant dipole-moment is 

 p
→

 = p p
1 2

→ →
+  ...(6.54)

In the absence of external electric field, the orientations of these dipoles 
are random and the resultant electric dipole moment of the system becomes 
zero as shown in fig. 6.15(a). That is,

 pi
i

∑  = 0 ...(6.55)

when these molecules are placed in the external electric field E0, they tend 
to orient along the direction of the electric field as shown in fig. 6.15(b). The 
orientation of these polar molecules is due to the moment of force set up by 
the applied electric field. However, it can be seen that the orientation of these 
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molecules along the direction of the electric field is not perfect. This is due to 
the thermal agitation. Thus, the orientation of the polar molecules creates a 
weak electric field in the direction opposite to the applied electric field.
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Fig. 6.15. The alignment of polar molecules without electric field and with 
electric field.

(2) Non-polar dielectrics: In non-polar dielectrics, the negative charge 
centre and the positive charge centre of a molecule coincide with each other as 
shown in fig. 6.16. (a) that is, they do not posses the permanent electric dipole 
moment. When the non-polar dielectric materials is placed in an external 
electric field, the material becomes polarised. Due to polarization, the positive 
and negative charges are then, separated and the electric dipole moments are 
induced as shown in fig. 6.16. (b). Such type of dipoles are called induced 
dipoles. The examples of non polar molecules are O2, N2, CO2, CH4 etc.
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Fig. 6.16. Non-polar molecules (a) the positive and negative charge centres 
are coincide, when E = 0 (b) separation of charge centres in the field.

6.11. ELECTRIC FIELD IN DIELECTRICS
If a dielectric slab is placed between the charged plates of a parallel plate 
capacitor, the voltage across the plates decreases and as a result, an additional 
field is induced in the dielectric slab due to the polarization. This induced field 
points in the opposite direction to the applied electric field E0 as shown in 
fig. 6.17. In this way, each molecule of the dielectric material becomes a tiny 
electric dipole. The charge sd is caused by the polarization and is called the 
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bound charge, however, s is the free charge density of the conducting plates of 
the capacitor. The charge sd does not leave its parent atom.

The polarization P
→

 of the dielectric material is the electric dipole moments 

per unit volume of the dielectric, and p
→

 is a vector quantity. Moreover, if p is 
the dipole moment of a molecule and N is the number of such molecules in a 
unit volume of the dielectric, then, polarization is

 P
→

 = Np ...(6.56)
Here, p is an average dipole moment of a molecule.
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Fig. 6.17. Electric field in dielectric material.

If P
→

(x, y, z) is the dipole moment per unit volume, the potential due to the 
dipole is given by 

 dV = 1

4
3

3

π∈

→ →

0

P r
r

d r·  ...(6.57)

or dV = 1

4

1 3

π∈
∇





→

0

P
r
d r·  ...(6.58)

where d3r is a small volume. The net potential at any point may be found by 
integration of the Eq. (6.58). Thus,

 V = 1

4

1 3

π∈
∇





→

∫
0

P
r
d r

V
.  ...(6.59)

integrating the Eq. (6.59) by parts, we get

 V = 1

4

1

4

3 3

π π∈ ∇








 −

∈
∇→ →

∫ ∫
0 0

·

·P
r
d r P

r
d r

V V
 ...(6.60)
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For first term, using divergence theorem to convert volume integration 
into surface integration, we have

 V = 1

4

1

4

3

π π∈
−

∈
∇

→ → →

∫ ∫
0 0

P dS
r

P
r
d r

S V
· ·

or V = 1

4

1

4

3

π π∈
−

∈
∇

→ →

∫ ∫
0 0

P ndS
r

P
r
d r

S V
· ·
�

 ...(6.61)

where S is the surface area which bounds the volume of the dielectric and the 

surface element dS
→

 points in outward direction. For free charge density, we 
may write

 V = 1

4π
σ

∈ ∫
0

dS
rS

 
...(6.62)

and V = 1

4

3

π
ρ

∈ ∫
0

r
d r

V

on comparison the Eqs (6.61) and (6.62), we get
Surface charge density is

 sd = P n
→

⋅ �  ...(6.63)

and volume charge density is given by

	 rd = – ∇⋅
→
P  ...(6.64)

where sd and rd are bound charge densities and are distinguished from the free 
charge densities. Furthermore, if the surface covers all volume of the dielectric 
material, then ∇⋅

→
P  is sufficient to describe the source.

6.12. GAUSS’S LAW OF DIELECTRICS
The electric field due to dipoles can be evaluated from the bound charge 
density. Consider a parallel plate capacitor as shown in fig. 6.18 (a). If the 
dielectric material is not present between the plates, the electric field is given 
by 

 Eo = σ
∈0

 ...(6.65)

where s is the free charge density. When a dielectric slab is placed between the 
plates, a charge qp is induced over the surface of the dielectric, fig. 6.18 (b).









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Fig. 6.18. (a) Capacitor without dielectric (b) with dielectric.

the net charge enclosed by the gaussian surface is given by
 Q = q – qp ...(6.66)

By Gauss’s law,

 E dS
S

→ →
⋅∫  = Q

∈0

  = 
q qp−

∈0
 ...(6.67)

If A is the area of plate, then,

 E = 
q q

A
p−

∈0
 ...(6.68)

on placing the dielectric slab, the potential is decreased by

 V = 
V
k
0  ...(6.69)

where k is known as the dielectric constant, and the electric field is 

 E = 
E
k
0  ...(6.70)

on substituting the value of Eo from the Eq. (6.65) in the Eq. (6.70), we get

 E = 
σ

k ∈0

  = 
q

kA∈0
 ...(6.71)

Now, equating the Eqs. (6.68) and (6.71), we have
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 q
k A∈0

 = 
q q
A
p−

∈0

or qp = q
k

1 1−



  ...(6.72)

The surface charge density is

 sd = σ 1 1−



k

 ...(6.73)

Therefore, from the Eqs. (6.67) and (6.72) we have

 E dS
S

→ →
⋅∫  = 

q
k

q
∈

=
∈0

 ...(6.74)

where ∈ = ∈ok is known as permittivity of the material medium.

or ∈ ⋅
→ →

∫ E dS
S

 = q

or D dS q
S

→ →
⋅ =∫  = q ...(6.75)

where D = ∈E is called electric displacement vector.

6.13. POLARIZATION CURRENT DENSITY
If a dielectric slab is inserted into the plates of a capacitor, the polarization 
current occurs due to the motion of the bound charges. The polarization current 
is given by

 Id = J dSdS

→ →
⋅∫  ...(6.76)

since,

 Id = − ∂
∂ ∫t d rdV

ρ 3  ...(6.77)

The surface area bounds the volume d3r. The rate of decrease of the bound 
charge at the surface S is equal to the rate of flow of charge through the surface. 
Thus,

 − ∂
∂ ∫t d rdV

ρ 3  = J dSdS

→ →
⋅∫  ...(6.78)

Using divergence theorem, we have

 J dSdS

→ →
⋅∫  = ∇⋅

→

∫ J d rdV
3
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Now

 ∇∫ ·J d rd
3  = − ∂

∂ ∫t d rdV
ρ 3  ...(6.79)

Substituting rd = −∇⋅
→
P , we get

 ∇⋅
→

∫ J d rdV
3  = ∂

∂
∇

→

∫t P d r
V

·
3

or ∇∫ ·J d rd
3  = ∂

∂
∇

→

∫t P d r
V

·
3  ...(6.80)

For any arbitrary volume, we write

 Jd
→

 = ∂
∂

→
P
t

 ...(6.81)

we have used subscript ‘d’ for dielectric.

6.14. LOCAL FIELD IN A DIELECTRIC MATERIAL
To evaluate the local field at a molecule or ion in the state of polarization, 
suppose that a dielectric slab is placed between the conductors as shown in 
fig. 6.19.
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Fig. 6.19. Local field at the molecule in a sphere of radius a.

Since dielectric is placed in an external electric field, we can evaluate the field 
at a molecule at the centre of a sphere of radius a. This microscopic field is 
different from the macroscopic field governed by the Maxwell equations The 
electric field at the molecule is the vector sum of the external field and the 
electric field contributed by the dipoles within the dielectric material. Thus, the 
local field at the molecule is given by*

* Principle of Electricity and magnetism by Pugh, chapter-5.
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 ELoc = E0 + E1 + E2 + E3 ...(6.82)
where
 E0 =  Electric field due to free charge on the plates of a 

capacitor.
 E1 =  Electric field due to the surface charge (induced 

charge or bound charge) on the dielectric material 
between the conductors.

 E2 =  Field due to the polarization charge on the sphere of 
radius a

 E3 =  Electric field due to individual dipoles in the sphere 
of radius a.

Now, we shall obtain the expressions for these electric fields as
 (1) The electric field due to the charges on the surface of plates of the 

capacitor is 

   D
→

 = ∈ = ∈ +
→ → →

0 0 0E E P  ...(6.83)

  or Eo
→

 = D E P
→

→
→

∈
= +

∈0 0
 ...(6.84)

 (2) The induced charge on the surface of the dielectric material produces an 
electric field at the molecule is,

   E
→

1  = −
∈

= −
∈

→ →
D P

0 0
 ...(6.85)

 (3) The field E2 due to the polarization charge density sP on the sphere may 
be calculated as

   dE2 = σ θ
π
P dS

a
cos

4
2∈

0

 ...(6.86)
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Fig. 6.20. Molecule in a spherical cavity of radius a.
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  dE2 is the component of the electric field parallel to the x-axis, Fig. 6.20. 
The area of the element is 

 dS = 2pa·a sin q dq
  = 2pa2 sin q dq ...(6.87)
  Since the spherical cavity contains polarization charge density,

 sp = P
→

cosθ  ...(6.88)
  Field due to polarization charge density is 

 E2 = P a d
a

· cos sin2

4

2 2

2

π θ θ θ
π ∈∫

0

  = 
P d

2

2

∈ ∫
0

cos sinθ θ θ  ...(6.89)

  Integrating Eq. (6.89) in the limit q = 0 to q = p,

 E2 = P d
2

2

∈ ∫
0

0
cos sinθ θ θ

π

  = P P
2

2

3 3∈
=

∈
0 0

·

  Thus,

 E2 = P
3 ∈

0

 ...(6.90)

 (4) E3 is the field of the individual dipoles. We know that the potential due 
to the dipole at a distance r is 

   V = 1

4
3π∈

→ →

0

p r
r
·  ...(6.91)

  The electric field due to the dipole is calculated as
   E = –∇V

    = 
1

4

3
5

2

π∈
−

→ → →

0
r

p r p r[ ( · ) ]  ...(6.92)

  Now, taking summation over all dipoles, we get

   E3 = 
3

4

2

5

( · )p r r p r
r

i i i i i

ii

→ →
−

∈∑ π
0

 ...(6.93)

  or E3 = p x r r
r

i i i

ii4

3
2 2

5π ∈
−∑

0

 ...(6.94)
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  since all dipoles are oriented along x-axis, taking the symmetry over 
sphere, we have

   3
2 2x ri i

i
−∑  = 0

   x yi i
i

∑  = 0 ...(6.95)

  and x zi i
i

∑  = 0

  Hence,

   E
→

3  = 0 ...(6.96)
  Thus, the local electric field at the molecule is given by

   E
→

LOC  = E P P P→
→ → →

∈
−

∈ ∈
+ +

0 0 0
3

  or E
→

LOC  = E P→
→

∈
+

0
3

 ...(6.97)

6.15.  DIELECTRIC CONSTANT, ELECTRIC SUSCEPTIBILITY 
AND POLARIZABILITY

Consider a dielectric slab between the plates of a capacitor, then the surface 
charge density is 

 s = q
kA P+ σ  ...(6.98)

where
 s = free charge density.
 k = dielectric constant.
 A = area of plates of the capacitor.
and sP = polarization density.

Here, s = q
A

q
A

PPand σ = ′ =
→

Thus, the Eq. (6.98) can be written as 

 σ�  = ∈ +
→ →

0 E P  ...(6.99)

where E = q
k A∈0

 is the macroscopic field.
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we know that the electric displacement vector D
→

= σ� , we have

 D
→

 = ∈ +
→ →

0 E P  ...(6.100)
for the free space,

 P
→

 = 0,

 D
→

 = ∈
→

0 E  ...(6.101)
Moreover, for dielectric medium,

 D
→

 = ∈
→
E  ...(6.102)

where ∈ is the permittivity of the medium. On substituting the Eq. (6.102) in 
the Eq. (6.100), we get

 ∈
→
E  = ∈ −

→ →
0E P  ...(6.103)

or P
→

 = ( )∈− ∈
→

0
E

  = ( )k E∈ − ∈
→

0 0

or P
→

 = ( )k E− ∈
→

1
0

 ...(6.104)
Now, we write

 P

E

→

→
∈0

 = (k – 1) ...(6.105)

Here, we can define a dimension less quantity

 c = P

E

→

→
∈0

 ...(6.106)

where x (a Greek letter, c-chi) is known as electric susceptibility.

or P
→

 = χ ∈
→

0 E  ...(6.107)
Thus, dipole moment per unit volume, polarization is directly related to 

the macroscopic field in the dielectric. Moreover, the electric polarizability is 
defined as the ratio of the induced dipole moment to the local electric field, it 
is denoted by a. Thus,

 a = 
p

E
LOC
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or P
→

 = a E
→

LOC  ...(6.108)
or P ∝ ELOC ...(6.109)

Thus, the induced dipole moment is proportional to the ELOC. Since, we 
know that

 P
→

 = N p
→

 ...(6.110)
On substituting in the Eq. (6.109), we get

 P
→

 = N a E
→

LOC  ...(6.111)
From the Eq. (6.11), we have

 P
→

 ∝ E
→

LOC

That is, polarization is proportional to the local electric field. Such 
dielectrics are known as linear dielectrics.

6.16. CLAUSIUS-MOSSOTTI EQUATION
Clausius-Mossotti equation is a relation between the electric polarizability and 
dielectric constant. We know that the local field at the molecule is given by

 E
→

LOC  = E P→
→

+
∈3

0

 ...(6.112)

and the dipole moment is given by

 p
→

 = a E
→

LOC  ...(6.113)
where ∝ is electric polarizability. Moreover, the polarization is 

 P
→

 = N p
→

  = N a	ELOC

or P
→

 = N a  E
P→
→

+
∈











3
0

 ...(6.114)

Since, from the Eq. (6.104), we have

 P
→

 = ∈ −
→

0
( )k E1  ...(6.115)

Substituting the Eq. (6.115) in eq. (6.114), we get

 ∈ −
→

0
( )k E1  = N a E k E→

→

+ ∈ −
∈













0

0

( )1

3
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or 3∈0(k – 1) = N a(k + 2)

or a = 3 1

2

∈ −
+

0

N
k
k

( )

( )
 ...(6.116)

This is known as famous clausius-Mossotti equation. If r is the density of the 
mass and NA is the Avogadro’s number, then

 N = ρ
M
NA  ...(6.117)

where M is the molecular weight. Substituting the value of N from the Eq. 
(6.117) in the Eq. (6.116), we get

 
M k

kρ






−
+







( )

( )

1

2
 = NA

3 ∈
0

· a ...(6.118)

Furthermore, if the number of molecules per unit volume approaches to 
3 ∈





0

α
. The dielectric constant k → ∞. Since k is finite and small for the liquids

and gases, the Eq. (6.118) provides the better results. This is not valid for 
crystalline solids, this is because that the dipole interactions are very complex 
in the solids.

6.17. LANGEVIN EQUATION OF POLAR-DIELECTRICS
The polarization is an important phenomenon in some applications of the 
physics and engineering. The polar dielectrics are those where the positive and 
negative ions are separated with a distance. That is, these dielectrics consist of 
permanent electric dipoles. In the absence of the electric field, the dipoles are 
aligned randomly throughout the dielectric and an external electric field causes 
the electric dipoles to orient in the direction of the field. However, the alignment 
of the dipoles is not complete due to the thermal agitation. In Langevin-Debye 
theory, the polarizability depends on temperature. Now, suppose that a system 
consists of N-dipoles in a unit volume. The potential energy for a dipole in a 
uniform electric field is given by 

 U = – p E
→ →

⋅
  = –pE cos q ...(6.119)

According to Boltzmann’s law, the number of electric dipoles per unit 
volume oriented in the direction between q and q + dq is 

 dN = Ce–U/KT sin q dq ...(6.120)
where C is a constant 

Thus, dN = C epE cos q/KT sin q dq ...(6.121)
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Since N is the total number of molecules in a unit volume, then,

 N = dN
o

π
∫  ....(6.122)

  = C e dpE KT
o

cos /
sin

θπ
θ θ∫

Let u = 
pE
KT

,

 N = C e du
o

cos
sin

θπ
θ θ∫  ...(6.123)

Now, polarization of the molecules whose dipole moments lie in the range 
q and q + dq is given by

 dP
→

 = p dN
→

cos θ

  = C p eu
→

cosθ θ θsin cos  ...(6.124)
on substituting the value of C from the Eq. (6.123) in the Eq. (6.124), we get

 dP
→

 = N pe d

e d

u

u
o

cos

cos
sin

θ

θπ
θ θ θ

θ θ

sin cos 

∫
 ...(6.125)

To compute the net polarization, we may integrate Eq. (6.125) from q = 0 
to q = p. We have

 P
→

 = N p
e d

e d

u
o

u
o

→ ∫
∫

cos

cos

sin cos

sin

θπ

θπ

θ θ θ

θ θ
 ...(6.126)

Suppose that u cos q = y
 u sin q dq = –dy
Thus, the equation (6.126) takes the form,

 P
→

 = N p
u

y e dy

e dy

y

u

u

y

u

u

→
−

−











∫

∫
 ...(6.127)

  = N p
u

u e e e e
e e

u u u u

u u

→ − −

−











+ − −
−

( ) ( )

( )

  = N p
e e
e e u

u u

u u

→ −

−
+
−

−












( )

( )

1
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or P
→

 = N p hu
u

→
−





cot
1  ...(6.128)

or P
→

 = N p L u
→

( )  ...(6.129)

The Eq. (6.129) is known as Langevin equation and L(u) is called the 
Langevin function. We can expand L(u) as

 L(u) = u u
3 45

3

− + ...  ...(6.130)

and inverse Langevin function is

 L–1(u) = 3
9

5

297

175

3 5u u u+ − + ...  ...(6.131)

The plot of the Langevin function L(u) against u is shown in fig. 6.21. 
Now, we have following cases as 

Case –1 For large u, that is, at low temperature T < < pE
K

,
we have, L(u) ~ 1

Thus, polarization is, then,

 P
→

 = N p
→

 ...(6.132)
At the low temperature, all the dipoles are aligned parallel to the electric 

field and thus polarization P
→

 is maximum.

O
u

L(u)

u

3
line

Fig. 6.21. Langevin function L(u) against u.

Case-2: For high temperature, that is, T >>> pE
K

,
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 P
→

 = N p u
→

3

or P = N p E
KT

2

3
 ...(6.133)

or P ~ 1
T

Thus, the polarization is directly proportional to the electric field, more-
over if E is uniform, P is inversely proportion to the temperature. This dielectric 
is linear and the electric susceptibility is give by 

 c = P

E

Np
KT

→

→ =
2

3
 ...(6.134)

or c = C
T

 ...(6.135)

6.18. ENERGY STORED IN A DIELECTRIC
Consider a dielectric slab of thickness d inserted into a parallel plate capacitor 
of plate area A. Assuming that the dielectric slab is fitted completely between 
the plates as shown in fig. 6.22.

+ –

+ –

+ –

+ –

+ –

+ –

d

Fig. 6.22. Dielectric in a field E
→

The energy stored is given by

 U = 1

2

2∈E Ad·  ...(6.136)

since potential is,
 V = Ed ...(6.137)
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Substituting the value of E from the Eq. (6.137) in the Eq. (6.136), we get

 U = 
1

2

2

2
∈·Ad V

d

  = 
1

2

2∈




A
d

V  ...(6.138)

The capacity of the capacitor will be

 C = ∈A
d

 ...(6.139)

Substituting for C in the Eq. (6.138), we get

 U = 
1

2

2CV  ...(6.140)

From the Eq. (6.136), the energy density is

 Ud = 
U
Ad

E= ∈1

2

2

or Ud = 
1

2
( )·∈

→ →
E E

  = 
E D
→ →

·

2
 ...(6.141)

Thus, we have

 Ud = D2

2 ∈
  , D = ∈E ...(6.142)

which is the expression for the energy density.
Example 6.5 Find the capacitance of a capacitor when it is filled with two 
dielectrics of dielectric constant k1 and k2 as shown in fig. 6.23.

(a) (b)

Fig. 6.23. Capacitors with different dielectrics.
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Solution: In the fig. 6.23 (a), we have a parallel combination of the capacitors 
with dielectric constants k1 and k2. In this case, the plate are becomes half, Fig. 
6.24.

Fig. 6.24. Two capacitors with different dielectrics.

\ Total capacitance is
 C = C1 + C2

But, C1 = k A
d

1
2∈

0
/

and C2 = k A
d

2
2∈

0
/

where d is the plates separation and A is the plate area. Thus, on substitution 
for C1 and C2, we get

 C = 
∈ +

0
( )k k A
d

1 2

2

For Fig. 6.23(b), we have a series combination of C1 and C2, Fig. 6.25.

Fig. 6.25. Capacitors with dielectrics.

\ C = 
C C

C C
1 2

1 2
+

In this case separation between the plates becomes half.

\ C1 = 
∈

0
k A
d

1

2/
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and C2 = 
∈

0
k A
d

2

2/

on substituting in C, we get

 C = 
2 1 2

1 2

∈ +
+







0
A

d
k k
k k

.

Example 6.6. Two capacitors, where one capacitor is charged to a potential 
V1 and other capacitor is uncharged, are connected in parallel. Then,
 (1) Prove that when equilibrium is reached, the charge on the second 

capacitor is equal to the ratio of its capacitance to the sum of two 
capacitances of the capacitors multiplied by the initial charge.

 (2) Show that the initial energy is greater than the final energy.
Solution: Let C1 and C2 be the capacitances of the capacitors and V be the 
common potential, then

 V = Total charge

Total capacitances

  = 
q q
C C

1 2

1 2

+
+

  = 
C V C O
C C

C V
C C

1 2 2

1 2

1 1

1 2

+
+

=
+

·

\ Thus, the charge on the capacitor C2 is 
 q2 = C2V

  = 
C C
C C

V C q
C C

1 2

1 2

1

1 1

1 2
+

=
+

·  (initial charge).

Now, charge on the capacitor C1 is 
 q′1 = C1V

  = 
C

C C
C V1

1 2

1 1+
·

  = 
C

C C
q1

2 1

1+
·

(2) The initial energy

 Ui = 1

2
1 1

2C V
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Final energy, when the uncharged capacitor is connected, will be

 Uf = 1

2
1 2

2
( )C C V+

  = 1

2
1 2

1

2

1

2

1 2

2
( )

( )

C C C V
C C

+
+

  = 1

2

1

2

1

2

1 2

C V
C C+

\ Ui – Uf = 1

2

1

2
1 1

2 1

2

1

2

1 2

C V C V
C C

−
+

  = 1

2

1

2
1 1

2 1

2

1

2

1 2

C V C V
C C

−
+

  = 1

2

1 2

1 2

1

2C C
C C

V
+

·

or Ui – Uf > 0
or Ui > Uf

Example 6.7. Consider a parallel plate capacitor of plate area A and plates 
separation d. A dielectric slab of thickness t < d, is placed between the plates 
as shown in fig. 6.26. Compute the capacitance.
Solution: Let C0 and C be the capacitances of the capacitor without and with 
dielectric respectively. When dielectric is not present, the capacitance is 

 Co = ∈0 A
d

Now, to calculate the capacitance C of a capacitor with dielectric, we have 
to compute the potential difference between the plates.

+

+

+

+

+

+

+

– + –

–

–

–

–

–

–

– +

– +

– +

– +

– +

– +

t

d

E0 E0

E

Fig. 6.26. Dielectric slab in an electric field.



Capacitors and Dielectrics 171

The electric field between the plates are 

 Eo = 
q
A∈0

and E = 
E
k

q
k A

0

0
=

∈

\ the potential difference
 DV = E0(d – t) + Et

  = q
A
d t q

k A
t

∈
− +

∈
0 0

( ) ·

  = q
A

d t t
k∈

− +



0

( )

or DV = q
A
d t t

k∈
− −









0

1

Thus, capacitance is,

 C = q
V∆

or C = ∈

− −











0

1
1

A

d t
k

From the above result, we have following points,
 (1) As thickness t of the dielectric slab approaches zero, that is, t → 0,

   C = ∈ =0
0

A
d

C

 (2) As dielectric constant k → 1,

   C = ∈ =0
0

A
d

C
 (3) When t = d,

   C = k A
d

k A
t

∈ = ∈0 0

  or C = kC0
Example 6.8. Consider two capacitors of equal capacitance C connected 
in parallel and this system is charged to a voltage V1. Now, the system is 
disconnected from the voltage source and in one capacitor, a dielectric slab of 
dielectric constant k is placed. Then, compute
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 (a) The free charge transferred from one capacitor to another.
 (b) Final potential V2 across the capacitor.
Solution:

Fig. 6.27. Capacitors system.

Consider two capacitors as shown in fig. 6.27.
The potential V2 is

 V2 = Total charge

Total capacitance

  = C V C O
C kC

CV
C k

1 1 2 1

1

+
+

=
+

·

( )

or V2 = V
k

1

1( )+

Now, charge on the capacitor is
 q′ = C2V2

  = 
kCV
k
1

1( )+

or q′ = 
kCV
k
1

1( )+ .

6.19.  BOUNDARY CONDITIONS AT THE INTERFACE OF TWO 
DIELECTRICS

The conditions that satisfied by the field at the interface separating two media 
are known as boundary conditions. Maxwell’s field equations are used to 
determine these boundary conditions.

(1) Boundary Conditions for the Electric Displacement D
→

.
Consider two dielectric media separated by an interface, as shown in fig. 6.28.
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dS2

dS1

k1

k2

Fig. 6.28. Gaussian pillbox at the boundary.

we have Maxwell’s equation as

 D dS
S

→ →
⋅∫  = q = σdS∫  ...(6.143)

or D dS D dS
S S

→ → → →

∫ ∫+· ·
1 2 2

2

 = s

or D Dn n
→ →

−2 1  = s ...(6.144)

where s is the surface charge density for free charge. From the Eq. (6.144), it 

is clear that the normal component of D
→

 is discontinuous at the boundary. If 
no free charge is present at the interface, s = 0, thus,

 D n
→

1  = D n
→

2

or k1 E1n = k2 E2n ...(6.145)

Therefore, the normal component of D
→

 is continuous across the boundary. 
Now, the behavior of the tangential component of the electric field can be 
determined by the Maxwell’s equation

 E dl
→ →

⋅∫�  = 0 ...(6.146)

we have a closed path at the interface, as shown in fig. 6.29. Now, applying 
the Eq. (6.146) to the path abcda. The paths bc and da are perpendicular to the 
interface, thus, the integrals are vanished, we have

 E dl E dl
a

b

c

d
⋅ − ⋅∫ ∫  = 0
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k1

k2

d c

a b

Fig. 6.29. Interface between two media.

or (E2t – E1t)L = 0
or E1t = E2t ...(6.147)

Thus, the tangential component of the electric field E
→

 is continuous across 
the boundary.
Example 6.9. Consider a parallel plate capacitor of length l and width b as 
shown in fig. 6.30. The plates separation is d. If a dielectric slab is inserted 
partially between the plates of the capacitor, Find
 (a) Capacitance of the system
 (b) energy stored in the system
 (c) force acting on the slab due to the electric field in the capacitor.

x

l

l-x

b

x
l-x

d

(a) (b)

Fig. 6.30. A dielectric in a capacitor.

Solution: The electric field between the plates

 E = V
d

or V = Ed
 (a) The capacitance of the system is 
   C = C1 + C2
  where C1 = Capacitance without dielectric

    = ∈0 A
d
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   C1 = 
∈0 bx
d

  and C2 = capacitance with dielectric

    = 
∈ −

0
k l x b
d
( )

  Therefore,

   C = ∈ + −0
b
d

x l x k[ ( ) ]

 (b) The energy of the system is

   U = 1

2

2CV

    = 
∈ + −0 2

2

b
d
x l x k V[ ( ) ]

  or U = 1

2
0

2∈ + −E bd x l x k[ ( ) ]

 (c) The force acting on the slab due to the electric field across the capacitor 
is 

   F = − dU
dx

  Now,

   F = – 1

2
1

0

2∈ −E bd k( )

  Thus,

   F = 1

2
1

0

2∈ −E bd k( )

  Aliter: Force can also be calculated as 
   Fdx = –dU + Vdq

  or F = − +dU
dx

V dq
dx

  since dU
dx

 = – 1

2
1

0

2∈ −E bd k( )

  Now, charge on the capacitor is
   q = s1A1 + s2A2

  where E = σ σ
1

0

2

0
∈

=
∈

and E
k
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  Thus, q = ∈0Exb + k∈0E(l – x)b

  \ dq
dk

 = –∈0Eb (k – 1)

  and V = Ed
  Thus,

   F = − ∈ − + ∈ −1

2
1 1

0

2 2

0
E bd k E bd k( ) ( )

  or F = − ∈ −1

2
1

0

2bd E k( ) .

Example 6.10. A co-axial cylindrical capacitor of the inner radius a and outer 
radius b is half filled with a dielectric of dielectric constant k. The length of the 
capacitor is l. Compute the capacitance of the system.
Solution: We may compute the electric field using Gauss’ law.

b

a

Fig. 6.31. Cylindrical capacitor.

The flux through the upper half, Fig. 6.31, is given by

 1

2 0
E dS
→ →

∫ ·�  = q
∈0

or E rl·2

2

π  = q
∈0

or E = q
lrπ ∈0

the potential difference V is

 V = E dr
a

b
∫

  = q
l

b a
π ∈

0

ln ( )/



Capacitors and Dielectrics 177

\ Capacitance

 C1 = q
V

 C1 = π ∈
0
l

b aln ( / )

Similarly, the capacitance of lower half is 

 C2 = π ∈
0
kl
b aln ( / )

Total capacitance is
 C = C1 + C2

or C = π ∈ +0
1

l
b a

k
ln ( / )

( )

Example 6.11. Find the capacitance of a half spherical shell field with 
dielectric of dielectric constant k as shown in fig. 6.32.

b

a

Fig. 6.32. A spherical shell with dielectric.

Solution: According to Gauss’s law

 E dS
→ →

⋅∫�  = q
k∈0

 E·2pr2 = q
k∈0

or E = 1

2
0

2π ∈ k
q
r

\ potential between the spherical conductor is

 V = – q
k
dr
ra

b

2
0

2π ∈∫

 V = q
k

ab
b a2

0
π ∈ −( )
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Thus, capacitance is

 C = 
q
V

kab
b a

=
∈
−

2
0

π
( )

Example 6.12. A parallel plate capacitor is field with two different dielectrics 
of dielectric constants k1 and k2 as shown in Fig. 6.33. Find the capacitance of 
the system.

a

b

Fig. 6.33. A capacitor with dielectrics

Solution: Suppose that a and b are the thicknesses of the slabs. At the interface 
of two slabs,

 D
→

1  = D
→

2

or k1E1 = k2E2

where, E1 = q
k A∈

0 1

and E2 = q
k A∈

0 2

the potential difference
 V = E1a + E2b

  = q
A

a
k

b
k∈

+





0 1 2

\ Thus, capacitance,

 C = q
V

or C = ∈

+





0

1 2

A
a
k

b
k
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Example 6.13. Two capacitors of capacitances C1 = 2µf and C2 = 6µf are 
connected in series with an external voltage source of 200V. Then, compute 
the 
 (a) charge on the each capacitor.
 (b) potential difference across each capacitor.
Solution: Let q be the common charge and V1 and V2 be the potential difference 
across C1 and C2 respectively, then,
(a) V1 + V2 = 200

or q
C

q
C

1 2

+  = 200

or q = C C
C C

1 2

1 2

200
+

.

  = 2 6

8
200 10

6× × × −

or q = 3·0 × 10–4C

(b) V1 = q
C

1

4

6

3 0 10

2 10

= ×
×

−

−
·  = 150 V

 V2 = q
C

2

4

6

3 10

6 10

= ×
×

−

−  = 50 V

Example 6.14. Two capacitors C1 = 4 µf and C2 = 6 µf are connected to a 12 V 
supply as shown in fig. 6.34. Compute
 (1) equivalent capacitance of the circuit.
 (2) voltage across the capacitor.
 (3) charge on each capacitor.
 (4) charge on equivalent capacitor.
 (5) energy stored in the system.

12V

4 µf

6 µf

Fig. 6.34. Capacitors in parallel.
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Solution: Both capacitors are in parallel,
 (1) The equivalent capacitance is, C = C1 + C2
   C = 4 + 6 = 10µf
 (2) The voltage across each capacitor is 12V.
 (3) Charge on C1 = 4µf is
   q1 = C1V1
    = 4 × 12 = 48 µC
  and q1 = C2V2
    = 6 × 12 = 72 µC
 (4) Charge on equivalent capacitor C is
   q = CV
    = 10 µf × 12
    = 120 µC
 (5) Energy stored in the system is 

   U = 1

2

2CV

    = 1

2
 × 10 × 10–6 × 144

    = 7.2 × 10–4 J
Example 6.15. Two capacitors C1 and C2 are connected in parallel with a 
supply of V volts as shown in fig. 6.35. Show that the sum of energies stored 
in the individual capacitors is equal to the energy stored in the equivalent 
capacitor.

V

C1

C2

Fig. 6.35. Capacitors.

Solution: The energy stored in the capacitors C1 and C2

are  U1 = 1

2
1

2C V
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and U2 = 1

2
2

2C V

Thus, U = U1 + U2

  = 1

2
1 2

2
( )C C V+

 U = 1

2

2CV

But, C = C1 + C2

Hence, U = 1

2

2CV

Example 6.16. Two metallic spheres, each carrying equal and opposite 
charge of 10µC, are hanging with the weightless insulated threads. The 
distance between them is 1.0 cm and potential difference is 100 volts. Find the 
capacitance of the system.
Solution: Since, q = 10µC
 V = 100 volts

The capacitance is

 C = q
V

= × −
10 10

100

6

or C = 0.1 µC
Example 6.17. Find the equivalent capacitance of the circuit shown in fig. 
6.36.

A

6µC

2µC2µC

2µC

6µC

B

Fig. 6.36. System of capacitors.



182 Elements of Electricity and Magnetism Theory and Applications

Solution: The capacitors of capacitance 2µC are is parallel, the equivalent 
capacitance of these,
 C′ = 2 + 2 + 2 = 6 µC

Now, C′, 6µC and 6µC are in series, we have

 1
C

 = 1

6

1

6

1

6

3

6
+ + =

 C = 6

3
 = 2µC.

Example 6.18. A slab of dielectric material with the dielectric constant k = 
3·0 is placed across an electric field of 107 V/m as shown in fig. 6.37.

E0

Fig. 6.37. Dielectric slab.

Compute the 

(a) E
→

 (b) D
→

    (c) P
→

    (d) rd    (e) sd.
Solution: (a) The induced electric field is

 E = E
k
0

7

610

3
3 33 10= = ×. V/m

 (b) D = ∈0E0 = ∈0kE
    = 8.85 × 10–15 c/m2

 (c) Now,
   D = ∈0E + P
   P = D – ∈0E
    = 8.85 × 10–5 – 2.95 × 10–5

   P = 5.9 × 10–5 c/m2

 (d) Since there is no volume charge density of free charge, there should be 
no volume charge density of the bound charge. Then,

   rd = –∇ ⋅
→
P  = 0

 (e) At the outer surface, the bound charge density

   sd = ±P n
→

⋅ �
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    = ±P
    = ± 5.9 × 10–5 c/m2.
Example 6.19. If the earth is considered as a conducting sphere of radius R, 
compute the capacitance of the earth.
Solution: The potential of the earth is 

 V = q
R4

0
π∈

and

 C = q
V

Ro= ∈4π

Here, R = 6.4 × 106 m
Thus, C = 4p∈0 × 6.4 × 106

  = 
6 4 10

9 10

0 71

6

9

.
.

×
×

= mf

or C = 710 µF.
Example 6.20. There are four plates of area A and the separation between any 
two plates is d, as shown in fig. 6.38. Find the capacitance between A and B.

A

B

Fig. 6.38. Four conducting plates.

Solution:

I II III

Fig. 6.39. Capacitors.

The I and II plates are in parallel, so we have 2C, and III plate is in series 
with 2C.

Thus, C′ = 2

2

2

3

2

3

C C
C C

C
A
d
o×

+
= =

∈
·
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Example 5.21. In the arrangement shown in fig. 6.40, C1 = 2µf, C2 = 4µf and 
C3 = 3µf. Then compute the 
 (a) total capacitance of the circuit
 (b) charge on each capacitor
 (c) the potential difference across each capacitor.
Solution: 

12V

C1

C2

C3

Fig. 6.40. Assembly of capacitors.

 (a) The total capacitance can be evaluated as 

   
1
C

 = 1 1

1 2 3
C C C+

+

  or C = 
( )C C C
C C C

1 2 3

1 2 3

6 3

9
2

+
+ +

= × = µf

 (b) The total charge, q = CV
   q = 12 × 2 
    = 24 µC
  Now, charge on capacitor C1 is

   q1 = 
C

C C
q1

1 2

2

6
24 8

+






= × = µC

  and charge on capacitor C2 is 

   q3 = 
C

C C
q2

1 2
+







    = 4

6
24 16× = µC

  It can also be calculated as
   q2 = q – q1 = 24 – 8 = 16 µC
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  Now, charge on C3 will be same as supplied by battery.
  Thus, q3 = q = 24µC
 (c) Potential difference across C1 is

   V1 = q
C

V1

1

8

2
4= =

  Potential difference across C2 is

   V2 = q
C

2

2
 = 4V

  and potential difference across C3 is 

   V3 = 
q
C

V3

3

24

3
8= =

  It can also be calculated as
   V3 = V – V1 = V – V2 = 12 – 4 = 8 V

EXERCISES
 6.1. What is meant by the capacitance of a capacitor?
 6.2. What is the difference between the permittivity and the dielectric 

constant of a medium?
 6.3. Define electric displacement vector and electric susceptibility. What are 

their units?
 6.4. Find the expression for the equivalent capacitance of three capacitors 

having capacities C1, C2 and C3 connected (a) in series (b) in parallel.
 6.5. Derive an expression for the capacitance of a conducting sphere of 

radius R.
 6.6. Obtain an expression for the capacitance of a cylindrical capacitor 

having inner radius a and outer radius b.
 6.7. Obtain an expression for the energy of a charged capacitor of capacitance 

C.
 6.8. Differentiate between polar and non polar dielectrics and define the 

electric polarization.
 6.9. State and explain Gauss’s law in dielectrics.
 6.10. Show that capacitance of a parallel plate capacitor increases with 

dielectric material.
 6.11. Establish a relation between electric displacement vector and polarization 

vector.
 6.12. Obtain an expression for the force between charges in a dielectric 

medium.
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 6.13. Compute the capacitance of the earth, regarding that it is a conducting 
sphere of radius R.

 6.14. Define electric polarizability and prove the clasusius-mossotti equation

   k
k

−
+

1

2
 = 

1

3
0

∈ ∑Ni i
i

α

  where notations have their usual meanings.
 6.15. For polar dielectrics, show that

   P = Np p E
KT

KT
p E

coth
LOC

LOC





 −





 6.16. Define polarization current density and show that the polarization current 
density is equal to the time rate of change of polarization vector.

 6.17. For bound charge densities, show that

   sd = P n⋅ �

  and rd = –∇·p
 6.18. If a dielectric slab (k = 2·1) is inserted into a charged capacitor having 

free charge density, s = 1µC/m2, Find electric displacement D, electric 
field E, polarization P and bound charge density sd.

 6.19. A parallel-plate capacitor of area A and separation d is filled with three 
dielectrics, as shown in fig. 6.41 (a), (b). Find the capacitance.

k1 k2 k3

k1

k2

k3

(a) (b)

Fig. 6.41. A parallel plate capacitor with dielectrics.

 6.20. A parallel plate capacitor has capacitance C = 36µF, A = 100 cm2 and 
space between plates is filled with a dielectric material (k = 2.1). When 
f = 200 V, Find 

 (a) the electric field in dielectric, E
 (b) the free charge density, s
 (c) the induced charge density, sd

 (d) the polarization, P
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 6.21. A parallel plate capacitor is half filled with the dielectric of dielectric 
constant k, as in fig. 6.42. Find the capacitance.

k

Fig. 6.42. Parallel plate capacitor.

 6.22. Consider a thin conducting disk of radius R, Find the capacitance.
 6.23. Find the equivalent capacitance of the arrangement shown in fig. 6.43.
 Ans. C = 3 µf

ba

3µF 3µF 3µF

2µF2µF

1µF

Fig. 6.43. System of capacitors.

 6.24. A spherical shell has inner radius a and outer radius b. Two different 
dielectric are filled between a and b, as shown in fig. 6.44. Find the 
capacitance of the system.

 Ans. C = 4
0 1 2

1 2

π ∈
− + −

k k abc
k a b c k b a c( ) ( )

k1

k2c

b

Fig. 6.44. Spherical shell with dielectirics.

 6.25. Seven identical plates, each of area A are arranged, as shown in fig. 6.45. 
The distance between adjacent plates is d. Find the capacitance.

 Ans. C = 6
0

∈ A
d
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Fig. 6.45. Conducting plates.

 6.26. Find the equivalent capacitances of the arrangements shown in fig. 6.46 
(a) and (b).

                     

C

C

C

C

C

C

C

b

a

 Ans. C ′ = 2C
Fig. 6.46. (a) Capacitor system.

                 

a

b

1µF 1µF 1µF

2µF2µF2µF

1µF

 Ans. C ′ = 2µF.
Fig. 6.46. (b) Capacitor system.

 6.27. find the equivalent capacitance between B and H, of the cubic arrangement 
of the capacitors, as shown in fig. 6.47.

                              

C

A
C

B b

a

C C
C C

C

C

FE C

C
D

C

GH  Ans. C ′ = 6

5

C

Fig. 6.47. Capacitors in cubic system.

 6.28. Four capacitors are arranged, as shown in fig. 6.48. A 12V battery 
is connected between a and b. If C1 = 2µF, C2 = 4µF, C3 = 2µF and  
C4 = 4µF, calculate the total charge drawn from the battery and charge 
on each capacitor when

 (a) the switch s is closed    (b) the switch s is open.
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12V

C2

a b

C2C1

C4
S

Fig. 6.48. Capacitor system.

 6.29. A parallel plate capacitor of plate area A and plate separation d has 
capacitance C. Find the capacitance when an aluminium plate of 
thickness b is placed between the plates of capacitor.

Ans. C ′ = cd
d b−







 6.30. Find the bound charge density in a sphere of radius R carrying polarization 

P a r
→ →

= , where a is constant.
  Hint:  rd = –∇·p

    = –3a

 6.31. A thin rod is placed along z axis from z = 0 to z = L. The rod is polarized 
along length and polarization P = az2 + b. Find the bound charge 
densities.

  Hint. sd = p n Z L
�

=

  or sd = az b Z L
2 + =

    = aL2 + b

  and sd = –∇·p

    = − =2aZ Z L

  or sd = –2aL
 6.32. A point charge q is placed at the centre of the dielectric spherical shell 

of inner radius a and outer radius b, as shown in fig. 6.49. Find E, D and 
polarization P.

  Ans. E = q
r

r a
4

0

2π ∈
<,
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    = q
k r

a r b
4

0

2π ∈
< <,

    = q
r
r b

4
0

2π ∈
<

   D = q
r
a r b

4
2π

< <

   P = ( )k q
k r

a r b− < <1

4
2π

 6.33. Two capacitors, C1 = 3 µF and C2 = 6µF, are 
charged separately to same potential difference 12V. Now, positive plate 
of one is connected to negative plate of other and outermost connections 
are shorted together. Find the 

 (a) charge on each capacitor
 (b) loss in electrostatic energy.

  Hint: q1 = C C C V
C C

1 1 2

1 2

( )−
+

 = 12 µC

   q2 = 
C C C V
C C

2 1 2

1 2

( )−
+

 = 24 µC

   dU = Ui – Uf = 5.76 × 10–4 J



b
q

a

Fig. 6.49. Dielectric 
spherical shell.



In the previous chapters, we have discussed the electric phenomena associated 
with the charge at rest. In the present chapter, we shall describe the situations 
having charge in motion. The electric current may exist where the charge is 
free to move. In different media, the current is caused by the different charge. 
In conductors the current is due to the motion of the free electrons. However, 
in semiconductors, the current is caused by the motion of the electrons and 
holes. The motion of positive and negative ions constitute a current in the 
electrolytes. Moreover, the displacement current is the result of the bound 
charge in the dielectrics. It is the important fact that when current flows 
through the resistance, there will be dissipation of the energy. In this chapter, 
we also analyze the electric circuits with the fundamental electrical theory and 
we shall discuss the relations among the electrical parameters viz, current, 
voltage, resistance and electric field etc.

7.1. ELECTRIC CURRENT
If there is a flow of charge continuously, it constitutes an electric current. The 
direct current is the average motion of the electrons in the same direction. 
We know that the charge moves from higher potential to the lower potential, 
that is, the current flows from higher potential to the lower potential that is, 
current flows from higher potential to the lower potential. Consider a portion of 
conductor connected to a voltage source as shown in fig. 7.1. In the conductor, 
the charge carriers are the free electrons and these charges move perpendicular 
to the area of cross-section A of the conductor.

+ –

+ –
+

+ +

+ + –

I

Fig. 7.1. Current in the conductor

The positive charges move from left to right whenever the electrons move 
from right to left. That is, the direction of the conventional current is from left 

CHAPTER

7 Current, Resistance and 
Circuits
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to right as shown in fig. 7.1. Thus, the electric current is defined as the rate 
at which the net charge flows across the area per unit time. If a net charge dq 
flows through a area in a time interval dt, the current is given by

 I = dq
dt

 coulomb/sec. ...(7.1)

current is a scalar quantity, however, the current has direction but it is not 
specified and does not obey law of vector addition. In S.I units, the unit of 
current is ampere (A) and

 1 Ampere = 1

1

coulomb

second

the smaller units of ampere are given by
 1 mA = 10–3 A
 1 µA = 10–6 A

7.2. CURRENT DENSITY
The current density is defined as the flow of charge passing through a given area 
per unit time. Consider a conductor of cross-sectional area A and of length l, as 
shown in fig. 7.1, the current density is related to the current by the equation,

 I = J dS
S

→ →
⋅∫  ...(7.2)

where dS
→

 is the area element. Suppose that n is the number of electrons per 
unit volume and the current is due to the drift of the charge carriers. Let vd the 
mean drift velocity of the charge carriers. The total charge in the given section 
of length l of the conductor is given by 
 q = n e A l ...(7.3)

Now, the distance covered by each charge carriers in time t will be 
 l = vd t ...(7.4)

substituting the value of l from Eq. (7.4) in the Eq. (7.3), we get
 q = ne A vd t

the rate at which the charges are flowing through the cross-section of a 
conductor is 

 I = q
t

or I = n e A vd ...(7.5)
The current I depends on A. The current density which is independent of 

A is then,
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 J = I
A

nevd=  ...(7.6)

or in vector form,

 J
→

 = ne v d
→

 ...(7.7)
The S.I. unit of the current density is Amp/m2. The direction of the current 

density is opposite to the direction of flow of electrons, that is opposite to v d
→

. 
Thus, the Eq. (7.7) can be written as

 J
→

 = – ne v d
→

 ...(7.8)
Moreover, the charge per unit volume is given by 
 r = ne
Thus, from the Eq. (7.8), we write,

 J
→

 = r v d
→

 ...(7.9)
Now, we want to obtain a relation between the current density and the 

electric field. We know that the force experienced by the electrons in the 
conductor is,

 F
→

 = –e E
→

 ...(7.10)
and the acceleration of the electron is given by 

 a
→

 = 
F
m

→

  = −
→
eF
m

 ...(7.11)

where m is the mass of the electron. During the motion, electrons collide each 
other. Suppose that v0 is the velocity of the electron just after a collision and 
the velocity of the electron just before the next collision is given by, Fig. 7.2,
 v = v0 + at

  = v0 – eEt
m

 ...(7.12)

–

–

–

v0

–
v

Fig. 7.2. Collisions of electrons
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where t is the time interval between two collisions. In the absence of the electric 
field, the electrons in the conductor move in any direction, it is due to thermal 
agitation as shown in fig. 7.3. As a result, electrons constantly collide with 
the other atoms of the conductor. On the application of the electric field, they 

move with the drift velocity in the direction opposite to the electric field E
→

.

Fig. 7.3. Zig Zag path of the lectron without field.

Taking the average over v for all time intervals, we get

 <v> = <v0> – eE
m

<t> ...(7.13)

when E
→

 = 0, <v0> = 0, and In the presence of the electric field, <v> represents 
the drift velocity of the electron. Moreover, <t> is known as mean free time 
and it is the time between two successive collisions and it is represented by 
t(tau). Thus, we write,

 v d
→

 = −
→
eF
m

t ...(7.14)

Substituting the value of vd from  the Eq. (7.14) in the Eq. (7.8), we get

 J
→

 = − −










→
ne e E

m
τ

or J
→

 = 
ne
m

E
2τ





→
 ...(7.15)

It is clear that the direction of the current density is same as that of the 

electric field E
→

. Hence the current density vector J
→

 is always parallel to the 

applied electric field E
→

. Further-more, the current is given by 
 I = JA

or I = 
ne A
m

E
2 τ



  ...(7.16)
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The Eq. (7.16) predicts that the direction of the conventional current is in 
the direction of the electric field E.

7.3. RESISTANCE AND OHM’S LAW
We know that the metallic conductors have a large number of free electrons. 
For example, the copper has 1029 electrons/m3, but Ge, a semiconductor, has 
1019 electrons/m3. Since, the current in the conductor is given by 
 I = ne A vd ...(7.17)
that is, the current is proportional to the average drift velocity which provides 
a linear relation between the current and the potential difference across the 
conductor. This linear relation between the current and voltage was first given 
by a German physicist, Georg Simon Ohm. Ohm was inspired by the work of 
Fourier which was on the rate of flow of heat through the conductor.

On the basis of the experimental observations, Ohm suggested a relation 
between the rate of flow of charge and the voltage across the conductor. Ohm’s 
law states that, for a conductor at constant temperature, the current flowing 
through the conductor is proportional to the potential difference between the 
ends of the conductor. Thus, if V represents the potential difference across the 
conductor, the current through the conductor is given by

 I = V
R

 ...(7.18)

or V
I

 = R (constant) ...(7.19)

where R is a proportionality constant and is known as the electrical resistance 
The S.I unit of R is ohm (W). Now,

 1W = 1 Volt

1 Ampere

The conductors which obey Ohm’s law are called ohmic conductors. This 
law is valid for all metals and some semiconductors under certain limitations. 
The limitations are
 (1) The drift velocity vd is always less than c, the speed of light.
 (2) The material should have low resistivity.
 (3) Temperature of the conductor.

On the otherhand, there are some materials which do not follow Ohm’s law 
and these are called non-ohmic. If we plot current I versus potential difference V, 
we get a straight line as shown in fig. 7.4.
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I

I

V

1

R
=

VO

Fig. 7.4. Ohmic behavior of a conductor

Moreover, these are many elements which show non-ohmic behavior. The 
examples are semiconductor devices. If a graph between current and voltage 
is plotted for such devices, we do not have a straight line, but it is a non linear 
curve as shown in fig. 7.5. Thus, semiconductor devices are called non-linear 
devices.

V

I

O

Fig. 7.5. Non-linear behavior of a semiconductor devices

Now, we develop a relation between the resistivity and resistance of a 
conductor. Consider a conductor of length l and cross-sectional area a as shown 
in fig. 7.6. If we apply an electric field E across the conductor, the charges drift 
along the electric field. The drift velocity of the charge is always less than the 

random velocity. The current density J
→

 depends linearly on the electric field 
across the conductor, thus,

 J
→

 = s E
→

 ...(7.20)
where s is called the conductivity of the conductor. The Eq. (7.20) is also 
known as Ohm’s law.



Current, Resistance and Circuits 197

On comparing the Eq. (7.15) and (7.20) we get

 s = ne
m

2τ  ...(7.21)

–

–

J

–

– –

E V2V1

l

Fig. 7.6. A conductor of length l and cross-sectional area A.

Now, we are going to relate the resistance of a conductor to its size. The 
electric field across the conductor is

 E = V
�

 ...(7.22)

where V = V2 – V1 is the potential difference, substituting the value of E from 
the Eq. (7.22) in the Eq. (7.20), we get

 J = σV
�

 ...(7.23)

The current flowing through the conductor is 
 I = JA

  = σAV
�

 ...(7.24)

If 2t is the mean free time (a time between two successive collisions), the 
drift velocity is given by 

 vd = 1

2

2eE
m
τ





  = eE
m

eV
ml

τ τ=  ...(7.25)

Thus, current is
 I = ne A vd ...(7.26)

  = ne A V
ml

2 τ
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The resistance of the conductor is,

 R = 
V
I

m
ne

l
A

=




2τ

or R = 
1
σ
l
A

 ...(7.27)

we know that the reciprocal of the conductivity is called the resistivity and is 
given by

 r = 1
σ

 ...(7.28)

or r = m
ne2τ

 ...(7.29)

Thus, the Eq. (7.27) can be written as 

 R = ρ l
A

 ...(7.30)

The Eq. (7.30) shows that the resistance of the conductor is proportional to 
its length and inversely proportional to its area of cross-section. On measuring 
the quantities V, I and  l, R and r can be evaluated easily. The unit of resistivity 
is ohm-meter, or ohm-m. Let us see, how does the resistivity depend on the 
temperature. When the temperature of a conductor increases, the random 
velocity of the electrons in the conductor increases and as a result, more 
and more collisions of the electrons in the conductor occur. Thus, there is a 
increase in the resistivity of the conductor. The resistivity varies linearly with 
the temperature and is given by

 r(T) = r0[1 + a (T – To)] ...(7.31)
where a is a temperature coefficient of resistivity, r is the resistivity at the 
temperature T and r0, the resistivity at some reference temperature T0. For 
25°C, we write

 r(T) = r0(25°C) [1 + a (T – 25°C)] ...(7.32)
At high temperatures,
 r ∝ T ...(7.33)

and at low temperatures, r varies as T5.
At room temperature, r, s and a for some substances are listed in the table 

7.1. The variation of r(resistivity) with T for a conductor and a semiconductor 
are shown in fig. 7.7.
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O TT1 T2

�2

�1

�

O T

�

(a) (b)

Fig. 7.7. Plot of r Vs T (a) conductor (b) semiconductor

From the fig. 7.7.(b), it is clear that the semiconductors consist of negative 
temperature coefficient of resistivity.

Table 7.1. Resistivity and conductivity of the different materials.

Substance Resistivity (r) 
(W-m)

Conductivity (s) 
(mho-m–1) a (per °C)

Aluminum 2.8 × 10–8 3.5 × 107 3.9 × 10–3

Silver 1.6 × 10–8 6.3 × 107 3.8 × 10–3

Copper 1.7 × 10–8 5.8 × 107 3.9 × 10–3

Tungusten 5.5 × 10–8 1.8 × 107 4.5 × 10–3

Platinum 1.06 × 10–7 1.0 × 107 3.9 × 10–3

Iron 1.0 × 10–7 1.0 × 107 5.0 × 10–3

Manganin 4.4 × 10–7 2.3 × 106 1.0 × 10–5

Brass 7.0 × 10–8 1.4 × 107 2.0 × 10–3

Nichrome 1.0 × 10–6 1.0 × 106 4.0 × 10–4

Silicon 640 1.6 × 10–3 –7.5 × 10–2

Germanium 0.46 2.2 –4.8 × 10–2

Teflon 1014 10–14 –
Glass 1010 – 1014 10–14 – 10–14 –
Blood 1.5 0.66 –
Polyethylene 108 – 109 10–9 – 10–8 –

From the Eq. (7.31) a may be expressed as

 a = 1

0

0

0
ρ

ρ ρ( )

( )

−
−T T

 ...(7.34)

or a = 
1

0
ρ

ρ∆
∆T





  ...(7.35)
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For metals, a is very low and positive and for super-conductor, r = 0, thus 
a = 0.
Example 7.1. For 1W coil, compute the length of nichrome wire of cross-
sectional are of 1 × 10–6 m2 for a heater covl. (r = 1 × 10–6 W-m).

Solution: R = ρ l
A

or l = 
R A
ρ

  =  
1 1 10

1 10

6

6

× ×
×

−

−  = 1 m.

7.4. SUPERCONDUCTORS
The resistance always exists in the conductors that controls the current to 
flow. Now, we may have a class of materials that has no resistance. In 1911, 
Kamerlingh Onnes succeeded to measure the resistivity of the mercury at a very 
low temperature. The resistivity of the mercury drops suddenly to zero at the 
temperature T = 4.18 K. This phenomenon is known as the super-conductivity 
and the specimen used is called the superconductor. In the super conducting 
state, the total d.c. resistance of the material is equal to zero. The temperature 
at which this phenomenon exists is known as critical temperature (TC). In case 
of mercury, TC = 4.18 K as shown in fig 7.8.

O TTC = 4.18

�

Fig. 7.8. Super-conducting state of mercury.

Below this temperature, the mercury in normal state undergoes a state of 
superconductivity after it. Thus, we have a phase transition from one state to 
another at this temperature. It is also known as transition temperature. The 
superconducting state is also known as ordered state.
Example 7.2. Show that the total charge density at the junction of two 
conductors is given by
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 s = J∈o ( r2 – r1)
where r1 and r2 are the resistivity of two conductors, and J is current density.
Solution: Consider the two conductors having resistivities r1 and r2 as shown 
in fig. 7.9.

E1

�1

E2

�2

J
junction

Fig. 7.9. Two conductors of different resistivity.

At the interface, by Maxwell’s equation

 rC = ∇⋅
→
D  = ∇⋅ ∈

→
( )

0
E  = ∈ ∇⋅

→
0

( )ρ J
  = ∈ ∇

0
J ·( )ρ  (∇·J = 0 for steady state)

or rC = ∈0 J
d
dn

ρ

since ∇(r) is normal to the interface, we have 
now, the charge density at the junction is

 s = ρC dn∫  = ∈ ∫0
1

2J d ( )ρ
ρ

ρ

or s = ∈0J ( r2 – r1)

7.5.  CIRCUITS CONTAINING RESISTORS IN SERIES AND 
PARALLEL

We wish to find the equivalent resistance of the circuit containing the resistors 
in series and in parallel.
(a) Resistors in series: Consider three resistors of the resistances R1, R2 and 
R3 connected in series as shown in fig. 7.10.

+ –

i

i

i

BA

V
1

V
2

V
3

R1 R2 R3

V

Fig. 7.10. Resistors in series with a source.
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The potential difference between the points A and B is equal to the voltage 
of the battery, and it is equal to V. The potential difference across each resistor 
is given by 

 V1 = i R1
 V2 = i R2 ...(7.36)
 V3 = i R3
The potential difference across points A and B can be obtained by adding 

three voltage drops. Thus,
 V = V1 + V2 + V3 ...(7.37)
  = iR1 + iR2 + iR3

or V
i

 = (R1 + R2 + R3) ...(7.38)

Therefore, the equivalent resistance is given by 

 R = V
i

or R = R1 + R2 + R3 ...(7.39)

If n resistors are connected in series, the equivalent resistance is 
 R = R1 + R2 + ... + Rn

or R = Ri
i

n

=
∑

1
 ...(7.40)

(b) Resistors in Parallel. Fig. 7.11 shows three resistors of resistances R1, R2 
and R3 are connected in parallel with a d.c. source of voltage V.

V +
–

i

R1

i

i1

R2

i2

R3

i3

Fig. 7.11. Resistors in parallel with a d.c. source.

The current i, from the source, is divided into i1, i2 and i3. The potential 
difference V will remain same across each resistor, thus we have

 i1 = V
R1
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 i2 = V
R2

 ...(7.41)

and i2 = V
R3

Now, the total current is the sum of individual currents passing through 
each resistor, then,

 i = i1 + i2 + i3 ...(7.42)

  = V
R

V
R

V
R

1 2 3

+ +

and i
V

 = 1 1 1

1 2 3
R R R

+ +  ...(7.43)

The equivalent resistance is 

 1
R

 = 1 1 1

1 2 3
R R R

+ +  ...(7.44)

If n resistors are connected in parallel, then 

 1
R

 = 1 1 1

1 2 3
R R R

+ + +...

or 1
R

 = 1

1Rii

n

=
∑  ...(7.45)

7.6. ELECTROMOTIVE FORCE AND SINGLE LOOP CIRCUIT
A circuit is a combination of passive elements (e.g. resistor, capacitor and 
inductor) and a source of energy which is used to maintain a constant current 
in the circuit. This energy source is called the electromotive force (emf). The 
source of emf are classified as the constant voltage source and the constant 
current source. The example of emf sources are cells, battery and solar cell etc. 
The emf is represented by e. The purpose of a battery in a circuit is to maintain 
a constant voltage or current in the circuit, then
 e = V0 ...(7.46)
where V0 is a constant potential difference between the two terminals of a 
battery. In a battery, the positive terminal is at higher potential while negative 
terminal is at lower potential. Thus, the emf is equal to work done in carrying 
a unit charge from lower potential to higher potential. That is, the electrons 
move from negative terminal to positive terminal of a energy source. The unit 
of emf is volt. Since we know, for a close circuit,
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 DV = E dl
→ →

∫ =·� 0   ...(7.47)

This implies that it maintains a circuit at a constant potential or voltage. 
From the Eq. (7.47) it is clear that the electric field can not be used as the 
energy source and it can not provide the energy to the moving charge in a 
circuit.

The basic difference between emf and potential is that when the potential 
difference does the work in moving a charge from one point to another, the emf 
provides the energy in this process.

Single loop circuit: Now, consider a single loop circuit containing a 
resistor R and an emf as shown in fig. 7.12.

R

�i

+ –

Fig. 7.12. Circuit containing an emf source and a resistor

The emf of the source is equal to the potential difference between the 
positive and negative terminals of the source. Here, we have assumed that the 
internal resistance of the source is zero, and there is only an energy dissipative 
element R, the resistance. Then,

 e = iR ...(7.48)

or i = ε
R

 ...(7.49)

which is known as single loop equation.
In case where the source of emf is localized, that is, in a real system, the 

losses in the circuit is divided into two parts, viz,

(a) losses within the emf source.

(b) losses in the external circuit.

Now, consider a circuit containing a resistor R and a source of emf with 
internal resistance r as shown in fig. 7.13. Then,

 e = iR + ir ...(7.50)
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R

i i

r

�

+ –

Fig. 7.13. Circuit with internal resistance of the source.

or i = ε
R r+

 ...(7.51)

Moreover the energy conservation law is 
 ei = i2R + i2r
In this way, the current flowing in the circuit depends on both resistance 

R and r.

7.7. ENERGY AND ENERGY DISSIPATION IN A RESISTOR
In an electrical circuit, the energy is transferred from a source of emf to the 
load by means of the current. Consider a circuit containing a source of emf and 
a resistor of resistance R as shown in fig. 7.14.

i

R (load)
+
–

Fig. 7.14. A circuit containing load resistance.

When a current flows through a resistor, it is heated. It means that the 
electrical energy is transformed into heat energy. When a small charge dq is 
moving from higher potential to lower potential, the work done is 

 dW = V dq ...(7.52)
where V is a constant potential difference across the resistor R. Now, the power 
is defined as the rate of change of work done and is given by 

 P = dW
dt

or P = V dq
dt

 ...(7.53)
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But i = dq
dt

,

 P = Vi ...(7.54)
since, V = iR, Thus,
 P = i2 R

or P = V
R

2
 ...(7.55)

The unit of electrical power is Amp-volt.
Therefore,
 1 Amp-volt = 1 J/sec
  = 1 watt (W)
The electrons are accelerated by the applied emf and they loss their energy 

in the collision with the atoms. For a given resistor, large the surface area, 
larger the energy dissipation.
Example 7.3. Compute the resistance between A and B of an infinitely long 
ladder of resistors as shown in fig. 7.15.

R

R R

A

B

R

R R R

RRR

R

Fig. 7.15. Resistance system.

Solution: Suppose that the series is terminated by equivalent resistance R′ as 
shown in fig. 7.16.

R

R�

R

R

Fig. 7.16. Combination of resistances.
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The resistance between A and B can be found as 

 R′ = R + R + RR
R R

′
+ ′

or R′2 – 2RR′  – 2R2 = 0
On solving this equation we get

 R′ = R(1 + 3 ).

7.8. COLOR CODE FOR CARBON RESISTOR
Every carbon resistor has color bands on it. These color bands may be read to 
compute the value of the given resistor as shown in fig. 7.17.

Fig. 7.17. Color bands on a resistor.

The codes for these color bands are listed in the table 7.2. We have 
following points for coding the colors bands on the resistor.

(a) the first strip indicates the first digit.
(b) the second strip indicates the second digit.
(c) the third band/strip indicates the number of zeros.
(d) Fourth band denotes the tolerance.

Table 7.2. Color code for resistors.

Color Code
Black 0
Brown 1

Red 2
Orange 3
Yellow 4
Green 5
Blue 6

Violet 7
Gray 8
White 9
Gold ±5%
Silver ±10%

No color ±20%
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Example 7.4. If a resistor has four color strips of colors Red, Red and orange 
and fourth strip is of Gold, compute the resistance of the resistor.
Solution: We have following bands on a resistor as shown in fig. 7.18.

Red Red Orange Gold

Fig. 7.18. Computation of color bands on a resistor.

 (a)  First band denotes a digit ‘2’.
 (b)  Second band indicates a digit ‘2’.
 (c)  Third digit shows number of zeros, i.e. 103.
 (d)  Tolerance is +5% as strip is of Gold.

Thus,
 R = 22 × 103 ± 5%

or R = 22K ± 5%

7.9. KIRCHHOFF’S LAWS FOR ELECTRIC NETWORKS
For a given network with sources of emf and the circuit elements, we can 
compute the currents and the voltage drops across the various branches of the 
network. If the currents in various branches are known, the voltage drops can 
be computed by Ohm’s law. To analyze any network, we have two rules called 
Kirchhoff’s Laws.
(a) Junction Theorem: This states that the algebraic sum of the currents 
flowing into and out of any junction of a network is zero. That is

 i∑  = 0 ...(7.56)

Now, consider five currents at a node as shown in fig. 7.19.

i5

i4

i3

i2

i1

Fig. 7.19. Kirchhoff’s node rule
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Now, according to junction theorem, we may write,
 –i1 + i2 – i3 + i4 – i5 = 0 ...(7.57)

or i2 + i4 = i1 + i3 + i5 ...(7.58)
Here, we have assumed those currents as positive which directed away 

from the junction and those currents as negative which are directed into the 
junction.

Thus, the Eq. (7.58) takes the form
 i∑( )

in
 = i∑( )

out
 ...(7.59)

(b) Loop or Mesh Theorem: It states that the sum of the voltage drops is 
equal to the sum of the emf sources. That is, In a single mesh, we have

 i R∑  = ε∑  ...(7.60)

The voltage drop across a resistor depends on the choice of the direction 
of the travel of current. We may obtain the same equation for the voltage drops 
in a mesh whether the mesh is traversed clockwise or counter-clockwise. For 
example, consider a network as shown in fig. 7.20.

R1i1 R2
i2

V +

–

+

–
R3�1 �2

i3

1 2

Fig. 7.20. An electrical network.

Here, we have three possible currents in different branches of the network. 
Now, we shall apply Kirchhoff’s voltage law or loop theorem to this network.
For mesh–1:
 i1R1 + i2R2 – e1 = 0 ...(7.61)

For mesh–2:
 –i2R2 + i3R3 – e2 = 0 ...(7.62)

For mesh–3:
 i1R1 + i2R2  = e2 – e1 ...(7.63)

we get three equations for the three currents i1, i2 and i3 and on solving these 
equations, we can determine the values of i1, i2 and i3.
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7.10.  MATRIX AND DETERMINANT METHOD FOR SOLVING 
MESH EQUATIONS

The mesh equations may be written as 
 [R] [I] = [e] ...(7.64)
where [R] = Resistance matrix
 [I] = Current matrix
and [e] = Emf sources matrix
Here, [R] may be a rectangular or a square matrix of m rows and n columns and 
[I] and [e] are the column matrices. Now consider a network containing three 
loops, then matrices [R], [I] and [E] can be written in form of the matrices as

 [R] = 
R R R
R R R
R R R

11 12 13

21 22 23

31 32 33















 ...(7.65)

 [I] = 
i
i
i

1

2

3















 ...(7.66)

and [e] = 
ε
ε
ε

1

2

3













  ...(7.67)

The resistance R11 is the resistance of the first mesh, R22 of second mesh 
and R33 is of third mesh. The resistance R12 and R21 are common resistances 
for meshes 1 and 2. Similarly R23 and R32 are common for meshes 2 and 3 
etc. These common resistance terms are positive, if there is a current passing 
through them in same direction and the resistance terms will be negative 
if current flows in opposite direction. Moreover, if there are n meshes, the 
dimensions of the resistance matrix is n × n. To understand the concept, consider 
a network containing resistances R1, R2 and R3 with the energy sources e1 and 
e2 as shown in fig. 7.21.

i1

R3
i2

+ –

R2

i3

+
–

R1

i1 i2

Fig. 7.21. Two loop network
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According to Kirchhoff’s loop rule,
 i1(R1 + R2) – i2R2 = e1 – e2 ...(7.68)

and –i1 R2 + (R2 + R3) i2 = e2 ...(7.69)
In matrix form,

 
R R R
R R R

i
i

1 2 2

2 2 3

1

2

+ −
− +



















  = 

ε ε
ε

1 2

2

−







  ...(7.70)

If D = 
R R R

R R R
R1 2 2

2 2 3

+ −
− +

= det | |  ...(7.71)

and D1 = 
ε ε

ε
1 2 2

2 2 3

− −
− +

R
R R

 ...(7.72)

 D2 = 
R R

R
1 2 1 2

2 2

+ −
−

ε ε
ε

 ...(7.73)

Then, the values of the currents i1 and i2 can be obtained as 

 i1 = ∆
∆

1  ...(7.74)

and i2 = ∆
∆

2  ...(7.75)

Example 7.5. Compute the current in each mesh of network shown in fig. 7.22.
1K1K1K

i1 i2 i3 2K
+
– 2K2K12V�

Fig. 7.22. Electrical network.

Solution: We have matrix equation
 [R][I] = [e]

or 
R R R
R R R
R R R

11 12 13

21 22 23

31 32 33















i
i
i

1

2

3















 = 
ε
ε
ε

1

2

3















or 
3 2 0

2 5 2

0 2 5

−
− −

−















i
i
i

1

2

3















 = 
12

0

0














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Here
 R11 = 1 + 2 = 3K
 R22 = 2 + 1 + 2 = 5K
 R33 = 2 + 1 + 2 = 5K
The common resistance between meshes 1 and 2 is 2K and similarly 2K is 

common to meshes 2 and 3. We take common resistances as negative.
Now

 D = 
3 2 0

2 5 2

0 2 5

−
− −

−

 D1 = 
12 2 0

0 5 2

0 2 5

−
−

−

 D2 = 
3 12 0

2 0 2

0 0 5

− −

and D3 = 
3 2 12

2 5 0

0 2 0

−
−

−

Now,

 i1 = ∆
∆

1 252

43
5 89= = . A

 i2 = ∆
∆

2 120

43
2 8= = . A

 i3 = 
∆
∆

3 48

43
1 1= = . A

THE RC SERIES CIRCUIT
In RC circuit, the current and voltage are time dependent. Using RC circuit, we 
can produce a time varying signal.
(a) Charging of a Capacitor: Consider a circuit containing a resistor and a 
capacitor in series with a source of emf V as shown in fig. 7.23.

7.11.  



Current, Resistance and Circuits 213

i

C R

V
K

+ –

Fig. 7.23. Charging of a Capacitor.

To start charging, the key K is closed at t = 0, then, a transient current starts 
to flow. At t = 0, the current is given by 

 i0 = 
V
R

 ...(7.76)

As a result, the capacitor starts charging and it attains +q and –q charges 
on its plates. Thus, the potential difference across the capacitor is given by 

 VC = 
q
C

 ...(7.77)

Now, applying Kirchhoff’s loop theorem, we have

 V = iR + 
q
C

 ...(7.78)

since i = dq
dt

,

we have

 dq
dt

R = V – 
q
C

or dq
dt

 = V
R

q
RC

−  ...(7.79)

or 
−
−
dq

q CV( )
 = 

dt
RC

 ...(7.80)

Since current and voltage are time dependent, at t = 0 the charge on the 
capacitor is zero, thus current in the circuit is maximum. As the charge on 
the plates of the capacitor increases, the current in the circuit decreases and 
it becomes zero when capacitor is charged maximum. After that there is 
no charging of the capacitor. When i = 0, q = q0 (maximum charge). Now 
integrating the Eq. (7.80), we have
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 dq
q CV

q

( )−∫
0

 = − ∫1

0RC
dt
t

 ...(7.81)

or ln(q – CV) – ln(–CV) = 
−t
RC

or ln q CV
CV

−
−





  = 

−t
RC

or q CV
CV

−
−





  = e–t/RC 

or q – CV = –CV e–t/RC

or q = CV(1 – e–t/RC) ...(7.82)
Assuming CV = q0 (maximum charge stored in the capacitor), then

 q = q0(1 – e–t/RC)

or q = q0(1 – e–t/t) ...(7.83)

where t = RC is known as the time constant of a circuit. The variation of the 
current can be obtained by differentiating the Eq. (7.82) with respect to t. Thus, 
we have

 i = dq
dt

V
R
e t RC= − /

or i = i0 e–t/t ...(7.84)

where i0 = 
V
R

. The Eq. (7.84) shows that the current decreases with time and 
i = 0, when the potential different across the plates of the capacitor is equal to 
V. The Eq (7.83) shows that the capacitor is charged exponentially as shown 
in fig. 7.24.

q

O
t

�2 = R C (large time constant)2 2

�1 = R C (small time constant)1 1

Fig. 7.24. The variation of q with respect to time t.



Current, Resistance and Circuits 215

The equation (7.84) predicts that the current decreases exponentially with 
time as shown in fig. 7.25.

i

O
t

For small = RC�

For large �

i = i0

Fig. 7.25. Variation of current with time during charging of a capacitor

Now we have following cases,
(1) When t = 0, e0 = 1 and i = i0, Thus q = 0
(2) When t = ∞, e–∞ = 0 and i = 0, thus the charge on the capacitor is
 q = q0 ...(7.85)
(3) When t = RC, then 

 q = q e q
e0

1

0
1 1

1
( )− = −





−

  or q = q q
0 01

1

2 712
1 0 368−



 = −

.
( . )

   or q = 0.64q0

   and i = 
i
e
0  ...(7.86)

Thus t is the time in which i decreases to 
1
e

 times of its maximum value.

(b) Discharging of a Capacitor: Now, we shall obtain an expression for 
discharging of a capacitor. Since the capacitor is fully charged to q0 and we 
open the key K, then the positive charge begins to flow through the negative 
plate of the capacitor as shown in fig. 7.26.

+ –

C

R

V
K

–

–+

+

q0 q0

Fig. 7.26. Discharging of a capacitor.
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At t = 0, q = q0 and the potential difference across the capacitor is 

 VC = q
C

0  ...(7.87)

In this case, the direction of current is opposite and applying loop theorem, 
we have

 
− +q
C

Ri  = 0 ...(7.88)

Since charge capacitor acts as a source, the potential difference across the 
capacitor decreases. Thus, the current is given by 

 i = – dq
dt

The Eq. (7.88) takes the form,

 − −q
C

R dq
dt

 = 0

or 
dq
q

 = − 1
RC

dt  ...(7.89)

we integrate the Eq. (7.89), we get

 dq
qq

q

0
∫  = − ∫1

0RC
dt
t

 ln q – ln q0 = –t/RC

or ln q
q0

 = – t
RC

or q = q0 e–t/RC ...(7.90)

Further more, i = i0 e–t/RC = i0 e–t/t ...(7.91)
In the time constant t = RC, the capacitor discharged 64% of the total 

charge. The charge and current decreases exponentially with time as shown in 
fig. 7.27.

q

O
t

q = q0

i

O
t

i = i0

Fig. 7.27. The variation of charge (a) and current (b) with the time
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Example 7.6. In a circuit Fig. 7.28, containing R1 = 3W, R2 = 6W and C = 6µf. 
Compute
 (1) time constant when key K is open.
 (2) time constant when key K is closed.

+
K12V C = 6µf

R2 = 6�

R1 = 3�

Fig. 7.28. Electrical network.

Solution: (1) When K is open,
 t = (R1 + R2) C
  = 9W × 6µf
  = 5.4 × 10–5 sec.
(2) When K is closed
 t = R1C
  = 6 × 6 × 10–6

  = 3·6 × 10–5 sec.
Example 7.7. A cube is formed with twelve identical resistors, each of 
resistance R as shown in fig. 7.29.

H G

F

BA

D

E

C

Fig. 7.29. Network of resistors.

Compute the equivalent resistance
(a) between points A and G.
(b) between points A and F
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Solution: (a) Let i be the current entering from the point A as shown in fig. 
7.30.

H G

F

BA

D

E

C

i/3

i/6

i/3

i

i

Fig. 7.30. Network of resistors.

We assume that VAG is the potential difference between the point A and G, 
and choosing the path ABCG for computing the equivalent resistance between 
A and G.
 VAG = VAB + VBC + VCG

  = i R i R i R
3 6 3

+ +

  = 
5

6
iR

or RAG = 
V
i

RAG = 5

6
.

(b)        H G

F

BA

D

E

C

i/2i/3

i

i
i/3

i/3

5i/2

i/12

i/12

i/6

i/6

5i/2

Fig. 7.31. Network of resistors.

In Fig. 7.31, considering the path A → B → F,
 VAF = VAB + VBF

  = 
iR iR
3

5

12
+
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  = 
3

4
iR

 Req = V
i

RAF = 3

4
.

7.12. POTENTIO-METER
Potentiometer is an instrument commonly used for measuring the potential 
difference of the energy source. A voltmeter can be used to measure the 
potential difference, but it consists of a finite resistance which causes it to draw 
a current from the energy source. The beauty of the potentiometer is that it 
measures the potential difference without drawing any current from the source 
of emf. In this way, it is called the infinite resistance voltmeter. A simple 
arrangement of the potentiometer is shown in fig. 7.32. The potentiometer 
works on the principle of the comparing of the unknown potential difference 
across the battery with a standard source of emf.

+

+ –

�

J

l

–

�si

(L – )lP

Rx

A

(i + ig)

G

B

ig

Fig. 7.32. Potentiometer

It consists of a standard (known) voltage source eS which is connected 
across A and B. Between the points A and B a resistance wire of resistance 
R is connected and this wire is of uniform thickness called the slide wire. 
Moreover, a unknown source of emf e is connected to a sliding jockey J 
through a galvenometer G. The Jockey J moves on the sliding wire back and 
forth, and a null or zero deflection position is obtained by sliding the jockey on 
the slide wire AB. At the null point P(suppose). There is a no current passing 
in the branch containing galvenometer G.

Now, according to loop theorem,
 eS = Rx(i + ig) + i(R – Rx) ...(7.92)

and e = (ig + i)Rx ...(7.93)
To obtain the value of unknown emf the jockey is set at the null position 

P at which ig = 0
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Thus, we have
 eS = iR 

and e = iRx 
...(7.94)

on dividing these equations we get

 ε
εS

 = 
R
R
x  ...(7.95)

we know that the resistance is proportional to the length thus, we may write 
the Eq. (7.95) as

 ε
εS

 = l
L

or e = l
L S





 ε  ...(7.96)

where L is the length of wire AB. The potentiometer is a variable resistor 
having a resistance wire, a known emf and a source of unknown emf. We can 
compare two unknown emfs also using potentiometer.

Difference between a Potentiometer and a Rheostat
The potentiometer and rheostat both are known as the variable resistors. 
Since we know that a variable resistor is used as a voltage divider, we can 
differentiate between a potentiometer and a rheostat.

A

B

P J

B

Q

(a) (b)

Fig. 7.33. (a) Potentiometer (b) rheostat

Suppose that a variable resistor divides the voltage between the points A 
and B as shown in fig. 7.33. Fig 7.33(a) a wire bound potentiometer consisting 
of a coil of resistance wire with a central slider. It selects the desired length of 
wire to offer a considerable resistance and a fraction of the potential difference. 
In this way, the potentiometer is a three terminals device. Now, we may have 
another variable resistor called rheostat, fig. 7.33(b). In the rheostat, current 
flows through a variable part of the resistor and it is used to control the current.




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7.13. WHEATSTONE’S BRIDGE
Wheatstone’s bridge is an arrangement of the resistors in a circuit used for 
measuring the unknown resistance accurately. In 1843, an English scientist 
Charles Wheatstone gave an excellent method of measuring the unknown 
resistance very accurately. In wheatstone bridge, Fig. 7.34, a galvenometer is 
used in the arm BD with a key K. When the key K is closed, no current passes 
through the arm BD, and bridge is said to be in balanced condition. Thus the 
potentials at the point B and D are same, that is, VB = VD.

+
–

�

G

A C

B

D

R4
R3

R1 R2

i1

i1

i2

i2

i i

K

Fig. 7.34. Wheatstone bridge.

Now, when K is closed, applying Kirchhoff’s loop law in the loops ABDA 
and BCDB, we have

 i1R1 – i2R3 = 0
or i1R1 = i2R3  ...(7.97)
and i1R2 – i2R4 = 0
or i1R2 = i2R4 ...(7.98)
on dividing the Eq. (7.97) by the Eq. (7.98), we get

 R
R

1

2

 = 
R
R

3

4

 ...(7.99)

Suppose that R1 is unknown resistance and the R2, R3 and R4 all are known 
resistances, then R1 can be calculated as 

 R1 = R2
R
R

3

4







 ...(7.100)

Wheatstone’s bridge provides the high accuracy of the measurement and the 
accuracy depends on the sensitivity of the galvanometer G.
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Example 7.8. A ten wire potentiometer is connected to a battery of 3V. The 
potentiometer has resistance per unit length 1.5 W/m, and a laclanche cell of 
1.5V is also connected to the jockey through galvenometer as shown in fig. 
7.35. If null point occurs at a distance of 6 m, compute the internal resistance 
r of the battery.

+
–

A

l = 6 m

G

B

r

3V

1.5 V +
–

Fig. 7.35. A potentiometer.

Solution: Given resistance per unit length = 1.5 W/m
The resistance of 6 m length of wire = 6 × 1.5 =  9 W

and the resistance of 10 m wire = 1.5 × 10 = 15 W
Applying Kirchhoff’s law,

 V = i(r + R)
where  R  = resistance of 10 m wire.
and V′ = Rx i
where RX = resistance of 6 m wire.
Now

 i = 
′ =

×
=V

R
A

X

1 5

6 1 5
0 166

.

.
.

Thus,
 3 = i(r + 10 × 1.5)
 3 = 0.166 (r + 15)
or r = 3 W.
Example 7.9. Compute the current in each resistor shown in fig. 7.36.

5�

6A

A B

i1

i2 R 62 �=

R 31 �=

Fig. 7.36. An electrical network.
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Solution: The current passing through 5 W is 6A. Since the voltage drops 
across the resistors R1 and R2 must be same, Thus,
 i1R1 = i2R2
and i = i1 + i2
on solving these equations, we get

 i1 = 
R

R R
i2

1 2
+







and i2 = 
R

R R
i1

1 2
+







Thus,

 i1 = 
6

9
6





 ·  = 4A

and i2 = 
3

9
6×  = 2A

Example 7.10. In the circuit shown in fig. 7.37, the internal resistance of the 
battery is Ri, compute the maximum power delivered to the load R.

+ –

V Ri

R

Fig. 7.37. Electrical network.

Solution: Current from the source V is

 i = V
R Ri+

The power dissipation in the load R is 
 P = i2 R

 P = R
V

R Ri+






2

or P = V R
R Ri

2

2
( )+

To obtain the maximum power dissipation in the load R, differentiating P 
w.r.to R,
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 dP
dR

 = 
1 2

2 3

2

( ) ( )R R
R

R R
V

i i+
−

+










  = V
R R
R R
i

i

2

3

( )

( )

−
+

For maximum power,

 dP
dR

 = 0

Thus, we get R = Ri
Now, maximum power dissipated in R is

 Pm = V R
R

2

2
2( )

or Pm = 
1

4

2V
R

Example 7.11. In the circuit shown in fig. 7.38, compute the current flowing 
in each resistor.

i1 R 21 �=

i2 R 42 �=

i3 R 63 �=

A

i = 9A

B

Fig. 7.38. Combination of resistors.

Solution: Let i1, i2 and i3 be the currents passing through the resistors R1, R2 
and R3 respectively. Then
 i = i1 + i2 + i3

The equivalent resistance of the circuit is

 R = 
R R R

R R R R R R
1 2 3

1 2 2 3 1 3
+ +

since the voltage drops across the resistors R1, R2 and R3 must be same, then,
 i1R1 = i2R2 = i3R3

Therefore, i1 = 
R R i

R R R R R R
2 3

1 2 2 3 3 1
+ +
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 i2 = 
R R i

R R R R R R
1 3

1 2 2 3 3 1
+ +

and i3 = R R i
R R R R R R

1 2

1 2 2 3 3 1
+ +

so, i1 = 4.90 A
 i2 = 2.45 A
 i3 = 1.65 A
Example 7.12. A rod of length 2 long has diameter 0.5 m. The potential 
difference between its ends is 50 V and a current of 5 A flows into it. Then 
compute 

(1) current density J
(2) electric field across the rod
(3) resistivity of the material of the rod

Solution: Given
 i = 5 A
 l = 2 m
 V = 50 V
Cross-sectional are A = pr2

  = 1.96 × 10–5 m2

 (1) The current density 
   J = i/A

    = 
5

1 96 10
5

. × −

    = 2.55 × 105 A/m2

 (2) The electric field,

   E = V
�

= =50

2
25 V/m

 (3) r = E
J

=
×

25

2 55 10
5

.

 = 9.8 × 10–5 W-m.

Example 7.13. The current passing through a rod is given by 
 i(t)  = 3 + 5t2

where t is the time. Compute
 (a) the amount of the charge passing through the rod in the time interval 

from t = 0s to t = 2s.



226 Elements of Electricity and Magnetism Theory and Applications

 (b) current in the interval t = 0s to t = 2s.
Solution:

(a) i = dq
dt

\ q = i dt∫

 q = ( )3 5
2

2

+∫ t dt
o

  = 3
5

3

3

2

t t
o

+





  = 19.33 C

(b) i = q
t

= 19 33

2

.  = 9.66 A

Example 7.14. A 2000 watt radiant heater is to be used with 200 V. Then 
compute the 
 (1) current
 (2) resistance of the heating coil.
 (3) how much heat is produced in one hour by the heater.
Solution: (1) P = Vi

or i = P
V

A= =2000

200
10 .

(2) P = V
R

2

or R = V
P

2
2000 10

2000
10= × = Ω

(3) Heat = Pt
  = 2000 × 60 × 60
  = 7.2 × 106 J
Example 7.15. Three electric bulbs of 40 W, 60 W and 100 W are connected 
in series with 200 V mains. Compute the 
 (1) current in each bulb.
 (2) potential difference across each bulb.
 (3) energy produced by each bulb and which bulb does glow brightly.
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Solution: Suppose that R1, R2 and R3 are the resistances of the bulbs 40W, 
60W and 100W respectively.

 R1 = V
P

2

1

2
200

40
1= =( )

KΩ

 R2 = V
P

2

2

2
200

60
0 66= =( )
. KΩ

and R3 = V
P

2

3

2
200

100
0 40= =( )
. KΩ

since bulbs are connected in series,
 R = R1 + R2 + R3

  = 2.066 KW

\ current i = V
R

= =200

2 066
96 8

.
. mA

 (2) potential difference across the each bulb is 
   V1 = iR1
    = 96.8 V
   V2 = iR2 = 64V
   V3 = iR3 = 38.7V
 (3) The energy produced by each bulb is 
   P1 = i2R1 = 9.37 J
   P2 = i2R2 = 6.18 J
  and P3 = i2R3 = 3.75 J
  Since the bulbs are connected in series, the current in all bulbs will be 

same. Again, the brightness is proportional to the power dissipation, 
thus, 40W bulb glows more brightly.

Example 7.16. A metallic conductor of the length l has diameter 2a. If a 
potential difference of V volts is applied across the conductor, compute the 
 (1) electric field across the conductor.
 (2) resistance of the conductor.
 (3) current through the conductor.
 (4) current density.
Solution: (a) The electric field across the conductor is 

  E = V
l
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 (b) resistance of the conductor is

   R = ρ l
A

  Since A = pa2

  \ R = ρ
π
l
a2

  where r is the resistivity.
 (c) current passing through the conductor is 

   i = V
R

  or i = V a
l

π
ρ

2

 (d) The current density,

   J = i
A

V
RA

=

  or J = V
lρ

Example 7.17. Consider a circuit as shown in fig. 7.39.

+ –

CR

V
K

Fig. 7.39. Charging of a capacitor.

compute the 
 (a) energy supplied by the battery.
 (b) energy across the resistor
 (c) energy stored in the capacitor.
Solution: The power supplied by the battery is equal to the rate of change of 
the energy.

 P = dU
dt

 = Vi

  = V i0 e–t/RC
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since i0 = V
R

 P = V
R

2
 e–t/RC

the total energy supplied by the battery is 

   U = dU∫
    = Pdt V

R
e dtt RC

t
∫ ∫= −

=

∞ 2

0

/

or U = V2C
But the energy stored in the capacitor is 

 UC = 
1

2

2CV

Thus, the energy delivered to the resistor is 

 UC = CV2 – 
1

2

2CV  = 
1

2

2CV

It can be proved as

 PR = dU
dt

 = i2R = V
R

R e t RC
2

2

2
·

/−  = 
V
R
e t RC

2

2− /

The, total energy across the resistor is 

 UR = dU∫  = V
R
e dtt RC

o

2

2−∞
∫ /  = 

1

2

2CV

Thus, the total energy of the battery is equally distributed across C and R.

EXERCISES

 7.1. What is the drift velocity and how do you measure it, distinguish between 
drift velocity and random velocity of the electrons.

 7.2. A wire has length 5 m and diameter 3 mm. Compute the resistance of 
wire, when its resistivity is 1.5 × 10–8 W-m.

 7.3. Prove that  R = ρl
A

.

  where l and A are length and area of cross-section of a conductor.
 7.4. Compute the potential difference across 1 m of a wire carrying a current 

of 10A and it has a resistance of 50 mW/m.



230 Elements of Electricity and Magnetism Theory and Applications

 7.5. Show that the free charge density at the junction of two conductors is 
given by

   s = J 
∈

−
∈





2

2

1

1
σ σ

  where s1 and s2 are the conductivity of two conductors and J is the 
current density.

 7.6. The 10 LED of 20W light every night for 10 hours for a month. Compute 
the cost of lighting if the rate is 3 RS/kwh.

 7.7. Compute the resistance of a copper rod of length 1 m and cross-sectional 
area 5 × 10–4 m2.

 7.8. The n resistors of resistance R are connected in series with an emf of 
V volt. If i is the current passing through the circuit, prove that the 
equivalent resistance is 

   Re = nR
 7.9. In a RC circuit, R = 2.2 K and C = 1.5 mf. If an emf of 12 V is applied, 

compute the 
 (1) charge on the capacitor.
 (2) t = RC, time constant
 (3) current i, and
 (4) i when t = t
 7.10. Compute the equivalent resistance of the circuits, shown in fig. 7.40.

B

2� 2�

4� 4�

6�A B

(a)
2� 2�

4� 4�

1�

1�

1�A B

(b)

Fig. 7.40. Networks of resistors.
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 7.11. A RC circuit is shown in fig. 7.41.
R

C�

+
–

K

Fig. 7.41. C with R.

  when K is closed, prove that the current is

   i = – ε
R
e t RC− /

 7.12. Compute the net resistance between A and B, Fig. 7.42.

2 � 12 �

5 � 2 �

5 � 2 �

A

B

Fig. 7.42. Resistive network.

 7.13. For a metallic conductor, show that the current density is

   J
→

 = ne
m

E
2τ →

  where t = time of electron between two collisions, E
→

 is the electric 
field, n is number of charge per unit volume.

 7.14. Two 20W LED are connected with a supply of 100V. Compute the total 
power consumed by the LED when (a) both are in series (b) both are in 
parallel.


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The natural magnets, originally called Iodestones were discovered many 
centuries ago. It was found that magnetic behavior of materials came into 
picture with the ancient city of Magnesia in Asia Minor. In 1820, Danish 
physicist Hans Christan Oersted showed that the electric current gives rise 
magnetic force. A current carrying conductor is associated with the magnetic 
field and causing a deflection in the compass needle. When a magnetized 
needle is suspend freely, it always in the north and the south directions. In this 
chapter we shall study the magnetic field and magnetic interactions.

8.1. MAGNETS AND THE MAGNETIC FIELD
The magnet attracts the pieces of iron, nails and other magnetic materials. 
This property of attracting materials is called the magnetism. A bar magnet or 
any shaped magnet has two magnetic poles marked as north N(+) and south 
S(–). When a magnet is suspended in air freely, the north and south poles are 
decided by pointing the magnet towards north and the south directions. Now, 
what does about magnetic interaction between like poles and also in un-like 
poles. The like poles repel each other and unlike poles attract each other as 
shown in fig. 8.1. Hence,

unlike poles attract and like poles repel

N S N S

(a)

N SN S

(b)

Fig. 8.1. Unlike poles attract (a) and like poles repel (b)

It is not possible to isolate the north pole and south pole of a magnet. If 
we cut a bar magnet into two pieces, two new magnets are obtained as shown 
in fig. 8.2.

CHAPTER

8 Magnetic Fields and 
Materials
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N S

(a)

N SN S

(b)

Fig. 8.2. Two pieces of a magnet means monopoles does not exist.

The new magnets have both north and the south poles. This process of 
cutting magnet continues until a tiny particle is obtained. This tiny particle of 
magnet has two poles also. This means that the magnetic monopoles do not 
exist. This is unlike the electric interaction, where electric monopole exists.

Since a static charge produces an electric field around it, the space around 
a magnet in which magnetic effect occurs, is called the magnetic field. The 
magnetic field is represented by the magnetic lines of force. The concentration 
of the magnetic field lines or number of magnetic field lines per unit cross-
sectional area is proportional to the magnetic field strength. Consider a bar 
magnet shown in fig. 8.3.

N S N S

Fig. 8.3. Magnetic lines of force.

The magnetic lines of force emerge from the north pole of the magnet and 
enter the south pole. The direction of the magnetic field may be taken as the 
direction which a north pole of the compass needle would move when placed 
in a magnetic field. The direction of the magnetic field is represented by dot 
○  or a cross ○× . The symbol ○  means that field direction is coming out from 
the plane of paper, while ○×  means the direction of magnetic field into plane 
of paper.

8.2. MAGNETIC FLUX

Like the electric field E
→

, the magnetic field is represented by B
→

. This is 
also called magnetic induction or magnetic flux density. The direction of the 
magnetic field B is the tangent to a line of force at any point. The magnetic 
lines of force as drawn in such a way that the number of field lines crossing per 
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unit cross-sectional area is proportional to the magnetic field B at any point. 
The magnetic flux fB passing through a surface area S is shown in fig 8.4. 

�

B

S

Fig. 8.4. Magnetic Flux pass through the surface S.

If the normal vector n�  to the surface area S
→

 makes an angle q with the 

direction of the magnetic field B
→

, then,

 fB = B
→

· S
→

 ...(8.1)

 fB = BS cos q ...(8.2)

Here, we have considered a constant magnetic field B
→

. If B
→

 is normal to 

the surface area S
→

, q = 0, hence 
 fB = BS ...(8.3)

Again, if B
→

 is perpendicular to the normal n� , 
Then, q = 90°, hence fB = 0

Moreover, if the magnetic field B
→

 is non-uniform, Then the equation (8.1) 
may be written as 

 fB = B dS
S

→ →
⋅∫  ...(8.4)

The SI unit of area S is m2, and B is weber m–2. The S.I unit of magnetic 
flux is the Weber (Wb) in the honor of Wilhelm Weber.
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Example 8.1. A circular coil of area 0.1 m2 is placed perpendicular to the 
direction of the magnetic field (B = 0·5 Weber m–2). Calculate the flux passing 
through the coil.
Solution: Here,
 S = 0·1 m2

 B = 0.5 Wm–2

\ fB = BS cos q
  = 0·5 × 0·1 × cos 0
 fB = 0.05 Wb

8.3. MAGNETIC FORCE ON A MOVING CHARGE

Suppose that a positive charge q is moving in a uniform magnetic field B
→

 with 
a velocity v

→
 in the x-y plane and the magnetic field is along x-axis as shown 

in fig. 8.5.

Experimentally, It has been observed that the magnitude of the force F
→

 
on the moving charge,
 (a)  is proportional to the magnitude of charge q.
 (b)  is proportional to the component of velocity v perpendicular to the 

magnetic field B.

 (c) is proportional to sine of angle between v
→

 and B
→

.

 (d) is proportional to the magnetic field B
→

. Here the constant of 
proportionality is unity.

�

+ q

F

z

y
v

x

B

Fig. 8.5. A magnetic force experienced by a moving charge

Hence, 
 F = qvB sin q ...(8.5)
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This force F
→

 is always perpendicular to the plane containing v
→

 and B
→

. 
Thus, the force F

→
 is defined by the cross product of v

→
 and B

→
. Hence, we 

may write,

 F
→

 = q v B( )

→ →
×  ...(8.6)

From the equation (8.6) it is observed that 
 (1) the force is maximum when the charge is moving perpendicular to 

the magnetic field B
→

.
  that is, for q = 90°, sin q = 1
   Fmax = qvB (charge opts circular path)
 (2) the magnetic force F is zero if the charge q is moving parallel to the 

magnetic field B
→

. i.e.,
   for q = 0°, sin q = 0
   F = 0 (charge moves in a straight line)

  The direction of force F
→

 is given by the right hand rule. According to 
this rule, if the fingers of the right-hand are stretched along the direction 
of velocity v

→
 of the charge and then bend the fingers towards 

magnetic field B
→

, the thumb will point in the direction of the force 
F
→

, as shown in fig. 8.6.

F

v

B

Fig. 8.6. Right hand rule for determining the direction of force F
→

.

 (3) The force F is always perpendicular to the direction of moving charge. 
Thus, force does not work, hence force F does not change the magnitude 
of v

→
. But it changes the direction of v

→
. The force F is called the 

deflecting force. If a charge enters the magnetic field at an angle (q) 
and 0 < q < 90°, then, the two components of velocity viz v cos q and 
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v sin q cause to move charge q into helical or spiral path as shown in 
fig. 8.7.

B
v sin �

v sin �

v

Fig. 8.7. A helical path of charge q.

Now, from the equation (8.5), we have

 B = F
vq sinθ

 ...(8.7)

For  q = 90°

 B = F
vq

 ...(8.8)

 B = Newton

meter sec coulomb
− ×1

 B = Newton

Ampere-meter

Thus, the magnetic field B is defined as the force exerts on a unit charge 
moving with a unit velocity when v is perpendicular to magnetic induction B. 
The SI units of B

→
 are Weber m–2, Newton-ampere–1 m–1 and Tesla T.

 1T = 
Newton

Ampere meter

Weber

meter
=

and

 1T = Wb

meter
 gauss= 10

4

When a charged particle is moving with a velocity v
→

 in a region, where 

the electric field E
→

 and the magnetic field B
→

 are present, the total force F
→

 is 
the vector sum of the electric force qE and the magnetic force q(v × B):

 F
→

 = F Fe m
→ →

+  
...(8.9)

 F
→

 = q E q v B
→ → →

+ ×( )  






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\ F
→

 = q E v B[ ( )]

→ → →
+ ×  ...(8.10)

The Force F
→

 is called the Lorentz force.

8.4. MOTION OF A CHARGE IN A UNIFORM MAGNETIC FIELD
Consider a charged particle moving in a magnetic field (having same magnitude 
and direction at all points). Let +q be the charge and m be the mass of the 
charged particle moving with velocity v

→
 in a direction perpendicular to the 

magnetic field B as shown in fig. 8.8.

F

F

F F

+

+

+ +

v

v v

v

Fig. 8.8. A charged particle moving perpendicular  
        to magnetic field in a circular path.

The magnetic force on the charge is given by 
 F = q v B sin 90°
 F = q v B ...(8.11)

This force F is always perpendicular to the velocity v
→

 of the particle. The 
force F acts as a deflecting force, it can change the direction of velocity v

→
 

without changing its magnitude. The charge q travels in a circle of radius r, the 
centripetal force is equal to q v B. Then, we may write,

 q v B = mv
r

2
 (Balancing of forces) ...(8.12)

\ r = mv
qB

 ...(8.13)

Since P = mv (momentum of the charged particle)
Then, equation (8.12) can be written as 
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 r = p
qB

 ...(8.14)

The radius of the circle r is directly proportional to p and inversely 
proportional to B. If the moving charged particle has larger energy, r will be 
larger. The angular speed of the particle is 

 w = 2pf = v
r

 ...(8.15)

 w = qB
m

 ...(8.16)

w is the cyclotron frequency

Now, f = qB
m2π

 ...(8.17)

8.5.  MAGNETIC FORCE ON A CURRENT CARRYING 
CONDUCTOR

The free charge experiences a force when it moves in a magnetic field. Here, 
we will see what happens, when charges are moving in a conductor. Consider a 
conductor of length l, carrying a current i placed in a magnetic field. The force 
on the conductor is the average force acting on all charge carriers moving with 
a drift velocity vd. If n is the number of charge carriers, with each charge q, 
then, the total charge in the segment dl of the conductor of cross-sectional area 
A is given by 
 Q = q(n A dl) ...(8.18)

Fig. 8.9 shows a current carrying conductor in a magnetic field.

l

�

B

dF

i

Fig. 8.9. Current carrying conductor in a magnetic field.

The force on a segment dl will be 

 dF
→

 = Q v Bd( )

→ →
×  ...(8.19)

 dF
→

 = qnAdl v Bd( )

→ →
×  ...(8.20)



Magnetic Fields and Materials 241

But current through the conductor is given by 
 i = nqvdA
The equation (8.20) becomes

 dF
→

 = i dl B( )

→ →
×  ...(8.21)

the total magnetic force on the conductor of length l is

 F
→

 = i dl B( )

→ →
×∫  ...(8.22)

  = i dl B
→ →

∫






×

 F
→

 = i l B( )

→ →
×  ...(8.23)

The direction of the magnetic force is perpendicular to the plane containing 

vector l
→

 and vector B
→

.
The magnitude of the force is 

 | F | = i l B sin q ...(8.24)

where q is the angle between length l
→

 of the conductor and the magnetic field 
B
→

.
Now, if conductor is placed in the magnetic field parallel to the field 

direction, then, q = 0°
 F = i l B sin 0 = 0

therefore, no force is experienced by the conductor.
If q = 90°, the force on the conductor is 
 F = i l B sin 0
 F = i l B

this mean that a maximum force is experienced by the conductor.
Example 8.2. A conductor of 2 m long is placed perpendicular to the direction 
of magnetic field (B = 4 Wbm–2), as shown in fig. 8.10. The direction of 
magnetic field is along x-axis, and conductor is placed along y axis.

B

i

y

x

z

Fig. 8.10. A conductor in a magnetic field.
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If a current of 5A is flowing through the conductor, find the force on the 
conductor and its direction.
Solution: 

 B
→

 = 4 i�

 l
→

 = 2 j�

Then, Force is

 F
→

 = i B( )�
→ →

×

  = 8 × ( )j i� �×

  = –8 k�

The direction of force is along –z axis.

8.6. MAGNETIC DIPOLE MOMENT
It is very interesting to give an idea of the magnetic dipole moment before 
going to discuss the torque on a current loop. A bar magnet or a current loop 
shows a similar pattern of magnetic lines of force. The magnetic lines of force 
emerge from the north pole and enter the south pole of the magnet. Since we 
have two poles, this arrangement is called magnetic dipole.

Consider a loop having number of turns n and area of cross-section A as 
shown in fig. 8.11 (a).

S N

m

z

x

y

(a) (b)

Fig. 8.11. Current loops

The  magnetic dipole moment is defined as the product of the current in a 

loop and its area; and it is represented by m
→

.
Thus, dipole moment of a current loop is

 m
→

 = n i A
→

 ...(8.25)

The direction of dipole moment m
→

 is normal to the plane of the loop as 
shown in fig. 8.11(b).
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8.7. MAGNETIC TORQUE ON A CURRENT LOOP
Consider a rectangular loop of length a and width b placed in a uniform 
magnetic field B

→
 as shown in fig. 8.12. Suppose that an electric current i is 

flowing in the loop. This current loop experiences a torque due to the magnetic 
force. These forces are acting on the vertical arms of the loop and are equal and 
opposite. The magnitude of force is 
 F = i a B ...(8.26)

a

F

F

y

B
i

b

F

B

b

F

�

Normal to plane

of coil

(a) (b)

Fig. 8.12. (a) Current carrying rectangular loop (b) the normal to the plane of 

loop makes an angle q with B
→

.

The total force acting on the loop is zero. These opposite and equal forces 
acting on the loop create a couple which tends to rotate the loop countercloke-
wise. The total torque on the loop is 

 t = i a B · b i a B b
2 2

sin sinθ θ+ ·

 t = i a b B sin q
 t = i A B sin q ...(8.27)
where A = ab is the area of the loop.

If there are n term in the loop, the total magnetic torque will be 
 t = N i A B sin q ...(8.28)
But m = n i A, then the equation (8.28) can be written as

 t = m B sin q ...(8.29)

Since the magnetic dipole moment m
→

 and the magnetic field B
→

 are both 
vector quantities, then we write equation (8.29) as

 τ
→

 = m B
→ →

×  ...(8.30)
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It should be clear that the direction of the torque is along the axis of 
rotation. When the plane of loop is perpendicular to the magnetic field, q = 0 
and t = 0 i.e. the position of equilibrium. In this situation, the sum of forces 
on the loop is zero.

When the plane of loop is parallel to the magnetic field B
→

, this means that 
normal to the plane of loop is perpendicular to B

→
, then,

 t = m B sin 90
 t = m B
The maximum torque exerts on the loop.

Example 8.3. A rectangular coil of length 10 cm and width 6 cm is placed 
in a uniform magnetic field of 0.5 Wbm–2. The coil has 10 turns and carries a 
current of 2A. Find the torque on the coil when plane of coil is parallel to B. 
Solution: Given,
 i = 2A
 n = 10
 a = 10 × 10–2 m
 b = 6 × 10–2 m
 B = 0.5 T

Then, torque when m
→

 is perpendicular to B,
 t = m B sin 90 
  = m B = niAB
  = 10 × 2 × 10 × 10–2 × 6 × 10–2 × 0.5 Nm.
 t = 6 × 10–2 Nm.

8.8. POTENTIAL ENERGY OF A DIPOLE IN A MAGNETIC FIELD
When a magnetic dipole is placed in a uniform magnetic field, then, a torque 
exerts on the magnetic dipole due to the equal and opposite forces acting on 
the dipole as shown in fig. 8.13.

B

m

N

S

Fig. 8.13. Dipole in a magnetic field.
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this torque tends to rotate the dipole. If dW is the work done in rotating the 
dipole through an angle dq, then,
 dW = –t dq ...(8.31)
\ t = mB sin q
The equation (8.31) becomes
 dW = –mB sin q dq ...(8.32)

where q is the angle between magnetic moment m
→

 and the magnetic field B
→

.  
The work done by the torque is equal to the decrease in the potential energy. Thus,
 dU = –dW
 dU = m B sin q dq ...(8.33)

The potential energy of the system may be obtained by integrating the 
equation (8.33) in the limits q = 90° to q = 0°.

 U = mB dsin
/

θ θ
π 2

0

∫  ...(8.34)
Thus, we get
 U = –m B cos q ...(8.35)

⇒ U = –m B
→ →

⋅  ...(8.36)
when the dipole is in stable equilibrium, q = 0°
 U = –mB,
the potential energy is minimum.

When the magnetic dipole is in unstable equilibrium, q = p, then potential 
energy (U = mB) is maximum.

8.9. THE BIOT-SAVART LAW
A current carrying conductor produces 
a magnetic field in the space around it. 
Consider a wire carrying a current i as 
shown in fig. 8.14. Biot-Savart’s law 
states that the differential magnetic field 
dB at any point is proportional to current 
element idl and the sine of angle between 
element dl and the line connecting to point 
P. The magnitude dB of the magnetic field 
is inversely proportion to the square of 
the distance from the element dl to the  
point P.

dl �

r

dB

P

i

i

Fig. 8.14. Current carrying wire 
element giving rise to  a magnetic 

field dB
→

 at a point P.
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According to Biot-Savart law, the magnetic field at point P is 

 dB ∝ idl
r
sin θ
2

 ...(8.37)

⇒ dB = µ
0

2
4π

θi dl
r
sin  ...(8.38)

In vector notation,

 dB
→

 = µ
0

2
4π
i dl r
r

× �  ...(8.39)

where µ0 is a constant called the permeability of free space. The vector distance 

of the point P from the element dl is r r r
→

= � . The total magnetic field at P due 
to entire current carrying wire can be computed by summing the magnetic field 
due to all such segments of the wire.

That is,

 B
→

 = dB dB dB dBi1 2 3

→ → → →
+ + + +...

or B
→

 = dBi
i

→
∑  ...(8.40)

The direction of the magnetic field dB
→

 is given by the right-hand rule. 

Here, the direction of dB
→

 is perpendicular to the plane containing dl and r and 
is into the paper. The Biot-Savert law is also known as Ampere’s law of the 
current element (Do not confuse with Ampere’s circuital law).

From the equation (8.40), it may be written as

 B
→

 = dB i dl r
r

→
→

∫ ∫= ×
�

�
µ

0

2
4π

 ...(8.41)

The equation (8.41) is integrated over a closed circuit. The equation (8.42) 
in term of current density is 

 B
→

 = µ
0

2
4π

J r
r

dV
→

×∫
�

 ...(8.42)

8.10. APPLICATIONS OF BIOT-SAVART LAW
We have some applications of the Biot-Savert law. in this section.



Magnetic Fields and Materials 247

8.10.1. Magnetic Field Due to Long Straight Wire Carrying a Current
Consider along straight wire carrying a current i as shown in fig. 8.15. A point 
P, where magnetic field is be determined, is situated at a distance R from the 
wire. The distance between a current element idl and the point P is r.

dl

�

�

l

B

R
P

r

Fig. 8.15. Magnetic field due to long straight wire.

According to Biot-Savart law

 dB = µ
0

2
4π

θidl
r
sin  ...(8.43)

Now,

 sin q = R
r

R
r

, cosφ =
Then,

 dB = µ
0

2
4

i dl
rπ

φcos  ...(8.44)
Since,

 1

2r
 = cos

, tan

2

2

φ φ
R

l
R

=

\ dl = R dφ
φcos

2

Substituting in equation (8.44), we get

 dB = µ
0

4

i
R

d
π

φ φcos  ...(8.45)

Integrating the equation (8.45) with the limits f = −π φ π
2 2

to =  we have

 B = µ
0

2

2

4

i
R

d
π

φ φ
π

π

cos

/

/

−
∫  ...(8.46)

\ B = µ
0

4
2

i
Rπ

·

 B = µ
0

2

i
Rπ

 ...(8.47)

The direction of the magnetic field B is into the plane of paper.
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8.10.2. Magnetic Field at the Centre of a Current Loop
Consider a current loop carrying a current i placed in a x-y plane as shown in 
fig. 8.16. Since current is the cause of magnetism, we find the magnetic field at 
a point P situated at the centre of the loop.

R

P
90º

i

idl

y

x

z

B

Fig. 8.16. Magnetic field at the centre of the loop.

This distance between element dl and point P is R where R is the radius of 
the loop. According to Biot-Savart law,

 dB = µ
0

2
4π

θi dl
R
sin  ...(8.48)

The angle between dl and line joining the P is 90°, 
Thus, sin q = sin 90 = 1, the equation (8.48) becomes

 dB = µ
0

2
4π
i dl
R

 ...(8.49)

The radius of loop is constant, thus, the magnetic field due to whole loop 
is given by 

 B = 
µ

0

2
4

i
R

dl
π ∫  ...(8.50)

 B = 
µ

0

2
4

2
i
R

R
π

π⋅

or B = µ
0

2

i
R

 ...(8.51)

The field at the centre of the loop is inversely proportional to the radius 
R of the loop. The direction of the magnetic field at the centre of current loop 
points axially outward.
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8.10.3. Magnetic Field Due to Current in a Finite Straight Conductor.
Consider a conductor of finite length carrying a current i as shown in fig. 8.17.

�

�

�

�

dl

i

R

r

O

Fig. 8.17. Magnetic field due to finite length conductor

The magnetic field at point P is given by 

 dB = µ
0

2
4π

θi dl
r
sin  ...(8.52)

Since, sin q = cos f = R
r

Thus, dl sin q = dl cos f
The equation (8.52) becomes

 dB = µ
0

2
4

i dl
rπ

φcos  ...(8.53)
Now,

 cos f = R
r

, l = R tan f, dl = R sec2 f df

Substituting in the equation (8.53) we get

 dB = µ
0

4

i
R

d
π

φ φcos  ...(8.54)

Integrating the equation (8.54) in the limits f = –a to f = b, we get

 B = µ
0

4

i
R

d
π

φ φ
α

β

cos

−
∫

or B = µ
0

4

i
Rπ

β β(sin sin )+  ...(8.55)

The direction of the magnetic field is out of the plane of paper.
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8.10.4. Magnetic Field Along the Axis of a Circular Coil
But i be the current passing through a circular coil of radius R, as shown in fig. 
8.18. Let P be a point along the axis of the coil at a distance x from the centre 
O of the coil.

O

R

i

dl

�

dB

dB cos �

P
x

r

�

dB sin �

Fig. 8.18. Magnetic field along the axis of a circular coil.

According to Biot-Savart law, the magnetic field at point P is

 dB = µ
0

2
4π

θidl
r
sin  ...(8.56)

The all current elements dl make the angle with r, will be 90°. Thus, sin q 
= sin 90 = 1. Then

 dB = µ
0

2
4

i idl
rπ

 ...(8.57)

dB lies in the plane of page, we shall take only the component of the magnetic 
field which lies along the axis of the coil. The component of dB not parallel to 
the axis of coil will cancel each other. Therefore,

 B = dB sin φ∫  ...(8.58)
or

 B = 
µ

0

2
4

i
r

dl
π

φsin∫  ...(8.59)

\ sin f = R
r

Thus,

\ B = µ
0

3
4

i R
r

dl
π ∫  ...(8.60)

dl R∫ = 2π  is the circumference of the coil, on substituting in equation (8.60), 
we get
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 B = µ
0

2

3

2

4

i R
r
· π

π
or

 B = µ
0

2

2 2 3 2
2

i R
R x( )

/+
 ...(8.61)

At the centre of the coil, x = 0, the expression for magnetic field is, thus, 
given by 

 B = µ
0

2

i
R

If the coil has number of turns n, the equation (8.61) may be written as

 B = µ
0

2

2 2 3 2
2

ni R
R x( )

/+
 ...(8.62)

8.10.5. Magnetic Field Along the Axis of a Long Solenoid
Solenoid is a helical and it is constructed from a wire tightly wound on a 
cylindrical surface, as shown in fig. 8.19.

Fig. 8.19. Solenoid.

Solenoid produces a very strong uniform magnetic field along its axis. 
This strong magnetic field is due to the successive turns in the solenoid. The 
magnetic lines of force are directed along the axis of the solenoid. We calculate 
the magnetic field at any point lying on its axis. For the calculation of the 
magnetic field, consider a coil in the solenoid as shown in fig. 8.20.

dx

�2
�

�1

r

P x
x

Fig. 8.20. Magnetic field due to solenoid.
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If n is the number of turns per unit length of the solenoid, dl = n dx and 
we have

 dB = µ
0

2

2 2 3 2
2

ni R dx
R x( )

/+
 ...(8.63)

where R is radius of the solenoid.
From Fig. 8.20. x = R cot q
 dx = –R cosec2 q dq
Substituting into equation (8.63) we get

 dB = 
−µ

cosec

0

2

ni dθ
θ

or dB = −µ
0

2

ni dsin θ θ  ...(8.64)

Now, integrating equation (8.64). Then,

 B = −
∫

µ
0

2
1

2ni dsin θ θ
θ

θ

 ...(8.65)

or B = µ
0

2 1
2

ni
[cos cos ]θ θ−  ...(8.66)

If solenoid is long, q1 = p and q2 = 0°, Thus

 B = µ0ni ...(8.67)
The magnetic field B inside the solenoid depends upon current i and the 

number of turns per unit length. We can calculate magnetic field at the one end 
of the solenoid, for this, we have q2 = 90° or p/2, q1 = 180°.

Then,

 B = µ
0

2

ni  ...(8.68)

The magnetic field at the end of the long solenoid is just half of the 
magnetic field at the centre.

8.11. FORCE BETWEEN TWO PARALLEL WIRES
We already know that a current carrying wire produces the magnetic field. 
Ampere showed that two parallel wires carrying current would exert a attractive 
force on each other. The force between two wires is purely magnetic. Consider 
two long parallel conducting wire separated by a distance r and carrying 
currents i1 and i2 respectively, as shown in fig. 8.21.
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r

F1 F2

B1
i2i1

1 2

r

F1 F2

B1
i2i1

1 2

Fig. 8.21. Parallel conductors (a) Parallel currents (b) Antiparallel currents

The current i1 in the wire 1 produces a magnetic field B1 around it. At a 
distance r, the magnitude of B1 is 

 B1 = µ
0 1

2

i
rπ

 ...(8.69)

The direction of B1 is vertically downward.
Since wire 2, carrying a current i2 lies in magnetic field B1. Then, the wire 

2 of length l will experience a force F2 as
 F2 = i2 l B1 ...(8.70)

where l and B1 are perpendicular to each other.
Substituting the value of B1 from Equation (8.69) into Equation (8.70), 

we get

 F2 = µ
0 1 2

2

i i l
rπ

 ...(8.71)

The force per unit length l on the wire 2 is given by 

 F
l
2  = µ

0 1 2

2

i i
rπ

 ...(8.72)

If the currents are antiparallel in two conducting wires, they will repel 
each other with the force given by Equation (8.72). Furthermore, if i1 = i2 = 
1A and r = 1 m. Then

 F
l

 = 2 × 10–7 N/m

Thus, one ampere is defined as the current flowing in each of two long, 
parallel wires situated at one meter apart, when the force per unit length on 
each conducting wire is 2 × 1–7 N/m.

We the ampere is defined, one coulomb is defined as 1 coulomb =  
(1 Ampere) (1 second).
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8.12. AMPERE’S LAW AND ITS APPLICATIONS
Ampere’s circuital law states that the line integral of the magnetic field over 
any closed path is equal to µ0 times the net current flowing through the surface 
enclosed by the path. That is,

 B dl
C

→ →
⋅∫�  = µ0i ...(8.73)

where µ0 is the permeability of the free space.
Ampere’s law is useful for calculating the magnetic fields in symmetrical 

situations, and in closed path around the current i. Suppose that the electric 
charge densities are constant and current i is not changing with time, then, 
Maxwell’s equations can be written as 

and                       
∇ =

∇× =







→

→ →

·B

B J

0

0
µ

 ...(8.74)

where J
→

 is called the current density. We know that the divergence of the curl 
of any vector is necessarily zero. That is,

                       
∇ ∇ × =

∴ ∇ =







→

→

·( )

·

B

J

0

0

 ...(8.75)

Here, the current density is constant. Now, Stoke’s theorem states that the 
line integral of a vector field around any closed path is equal to the surface 
integral of the curl of a vector field over a surface bounded by the curve. 

Thus, for magnetic field, we write

 B dl
C

→ →
⋅∫�  = ( )·∇ ×

→ →

∫ B dS
S�

  = µ
0

J dS
S

→ →

∫ ·  ...(8.76)

But

 J dS
S

→ →
⋅∫  = i

Then, Equation (8.76) may be written as

 B dl
C

→ →
⋅∫�  = µ0i ...(8.77)
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This is Ampere’s law.
Now, we apply Ampere’s law to a symmetrical case of a long straight 

wire. We draw an Amperian loop (analogous to Gaussian surface) to find out 
the magnetic field due to long straight wire carrying a current i as shown in 
fig. 8.22.

B

P

B

i

r

Fig. 8.22. Magnetic field of a long wire

Amperian loop passing through the point P is a circle of radius r.
Now, according to Ampere’s Law

 B dl
C

→ →
⋅∫�  = µ0i ...(8.78)

the magnetic field B is constant at every point on the circle. Thus,

 B dl
C∫  = µ0i ...(8.79)

or B(2pr) = µ0i

 B = µ
0

2

i
rπ

 ...(8.80)

The direction of B is the tangent at any point on the Amperian loop (circle).
We have discussed the magnetic filed at the axial point of a solenoid. Now 

we calculated the magnetic field inside the solenoid using Ampere’s law. Now, 
consider a solenoid carrying a current i as shown in Fig. 8.23. If n is the number 
of turns per unit length, then, applying Ampere’s law to the loop ABCDA.

A B

D C

Fig. 8.23. Long Solenoid carrying a current i.
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 B dl
C

→ →
⋅∫�  = Nµ0i ...(8.81)

where N is number of turns in the solenoid. Applying Eq. (8.81), we get

B dl B dl B dl B dl
A

B

B

C

C

D

D

A→ → → → → → → →
⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫  = Nµ0i ...(8.82)

                                 Bl  +  O  +  O  +  O  = Nµ0i

Here, the path AB lies inside the solenoid and parallel to the magnetic field, 
so we get a non zero magnetic field. The path BC and DA are perpendicular to 

the magnetic field, thus B dl
→ →

⋅  = Bdl cos 90 = 0. The path CD lies outside the 
solenoid, hence B = 0.

Now, Bl = Nµ0i ...(8.83)

or B = N i
l
µ

0  ...(8.84)

Since n = N
l

, we get

 B = nµ0i ...(8.85)
we apply Ampere’s law to another symmetrical system, that is toroid. Toroid is 
a long solenoid bent into a circle, as shown in fig. 8.24.

r

i

r

B = 0

Fig. 8.24. Toroidal Coil

If n is the number of turns per unit length and l is the circumference of the 
toroid, applying Ampere’s law, we have

 B dl
C

→ →
⋅∫�  = Nµ0i ...(8.86)

where i is the current in the toroid and n = N/l.

\ B dl�∫  = Nµ0i ...(8.87)
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 B(2pr) = Nµ0i

or B = Nµ
0

2

i
rπ

 ...(8.88)

Since n = 
N
r2π

 = N
l

, we get

 B = nµ0i ...(8.89)

In the space outside the toroidal coil, the magnetic field is zero. The 
magnetic field inside the toroid varies as 1/l. On the other hand, if l = 2pr is 
very small, then the variation in the magnetic field is negligible and equal to 
µ0ni as obtained in case of long solenoid.

8.13. MAGNETIC FIELD OF A MOVING POINT CHARGE

Biot-Savart law is given by 

 B
→

 = µ
0

2
4π
i dl r
r

→
× �  ...(8.90)

If a point charge q moves with a velocity v
→

 along x-axis as shown in fig. 
8.25, we replace qv in place idl. Then,

 B
→

 = µ
0

2
4π
q v r
r

( )

→
× �  ...(8.91)

y

+q �

z

x

B

r

(x, y)

v

Fig. 8.25. Moving point charge

The position vector r xi y j
→

= +� �

and | r | = x y2 2+  
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\ Unit vector along r
→

 is

 r�  = x
r
i y
r
j� �+

or r�  = cos sinθ θi j� �+
Since, velocity of the point charge q is along x-axis, then,

 v = vi�

Thus, from the Equation (8.91), we have

 B
→

 = µ
0

2
4

q
r
vi i j

π
θ θ[ (cos sin )]

� � �× +

or B
→

 = µ
0

2 2
4

q
r
v
r

k
π

θsin �  ...(8.92)

The direction of the magnetic field is outward from the plane of paper. The 
magnitude of the magnetic field is given by 

 B = µ
0

2
4π

θqv
r
sin  ...(8.93)

From the Equation (8.93), it clear that,

 B ∝ qv
r
sin θ
2

 ...(8.94)

where q is angle between v r
→ →

and .

8.14. MAGNETIC FIELD IN MATERIALS
The different materials behave in the different way with respect to the magnetic 
field. According to the atomic model, the electrons are orbiting round the 
positively charged nucleus. Moreover, the electrons are spinning also. Thus, an 
atom has magnetic dipole moments due to the orbiting and spinning electrons. 
In this section, we investigate the change in magnetic field due to the presence 
of magnetic materials. We discuss three types of magnetic behavior of the 
materials viz, paramagnetism, diamagnetism and ferromagnetism.

8.14.1. Magnetic Moment of an Electron
Consider an electron of charge e and mass m circulating in a Bohr orbit as 
shown in fig. 8.26.
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r

L

v

m

Fig. 8.26. A orbiting electron

the motion of the electron in the orbit constitutes a current loop. The current 
through this loop is given by

 i = e
T

 ...(8.95)

where T is the time period of the electron in the orbit. According to Ampere’s 
theorem, the current in the loop gives rise to a magnetic moment µl (we 
represent the magnetic moment of an electron by µl in Atomic spectra, a usual 
notation), then,
 µl = iA ...(8.96)
where A = pr2, is area of the loop.

Thus,

 µl = e r
T
π 2

 ...(8.97)

the time period T = one revolution

v

\ or T = 2πr
v

Substituting the value of T in Equation (8.97), we get

 µl = ev r
2

 ...(8.98)

the orbital angular momentum of the electron is given by 
 L = m r v  ...(8.99)

From the Equations (8.98) and (8.99) we have

 µl
→

 = e
m
L

2

→
 ...(8.100)
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or µl
→

 = − →e
m
L

2
 ...(8.101)

the negative sign is due to the negative charge of the electron.

8.14.2. Magnetic Permeability
Suppose that a magnetic substance is placed in a magnetic field, as shown 
in fig. 8.27. The large number of magnetic lines of force will pass through 
the magnetic substance than in air. A degree to which the magnetic lines of 
force can permeate the substance is called the magnetic permeability of that 
substance. 

S N

Fig. 8.27. Magnetic substance in a magnetic field.

The permeability of the material medium is defined as the ratio of the 
magnitude of the magnetic induction B to the magnetic field intensity H. Thus,

 Permeability µ = B
H

 ...(8.102)

Further more, the relative permeability of the material medium is given as
 µ = µr µ0 ...(8.103)

where µ0 is the permeability of free space and µr is the relative permeability. 
Then, relative permeability is 

 µr = B
B

0 0

= µ

µ
 ...(8.104)

 µ0 = 4p × 10–7 Tm/A.

8.14.3. Magnetization
It is a measure of magnetization of a magnetized substance. The magnetization 
M is defined as the magnetic dipole moment per unit volume. It is a vector 
quantity. If these are n magnetic dipoles having same orientation, there exists 
n magnetic dipole moments. Thus, Magnetization vector in is given by 



Magnetic Fields and Materials 261

 M
→

 = 

m

V

i
i

n →

=
∑

1

or M
→

 = 1

1V
mi

i

n →

=
∑  ...(8.105)

where V is the volume of the magnetic substance.

8.14.4. Magnetic Susceptibility
We know that the magnetization of a magnetic substance is proportional to the 
applied field. Thus, the magnetic susceptibility (c) is defined as the ratio of the 
intensity of magnetization to the magnetic field intensity, i.e.

 c = M
H

 ...(8.106)

It is a dimensionless quantity.
When a magnetic substance is placed in an external magnetic field B, the 

magnetic dipoles are oriented more or less in the direction of the magnetic field. 
Thus, a non-zero magnetic moment is exhibited by the magnetic substance. 
Therefore,

 B = µ0H + µ0M ...(8.107)

 B = µ0(H + M) ...(8.108)

Moreover,
 B = µ0(cH + H) ...(8.109)
Here, we have used the equation (8.106),
 B = µ0H (1 + c) = µH ...(8.110)

or B = µ0µrH ...(8.111)

where µr = ( )1

0

+ =χ µ

µ
 ...(8.112)

8.14.5. Diamagnetism
In a diamagnetic substance, the net magnetic moment due to the atomic dipoles 
is zero. In diamagnetic materials the outer electronic shell is closed and the 
electrons are paired. The diamagnetic property in the materials occurs when 
the magnetic fields due to orbital and spin motion cancel each other. Therefore, 
each atom has zero magnetic moment. When a diamagnetic substance is placed 
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in an external magnetic field, the small induced magnetic dipoles within the 
atoms oppose the applied magnetic field. Some diamagnetic materials are 
Cu, Ag, Zn, Bi, Au, Sb etc. The diamagnetic materials possess a negative 
susceptibility of the order of ~10–7. Thus, we may write

 µr < 1

and c < 0

8.14.6. Paramagnetism
In paramagnetic materials, atoms possess permanent magnetic dipole moment 
but these are aligned spontaneously as shown in Fig. 8.28. These magnetic 
dipoles are randomly distributed. When an external magnetic field is applied, 
they tend to orient parallel to the direction of the magnetic field as shown in 
fig. 8.29.

Fig. 8.28. Magnetic dipoles in paramagnetic materials.

As a result, the magnetic field or induction is increased, and magnetic 
substance acquires a magnetization.

B

Fig. 8.29. Specimen in external magnetic field.

In the case of paramagnetic materials, the magnetization is weak 
and magnetic susceptibility is small at room temperature. The magnetic 
susceptibility is given by 

 c = C
T

 ...(8.113)

where C = curie constant.
For paramagnetic materials.
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 µr ≥ 1

and c = small and positive 

From the Equation (8.113), it is shown that the magnetic susceptibility is 
in-versely proportional to absolute temperature. The variation of c with T is 
shown in fig. 8.30.

�

TO TO

1

�

Fig. 8.30. Variation of c versus T

8.14.7. Ferromagnetism
In ferromagnetic materials, the atoms have large permanent magnetic dipole 
moment. Ferromagnetism is due to interation between domains of the magnetic 
moments. This interaction is very strong to cause the neighboring atoms 
in other domains to align with their magnetic dipole moments in the same 
direction. The ferromagnetic materials have small regions and each region has 
magnetic dipole moments aligned in same direction, these regions are called 
domains as shown in fig. 8.31.

Fig. 8.31. Magnetic domains in ferromagnetic materials.

when a ferromagnetic substance is placed in an external magnetic field, a large 
alignment of the magnetic moments in the direction of the applied magnetic 
field has been found as shown in fig. 8.32.
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B

Fig. 8.32. Completely alignment of magnetic moments in the external 
magnetic field.

As a result of external magnetic field, the magnetization M increases 
abnormally and it is not linear. A plot of the magnetic field intensity H versus 
magnetization M is called a magnetising curve, as shown in fig. 8.33.

Msat

M

O H

Fig. 8.33. Magnetization curve.

In this case, M H B H
→ → → →

= =χ and µ  are not applicable because c and µ are 
treated as constants. So to retain these forms of the equations, we must have 
c and µ as a function of H. In the magnetization curve, the M is increased 
enough to reach in saturation. Moreover, in addition to saturation effect, the 
ferromagnetic materials show hysteresis effect.

For the ferromagnetic materials, the relative permeability and magnetic 
susceptibility are given as 

 µr >>> 1

and c = large + ve number 

Furthermore,

 c = C
T TC−

 ...(8.114)
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When the temperature of the substance is raised, it increases  thermal 
agitation and this thermal agitation breaks the alignment of all magnetic 
dipoles. As a result, the substance is now demagnetized and behaves like a 
paramagnetic substance. The temperature at which all the magnetic dipoles 
lose their alignment is called the Curie temperature (TC). The ferromagnetic 
materials are Fe, Ni, Co (transition elements), Gd etc. The properties of 
paramagnetic, ferromagnetic and diamagnetic materials are given in the table 8.1.

Table 8.1. Properties of different magnetic materials.

S.No Property Paramagneti 
materials

Ferromagnetic 
materials

Dia magnetic 
materials

1. Cause Spin motion of 
electrons

Ferromagneitc 
domains

Orbital motion of 
electrons

2. In external 
magnetic field

Less attracted Strongly attracted expels magnetic 
lines of force

3. Magnetic 
moment

Randomly 
oriented 

Have some 
magnetic moment 
due to alignment

zero

4. µr and c µr ≥ 1 c is small 
and +ve

µr >> 1 c is large 
and  +ve

µr < 1 c is –ve

8.14.8. Hysteresis
When a ferromagnetic substance (with M = 0) is placed in an external 
magnetic field, it is magnetized. The magnetization in the substance changes 
with the strength of the magnetising field H. A non-linear relationship between 
magnetization M and field strength H is shown by a curve known as B–H 
curve. (Magnetic induction is taken for M). As in fig. 8.34, the magnetization 
increases and attains a constant value at A. Now, M does not increase with H. 
This is called magnetic saturation. Suppose that H is reduced to zero slowly, 
then, M does not reduced to zero. This is because the magnetic domains have 
been aligned by the magnetization M and remained aligned, even though H is 
reduced to zero. A residual intensity of magnetization (OB) left in the magnetic 
substance is called the retentivity or remanence of the material. Furthermore, 
to reduce M to zero, H is increased in reverse (negative) direction, and part BC 
is obtained. Here, H = –HC at point C. At, H = –HC, M = 0 then HC is called 
coercive force. Hence, the coercivity of a magnetic substance is the strength of 
the reverse magnetic field for which the substance is demagnetise completely. 
Increasing H further in negative direction until it reaches at point D, then, 
substance is magnetized in reverse sense and M versus H curve traces the 
path DEFA. In the plot of whole curve, M lags behind H. This lagging of M is 
called as hysteresis and the curve M vs H in which a core is magnetized in one 
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direction and then in opposite direction is called hysteresis curve.

– HC
C O

E

D

F H

B or Mrr B

(Saturation) Ms

M or B

A

OB = Remanence

OC = Coercivity

Fig. 8.34. Hysteresis loop of a ferromagnetic substance.

8.14.9. Hysteresis Loss
When an un-magnetized ferromagnetic material is placed in an external 
magnetic field, the atomic dipoles in the atoms are aligned in the direction 
of the magnetic field applied. Obviously, in the process of magnetization, the 
magnetising field works against mutual attraction among the elementary atomic 
magnets. If the magnetising field is removed, then, certain magnetization will 
be retained in the magnetic material. Thus, the energy supplied during the 
process of magnetization is not recovered completely after switching off the 
magnetising field. This energy is lost in form of heat during each cycle of 
magnetization. This is known as hysteresis loss.

Now, to calculate the energy lost per cycle, suppose that a magnetic 
material of unit volume, abcd, is placed in a magnetic field intensity H, as 
shown in fig. 8.35.

If there are n molecular magnets per unit volume and m is the magnetic 
dipole moment of each magnet inclined at an angle q with magnetic field 
intensity H, then, the magnetic moment per unit volume may be given as

 M = mi
i

cosθ∑  ...(8.115)

where M is magnetization field.
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(b)

Fig. 8.35. (a) Magnetic substance in a magnetising field  
(b) and its hysteresis loop.

Differentiating Equation (8.115), we get
 dM = – m di

i
sin θ θ∑  ...(8.116)

The restoring couple acting on the magnet of magnetic moment m is 
given by mH sin q . Thus, workdone is rotating the magnet through –dq  angle  
(q decreases with H) will be 

 dW = –mH sin q dq ...(8.117)
Therefore, work done per unit volume is given by
 dW = −∑m H di

i
sin θ θ  ...(8.118)

Here, we took dW for simplicity.

or dW = –H m di
i

sin θ θ∑  ...(8.119)

 dW = H dM ...(8.120)
we have used the Equation (8.116), again the work done for a cycle of the 
hysteresis loop will be 

 W = H dM�∫  ...(8.121)

The integration �∫ is over a complete cycle of M-H (B-H) curve, which is 
equal to the area of the M-H curve (A B C D E F A). Moreover, consider a strip 
of length H and thickness dM as shown in fig. 8.35(b).

 Area of the strip = H dM ...(8.122)
Now, whole area of the hysteresis curve is given by 
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 A = H dM�∫  ...(8.123)

Hence, the area of the M-H curve gives the energy dissipated per unit 
volume of the magnetic material during each cycle.
Example 8.4. Find the magnetic field at the centre of a circular segment of 
radius r shown in fig. 8.36.

60º

i

O

Fig. 8.36. Circular segment carrying a current i.

Solution: According to Biot-Savart law,

 dB = µ
0

2
4π

θi dl
r
sin

60º

i

O

r

90º

Fig. 8.37. Circular arc

Here, sin q = sin 90 = 1, then

 dB = µ
0

2
4π
i dl
r

Net magnetic field at centre O is given by 

 B = dB i
r

dl∫ ∫= µ
0

2
4π

But Arc = Angle × Radius

  = π
3

× r
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Thus, B = µ
0

12

i
r

The direction of magnetic field B is into the plane of page.
Example 8.5. Find the magnetic field at the centre of a square loop of side a.
Solution: Consider a square loop carrying a current i is shown in fig. 8.38.

O
�

�

i

Fig. 8.38. Square loop

the magnitude of B at the centre ‘O’ is given by 

 B = µ
0

1

4i
r r

n n

nnπ
α β(sin sin )+

=
∑

Since square has four sides, B is given by 

 B = 
2 2

0
µ i
aπ

Note:  We can find the magnetic field at the centre of a rectangle using above 
formula.

Example 8.6. A long straight wire carries a current i = 100A along the z-axis 
and a constant magnetic field whose magnitude is 1 × 10–5 T is directed along 
the x-axis as shown in fig. 8.39. Find the magnetic field at point A and B.

B (0, 2, 0)

A (0, 2, 0)

y

x

i

z

O

B = 10 T
–5

Fig. 8.39. A long straight wire.
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Solution: The magnitude of the magnetic field at the point A is

 BA = µ
0

2

i
rπ

  = 
2 100 10

2

7× × −

 BA = 10–5T
The direction of this field is along y-axis (right hand rule)

Thus, net magnetic field at point A 
is

 BA = 2 10
5× − T

 BA = 1.414 × 10–5 T

The magnetic field at the point B due to long straight wire will be 
BC = 1 × 10–5T but it is directed along –x-axis. 
Example 8.7. A long straight conductor carries a current i1. Find the force 
experienced by a rectangular loop carrying a current i2 shown in fig. 8.40.
Solution: 

i1

a

F1

F3

F2

F4

a

b

i2

Fig. 8.40. Rectangular loop near a long conductor.

The magnetic field 

 B1 = µ
0 1

2

i
aπThen,

 F1 = i2 b B1 = µ
0 1 2

2

i i b
aπ

1 × 10
–5

1 × 10
–5

B = B + BA 1
2

2
2
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The forces F2 and F4 are equal and opposite and cancel each other.
the force F3 = i2 l B3

Here, B3 = µ
0 1

2 2

i
aπ ( )

\ F3 = 
µ

0 1 2

2 2

i i b
aπ ( )

Thus, net force on the loop, F1 > F2,
 F = F1 – F2

  = µ
0 1 2

2

1 1

2

i i b
a aπ

−





 F = 
µ

0 1 2

4

i i b
aπ

Example 8.8. Two point charges q1 and q2 move non-relativisitically with the 
velocities v1 and v2 respectively (fig. 8.41). Compute
 (a) net magnetic field at the origin.
 (b) the force exerted on q2 by q1.
Solution: (a) From the section (8.13), a non-relativistically, the magnetic field 
of a moving charge q is given by 

 B = µ
0

2
4

q v
rπ

θsin

b

O
a

z

x

y

q2

q1

d
�

v2

v1

Fig. 8.41. Motion of two point charges.

The magnetic field due to charge q1 is B1 and given by 

 B1 = µ
0 1 1

2
4

90

π
q v
a
sin
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or B1 = µ
0 1 1

2
4π
q v
a

Similarly, for q2, the magnetic field B2 is 

 B2 = µ
0 2 2

2
4π
q v
b

Since B1 and B2 both are directed into plane of page, then, net magnetic 
field at O will be

 B = B1 + B2

or B = µ
0 1 1

2

2 2

2
4π

q v
a

q v
b

+





 (b) The magnetic force on a moving charge is given by 

 F
→

 = q v B( )

→ →
×

Here B = µ
0 1 1

2
4π

θq v
d
sin

 F = q2 v2 B

  = µ
0 1 2 1 2

2
4π

θq q v v
d

sin

Since, d = a b2 2+  and sin q = a
d

, hence

 F = µ
0 1 2 1 2

3
4

a q q v v
dπ

this is the required force.
Example 8.9. A magnet weighs 50 gm and its magnetic moment is 1000 units. 
If the density of the material of the magnet is 5 gm/cm3. Compute the intensity 
of magnetization.
Solution:  magnetic moment = 1000 units

 Volume = 
Mass

Density
cm= =50

5
10

3

Now, Intensity of magnetization

 M = m
v

= =1000

10
200 units.

EXERCISES

 8.1. Discuss a method to identify the north and south poles of a bar magnet.
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 8.2. What do you mean by magnetic flux. Obtain an expression of the 
magnetic flux originating from a current carrying wire shown in fig. 
8.42, and passing through a square sheet of side 1 m.

z

x

y

30º

i

Fig. 8.42. A square sheet.

 8.3. A long straight wire of length 2 m carries a current of 1.0 A lies along 
y-axis. Find the force on this wire, where magentic field is given by 

B i j
→

= +( )2 4
� �  Wb/m2.

 8.4. Find an expression for the flux density at an axial point of a circular coil 
carrying a current iA.

 8.5. Show that the area of M-H (B-H) curve represents the energy dissipated 
per unit volume of a magnetic material during each cycle.

 8.6. Explain residual magnetization, retentivity and coercivity using 
hysteresis curve of a magnetic material.

 8.7. A point charge q moves in a uniform magnetic field with speed v. Show 
that the work done by the magnetic force acting on it is zero.

 8.8. A long straight conductor curries a current i1 = 1.0A. Compute the force  
experienced by a square loop of side 1.0 m and carrying a current i2 = 
0.5 A, Fig. 8.43.

i = 1 A1 1 m

i = 0.5 A2

1 m

Fig. 8.43. A current element.
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 8.9. Determine the magnetic flux density of a toroid with radius R and 
number of turns n. Toroid carries a current i.

 8.10. Find the magnetic flux density at the centre of a semicircle, Fig. 8.44, 
and carries a current of 10A.

1
m

O

Fig. 8.44. Semi circle.

 8.11. State and prove Ampere’s circuital law and compute the magnetic field 
at an axial point of a solenoid.

 8.12. Find the magnetic flux density at the centre of a square loop of side 1.0 
m and carrying a current of 1.0 A.

 8.13. Compute the magnetic forces that act on two parallel wires when they 
carry unequal currents.

 8.14. A segment of wire 10 cm long carries a current of 1.0 A. Calculate the 
magnetic field at a point Q a distance of 0.5 m at angle of 30°.

 8.15. A long solenoid of radius R and number of turns n has a length L. If a 
current i flows through its coil, show that magnetic flux density at its 
axial point is given by 

   B = µ
0

2 1
2

ni
l

(cos cos )θ θ− .

 8.16. A straight wire of length l carries a current i. Show that the magnetic 
field at a distance R is given by 

   B = 
µ

0

2 2 1 2
4

i
R

l
l Rπ ( )

/+
 8.17. A cube of side 1.0 m is placed in a constant magnetic field of 0.1 Wb/m2 

and directing along x-axis. Compute the magnetic flux through each face 
of the cube.





In the previous chapters, we mostly have emphasis on source of direct current 
(dc). This current remains constant with time as shown in Fig. 9.1. Direct 
current contains zero frequency.

–

+

i

t

(a) (b)

Fig. 9.1. A direct current source (a) and current versus time (b).

An electric current with periodically varying intensity is called an 
alternating current. This passes through a complete cycle of changes at regular 
intervals. Each cycle consists of two half cycles : positive and negative. The 
voltage and current are given by equations as 

v = vo sin wt = vo sin 2pft ...(9.1)
v = io sin wt = io sin 2pft ...(9.2)

The source of alternating voltages and currents are sinusoidal as shown in 
fig. 9.2.

v

vo

– vo

O

t

i

io

– io

O

t

(a) (b)

Fig. 9.2. Representation of alternating voltage  
         (a) and alternating current (b).

9
CHAPTER

Alternating Currents
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where v and i are the instantaneous values of voltage and current. vo is called 
maximum voltage or voltage amplitude and io the maximum current or current 
amplitude. w is known as angular frequency (w = 2pf). Alternating currents in 
houses range from 50 cycles/s for lights, clocks and other appliances to 108 
cycles/s radar use and microwave communication. The symbol of ac source is 
shown in fig. 9.3.

Fig. 9.3. Symbolic representation of ac source.

9.1  AVERAGE AND ROOT-MEAN-SQUARE VALUES OF 
VOLTAGE AND CURRENT

The alternating current and voltage are continuously varying in positive and 
negative directions, hence, the average values of v and i over a cycle will be 
zero.

The average value of ac voltage over a period:

 <v> = 1

0
T
v dt

T

∫  ...(9.3)

  = v
T

t dto
T

sin ω
0

∫

  = v t d to
2

0

2

π
ω ω

π ω

sin ( )

/

∫

  = v do
2

0

0

2

π
φ φ

π
sin∫ =  = 0 ...(9.4)

Similarly, we obtain for ac current.
 <i> = 0 ...(9.5)
The equations (9.4) and (9.5) predict that voltage and current oscillate 

symmetrically about zero, as shown in fig. 9.4.
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v, i

vo

t

io

O

T

4

T

2

3T

4

T

Average = 0

Fig. 9.4. Plots of v and i, showing average values of voltage and current.

Now, we define the root-mean-square current irms as

 irms = < >i2  ...(9.6)
This is also known as virtual or effective value of current. The average 

value of square of current for a cycle may be computed as :

 <i2> = 1

0

2 2

0
T
i t dt

T
sin ω∫  ...(9.7)

  = i i t dt
T

0

2

0

2 2

0
2π

ωsin∫

  = i d0

2

2

0

2

2π
φ φ

π
sin∫

  = i
0

2

2
 ...(9.8)

the square root of <i2>

 irms = < >i2  = i
0

2
 = 0.707i0 ...(9.9)

Similarly, root-mean-square voltage vrms may be shown to be

 vrms = < > =v vo2

2
 = 0.707 v0 ...(9.10)

The instruments read the root-mean-square values of current and voltage, 
and they are calibrated to read such values. Instead of using average values of 
v and i, we use the average values of i2 and v2. The graphical representation is 
shown in fig. 9.5.
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i, i
2

i
2

o

i
2

o

2

i
o

O

i = i sin to �

T
t

i = sin t
2

�

2 2

o
i

i
rms

Fig. 9.5. A representation of i2 and i versus t.

The plot of i2 = i0
2 sin2 wt is always positive and average value of i2 is i0

2/2, 

which is definite. Because the average value of sin2 wt is 1

2
.

We say that the ac voltage in houses is 200V, so that rms value of voltage 
is 200V. Therefore, the peak value of voltage is v0 = 2 vrms = 2  × 200V 
= 282.84 V. This means that the ac voltage oscillates between +282.84V and 
–282.84V.

The alternating current depends on time, the simple procedures of 
solving problems cannot be applied directly. We take rms values of v and i 
(instantaneous values) for solving an ac circuit.
Example 9.1. The rms voltage of an ac generator is 100V and it produces 
a current of rms value 5A when connected in circuit. What are maximum 
affordable values of voltage and current?
Solution: v0 = 2 vrms = 141.42V
 i0 = 2 irms = 7.07A
Thus current i oscillates between +7.07 and –7.07A and voltage oscillates 
between 141.42 and –141.42 V.

9.2 PHASOR DIAGRAMS
A phasor diagram represents a projection of a physical quantity which varies 
sinusoidally with time. It is an intuitive visualisation of phase angle of current 
or voltage. The projection of a physical quantity must be a uniform circular 
motiion. Such quantities are known as phasors. Since ac voltage and current 
vary sinusoidally, these may be represented by phasor diagrams. The phasor 
diagram of ac voltage v = v0 sin wt is shown in fig. 9.6. Phasor diagrams may 
be plotted for resistive, capacitive and inductive circuits.
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�t

y

x

vo

O vo

v = v sin to �

Fig. 9.6. Phasor diagram for v = v0 sin wt

9.3 AC CIRCUIT WITH RESISTANCE
Consider an ac circuit containing a resistance R 
and a source of EMF as shown in fig. 9.7.

This ac source supplying the current through 
resistor R is

 i = i0 sin wt ...(9.11)

Therefore, the instantaneous potential differ-
ence across resistor R will be given by

 vR = Ri ...(9.12)

  = R i0 sin wt = v0R sin wt ...(9.13)

if we write v0R = i0R, thus, applied voltage and current are in phase at all times and 
potential difference across the resistor varies sinusoidally as shown in fig. 9.8.

v, i

voR

t

io

O

T

4

T

2

3T

4

T

Fig. 9.8. Current through a resistor in ac circuit.

R vR

Fig. 9.7. AC circuit with a 
resistor and source.
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The two curves attain their maximum values and minimum values 
simultaneously. Thus, two waves are said to be in same phase. The phasor 
diagram for ac circuit containing pure resistance is shown in fig. 9.9.

i sin to �

�t

O

y

voR

v sin toR �

x

Fig. 9.9. Phasor diagram for current i0 and voltage v0R.

The value of i0 and v0R are shown as vectors rotating counterclockwise. 
The projections of i0 and v0R on y-axis give the instantaneous values of i and  
vR. The two rotating vectors which represent the current and voltage coincide 
each other as shown in fig. 9.9.
Example 9.2. AC current passes through a resistance of 20W from a ac supply 
of maximum value of voltage 280V and frequency 50 Hz. Obtain instantaneous 
value of current.
Solution: Here f = 50 Hz
\ w = 2pf = 2 × 3.14 × 50 = 314s–1.
 a.c. voltage v = v0R sin wt = 280 sin 314t volt

Therefore, i = v
R

 = 14 sin 314t Amp.

9.4 AC CIRCUIT WITH CAPACITANCE 
We apply an alternating current to a capacitor of capacitance C as shown in 
fig. 9.10.

C vC

i

Fig. 9.10. An ac through capacitor.
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The current through the circuit at any instant is given by
 i = i0 sin wt ...(9.14)
The instantaneous voltage vC across the capacitor is 

 vC = q
C C

i dt= ∫1  ...(9.15)

 vC = 1

0C
i t dtsin ω∫

  = −i
C

t0

ω
ωcos

 vC = i
C

t0
90

ω
ωsin ( )−

 vC = v0C sin(wt – 90) ...(9.16)

where v0C = i
C0

1

ω




  and the quantity 1

ωC




  is

known as capacitive reactance of the condenser. It is  measured in ohms. Fig. 
9.11 shows a plot of i and vC.

i, v

voC

t

io

O

i = i sin wto

v = v sin ( t – 90)C oC �

Fig. 9.11. Plots of current and voltage through capitor.

From Fig. 9.11, it is clear that the voltage vC across the capacitor is not in 
phase with the current. The current leads the voltage by 90°, or current varies 
a quarter cycle. This implies that the energy is not dissipated. For positive half 
cycle voltage and current have same sign while for negative half cycle of ac, 
they have opposite sign, so that average power is zero. The ideal capacitor 
does not contain resistance, no electrical energy is dissipated in terms of heat.
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The quantity 1
ωC





  behaves like a resistance and it is represented by XC,

 XC = 1 1

2ω πC fC
=  ...(9.17)

Here, XC is not constant, it decreases with increasing f and C. Therefore, 
the alternating current passes easily through the capacitor. But for dc, f = 0, it 
offers infinite resistance, hence, dc does not pass through the capacitor.

The phasor diagram of capacitor is shown in fig. 9.12.

i sin ( t + 90)o �

�t

O

y

voc

v sin toc �

x

90º

vo

Fig. 9.12. Current leads voltage by phase angle p/2 in a capacitor.

The phase relationship between voltage and current is given in such a way 
that the current leads voltage by 90° or p/2. The projections of rotating vectors 
give the instantaneous values of the voltage and current.
Example 9.3. Calculate the reactance and the current when a voltage across 
the capacitor of capitance 10 µf is vC = 280 sin 314t.
Solution: vC = 280 sin 314t

\ XC = 1 1 10

314 10
318 5

6

ωC
= ×

×
= . Ω

Now,

 i = 280

318 5
314 90 0 88 314 2

.
sin . sin ( / ).t t+ °( ) = + π

9.5 AC CIRCUIT WITH INDUSTANCE
An ac circuit with source and an inductor is shown in fig. 9.13.
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vLL

i

Fig. 9.13. An ac flowing through an inductor.

If the inductor consists of self-inductance, it opposes the alternating current 
to flow, because of nature of ac, which is continuously changing.

Let the current through the circuit be
 i = i0 sin wt ...(9.18)
The voltage drop across the coil is 

 vL = L di
dt

 ...(9.19)

Here, L is the inductance of the inductor.

Now, vL = d
dt
i t( sin )
0

ω

 vL = Li0 w cos wt ...(9.20)
we may write the equation (9.20) as

 vL = v0L sin (wt + p/2) ...(9.21)
where, v0L = i0 (wL) ...(9.22)

The resultant voltage across the inductor is always zero, thus, energy is not 
dissipated therein.

The plots of current and voltage for a coil is shown in fig. 9.14. This 
indicates that the current and voltage are not in phase, but voltage drop vL 
across the inductor leads the current by 90° or p/2.

Again, Fig. 9.14 shows that voltage leads the current by a quarter cycle or 
a phase angle 90°. The quantity wL = 2pfL behaves like a resistance and it is 
known as inductive reactance, XL.

 XL = wL = 2pfL ...(9.23)
Here, the units of XL are ohms and its magnitude increase with increasing 

frequency f of ac.
For dc, the frequency f = 0, it offers zero reactance and dc may pass 

easily through inductor. Since XL ∝ f L, it offers reactance of ac, and greater 
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the frequency of ac, the magnetic flux changes more rapidly in the inductor. 
Moreover,

 vL = XL irms ...(9.24)
i, v

voL

t

io

O

v = v sin ( t + 90)L oL �

i = i sin tL o �

Fig. 9.14. Plots of current and voltage through an inductor.

The phasor diagram for an inductor in ac circuit is shown in fig 9.15, 
which indicates that current lags voltage by a quarter cycle or 90°.

�t

O

y

voc

i sin to �

x

90º

io

v sin ( t + 90)o �

Fig. 9.15. Phasor diagram for current and voltage in inductor.

Example 9.4. An ac, i = 5 sin (314 t) is passing through an inductor of 
inductance 0.3 H. Determine inductive reactance and vL.
Solution: XL = wL = 314 × 0.3 ohms
  = 94.2 ohms.
 vL = XL irms = 94.2 × 3.54
  = 333 volts.
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9.6 AC CIRCUIT WITH R AND C IN SERIES
A series connection of a resistor and a capacitor in ac circuit is shown in  
fig. 9.16.

vR

vC

R

C

Fig. 9.16. R and C in series.

If i = i0 sin wt is the instantaneous value of current through the circuit 
containing R and C, then voltage drops across R and C will be 

 vR = Ri = Ri0 sin wt ...(9.25)

and vC = 
i
C

t0
2

ω
ω πsin( )− /  ...(9.26)

Thus,
 v = vR + vC

 v = R i0 sin wt + 
i
C

t0
2

ω
ω πsin( )− /  ...(9.27)

If we substitute,

                         
R Z

C
Z

=

=







cos

sin

φ

ω
φ1  ...(9.28)

Then, equation (9.27) comes out to be 
 v = Zi0 sin (wt – f) ...(9.29)

where, Z = R
C

2

2 2

1+
ω

 is known as impedance of the combination, and 

 tan f = 1
RCω

 ...(9.30)

From, equation (9.29), it is clear that the voltage v lags behind the current 
by an angle f, as given in fig. 9.17. (phase diagram).
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v

�

O
i = i = iCR

vR

vC

Fig. 9.17. Phasor diagram of v and i.

Phasor diagram shows that the phase shift is between 0° and –90°. It tends 
to 0° for high frequencies and –90° for low frequencies.

If we take a parallel combination of R and C, then

 admittance  = 1

2

2 2

R
C+ ω  ...(9.31)

9.7 AC CIRCUIT WITH R AND L IN SERIES
Consider a resistor R in series with an inductor L with an alternating current 
source i = i0 sin wt, as shown in fig. 9.18.

vR

vL

R

L

Fig. 9.18. R and L in series.

An inductor coil is one which passes both resistance and self inductance. If 
vR and vL are voltage drops across resistor R and inductor L. Then,

 vR = Ri = Ri0 sin wt ...(9.32)
and vL = XLi = wL sin (wt + p/2) ...(9.33)

Now, the instantaneous value of the voltage across the combination of R 
and L, is given by 

 v = vR + vL

  = Ri0 sin wt + XL i0 sin (wt + p/2) ...(9.34)
  = Ri0 sin wt + XL i0 [sin wt cos p/2 + cos wt sin p/2]
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 v = Ri0 sin wt + XL i0 cos wt ...(9.35)
If we substitute,

                          
R Z
X ZL

=
=





cos

sin

φ
φ

 ...(9.36)
we get,
 v = z i0 sin (wt + f) ...(9.37)

where, Z = R XL
2 2+  ...(9.38)

 Z = R L2 2 2+ ω  ...(9.39)

and tan f = 
X
R

L
R

L = ω
 ...(9.40)

Here, XL = wL is called the inductive reactance of the coil and Z is the 
impedance.

The applied voltage leads the current by an angle f and this is shown in 
phase diagram, fig. 9.19. It is clear that the phase shift is between 0° and 90°. 
It approaches 0° for law frequencies and 90° for high frequencies.

v

�

O
i = i = iLR

vR

vL

Fig. 9.19. Phasor diagram of v and i

If we take a parallel combination of R and L, then

 admittance = 1 1

2 2 2R L
+

ω
 ...(9.41)

9.8 AC CIRCUIT WITH L AND C IN SERIES
An alternating circuit containing an inductor and a capacitor in series is shown 
in fig. 9.20.

Suppose the current through the circuit at any instant is given by 
 i = i0 sin wt ...(9.42)
If vL and vC are the voltage drops across the inductor and the capacitor, 

then,
 v = vL + vC ...(9.43)
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vL

vC

L

C

Fig. 9.20. L and C in series
Here, vL = xL i
 vC = XC i

then, v = XLi + XCi ...(9.44)

  = ω
ω

L
C
i−





1  ...(9.45)

\ v = ω
ω

ωL
C
i t−





1

0
sin  ...(9.46)

Now v = Zi0 sin wt ...(9.47)

where Z = ω
ω

L
C

−





1  ...(9.48)

The specific driving frequency at which the amplitude of the current is 
maximum
 XL = XC ...(9.49)

 wL = 1
ωC

 ...(9.50)

which gives f = 1

2 LCπ  ...(9.51)

This is known as natural frequency of the LC circuit.
Phasor diagram of LC circuit is shown in fig. 9.21.

Im (Z)

�L

�L –
1

�C

1

�C

Re (Z)

Fig. 9.21. Phasor diagram of LC circuit.
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9.9 AC CIRCUIT WITH LCR IN SERIES
Now we do an ac circuit that contains, a resistor R, a capacitor C and an 
inductor L as shown in fig. 9.22.

vLvCvR

R C L

Fig. 9.22. An ac circuit with R, C, L in series.

Let the instantaneous current i in the circuit is given by 
 i = i0 cos wt ...(9.52)
Suppose that vR, vL and vC are the instantaneous value of the voltages 

across R, L and C respectively. Then, we may write
 v = vR + vC + vL ...(9.53)
Since we known that:

 (a) In resistive circuit, the current and the voltage are in same phase.
 (b) In capacitive circuit, current leads the voltage by 90°.
 (c) While in inductive circuit, current lags the voltage by 90°.

Then, we have,
 vR = v0R cos wt = Ri0 cos wt,

 vC = v0C cos (wt – p/2) = i
C

t0
2

ω
ω πcos( )− / ,

and vL = v0L cos (wt + p/2) = i0 wL cos (wt + p/2)

where v0R = Ri0, v0C = i
C
0

ω
 and v0L = i0wL are the peak values of the voltages 

that drop across R, C and L respectively. Substituting the values of vR, vC and 
vL in equation (9.53), we get,

                 v = Ri t i
C

t i L t0

0

0
2 2

cos cos cosω
ω

ω π ω ω π+ −



 + +



  ...(9.54)

                    = i R t L
C

t
0

1
cos sinω ω

ω
ω− −











  ...(9.55)

Let R = Z cos f 
...(9.56)

and ω
ω

L
C

−





1
 = Z sin f






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then v = Zi0 cos (wt + f) ....(9.57)

where, Z = R L
C

2

2
1+ −



ω

ω
 ...(9.58)

and tan f = 
ω

ω
L

C
R

−





1

 ...(9.59)

Again, XC = 1
ωC

and XL = wL
Equation (9.58) and (9.59) may re-write as

 Z = R X XL C
2 2+ −( )  ...(9.60)

and tan f = ( )X X
R

L C−  ...(9.61)

Also, equation (8.57) may be re-written as

 v = v0 cos(wt + f) ...(9.62)

where, v0 = i0 Z ...(9.63)

Z = R X XL C
2 2+ −( )  is known as the impadance of the circuit.

The equation (9.60) is represented by the diagram shown in fig. 9.23.

Z

R

�

x – xCL

Fig. 9.23. Relation between R, XL, XC and Z.

The equations (9.52) for current and (9.62) for voltage indicate that voltage 
and current are out of phase by an angle f. The angle f depends on the values 
of XL, XC and R.

There are three cases for the angle f, which are
 (a) If XL = XC. Then
   tan f = 0
  \ f = 0
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  then impedance Z = R, and the voltage and the current are in same 
phase.

 (b) If XL > XC. Then, tan f will be positive. Hence f will be positive. 
In this situation, voltage leads the current be angle f. In a purely 
inductive circuit, R → 0 and C → ∞ that gives XC = 0 and R = 0. 
Therefore, f = 90°.

 (c) If XL < XC. Then f will be negative, hence voltage lags the current 
by angle f. In a purely capacitance circuit, L → 0 and R → 0. Thus, 

Z = 1
ωC

 and f = –p/2.

9.10 SERIES RESONANCE
In a series resonance circuit, R, C and L are connected in a series with ac 
source. The rms value of current is given by 

 irms = v
Z

v

R X XL C

rms rms=
+ −2 2

( )

 ...(9.64)

when XL = XC, the voltage and current are in same phase.

\ w0L = 1
ωC

 ...(9.65)

\ w0
2 = 1

LC
 ...(9.66)

This condition determines the specific frequency for which inductive 
reactance cancels the capacitive reactance.

From equation (9.66),

 f0 = 
1

2π LC
 ...(9.67)

The frequency f0 is known as resonant frequency. At XL = XC, Z = 
R(minimum). Thus, current becomes maximum. The amplitude of the current

 i0 = v
Z

v
R

0 0=  ...(9.68)

\                           
tan φ

φ
=
=





0

0
 ...(9.69)

At resonance frequency f0 the voltages across capacitor C and inductor 
L are equal and opposite. The variation of current as a function of frequency 
is shown in fig. 9.24. The curves obtained by plotting current against the 
frequency w are known as resonance curves. Here three plots of current  
i versus w for different values of resistance R are shown in fig. 9.24.
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R1

R2

R3

i

�

� = �o
O

R > R > R13 2

Fig. 9.24. The plots of current versus w for different values of R.

From  fig. 9.24, it is observed that 
 (a) the maximum current occurs at w = w0.
 (b) the resistance of the circuit is real and has least value at w = w0.
 (c) the peak of any curve depicts the selectivity or sharpness of the 

circuit.
 (d) for w < w0, the voltage lags the current and for w > w0, the voltage 

leads the current.
 (e) at w = w0, the voltage and current are in same phase.

9.11 POWER IN AC CIRCUITS
The power is dissipated for resistors while capacitors and inductors store and  
release energy to the circuit, there is no dissipation of energy due to capacitors 
and inductors. When current flows through the circuit, the inductor stores 
magnetic energy and this energy is fed from the inductor back into circuit 
when current tends to zero. Similarly, capacitor stores electric energy during 
charging. When capacitor is discharged, the electric energy is fed back to the 
circuit.

Now power dissipation for a resistor is given by
 P = vi ...(9.70)

where v and i are real function of time.
For voltage and current, we may write,
 v = v0 eiwt = v0 cos wt ...(9.71)
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and i = i0 ei(wt + f) = eiwt eif ...(9.72)
  = i0 (cos wt + i sin wt) (cos f + i sin f)

The real value of i is given by 
 i = i0 (cos wt cos f – sin wt sin f)  ...(9.73)
From equation (9.70), the power is 
 P = v0 i0 (cos2 wt cos f – cos wt sin wt sin f)  ...(9.74)
The average power over a complete cycle is given by

 Pav = 
P dt

dt

v i0

2

0

2 0 0

1

2

π ω

π ω φ

/

/
cos

∫

∫
=  ...(9.75)

Since  <sin2 wt) = 
1

2
 and <sin wt cos wt> = 0

 Pav = v i v i0 0

2 2
· cos cosφ φ=

rms rms

\ Pav = vrms irms cas f ...(9.76)

The factor cos f is known as power factor of the circuit 

Again,  tan f = 
ω

ω
L

C
R

−





1

Then, cos f = R

R L
L

2

2
1+ −



ω

ω

 cos f = R
Z

 ...(9.77)

For a complete cycle of an ac current the power consumed by L and C is 
zero. The equation (9.76) represents the power consumed by the resistor only.

cos f is always positive when − < <π φ π
2 2

, this means that the energy per 

unit time is always expanded by the source.
\ Pav = vrms irms cos f

  = Z i R
Z

i R
rms rms

2 2
· =  ...(9.78)
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Thus, all the energy supplied to the ac circuit by the source is dissipated as 
the heat in the resistor R at the average rate of i R

rms

2 .
For resistor R only, Z = R, hence f = 0

\  Pav = vrms irms

If R = 0 and ac circuit must contain L and C, f = 90° or π
2

,

 cos f = 0
hence, Pav = 0

Then, current flowing through the circuit is known as wattless current and 
the average power consumed in the circuit is zero.

9.12 AC CIRCUIT WITH LCR IN PARALLEL
Consider an ac circuit that contains R, L and C in parallel as shown in fig. 9.25.

C

R L

Fig. 9.25. An ac circuit with R, L and C in parallel connection.

The impedance of the circuit may be calculated as 

 
1
Z

 = 
1

1R j L
j C

+
+

ω
ω

  = 1
R j L

j C
+

+
ω

ω  ...(9.79)

 
1
Z

 = ( )

( ) ( )

R j L
R j L R j L

j C−
+ −

+ω
ω ω

ω  ...(9.80)

we have multiplied by (R – jwL) in numerator and denominator.
Now,

 
1
Z

 = R
R L

j L
R L

j C
( ) ( )

2 2 2 2 2 2+
−

+
+

ω
ω
ω

ω

  = R
R L

j C L
R L( ) ( )

2 2 2 2 2 2+
+ −

+




ω

ω ω
ω

 ...(9.81)
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For resonant frequency of the circuit, the imaginary term of the equation 
(9.81) should be equal to zero.

 ω ω
ω0

0

2

0

2 2
C L

R L
−

+( )

 = 0 ...(9.82)

⇒ w0
2 = 1

2

2LC
R
L

−






 w0 = 1
2

2LC
R
L

−  ...(9.83)

This is the resonant frequency for which the current and voltage are in 
same phase. For resonance to occur, w0 should be real, i.e.

 1
LC

 > R
L

2

2  ...(9.84)

⇒ 
L
C

 > R2

\ 
L
C

 > R ...(9.85)

Now, current may be found as 

 i0 = v
Z
0  ...(9.86)

Since, 1
Z

 = 
1

( )R j L
j C

+
+

ω
ω

and its complex conjugate is given by

\ 1

Z*
 = 1

( )R j L
j C

−
−

ω
ω

on multiplying we get

 1

2Z
 = 

1 1
R j L

j C
R j L

j C
+

+



 −

−



ω

ω
ω

ω  ...(9.87)

  = 1 1 1

2 2 2

2 2

R L
C j C

R j L R j L+
+





+
−

−
+





ω

ω ω
ω ω

 1

2Z
 = 1 2

2 2 2

2 2

2

2 2 2
( )R L

C LC
R L+

+ −
+ω

ω ω
ω
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⇒ 1

2Z
 = 1

1
2 2 2

2 2 2 2 2

R L
R C LC

+
+ − ω

ω ω( )  ...(9.88)

Then,

 1
Z

 = ω ω
ω

2 2 2 2 2

2 2 2

1R C LC
R L

+ −
+
( )  ...(9.89)

Substituting in equation (9.86) we get

 i0 = v R C LC
R L0

2 2 2 2 2

2 2 2

1ω ω
ω

+ −
+
( )  ...(9.90)

The current i0 is minimum at w2LC = 1. From above expression of the 
current, it appears that the current is minimum at a slightly lower frequency, 
and it rejects the current to pass through the circuit. Hence, parallel resonance 
circuit is known as a rejector circuit. The  parallel LC circuit offers maximum 
Z for resonance condition.

9.13 QUALITY FACTOR Q OF SERIES RESONANCE
The quality factor Q of series resonant circuit is defined as the ratio of the 
voltage across inductor L to the voltage across resistor R. That is,

 Q = v
v

L
R

L

R
= ω0  ...(9.91)

where w0 = 1
LC

\ Q = 1
R

L
C

 ...(9.92)

Now, the average power is 
 Pav = vrms irms cos f ...(9.93)

and cos f = 
R
Z
i v

Z
,

rms

rms=

Then,

 Pav = v R
Z
rms

2

2

⇒ Pav = v R

R L
C

rms

2

2

2
1+ −



ω

ω
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  = v R

R L
LC

rms

2

2
2

2

2

2
1+ −



ω

ω
 ...(9.94)

Since, resonance frequency,

 w0
2 = 1

LC

substituting it in equation (9.94), we get

 Pav = v R

R L
rms

2

2
2

2

2

0

2 2+ −
ω

ω ω( )

⇒ Pav = v R
R L

rms

2 2

2 2 2 2

0

2 2

ω
ω ω ω+ −( )

 ...(9.95)

The variation of the average power as a function of the frequency is shown 
in fig. 9.26.

R

�

O
�1 �o �2

2 Pav

Pav

Fig. 9.26. The plot of the average power versus w for small value of R.

when R is small, the quality factor Q is large. The full width at half maximum 
determines the Q.

 Q = ω
ω ω

ω
ω

0

2 1

0

−
=

∆
 ...(9.96)
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where Dw is known as resonance width. The full width at half maximum 
determines the sharpness of the resonance (at 2  times of the peak), which 
is the half power. Hence, a large value of Q gives narrow and sharp resonance 
curve.
Example 9.5. An ac circuit with L, C and R is shown in fig. 9.27.

R C L

Fig. 9.27. LCR in series.

Here, v = 120 cos 314t; R = 10W, L = 40 mH and C = 20µF. Then Find
 (a) Impedance of the circuit.
 (b) Phase angle f.
 (c) Resonant frequency w0.
Solution:  XL = wL = 314 × 40 × 10–3W = 12.56W

 XC = 1 1

314 20 10

159 23
6ωC

=
× ×

=− Ω Ω.

(a) \ Z = R X XL C
2 2+ −( )

  = ( ) ( . . )10 12 56 159 23
2 2+ −

 Z = 147 W

(b) tan f = X X
R

L C−

 f = –1° 39′

(c) w0 = 1 1

40 10 20 10
3 6LC

=
× × ×− −

  = 
1

8 10
7× −

 w0 = 1118 sec–1.
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9.14 TRANSFORMERS
We have many situations, where low voltage or high voltage is needed. For 
example home appliances need a voltage of 200V. In electronic equipments, 
we need either 18 V or 12V. A transformer is a device that transform an ac at 
high voltage into low voltage and vice versa with very small loss of power. 
Ideal transformer decreases or increases an ac voltage without loss of power. 
If the output voltage is smaller than the input voltage, it is called step down 
transformer, moreover, if the output voltage of a transformer is higher than the 
input voltage, it is called step up transformer. 

A  schematic diagram of transformer is shown in fig. 9.28. It consists of 
two coils known as primary and secondary coils. These coils are electrically 
insulated from each other and wound on a same soft iron core which is 
laminated to prevent the eddy-current losses.

N1 N2
Outputac input

Primary

coil
Secondary

coil

Soft iron core (Laminated)

Fig. 9.28. A typical view of a transformer.

The symbolic view of a transformer is shown in fig. 9.29.

outputinput

Fig. 9.29. Conventional view of transformer.

The working of transformer is based on the principle of mutual induction. 
That is, the magnetic flux produced by an ac in primary coil passes through 
secondary coil. When an ac current flows through the primary coil produces 
an induced emf (voltage) in the secondary coil. The frequency of the voltage 
in the secondary coil will be same as that in primary coil.
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From Faraday’s law, the rate of change of magnetic flux in primary coil is 
equal to emf (voltage) produced, then,

 V1 = –N1
d
dt
φ  ...(9.97)

where N1 is the number of turns in the primary coil. This flux is linked to the 
secondary coil, so that, the emf or voltage produced in the secondary coil will 
be 

 V2 = –N2
d
dt
φ  ...(9.98)

The magnetic flux in two coils will be same. From the equations (9.97) 
and (9.98), we have

 V
V

1

2

 = N
N

1

2

 ...(9.99)

The equation (3.99) is called transformer equation.
Hence, the ratio of voltages in the primary coil to the secondary coil is 

equal to the ratio of their corresponding terms. 
If N1 > N2, then V1 > V2. Thus, it is a step down transformer. Moreover, 

if N1 < N2, V1 < V2, the voltage in the secondary coil is larger than voltage 
in the primary coil, hence it is called step up transformer. A well designed 
transformer is more efficient. In the otherwords, we may say that the input 
power in primary coil is equal to the output power in the secondary. Thus,

 I1V1 = I2V2

 V
V

1

2

 = I
I
2

1

 ...(9.100)

From the equations (9.99) and (9.100) we get,

 N
N

1

2

 = I
I
2

1

 ...(9.101)

Here, I1 and I2 are rms values of the currents.
The equation (9.101) reveals that the currents in the primary coil and 

secondary coil are inversely proportional to the number of terms.
Transformers donot operate on direct current (dc), because dc current does 

not produce a charge in flux in the primary coil, hence no emf is produced in 
the secondary coil.
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EXERCISES

 9.1. A resistor R and an inductor L are connected in series with an ac source 
of 100V. An ac voltmeter is connected across R and then across L and 
giving same readings. What does it predict. Ans. 70.7

 9.2. L = 40 mH, C = 20 µF and R = 10W
  v = 100 sin 314t.
  Find
  (a) voltage across each element.
  (b) instantaneous value of current.
  (c) total impedance of the circuit.
 9.3. For the preceding problem. Find the average power of the circuit.
 9.4. In a parallel LCR circuit, the current is not minimum when XL = XC 

ω
0

1=



LC

. Find the frequency for which current is minimum.

 9.5. Find the expression for the current in the parallel LCR circuit.
 9.6. In a LCR circuit, L = 40 mH, C = 20 µF and R = 100W. Find the 

frequencies for which power factor is equal to 0.2.
 9.7. An alternating voltage of amplitude 100V and angular frequency of 

100p rad s–1 is connected in series circuit with R = 10W, L = 2 mH and 
C = 20 µF. Determine

  (a) The amplitude and phase of current 
  (b) Potential difference across R, L and C
 9.8. Why the voltage and current in L and C of ac circuits have a phase 

difference of 90°, explain.
 9.9. A step up transformer is designed to change a voltage 100V into 440V. 

The primary coil contains 1000 terns. If transformer has 100% efficiency, 
how many terns (N2) in the secondary coil.

 9.10. A resistance R and a capacitance C are connected in series across a source 
of ac voltage of 100V. A voltmeter across the capacitance reads 75V. 
Find the voltmeter reading when it is connected across the resistance R.

Ans. 66.14V
 9.11. A resistor R and a capacitor C are connected in series as shown in fig. 

9.30.
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vCvR

R C

v = v cos to �

Fig. 9.30. CR in series.

  Explain, why | V0 | ≠ | VR | + | VC |
 9.12. A 10µF capacitor is connected across an ac source that has rms value of 

100V and frequency f = 50 Hz. What is the amplitude of current.





A static charge produces an electric field and a moving charge produces static 
magnetic field. In the previous chapter, we have seen how the electricity 
produces magnetism. If we think about the converse of this and a possibility 
arises that the magnetic effect produces electric current. After Hans-Christian 
Oersted, Michael Faraday started the experiments and showed that the magnetic 
field may produce the electric current. In 1931, Faraday observed that if a 
magnet is moved in the vicinity of a coil, a current is induced in the coil and 
is indicated by a galvenometer, as shown in fig. 10.1. He concluded that the 
induced current was dependent not only on the magnetic flux itself, but on its 
time rate of change also. The changing magnetic field produces an induced 
emf. Faraday gave a relation between time rate of change of magnetic flux and 
the induced emf. This relation is called the Faraday’s law of electromagentic 
induction.

S N

1

2

1 2

i

Coil-C

G

1
2

(a)

1 2

Coil-C
2

G

1
2

K

i

Coil-C
1

– +

(b)

CHAPTER

10 Time-Varying Fields
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Coil-C
2

G

12 1 2

K

Coil-C
1

–

+

Battery

(c)

Fig. 10.1. (a) The induced emf when a magnet moves towards and  
away from a coil (b) moving a current carrying coil and  

(c) switching on and off a current in a coil.

Fig. 10.1 (a) depicts an experiment, in which a magnet moves toward a 
coil C. As a result of this, an emf is induced in the coil C due to the change in 
magnetic flux passing through the coil. A current flows in the galvenometer G. 
On the other hand, if the magnet moves away from the coil C, the magnetic flux 
linked with the coil decreases and a current is observed in the galvenometer 
but in opposite direction.

In the fig. 10.1 (b), the magnet is now replaced with a coil C1 connected 
to a battery. When a current flows in the coil C1, it produces a magnetic field. 
Thus, a magnetic lines of force (magnetic flux) is linked to the coil C1. When 
coil C1 moves toward or away from the coil C2 rapidly, the change in flux 
causes an emf is induced in the coil C2, and a current flows in the coil C2 as 
indicated by galvenometer G.

In the circuit depicted by Fig. 10.1 (c), we have two coils C1 and C2. 
The coil C1 is connected to a battery through a key K and the second coil C2 
is connected to a galvenometer G. When key K is closed, a current passes 
through the coil C1 and a magnetic field is produced. It shows that an emf 
is induced in the coil C2. A deflection in the galvenometer is produced. The 
direction of deflection of galvenometer indicates that the current in the coil C2 
is opposite to the direction of the current in the coil C1. If the key K is opened, 
the current becomes zero very soon in the coil C1, and a momentary current 
is induced in the coil C2 in the same direction as in C1. The direction of the 
current is opposite in the two cases.

10.1. FARADAY’S INDUCTION LAW
If the magnetic flux passing through a closed circuit is changing, an emf is 
induced in that circuit. The magnitude of the induced emf is equal to the 
negative of the time rate of change of the magnetic flux passing through the 
circuit.
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Changing magnetic field produces an induced emf

Mathematically, Faraday’s law can be written as

 e = 
− = −Nd
dt

d N
dt

B Bφ φ( )
 ...(10.1)

where N is the number of turns in the coil and induced emf e is in volts. The 
quantity NfB is the total flux linked to the coil.

Since, the induced emf is due to the motion of the electrons, a force is 
exerted on the electrons associated with the induced emf. Thus, we write

 e = E dl
l

→ →
⋅∫�  ...(10.2)

From the equations (10.1) and (10.2) we have

 E dl
l

→ →
⋅∫�  = − d N

dt
B( )φ

 ...(10.3)

But we know,

 NfB = B dS
S

→ →
⋅∫  ...(10.4)

NfB is the total flux linked to the surface S. Thus we may write.

 E dl
l

→ →
⋅∫�  = − ⋅

→ →

∫ddt B dS
S

 ...(10.5)

or E dl
l

→ →
⋅∫�  = − ⋅

→
→

∫ d Bdt dS
S

 ...(10.6)

Now, applying stoke’s theorem, we obtain

 ( )∇ × ⋅
→ →

∫ E dS
S

 = − ⋅
→

→

∫ d Bdt dS
S

 ...(10.7)

For any arbitrary surface, we can write the equation (10.7) as 

 ∇ ×
→
E  = – ∂

∂
B
t

 ...(10.8)

In the region of time varying magnetic field the electric field is not 
conservative and cannot be expressed as the negative of a gradient of a scalar 
potential. The Equation (10.8) is known as Faraday’s law. The Equation (10.1) 
holds for a stationary circuit (dc networks).
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10.2. LENZ’S LAW
Since Faraday’s law does not give the direction of the induced emf, the 
direction of the induced emf is given by Lenz’s law. This law is based on the 
conservation of energy  principle. According to Lenz’s law, the induced emf 
produces a current and the direction of the induced current is always such as to 
oppose the cause that produces it.

To apply the Lenz’s law, consider a single loop as shown in fig. 10.2. 

               

S N

v

B

N S

N

S

�B > 0

d�B
> 0

dt

(a)

         

S N

v

B

S N

NS

� �B 0

d�B
0�

dt

(b)

      

Fig. 10.2. Direction of the induced current.

When a magnet moves towards the loop, the magnetic flux through the loop 

will increases, fB > 0 and the magnetic field B will increase, thus d
dt
Bφ  > 0. 

As a result of this, a current is induced, the direction of the B is pointing 

to the right. The induced current will be in a direction such that the induced 
field Bind is in left direction to reduce the effect. As in Fig. 10.2 (b), when 
the magnet moves away from the loop, the magnetic flux linked to the loop 

decreases and fB ≤ 0, d
dt
Bφ  ≤ 0. As a result, the magnetic across the loop will 
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decrease, and Bind should point to the right. From the Fleming’s right hand 
rule this is possible only if the current in the loop is in counter-clock-wise 
direction. In both the cases direction of the induced current opposes the change 
in magnetic flux linked to the loop.

Example 10.1. A square loop of 50 turns and side 10 cm is placed with its 
plane perpendicular to the magnetic field. Calculate the induced emf if the 
magnetic field changes from 0.5T to 1.0T in 0.5s.
Solution:  N = 50 turns
 Area of the loop S = 0.1 × 0.1 = 0.001 m2

The plane of loop is normal to B, cos q = cos 0 = 1

 Induced emf e = dB
dt

= − =1 0 0 5

0 5
1

2. .

.
volts/m

 e = − = −Nd
dt

N d BS
dt

Bφ ( )

or e = −NS dB
dt

 e = –50 × 0.001 × 1 volts
 e = 0.05 volts

10.3. FLEMING’S RIGHT HAND RULE
This is also called a generator rule because it is useful in generators and motors. 
It is applicable when a current is induced in a circuit. When a conductor moves 
through a magnetic field, a current is induced in the conductor the direction 
of the current induced is given by Fleming’s right hand rule. When right hand 
is stretched in such a way that the thumb, forefinger and the middle finger are 
mutually perpendicular to each other, then
 (a) the thumb represents the direction of motion of the conductor.
 (b) forefinger is pointed in the direction of the magnetic field.
 (c) and the middle finger points in the direction of induced current as 

shown in fig. 10.3.

magnetic

field

motion

Induced

current

Fig. 10.3. Fleming’s right hand rule
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10.4. EMF INDUCED IN A MOVING CONDUCTOR
According to Faraday’s law of magnetic induction, an induced emf always 
produces a current which gives rise to the electric field associated with it.
When a conductor moves through a uniform magnetic field, the emf is induced 
in the conductor also.
When a conductor MN moves through a static field by sliding on a U-shaped 
conductor as shown in fig. 10.4.

y

z

x

v

B

q

P
N

S

Q
M

R

MN = l

x

Fig. 10.4. EMF is produced when a conductor moves  
in a uniform magnetic field.

The area of the loop MNPQ is changing with time as the conductor MN 
moves. A uniform magnetic field is perpendicular to the area bounded by the 
loop and is parallel to the z-axis. Now, the force on a charge q moving with a 
uniform velocity v is given by 

 F
→

 = q ( )v B
→ →

×  ...(10.9)

Since v B
→ →

and  are perpendicular, then
 F = q v B ...(10.10)

or E = F
q

 = vB ...(10.11)

where E is the electric field associated with motion of the charge. Since MN is 
moving and the other parts of the loop are in rest, the emf induced in the loop is 
 e = VM – VN = El ...(10.12)
where l is the length of the conductor MN. Thus,

 e = vBl ...(10.13)
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If v = 0, e = 0
The Equation (9.13) can be obtained as follows. The magnetic flux through 

the loop MNPQ is

 fB = B dS BS
S

→ →
⋅ =∫�  ...(10.14)

or fB = Blx ...(10.15)
since x is changing with time, then

 d
dt
Bφ  = Bl dx

dt
Blv=  ...(10.16)

the magnitude of the induced emf is given by 

 e = d
dt
Bφ

or e = vBl ...(10.17)
the induced current i is, then, given by

 i = ε
R

or i = vBl
R

 ...(10.18)

where R is the resistance of the loop MNPQ, and its direction is clockwise

10.5.  EMF INDUCED IN A ROTATING COIL : PRINCIPLE OF 
ELECTRIC GENERATOR

Consider a rectangular coil of turns N moving in a static field B as shown in 
fig. 10.5. When this coil rotates in a static field, the magnetic flux fB passing 
through the coil changes with time.

B

B

S

�

N

S

y P

S

R

Q

x
�

z

Fig. 10.5. Rotating coil in a static field.
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Since fB is changing with time, an emf is induced in the coil. In fig. 10.5, 

the normal surface vector S
→

 makes an angle q with the magnetic field B. 
Therefore, Magnetic flux through the coil PQRS is
 fB = BS cos q ...(10.19)
where S is the area of the rectangular coil. The coil is rotating about z-axis with 

the angular velocity w = 
θ
t

. Thus,

 fB = BS cos wt ...(10.20)
The emf induced in the coil

 e = –N d
dt

NBS d
dt

tBφ ω= (cos )  ...(10.21)

 e = wNBS sin wt ...(10.22)
or e = e0 sin wt ...(10.23)
where e0 = wNBS is maximum induced emf.

If R is the resistance of the coil, the induced current is given by 

 i = ε ε ω
R R

t= 0
sin  ...(10.24)

or i = i0 sin wt ...(10.25)

where i0 = ε0
R

 is amplitude of the current.

Example 10.2. A conductor of length 0.5 m is sliding along two conducting 
rails with the speed 0.5 m/s. If the resistance of the system is 1 W, calculate the 
induced current, given B = 1.0T.
Solution: According to Faraday’s law, the induced emf is
 e = vBl
  = (0.5 m/s) × (1.0T) × (0.5 m)
 e = 0.25 volts
the induced current

 i = ε
R

= 0 25

1

.

or i = 0.25 A.

10.6. EDDY CURRENTS
Eddy currents are due to Faraday’s law of induction. The eddy currents occur 
when an ac flows through a conductor. If a metal sheet is moving across the 
magnetic field, the magnetic flux fB is changing with time and an emf is 
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produced, this emf will produce eddy currents also, that are circulating on the 
surface of the metal as shown in fig. 10.6.

These eddy currents decrease the change in magnetic flux 
d
dt
Bφ



 ,

v F

S

N

Fig. 10.6. Eddy currents in a metal.

and produces a force due to which the motion of the conductor occurs. The 
detail of eddy currents and skin effect may be found in “a plane EM wave in a 
conducting media”.

10.7. SELF-INDUCTANCE
A choke or an inductor is a coil of the wire. If a current flowing in a coil is 
changed, an emf is produced. This is due to the change in flux linked with the 
coil. This inductive effect is called self-induction.

–

+

i

Rh

Bind

B

Fig. 10.7. Self induction

Suppose that the current i is flowing through a coil and as a result, a 
magnetic field setup across the coil as shown in fig. 10.7. The current i is 
increased or decreased by a rheostat Rh and it changes the magnetic field. This 
will result in changing the magnetic flux fB. If there are N turns in the coil, the 
magnetic flux NfB is proportional to the current i. Thus,
 NfB = Li ...(10.26)

or L = N
i
Bφ  ...(10.27)

where the proportionality constant L is called the coefficient of self inductance 
or simply self inductance. 
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According to Faraday’s law of induction, the induced emf is 

 e = − = −Nd
dt

d N
dt

B Bφ φ( )  ...(10.28)

or e = − d Li
dt
( )

or e = −L di
dt

 ...(10.29)

From the Equation (10.29), the coefficient of self induction is given by 

 L = − ε
( / )di dt

 ...(10.30)

The Equation (10.29) shows a back emf and it is due to Lenz’s law.
The SI unit of self inductance L is Wb/A or Volt per ampere per second 
Volt

Ampere⋅




s

 or henry, in the honor of Joseph Henry.

 1 henry = 1

1

volt

Ampere/Second
 ...(10.31)

or 1 henry = 1

1

Wb

Ampere

.  ...(10.32)

10.8. MUTUAL INDUCTANCE
The mutual inductance is arises between a pair of coils which are linked by a 
magnetic flux. The change in current in one coil will produce an induced emf 
in the other coil, and this phenomenon is known as the mutual induction.

Consider two coils c1 and c2 consisting of N1 and N2 turns respectively as 
shown in fig. 10.8.

AC

Source

C
1

N
1

C
2

N
2

Fig. 10.8. A current in coil c1 produces a current in the coil c2.

The current i1 in the coil c1 will produce a magnetic flux (N2fB) linking 
two circuits. That is, the magnetic flux (N2fB) is proportional to the current i1. 
Thus,
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 N2fB ∝ i1 ...(10.33)
or N2fB = Mi1 ...(10.34)
where the proportionality constant M is called the coefficient of mutual 
inductance. M is purely a geometric factor and contains permeability, and it 
depends on shapes and size of coil and turns N etc.

Now, according to Faraday’s law, the induced emf in the coil c2 is given by 

 e2 = −d N
dt

B( )
2
φ  ...(10.35)

or e2 = −M di
dt

1  ...(10.36)

Here, we have substituted the value of (N2fB) from the Equation (10.34) 
into equation (10.35). Therefore,

 M = – ε
2

1
( / )dt dt

 ...(10.37)

Now, we will calculate the effect on the current i1 due the time rate of 
change of current in the coil c2.

The emf induced in the coil c1 is given as

 e1 = −M di
dt

2  ...(10.38)

From the Equations (10.36) and (10.38), we have

 di
dt

1  = di
dt

2  ...(10.39)

Thus, we write

 M = N
i

N
i

B B1

2

2

1

φ φ=  ...(10.40)

The SI unit of M is same as that of L.
Example 10.3. Compute the self inductance per unit length of a long solenoid.
Solution: Consider a solenoid of length l consisting of number of turns per 
unit length n. The magnetic field at axial point is given by 

 B = µ
0
ni
l

The magnetic flux through the solenoid is 
 fB = BA
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where A is the cross-sectional area of the solenoid.

\ fB = µ
0
niA
l

the self inductance L is given as

 L = n
i

n A
l

Bφ = µ
0

2

.

10.9. ENERGY STORED IN A MAGNETIC FIELD

Since the capacitor stores an electric energy which is equal to 1

2
0

2∈ E , an 
inductor stores magnetic energy when it is connected to a battery. Consider an 
inductor in which a current i is flowing. Then induced emf is given by 

 e = –L di
dt

 ...(10.41)

If dW represents the amount of work done in moving the charge dq against 
emf e, then
 dW = –edq ...(10.42)

  = Ldi dq
dt

or dW = Ldqdi
dt

\ dW = Lidi ...(10.43)
Integrating the Equation (10.43) to obtain total work done which is equal 

to the energy stored in the inductor.

 UB = dW Li di
i

∫ ∫=
0

 ...(10.44)

or UB = 1

2

2Li  ...(10.45)

For a particular case, we may calculate the magnetic energy per unit 
volume, that is, the magnetic energy density.
Example 10.4. Obtain an expression for the magnetic energy density of a 
long solenoid.
Solution: The magnetic field of a long solenoid of length l having number of 
turns n is given by 

 B = 
µ

0
ni
l
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The magnetic flux through the solenoid is 

 fB = 
µ

0
niA
l

where A is area of cross-section of the solenoid. Thus, inductance of solenoid 
is then, give as

 L = 
µ

0

2n A
l

\ UB = 
1

2

2Li

  = 
1

2

0

2

0

µ

µ

n A
l

Bl
n













or UB = 1

2

2

0

B Al
µ

Here Al is the volume of the solenoid, the energy density

 uB = U
Al

B= 1

2

2

0
µ

or uB = B2

0
2µ

10.10. RL CIRCUIT
Consider an inductor L and a resistor R is series with a battery of V volts as 
shown in fig. 10.9.

R L

KV

Fig. 19.9. RL circuit with battery.

when the switch K is closed, a current i is flowing through the circuit. For Fig. 
10.9, applying Kirchhoff’s loop rule, we have
 V = VL + VR ...(10.46)
where VR is the voltage drop across the resistance R and VR is the induced emf 

which is equal to L di
dt

.
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 VL = Ldi
dt

 ...(10.47)

 V = Ldi
dt

Ri+  ...(10.48)

or Ldi
V Ri−

 = dt ...(10.49)

on integration of the Equation (10.49), we get

                        − − +L
R

V Ri Celog ( )  = t ...(10.50)

The initial conditions are given as
when t = 0, i = 0

Therefore,

 C = L
R

Velog

Substituting the value of C into Equation (10.50), we have

         Loge(V – Ri) – loge V = −R
L
t  ...(10.51)

or                        
log ( )e V Ri

V
−

 = −R
L
t  ...(10.52)

 1− Ri
V

 = –e(R/L)t ...(10.53)

or i = V
R

e R L t
( )

( / )
1− −  ...(10.54)

Thus, the Equation (10.54) may be written as

 i = i0(1 – e–(R/L)t) ...(10.55)

where i0 = V
R

 is the maximum value of current when t → ∞. The time constant 

t is given by 

 t = 
L
R

 ...(10.56)

The plot of i versus t is shown in fig. 10.10.
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i

O
t

i0

Fig. 10.10. Growth of current in RL circuit

Now, differentiating Equation (10.55) with respect to t, we have,

 di
dt

 = 
Ri
L
e R L t0 −( / )  ...(10.57)

or di
dt

 = 
i e i iR L t0 0

τ τ
− = −( / ) ( )

 ...(10.58)

The Equation (10.58) gives the slop of the exponential curve.
After reaching the current to its maximum value i0, the switch K is now 

opened. It means the applied voltage V = 0. Then, the Equation (10.48) takes 
the form 

 iR + Ldi
dt

 = 0 ...(10.58(1))

The current starts falling from its maximum value i0.
Now,

 −Ldi
dt

 = Ri ...(10.59)

or −L
R
di
i

 = dt ...(10.60)

on integration, we get

 − +L
R

i Celog  = t ...(10.61)

Initially at t = 0, i = i0. Thus,

 C = L
R

ielog
0
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Substituting the value of C into Equation (10.61), we get

 Loge
i
i
0

 = e–(R/L)t ...(10.62)

or i = i0 e–(R/L)t ...(10.63)

The Equation (10.63) shows that the current in the RL circuit is falling 
exponentially. The slop of the Equation (10.63) gives the rate at which current 
is falling. The plot of i versus t is shown in fig. 10.11.

Differentiating (10.63) w.r. to t, we get

 di
dt

 = − −i R
L
e R L t0 ( / )

The negative sign shows that the current is decreasing exponentially. 

i

O
t

i0

Fig. 10.11. Decay of current in RL circuit.

The energy is conserved in the process of rise and decay of current in 
RL circuit. When the battery is removed or switch K is opened, the energy is 
stored in the inductor, as 

 U = 1

2
0

2Li

This energy maintains the current in the circuit.
Example 10.5. A conductor of length l rotates in a static magnetic field with 
angular speed w. Obtain an expression for the emf induced in the conductor.
Solution: Consider an element dy of the conductor moving with a velocity v 
as shown in fig. 10.12.
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× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

v

y

dy

×

y

O

Fig. 10.12.

The conductor is moving in a magnetic field which is directed into the 

page. Since velocity v
→

 is perpendicular to the magnetic field B. Then, the emf 
induced in the conductor is 

 e = v Bdy
l

0∫
or e = B ydy

l
ω

0∫

or e = 1

2

2B lω

Example 10.6. A stationary square loop of 50 turns and side 1 m lies in x-y 
plane, as shown in fig. 9.13. If the magnetic field B = B0 sin wt points in z-axis, 
compute the induced emf in the loop.
Solution: 

B

y

x

z

O

(0, 10)

(1,00)

Fig. 10.13. Square loop.
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\ fB = B dS
S

→ →
⋅∫

Thus, induced emf is

 e = −N d
dt Bφ

or e = − ∂
∂

⋅
→

→

∫N B
t
dS

Now

 ∂
∂
B
t

 = d
dt
B t( sin )

0
ω

  = wB0 cos wt
and surface vector

 dS
→

 = dxdy j�

Thus,

 e = − ∫ ∫50
0

0

1

0

1

ω ωB t dx dycos

or e = –50 wB0 cos wt

Example 10.7. A rod of length L, in fig. 10.14, is moving with a uniform 
velocity along the direction of the current i in a long wire. Calculate the emf 
induced across the rod.
Solution:                             

L

i
v

dr

a

Fig. 10.14. Motion of rod in B

If the moving rod moves a dr distance in the magnetic field which is 
directed into page. The emf induced is given by 

 e = ( )·v B dr
→ → →

×∫
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But B = µ
0

2

i
rπ

 e = µ
0

2

i v dr
ra

a L

π

+

∫

 e = µ
log

0

2

i v a L
aeπ
+

Example 10.8. Obtain an expression for mutual inductance between a long 
wire carrying a current i1 and a rectangle with current i2 as shown in fig. 10.15.

v

a

x

l

dx

i2

b
i1

Fig. 10.15. A current loop.

Solution: The magnetic flux across the rectangle is 

 fB = B bdx∫
  = µ

0 1

2

i v dx
xl

l a

π

+

∫

or fB = µ
log

0

2

b l a
leπ
+





the mutual inductance is given as

 M = φB
i1

or M = 
µ

0

2

b l a
leπ

log
+





Example 10.9. Find the emf induced in the rectangle, in fig. 10.16.
Solution: We take a strip of width dx at a distance x from the wire carrying a 
current i. The magnetic flux through the strip is 
 dfB = BdS
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Here, B = µ
0

2

i
xπ

and dS = area of the strip
  = bdx

\ dfB = µ
0

2

ib dx
xπ

\ total flux is

 fB = d ib dx
xB

x

x a

φ
π∫ ∫=

+
µ

0

2

 fB = µ
0

2

ib x a xe eπ
[log ( ) log ]+ −

Thus, emf induced in rectangle is 

 e = −∂
∂

= − ∂
∂

+ −φ
πt
ib

t
x a xe e

µ
0

2
[log ( ) log ]

  = −
+

−





µ
0

2

1 1ib
x a

dx
dt x

dx
dtπ

· ·

Since dx
dt

 = v

\ e = µ
0

2

1 1ibv
x a xπ +

−





put x = r, we get

 e = µ
0

2

iabv
π

EXERCISE
  10.1. Define the principle of the electromagnetic induction and deduce the 

Faraday’s law of electromagnetic induction.
 10.2. Obtain an expression for the growth of current in RL circuit.
 10.3. Show that the magnetic energy density of a long solenoid is given by 

   uB = B2

0
2µ

 10.4. Define the following physical quantities.
  (a) self inductance
  (b) Mutual inductance

v

a

x

r

-dx-

i b

Fig. 10.16. Current loop.
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 10.5. Deduce an expression for the self-inductance of a toroid.
 10.6. Show that the magnetic energy stored in an inductor L is given by 

   UB = 1

2

2Li

 10.7. Find the inductance per unit length of a co-axial cable of inner radius 
r1 and outer radius r2.

 10.8. Two hundred turns of a copper wire are wrapped around a wooden 
cylinder of radius 0.1 m. If the current in the coil is 2A and a magnetic 
field through the coil is changed from 0.1 Wb/m2 to 1 Wb/m2 then, 
calculate (a) emf induced in the coil (b) energy stored in the coil.

 10.9. A square loop of side 0.2 m lies in a plane of long straight wire at a 
distance 0.5 m from it. Find the mutual inductance when a current of 
1A is flowing in the wire.

 10.10. Obtain an expression for the magnetic flux passing through the 
hemisphere, fig. 10.17. Ans. –pr2B

r

B

Fig. 10.17. Hemisphere.

 10.11. When a current in one coil changes from 0A to 10A in 10–3 s, and 
induced emf is 100 V. Calculate self inductance of the coil.

 10.12. Calculate the speed of the rod of length 0.5 m in a magnetic field of  
0.2 Wb/m2 and perpendicular to the motion of the rod.

 10.13. A resistor of resistance 100W and an inductor of inductance 0.5 H are 
connected to a battery of 18V. Calculate steady state current and value 
of it for t = 1s. Plot i versus t.

 10.14. If an inductor operates at the voltage 200V and 50 Hz frequency. 
The inductor draws a current of 10A, calculate the inductance of the 
inductor.


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James Clerk Maxwell (1832–1879) gave the relation between charges, current 
and electromagnetic field in the form of four mathematical equations. These 
equations are a type of unified theory, which describe all the phenomena of 
classical electromagnetism. This theory proves that the light waves are the 
electromagnetic waves and the speed of the electromagnetic waves is given by 

c = 1

0 0
µ ∈

∈0 = 8.85 × 10–2 C2/Nm2

µ0 = 1.26 × 10–6 = 4p × 10–7 Wb/A-m
Then, we get

c = 2.99 × 108 m/s
or c ≈ 3.0 × 108 m/s

This unified theory of Maxwell predicts that the accelerated charge 
produces energy in form of electromagnetic (EM) waves.

11.1 MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM
There are four equations given by J.C. Maxwell. The differential form of the 
set of four equations is given as follows.

(i) ∇⋅ =
→
D ρ   — Gauss’s Law

(ii) ∇ =
→

·B 0   — No magnetic monopole or charge

(iii) ∇× = ∂
∂

→
→

E B
t

 — Faraday’s Law

(iv) ∇× = + ∂
∂

→ →
→

H J D
t

 — Modified Ampere’s Law

11
CHAPTER

Maxwell’s Equations and 
Electromagnetic Waves
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where 

 E
→

 = Electric field intensity

 D
→

 = Electric flux density or electric displacement

 B
→

 = Magnetic induction or Magnetic flux density

 H
→

 = Magnetic field intensity
 r = Electric charge density

 J
→

 = Electric current density

 D
→

 = ∈ = ∈
→ → →

0
E D Eand

 B
→

 = µ and µ µ µ
0 0
H B H Hr
→ → → →

= =

The Maxwell’s first equation shows that the divergence of E
→

 is equal to 
volume charge density bounded by a surface. This equation predicts that how 
much is the electric field intensity spread out from the source of charges. The 

value of the ∇⋅
→
D  will be greater if more charges are present in the volume. If 

charge source is not present, ∇⋅
→
D  = 0.

If we take a straight conductor carrying a current i, the magnetic lines of 
force across the conductor is shown in fig. 11.1.

i

B

Fig. 11.1. Magnetic lines of force for a conductor 

It is very clear that, fig. 11.1, the magnetic lines of force don’t begin or 
end. Hence, the divergence of magnetic induction B is always zero, and shows 
non-existence of the monopole.

The third equation of Maxwell shows that the rot or curl of the electric 
field intensity is equal to negative the time rate of change of the magnetic 
induction B. The negative sign is due to Lenz’s law. It predicts that the time 
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varying magnetic field produces an electric field. If the magnetic field B is not 
varying with time, there is a no effect on the electric field. Thus, The electric 
lines of force are straight.

The fourth equation of Maxwell is a modified Ampere’s law. This equation 
contains a term ∂

∂
D
t

, is called a displacement current. This is very helpful in 

dealing with capacitors.
Moreover, the Ampere’s circuital law is given by 

 B dl
→ →

⋅∫�  = µ0i ...(11.1)

using stoke’s theorem, we write

 ( )·∇×
→ →

∫ B dS
S

 = µ
0

i dS
S∫  ...(11.2)

Since B = µ0H and the current density is

 J = i dS
S∫

Thus, Equation (11.2) may be written for any arbitrary surface as

 ∇ ×
→
H  = J

→
 ...(11.3)

we know that the divergence of curl of any vector is equal to zero. Taking the 
divergence of the Equation (11.3), we get

 ∇ ∇ ×
→

·( )H  = ∇⋅
→
J  = 0 ...(11.4)

However, the equation of continuity predicts that ∇ ≠
→

·J 0  in time varying 
field.

 ∇⋅ + ∂
∂

→
J

t
ρ  = 0 ...(11.5)

or ∇⋅
→
J  = − ∂

∂
ρ
t

 ...(11.6)

Hence, ∂
∂
ρ
t

 must be added to the right side of the Equation (11.4), we get

 ∇ ∇ ×
→

·( )H  = ∇ + ∂
∂

→
J

t
ρ  = 0 ...(11.7)

According to Maxwell’s first equation, we have

 ∇⋅
→
D  = r
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Substituting in the Equation (11.7), we get

 ∇⋅ ∇ ×
→

( )H  = ∇⋅ + ∇⋅ ∂
∂

→
→

J D
t

or ∇⋅ ∇ ×
→

( )H  = ∇⋅ + ∂
∂











→
→

J D
t

 ...(11.8)

Hence

 ∇×
→
H  = J D

t

→
→

+ ∂
∂

 ...(11.9)

The Equation (11.9) contains the curl of the magnetic field intensity H, 

this means that the field lines involve circulation. The term ∂
∂

→
D
t

 is called the 

displacement current to differ it from the conduction current ( J
→

), and the rate 
of change of the electric displacement gives rise to magnetic field.

11.2 DISPLACEMENT CURRENT
The second and third equation of Maxwell are homogeneous and these are 
source free.

and      
∇ =

∇ = − ∂
∂










→

→
→

·

·

B

E B
t

0

 ...(11.10)

while, the first and fourth equations are inhomogeneous and depend on source, 
permitivity and permeability of the medium.

and       
∇⋅ =

∇ × = + ∂
∂










→

→ →
→

D

H J D
t

ρ
 ...(11.11)

These equations show that electric and magnetic fields are related to each 
other and symmetrical equations should describe them. This symmetry led to 
introduce the concept of the displacement current. 

To describe the concept of the electric displacement current, suppose that 
an electrical circuit contains a capacitor C as shown in fig. 11.2.
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+
+
+
+

–
–
–
–

E

B

C

Rh. Battery

Fig. 11.2. Concept of displacement current.

When rheostat is at static position, no current flows but if we vary the 
position of rheostat by sliding it, current flows through the capacitor and an 
electric field is developed across the C. This electric field E varies with time 

until current reaches maximum value. So, this ∂
∂
E
t

 is known as displacement 
current.

The magnetic field will remain same. At the outside of the capacitor, the 
displacement current is equal to the conduction current. That is,
 id = i (outside the capacitor) ...(11.12)

The capacity of the capacitor C is

 C = ∈0 A
d

 ...(11.13)

where A is area of cross-section and d is distance between the plates of a 
capacitor. The electric field between the plates.

\ E = 
q
A∈0

 ...(11.14)

differentiating w.r.to t

 ∂
∂
E
t

 = 1

0
∈

∂
∂A
q
t

 ...(11.15)

or ∂
∂
E
t

 = 1

0
∈ A

id·  ...(11.16)

or id = A E
t

∂ ∈
∂

( )
0  ...(11.17)

Thus,

 id = A D
t

∂
∂

→

 ...(11.18)
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Displacement current density

 Jd = i
A

D
t

d = ∂
∂

 ...(11.19)

or Jd
→

 = ∂
∂

→
D
t

 ...(11.20)

11.3 MAXWELL’S EQUATIONS IN INTEGRAL FORM
We have described Maxwell’s Equations in differential form. To describe 
Maxwell’s Equations in the integral form, consider an arbitrary volume 
bounded by a surface. Thus,

 D dS
S

→ →
⋅∫  = ρ dV

V∫    Gauss’s Law ...(11.21)

 B dS
S

→ →
⋅∫  = 0    No magnetic Monopole exist ...(11.22)

 E dl
l

→ →
⋅∫�  = − ∂

∂
⋅

→
→

∫ B
t
dS

S
  Faraday’s Law ...(11.23)

 H dl
→ →

⋅∫�  = J dS D
t
dS

S S

→ →
→

→
⋅ + ∂

∂
⋅∫ ∫  Modified Ampere’s Law 

...(11.24)

Here, we have used Stoke’s theorem and Gauss’s theorem, as stated below.

 ( )∇ × ⋅
→ →

∫ A dS
S

 = A dl
l

→ →
⋅∫    Stoke’s theorem ...(11.25)

and

 ∇⋅
→

∫ A dV
V

 = A dS
S

→ →
⋅∫   Gauss theorem ...(11.26)

11.4  MAXWELL’S EQUATIONS FOR STATIC ELECTRIC AND 
MAGNETIC FIELDS

 (a) The electric flux per unit volume passing through an arbitrary 
infinitesimally small volume is equal to the volume charge density.



Maxwell’s Equations and Electromagnetic Waves 331

  Thus, we write

   ∇⋅
→
D  = r ...(11.27)

  or ∇⋅
→
E  = ρ

∈0
 ...(11.28)

  where r = q dV
V∫  is the volume charge density.

 (b) Consider a surface enclosing a volume V as shown in fig. 11.3.

�B �B

z

y

x

Fig. 11.3. Flux through an elementary volume

  The magnetic flux entering is equal to the flux leaving the volume. Thus, 
net outgoing magnetic flux is zero.

   ∇⋅
→
B  = 0 ...(11.29)

 (c) For a static charge, ∂
∂
B
t

 = 0

  Thus,

   ∇ ×
→
E  = 0

  and potential is given by 

   V = – E dl
l

→ →
⋅∫  ...(11.30)

 (d) For a static magnetic field,

   ∇ ×
→
H  = J

→

  or B dl
→ →

⋅∫�  = µ0i ...(11.31)

  As per above discussion, one can say that the Maxwell’s Equations are 
the general equations which describe electromagnetism.
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11.5  ENERGY FLOW IN ELECTROMAGNETIC WAVES: 
POYNTING THEOREM

When an electromagnetic wave propagates through the space, it transports 
the electromagnetic energy from one point to another. According to Poynting 

theorem, the Poynting vector S
→

 is a measure of amount of energy crossing per 
unit area per unit time.

Mathematically, Poynting vector S
→

 is a cross product of the electric field 
intensity and the magnetic field intensity. Hence,

 S
→

 = E H
→ →

×  ...(11.32)

If E
→

 and B
→

 are in the directions of z and y axes respectively, Then, energy 
will flow along x-axis as shown in fig. 11.4.

O

H

y

x

z

Ey

S = E × H

Eo

Ho

Fig. 11.4. Direction of flow of energy.

We have Maxwell’s equations as

 ∇ ×
→
E  = –µ0

∂
∂
H
t

 ...(11.33)

and ∇ ×
→
H  = J E

t

→
+ ∈ ∂

∂0  ...(11.34)

But J = sE, Then we write the Equation (11.34) as 

 ∇ ×
→
H  = σE E

t
+ ∈ ∂

∂0  ...(11.35)

Taking the dot product of E in Equation (11.35) we get

 E H
→ →

∇ ×·( )  = σE E E
t

2

0
+ ∈ ∂

∂

→
→

·  ...(11.36)
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Now, we have a vector identity, and give by 

 ∇ ×
→ →

·( )F G  = G F F G
→ → → → →

∇ × − ∇ ×·( ) ·( )

using this identity in Equation (10.36), we get

    H E E H
→ → → →

∇ × − ∇ ×·( ) ( )  = σE E E
t

2

0
+ ∈ ∂

∂

→
→

·  ...(11.37)

or     − ∂
∂









 − ∇ ×

→ → → →
H H

t
E H· ·( )

µ
0

 = σE E E
t

2

0
+ ∈ ∂

∂

→
→

·  ...(11.38)

Here, we have substituted the value of ( )∇ ×
→
E  from Equation (11.33) into 

equation (11.37).
Now,

 −∇ ×
→ →

·( )E H  = σE E E
t

H H
t

2

0 0
+ ∈ ∂

∂
+ ∂

∂

→
→

→
→

· ·µ  ...(11.39)

or –∇· (E × H) = σE E
t

H
t

2

0

2

0

2
1

2

1

2
+ ∈ ∂

∂
+ ∂

∂
µ  ...(11.39)

  = σE
t

E H2

0

2

0

21

2

1

2
+ ∂

∂
∈ +





µ  ...(11.40)

Integrating both sides of the Equation (11.40) over a volume, we get

 − ∇ ×
→ →

∫ ·( )E H dV
V

 = σE dV u
t
dV

V V
2∫ ∫+ ∂

∂
 ...(11.41)

where u = ue + uB = 1

2

1

2
0

2

0

2∈ +E Hµ  is the energy of the electromagnetic 
field.

Applying Gauss’s divergence theorem to the left side, we get

 − ×
→ → →

∫ ( )·E H dS
S

 = σE dV u
t
dV

V V
2∫ ∫+ ∂

∂
 ...(11.42)

The physical interpretation of the terms involved in the Equation (11.42) 
are as follows;

 (a) σE dV
V

2∫  represents the ohmic power dissipated in the volume V.

 (b) ∂
∂∫ u
t
dV

V
 represents the time rate at which electromagnetic energy 

  stored in the volume V.

 (c) − ×
→ → →

∫ ( )·E H dS
S

 represents the amount of power crossing per unit area, 
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and the cross product of E
→

 and H
→

 is represented by S
→

, Poynting 
vector. Thus,

   S
→

 = E
→

 × H
→

 ...(11.43)
For the plane electromagnetic waves, we have

 H = ∈
0

0
µ

E  ...(11.43a)

Now,
 | S | = | E × H | ...(11.44)
  = EH

  = 
E E∈

∈
0

0 0
µ

or S = c∈0E2 ...(11.45)
we can write,

 S = cu ...(11.46)

where u = 1

2

1

2
0

2

0

2∈ +E Hµ

From Equation (11.43), we may write

 S
→

 = E B
→ →

×
µ

0

 ...(11.47)

The SI unit of Poynting vector is watt/m2 or Joules/m2 – sec.

11.6  MAXWELL’S EQUATIONS FOR FREE SPACE AND 
DIELECTRIC MEDIA

For free space, we have
 s = 0, r = 0 and J = sE = 0
 ∈ = ∈0 and µ = µ0 (For free space)

Thus, Maxwell’s equations may be written as

(a) ∇⋅
→
D  = 0

      or ∇⋅
→
E  = 0 ...(11.48)

(b) ∇⋅
→
B  = 0
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      or ∇⋅
→
H  = 0 ...(11.49)

(c) ∇×
→
E  = − ∂

∂

→

µ
0

H
t

 ...(11.50)

(d) ∇ ×
→
H  = ∈ ∂

∂

→

0
E
t

 ...(11.51)

11.7 MAXWELL’S EQUATIONS FOR CONDUCTING MEDIA
Suppose that the conducting medium is linear and isotropic. Then we can write,

 r = 0, D E J E B H
→ → → → → →

= ∈ = =, σ and µ

There is no charge in the conducting medium.

(a) ∇⋅
→
D  = ∇⋅

→
E  = 0 ...(11.52)

(b) ∇⋅
→
B  = ∇⋅

→
H  = 0 ...(11.53)

(c) ∇×
→
E  = − ∂

∂

→
µ H
t

 ...(11.54)

(d) ∇ ×
→
H  = σE E

t

→
+ ∈∂

∂
 ...(11.55)

11.8 ELECTROMAGNETIC WAVE EQUATION
A wave is a function of space and time co-ordinates. The most beautiful 
result of Maxwell’s equations is the electromagnetic wave equation. We are 
developing a general wave equation for a material medium. For a conducting 
or material medium.

 J
→

 = σ E
→

where s is the conductivity of the material medium. Suppose that the medium 
consists of permitivity ∈ and permeability µ. No charge is present in the 
medium, Thus, r = 0.

In the absence of the external charge, Maxwell’s equations are given by 

 ∇⋅
→
E  = 0 ...(11.56)

 ∇⋅
→
H  = 0 ...(11.57)

 ∇×
→
E  = − ∂

∂

→
µ H
t

 ...(11.58)
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and ∇ ×
→
H  = σE E

t
+ ∈∂

∂
 ...(11.59)

Taking the cross-product of del (∇) in Equation (11.58), we get

 ∇ × ∇ ×
→

( )E  = − ∂
∂

∇ ×
→

µ
t

H( )  ...(11.60)

Substituting the value of ( )∇ ×
→
H  from Equation (11.59) into equation 

(11.60). Then,

 ∇ × ∇ ×
→

( )E  = − ∂
∂

+ ∈∂
∂







µ
t

E E
t

σ  ...(11.61)

Using the vector identify,

 ∇ × ∇ ×
→

( )E  = ∇ ∇ − ∇
→ →

( · )E E2

Thus, we get

 ∇ ∇ − ∇
→ →

( · )E E2  = − ∂
∂

− ∈∂
∂

µ µσ E
t

E
t

2

2
 ...(11.62)

But ∇·E = 0
Hence, we get

    
∇ − ∈ ∂

∂
− ∂

∂
=

→
→

2

2

2
0E E

t
E
t

µ µσ
 ...(11.63)

Similarly, Taking the cross product of (∇) del in Equation (11.59) and 

substituting the values of ∇⋅
→
H  and ∇×

→
E . From the Equations (11.57) and 

(11.58), we get

    
∇ − ∈ ∂

∂
− ∂

∂
=

→
→

2

2

2
0H H

t
H
t

µ µσ
 ...(11.64)

The Equations (11.63) and (11.64) are the differential equations of second 
order and involving first order term also as in differential equation of damped 
harmonic oscillator. These are the wave equations for conducting median.

11.9 PLANE ELECTROMAGNETIC WAVES IN FREE SPACE
We have already derived the general differential equations for the 
electromagnetic waves. For free space, we write, s = 0, r = 0, µ = µ0 and ∈ = 
∈0. Then the equations (11.63) and (11.64) take form as 
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 ∇ − ∈ ∂
∂

→
2

0 0

2

2
E E

t
µ  = 0 ...(11.65)

and ∇ − ∈ ∂
∂

→
→

2

0 0

2

2
H H

t
µ  = 0 ...(11.66)

Here, the velocity of the wave

 v = 
1

0 0
∈ µ

  = 
1

8 85 10 4 3 14 10
12 7

. .× × × ×− −
m/s

or v = 3 × 108 m/s ...(11.67)
which is equal to velocity of light. It means that the electromagnetic wave 
propagates with the speed of light in the free space.

The Maxwell’s equations for free space are 

 ∇⋅
→
E  = 0 ...(11.68)

 ∇⋅
→
H  = 0 ...(11.69)

 ∇×
→
E  = − ∂

∂

→

µ
0

H
t

 ...(11.70)

and ∇ ×
→
H  = ∈ ∂

∂

→

0
E
t

 ...(11.71)

The plane wave solutions for the equations (10.65) and (11.66) are given 
by 

and      
E r t E e

H r t H e

i k r t

i k r t

→ →
⋅ −

→ →
⋅ −

=

=









→ →

→ →

( )

( , )

( )

( )

0

0

ω

ω
 ...(11.72)

Now, we define operators as

         ∇ →
→
i k  ...(11.73)

and         ∂
∂

→ −
t

iω
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Substituting these operators into equations (10.68), (10.69) (11.70) and 
(11.71) we get

 k E
→ →

⋅  = 0 ...(11.74)

 k H
→ →

⋅  = 0 ...(11.75)

 k E
→ →

×  = µ
0

ωH
→

 ...(11.76)

and k H
→ →

×  = – ∈
→

0 ωE  ...(11.77)

To find the propagation constant, taking the cross product of K
→

 in (11.76) 
we have,

 k k E
→ → →

× ×( )  = µ
0
ω( )k H

→ →
×  ...(11.78)

or k k E k E( )

→ → →
⋅ − 2  = − ∈

→
0 0

2
µ ω E  ...(11.79)

or k2 = ∈0µ0w
2 ...(11.80)

we have used Equations (11.74) and (11.77).
Thus,

 k2 = ω2

2c

or k = ω
c

 ...(11.81)

From the Equation (11.76), we write

 H
→

 = 1

0
µ ω

( )k E
→ →

×  ...(11.82)

Poynting vector is 

 S
→

 = E H
→ →

×  ...(11.83)

⇒ S
→

 = E k E
→ → →

× ×( )

µ
0
ω

or S
→

 = k E E k E
→ → → →

− ⋅( ) ( )
2

0
µ ω

 ...(11.84)

using equation (11.68) we get

 S
→

 = k E
→

2

0
µ ω

 ...(11.85)
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 | S
→

| = kE
2

0
µ ω

or S = E
c

2

0
µ

 ...(11.86)

For intrinsic impedance of the free space,

 S = 
E2

0 0

0

µ

µ

∈

or S = ∈ =0

0

2

2

µ
E E

Z
 ...(11.87)

where Z = ∈
0

0
µ

 is called intrinsic impedance of the free space.

 Z = ∈
0

0
µ

 = 377 W ...(11.88)

However, the average power per unit area is 

 < S > = E
Z

2

2
 ...(11.89)

11.10 PLANE WAVES AND POLARIZATION
A plane wave is a constant frequency wave whose wavefronts are the infinite 
parallel planes. A plane monochromatic transverse wave propagating in 
z-direction is given by

 E z t
→

( , )  = E ei kz t
→

−
0

( )ω

 H z t
→

( , )  = H ei kz t
→

−
0

( )ω  ...(11.90)
The one dimension wave equation in charge free region is 

 ∂
∂

2

2
E
z

 = µ
0 0

2

2
∈ ∂

∂

→
E
t

and ∂
∂

2

2
H
z

 = µ
0 0

2

2
∈ ∂

∂

→
H
t

 ...(11.91)









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The equation (11.90) is solution of the wave equations given in (11.91). Of 
course, there are miscellaneous solutions, in fact, both real and imaginary parts 
of the equation (11.89) are the solutions of the wave equations. If we write,

 E
→

 = y E kz t�→
−0 sin ( )ω  ...(11.92)

as a solution of the wave equation (11.90), then wt = 2p, 4p, 6p ... and so on. 
The propagation vector for z = l is given by 
 kz = 2p

or k = 2π
λ

 ...(11.93)

where l is wavelength of the propagative plane wave.
The angular frequency w = 2pf, the propagating wave repeats for every 

interval T = 2π
ω

.

The phase velocity of a plane wave of a constant phase is 
 kz – wt = constant ...(11.94)

on differentiating it, we get
 kdz – wdt = 0

or vp = dZ
dt k

= ω  ...(11.95)

The electric vector plays a key role in describing the polarization of a 

wave. A plane wave is polarized with its electric vector E
→

 in the E
→

0  direction 
(Amplitude), as the wave given in the equation (11.92) is polarised in 
y-direction. In general, we take both components of the electric field when 
describing the different polarizing conditions. Generally, the polarizations are 
of the three types viz,

(a) Linear polarization
(b) Circular polarization
(c) Elliptical polarization.

(a) Linear Polarization. If the electric vector E
→

 is fixed along a straight line 
for all space and time co-ordinates, the electromagnetic wave is called linearly 
polarized. Suppose that a wave is propagating in z direction and is given by 
the equation

 E
→

 = x E ei kz t�
0

( )− ω  ...(11.96)
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This wave is linearly polarized in x-direction as shown in fig. 11.5.

Eo Eo

x

y

z

Fig. 11.5. Linearly polarized wave.

(b) Circular Polarization. If the tip of the electric vector E
→

 traces a circle, 
the wave is called circularly polarized wave. To describe a circularly polarized 
wave, we are taking two linearly polarized waves as 

 E
→

 = xe i y ei Kz t i Kz t� �( ) ( )− −+ω ω  ...(11.97)
Here, i = −1 ,

Moreover, eip/2 = cos sin
π π
2 2

+ i

  = i

Thus, with phase angle f = π
2

, the tip of electric vector E
→

 rotates in 

the clockwise direction and for f = –p/2, E
→

 rotates in the counter clockwise 
direction.

The equation (11.97) shows a right hand circularly polarized wave as 
shown in Fig. 11.6.

O

E

y

x

Fig. 11.6. Circularly polarized wave

(c) Elliptical Polarization. The linear polarization and the circular polarization 
are the special cases of the elliptical polarization. For linear polarization, phase 
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difference, f = 0 and for circular polarization, f = ±p/2. If the amplitudes of the 
two waves are not equal, the polarized wave is called elliptical polarized wave.

An elliptical polarized wave may be constructed by two linearly polarized 
components as given below.

 E
→

 = ( )
( )E x iE y ei Kz t

1 2
� �+ − ω  ...(11.98)

where i = −1  which decides the phase of the wave.
The angle of the field is given by

 q(z, t) = tan
− 





1 2

1

E
E

 ...(11.99)

11.11 ELECTROMAGNETIC WAVES IN CONDUCTING MEDIA
Consider an electromagnetic wave propagating in the conducting medium in 
the absence of an external charge.

For conducting medium, there is only ohmic current.

Then, J
→

 = σ ρE B H D E
→ → → → →

= = = ∈, , ,0 µ  ...(11.100)
The electromagnetic wave equations for the conducting medium are given 

by the equations (11.63) and (11.64) as

     ∇ − ∈ ∂
∂

− ∂
∂

=
→

→ →
2

2

2
0E E

t
E
t

µ µσ  ...(11.101)

and     ∇ − ∈ ∂
∂

− ∂
∂

=
→

→ →
2

2

2
0H H

t
H
t

µ µσ  ...(11.102)

Now, Maxwell’s equations for conducting medium are as 

 ∇⋅
→
E  = 0 ...(11.103)

 ∇⋅
→
H  = 0 ...(11.104)

 ∇×
→
E  = − ∂

∂

→

µ H
t

 ...(11.105)

and ∇×
→
H  = σE E

t

→
→

+ ∈∂
∂

 ...(11.106)

The plane wave solutions of the equations (11.101) and (11.102) are given 
by 
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and      
E z t E e

H z t H e

i kz t

i kz t

→
− −

→
− −

=

=








( , )

( , )

( )

( )

0

0

ω

ω
 ...(10.107)

Now, we have

and             
∇ ≡ −
∂
∂

≡







ik

t
iω

 ...(10.108)

Substituting into Equation (11.101) we get

 ( ) ( )− − ∈ − =
→ → →

ik E i E i E2 2
0µ ( ) µω σ ω  ...(11.109)

or k2 = iω σ ωµ µ− ∈2  ...(11.110)

\ k = i iµ )ω σ ω( + ∈  ...(11.111)
For good conductors, s >> ∈w, Thus, equation (11.111) reduces to 

 k ≈ iµωσ  ...(11.112)

  = i µωσ  ...(11.113)

Now we evaluate i

 (i)1/2 = (cos / sin / )
/π π2 2

1 2+ i
  = (cos / sin / )π π4 4+ i

\ ( )i  = ( )1

2

+ i  ...(11.114)

Thus, the equation (11.113) takes form

 k = ( )1
2

+ = +i iµωσ α β  ...(11.115)

where a  = b = µωσ
2

or k = ( )1+ i
δ

 ...(11.116)

where d is called skin depth or depth of penetration, and is given by 

 d = 
2

µωσ  ...(11.117)
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Now substituting the value of k from the equation (11.116) into the 
equation (11.117), we get

 E = E e ez i z t
0

− − −/ ( / )δ δ ω  ...(11.118)
In the equation (11.118), the term e–z/d is known as dumping factor while 

E e i z t
0

− −( / )δ ω  represents the wave propagating into conductor. Thus, amplitude 
of the wave is 

 E = E e z
0

− /δ  ...(11.119)
At z = d, we have

 E = E e E
e0

1 0− =  ...(11.120)

It means that the actual amplitude of the wave decreases to 1
e





  times 

when the wave penetrates the conductor to a distance d.
Moreover, the current density is 
 J = sE ...(11.121)
  = sE0 e–kz

or J = J0 e–kz ...(11.122)
where J0 = sE0

\ J = J0 e–z/d ...(11.123)
The current density decays exponentially with the skin depth d.
The phase velocity of the wave in good conductor is given by 

 vp = ω
β

or vp = wd   \  b = 1
δ

 ...(11.124)

The average power dissipated per unit area is given by 

 < S > = | | | |E H
2

 ...(11.125)

 E = E e ez i z t
0

− − −/ ( / )δ δ ω

The value of H can be obtained using the equation given as

 ∇× E  = − ∂
∂

µ H
t

 ...(11.126)

or ∂
∂
H
t

 = − ∂
∂

1

µ

E
z

 ...(11.127)
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Thus we get

 H = σδ δ δ ω πE e ez i z t0 4

2

− − − −/ ( / / )

Now,

 < S > = σδ δE e z0

2

2

4

− /  ...(11.128)

11.12 SCALAR AND VECTOR POTENTIALS
In time varying field, the potential f can’t be written as 

 E
→

 = –grad f = –∇f

otherwise ∇ ×
→
E  = ∇ × (–∇f) = 0

Now, we write the Maxwell’s equation for electric field

 ∇ ×
→
E  = − ∂

∂

→
B
t

 ...(11.129)

This equation predicts that the curl of the electric field is not equal to zero 
but it is equal to time rate of change of the magnetic field. The static electric 
field is conservative but time varying field is not conservative we write, now, 
Maxwell’s equation as

 ∇⋅
→
B  = 0 ...(11.130)

This equation (11.130) enforces to write the magnetic field as a curl of a 

vector quantity A
→

 as

 B
→

 = ∇ × A
→

 ...(11.131)

Substituting the value of B
→

 from the equation (11.131) into equation 
(11.129), we get

 ∇ ×
→
E  = ∂

∂
∇ ×

→

t
A( )  ...(11.132)

or ∇ × + ∂
∂











→
→

E A
t

 = 0 ...(11.133)

Since the curl of sum of two vector quantity is equal to zero, this may be 
written as the negative gradient of a scalar potential f, Thus,
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 E A
t

→
→

+ ∂
∂

 = –∇f ...(11.134)

or E
→

 = −∇ − ∂
∂

→

φ A
t

 ...(11.135)

Hence, we get

 B
→

 = ∇ × A
→

 ...(11.136)

and B
→

 = – −∇ − ∂
∂

→

φ A
t  ...(11.137)

where f is called as scalar potential and A
→

 is called as vector potential.
The equation (11.137) consists of two parts viz
(a) –∇f which is due to the electric charge distribution.

(b) − ∂
∂
A
t

 is due to the time dependent current density J
→

.

11.13  NON-HOMOGENEOUS WAVE EQUATIONS FOR VECTOR 
AND SCALAR POTENTIALS

Most of the problems of the electromagnetics are solved with Maxwell’s 
equations. We already mentioned the homogeneous wave equation for free 
space or non conducting media. A wave equation may be put forward with the 
scalar and vector potentials.

Starting with Maxwell’s equation given as

 ∇ ×
→
H  = J D

t

→
→

+ ∂
∂

 ...(11.138)

\ B
→

 = µ
0 0
H D E
→ → →

= ∈,

 ∇ × B
→

 = µ µ
0 0 0
J E

t

→
→

+ ∈ ∂
∂

 ...(11.139)

Substituting the values of B
→

 and E
→

 from the equations (11.136) and 
(11.137), we obtain

 ∇ × (∇ × A
→

) = µ µ
0 0 0
J

t
A
t

→ →
+ ∈ ∂

∂ −∇ − ∂
∂









φ  ...(11.140)
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using vector identity

 ∇ × (∇ × A
→

) = ∇ (∇ · A
→

) – ∇2 A
→

then, we have

 ∇ (∇ · A
→

) – ∇2 A
→

 = µ µ µ
0 0 0 2 0 0

2

2
J

t
A
t

→
→

+ ∈ ∇ ∂
∂







− ∈ ∂
∂

φ  ...(11.141)

rearranging the terms, we get

   ∇ − ∈ ∂
∂

− ∇ ∇ + ∈ ∂
∂







= −
→

→
→ →

2

0 0

2

2 0 0 0
A A

t
A

t
Jµ µ µ·

φ   ...(11.142)

Now, taking Maxwell’s equation

 ∇⋅
→
D  = r ...(11.143)

or ∈ ∇
→

0
·E  = r ...(11.144)

Substituting for E
→

 from the equation (11.137), we get

 ∇⋅ −∇ − ∂
∂











→

φ A
t

 = ρ
∈0

 ...(11.145)

or ∇ + ∇ ∂
∂

→
2φ ·

A
t

 = −
∈

ρ

0
 ...(11.146)

\    ∇ + ∇ ∂
∂

+ ∈ ∂
∂

− ∈ ∂
∂

→
2

0 0

2

2 0 0

2

2
φ φ φ

·
A
t t t

µ µ  = ρ
∈0

 ...(11.147)

Here, we have added and subtracted the term ∈ ∂
∂0 0

2

2
µ

φ
t

. 

rearranging the terms in the equation (11.147), we get

    ∇ + ∈ ∂
∂

+ ∂
∂ ∇ + ∈ ∂

∂






→
2

0 0

2

2 0 0
φ φ φ

µ µ
t t A

t
·  = −

∈
ρ

0
 ...(11.148)

Now, we put the term in bracket is equal to zero, we get

 ∇ + ∈ ∂
∂

→
·A

t0 0
µ

φ  = 0 ...(11.149)

The equation (11.149) is Lorentz condition. Thus, the equations (11.142) 
and (11.148) take the form as 
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      ∇ ⋅ − ∈ ∂
∂

= −
→ →

2

0 0

2

2
A A

t
Jµ µ  ...(11.150)

and          ∇ − ∈ ∂
∂

= −
∈

2

0 0

2

2
0

φ φ ρ
µ

t
 ..(11.151)

The equation (11.150) and (11.151) are non-homogeneous equations for 

vector potential A
→

 and scalar potential f. From these equation it is clear that 

the source of em field is present. In time varying field, if the curl of a vector E
→

 
is zero, then it is represented by the equation (11.137), and if ∇ ⋅

→
B  = 0, then 

B
→

 is represented by the equation (11.136).
Moreover, we take Ampere’s equation as 

 ∇ ×
→
B  = µ

0
J
→

 ...(11.152)

then, ∇ × ∇ ×
→

( )A  = µ
0

J
→

 ...(11.153)

or ∇ ∇ − ∇
→ →

( · )A A2  = µ
0

J
→

 ...(11.154)

there is only possibility to choose

 ∇ ⋅
→
A  = 0 ...(11.155)

Hence, ∇
→

2 A  = –µ
0

J
→

 ...(11.156)

This is known as Poisson’s equation in vector potential A
→

. In views of the 
equations (11.150) and (11.151), the solution will be in form of-

 f = ρ
π
dV
rV 4

0
∈∫  ...(11.157)

and A = µ µ
0 0

4 4

J dV
r

i dl
rV π π∫ ∫= �  ...(11.158)

Example 11.1. A parallel plate capacitor consists of two plates with area A 
separated by distance d. If the ac source v = v0 cos wt is applied between two 
plates of the capacitor, calculate displacement current.
Solution: \ E = v/d, then,
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displacement current  id = A D
t

∂
∂

or id = ∈ ∂
∂0A
E
t

⇒ id = ∈ ∂
∂

= ∂
∂

0A
d

v
t
C v
t

where C = ∈0A
d

 id = C d
dt
v t( cos )

0
ω

\ id = –C v0 w sin wt.

Example 11.2. Deduce Poissons’s equation from Maxwell’s first equation.
Solution: Maxwell’s First equation is given by 

 ∇⋅
→
D  = r

Since D
→

 = ∈
→

0E , then

 ∇⋅
→
E  = 

ρ
∈0

or ∇⋅ −∇ − ∂
∂











→

φ A
t

 = 
ρ
∈0

or −∇ − ∂ ∇
∂

2φ ( · )A
t

 = 
ρ
∈0

But ∇⋅
→
A  = 0

Thus, ∇2φ  = –
ρ
∈0

Example 11.3. A monochromatic plane polarized electromagnetic wave 
travelling in free space is given by 

 E
→

 = y E t kz�
0

sin ( )ω −

Find magnetic field intensity H
→

 and poynting vector S
→

.
Solution: By Maxwell’s equation,
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 −∂
∂

→
B
t

 = ∇ ×
→
E

  = 

x y z

x y z
E

� � �

∂
∂

∂
∂

∂
∂

0 0

  = − ∂
∂

x E
z

�

 −∂
∂

→
B
t

 = − −x E k t kx�
0

cos ( )ω

on integrating it w.r.to t, we get

 B
→

 = x E k t kz�
0 ω

ω



 −sin ( )

or B
→

 = x E
c

t kz� 0
sin ( )ω −

 H
→

 = x E
c

t kz� µ
0 0



 −sin ( )ω

or H
→

 = x H t kz�
0

sin ( )ω −

where H0 = µ
and0 0

E
c

c
k





 = 





ω

Poynting vector

 S
→

 = E H
→ →

×

or S
→

 = E H t kx z
0 0

2
sin ( ) ( )ω − − �

Example 11.4. The vector potential A
→

 is given by

 A
→

 = µ
0

4

i dl
r

→

∫ π�

Find the curl of A
→

.
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Solution: \ A
→

 = µ
0

4

i dl
rπ

→

∫�
Now

 ∇ ×
→
A  = µ

0

4

i dl
rπ

∇ ×
→

∫�

  = µ µ
0 0

4 4

1i dl
r

i
r

dl
π π

∇ × + ∇



 ×

→
→

∫ ∫� �

The curl of source term dl
→

 is zero, dl
→

 is current source element. Now,

 ∇ ×
→
A  = µ

0

24

i r
r

dl
π

−





×∫
→�

�

  = µ
0

2
4

i dl r
rπ

→
×∫
�

�

 ∇ ×
→
A  = B

→

Since, ∇ 





1
r

 = − r
r

�
2

and B
→

 = µ
0

2
4

i dl r
r

→
×

∫
�

� π

Example 11.5. Show that E
→

 and B
→

 are not affected under gauge 

transformation as A
→

 and f are given by 

 A
→

′  = A
→

+ ∇ψ

 f′ = φ ψ− ∂
∂t

where y is any arbitrary scalar.
Solution: Given

 A
→

′  = A
→

+ ∇ψ

 f′ = φ ψ− ∂
∂t
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Since, E
→

 = −∇ ′ − ∂ ′
∂

→

φ A
t

  = −∇ − ∂
∂





 − ∂

∂
+ ∇

→
φ ψ ψ

t t
A( )

  = −∇ − ∂
∂

+ ∂ ∇
∂

− ∂ ∇
∂

→

φ ψ ψA
t t t

( ) ( )

or E
→

 = −∇ − ∂
∂

→

φ A
t

Now,

 B
→

 = ∇ × ′
→
A

  = ∇ × + ∇
→

( )A ψ

  = ∇ × + ∇ × ∇
→
A ( )ψ

Since curl grad of scalar is zero, then

 B
→

 = ∇ ×
→
A

Example 11.6 A plane polarized wave is travelling in free space and is given 
by

 E
→

 = y E t kx�
0

sin ( )ω −
If E0 = 0.02 V/m and f = 9 MHz, calculate E, H, and poynting vector S and 

< S >.
Solution: \ w = 2pf = 2p × 109 rad/s

and l = c
f

= ×
×

=3 10

1 10

0 3

8

9

m/s

Hz

m.

Then

 E = E0 sin 2p ft x−



λ

 E = 0.2 sin 2p(109 – 3.33x) V/m

Now H0 = ∈ = =0

0

0

0 0 2

377µ

V/mE E
Z

.

Ω

or H0 = 5.3 × 10–4 A/m
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\ H = H0 sin 2p (109 – 3.33x) A/m
or H = 5.3 × 10–4 sin 2p(109 – 3.33x) A/m

Poynting vector
 S = | E | | H |
  = 1.06 × 10–4 sin2 (109 – 3.33x) W/m2

 < S >  = 1

2
 × 1.06 × 10–4 W/m2

or < S > = 0.53 × 10–4 = 5.3 × 10–5 W/m2

EXERCISES
 11.1. Write the four equations of Maxwell in differential form.
 11.2. Describe the displacement current and show that for a parallel plate 

capacitor the displacement current is given by 

   id = C dv
dt

 11.3. Write Maxwell’s equations in integral form.
 11.4. State and prove Poynting theorem and explain the physical significance 

of the terms in it.
 11.5. Derive the wave equation for a monochromatic electromagnetic wave 

travelling in free space.
 11.6. Derive the wave equation for a wave propagating in a conducting 

medium and for a plane wave show that
   k2 = i w µ s  – w2 ∈ µ
 11.7. Describe linear, circular and elliptical polarizations.
 11.8. An electromagnetic wave is propagating in conducting medium, 

obtain an expression for depth of penetration and show that for current 
density

   J = J0 e–z/d

 11.9. Obtain the expression for wave equation for vector and scalar 
potentials.

 11.10. Write down the Lorentz condition and explain its physical significance.
 11.11. Show that the vector potential may be written as 

   A = µ
0

4

i dl
rπ�∫
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Electron charge e –1.6 × 10–19 coulomb

Electron Mass me 9.1 × 10–31 kg

Electron charge to mass ratio e/me 1.76 × 1011 coulomb/kg

Permittivity constant ∈0 8.85 × 10–12 coulomb2/N-m2

Permeability constant µ0 1.26 × 10–6 = 4p × 10–7 Wb/A-m

Speed of Light c 3 × 108 m/s

Proton Mass mP 1.67 × 10–27 kg

Electron Volt eV 1.6 × 10–19 joule

Magnetic Moment of electron µe 9.29 × 10–18 joule-m2/Wb

magnetic Induction B 1 Wb/m2 = 104 gauss

A Physical Constants
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 sin (90° – q) = cos q
 cos (90° – q) = sin q
 sin (180° – q) = sin q
 cos (180° – q) = –cos q
 sin (A ± B) = sin A cos B ± cos A sin B
 cos (A ± B) = cos A cos B  sin A sin B
 cos2 q + sin2 q = 1
 sin 2q = 2 sin q cos q
 cos 2q = 2 cos2 q – 1 = 1 – 2 sin2 q = cos2 q – sin2 q

 sin A ± sin B = 2 sin A B A B±



 ⋅ 



2 2

cos
∓

 cos A + cos B = 2
2 2

cos cos
A B A B+



 ⋅ −





 cos A – cos B = 2
2 2

sin sin
A B A B+



 ⋅ −





 sin q = θ θ θ− +
3 5

3 5! !
.........

 cos q = 1
2 4

2 4

− +θ θ
! !

.........

Angle 0° 30° 45° 60° 90° 120°

sin 0 1/2 1/ 2 3/2 1 3/2

cos 1 3/2 1/2 0 0 – 1/2

tan 0 1/ 3 1 3 ∞ – 3

 sin q = e e
i

i iθ θ− −

2

 cos q = e ei iθ θ+ −

2

B Trigonometrical Relations
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Circle – Circumference – 2pr
Area – pr2

Length of arc – 
θ π

360
2× r

Area of Sector – 
θ π

360

2× r

Sphere  – Surface Area – 4pr2

Volume – 4

3

3πr

Cone – Surface Area – prh

Volume – 1

3

3πr h

e = 2.718
e0 = 1

e–∞ = 0
Loge e = 1
Loge 1 = 0

Loge xy = Loge x + Loge y

Loge 
x
y







= Loge x – Loge y

Loge x
a = a Loge x

Loge x = 2.303 Log10 x

Loge (1 + x) = x x x x− + + +
2 3 4

2 3 4
...

1 radian = 57.3°
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 1° = 0.01745 radians

 ex = 1
2 3 4

2 3 4

+ + + + +x x x x
! ! !

...

Quadratic Equation
 ax2 + bx + c = 0

Roots of equation are x = − ± − ≠b b ac
a

a
2

4

2
0,

Binomial Expansion

 (1 + x)n = 1 1

2

1 2

3

2 3+ + − + − − +nx n n x n n n x( )

!

( ) ( )

!
...

 (a + x)n = a
x
a

a n x
a

n n x
a

n
n

n
1 1

1

2

2

+



 = + 



 + − 



 +






( )

!
.....  

 ncr = n
r n r

!

!( )!−

Arithmetic Progression

 Sum of n terms Sn = n a n d
2

2 1[ ( ) ]+ −

Geometric Progression

 Sum of n terms Sn = a r
r

n
( )1

1

−
−

 Sum of infinite terms S∞ = a
r1−



A B
→ →

⋅ = | | | | cos ( , )A B A B
→ → → →

A B
→ →

× = | | | | sin ( , )A B A B
→ → → →

A B C
→ → →

× ×( ) = ( · ) ( · )A C B A B C
→ → → → → →

−

∇⋅∇ ×
→
A = 0

∇×∇φ = 0

∇
→

·( )φ A = φ φ∇⋅ + ⋅∇
→ →
A A

∇⋅ ×
→ →

( )A B = B A A B
→ → → →

⋅∇ × − ⋅∇ ×

∇ × ×
→ →

( )A B = A B B A B A A B
→ → → → → → → →

∇⋅ − ∇⋅ + ⋅∇ + ⋅∇( ) ( ) ( ) ( )

∇ ×
→

( )φ A = φ φ∇ × + ∇ ×
→ →
A A

∇





1
r

= − = −
→

r
r

r
r

�
2 3
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C
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Charge Densities  23

Charge on Conductors  59
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Circular Polarization  341

Clausius-Mossotti Equation  162

Color Code  207

Conducting Media  342
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Current Density  192
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D
Diamagnetism  261

Dielectric Constant, Electric  
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Dielectric Constants  7

Dielectric Materials  148

Displacement Current  328
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Electric Current  191
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Electric Field  13, 16, 18
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Electric Lines of Force  20
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Electric Potential Energy  84
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Electrostatic Energy  144
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EMF  308
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F
Faraday’s Induction Law  304
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H
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Hysteresis Loss  266
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Industance  282
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Kirchhoff ’s Laws  208
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Laplace’s Equation  107, 109, 113
LCR in Parallel  294
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Lenz’s Law  306
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Line Integral  69
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Local Field  157
Long Solenoid  251
Loop Circuit  203

M
Magnetic Dipole Moment  242
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Magnetic Susceptibility  261
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