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PREFACE

The contents of this book is somewhat different from the other. The basic
principles are defined to make this book very remarkable. The book covers
two semesters or one year course and I hope that the materials covered in
the present book will be beneficial for those students who specially have
interest in studying the electricity and magnetism. Moreover, if the students
have more difficulty in solving the problems using first principle and they
stand in such a situation where they are unable to treat the problems, this book
is designed keeping all such problems in mind. At the end of each chapter,
the solved problems are given which boosts the students for understanding
the basic concepts. It is obvious that the present book is intended first year
undergraduate students with the elementary knowledge of the mathematical
analysis. The many important illustrative examples are worked out using
simple mathematics.

Chapter-1 provides and idea of the charge and Coulomb’s Law. In the
Chapter—2 and 3, the electric field is introduced with some mathematical
techniques and Gauss’s theorem is derived in different way. However, some
other special topics are given in detail. The electric potential is described in
the Chapter-4. The applications of the electric potential play an important
role in stimulating and empowering the students with intuitive feel. Chapter-5
describes the concepts of the capacitors and dielectrics. It provides an
information, “How is energy stored in the electric field?”. Moreover, how does
the electric field change when the matter is placed in the electric field. The
Chapter-6 deals with the resistance and concerned laws. On the other hand, the
solutions of the Laplace and Poisson equations are discussed in the Chapter-7.
No section is omitted from the chapter. The concept of magnetic field in detail
is given in the Chapter-8. Biot-Savart Law, Ampere’s Law and Faraday Law
have been discussed with suitable applications. Moreover, paramagnetism,
diamagnetism and ferromagnetism and their properties are also given in detail.

In Chapter-9, Alternating currents are encountered and contains a fairly
detailed treatment of the necessary and desired circuits containing different
passive elements. In the Chapter-10, much of the material on and no topic is
avoided but treated with all trappings. Maxwell’s equations and proceeding via
electromagnetic wave equation are described in the Chapter-11. This chapter is
also devoted to the section of scalar and vector potentials.

Author



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


https://taylorandfrancis.com

Detailed Contents

Electric Charge and Coulomb’s Law 1-12
1.1.  Electric Charge 1

1.1.1. Kinds of the Electric Charge 1

1.1.2. The Unit of Charge 1

1.1.3. Conservation of the Charge 2
1.2.  Electric Conductors and Insulators 2
1.3.  Coulomb’s Law of Force 3
1.4. Limitations of Coulomb’s Law 5
1.5.  Superposition Principle 5
1.6.  Permittivity and Dielectric Constants 7
Exercises 10
The Electrostatic Field 13-36
2.1.  The Electric Field 13
2.2.  Electric Field Due to Uniform Charge Distribution 15

2.3.  Motion of a Charged Particle in the Uniform Electric Field 16
2.4.  Electric Lines of Force (Properties of the Electric Field Line) 20

2.5. Charge Densities 23
(a) Volume Charge Density 24
(b) Surface Charge Density 25
(c¢) Line Charge Density 25
2.6.  The Electric Dipole 25
2.7.  The Electric Field Due to an Electric
Dipole at a Point Along its Axis 26

2.8.  The Electric Field at a Point on the Perpendicular
Bisector of the Dipole Axis 27

2.9.  An Electric Dipole in Uniform Electric Field 28



viii

Elements of Electricity and Magnetism Theory and Applications

2.10. An Electric Dipole in a Non-uniform Electric Field

2.11. Potential Energy of Dipole in an Electric Field
Exercises

Gauss’s Law

3.1.  Electric Flux

3.2.  Concept of Solid Angle

3.3.  Gauss’s Law of Electrostatics

3.4. Gaussian Symmetrical Surfaces

3.5.  Electric Field of a Spherical Charge Distribution
3.6.  Electric Field of an Infinite Long Wire (Line Charge)
3.7.  Electric Field near an Infinite Plane Sheet

3.8.  Gauss’s Law in Differential Form

3.9.  Electric Field Due to Non-conducting Sphere
3.10. Charge on Conductors

Exercises

Electric Potentials

4.1. Line Element and Line Integral

4.2.  Electric Potential and Potential Difference

4.3.  Electric Potential of a Point Charge

4.4.  Potential Due to Continuous Charge Distribution
4.5. Negative Gradient of the Potential

4.6.  Electric Potential Due to a Dipole

4.7.  The Equipotential Surfaces

4.8.  Properties of Equipotential Surfaces

4.9.  Electric Potential Energy

Exercises

Methods For the Solution of Electrostatic Problems
5.1.  Uniqueness Theorem

5.2.  Poisson’s and Laplace’s Equations

30

32

35
37-68
37

39

41

45

45

47

50

54

56

59

67
69-99
69

70

72

73

75

77

80

83

&4

96
101-133
101
103

5.3.  Solution of Laplace’s Equation in Rectangular Coordinates 107



Detailed Contents

ix

5.4.  Solution of Laplace’s Equation in Cylindrical Coordinates 109
5.5. Solution of Laplace’s Equation in Spherical
Polar Coordinates 113
5.6. A Conducting Sphere in a Uniform Electric Field 115
5.7. Method of Electrical Images 118
5.8. Conducting Sphere 120
Exercises 130
6. Capacitors and Dielectrics 135-190
6.1.  The Capacitor 135
(a) Symbol 136
(b) Types of Capacitor 136
(c) Capacitance of a Capacitor 136
(d) Unit of Capacitance 137
6.2.  Capacitance of a Parallel Plate Capacitor 137
6.3.  The Capacitance of an Isolated Conductor (Sphere) 138
6.4. Capacitance of a Cylindrical Capacitor 140
6.5.  Series and Parallel Combinations of Capacitors 141
6.6.  Electrostatic Energy Stored in a Capacitor 144
6.7.  Force Between Plates of a Capacitor 146
6.8.  Electric Energy Stored in Conducting Sphere 147
6.9. Dielectric Materials 148
6.10. Polarisation 150
(1) Polar Dielectrics 151
(2) Non-polar Dielectrics 152
6.11. Electric Field in Dielectrics 152
6.12. Gauss’s law of Dielectrics 154
6.13. Polarization Current Density 156
6.14. Local Field in a Dielectric Material 157
6.15. Dielectric Constant, Electric Susceptibility and Polarizability 160
6.16. Clausius-Mossotti Equation 162



X Elements of Electricity and Magnetism Theory and Applications

6.17. Langevin equation of Polar-Dielectrics

6.18. Energy Stored in a Dielectric

6.19. Boundary Conditions at the Interface of two Dielectrics

Exercises

7. Current, Resistance and Circuits
7.1.  Electric Current
7.2.  Current Density
7.3.  Resistance and Ohm’s law

7.4.  Superconductors

7.5.  Circuits Containing Resistors in Series and Parallel

(a) Resistors in Series
(b) Resistors in Parallel

7.6.  Electromotive Force and Single Loop Circuit

7.7.  Energy and Energy Dissipation in a Resistor

7.8.  Color Code for Carbon Resistor

7.9.  Kirchhoff’s Laws for Electric Networks
(a) Junction Theorem
(b) Loop or Mesh Theorem

7.10. Matrix and Determinant Method for Solving

Mesh Equations
7.11.  The RC Series Circuit
(a) Charging of a Capacitor
(b) Discharging of a Capacitor
7.12.  Potentio-meter
7.13.  Wheatstone’s Bridge

Exercises

8. Magnetic Fields and Materials
8.1.  Magnets and the Magnetic Field
8.2.  Magnetic Flux
8.3.  Magnetic Force on a Moving Charge

163
166
172
185

191-231
191
192
195
200
201
201
202
203
205
207
208
208
209

210
212
212
215
219
221
229

233-274
233
234
236



Detailed Contents xi

8.4.  Motion of a Charge in a Uniform Magnetic Field 239
8.5. Magnetic Force on a Current Carrying Conductor 240
8.6.  Magnetic Dipole Moment 242
8.7.  Magnetic Torque on a Current Loop 243
8.8.  Potential Energy of a dipole in a Magnetic Field 244
8.9.  The Biot-Savart Law 245
8.10. Applications of Biot-Savart Law 246
8.10.1. Magnetic Field Due to Long Straight
Wire Carrying a Current 247

8.10.2. Magnetic Field at the Centre of a Current Loop 248

8.10.3. Magnetic Field Due to Current in a Finite Straight
Conductor. 249

8.10.4. Magnetic Field Along the Axis of a Circular Coil 250
8.10.5. Magnetic Field Along the Axis of a Long Solenoid 251

8.11. Force Between Two Parallel Wires 252
8.12. Ampere’s Law and Its Applications 254
8.13. Magnetic Field of a Moving Point Charge 257
8.14. Magnetic Field in Materials 258
8.14.1. Magnetic Moment of an Electron 258

8.14.2. Magnetic Permeability 260

8.14.3. Magnetization 260

8.14.4. Magnetic Susceptibility 261

8.14.5. Diamagnetism 261

8.14.6. Paramagnetism 262

8.14.7. Ferromagnetism 263

8.14.8. Hysteresis 265

8.14.9. Hysteresis Loss 266
Exercises 272
9. Alternating Currents 275-302

9.1.  Average and Root-Mean-Square
Values of Voltage and Current 276



xii

Elements of Electricity and Magnetism Theory and Applications

9.2.  Phasor Diagrams

9.3.  AC Circuit with Resistance

9.4. AC Circuit with Capacitance

9.5.  AC Circuit with Industance

9.6.  AC Circuit with R and C in Series
9.7.  AC Circuit with R and L in Series
9.8.  Ac Circuit with L and C in Series
9.9.  AC Circuit with LCR in Series
9.10. Series Resonance

9.11. Power in AC Circuits

9.12. AC Circuit with LCR in Parallel
9.13. Quality Factor Q of Series Resonance
9.14. Transformers

Exercises

10. Time-Varying Fields

10.1. Faraday’s Induction Law

10.2. Lenz’s Law

10.3. Fleming’s Right Hand Rule

10.4. EMF Induced in a Moving Conductor

10.5. EMF Induced in a Rotating Coil : Principle of Electric
Generator

10.6. Eddy Currents

10.7. Self-Inductance

10.8. Mutual Inductance

10.9. Energy Stored in a Magnetic Field

10.10. RL Circuit

Exercise

11. Maxwell’s Equations and Electromagnetic Waves

11.1.
11.2.

Maxwell’s Equations in Differential Form

Displacement Current

278
279
280
282
285
286
287
289
291
292
294
296
299
301

303-323
304
306
307
308

309
310
311
312
314
315
322

325-353
325
328



Detailed Contents

xiii

11.3. Maxwell’s Equations in Integral Form 330
11.4. Maxwell’s Equations for Static Electric and Magnetic Fields 330
11.5. Energy Flow in Electromagnetic Waves: Poynting Theorem 332
11.6. Maxwell’s Equations for Free Space and Dielectric Media 334
11.7. Maxwell’s Equations for Conducting Media 335
11.8. Electromagnetic Wave Equation 335
11.9. Plane Electromagnetic Waves in Free Space 336
11.10. Plane Waves and Polarization 339
(a) Linear Polarization 340
(b) Circular Polarization 341
(c) Elliptical Polarization 341
11.11. Electromagnetic Waves in Conducting Media 342
11.12. Scalar and Vector Potentials 345
11.13. Non-Homogeneous Wave Equations for Vector and Scalar
Potentials 346
Exercises 353
Appendix A Physical Constants 355
Appendix B Trigonometrical Relations 356
Appendix C Algebraic Relations 357
Appendix D Vector Identities 359
Index 361-363



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


https://taylorandfrancis.com

1 Electric Charge and

Coulomb’s Law
CHAPTER

1.1. ELECTRIC CHARGE

In our universe, there are many particles which are the sources of the
electromagnetic radiation. Many of them have definite amount of charge
which creates the electromagnetic field. In the atom, the negatively charged
electrons move around the positively charged nucleus, Although, nucleus
consists of neutrons and protons where the neutrons do not have any charge,
while the protons have positive charge. In this way, we can say that the charge
is a fundamental property of the particle and it is bound to the matter. If a rod
of amber is rubbed with fur, it acquires the property of attracting the small
pieces of the papers. In this way, we can say that the some electrons are rubbed
off the fur that is why, it acquires the property of the attraction. Further more, if
a glass rod is rubbed with silk cloth, the glass rod becomes positively charged.

1.1.1. Kinds of the Electric Charge

There are two kinds of the electric charge, one is positive charge and another
is negative charge. The positive charge is said to be the source of the electric
field and the negative charge is the sink of the electric field. Thus, we write

(1) Positive charge: a source of the electric field.
(2) Negative charge: a sink of the electric field.

It is observed that the like charges repel each other and unlike charges attract
each other.

1.1.2. The Unit of Charge

We know that the smallest charge exists in the nature is the charge of an
electron. The magnitude of an electronic charge is 1.60219 x 107" coulomb.
Thus, we can write,

| e =1.6x 10" coulomb (1.1

where coulomb (C) is the unit of the electric charge. The charge is an invariant
quantity. The invariant means that its value does not depend on the choice of
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the frame of reference and the laws of physics do not deteriorate their form
when a positive charge is replaced by a negative charge. Thus, we may say that
the charge of all matters is quantized and it is equal to the integral multiple of
the electronic charge e, that is,

-(12)

1.1.3. Conservation of the Charge

The law of nature is that the charge remains conserved every where. If we
consider a closed system consisting of a large number of particles, this closed
system must obey the law of the electric charge conservation. The conserve
means that the electronic charge can not be created or destroyed. However, the
charge can be transferred from one body to another. Moreover, the sum of all
positive and the negative charges remains conserved, that is,

an = constant ..(1.3)
n

1.2. ELECTRIC CONDUCTORS AND INSULATORS

The electrical conduction is defined as the motion of the electrons in a
substance. All substances are not good conductors of the electricity. The
electrical conductors are those having large numbers of free electrons for
carrying the current and the conductors have very low electrical resistance.
On the other hand, the insulators are those having no free electrons for the
conduction of the electricity. In the insulators, all electrons are tightly bound
to the nucleus. Thus, the insulators have a very high resistance. The examples
of the insulators are mica, rubber, wood and glass. More-over, when a glass
rod is rubbed with fur, only the rubbed portion of the rod becomes charged and
this induced charge is known as static or stationary charge. This static charge
can not move to another part of the rod. This is because that the glass rod is
an insulator. However, if we take a metallic rod, the induced charge spread
over the whole region of the rod. This metallic rod cannot attract the piece of
papers, thus, as a result it can be said that the conductors can not be charged.

Experiment: Fig. 1.1 shows a phenomenon of the electrostatic induction. It
shows, how a conductor does accumulate the charge without touching it. Now,
take a negatively charged rubber rod R and the rod R is brought near to the
conductor 4B, the negatively charged particles (electrons) will face a repulsive
force due to the presence of the electrons at the end of the rubber rod. As a
result, some of the electrons move away from the end A4 and thus, the positive
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charges are accumulated at the end 4 of the rod AB. This accumulation of the
positive charges are due to the migration of the electrons from the edge A.
Now, when the end B of the conductor 4B is connected to the earth as shown
in fig. 1.1, all the electrons are repelled to the earth and as a result, the positive
charges are left on the other end.

A B A B

T+ + T+ + + + + + P

+ + + + 4+ + +++ + 4+

+ + + + + + + + + +
Rod - R

Fig. 1.1. The phenomenon of electrostatic induction

Moreover, if the conductor 4B is grounded, all the positive charges have
been distributed uniformly over the whole surface of the conductor AB.

1.3. COULOMB’S LAW OF FORCE

In 1784, a French scientist Charles Coulomb measured the electric force
between the two charge bodies using torsion balance. This electric interaction
between two charged bodies is observed as a coulomb’s law, which states that
the electric interaction between two static point charges is proportion to the
product of the magnitude of two charges and to the inverse of the square of the
distance between them. Note that this force is directed along the line joining
the two charges. The force between two like charges is repulsive and the
force between two unlike charges is attractive in nature. Moreover, the force
between any two charges is independent of the presence of the other charges.
Suppose that the two point charges ¢; and ¢, are separated by a distance r as
shown in fig. 1.2.

? q1 q2 ?
gl 0 0 .2
_/ NN

Fig. 1.2. lllustration of the coulomb’s Law

According to coulomb’s law, the force exerted by ¢, on g, is,

14>
oC
2

N9
or F=k"3%r (1.4)

r
where r is the unit vector along the distance r.
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5
If we denote the force exerted by the charge ¢, on the charge g, as £'12, then

%
N4
Fi2 =k;—22r ..(1.5)
Therefore, The Newton’s third law gives.
- -
Fio =—Fn2 ..(1.6)

where £ is the constant of proportionality.

_)
In M.K.S. system of units, The force F'12 is taken in Newton, » in meters
and the charge in coulomb.

Thus, £ is given by

k= =9x10° Nm?c™? (1.7
dn g,
where € is called the permittivity of the free space. The quantitative value of

€ s given by

€o=8.85x 10" C*N"'m™ (1.8)
Thus, the Eq. (1.5) takes a standard form as
p I g9
= 14 oee 1.9
Flz 475 EO ]/'2 ( )

Furthermore, consider a situation if charges ¢, and ¢, are opposite in
nature, Then, the force between them is attractive as illustrated in the fig. 1.3.

q1 q2

Fig. 1.3. Force between two opposite charges

Example 1.1. Compute the force between two equal charges ¢, = ¢, = 1C,
separated by a distance » = 1 metre.
Solution: According to coulomb’s Law
1 e
4T GO r2
1ICx1C
Im
or F =9 x 10° Newton

F is repulsive in nature.

=9x10°.
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In the example 1.1, the force between two equal charges, separated by
a distance 1.0 m apart, comes out 9 x 10° N. From this argument, we can
define one coulomb as “one coulomb is that charge which repels or attracts
the similar charge placed 1.0 m apart in the vacuum, with a force of 9 x 10’ N.

Units of Charge: In S.I. units, the unit of charge is coulomb and in C.G.S.
system of units, it is stat coulomb.

1 C =3 x 10° stat coulomb

=3 x 10’ e.s.u.

1.4. LIMITATIONS OF COULOMB’S LAW
We have following limitations on coulomb’s law.
(1) The coulomb’s law can be applied to any pair of the point charges.

(2) The system of charges must be in stationary position.

1.5. SUPERPOSITION PRINCIPLE

Since coulomb’s law determines the force, when two point charges are situated
at a distance r apart, it may also be applied to a system consisting of large
numbers of charges. Then, the net force on any charge is the vector sum of
the forces due to rest charges. This is known as principle of superposition. If
we consider a system of three charges ¢,, ¢, and g5 as shown in fig. 1.4, the
resultant force on the charge ¢, will be the vector sum of the forces due to
charges ¢, and g5. Thus,

- - -
F1=Fn+tFi3 ..(1.10)
91 ?:2 92
>
Tis 23
q3

Fig. 1.4. System of three point charges

Moreover, for the system of N charges, the net force experienced by the
charge ¢, will be
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- - - - -

Fi1 =Fp+Fi3+Fia+..+ FIN
- 1 N N
= ZFIN = Z quN FIN .(1.11)
N A€ T2 TN

Example 1.2. A charge g is divided into two parts ¢;, and g — ¢q,. If these
charges are placed at a distance x for which they experience maximum coulomb
repulsion, Find the relation between ¢ and ¢;.

Solution: The force between ¢, and g — g, is

1 q(q—qy)

= 2

4TC EO X

For the force to be maximum, we have

dF
— =0
dq,
1 d 5
or ——@q—91) =0
4 €, x2 dq1 ! !
_ 4
or a9 5
2
and d—f =-2(-—ve)
dgq;

The F will be maximum if g = 2¢g,

Example 1.3. Two identical metallic charged balls, each of mass m, are
suspended at a common point ¢ by threads of negligible mass and length / as
shown in fig. 1.5. Each ball carries a charge ¢, so that the balls repel each other.
Show that the system comes in equilibrium at a distance

13
[t
¥ 2n ey mg

¢’ = 16me, mg 1% sin” 6 tan® .

Solution: Let 6 be the angle made by the thread to the vertical at the position
of the equilibrium,
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AN
Tcos 6 T cos 6
+ ?
1/ TsinB Tsin6 \}
F <--- -l < -- --> F
v " v
mg mg

Fig. 1.5. Two charged balls.

2
F= 1 —2
| 2
Tsin@ =F= q—2
and Tcos 0 =mg
on dividing the equations, we get, for small 0,
1 q2

X
mo=t g=—=—
ST TR T dney xmg

3 13
Thus, x = L —
2T €y mg
qz
Since, tan O =

dn e, x° mg
g = 4ne,mgx, tan O
for small 6, x=2[sin0

Thus, q* = 16Ty mg I? sin* 6 tan .

1.6. PERMITTIVITY AND DIELECTRIC CONSTANTS

When two charges are placed at a some distance apart in a medium, the force
between these two charges is affected, due to the medium. Thus, the permittivity
of the medium is defined as the property of the medium which determines the
forces between two point charges. Consider the two point charges ¢, and ¢,
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separated by a distance 7. In the medium, the force between two point charge
is given by

P I a9
Fmw=—-=—=r (112
" 4me 2 (1.12)

On the other hand, if two charges are placed in a vacuum, the force will be

o I g9
F=—==r ..(1.13
This force may be attractive or repulsive, it depends on the nature of the
charges. In the Eq. (1.12) the subscript m represents the force between two
charges ¢, and g, in the medium and € is the absolute permittivity of the

medium. On dividing Eq. (1.13) by the Eq. (1.12), we get,

£_< (1.14)
Fm €

This ratio €/€,, is called the relative permittivity of the medium, Thus, we
write

e, = ei (1.15)
0

Hence, the relative permittivity of the medium is defined as the ratio of the
absolute permittivity of the medium to the permittivity of the free space.
Example 1.4. Consider three charges ¢,, —g, and —¢q;, where the charge ¢,
is situated at origin as shown in fig. 1.6. The distances r,, = a and r; = b.
Compute the net force on the charge g, exerted by ¢, and g;.

Solution: We have

- - -
Fi1 = Fi+Fi3
YA
qQz ¢-----------,
ai >
Fi
0 !
q1 a a2 X

Fig. 1.6. Force between charges.
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- 1 ~
Now, Fip = —% r12
_ 1 qgrn
— =
dne, b’
> L g5~
and Fi3 = —=
13 471: EO a2 ]

The force on the charge g, will be

|Fy| = {R5+F3

%
The direction of the force F1 with x-axis is given by

tan O = &
s
F
or 0 = tan”! (AJ
F

Example 1.5. Two charges of O coulombs each are placed at two opposite
corners of a square. What should be the value of the additional charges-¢

placed at each of the other two corners that will reduce the resultant force on
each of the charges Q to zero.

Solution: Consider a square of side a as shown in fig. 1.7.

-q Q

Fih

,/\"45°
Q

Ty
I
Neo)

N
F
Fig. 1.7. System of charges.

- - -
F1 = F1cosd45+ Fpcos45
=2F, cos 45

1 ¢.9
TEEO a
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2
and F= ! Q—2
4TE€O 2a
2
Thus, ! o _ \/5 ﬂ

4ne, 242  4mey o
Thus, 0= 2\/5 q

Example 1.6. The three point charges are placed at the equal distance along
the straight line as shown in fig. 1.8. What should be the magnitude of the
charge Q in order to make the net force on the charge at the origin to be zero.

Solution:
YA

< + > » X

a1 -2 F, Q F(qQ)

Fig. 1. 8. Three point charges.

we have two forces, F'(q,, Q) and F,(—q,, O)
Thus, F=F,

1 a0 _ 1 ¢0

4ne, (2a)2 - 4ne a®

Thus, we get,
g1 =44,

EXERCISES

1.1. What is the electric charge? A body has the charge of 1uC, what does it
mean.

1.2. Find the number of the electrons in L
(a) achargeof 1C.
(b) acharge of 1uC.

1.3 A positively charged rubber bar is Fig. 1.9. Conductors.
brought near the two uncharged metallic
spheres X and Y as shown in fig. 1.9. These spheres are at insulated

stands.
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(a) what happens, if the bar is brought near to the sphere X.
(b) What happens, when the bar is removed.
(c) When bar is removed and the spheres X and Y are separated.

1.4. An isolated metallic sphere is given a positive charge. Does it mass
increases, decreases or remains same.

1.5. Two similar charges, 1 cm distance apart experience a force of 1.0 x 1072
N. Compute the magnitude of each charge.

1.6. Two charges of —4uC and 6uC are separated by a distance of 1.0 cm.
Compute the force between them.

1.7. Four equal point charges are placed at the four corners of a square of
the side L. Find the magnitude of the charge placed at the centre of the
square for which the system should be in equilibrium.

1.8. Two positive point charges are placed at a distance d apart. The sum of
the both charges is Q. Compute the values of the charges if coulomb
force between them is maximum.

1.9. Three point charges, each having magnitude ¢, are placed at the vertices
of an equilateral triangle. Find the force on a charge Q placed at the
centre of the triangle.

1.10. The three charges ¢, = 5uC, g, = -3uC and g; = 7uC are placed in a
triangle as shown in fig. 1.10. Compute the net force on the charge g, if
a=3cm, and b =4 cm.

YA
d3
b
g1 a [} ;

Fig. 1.10. Charge system.

1.11. A thin metallic ring of the radius a has the charge g. What should be the
tension in the wire, if the charge Q is placed at the centre of the ring.
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2 The Electrostatic Field

CHAPTER

The gravitational force is a common force that acts between two distant
masses. Similarly, the coulomb force acts between two stationary charges. The
limitation of the coulomb force is that it acts between two point charge. If there
is a distribution a charges, then the concept of the electric field is a powerful
tool to handle such a system. A stationary charge acts an electrostatic force on
the other charges in the region of space. It mean that a single charge creates an
electric field in the space near by it. In this chapter, we shall discuss the electric
field and its applications.

21. THE ELECTRIC FIELD

Since the static charge produces an electric field surrounding it, thus, the
electric field at a given point in the region of space may be defined as the force
experienced by a positive test charge in that region of space. The concept of
the positive test charge is very interesting that it is a tool to defect whether
field is present or not in the region of space. The magnitude of the test charge
in negligibly small. The electric field is a vector field because it measures the
force. We know that a charge ¢ produces an electric field, then a positive test
charge ¢, is placed at a point where the electric field is to be determined. As
a result, the test charge q, experiences a force due to the interaction of the
electric field produced by the charge g. Thus, the force on the test charge do
will be

% ~
F=_1 9%; (2.1)
4T Eo rz
where 7 is a distance of a point from the charge g at which the electric field is
to be computed.
Thus, the electric field strength or electric field intensity is defined as,
—

- F
E = Lim — (2.2)

4o—0 4,
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Hence,

- 1 A~
E = Ly (2.3)
4TE€0 7

Thus, the electric field intensity at a point in the region of space is defined as
the force per unit test charge. However, it is a field surrounding the charge g.
Moreover, a test charge is taken into the electric field to measure the strength
and direction of the electric field. The presence of the test charge g, does not
affect the original electric field. To understand this point consider a point

N
charge ¢ which generates an electric field £ directed away from the charge ¢,
as shown in fig. 2.1. Now, to compute the electric field at a point P at a distance
r from the point charge g,

N O e—— >E

r >

Fig. 2.1. Atest charge q, is placed at a distance r
from the positive point charge q.

on placing the positive test charge g, the electric field at a point P is given by

%
F-t-_1 4] (2.4
e

~ d
where 7 is the unit vector in the direction of » . Since two positive charges

R
repel each other, the direction of the force /' will be the direction of the electric
field. The positive test charge experiences the different forces at the different
points in the region of space. Thus, the electric field varies from the point
to point in the region. As a result, one may say that there are many electric
fields due to the several charges in the region of space. Using super-position
principle, the total electric field in the space is equal to the vector sum of the
electric fields due to the individual charges. Hence,

- - o5 S

E = E1+Ex+Esz+..

- < —

or E =Y E, .(2.5)
n=1
In general, the electric field at any point is given by
> 1 9i - 2.6)
= =7 (2.

4TE€0 i I”l-2

The unit of the electric field £ is newton/coulomb (N/C).
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2.2. ELECTRIC FIELD DUE TO UNIFORM CHARGE
DISTRIBUTION

Suppose that the charges are distributed in the region, such a distribution of

charges is known as continuous charge distribution. We can, now, compute the

electric field intensity by taking a charge element dg. Thus, the electric field

strength at a point P at a distance » from the charge element dg is given by

- 1 do-~
dE = —gr

(2.7
dne, r @7)

~ -
where 7 is unit vector along » . Now, according to principle of superposition,

5
the net electric field intensity £ is the vector sum of all such electric fields
produced by the individual elements. Thus,

5
E = ZdEz' (2.8)
1
1 dq; ~
4TE€0 ; ;/2.2 I
- 1 dq A
E = —r ..(2.9
o 4re, .[rz 9)

Example 2.1. The four point charges ¢, = 1C, ¢, = 2C, g; =3C and ¢, = 2C
are placed at the four corners of a square of side 2 m. Compute the electric field
strength at the centre of the square.

Solution: The four charges q,, ¢,, g5 and g, are situated at the four corners of
the square of side 2 m as shown in fig. 2.2.

a1 =1c 4= 1o

E;

(0)
E» E,
Eq

g4 =-2C g3 =3c

Fig. 2.2. Four charges on square.

B = — N —9x10° 12:4.5><109N/C
Ame, r (2)
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1 2
E, = ——1229x10"x2=9.0x10° N/C
4T|:EO 7 2
1 3
Ey = B - 9x10°x2 =135%10° NIC
4T|:€0 r 2
and E, = q—‘2‘=9><109><z=9><109N/C
4TE€0 7 2
Thus, E'\ =E;-E, (since E, and E; are opposite)
=9x 10’ N/C
and E,=E,+E, (since E, and E, are in same directions)

=18.0 x 10° N/C
The net electric field at the centre ‘O’ will be

=15.58 x 10° N/C

2.3. MOTION OF A CHARGED PARTICLE IN THE UNIFORM
ELECTRIC FIELD

There are two cases for the motion of the charged particle in the uniform
electric field, viz,
(a) When the charged particle is moving parallel to the electric field,
(b) When the charged particle is moving perpendicular to the electric field.
(a) Consider a charged particle, having a charge g, moving between two
parallel plates as shown in fig. 2.3. These plates consist of opposite charges.

-

E

—_—

+ + + + + + + + + o+
-Q(f
<T

Fig. 2.3. A positive charge is moving parallel to the electric field.

When the charge ¢ moves in a uniform electric field, it experiences an
electrostatic force,
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- -
F =qFE ..(2.10)

Since the field is uniform, the intensity of the electric field, will remain
same every where. Suppose that the initial velocity of the charge is zero, the
charge will move in a straight line in the direction of the electric field with a
constant acceleration.

Thus, the acceleration of the charge ¢ is given by

ﬁ
- F
a = —
m
ﬁ
- 4E
or a =12 (2.11)
m

where m is the mass of the charged particle. Since the electric field £ is along
x-axis, we have

- n
E =FE.i ..(2.12)
-
Substituting the value of £ from the Eq. (2.12) in the Eq. (2.11), we get
- E -
a =2x] (2.13)
m

The positive charge g experiences a force when placed initially between
the plates, and it starts moving towards the negatively charged plates. The
velocity gained by the charged particle at the time ¢ may be obtained as

- - -
v =v+at ..(2.14)
- -
or v = at
E
- (2.15)
m
If x is the distance travelled by the charge ¢ in the time ¢,
1
x = ult o at® ..(2.16)
L,
1 gF
or x=-Lxp? (217
2 m
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Moreover, if v is the final speed before it strikes the negative charged plate,
Thus,

v =2ax ..(2.18)
_ 29E.x
m
12
24E
or v = (M) (2.19)
m

Again, the Kinetic energy of the charge ¢ after after attaining the velocity
v is given by
1
K.E. = —m*
2
_ lm 2q.E . x

2 m
=qE. .x

(2.20)

The Eq. (2.20) is the direct consequence of the work-energy theorem.

(b) When the motion of the charged particle is perpendicular to the
electric field. Suppose that a particle of mass m, charge ¢ enters into an electric
field with the initial velocity velocity v, as shown in fig. 2.4. The electric field
E is uniform and the particle experiences an upward force,

- -
F =qE ..(2.21)
+ + + + + + + + + + + + + + +
q : | | | |
vy ' Y ' v E

Fig. 2.4. Motion of a charge q in a uniform electric field.

The electric field is uniform every where, the acceleration of the electron
will be
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N
- F
a = —_—
m
E
a=L (2.22)
m
Let (x y) be the position coordinate of the particle at any time ¢, thus,
X =v,t ..(2.23)
[
and y = Eat .(2.24)
Substituting the value of a from the Eq. (2.22) in the Eq. (2.24), we get
1 gE
y=-1L (2.25)
2 m
Now, eliminating ¢ from the Eq. (2.25) by using the Eq. (2.23), we get
1(9E ) ,
==l "2 |x ..(2.26
Y 2 (mvg ) ( )
Since the kinetic energy of the particle is
1
K = 5 mvg,
thus,
qE ) 2
=|-—|x ..(2.27
g (4[{ 227)

The Eq. (2.27) shows that the trajectory of the particle between the plates
is a parabola.

Example 2.2. An electron is released between the plates of a cathode ray
oscilloscope and there is a uniform electric field of 2 x 10> N/C. If the initial
kinetic energy of the electron is 1 KeV, find the deflection of the electron if it
enters perpendicular to the field. The length of assembly is 4 cm.

Solution: Using Eq. (2.27),

gk

4K

1.6x107"9 x2x10° x4x4x107*
4x10° x1.6x107°

=8x102=8x102m=8cm.
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2.4. ELECTRIC LINES OF FORCE

Michael Faraday introduced the concept of the electric lines of force to visualize
the nature of the electric field. The concept of the electric lines of force is very
useful when dealing with the spatial electric field problems. It is due to the
fact that the force between two point charges depends on the distance between
them. The electric lines of force are imaginary lines that predicts the pictorial
visualization of the field. Moreover, tangent to these lines of force at any point
represents the direction of the electric field at that point.

Properties of the Electric Field Line
We have following properties of the electric field lines,

(1) The electric field lines originate from the positive charge which is called
the source of the field lines and end-up on the negative charge which is
known as the sink. The electric field lines for the positive and negative
charges are shown in fig. 2.5.

(a) (b)
Fig. 2.5. Electric lines of force for (a) positive charge (b) negative charge.

(2) The tangent at any point to the electric lines of force predicts the direction
of the electric field at that point.

Ea

Fig. 2.6. Directions of the electric fields at different points.

_)
InFig2.6. E 4 represents the direction of the electric field at the point 4 and
%

E g at the point B. The directions of the electric fields at the points 4 and
B are different.
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(3) The number of field lines originating from the positive charge and end
on negative charge is proportional to the magnitude of the charge. In
the fig. 2.7, more and more lines originate from the charge 2¢ than the
charge g.

2 ()

(a) (b)

Fig. 2.7. Density of lines depends on the magnitude of charge.

(4) Greater the density of electric lines of force, greater the electric field
strength.

(5) Since there are no closed field lines in electrostatics, the electric field is
irrotational. That is, the curl of the electric field must be zero.

(6) Two electric field lines never intersect each other. That is, the direction
of the electric field is unique. If it is not, then, at the point of intersection,
the electric field will have two directions which is not possible.

(7) The electric field lines emerging from a conductor are perpendicular to
its surface. To visualize this argument, consider a conducting sphere as
shown in fig. 2.8. The total charge reside on the surface of the sphere, and
the electric lines of force are emerging, normally, from its conducting
surface.

Fig. 2.8. Lines of force from a conductor.
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(8) The electric field about a point charge is isotropic. If we take an isolated
point charge, the electric field lines emerge in all direction as shown in
fig. 2.5.

(9) The electric field lines do not penetrate the conductor, since the electric
field inside the conductor is zero. Moreover, the electric field lines for
the charges are shown in fig. 2.9.

-

Fig. 2.9. Electric field lines for positive charges.

N
In this pattern, there is a point, where the electric field £ = 0. This point is
known as null point and no electric line of force will pass through it.
If the electric field lines are curved, the electric field does not follow the
field lines. Fig. 2.10, shows that the direction of the electric field lines are
radially outward for the +ve charge and radially inward for the negative charge.

Fig. 2.10. Source and sink for field lines.

It can also be seen that the electric field lines are symmetrical.

Example 2.3. Compute the electric field strength due to a point charge using
the concept of electric field lines.

Solution: Suppose that a positive charge is situated at a point O, and we
compute the electric field strength at a distance » from the point O, as shown
in fig. 2.11.
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Fig. 2.11. Field lines from a charge.

Thus, sketch a spherical surface of the radius » around the charge +g.
Since the spherical surface is uniform, the electric lines of force pass through a
spherical surface normally. Thus, the surface area of the sphere,

s = 4’
The charge densit _ Charge
e charge density O = ea
_ 4
47

the electric field intensity at a point on the spherical surface will be

(¢
E:_
e0
-2 (o)
S 4mr?
E=—1—
dne, r

2.5. CHARGE DENSITIES

If the source of the electric field is the continuous charge distribution, the
electric field may be calculated by considering a small charge element and
integrated it over the region of the space. Since, large number of charges are
distributed uniformly over the region, as shown in fig. 2.12, the integration
of the electric field intensity due to the small charge element gives the total
electric field produced by the uniform charge distribution in the region of the
space. We have the following charge densities, viz,
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Fig. 2.12. Charge element inside a uniform
charge distribution region of space.

(a) Volume charge density
(b) Surface charge density
(c) Line charge density.
Now, we shall discuss all the charge densities.

(a) Volume Charge Density: Consider a system where the charge
is uniformly distributed and the volume of the system is divided into large
number of small elements. Let us consider such an element of volume dx dy dz
and consisting of the charge dq. If the charge dq is positive, the electric field
at a point P due to this element points away. The volume charge density p(v)

is given by
charge of the small element
p(v) =
volume
_ %
dxdydz
or dg =p(v)dydydz
Thus, the total charge of the system is given by
g = | dq
v
= [p(v) dvdydz
or q = '[p(v) av

(2.28)

(2.29)

.(2.30)

where dv = dx dy dz is the volume of the element. Here, p is a scalar function.
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(b) Surface Charge Density: If the charge is distributed uniformly over
a surface of the area S in the region of space, we must define a surface charge

%
density over a small surface area dS . The surface charge density is denoted
by c. Thus, we write,

dgq
G = ..(2.31)
or dqg =cdS ..(2.32)
The net charge may be computed as
-
g =]ods .(233)
N

(c) Line Charge Density: If the charge distribution is along a line (one
dimension), we must define a line charge density and it is represent by A.

[+ + + + + U+ + + + +]
dx

Fig. 2.13. Line element

Let us consider a line of length / consisting of a positive charge distribution
uniformly over the length /. Let dx be a line element having charge dg, thus,
the line charge density

dgq
A=— ..(2.34
i (2.34)
net charge of the line will be
q=f@
g = [rdx (2.35)

2.6. THE ELECTRIC DIPOLE

An electric dipole is an arrangement of two equal and opposite charges
separated by a small distance as shown in fig. 2.14.

=
OO
q r q

Fig. 2.14. An electric dipole
N
Suppose that two charge —¢ and +¢ are situated at a distance 7 , the
-

electric dipole moment p is defined as
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— —
p =qr .(2.36)

%
The electric dipole moment is a vector quantity and its magnitude | p

| is equal to the product of the magnitude of either charge and the distance
of separation. The direction of an electric dipole is taken from negative
charge to the positive charge. The line joining the two charges is called the
axis of the dipole. In M.K.S units, the unit of dipole is coulomb metre. For a
system of charges, the electric dipole moment is given by

%
p = Zq,-ri .(2.37)

where Z is the summation over all dipole moments. All the polar molecules
i

like, HCI, HBr, CO and H,O etc possess the electric dipole moment. For
example we take HCI molecule as
H ——CI
In HCI molecule the positive and negative ions (charges) are separated
by the certain distance, thus, it possesses the electric dipole moment. On the
other hand, the non-polar molecules do not possess the electric dipole moment
because the positive and negative charges are not separated for these molecules.
Since two point charges are connected, the electric field due to a dipole may be
computed in a simple way and without using integration.

2.7. THEELECTRIC FIELD DUETOANELECTRIC DIPOLEATA
POINT ALONG ITS AXIS

Suppose that an electric dipole is lying along the x-axis as shown in fig. 2.15.

YA
i r !
: a : a | P
g ° g E- E.

Fig. 2.15. Electric field due to dipole.

Let us consider an axial point P at a distance » from the centre of the

dipole. The dipole moment of the system is
%

p =2qai .(2.38)

where 2a is the separation of the charges. If £_and E, are the electric fields at
a point P due to charges —g and +¢ respectively, Thus,
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1 A
e o +qa)2 (—7) (2.39)
and E = — 1 (+i) ..(2.40)
4n € (I’ + a)
Then, the resultant electric field at P will be
E=E +E

oy L)
T ey | (r—a) (rta)? |

or =24 22"”2 5 (2.41)
aney (r'—a”)
since, p =2aq,
2q 2pri

47[:60 (r2 _a2)2
if we take r >> q,

__L 2, 2.42
e (2.42)

The direction of the electric field is along (+x) and p is (—x).

2.8. THE ELECTRIC FIELD AT A POINT ON THE
PERPENDICULAR BISECTOR OF THE DIPOLE AXIS

Suppose that the two charges are separated by a distance 2a constituting a
dipole of the dipole moment

- n
p =2aqi ..(2.43)
Consider a point P at a distance y on the perpendicular bisector of the

dipole axis as shown in fig. 2.16.

AY
E.

={

Fig. 2.16. Electric field due to dipole at a perpendicular bisector.
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The electric field at a point P due to +¢ charge is,

i 1 q ~
Ey = =T ..(2.44
T 4ney 2 (244)

where 7+ is a unit vector, given by

ry = cos¢;+ sin(l)}' ..(2.45)
Again, the electric field due to —g charge is given by
4 1 q ~
E_ = =7 ...(2.46)
4T|: GO v
where ro o= —cosq); - sin(l)}' ..(2.47)
The resultant electric field at the point P is
— - -
E =E,_ +FE_ ...(2.48)
2 N
S Coiq’ (-7) .(2.49)
4TE 60 v
since cos ¢ = 4
-
- A
Thus, E =29 _h
471: EO v
%
- 1 A
or E = L) .(2.50)
dne, r

Here, it can be observed that the electric field points in —x direction, and falls
off as —5 . Moreover, the electric field due to a dipole along its axis is twice
r
the electric field at a point lying on perpendicular bisector.

2.9. AN ELECTRIC DIPOLE IN UNIFORM ELECTRIC FIELD

An electric dipole consists of two charges of equal magnitude and at a distance
2a apart. Now consider an electric dipole in a uniform electric field at an angle
0 as shown in fig. 2.17. The electric field acts from left to right or along x-axis.
Thus, the forces acting on the dipole are given by

F.=qE ..(2.51)
and F =—FE
where | F, | =| F_|, that is, the two forces are equal in magnitude but pointing
in opposite directions. Since, field is uniform, the dipole moment is given by
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p =2aq .(2.52)

AY

ml

B—F.

Fig. 2.17. An electric dipole in a uniform electric field.

Here, two equal and opposite forces are acting on the dipole, net force on
the dipole will be

F net = F + + F -
=gqE—-qE=0 ...(2.53)
Thus, the net force on the dipole is zero. However, two forces acting
in opposite directions produce a torque which rotates the electric dipole in

clockwise direction, as a result of this, the electric dipole becomes parallel to
the electric field. Now, the torque on the dipole is, then,

tT=F,.asin0+F_.asin0d
F=F,=F =qgE
Thus, T =2aF sin 0 ..(2.54)
or T =2agEsin 6 ..(2.55)
Since, p = 2aq, we have

256)

In vector form, it is written as

- - -

T =pXE .(2.57)

Now, we have two cases.
(1) The torque t will be maximum, when 6 = 90
T =PFE
That is, the torque acting on the dipole will be maximum if the

electric dipole is along y-axis, a direction perpendicular to the
electric field.
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(2) The torque t is minimum if 6 = 0
=0
if the dipole is along the electric field direction, the torque acting on
the dipole becomes zero.

Example 2.4. An electric dipole consists of two equal and opposite charges of
magnitude 2uC separated by a distance of 1.0 cm. If the dipole is placed at an
angle of 30° in a uniform electric field of 10° N/C, calculate the,

(a) dipole moment.
(b) torque on the dipole.

Solution: g=2x10°%C
20 =1.0x107%m
E =10°N/C
0 =30°.

(a) Dipole moment
p =2aq
=1.0x102%x2x10°
p=2x10%C-m
(b) Torque
T =pEsin 0
=2 x107% x 10° x sin 30°
=1.0x 10 N.m

2.10. AN ELECTRIC DIPOLE IN A NON-UNIFORM ELECTRIC
FIELD

Consider an electric dipole in a non-uniform electric field as shown in fig. 2.18.

Fig. 2.18. Dipole in a non-uniform electric field.
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The dipole moment is given by
p =2aq ..(2.58)
where 2a is the distance between the two charges. Since the dipole is in a non-
uniform electric field, a net force acts on the dipole. As a result, a net torque
would act on the dipole which depends on the orientation of the dipole in the
electric field. Now, suppose that £ and £, are the electric fields at the charges
—q and +q respectively, where £, and E_ are given by
E, =E(Z+2a)
E =EQ2) ..(2.59)

Expanding E(Z + 2a) using Taylor series, we get
dE (2a)* d*E s

E(Z+2a) = E(Z)+2a—+ ..(2.60

(7+20) = E@)+2a 42205 (2.60)
neglecting higher order terms, we write
dE

E(Z+2a) =E(Z)+2a—; ..(2.61)

az

Here, we have assumed that the dipole is lying in z-direction and the
electric field varies along the z-direction. Due to the variation in the electric
field, the dipole consists of two types of motion, linear motion and rotation
about its axis. Now, we compute the net force acting on the dipole as,

F =qFE ..(2.62)
or F=qgE,-FE) ..(2.63)

Now, substituting the values of £, and £_from the Eqs (2.59) and (2.61)
in the Eq (2.63) we get,

F= q|:E(z) + ZaZ—lZ; - E(Z)]

F = 2a £ (2.64)
q a7 (L.
Since, p = 2aq, we can write the Eq. (2.64) as
dE
F=p— ..(2.65
P (2.65)

The Eq. (2.65) represents the net force acting on a dipole in the non-
uniform electric field.

Example 2.5. An electric dipole is placed in a non-uniform electric field as
shown in fig. 2.19.
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AY

2a—X

o

Fig. 2.19. Dipole in non-uniform field.

x —|
D)

N > X
q

v+ +

Derive an expression for the electric field gradient at a point P from the
centre 0. Compute also the field gradient at x = a.

Solution: The electric field for the system is given by
1 1 1
E = 2 8 2
dney [ x° (2a—x)
oE 2qg | 1 1
— | =—— |3 + PN
ox dney | x° (2a—x)
(B_E) __ 1 Aag
ax x=a 4TE€O ’ a4
() -1
ox)yey 4me, o

2.11. POTENTIALENERGY OF DIPOLEINANELECTRIC FIELD

Suppose that a dipole is placed in the uniform electric field, a couple acts on

the dipole which tends to rotate the dipole. Thus, a work is done by the field to

rotate the dipole and this work in rotating the dipole is stored as the potential

energy. If the dipole is rotated through a small angle d0, the work done will be

dw =1db

or dw = pE sin 0 dO ...(2.66)
Now, the net amount of the work done by the electric field to rotate the

dipole from 6 = 6, to 6 = 0 is given by

w=.[dw
0

| rao
8=0,

0
J pE sin0d0
0
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or | U =—pE (cos 6 —cos 0,) | ..(2.67)

This expression shows that a negative work is done by the electric field.

If initially, the electric dipole is at right angle to the electric field, we have
0, =90°. From the Eq. (2.67), we may write the potential energy of the dipole as

U =-pE cos 0 ..(2.68)
- -
or U=-p.E ...(2.69)

Example 2.6. In the example 2.4, compute the work done by the electric field
in rotating the dipole from 6 = 0° to 6 = 180°.

Solution: The work done by the electric field is

w =-—pE (cos 0 —cos 0,)

=-2x 10 x 10° x (cos 180 — cos 0)

w=4x107]
Example 2.7. Find the electric field at the centre of a hemisphere of the radius
a and of uniform charge density c.
Solution: Consider a hemi-sphere of the radius a as shown in fig. 2.20.
AY

[ o)

Fig. 2.20. Electric field due to hemi-sphere

Let us consider a ring on the hemi-sphere of the radius AM, where AM =
a cos 0 and OM = a sin 0

Now, the thickness of the ring AB = adb,
and area = 27 (a cos 0) adb
=21 a’ cos O dO
Thus, The charge on the ring is given by
dg = o area
=21 a® 6 cos O dO
Now, the electric field at O due to the ring is given by
dg asin®
4me) [a® cos’ 0+ a’ sin’ 0]

dE = 32
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6.27a’ cos0 do asin®
3

4T EO a

. cos0sin0 do
<o

The net electric field at a point O due to hemi-sphere will be

/2
E= [dE
0
- /2
= — J sin® cos0 do
2¢ 3,
A
B 4¢,

Example 2.8. A uniform charged rod of length L is bent into a semicircle
of radius 7 as shown in fig 2.21. Find the magnitude and the direction of the
electric field at the centre of the semi-circle.

AY
A
dl
dE cos 6 A
B
0 /do
o dE sin 0 x
dEcos6 Y

Fig. 2.21. Charged semicircular rod.
Let A be the line charge density and given by

w4
L
where ¢ is the charge on the rod. Suppose that d/ is the charge element whose
charge is given by
dq =\dl
=A.rd0
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From the fig 2.21, it is clear that the y component of the electric field is
zero and the x-component of the electric field is then,

. 1 dgsin®
E = IdEsmG = -[47560' 2
- ﬁj“sme do
dney r 70
E - A _ 1 q
27560 r 271:60 r L
L
but, r=—
s
E =—1
2¢0 L
E, is along +x axis.
EXERCISES

2.1. Find the electric field intensity at a point P due to a point charge ¢ at the
origin as shown in fig. 2.22.
yA

Fig. 2.22. A charge in a system.

Il g~~~

- ~
Hint: E = ST =it Y]

4T €y r

2.2. Define the electric dipole moment and obtain an expression for the
torque when the dipole is placed in the uniform electric field.

2.3. Obtain an expression for the force when an electric dipole is placed in a
non-uniform electric field.

2.4.1If an electric dipole is placed in a uniform electric field, find the
expression for its potential energy.

2.5. When a dipole of moment p = 2ag C-m is placed in an electric field which
varies as x° along the x-axis. Compute the force acting on the dipole.
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2.6. Compute the electric field at a point on the axis perpendicular to disc
surface and passing through its centre. The disc has a uniform charge
density o, sketch the electric field also.

2.7. Compute the electric field at a point lying on the axis of the ring of
uniform charge density A.

2.8. The four point charges are placed at the vertices of a square of side a as
shown in fig. 2.23. compute

4q A 2q

q -2q

Fig. 2.23. Charges on a square.

(a) The magnitude and direction of the electric field at the centre ‘O’.
(b) The electric field at point 4.

2.9. Determine the magnitude and the direction of the electric field at the
point P shown in the fig. 2.24.

q a 9] a q

Fig. 2.24. Charge system.

2.10. Three charges, ¢, = 1C, g, = 2C, g; = —2C are placed at the vertices of an
equilateral triangle of side 2 cm. Compute the electric field at the centre
of the triangle.

2.11. A particle of charge 2uC experiences a force of 10 N downward.
Compute the magnitude and direction of the electric field.



3 Gauss's Law

CHAPTER

In the previous chapters, we have discussed the force between two charges
and the applications of the electric field. We have investigated the electric field
due to a charge or an assembly of the charges using the concept of positive
test charge ¢, In this chapter we shall solve the electrostatic problems using
Gauss’s law.

3.1. ELECTRIC FLUX

Since the positive and negative charges are the source and sink of the electric
lines of force, we can define the density of the electric field lines passing
through a given surface. In this way we can develop a relation between the
electric field and the electric flux (density of the field lines).

The electric flux is defined as the number of the electric field lines
passing through the given surface area. It is denoted by ¢,. The electric flux
¢, is directly proportional to the electric charge where the electric field lines
originate. Suppose that a spherical surface is at some distance apart from a
charge ¢ situated at a point ‘O’ as shown in fig. 3.1.

Fig. 3.1. Electric field lines passing through a curved surface.
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Thus, the electric flux through the surface is equal to the number of electric
field lines passing through the area of the surface. Then, we write
- >
6, =E-S (3.1
where S is the area of the surface. Now, consider a plane surface in a uniform

N
electric field £ as shown in fig. 3.2.

N
E

Fig. 3.2. Flux passes through a plane surface.
In this case, the flux through the surface is
- -
¢, =E-S
Where S denotes the area of the plane surface.
- .
or ¢, = E-nS
=ES ..(3.2)

~ 4
where 7 is a unit normal vector to the surface §. Moreover, if the plane surface

is parallel to the electric field, no field line passes through the surface and
(I)e = 0
Now, consider a case where the electric field lines make an angle 0 at the
surface. That is, the surface is neither parallel nor perpendicular to the electric
field lines. Consider such a arbitrary surface as shown in fig. 3.3.

Fig. 3.3. Field lines passing through a closed surface.
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Assume that the whole surface is divided into infinitesimally small patches
such that for each patch, we have a flat surface. Here, the electric field E
varies over the curved surface S. Now to determine the electric flux passing
through the whole surface S, consider an electric field vector EI at the ith

%
patch whose are vector is dS; .

- A N
where dS; = ndS;, n is a unit normal vector. The electric flux passing through
%
the area dS; is given by
- -
do, = E; - dS; ..(3.3)

- -
The dot product of electric field vector E, and surface area vector dS; is

purely a scalar quantity.

Thus, the net flux passing through the surface will be,

¢, = Zgi-a%i (3.4)

or ¢, = LE-% (3.5)

This surface integration can be evaluated by specifying the surface S.
- -
Since the vector £ makes an angle 6 with the surface area vector dS , we may

write the Eq. (3.5) as

¢, = [ E dS cosb (3.6

3.2. CONCEPT OF SOLID ANGLE
To understand the concept of the solid angle, it is important to have a look at

the simple angle as shown in fig. 3.4. Let dB be the angle made by an arc d/,
then

Arc
Radius

Angle = (37)

dl
do

r

Fig. 3.4. Angle subtended by an arc.
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do = (3.8)
r
or dl =rdo (3.9)

/. ) .. .
The ratio — is very meaningful. In a similar way, we can define a solid
r

angle. For this, consider two concentric spheres of radii 7, and r, respectively
as shown in fig. 3.5.

Fig. 3.5. Solid angle

Here, area dS| and dS, are proportional to r% and r% respectively. Thus,

ds, _ ds
=L = 5t=dQ .(3.10)
i "

where dQ is known as solid angle and is used to define the solid angle of
the cone as shown in fig. 3.5. The unit of the solid angle is steradian. The
steradian is defined as the solid angle subtended at the centre of a sphere of
radius 1.0 meter by an area of 1.0 m? lying on the surface of the sphere. It is
clear that solid angle increases with the surface area dS. Since the surface area
of a sphere of radius 7 is 42,

Then, the maximum solid angle is given by

_ 47

r2

Q

=4 (3.11)

To prove that Eq. (3.11). Consider a sphere of radius  as shown in fig. 3.6.
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Ay
‘ 40 P
R d_ 4_)__ __\~ -
0, r
> X
d
3 o
z
Fig. 3.6. Geometry of solid angle
In spherical coordinates, the surface area is given by
dS = (r db) (r sin 6 do)
=2 sin 0 dO df ..(3.12)
The elementary solid angle dQ is now,
d. .
dQ = —f: sin@ d0 do
r
total solid angle Q= ISdQ

T 2%
= [ [ sinododo=4n (3.13)

6=0 ¢p=0

3.3. GAUSS’S LAW OF ELECTROSTATICS

Since electric field can be evaluated algebraically using coulomb’s law, Gauss’
law provides an easy way for computing the electric field for the uniform
charge distribution. K.F. Gauss, a German mathematician derived a relation
between the electric field and the charge in a closed system. Actually, this idea
was derived from the fluid dynamics. Suppose that a charge ¢ is situated at
the centre of a sphere, the electric field lines are perpendicular to the surface

N
and hence the electric field £, at every point on the surface of the sphere, is
perpendicular to the surface as shown in fig. 3.7. Thus, at the surface of the

sphere, the electric field is given by
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- A
E-_1 4; (3.14)

Fig. 3.7. Electric field lines passing through the segments dS, and dS,.

It is clear that the flux passing through the segment dS, is equal to the flux
through the areal segment dS,. Thus, we write
EdS, = E, dS, ..(3.15)
Since the electric flux depends on the magnitude of the charge, consider
the concept of the solid angle to prove the Eq. (3.15). Let dQ be the solid angle
subtended at the centre of the sphere by the surfaces dS; and dS, as shown in
fig. 3.8.

Fig. 3.8. Solid angle subtended by the area elements dS, and dS,,.
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Thus, we have

d. d.
dQ = %:% ...(3.16)
A p)
where OP| = r| and OP, = r,. Thus, the ¢lectric field at the point P, is
1 4q
E =——= ..(3.17
! 47[ EO }/‘12 ( )
and the electric field at the point P, is given by
1 ¢
E. = e 2 ..(3.18
2 4n € r22 ( )
Now, we calculate the electric flux passing through the surface dS| is
g ds
=E, dS, = — ..(3.19
o, [t < ’”12 (3.19)
Similarly, electric flux passing through the area dS, is given by
1 dS
= E,dS, = =2 (3.20
¢, = EydS, iney, 12 (3.20)
since, we know that
o, =0, ..(3.21)
or E,dS, =E,dS, ..(3.22)
Thus, for an arbitrary surface dS, we write
- - 1 q
0= [ EdS=], pr— s
S | d—f (3.23)
471: 60 N 14
as . : .
Here Is—z is the solid angle dQ), which has value 4.
r
q
= dQ ..(3.24
b 4m e jS (3-:24)
dn g <o
- >
- ds=4
9, jSE ds -, .(3.25)

Thus, Gauss’s Law states that the net flux through any closed surface is
proportional to the net charge enclosed by the surface. If there are large number
of charges enclosed by the surface, we write,
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=4q, +q2—q3—q4 ......
That is, z g; represents the algebraic sum of all the charges which enclosed

i
by the gaussian surface. If we consider a irregular body as shown in fig. 3.9.
we may use the concept of solid angle to prove the Gauss’s law.

Fig. 3.9. lllustration of the flux, from a charge q,
passing through solid angle in irregular body.

Now, the electric filed at point P is given by

g-_4 1 .(3.26)
41‘[:60 ]/'2

The flux through the element dS which makes an angle 6 from the electric

- - -
field £,is d¢, = E-dS and total flux is then,

- -
o, = [ E-dS
= jSE dS cos® .(2.27)
Substituting the value of £ from the Eq. (3.26) in the Eq. (2.27), we get
q ds cos©
b = dney s~ 2
0 r
q q
= dQ = A (2.2
dre, J.S dr g, (2:28)
Hence,
¢, = L .(2.29)
o
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It terms of charge density, Gauss’s law many be given as

- - 1
o, = CJSE-dS=gIVpdV ..(2.30)
S

where g = J.V pdV is the total charge enclosed by the volume and p is called
volume charge density.

3.4. GAUSSIAN SYMMETRICAL SURFACES

Gauss’s law is applicable for any charge distribution in a closed surface.

By knowing the charge distribution, we can evaluate the surface integration
- -
E-dS for the flux passing through the gaussian surface, a symmetrical

surface. We have following gaussian surfaces for corresponding symmetries.

System Gaussian Surface

Sphere Sphere
Infinite Rod Coarcial cylinder
Plane Sheet Pill box

3.5. ELECTRIC FIELD OF A SPHERICAL CHARGE
DISTRIBUTION

Gauss’s law can be used to find the electric field of a sphere with a uniform
charge distribution. Now, consider a sphere of radius a with a charge ¢
distributed uniformly over the sphere. Thus, the electric field is directed
away from the surface of the sphere. It is noted that the electric field must be
constant at all the points on the surface of the sphere. Now, we have two cases
for evaluating the electric field, viz,

Case I: We evaluate the electric field at a point outside the sphere, in the
region r > a as shown in fig. 3.10.

Gaussian
/ surface

Fig. 3.10. Electric field at a point P(r > a).
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Now, we draw a gaussian surface of the radius r, such that, it encloses all
the charges present on the surface of the sphere. The electric field at a point P
is evaluated as

- > q
$E-as =L .(3.31)
<o
q
Edas = L
fas =2
or E-4m? =41
<o
or F=_1 4 .(3.32)
47[ EO ]/‘2

Since the charge is distributed uniformly over the surface on the sphere,
we define charge density

Charge

c=—— ..(3.33)
Surface area
or c=—1 .(3.34)
dma

The electric field at the surface may be obtained by substituting » = g in
the Eq. (3.32), we get
1-%=3- .(3.35)
So

E =
4TEE()a

Case II: We shall, now evaluate the electric field at a point P lying inside the
sphere (r < a), and we draw the gaussian surface which passes through the
point P as shown in fig. 3.11.

Gaussian
LeeTTT N surface

Fig. 3.11. Electric field at a point p lying in the region r < a.

Since all the charge g reside on the surface of the sphere, and the gaussian
surface does not enclose any charge, hence ¢ = 0. The electric field is
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- -
[E.as =L =0
o
E=0 for r<a ...(3.36)
The plot of electric field £ with the distance is shown in fig. 3.12.

then,

or

= A

E
E= L 9 = constant
( 4ne, a?
1
Eoc—
r2
E=0
>
0 r=a

5
Fig. 3.12. Plot of E Vs distance r.
. . . 1 .
In the Fig. 3.12., It is shown that E varies as —- for the region > a and
r

E =0 for r <a. It is clear that £ is constant at » = a.

3.6. ELECTRICFIELD OF ANINFINITE LONG WIRE (LINE CHARGE)

Let there be an infinite long wire of negligible radius having a uniform line

charge density A, such that
..(3.37)

L=4
L
The long wire consists of cylindrical symmetry as shown in fig. 3.13 and

the magnitude of the electric field is constant over the cylindrical surface.

- —_— =

E ds, E
- A
ds, S J
S, !
+H+ + + + + + + + + + + +

L

| <

Fig. 3.13. Gaussian surface of a line charge.
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It can be seen that the electric field points radially away from the wire.
As illustrated in the fig. 3.13, the gaussian surface consists of three parts for
computing the electric field, viz,

(1) curved surface S|,
(2) left surface S, and
(3) right surface S;.

Now, applying Guass’s Law on the cylindrical surface, then, the electric
flux through the Gaussian surface is

- -
0, = gSSEdS .(3.38)
- - - - - >
= c]SSIE-dSl +9582E-d52 +<]5S3E-dS3
= 9SS1Edsl coso+<j>SZEdS cos9o+<ﬁS3EdS c0s90

= Ecﬁslars1 +0+0

The second and third integral for the surfaces §; and S, become zero,
- -
since the electric field £ is perpendicular to the surface elements dS; and dS»

. Moreover,

q
¢, = — ...(3.40)
o
E-2nrl = £
o
q 1
or E = -— ..(341
21 EO L r
From the Eq. (3.37), the Eq. (3.41) takes form,
E = A ...(3.42)
2T EO r
or E « 1 ...(3.43)
r

Thus, the electric field E is proportional to (l) . The plot of E versus r is
shown in fig. 3.14. r
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=V

Fig. 3.14. Evs distance r.

Example 3.1. Obtain Coulomb’s law using Gauss’s law of electrostatics.

Solution: We may obtain coulomb’s law from the Gauss’s law of electrostatics.
For this, suppose that an isolated positive charge g is situated at a point o as
shown in fig. 3.15.

\
. Gaussian
N -7 surface

Fig. 3.15. Gaussian surface for isolated charge

We have a spherical gaussian surface for a positive isolated charge. The
electric field lines point outward from the charge. The Guass’s law is given by

- -
$ E-ds =L
s N
since, the gaussian surface encloses the net charge g, we have
q
EQ dS = —
gis -
or E-4m? = 4
o
1
or E = %
4TEEO v

Now, if we put a point charge Q on the gaussian surface, then, the force on
the point charge O will be

- -
F = QE
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- 1 N
or F = @-r
4TE€0 Vv

this is known as coulomb’s law.

3.7. ELECTRIC FIELD NEAR AN INFINITE PLANE SHEET
Gauss’s law can be used to compute the electric field near a large plane sheet
with a uniform surface charge density. Consider a large plane sheet with
a uniform charge density ¢ in yz plane as shown in fig 3.16, where charge
density o is given by

c = ..(3.44)

LYES

Here, S is the area of the plane sheet.
AY

Z

Fig. 3.16. Infinite plane sheet

It has a planner symmetry, and the gaussian surface is a pill box as shown
in fig. 3.17.

Plane sheet

+
+ —

/ Pillbox L. dS;
] A ]
E + . r 7

+
_,: @ !

ds; + ds;

by
2
1.

+

+

Fig. 3.17. Gaussian pill box
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We know that the electric field must be perpendicular and uniform and
points outward from the charged plane sheet. Thus, we write

5
E =E,

The gaussian pill box contains three parts of its surface, viz.

(1) Surface S,
(2) Surface S,
(3) acurved surface S;.

According to Gauss’s law, we have

- -
gS E-ds =L
S EO

- - - - - -
or cﬁSIE-dSl+§[§SZE~dS2+C'i5S3E-dS3

ES+ES+0 = -1

o
or E=-1
25 €
Using Eq. (3.44), we have
g-_O
2¢

.(3.45)

..(3.46)

(347)

.(3.48)

The direction of the electric field is along +x axis and £ is constant.

Example 3.2. Compute the electric field for two distant parallel infinite non
conducting plane sheets using Gauss’s law.

Solution: We have three cases for the two plane sheets.

Case I: Consider two positively charged parallel plane sheet, both having a
uniform charge density ¢ as shown in fig. 3.18.

+7
+
+
A
° +
—
E1 -+ +
—
E, -+ +
+
Sheet —1

+ + + + + + +

Sheet — 2

Fig. 3.18. Two positively charged sheets
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- -
Now, suppose that £1 and E, are the electric fields due to the charged

- -
sheets 1 and 2 respectively and £ and E are given by

E =2
2¢
2¢

Therefore, we shall compute the electric field at the points A, B and C. The
electric field at the point A4 is,
Ey=E +E,
or EA = i + i — E
2¢ 2¢5 €

The electric field at the point B is given by

E, =E +(-E,)
_ o o _,
2¢p 2¢
and the electric field at the point C is
E.=E +E,
o o o
or EC = 4+ =

Case II: Now, let the sheet-1 be positively charged and the sheet-2 negatively
charged as shown in fig. 3.19.

— —
Eq Ex
+[] M-
+ —
+ —
A B C
° + ° - °
E1 - + e E1 _ e E1
E, —* + — E; — <« E,
+ —

Fig. 3.19. Two charged sheets.

The directions of the fields £ and E, are computed by placing a positive
test charge ¢, at the points 4, B and C. To calculate the electric fields at the
point 4, B and C, applying the superposition principle,
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Thus,
E, =E +(-E,)
_ % S _
2¢y 2¢
and
E, =E,+E,

o G O
+ =
2¢p 2¢5 €

The electric field at point C is

E. =E, +(-E,)
o 9

or Er=——-—=
2¢) 2¢

Case III: If the both plane sheets are negatively charged, as shown in fig. 3.20.

A B C
L] - L] — °
— —
—_— E1 _ -+ E1 _ - E1
—E - — & ||- <&

Fig. 3.20. Same charged sheets.
The electric field at the points 4, B and C is given by

at point 4, E,=E,+E,
_ (¢
<
at point B,
E,=E -E,
at point C,
E.=E +E,
()
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3.8. GAUSS’S LAW IN DIFFERENTIAL FORM

The Gauss’s law is applied for the computation of the symmetrical fields. There
are many problems in electrostatics which can be solved using Gauss’s law.
But there is a restriction that the field should have a symmetry. The Gauss’s
law in integral form is very useful for solving many problems, however, the
differential form of Gauss’s law is very useful for calculating the fields in
rectangular coordinates. Now, consider a parallopiped of sides dx, dy and dz
along the axes as shown in fig. 3.21.

AY

z
Fig. 3.21. Electric flux passing through a parallelopiped.
The electric field is given by

- A ~ ~
E =Ei+E,j+E k ..(3.49)
The electric flux at the surface ABCD is
1 OE
E . —— —%dx
2 ox
The electric flux entering per second through the face ABCD is
(Ex _1 &, dx) dydz ...(3.50)
2 ox
and the flux leaving per second through the face EFGH face will be
1 0E
(Ex+— 2 dx) dydz ..(3.51)
2 ox

Thus, the net flux in the x-direction is obtained by subtracting the Eq (3.50)
from the Eq. (3.51), we have

JE,
ox

dxdy dx ...(3.52)
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Similarly, net flux in y and z directions are given by

o, dxdy d
—dxdydx
3 v ...(3.53)
and
E
B_Z dxdy dx ...(3.54)
0z
Thus, the electric flux passing through the parallelopiped is give by
oE
o +—2+ oF, dxdy dz ..(3.55)
ox dy oz
-
or V-EdV ...(3.56)
where V is called del operator and is given by
vzaihai}urai/} .(3.57)
But, * Y ‘
o- 4
o
_pdVy .(3.58)
€0
Combining the Eq. (3.56) and (3.58), we get
%
v.g =& .(3.59)

<o

The Eq. (3.59) can be proved using a concept of continuous charge
distribution. In integral form, Gauss’s low is given by

- -
¢ E-ds =L ..(3.60)
S €9

the net charge ¢, in terms of the charge density is given by
g =] pdv -(3.61)
Thus, the Eq. (3.60) takes the form as

- - 1
gSSE-dS = ngp av .(3.62)

Using Gauss’s divergence theorem to change the surface integral into
volume integral, as,

jSEaZ? = jSVEdV .(3.63)
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Thus, in the light of the Eq. (3.63), the Eq. (3.62) becomes

> 1
[ V-Eav =—] par .(3.64)
S €9 V
Now, for any arbitrary volume, we may write the Eq. (3.64) as
v-E=" .(3.65)
o

_)
Here, p is called the charge per unit volume at a point where the electric field is £ .

%
The V-E represents the electric flux per unit volume, and the V-E is
proportional to the volume charge density p.

Moreover, E = / ...(3.66)
c
Thus, the Eq. (3.65) reduces to
- o
v.y =P2° .(3.67)
o

We know that the charge continuity equation is given by

- ap
J == ..(3.68
V-J o (3.68)
thus, we get
9 _po
ot €
or GNPy .(3.69)
p o
integrating
p
J'a—p = -2 {'ar
0
Po <o
we get,
p =p,e o ..(3.70)

3.9. ELECTRIC FIELD DUE TO NON-CONDUCTING SPHERE

Consider a non-conducting sphere of the radius a having uniform charge
density p. The symmetry of the charge distribution is spherical and the electric
field points radially outward. Now, we have two cases as,

Case I: In this case, we shall calculate the electric field for the region r < a. We
define the volume charge density as,
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. t ch
Volume charge density p = net charge
volume
" P (371

]

where ¢ is the total charge contained by the sphere of radius a.

Gaussion
surface

Fig. 3.22. Sphere of radius a.

For the region r < a, let ¢' be the charge enclosed by the gaussian surface
of radius  as shown in fig. 3.22.

Thus,
q = prdV ..(3.72)
g 4 _3
= dV =—"—<—
JN ( y 3) S
—Ta
3
)3
q = q(—) ..(3.73)
a
According to Gauss’s law,
- - q’
$E-ds = = (3.74)
o
2 1 r 3
or E-4nr = —q| —
EO a
or =1 = .(3.75)
4T|: EO a

The Eq. (3.75) shows that the electric field varies linearly with the distance
r and at = a it becomes constant.
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Case II: Now, we shall compute the electric field intensity for the region » >
a. Consider a point P, where E is to be calculated and we draw the gaussian
surface passing through the point P as shown in fig. 3.23. In this case, all the
charge ¢ is enclosed by the gaussian surface.

N
E

/ Gaussian
/  surface

Fig. 3.23. Gaussian surface for r > a.

Now, Gauss’s law is

- — q
$E-ds = = ..(3.76)
o
E-4mr* = 4
o
1 ¢
or E = — .(3.77)
dn e, 2

The plot of £ versus 7 is shown in fig. 3.24. we can see that there is a
discontinuity at » = a.

4
_ 1

4neqa?

Fig. 3.24. Variation of E with the distance r.
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Example 3.3. Suppose that a point charge ¢ is located at the centre of the flat
surface of a hemi-sphere of the radius a, Fig. 3.25. Find the electric flux

(a) through the curved surface and

(b) through the flat surface.
Solution: The electric field at the curved surface of the hemi-sphere is given
by

p-_1 4
4T|:€0a2

This electric field points radially outward direction.

1
|
I

\ \ | ]
1
I

Fig. 3.25. Hemi-sphere.
(a) The flux through the curved surface will be

- >
¢, = E-ds
=E-S
1
— . L 21 612
4m € az
0, = _q
2¢
(b) The flux through the flat surface is then given by
¢2 == ¢1
-9
2¢
since, ¢;+¢, =0

3.10. CHARGE ON CONDUCTORS

We are already familiar with the fact that the electrons are free to move inside
the conductor. It is remarkable fact that the electric field is zero inside an
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isolated conductor just as the gravitational attraction inside a sphere is zero. It
is clear that the charge resides on the surface of a conductor. To describe it in a
pictorial way, consider a charged conductor as shown in fig. 3.26.

Gaussian
surface

5
Fig. 3.26. The electric field E is zero inside the conductor.

Since the conductor is charged positively, the mutual repulsion between
the charges derives the excess charge to the surface of the conductor and as
a result, there is no charge inside the gaussian surface, thus the electric field

-

E =0 ..(3.78)
inside the conductor, shown by fig. 3.26. On the other hand, suppose that there
is a charge present in-side a non-conductor, we have a gaussian surface which
encloses the net charge and therefore, according to Gauss’s law,

- - )
$E-ds =y I .(3.79)
i €0

Thus, the electric field will not be zero. In case of good conductor, the
charge equilibrium state is achieved very rapidly, because the excess charge
would flow to the surface of the conductor quickly. Moreover, consider a
conducting sphere in a uniform electric field £, as shown in fig. 3.27.

N
Ec

/—\_/\

-  —_—

Fig. 3.27. The pattern of field lines in a conductor.
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As a result, the positive and negative charges move towards the
corresponding polar regions of the sphere and creating an electric field Eg in
opposite direction. This is due to the fact that the electric field lines entering
the conducting sphere produce negative charges and leaving from the right
produce positive charges at the surface of the sphere. The motion of the
charges is such that the induced electric field £¢ will cancel the external field

%
E - inside the conductor. Hence, £ =0 inside the conductor. However, there is
no penetration of the electric field lines into the conductor.

Furthermore, if there is an empty cavity inside a conductor, from Gauss’s
law

- > q
$E-ds =L =0 .(3.80)
o
Thus,
E=0 ..(3.81)
Because, there is no charge in the cavity, ¢ =0, ¢, = 0 and £ = 0.

Again, suppose that a charge cavity is present inside the conductor as
shown in fig. 3.28.

A
» | «€
H

3+
¥ | X
v

Fig. 3.28. A charge cavity in the conductor.

Due to the presence of +q charge inside the cavity, the —g charge is
induced inside the surface of the cavity. As a result, +¢ charge appears on the
surface of the conductor as shown in fig. 3.28. Now, consider a case, where
a charge +¢' is present on the surface on the conductor. There should be no
confusion between cavity and the conductor. The total charge on the surface
will be equal to ¢ + ¢'. Moreover, since charge is present in the cavity, the
gaussian surface encloses the net charge +g — ¢ = 0. Again, the electric field
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N
E is just perpendicular to the surface of the conductor and pointing outward,
as shown in fig. 3.29.

+

’ : \
I
\J

5
Fig. 3.29. Direction of E of a charged conductor.

N

The tangential component E, of the electric field £ is zero at the surface of
the conductor, if it were non-zero initially, the charge on the surface will move
in such a way that it becomes zero quickly and only the normal component of
the electric field exists.

Example 3.4. For a conductor having uniform charge density o, calculate the
electric field.

Solution: We can consider a conductor of any shape, Fig. 3.30.

N
E,

Fig. 3.30. E; = 0 and normal component of electric field E,, exists.
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Let g be the charge on the conductor, then

G:g

S

where S is the surface area of the conductor. To compute the electric field,
draw a pill-box, and E, = 0. According to Gauss’s law,

- -
$E-ds =L

€p

or EnS=i
<o

or En :g.
<o

Example 3.5. The electric field for a given region is proportional to the square
root of the distance, That is,

E «cx
or E =kx"?

then, compute

12

(a) The electric flux through the face of the cube of side L, Fig. 3.31.
(b) Net charge confined to the cube.

Solution: by Gauss’s law, the flux through the small surface dS is given by

- -
dd = E.dS
- -
or ¢e=IE.dS
AY
B F
A E
~— L —» dy
o g @—»dz
c G >
D H

Fig. 3.31. Flux through the surface of the cube.
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Net electric flux through the cube would be

Pnet = PErGH — PABCD

- >

But danco = | o E-9S
S U N
=KL _[0 dy _[0 dz
_g5”

Again,

- >
¢EFGH - jEFGHE'dS

— K L) jOL dy jOL iz

=Kk2 1°?
net flux through the cube is

0, =KL (N2 —1)
Zq
But Opet = g
- Sq =Ke L (V2 - 1)
Example 3.6. Show that tangential component of the electric field is zero at
the surface of the conductor of any arbitrary shape.

Solution: Consider a conductor of any arbitrary shape as shown in fig. 3.32.
By Gauss Law, the excess charge must be distributed over the surface of the
conductor, and no electric field may exist within a conductor. i.e.

E =0 (inside the conductor).

B Enormal (En)

Etangential (Et)

Fig. 3.32. Components of electric field at the surface of the conductor.

Now, by Maxwell’s equation,

95[2-671 —0
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- -
or ¢ E-dl =0
ABCDA
or E dx—E, dy+0dx+E, dy=0
As dx — 0, we have
Et=0

Thus, the tangential component of the electric field on the surface of the
conductor is zero and the surface of conductor will remain in electrostatic
equilibrium.

Example 3.7. A point charge is placed at the centre of the cube. Calculate the
electric flux passing through the cube.

Solution: Consider a cube of sides L and a point charge is situated at the centre
of the cube as shown in fig. 3.33.

AY
: B
i Ed
' E
: A 4
i dz e
! e —
| dy ?——» ds
| 3 /
/ ¥
o) = S -
i c
z‘// D
Fig. 3.33. Cube.
- -

Again, consider an area element dS whose position vectoris r . Therefore,

_)
ds is given by

- n
as = dydzi
the electric field due to point charge ¢ is given as
- 1 -
E = % r
471: EO /4

% (x;+ y}' + Z];)
47[60 14

where P =xt+ y2 +22
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ﬁ
The electric flux through small area dS would be

- -
dp = E-dS
1 q(x;+y}'+zl:7)-dydz;
471?60 (x2+y2+22)3/2

do, = 1 qgxdydz
¢ dmey (2424220
But x = L (side of cube)
db, - qL dy dz

411:60 (L2+y2+22)3/2

Now, total flux through the surface (face) ABCD is

o _ 4qL J‘LJ'L dy dz
ABCD 4ney 70 70 (L2+y2+22)

32

mey 0 (P + P+ )P

_ qL2 J~L dy
mey Y0 (L2 + yH)2L +yH)"?

L

,qﬁ 1 -1 y

= ——|tan 2, 22
ne) L QL +y") |,

q - 1

= ——tan  —
ey NE)

_ 9 = q

e, 6 6 €0
net flux through the cube is the 6 times of the flux through one face of the cube.
q

6

¢cube -

_ 49
or ¢cube -
o
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3.1.

3.2

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

EXERCISES
Compute the charge density p, if the electric field is given by

-

E = Eyxi

o _ P
Hint: V.-E =—.
€

If in a certain volume of the space, the ten thousand electric field lines
enter and four thousand leaving the volume, compute the net charge
within the volume.

Hint: ¢, = L, g=¢-e,=6000 x 8.85 x 102 coulomb.
o
A spherical charge distribution has the charge density

_|pola=r) 0<sr<a
P 0 otherwise

Find the expression for flux.

. _q :L _L a rme2n 5 .
Hint: ¢, . ijdV_eojo jo jo p r2dr sin® do do

Prove that there can be no existence of the net electric charge inside a
hollow conductor

Hint: Gauss’s Law.

Determine the expression for the electric field for a conducting sphere for
(a@)r<a (b) r=a, where a is the radius of the sphere.

Compute the electric field at a point outside a long cylinder of radius a
and having a uniform charge density.

For a given volume, the electric field is given by
%

E =2xi+ y}' +k
Compute the charge density.
Two non conducting charged plates X and Y are placed at a distance d
apart as shown in fig. 3.34. Both plates have uniform charge distribution.
Find the electric field at the points 4, B and C.
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(o) (20)

Fig. 3.34. Charged plates.

3.9. Suppose that a square of the edge ‘a’ is placed at a distance ‘a’ from a
positive charge ¢ as shown in fig. 3.35. Compute the electric flux passing
through the square.

Fig. 3.35. A square plane.
3.10. A sphere of uniform charge density p and radius a contains a spherical cavity

R
of radius — as shown in fig. 3.36. Compute the electric field at point 4
and B.

Fig. 3.36. Spherical cavity.



4 Electric Potentials

CHAPTER

We are familiar with the electrostatic force that may be presented in terms of
the electric field. Since electric field is a vector field, the electrostatic force is
conservative force. In the experimental physics, the concept of the electric field
may be transformed into the electric potential. The concept of electric potential
or potential difference plays an important role in electrical engineering.

41. LINE ELEMENT AND LINE INTEGRAL

When an electrostatic force acts between the two point charges, we have
associated with the electrostatic potential energy of the system. Thus, the
concept of the potential energy is concerned with the work done by the
conservative force. To calculate the amount of work done when a conservative
force moves a particle along a path in the space, the line integral plays an
important role. To understand the concept of the potential, suppose that a

particle of mass m moves from the initial point 4 to the final point B under the
_)

influence of the force F', as shown in fig. 4.1.

ml

dl
A
Fig. 4.1. The motion of a particle along the path AB.

To calculate the work, the path AB is divided into several small segments
and using one such path element d/. d/ is also known as line element and is
given by

— A ~ A~
dl = dxi+dyj+dzk (4.1
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where dy, dy and dz are the path elements in rectangular co-ordinates. The line
element, in cylindrical coordinates, is

= ~ A~ A~

dl =rdr+orddo+kd: ..(4.2)
and in spherical polar coordinates is given by

- . n A
dl =rdr+0rdo+0¢ rsinbdd ..(4.3)

- -
Now, the scalar product of the force and the line element d/ is F'- d/ which
-
represents the work done for the small displacement d/ . That is,

- >

dw = F-dl ..(4.4)

The total work done in moving a particle from the initial point 4 to final
point B is then, given by

B - —
w = jA F-dl (45)

or w = Jf F dx+ Ij Fdy+ Jf F. dz ...(4.6)

N
Since work done by the force F depends on the initial and final points
-

A and B respectively, and is independent of path, the force F is called the
conservative force. Moreover, if the work done by force is path dependent, it
is known as non-conservative force.

4.2. ELECTRIC POTENTIAL AND POTENTIAL DIFFERENCE
Suppose that a positive pomt charge g, is allowed to move in an electric ﬁeld

E an electrostatic force F g, acts on the charge g, and this force F is
governed by the coulomb’s law. If the charge g, moves from an initial point 4
to the final point B, the potential difference is, often, written as

av =Vvy-V, ..(4.7)
Let W, be the work done by the electrostatic force in moving a positive charge
q,, from the point 4 to B, Thus, we write,
Wap

VB_ 4 = q_o (48)

Therefore, the potential difference between any two points 4 and B is equal to
the work done in moving a positive charge ¢, from the point 4 to B against the
= - -

field. Moreover, since field is conservative and F = g, £, then, work done by



Electric Potentials 71

the electrostatic field in moving the charge g, through a small displacement
dl is given by -

=—qo E-dl ...(4.9)
_)
The negative sign denotes that the electric field £ points in the direction
of decreasing the electric potential.

Thus, the total work done in moving the charge g, from the point 4 to
B is, N

B
Wy =] cw ..(4.10)
B - —
B—™ —
= —qojA E-dl (4.11)

The potential difference is
w
V-V, =& (4.12)
90
Hence,

B — —
Vg=Vy =], E-dl (4.13)

If we assign a point in the space as a reference point where the potential is
assumed to be zero, then, this point will be infinite where ' — 0. Consider the
point 4 at infinite, so that , = 0, from the Eq. (4.13) we write,

v, =v=—-| Ed

B —™ —
or v=-[ E.d (4.14)

The Eq. (4.14) states the electric potential at any point in the field. It states
that the electric potential at any point in the electrostatic field is equal to the
work done in bringing a positive charge g, from the infinite to the point in the
field. If the potential difference is negative, it means that the work is being

N
done by the force I = g,E, and if dV is positive, there is a gain in the
potential energy. Since potential is a scalar quantity, it is easy to calculate
rather than electric field. The unit of work is joule and that of charge is
coulomb. Then, unit of potential or potential difference is volt. Now,
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1 volt = —1 joule
1 coulomb

In CGS system, unit is stat volt.

Example 4.1. If the work of 2 x 1047 is required in carrying a charge of 2uC
from a point 4 to point B calculate the potential difference and which point is
at higher potential.

Wap _ 2x1071)
9%  2x107°C
Since V-V = +ve, V; is at higher potential.

=100 volts

Solution: Ve=V, =

4.3. ELECTRIC POTENTIAL OF A POINT CHARGE

The electric field may be computed directly for the distribution of charges.
However, in computing the electric field for a uniform charge distribution,
there is a mathematical difficulty in solving the problems. We have, now, a
concept of the electric potential in solving the field related problems. Thus,
two fundamental laws are there.

(1) For the system of stationary charges, the work done by the conservative
force in carrying a positive test charge g, around a closed path is zero.

(2) The electric flux density is expressed in terms of Gauss’s law.

To obtain an expression for the electric potential due to a point charge ¢, we
must compute the potential difference between A4 and B as shown in fig. 4.2.

Fig. 4.2. The potential difference between two points A and B.
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For the charge ¢, the electric field at a point P is given by

— A
E = Z; (4.15)

4Tt e 7
0 -

where r is a unit vector along the position vector 7 .

A
Since r-dl =dlcos®=dr ...(4.16)
then, potential difference between the point 4 and B is given by
B — —
dVv=Vy-V, = - ) E-dl ..(4.17)
S s
T4 4TC EO ]"2
1 1
=94 |——= (4.18)
4m Sol’B T4

Thus, dV is the potential at a point B with respect to 4. If it is assumed that
the point 4 is at infinity, V', = 0 because at r, — o, V', — 0. Therefore, we
write

_ q
V., — V(o) = —— ...(4.19
5= V) dn e, rp ( )

we can choose an arbitrary path the evaluate the electric potential, in the
reference, of the Eq. (4.19), the potential at any arbitrary point will be

Wy = —— 14 ..(4.20)
dne, r

- =
If we look at the equation (4.17), it is obvious that the line integral C“-DE -dl
must be zero for any closed path, that is,

- -
$E-dl =0 .(421)

Thus, the potential difference dV = V, — V, does not depend on the path,
it is the difference of the potentials at the points 4 and B. The potential is
negative or positive, it depends on the sign of the charge.

4.4. POTENTIAL DUE TO CONTINUOUS CHARGE
DISTRIBUTION

In the previous section, we have obtained the expression for the potential

difference between two points 4 and B. If there are several charges
- 5 o

41> 45> 45 --- are located at the points with the position vectors 7,75,73 ...,
the potentials are additive, Thus, we write
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- L ! B2y .(4.22)
4neo|r_r| 4re r—r |
i 2
1 q;
or V= ! ..(4.23)
4me, 5 |_’_7‘

For the uniform charge distribution, we must have charge elements
with the different charge densities Thus,
J‘ pdV
vy o> -

[n=n|

..(4.24
4neo ( )

1
or V= I ods
drey 'S 7
—n|
1 Adl
J./ - -
—n|
Example 4.2. Suppose that the three charges ¢, = 0.1 puC, g, = 0.2 uC and
g5 = —0.1 pC are situated at the three corners of a square of side 2 m as shown
in fig. 4.3.

...(4.25)

and V=

...(4.26
= ( )

94 B
A 2m
9, 93

Fig. 4.3. A square.
Find the potential at the points 4 and B and also V;— V.
Solution: The potential at the point 4 will be

VA=—1 kIR R ]
dne,\n n n

9><109(01 0.2 01) 10~

22 2
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= 9x10° x/2x107/
12.72 x 10% = 1272 volts

| (9,9 5
dne, \n . n

9%10° (E+—0'2 —E)xm—6
2 22 2

1
= 9% 10 X — = 636 volts

V2
Ve—V, =636—1272=-636

The V is at lower potential.

w‘
|

4.5. NEGATIVE GRADIENT OF THE POTENTIAL
Let V be the function of the rectangular coordinates as

V=V 2) ...(4.27)
Now, we use the concept of partial differentiation and we take

dv = a—Va’x+a—Va’y+a—Va’z ..(4.28)
ox dy 0z

The Eq. (4.28) may be given in cylindrical and spherical polar

coordinates,
dv = a—Vdr+a—Va’(1)+a—de
or o0 oz

3 3y 3y ..(4.29)
and dV = —dr+—d0+—do
or 00 o0}
The potential difference between two points 4 and B is given by
- -
dV =—E-dl ...(4.30)

- -
Here, the electric field £ and the line element g/ are expressed (in the
rectangular coordinate system) as,

- A A N
E =Ei+E,j+Ek ..(4.31)
- n N N
and dl = dxi+dyj+dzk
%
The components of £ are shown in fig. 4.4.

Using the Eq. (4.31), The Eq (4.30) takes the form
dV =—(E dx + Eydy + E_dz) ...(4.32)
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AY

~

N
Fig. 4.4. The components of the electric field E
in cartesian coordinates system.

5
Now, from the Eq. (4.32), the components of £ are given by

E = —d—V, E, = _d—V,and E, = —dv ..(4.33)
dx dy dz
%
Moreover, E is then,
- A ~ N
E =E+E,j+E.k ...(4.34)
v dv ~ dV -
= —|—it+—j+ k
dx dy
= i;+i +il€ V
PR
=
or E =-VV ...(4.35)
-
Again, E =—grad VV ...(4.36)

Thus, the rate of change of potential V(x, y, z) in any direction at a given
point is called the gradient of the potential at that point.

The Eq. (4.35) can be represented in cylindrical and spherical polar
coordinates.
- 2 -1 8 7 )
E =—|r—+¢——+k— |V
( or T r a¢ az)

5 . R ..(4.37)
g ~ S
and E =—( —+t0-——+0¢ —)V

r 00

or rsin® dd
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Physical Interpretation of E =-VV

The grad V is an operation of the V on the potential at a point. However,
it provides the information in the region near the point P(say) where it is
evaluated. We have following properties of the VV,

(1) The grad V'is pointed in the direction of increasing potential.
(2) Forthesurface where Vis constant, V V'is assumed to be perpendicular
to this surface. It is known as the concept of equipotential surface
-
where E is always perpendicular to the surface.

(3) The magnitude of the grad V' is equal to the maximum of the rate of
change of V. For example

VIV |= - maximum for £ in the direction of x.
X
(4) If E is perpendicular to the dx,
2—5 =0 ...(4.38)
or E = constant

4.6. ELECTRIC POTENTIAL DUE TO A DIPOLE

Consider a pair of equal and opposite charges separated by a distance of 2a as
shown in fig. 4.5.

Fig. 4.5. An electric dipole

The potential at a point P due to —g charge is
_ 1 (=9
4ney A

: ..(4.39)

and the potential at point P due to the +¢ charge is given by
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1 ¢
= — ...(4.40
2 47560 VZ ( )

Thus, the net potential at the point P will be
V= +V,

N O SR
dne, \nn A

- -

_ 1 [i=nl (4.41)
4TE€ }"17"2

o

If the distance between two charges 2a, is very small as compared to the
- -
distance r of the point P, we may write, r, r, = ? and |n—r, | =2acos 6.

Thus, we get

1 2aq cosH

V= 2

4TC 60 v

.(4.42)

Since dipole moment of the system is given by
p =2aq, ..(443)
using the Eq. (4.43), the Eq. (4.42) takes the form

y =1 peosd (4.44)
4TE EO 14
Moreover, the electric field is then calculated as
_) ~ A
E =—VV=—(ra—V+Gla—V) ...(4.45)
or r 00
Here, 8_V = _—Zp COS?
or dre, r
...(4.46)
14 psin®
and — =
00 dneyr
Substituting the Eq. (4.46) in the Eq. (4.45) we get,
- R n
E = —L ~(2cos6r+5in66) (4.47)
dney r
%
1E| = —L—~ (Beos?0+1) ..(4.48)
4TC EO r

which is the expression for the electric field.
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Example 4.3. Consider an electric dipole as shown in fig. 4.6. Then, find
(a) the potential at any point on the axis of the dipole.
(b) the electric potential at the centre of the dipole and,

(c) ifthe negative charge is replaced by a positive charge of same magnitude,
the potential at the centre of the dipole.

Solution: The dipole moment is given by

p =2aq
Ay
P
o =<—x—> D X
0 U
q = 2a >q

Fig. 4.6. Electric diple.

(a) To find the electric potential at a point P, we have to find out the potential
at the point P due to both charges, the potential at P due to — g charge is
_ 1 (9
dney (a+x)

1

and the potential due to +q is

_ 1 (+9
4ne (a+x)

1

Thus, the net potential at P is then,

v=v,+v, =2 S
V72 dney | (a+x) (a-x)

B 2gx
4me, (a* —x%)

(b) The potential at point ‘0’, x =0

V=0
Moreover, V(q) = L
4m GO a
and M(—q) = 1 =9
ine, a

Thus, V=Wgq)+V(-q)=0
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(c) If the charge —¢ is replaced by +g¢, then, the potential at O due to the both
charges are given by

1
4ney a
_ __ 24
VYT 4ney a

4.7. THE EQUIPOTENTIAL SURFACES

The equipotential surface is a surface that has same electrical potential at the
every point lying on the surface. We know that the potential difference at the
two points 4 and B is given by

B — —

V-V, = —jA E-dl ..(4.49)

Now, according to the definition of the equipotential surface,
Vi=Vs

Thus, we write the Eq. (4.49) as

B — —

) E-dl =0 ...(4.50)

A
N
> E Electric
field lines

Equipotential
plane or line

(a) (b)
Fig. 4.7. Equipotential surface (a) Equipotential plane or line
(b) for positive charge, V,, V, and V.

The Eq. (4.50) shows that the electric field £ is perpendicular to the
displacement. It means that the electric lines of force are perpendicular to the
equipotential surface as shown in fig. 4.7. Moreover, by the Eq. (4.50), we have
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B — —
jA F-dl =0 (451)
The Eq. (4.51) predicts that no work is done in moving a charge from a
point 4 to B along the equipotential line (a line on the equipotential surface).

N

From the fig. 4.7, it is clear that the electric field £ is always perpendicular
to the surface. In fig. 4.7 (a) we have two equipotential surfaces or lines that
have potentials V"and V' + dV. However, in fig 4.7 (b), there are three spherical
equipotential surfaces at the potentials V|, V, and V;. We have mentioned earlier
that the potential is always same at every point on the equipotential surface but
it is not true in case of the electric field. The magnitude of the electric field may
be different at the different points on the equipotential surface.

ﬁ
Furthermore, we may prove that the electric field £ is perpendicular to
an arbitrary equipotential surface. For this, consider the equipotential curves
as shown in fig. 4.8. These curves are characterised by the constant potential*
(x, y, z).

AY

Fig. 4.8 Arbitrary equipotential surfaces.

Suppose that there are three surfaces at the constant potentials V', = V,

%
V,=V+dVand V. The electric field £ can be written as a negative gradient
of the electric potential, that is,

_)
E =-VV .(4.52)

* Classical Electricity and magnetism by Panofsky and Phillips, Addison-Wesley
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Let the potentials at the points P, and P, be V(x, y, z) and V(x + dx, y + dy,
z + dz) respectively. Thus, the potential difference between the points P, and
P, is given by
dV =Vix+dx,y+dy,z+dz)— V(x, y, 2) ...(4.53)
The first term is expanded using Taylor series and neglecting the higher
order terms, we get

av = [V(x y,z)+a—de+aa—de+aa—dZ] V(x,y,2)

aV av av

or dV = —dx+—dy+—dz ..(4.54
ox dy 0z (3349
a—V a—V}+a—VlA€ ~(dx;+dy}'+dzl€)
ox  dy Jz

%
or dv=vV-dl ...(4.55)
on using the Eq. (4.52), the Eq. (4.55) takes form as

- -
dV =—E-dl ..(4.56)

N
Since the surface is equipotential and the displacement d/ is assumed to
be along the tangent to the surface, thus, we have dV' = 0, hence
- >

E-dl =0 ...(4.57)
-
The Eq. (4.57) shows thatthe E isalways perpendicular to the equipotential
surface.

Example 4.4. Find the electric potential at a point on a perpendicular bisector
of a uniformly charged rod.

Solution: Consider a uniformly charged rod of length 2L as shown in fig. 4.9.

Ay

Fig. 4.9. Charged rod.
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Let dx be the length element at a distance x from the origin. The length
element has the charge

dg =M\dx
Thus, the potential at a point due to the charge element is given by
oL
dney r
since P =X +d
qv - 1 Adx

Total potential is then,

V=_[dV

-L
_ 2 T dx

Using integration

JL = loge[x+\/a2 +x2]

@ +x2)"2
Thus,
V= A [ 2, [2,. 2 ]L
e log (x"+Va”™+x7) |
[2, 12
or V= A log, | L+Va + L7
2n e, a

4.8. PROPERTIES OF EQUIPOTENTIAL SURFACES

The properties of the equipotential surface are as follows;

(1) The equipotential surfaces are closer in the region of the strong electric
field and farther in the region of weak electric field.

(2) The electric field lines are perpendicular to the equipotential surfaces.
(3) Thefield lines are pointed from the higher potential to the lower potential.
(4) No work is done in moving a charge particle along the equipotential surface.

(5) Two equipotential surfaces cannot intersect each other otherwise two values
of the potential exist at the point of intersection, which is impossible.
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(6) The equipotential surfaces for a constant electric field are the planes
perpendicular to the electric field.

(7) For a positive point charge, the equipotential surfaces are concentric
spheres as shown in fig. 4.7 (b).

(8) The tangential component £, of the electric field is zero, if £, is non zero,
the work done in moving a test charge along the surface would not be zero.

49. ELECTRIC POTENTIAL ENERGY

Since the electric field is a conservative field, the external work done in
moving a charge from a point 4 to B, does not depend on the path between
A and B. Thus, the potential energy is a function of the position only. The
electric potential energy at a point in the electric field is defined as the amount
of work done in carrying a unit positive charge from the infinitely to that point.
Mathematically, we may write,

p - -

U=-[ qE-d ..(4.58)

oo

Moreover, suppose that a charge g, moves from the point 4 to the point 5,
then, the change in potential energy of the system is given by

dU = qy(Vy~ V) ..(4.59)
B—) -
or U= —qojA E-dl .(4.60)

If g, is negative, the potential energy U is positive. Thus, the potential
energy of the system increases. From the Eq. (4.58), it is clear that U= +W_,,
that is, on moving the charge from infinity to the point P, work W is positive.
That is, the work done by the external agent is positive, when assembling a
system of charges. Now, we want to assemble a system of two charges ¢, and
g, as shown in fig. 4.10.

AY

q2

142

a1 > X

Z

Fig. 4.10. Assembly of two charges q, and q,.
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The potential at the point P due to the charge g, is

1
y, = —N (4.61)

4n €0 H2

Now, work done by the external agent in carrying the charge ¢, from the
infinite to the point P is given by

w, =V, q, ...(4.62)

I 99

or U, =W =
471:60 7’12

(4.63)

If the sign of the charges ¢, and g, are same, there is an electrostatic
repulsion between the charges and this is overcome by doing a positive work
against the repulsion. In this way U, positive. Further-more the third charge
can be added to this system of two charges and the work is done against the
interaction exerted by the charge ¢, and g,, Fig. 4.11. Thus.

W, = Potential energy at the point Q due to the charges ¢,
and q,.

I a1 0

or W, = ..(4.64)
dne, 13 dne, 1y
Ay
d2
P
23
—r
e q3
Q
W
g1 > X
O
z
Fig. 4.11. Assembly of three charges q,, g, and g,.
The potential energy for the assembly of three charges will be
U=Ww,+W,
1
_ (Cll% + 9293 + 91613) (4.65)
dneg\ 2 m3 K3
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In this way, we may extend the above expression, Eq. (4.65) for the N
point charges

N . .
v=1._1 3 94 . (4.66)
2 47'560 ij=1 rl/
i#]

The expression for U contains 1 because summation counted each pair
twice. For example. 2
N9 _ D29
"2 21
To avoid this ambiguity, dividing the expression by 2. Moreover,
U= %Zqi( : Zq—’] (4.67)
i

4reg s

1
or =3 > aV ..(4.68)

where V, is the potential at a point i due to all charges. The unit of the
electrostatic potential energy is electronvolt (eV).

1eV =ex 1 volt
=1.6x 107" C x 1 volt
or 1eV =1.6 x 10'? joules ...(4.69)

Example 4.5. Four charges are placed at the corners of a square of side a as
shown in fig. 4.12. Find the potential energy of the system.

Solution:
A B
—q < 4
2m
D|~ \JC
q -q

Fig. 4.12. A system of charges.

Let ABCD be a square of side a, we have
AB =BC=CD=DA=a
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and AC =BD =24
The potential energy of the system is

1 "_qz qz qz qz qz qz]
U: = 4+t
4ney| AB BC CD DA AC BD

[ 1 1 1 1 1 1]
= — | —— — - —— — +_+_

dney| a a a a \/Ea \/Ea
I ]

ey | a 2a
o 4 (2-9)

4ne, a

Example 4.6. A charge g, is placed at a point 4 in a uniform electric field as
shown in Fig. 4.13. This charge is allowed to move from a point 4 to the point
B and covers a distance d. Find the

N
E

Fig. 4.13. Charge in the electric field.

(1) potential difference, V-~V ,.

(2) which point is at higher potential.

(3) workdone is moving a charge ¢, from 4 to B.
(4) change in potential energy of the charge.

(5) change in kinetic energy of the charge

(6) velocity of the charge.

- -
Solution: Suppose that an electric force /' =q, E carries a positive charge g,

from a point 4 to B, in the direction parallel to the field. The distance between
points 4 and B is d. In carrying the charge g, from 4 to B the work done is

(1) WZQQ(VB_ Vy
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or VBfVA=K:—BE'c;}
9 A
=-Fd
Thus,
Vg—V,=-Ed
(2) Since V — V, = —Ed, a negative quantity, thus the point 4 is at higher
potential.

(3) The workdone in moving a charge g, from 4 to B is
W=q(Vg—V,)
or W=—q.Ed

(4) When charge ¢, moves in the direction of the electric field, the kinetic
energy of the charge increases and the electric field lines always point
from a higher potential to the lower potential, the change in potential
energy of the system is

dU=q,(Vz—=V,)

If g, is positive, dU is negative, Thus the potential energy of the charge
decreases.

(5) The change in K.E. is
K=K, =qydV=qy(Vz—V,)
or AK =—qEd.
(6) Since K, = 0,

1
Thus, Ky= 5 mv?
where m is the mass of the charge particle,
1
or —m? = qokd
2 Y
2¢0E
or = 2490Ed
m

Example 4.7. A charge ¢ is situated at the vertix 4 of an equilateral triangle
of side a as shown in fig. 4.14. compute the work done in carrying a charge g,
from the point B to C. -

Solution:
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B a C

Fig. 4.14. Equilateral triangle.
The potentials at B and C are given by

1
v, - g
4ne) a
1
and Ve = 4
41t€0 a

The work done in moving a charge ¢, from the point B to C is given by
Wee =qy(Ve—Vy) =0.
since, Ve =Vpg.
Example 4.8. Suppose that the eight identical water drops are charged to a
same potential V. If these eight drops coalesce into one drop, Find its potential.
Solution: Let 7 and R be the radius of small and large drops respectively. Then,

inR3 =8 2 i
3 3
or R =2r
The potential of each small drop is
1 ¢
4re r

and the potential of the large drop is then

I
- 4me R
where Q =8¢ and R =2r,
Thus, Vo= ! 8_q
dne, 2r
_g4 L4
dne, r

or V' =4V.
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Example 4.9. A non conducting sphere of the radius a has a uniform charge
density p. Find the potential

(a) at a point outside the sphere.
(b) at a point inside the sphere.
Solution: Consider a sphere of the radius a as shown in fig. 4.15.

<

Fig. 4.15. None-conducting sphere.

=]

The electric fields for the point P and Q are given by

— 9 _Jforr>a
dney r
E = -
1 % rforr>a
~4T|: EO a
where p= g
ﬂ 3
— |TTa
3
(a) The electric potential at the point P is given by
Fo
Vilr) = V() = =[_E ar
-4 dr
& 47[ EO VZ
-1l g
dne, r

Since V() = 0, again, the potential at the point Q is then,
o =
%—W@=—LEW

or VQ—V(OO) = —J:E(r>a)dr—J.rE(r<a)dr

a

q dr_(r_q rdr
3

J‘(l
0047'560 ]/'2 a4n€0 a
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1 1
— 9 _ 613 (rz _az)
471',60 a 4TCGO 2a

1 q r2
V = _— —_——
o Q 8mey a (3 az)

Example 4.10. If a charge q is distributed uniformly over the surface of a
conducting sphere of the radius a. Find the potential inside and outside the
sphere. Sketch the potential also.

Solution: The electric field for a conducting sphere is given by

1 q
iy r, r>a

0 , r<a

Now, the electric potential for the region r > a is

roq dr
V(r) — V(o) = =
-V = [ —
Mr) = I g
dne, r

The electric potential for the region » < a is given by

V)~ V) = [ E(r>a)dr - L E(r<a)dr

:_Ia q dr

°°4TC€O }/‘2

vy - 4
41'[60(1

A plot of V() versus r is shown in fig. 4.16.

A

_1 9
V=i 2

A
4e,

v(r)

O r=a r

Fig. 4.16. Plot of V with r.
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Example 4.11. Find the potential at a point lying on the axis of a uniformly
charged ring of the radius a.

Solution: Consider a uniformly charged ring of radius a as shown in fig. 4.17.
Let dI be a charge element on the circumference of the ring. The charge of the
element is

dq = A\dl
where A is a line charge density.
Ay
P
y r
0] > X
0

di

Fig. 4.17. Charged ring.

Thus, the potential at a point on the y-axis due to charge element d/

av -4
4T|:€0 r
1 Adl

 4n € (@ +yH)2’
net potential at P is then obtained as

v=far
1 A
= dl
_ 1 A.2Ta
4me, (a2+y2)1/2
since A= L,
2Ta
1 q
a<l
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Example 4.12. Consider two spherical conductors with the radii 7| and r,.
A charge ¢ is uniformly distributed on these two conductors and both are
connected by a wire. Find the

(1) charge on the sphere
(2) ration of electric field (£,/E,).

Solution: Let ¢, and g, be the charges on the spheres of the radii 7, and 7,
respectively. Since charge flows continuously until an equilibrium is reached,

both conductors are at same potential, Fig. 4.18.

q9=49,79,
Fig. 4.18. Two spherical conductors.

we have,
="
a1 @
dney K dney
or 9
q; )
and q9=9,%4q,
Thus, we get
I
q, = !
n+tn
and 4, = 12
n+n

(2) The electric fields at the surface of both spheres are

E =14
ane, n
and
E=—%
47[60 ]/'2

on dividing, we get
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2
B _ (r_z] a@
£y n) q

2
(’”1 ) p)
E
or o _n
E, A
Example 4.13. Consider two concentric spherical conducting shells with the

radii 7 and r,, where r| > r,. The outer shell consists of a charge g. Compute
the charge of the inner shell if it is grounded.

Solution: Suppose that Q is the charge on the inner shell. Then, the potential
of the inner shell is the sum of the potentials due to charges g and Q. Thus,

1q+1.2

4TCEO 7"1 471:60 Vz

Since inner shell is grounded, V=10
1 + 2 =0

n n

i
or Q=—Zq

Example 4.14. In spherical polar coordinates, the potential at a point is given
by
_ VycosOsind
V - r—z

where V is a constant. Find the components of the electric field.

Solution: In spherical polar coordinates, the components of the electric field
intensity are given by

g
" dr
PR
r do
and
o rsin® do

£ :_i(Vocosesinq))

" dl’ r2
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_ 2VjcosBsing

}"3

1 d (VO cosf sin(l))

1”2

Vosin®sind
3
and

¢ rsinG do 2
_ —Vycotb cosd

I"3

£ - 1 d (Vocosﬁsin¢)

Example 4.15. Suppose that the two rings of some radius are placed coaxially
ata distance a. If ¢ and ¢, are the charges of the rings, compute the work done
in bringing a charge g, from the centre of one ring to the another.

Solution: Let V| and V, be the potentials at the centres of rings and a be the
radius of each ring, fig. 4.19, then

1 9 , 92
v, = — [Ny 22
! 4TCEO(G \/Ea)

and

1 9D, 4
v, = — | 1241
2 47'560((1 \/Ea)

Fig. 4.19. Coaxial rings.

The potential difference
av =v,-V,

_ @ —q) [\/5—1:|

dne,a | 2
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Now, work done in bringing a charge ¢, from P to Q will be
W=qydV

_ Dol =) (V21
dnega | 2

EXERCISES

4.1. Describe the potential and potential difference and show that
o o
V)= Vo) == [ E-dr

4.2. Derive an expression for the potential at any point at a distance » from
the centre of the electric dipole.

4.3. What is the difference between electric potential and the potential energy
and obtain an expression for the electric potential energy of a system
consisting of NV point charges.

4.4. The electric field for a non-conducting sphere having uniform charge
density is given by

Ka ~
_qu forr>a
,

-
Kqgr

613

=l
[

forr>a

where « is the radius of the sphere. Find the electric potential and sketch
the potential also.

4.5. Show that the total work needed to charge a sphere of radius a to g, is

given by
1
W= —qV
26]0
Hint: y=_—1
4neq a
90 0 1 g 1
W= |"Vdg=|"——=dg=—q)V
Jo v da=]; amega 2%

4.6. For a conservative field, show that
E=-VV
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4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

The electric potential at a point in a plane is given by
oy p
@) T2 et 2. an
(" +z7%) (" +z7%)
where o, and B are constants. Find the components of the electric field
intensity.

A particle of charge 2C is placed in a field as given by

N

E=a (yz;+ Zx}' + xyl;)

where a = 4 N/m?. If the corresponding potential at the origin is 15V,
Compute the potential at the point (3, 2, 4).

Hint: V=—JE~a’r=xyz

The four charges are placed at the four corners of a square of side a in
the xy plane as shown in fig. 4.20.

AY

Fig. 4.20. A square.

- R A S

N
Hint: p acts from—qto+q, py=—aqi, p, =—aqj, p=p, + p,

Consider twenty seven identical water drops at the same potential /" and
all the drops coalesce to form a big drop. Find the potential of the big
drop. If =100 Volts estimate the potential of the big drop. Ans. 900V.

Two charges 2uC and —6u.C are separated by a distance of 4 m. Find the
position of the null point from the charge 2nC. Ans. 1.0 m.

Three point charges 2uC, —4uC and 6puC are placed at the three vertices
of an equilateral triangle of side 4 m. Compute the

(a) Work needed to assemble the system

(b) electrostatic potential energy.

Four charges 2uC, —1puC, 3uC and 6uC are placed at the corners of a
square of side 1 m. Find the electrostatic energy.

A disc has a uniform charge density . Compute the potential at a point
lying on the axis of the disc of the radius a, sketch the potential also.
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4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21

Elements of Electricity and Magnetism Theory and Applications

Find the potential at the centre of a uniformly charged ring of the
radius a.

How much work is done to assemble eight identical point charges, each
of magnitude ¢, at the corners of a cube of side a.
Hint: W = gV, find electrostatic energy.

The electric field is given as

- A A oA

E =2i+3j+4k
Compute the potential difference between the points A(1, 2, 0) and
B(2,3,3).

- -
Hint: V-V, = [E dr
= [E dx—[E, dy—[E. dz=17 volts.

Consider two hollow concentric conducting spheres of radii 7, and r,
as shown in fig. 4.21. If the inner sphere is charged with ¢ and the outer
sphere is grounded. Compute the potential at any point P in the region
r>r

5

Fig. 4.21. Hollow conducting spheres.

. . Kqg K
Hint: The outer sphere gets charge —¢, potential at Pis V= =4 _2M_g
r r

Compute the electric field for yukawa potential,

V=q,Vye™
Compute the electric field at a point (1, 1, 1) from the origin for the
following potential

A

() V=x*i+)"j+2°k
b) V= x2§+zy2}'+l€

. Suppose that there is a spherical cavity of the radius a in a conductor as

shown in fig. 4.22. If the conductor has a uniform surface charge density
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o, compute the electric potentials and fields at the point P Q and R.

Where the potential at the point R is V,.

Fig. 4.22. A cavity.

Solution: Due to induction, the cavity surface has — g charge.

The potential at R is V),
The electric field at R is
(¢
=

Ep =

The electric field inside the conductor (at point Q) is
E, =0
and the potential VQ =V,

Moreover, potential at the point P will be

q q
V, = - +V
P dneyr 4meya 0
and
dav,
E. =_2"PF
P dr
__a 1=
4TE€O ]/'2
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Methods for the Solution

of Electrostatic Problems
CHAPTER

We have already solved the various potential or field problems with known
charge distribution. If the potential is known, charge ¢, electrostatic force,
electric field etc may be computed easily. In solving such problems, an
integration method is employed, that is, in other words, we take an integration
over a definite charge distribution. We known that the electric field is given by

E=-VV (5.1)

that is, £ can be taken as a negative gradient of the potential, this is because,
the electric field is a conservative field. In this way, we can assume that the
potential function V is associated with a given region of space. If the region
of the space is not bounded, it has some difficulty in obtaining the solution to
the potential problems. That is, there is a no unique solution to the problem.
The uniqueness theorem helps in obtaining the solution to the electrostatic
problems. This solution can be obtained using certain boundary conditions.
In this way, a complex problem may be solved to a high degree of accuracy.
Thus, Laplace and Poisson’s equations provide a good solution of the potential
problems with known boundary conditions.

5.1. UNIQUENESS THEOREM

The uniqueness theorem states that, within a given boundary, if these exists a
solution to the Laplace equation is only the unique and exact solution. In other
words, a solution to the potential equation satisfying the boundary conditions
is only an exact solution. However, there can be the number of solutions of
the Laplace equation, but there will be a solution which satisfies the boundary
conditions of the particular problem. The uniqueness theorem may also be
applied to the Poisson’s equation with known boundary conditions. We can
prove this theorem by contradiction.

Suppose that there are two solutions V| and V,, for the Laplace equation and
both solutions satisfy the boundary conditions. Now, we have
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Vi =0 (5.2)
Since V| and ¥, both are solutions to the Eq. (5.2), we write
Vi, =0
and V2V2 = 0} +(5:3)
At the boundary, the solutions V| and V,, and their normal derivatives are
equal, that is,
=
and VvV, =VV, } +(54)
Now, according to Gauss’s theorem,
- - -
HSFdS = mVV-de (5.5)
N

Taking F = V'V , and substituting in the Eq. (5.5.) we get
[[rvvdas = [[[ vovrar
= mV(VV NV +VVV)dv
= mV[(VV)2 VvV dv (5.6)

Now, we substitute V=V, -V, in the Eq. (5.6) we get,

[Joon-mvm —V2>-c7$=jij[{V~(Vl —V)Y + (R =) V2 (1 =Vy)ldV

.(5.7)
Using boundary condition on the surface
n=nr

then the Eq. (5.7) reduces to
mV[V(V1 —V)Pdv =0 (5.8)
or VvV, -V, =0 ...(5.9)
or Vv, =VF, ...(5.10)
or V, =V, + C (a constant) .(5.11)

The Eq. (5.11) shows that the two potential solutions V', and V, are differing
with a positive constant C only and it does not make any contribution to the
gradient of the potential, since

VC =0 ..(5.12)
Thus, we conclude that the potentials V/; and V, provide the same electric
-

field E . Hence, there exists a unique solution of the Laplace equation. The
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uniqueness theorem may be proved using Poisson equation with the similar
steps. When we solve any potential problem, we should have following in our
mind.

(1) A potential equation which is to be solved.

(2) The region of space, that is, for example, a sphere, a cone, an infinite
plate etc.

(3) Boundary conditions associated with the problem.

5.2. POISSON’S AND LAPLACE’S EQUATIONS

In electrostatics, Gauss’s law in differential form is given by

o o_p
V-E =+~ ...(5.13)
o
since electric field is a conservative field, we can write
-
E =-VV ..(5.14)
-
Substituting the value of £ from the eq. (5.14) in the Eq. (5.13), we get
vy - P
€o
or vy =_ P .(5.15)
So

The Eq. (5.15) is known as Poisson’s equation, and p is volume charge density
for free charges.

In Cartesian Coordinates System

Since,
) > 9* 9
=
'y Z
thus,
PP p 516
x> 9?92 o T

In Cylindrical Coordinates
The transformation equations are given by

X =rcos ¢ r2=x2+y2

y=rsing tand=2 (5.17)
X
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Therefore,

2 2
_ li(ra_V)+ LoV oV __»p L(5.18)
ror or

vy — —
r? 8¢2 0z? €o

In Spherical Polar Coordinates

The transformation equations are
x =rsin 0 cos ¢
y =rsin 0 sin ¢ ...(5.19)
z =rcos 0

and

viy=19 (;»2 a—V) T i(sine a_V)JF;aZ_V =P (520

ror or ) r*sin® 00 00/) r*sin’0 99> €

In aregion where there is no free charge, p =0 thus the Eq. (5.15) reduces to

(5.21)

which is Laplace’s equation. Thus, the following steps are taken to solve the
potential equation.

(a) Since V is a function of variables V' = V(x, y, z) or V= V(r ¢ z) or
V= V(r, 0, ¢), solve it by integrating directly.

(b) If V has only one variable it can be solved using step (a). Otherwise
solve it using he method of separation of variables.

(c) Apply the suitable boundary conditions to get a unique solution of the
potential equation.

(d) On obtaining the expression for the potential 7, we can obtain other
physical parameters given as,

(1) Electric Field: .

E =-VV
o
! or
19V
Eyj=—— ..(5.22
090 (5-22)
and E¢ =— 1 a—V
rsin® 0o
(2) Surface Charge Density.
G =-¢ a ...(5.23)

dr
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(3) Electric Displacement vector:

- -
D=-¢)E ..(5.24)
(4) Current Density:
- -
J =cF ...(5.25)
k . . .
Example 5.1. Prove that /"= — is a solution of the Laplace equation.
r
Solution: Laplace equation is given by
ViV =0

The radial part of the equation is

ii(,ﬂd_V) =0
r2 dr dar

. k
since, V=-,
r
d ( ) d k)
JE— r — . — — 0
dr dr r
d( , k)
or _; r r_2 =0
or - % =0
dr
since k is a constant, so differentiation of a constant is zero. Thus, V = E
r

satisfies the Laplace equation.

Example5.2. Inspherical polar coordinates, the potential is given by V=V, Inr,
compute the volume charge density. -

Solution: The Poisson equation is

vy =L
€

in spherical polar coordinates, it is given by
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o RN )
r EO

IS4

or p:——020
r

Example 5.3. The plates of a parallel plate capacitor are located at x = 0 and
x = L. The plate at x = 0 is grounded and the plate at x = L has a constant

potential V,,. Compute the
(a) poteﬂtial
(b) electric field
(¢) surface charge density G.

Solution:
YA

+ + |+ + + g

Fig. 5.1. Capacitor.
The Laplace equation is
v dv  dV _
dx? dy2 dz?

since there is no variation of the potential V' in y and z directions, we write,

0

arwv 0
dx?
on integration, we have,
d
_V :A
dx
Where 4 is the constant of integration, on integrating it again, we get
V=Ax+B

To determine the constants 4 and B we require boundary conditions which

are
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V=0 atx=0
V="r,atx=L
Applying boundary conditions, we have
V=0 atx=0
= B =0
Thus,
V =Ax
Again, V=V, at x=L
= A= "
L
Thus we get potential as
y = lox
(b) The electric field
dv -
E =—-—i
x dx
— Vi~
"L
(c) The surface charge density is given by
dv
o = —EO —_—
dx
or s =S
L
and c = S
L

5.3. SOLUTION OF LAPLACE’S EQUATION IN
RECTANGULAR COORDINATES

The Laplace equation, in rectangular coordinates is given by
9%V . da*v . d*v
dx? dy2 dz?
The solution of Laplace equation can be obtained in the rectangular

coordinates satisfying the required boundary conditions by the method of
separation of the variables.

We assume that the Eq. (5.26) has the solution of the form
Vx, v, 2) = V,(x) V,(») V5(2) .(5.27)

V2 =

.(5.26)
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where V,(x), V,(v) and V;(z) are the functions of x, y, and z respectively. On
substitution V(x, y, z) in the Eq. (5.26) we get,
a, d*v, d*v;
di? dy? dz*
Dividing the Eq. (5.28) by V,V,V; we get

Ldn +idZV2 +La’2V3 =0 (5.29)
Vi d? Vy, d? Vs dZ? o

Since all the three terms are independent of each other, each term must be
equal to a constant, thus, we write

A +VV; +VV, =0 (5.28)

2
L d Z‘ =K} ...(5.30.q)
Nx) dx
2
L d ZI - K; ...(5.30.b)
(x) dx
2
L d Zl -K; ..(5.30.)
i(x) dx
with the condition,
Kl +K;+K; =0 (531

The differential equations given by the Eq. (5.30) are second order

differential equations and the unique solutionis of these equation must depend
on the Klz, K22 and K32.
Example 5.4. Two parallel conducting disks of radius 30 cm each, are
separated by a distance of 10 mm as shown in fig. 5.2. The disk at x =0 is at the
potential of 100 V and disk at x = 10 mm is at the potential of 200V. Compute
the electric field and charge densities on the disks.

Yy A

O !
’ <—L—>U

Fig. 5.2. Conducting disks.

\/
x
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Solution: Consider two parallel disks each of radius a separated by a distance
L as shown in fig. 5.2.

The Laplace equation for the system is

v 0
dx?
On integration, we get
a_y
dx
Integrating again w.r.to x, we get
V=Ax+B

where 4 and B are constants and can be determined with the boundary
conditions.

V=V, at x=0

and
V=V, at x=L
we get
B=V, A= %
Thus,
yo Gr
The electric field is
oo dV_0h-N)
dx L
_ (200-100)
©10x107°
=1.0 x 10* V/m

E points in —x direction.
The surface charge densities
oy =D,
=+e,E
=48.85 x 10~ ¢/m?

5.4. SOLUTION OF LAPLACE’S EQUATION IN CYLINDRICAL
COORDINATES

The Laplace’s equation in cylindrical coordinates is given by
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1 1 d? 2
—i(rd—V)+—2—Z+d—Z =0 ..(5.32)
rdr\ dr r do dz

To solve the Eq. (5.32), we use the method of separation of variables. If
we write

V(. ¢,2) =R(r) ©(9) Z(2) -(5.33)
On substituting V(7, ¢, z) and multiplying by 2 V(7 ¢, z) in the Eq. (5.32)
we get

1d 2d*z 1 d*®
——(rd—R)+r— -2 (5.34)
rdr\" dr) Z d@* @ 4y’

The left side of the Eq. (5.34) contains the functions of » and z while the
right side has the function of ¢ only which is possible if each side is equal to a
constant n2, say. Thus, we have

2
@
d_2+,,2q> ~0 .(5.35)
and df
r d( dR) drz o,
——|r—|+= =n
R dr\' dr VA o
2 2
or Li(rd_R)_”_:_ld z (5.36)
"R dr\' dr 2 7 dz*

The left side of this equation has the function of » only and right side has
function of z which is possible if it is equal to a constant —A2, Thus we have

d’z .,
-AZ =0 ..(5.37
2 (5.37)
and

ri(r d—R)+(7L2r2 —n®)R=0 ...(5.38)

dr\ dr

(a) Solution of ® equation: The solution of ®(¢) equation is given by

DY) =40 .(5.39)

where 4 is a constant, and 7 is an integer having values
n=0,+1,+£2,£3 ...
(b) Solution of Z equation: The solution of the Eq. (5.37) is given by
Z(z) =A ¥ +Be ™ ...(5.40)
where 4 and B are constants and can be determined by the boundary conditions
of the given problem.
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(c) Solution of R(r) equation: To obtain the solution of the Eq. (5.38) we
make a substitution as

p =A\r
and
i = M ..(5.41)
dr dp

Thus, we obtain the Eq. (5.37), on substitution the Eq. (5.41) into Eq.
(5.37),

—|p—|+(p*-n*R=0
p dp (p dp) (p”—n") ..(5.42)
or
d*R  dR
2 2 2
—+p—+ -n")R=0
dp’ P o (p”—n7) (5.43)

Now, we look for a series solution of the Frobenius type, and we assume
that the solution of the equation (5.43) is of the form,

Rp) = 2 ap’ " (5.44)
v=0
dR - s—1
o Eav (v+s)p¥* ..(5.45)
and
2 oo
d—f =Y a,(v+s)(vHs—1)p' T2 ...(5.46)
dp v=0

on substituting in the Eq. (5.43), we get

Yav+s)(ves=Dp' T+ a,(v+s)p' T

v=0 v=0
ZanV+AY+2_n2zavpV+S:O (547)
v=0 v=0
To obtain recursion relation, equating the coefficients of p¥ ", we get
[(v+s)(v+s— D)+ (v+s)-n’la,+a, ,=0 ...(5.48)
ay_2
or a, =

Y (V+s)2—n2
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ay_2
or a, =-— ...(5.49)
(V+s+n)(v+s—n)

The indicial equation is
s(s — 1)~|—s—n2 =0
or s ==+n ...(5.50)

First we look for s = n, and the solution is a Bessel function as given by,
v =2 m, that is series starts with

oo _1\" n+2m
J(p) = ZL(%) (5.51)

n=0™M ! F(m+n+1)

a,and v is always even. Again, we have

TP =1 J,0) (5.52)
sin
J(p) = P
sinp  cos
Jip) = - P
p
d 1) (3 1) inp—-2
an = | =~ |SInp——COoS
A 0 p P 0 P

However, we have a simple problem of electrostatics.

Example 5.5. Two semi-infinite conducting planes are at an angle ¢ = m/3
and are joined along the z-axis. The plane at the angle ¢ = 0 is grounded while
other plane which is at the angle ¢ = n/3 has potential of 200 V. Compute the
potential and electric field.

Solution: The Laplace equation is,

14 _
r d¢2
on integrating twice, we get
V=A4¢+B

where 4 and B are constants. The boundary conditions are
V=0, when¢=0
and V=200V at ¢ =m/3

Thus, we have,
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since VQ =200V

y = 600
3.14

or V' =191.08 ¢

The electric field is
1dV »
E :7;d_¢¢
__ 600~
I
or r— —191.08‘13

r

5.5. SOLUTION OF LAPLACE’S EQUATION IN SPHERICAL
POLAR COORDINATES

The Laplace’s equation in spherical polar coordinates is given by
19 19 1 v
vy = ——(rza—V)+ —(sinea—V)+—a—=0 ..(5.53)
¥* or or) r*sin@ or 20/ r?sin’0 90°
The Eq. (5.53) can be solved by the method of separation of variables and
we assume that

" 6, ¢) =R(r) H(B) d(9) -(5.54)
On substituting for ¥ from the Eq. (5.54) in the Eq. (5.53) and dividing by
V(r, 0, ¢), we get,

11d 1 d 1 d*®
R »# dr dr H »~sin0 d06 do re®dsin“ 0 do

To eliminate * sin® 0 in ® term, we multiply by #* sin0 through the Eq.
(5.55) we get

sin@ d ( > dR)+ sin® d ( dH) 1 d*®

2720, V4

s ing " |=-— 42 (556
Rey ar\" & )" H a6\™ a0 ) @ 492 (5:56)

The left hand side contains the functions of » and 0 only while right
handside has a function of ¢ only and it is possible when each side is equal to
a constant mz, say, we have

d*®
——+m'® =0 ..(5.57)
dé
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Now, from the Eq. (5.56), we have
1 d 1 d 2
__(rz d_R):_ | _(Sme d_H):__’”z .(5.58)
R dr dr Hsin0 46 doe sin” 0
The left hand side of the Eq (5.58) has function of » only and right hand
side is 0 only which is possible if it is equal to a constant n(n + 1), Thus

1 d
——(1’2 d—R) =n(n+1)
dr

R dr
or i(rz d—RJ —n(n+1HR =0 ..(5.59)
dr dr
1
and - @ (sine ﬁ) =-n(n+1)
H sin6 d6 do
1 d(. dH m?

- 0— |+ - H=0 ...(5.60
sin® d0 (sm de ) |:n(n D sin? 6] 560

(a) Solution of ® equation: The solution of the Eq. (5.57) is given by
O =4 M .(5.61)

where 4 is a constant.
(b) Solution of radial equation: Since potential varies as power in r, we
have solution of the equation (5.59), as
R(r) =Ar"+Br "D ..(5.62)
where 4 and B are any arbitrary constants.

(c) Solution of H (0) equation: Now substituting x = cos 0 in the Eq.
(5.60), we have

x =cos 0
dx =-sin 0 dO ...(5.63)
and a4 =—sin —
do dx
On substituting the Eq. (5.63) in the Eq. (5.60), we get
d 2 dH:| m2
—|Ad=x")— |+ |n(r+1)- H@®©)=0 ..(5.64
dx[( 2k [n( ) (1_x2)] ®) (5.64)
2
or (1-x)? d’H —2xﬁ+n(n+1)H=o ...(5.65)
dx* dx

Here we have assumed that the electric field has a azimuthal symmetry,
that is, the potential Vis independent of the angle ¢, and replacing function H
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with Legendre’ polynomial Pn(x), thus,

d’*p,  dp,
3 —2x o +n(n+1)P,(x)=0 ...(5.66)

(1-x)°

which is called Legendre’s equation, which has the solution as
P (x) =P, (cos 0)
dl’l

or P, (x) = (x*=1)" ..(5.67)
2"n! dx"
The orthogonality condition is
j.P(x)P(x)dx —LS (5.68)
" " 2n+1 "™ T

-1

where Smn 1s known as Kronecker delta and is defined as

1 ifm=n
S, = 0 if mn ...(5.69)
The first few terms are
PQ(x) =1
Pi(x) =x

Py(x) = %(3x2 )
Py(x) = %(sz ~3) ..(5.70)
P,(x) = %(35)&‘ —30x” +3)

Py(x) = %(63x4 ~70x2 +15)
The complete solution to the potential equation in spherical polar coordinates,
when electric field has azimuthal symmetry is given by
V(r,0) =[4, "+ B, r""D]P (cos 0) (5.7

This solution depends on the boundary conditions of the given problem.

5.6. ACONDUCTING SPHEREINAUNIFORMELECTRICFIELD

Consider a conducting sphere of the radius a in a uniform electric field pointing
in +z direction. We know that the electric field is quite uniform in between the
plates of a capacitor. Thus, a sphere is placed in the capacitor as shown in
fig. 5.3.
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(a)

Fig. 5.3. A conducting sphere in a uniform electric field
and a uniform electric field points in z-direction.

The conducting sphere distorts the electric field lines. The positive and
negative charge in equal amount are induced at the sphere. Thus the conducting
sphere has zero potential. Therefore, the boundary conditions are

0 forr=a
—E,z=—FE_rcos6 for r>>a

V= (5.72)

The Laplace’s equation in spherical polar coordinates with axial symmetry
is given by

1 0 28V) 1 0 ( aV)
- —|r—= |t = — =0 ..(5.73
P2 or (r or i 7% sin@® 09 sinf 00 (-73)

The general solution of the Eq. (5.73) is given by

M 0)= Y A,r" P(cos0)+ > B,r VP (cos®) .(5.74)
n=0 n=0

Atr=a, V=0, we have

> 4,a" P,(cos®)+ Y. B, r ""VP, (cosB) =0 ..(5.75)

n=0 n=0

Multiplying P, (cos 0) and integrating from x = cos 6 =—1 to x = cos 0 =
1, we get

1
[ 4,a" P,(cosb) P, (cos) d(cos)

! .(5.76)

1
+ | B,a™"*V P, (cosb) B, (cos) d(cos) = 0
-1
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Using the orthogenality of the Legendre’s polynomial as,
1 2 .
—— ifm=n
| B,(cos8) P, (cos8) d(cos®) =1 2n+1 (5.77)
—1 0 ifm#n

The Eq. (5.76) reduces to

2 _ 2
A a”( )+B a ("“)(—):0 (578
" \2n+1 " 2n+1 (5.78)

From the Eq. (5.74), it is clear that the solutions exist only for » = 0 and
n = 1 which satisfy the boundary condition. Thus, we have

B, cos0

r2

Vo= AO+&+A1 r cosO + .(3.79)
r

The boundary condition at » — oo, gives the potential
V =-E rcos0=4,+A4,rcos0 ...(5.80)
This is true for all values c;f 0, AQ =0 a;ldA1 = —EQ since for n =1, we have
—Eyr P(cos 0) =4, r P(cos 0)
or A, =-E ....(5.81)

o
All 4, are zero (for n > 1) and similarly all B, are zero except B,. At the r
=a, V=0, from the Eq. (5.79) we have

B, B
—O—EO acose+—%cose =0 ..(5.82)
a a
since By= 0, B,= EQaz3
Thus, the potential is given by

an3

1”2

r,0) = —Ey r cosO+ cos0 ..(5.83)

The components of the electric field are given by

3 3
E. = —ﬁ:EO cose+—2a £y cosb
d}" r3

3 ~
or E = E0(1+Zi3) cosO .(5.84)
r

and

E, a’ si
Ey = —lﬂz—EosinG+Oa—flne
r do r
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3
or Ey = —Eo(l_“_3) sin® ..(5.85)

r

Now the radial and tangential components of the electric field on the
surface of the sphere are

id
' dr r=a
or E, =3E,cos6 ...(5.86)
and
Ey = ..(5.87)
The surface charge density
av
c=-€—
dr l—
or G =3 €yE,cos b ...(5.88)
Furthermore, the dipole moment is given by
3
V(dipole) = £o4_¢0s9
r 6 ...(5.89)
V(dipole) o< £552
r
P=E,d ...(5.90)

Thus, the dipole moment is proportional to £, and a’, that is, volume of
sphere.

5.7. METHOD OF ELECTRICAL IMAGES

In 1848, Lord Kelvin introduced the method of electrical images to solve the
problems of the electrostatics. The method of electrical images is a powerful
tool for calculating the coulomb force, electric potential, electric field intensity
and the charge density of an electrical system. In the method of electrical
images, we have a charge and a conducting plane along with the image of the
charge. Now, suppose that a positive point charge ¢ is situated at a distance
r from a grounded conducting plane which acts as a mirror, then, the image
of the charge g is —g will also be at a distance » from the conducting plane as
shown in fig. 5.4.
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/’/’ /’/’ \\\\
/( /{ \\
. g . K- N
// 4"‘— // 4"‘— h‘*\ \\
7 Pae 7 Pae Ss AY
1,” 1,” SO
+q & & »
4 r . r r L
NN o +q NN o o _q
\ S - ’
Point . ™---___ R ST
Charge ‘-~ AN .
g \\ T \\ {
Conducting
Plane

(a) (b)
Fig. 5.4. A charge +q near a grounded plane (a) and its image (b).

The grounded plane has a zero potential and it is observed that there are two
electric fields which are equivalent to one another. Furthermore, consider two
grounded perpendicular semi-infinite conducting planes as shown in fig. 5.5. If
a point charge ¢ is placed near a right angle corner, we obtained three images
of the charge +¢, Fig. 5.5.

+q,

.
|
fe]

Fig. 5.5. Point charge near a right angle conducting
planes and its three images.

In the first quadrant, we have a true electric field due to the image charges.
Moreover, when two semi-finite conducting planes are inclined at an angle 6,
the number of images of a point charge are given by

_ (360 _
n —( . 1) .(5.91)

For example, consider a case of two semi-infinite conducting planes are at
0 = 90°, then, the number of images of a charge ¢, Fig. 5.5, will be



120 Elements of Electricity and Magnetism Theory and Applications

or n =
There are three images of a charge situated in first-quadrant.

5.8. CONDUCTING SPHERE

The method of electrical images is also useful in demonstrating a procedure of
computing the electrical parameters such as potential, field and charge density
of many problems. Now, we take a situation in which a point charge is near a
grounded conducting sphere, Fig. 5.6.

+q L

Fig. 5.6. A positive point charge q near a grounded conducting sphere.

Suppose that a point charge ¢ is situated at a distance L from the centre of
a grounded conducting sphere of radius a. If we ignore the conducting sphere
and try to compute the magnitude and the position of the image charge ¢’ at a
distance / from the centre of the conducting sphere, as shown in Fig. 5.7.

Fig. 5.7. Image charge q' in the sphere.

The symmetry of the sphere suggests that the charge ¢’ must lie on the line
joining the charge ¢ and the centre of the conducting sphere. Since the sphere
is taken as grounded, the potential at every point on the surface of the sphere
is zero. The potential at the point P is
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e 4
(L-a) (a-1])
Again, for the point O, we write

’

4 L 9

+ =0
(L+a) (a+)
Now,
2.2 2
cos 6 zu
2al

2 2 2
and cos O = a +(a+l) -r

2a(a+ L)

On solving the Egs. (5.92) and (5.93) we get

~

o)

and =— ﬁ)
q (L q

~

Then,
o
L
In the similar triangles having common angle 6, we write
a_L
a
Thus, we have
a_1
PR
Therefore,
94 q—, =0
r r
or 4 , 4 =0

4TCEO}" 4TC€0 7",

where the expression for » and 7' are

” =a2—l—(a+L)2—2a(a+L) cos 0

and 7 =d*+ P~ 2al cos 0

121

.(5.92)

.(5.93)

.(5.94)

.(5.95)

.(5.96)

(5.97)

.(5.98)

.(5.99)

..(5.100)
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From the Eq. (5.99), it is clear that the total potential is zero on the surface
of the sphere. Moreover, the force of attraction is given by

F = 79 (5.101)

4mey[L+a—IT

It the sphere were not grounded, there will be a constant potential at the
surface of the sphere.

Example 5.6. Two semi-infinite grounded conducting planes are along x and
y axes and meet at the origin as shown in fig. 5.8. A positive point charge is
situated at the position (g, a), then compute the

(a) The force on the charge g.
(b) Potential at a point P(x, y).
(c) The work done in bringing a charge ¢ from infinity to a point (a, a).

y A

* Px,y)

qe(a a)

.||||_

Fig. 5.8. Two conducting planes.

Solution: The images of the charge ¢ is shown in fig. 5.9. and there are three
images.

Ay
N
Fs3
N
Fi
e - ! +q
(-a, a) i (a, @)
T
0 PR
< : » X
¢ i
—a, -a . (a, —a)
+q ( ) 5

Fig. 5.9. Mirror images of charge q.
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- - -
(a) The forces F, F; and F; are

- qz R
= ————(-))
4me, (2a)°

% 2
q .
Fay = ————(=))
4me, (2a)°

and
2 _ g 2a(i+))
4me, (8a%)Y?

The net force on the charge ¢ will be

- - 5 >
F = Fi1+F>+ F3
(1 1\« 1 1)~
= el Lhd By i s
l6ne, (2424 a 224 a
_ 4 (- 2x/_) e
l6me,a® 242
or __7 -(1_2‘/5)(%})
2V2ne, o

(b) To compute the potential at a point P(x, y), suppose that r, r,, r, and
r, are the distances of the point P(x, y) from the charges as shown in

fig. 5.10.
Ay
Py
7 - ’ //ERH
—q ¢~ . /,’ 0’ i +
(-a. a) 4 | a9
. I3 i
e i M4
- z : > X
) :
Q. ’ l —-q
(-a, —a) (a,-a)

Fig. 5.10. Conducting planes.
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The potential at a point P due to the charges is given by

g [1 1 1 1
v = L B
dneg [ o on

1 B 1

_ 9
4me, [[(x— ay’ +(y-a’1? [(x+a)*+(y—-a)’]?

1 1
ettt [-a +(rtrar]” ]

(¢) The work done in bringing a charge ¢ from infinite to a point P(a, a) will

be, Fig. 5.11.
A y
-4 +q (a, a)
(-a, a)
» X
+q —-q (a1 _a)
(-a,-a)
Fig. 5.11. Conducting planes.
W ="Vvg
1 |- & & & & &
= — | —_— = = + +—
dney| 2a 2a 2a 2a 242a 2\2a
1 2 1
= -=+
4TE€0 a \/Ea
_ ¢ (1-2V2)
or W =
4TE€0 a \/E

Example 5.7. Consider two concentric metallic spherical shells centered at
origin. The inner and outer radii are a and b. In the region a <r < b, the charge
density p = 0 and potential /=0 at » =a and V=V, at r = b. Compute the

potential in the region @ <r <b.
Solution: Laplace’s equation is
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ii(,ﬁd_V) =0
r2 dr dar

on integration, we get
,dV

r-— =K
dr
ar K
or — = —
dl" r2
where K is a constant. Integrating it again, we have
-K
V=—+A4
r
wherer=a, V=0,
K
= A4 =—
a

.. Potential is

y--x(2-1]
roa

using boundary condition atr=b, V="V,

1 1

V,=-K|———

0 (b a)

or V0=K(l—l)
= a b
or _ Voab
(b—a)

Thus, the potential is
_ Vpab [1 1]
b-a)la r

Example 5.8. Consider two infinite conducting cones with common vertex

having angles % and g as shown in fig. 5.12. The inner cone is grounded and

V="Vy,at0= g . Find the expression for potential and electric field.
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Fig. 5.12. Conducting cone.

Solution: Consider azimuthal symmetry, we have
1
Vi = i(sined—V) =0

% sin® dO do
d
or — (sin 0 d—V) =0
doe do
on integration we get
sin® d—V =4
de
av A
or — =
de sin 6
where 4 is a constant. Integrating it again, we get
do
V=A
'[sine
_ jL
2sin6/2 cos 6/2

Now, dividing numerator and denominator by cos” 0/2, we get

2
- AJ‘sec 0/2 do

2 tan 6/2
or V=Alntang+B
The boundary conditions are
V=0 0=mn/6
and V= VQ, 0=nm/3

0 =Alntann/12 +B
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Thus,
V' =A[ln tan 6/2 — In tan 1/12]
t 2
or V=A4An an/
tan 1t/12
once again,
tan /6
V =AIn
0 tan /12
¥
A=—"»270
In tan /6
tan 1t/12
tan 6/2
n
V= VO tan 1t/12
- In tan /6
tan /12
or V =144 V,In tan 62
= tan/12
and Ey —- 1.4.4V0
7sin©

Example 5.9. Consider two concentric conducting cylinders of inner radius a
and outer radius b as shown in fig. 5.13. If p =0 in @ <7 < b and inner cylinder
is grounded, find the expressions for potential and electric field. The potential
V="V,atr=b,also compute Vand £ if a = 10 mm, b = 20 mm and ¥, = 100V.

Solution:
1 d( dV)
—_—— r_ :0 ”,—‘ ‘:\\\
rdr dr ,/ <:>V_ \\‘
V,
on integration, we get S Lo °
av A
r— = i 1
dr Lo
17124 A i i_
or — ==
dr r P RN
on integration again, we get ' ! ! N 4L

S
V=Alnr+B w

where 4 and B are constants and are to be Fig. 5.13. Conducting
determined with boundary conditions. cylinder.
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The boundary conditions are

V=0 r=a
V= VQ, r=>b
on using boundary conditions
B=-Alna
and A= d
In (b/a)
Thus,
y=_"o In(r/a)
In (b/a)
The electric field
g -4
d dr

aln(b) r
a
Givena =10 mm, b =20 mm, V=100V,

V =1443 In (L) volts.
10

1.44x10*
and E = %0 (=)

Example 5.10. Consider a thin conducting plane passing through the origin
of the coordinates system and perpendicular to the z-axis as shown in fig. 5.14.
The two charges g, and ¢, are situated at the positions (0, 0, @) and (0, 0, —a)
respectively. Then compute, using cylindrical coordinates,

(a) The potential at a point P(x, y, z)
(b) The Electric field

(¢) Net surface charge on the plane as a function of the distance » from the
z-axis

(d) Total induced charge
(¢) The net force on the charge ¢,.
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Solution:
z
A
P(x v, 2)
911 (0,0,a)
e . conducting
) ! plane
""" T e :I » X
H 0,0, —
d2: ( a)

Fig. 5.14. Thin conducting plane.
(a) The potential at a point P(x, y, z) is

Vx, y, 2) =

a4 _ 9
4me, [[()ﬂ +y +(z—a)"? [Py (z+ a)2]1/2:|
Since g, is the image of g, so it is considered as negative.
(b) The electric field is then given by

5
E =-VWx, y, z)
5
E

or _ |5, Vs Ve
o o’ oz
1 qityjtE-ak  qGity)+(+ak
Now,
- + —2a ~
E(z=0) = (qinqu)[( 2, 2. 2 3/2]]‘
0o |(x"+y"+a”)

= _ (g+q) —a A
E = 41_ 2 |: 2 23/2:|k
TCEO (”' +a)

Thus, £ is perpendicular to the plane.
(c) The surface charge is given by
Og=¢€yE
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_—(@+tq)a. 1
or Os~ m 2 +a?y"?
r“+a’)
where P =xt+ y2

(d) The total induced charge will be

T T Oy dxdy

q =
X=—00 )=—00
o 2T
= j j Cgrdrdd
r=00=0
7 rdr
= (g +qy)a _([ R
a
= + .-
q9=—q, 4y »
or q=—q,%q)
(¢) The force between g, and the plane is
A4
T A A2
4ney (2a)
- 2 “
or F = q—lzk
léneya
EXERCISES

5.1. Solve the Poisson’s equation for the p-n junction diode.

5.2. Two semi-infinite conducting planes, which are grounded, intersect each
other at an angle 30°. Find the number of images of a charge ¢ placed
between them. Draw the diagram also.

5.3. The electric potential of a conducting sphere of radius R in a uniform
electric field £ = E, k is given by

R3
Wr, 0) =—Eyr cos6 + £y —- cosH
r

where 7 is the distance from the centre of the sphere and 0 is the angle
that the » makes with z-axis. Then

(a) What is the dipole moment acquired by the sphere.

(b) Compute the radial and tangential components of the electric field,
E, and E,, on the surface of the sphere.



Methods for the Solution of Electrostatic Problems 131

54.

5.5.

5.6.

5.7.

(c) Compute the surface charge density.

Hint:  Wdipole) « 2909 p=p R
; 0
E =3 EQ cos 0
Ey=0

cg=3€,E,cos0
Consider two metallic spheres each of radius a placed at a distance
from the centres as shown in fig. 5.15. The spheres carry charges g and
—q, then compute

Fig. 5.15. Two metallic spheres.

(a) The potential difference between the spheres
(b) Electric field at the point P.
Compute the charge distribution in cylindrical coordinates if the potential
is given by
V=", (3cos’ 1)
If potential, in spherical polar coordinates system, is given by
V=", (3cos’ 1)
Compute the charge density.
Consider a dielectric sphere of radius a and dielectric constant & in the
presence of uniform electric field £ = Eol:r .
The potentials in-side and outside the sﬁhere is given by

_ 3Ej rcosH
V= k+2
_ 3
and V,= (k=D Eya COse—Eorcose
(k+2) 72

(a) Compute the radial and tangential components of the electric field.
(b) Compute the dipole moment acquired by the sphere.
(c) Surface charge density o.
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5.8.

5.9.

5.10.

5.11.
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Compute the electric field and charge distribution if the potential is

given by
2
Vol3—-—| r<a
V= a’

Voa

r

r>a

where Vo and a are constants.

av
Hint: E=——,
dr
e ¥
P O dr
Determine the charge distribution for a spherically symmetric potential
Vi
V= 0 r>a
r

3
Vo(l—r—S) r>a
a

Compute the electric field and charge density for the potentials

@ . o +By? + 22

3
r
(b) V=V +y 42
Hint: E=-VV
c=-—¢€ QVV

How much work is required to assemble a sphere of the radius R with a
volume charge density p.

Hint:

(o

Fig. 5.16. A sphere.
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Charge of the layer is
dq = p.4mr’dr

y=—1 , and p= 7 1

ey r LA
3
1

V=— r2p

3¢g

dW="Vdq= An p2rdr
3ep

4 p2R5
15¢,

R
w=[aw =
0

5.12. A wire is connected to the earth from a conducting sphere of radius a as
shown in fig. 5.17.

Fig. 5.17. Conducting sphere.

Compute the

(1) potential V'

(2) charge density o

(3) a force on the charge ¢ due to the sphere.
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Capacitors and

Dielectrics
CHAPTER

We know that a work is needed to form a group of charges and this system
consists of an electrostatic energy. In the early days, Volta used the concept of
the electrical capacity in analogy with the heat capacity. The electric potential
energy is the result of force between the charges. We can produce a useful
device by placing two conductors at a distance that can store an electric energy.
Thus, a device that can store the electric energy is called the capacitor. In this
chapter we shall study about the capacitor and dielectrics.

6.1. THE CAPACITOR

It is also known as the condensor. The capacitor is an electrical device used
for storing the electric charge. A capacitor consists of two conducting plates
which are insulated from one another as shown in fig. 6.1. It stores the energy
between the plates which are separated by a distance d.

Fig. 6.1. Atypical Capacitor

It is a fundamental component of an electric circuit. Our emphasis is on a
quantity of importance called capacitance of a capacitor. If a capacitor stores
a charge ¢, it means that one plate of a capacitor is at higher potential (+q)
and other plate will be at lower potential having a charge —g. Thus, there is a
potential difference between the plates of the capacitor. Hence, we say that the
capacitance is a capacitor is a measure of the capacity of storing the charge
for a given potential. However, the net charge on a capacitor is equal to zero

(g—q=0).
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(a) Symbol. The symbols of the capacitor are shown in fig. 6.2

(a) (b)
Fig. 6.2. Symbols of a capacitor.

(b) Types of capacitor: The capacitors are of different types and these can

vary in size and shapes. The types of the capacitors are as follows.
(1) Cylindrical capacitor

(2) Tubular capacitor

(3) Electrolyte capacitor

(4) Paper coated capacitor

(5) Miniature capacitor

(6) Variable capacitor, etc.

The concept of the capacitor is that, it has two conductors carrying equal
and opposite charges and these conductors are electrically isolated from
each other.

(c) Capacitance of a Capacitor: If a charge ¢ is given to one conductor, the

charge is moved until it creates a —g charge on the other conductor and
a potential difference is produced between the conductors. If there is a
potential difference V, then,

qocV
or q=CV ..(6.1)

where C is a positive proportionality constant and is called capacitance
of a capacitor. Moreover,

C= (6.2)

q
=
If we increase the charge, the potential difference V' between the
conductors increases. Thus, the capacitance of a capacitor is defined as
the charge required to increase the potential of a capacitor by unity. The
capacitance C depends on the following parameters.

(a) shape and size of the capacitor.
(b) material used between the plates (conductors).

However, capacitance C does not depend on the material of the
conducting plates.
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(d) Unit of Capacitance: In SI units, the unit of capacitance is coulombs/
volt. The unit of C'is farad also, in the honor of Faraday. Keeping always
in mind that capacitance C is a positive quantity. Moreover,

| Farad = 1 coulomb
1 volt
The other small units of C are given as
Lpf=10°f
1nf=107f
Lpf=10"2f

6.2. CAPACITANCE OF A PARALLEL PLATE CAPACITOR
Consider a parallel plate capacitor as shown in fig. 6.3. The configuration
contains two parallel plates of equal area and separated by a small distance d.

*q —-q
+ —

[

+
Gl ml

gaussian
surface

_______________1
+ o+

3
e
:
:
|
I
1
|
I
I
|

+

1
+ !
|

«—d—
Fig. 6.3. Parallel plate capacitor of plate area A and the separation d.
Initially, the charge on each plate of the capacitor is zero. In the process of
charging, the electrons move from one
conductor to another and as a result, the ﬁ
conductors have equal and opposite

+
charges. Thus, a uniform electric field is +
confined in the region between the plates. N
N
+

\

\/

\i

However, the electric field is not uniform
near the edges of the plates as shown in

fig. 6.4. w
The plate having +¢g charge is at

higher potential and —q charge is at lower Fig. 6.4. Electric field between
potential. To calculate the capacitance C, the plates of a capacitor

let 4 be the area of each plate. According
to Gauss’s law,

A




138 Elements of Electricity and Magnetism Theory and Applications

- - q
$E-as =L .(6.3)
o
or EA = 4
S
Thus,
_ 9
E=-9_ (6.4
< A (6.4)

Since electric field is uniform between the plates, the potential across the
capacitor is

v=[ar (6.5)
d_,
= —'[E -dr
0
_ 4
= d ...(6.6
. (6.6)
The capacitance of a parallel plate capacitor is given by
_4_%A4
14 d
or c= %4 (6.7)
d

It is experimentally observed that the capacitance C is proportional to the
area of the plates 4 and inversely proportional to the separation between the
plates d. That is,

A
C x J ...(6.8)
It can be seen that the capacitance C is a function of the geometry and the
dielectric material used between the plates, and plates having large area can
store more charge.

6.3. THE CAPACITANCE OF AN ISOLATED CONDUCTOR
(SPHERE)

We know that the electric field lines emerge from the positive charge and end
on the negative charge. In case of truly isolated conductor, the electric field
lines leave the conductor and extend to infinity. For this, consider an isolated
conducting sphere of the radius R. The potential of the conducting sphere of
charge g is
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A

€, r?
q
= ...(6.9
4meyR (6)
Thus, the capacitance of an isolated sphere is given by
c_4
14

or ..(6.10)

The capacitance C depends on the geometry of the sphere and independent
of charge q.
Example 6.1. Suppose that there are two concentric spherical shells of the
radius a and b. The inner shell of radius a has +¢ charge and the outer shell of
radius b has —q charge. Compute the capacitance of the spherical conductor.

Solution: Suppose that there are two concentric spherical shell, the inner shell
of radius a and outer shell of the radius b as shown in fig. 6.5. Now,

gaussian
surface

Fig. 6.5. Spherical Capacitor.
applying Gauss’s law,

$E-ds = 4
<o
E-4m? = L
<o
or E = ! i;
4TE€O ]/'2

The potential difference between two shells is

V=jjdV
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=— -dr
a
__4q (b_dr
41t€0 a }"2

y - L(l_l)
471:60 a b

4dre,
=
a b
6.4. CAPACITANCE OF A CYLINDRICAL CAPACITOR

The cylindrical capacitor is a combination of two coaxial cylindrical conductors.
Let a and b be the radii of the inner and outer conductors respectively. We
assume that the inner conductor has +¢ charge and outer surface has —¢ charge
as shown in fig. 6.6.

or C =

Fig. 6.6. Cylindrical capacitor of length L.

To find the capacitance of a cylindrical capacitor of the length L, first we
obtain an expression for the potential V in the region a < r < b. According to
Gauss’s law.

$E-ds =L (6.11)

E-2nrL



Capacitors and Dielectrics 141

or -1 4 .(6.12)
2ney L r
The potential difference between two conductors is
b
v=_["av .(6.13)
b= = b
=—| E-dl=+| Edr
a a
Thus,
b
=" dr .(6.14)
a 27[: EO Lr
-9 _1nla) ..(6.15)
2ney L

.. Capacitance C is given by
q

c=21
v

_2ney L
In b/a

Here, we can see that C oc L and C also depends on the radii of the inner
and outer conductors.

.(6.16)

6.5. SERIES AND PARALLEL COMBINATIONS OF
CAPACITORS

We have many experimental situations where in electrical circuits, we use
more than one capacitor. In this way, we have two types of combinations of
the capacitors.

(1) Series combination of capacitors
(2) Parallel combination of capacitors.

(1) Series Combination of Capacitors: Fig. 6.7 shows the series
combination of the capacitors. Consider three capacitors of capacitances C|,
C,, and C; connected in series. When a potential difference V' is applied, the
plates of the capacitors acquire +¢ and —q charges as shown in fig. 6.7. Let V,
V, and V5 be the potential difference across the capacitors.

Now, the potential " will be the sum of the potential differences across the
three individual capacitors. Thus, we have

V=V, +V,+V, (6.17)
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where
q q q
V. = —_, V, = —_, Vy=—
ot oG
g —q g —q g —q
+ - + - + -
+ - + - + -
+ - + - + -
+ - + - + -
G G G
-—V,—> -V, > -—V;—>
+ —
0 o
%
Fig. 6.7. Series combination of capacitors.
Therefore,
y=4,949,9 .(6.18)
G G G
14 1 1 1
or - = —+—+— ...(6.19)
9 G G G
If the equivalent capacitance of the combination is C, then,
c-4
%
Substituting it in Eq. (6.19), we get
1 1 1 1
- = —+—+— ...(6.20)
cC G G G

It is clear that the equivalent capacitance of a series combination is always
less than any individual capacitance in the combination.

(2) Parallel Combination of Capacitors: Consider three capacitors of
capacitances C|, C, and C, connected in parallel as shown in fig. 6.8.

In parallel combination, we see that the potential difference across the
each capacitor will remain same and the charge on each capacitor is different
from one another. We can write the total charge as,

q =ql+q2+q3 ..(6.21)
where g, = C,V, g, = C,V and g, = C;V. On substituting in the Eq (6.20) we get
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+Q4 +02 *Qs
+ +|+ + + +[+ + + +[+ +

Fig. 6.8. Parallel combination of capacitors
q =CV+CV+CV
or %:q+q+q (6.22)
If C represents the equivalent capacitance of the parallel combination,

_ 4 _
C= 0 =CrG+G

or C=C+C,+C .(6.23)
1 2 3

It is clear that the equivalent capacitance C is larger than any of the single
capacitor.

Example 6.2. Compute the equivalent capacitance of the combination of
capacitors between the points 4 and B as shown in fig. 6.9.
4 uf
ro—ri |

1 uf

T 1.,
T TT_V_T .

4 uf

Fig. 6.9. Combination of capacitors.

Here, all the capacitors of 1uf are in parallel, thus
C'=C+C,+C3+Cy
=1l+1+1+1=4pf
Now, all the capacitors of 4pf are in series, thus, equivalent capacitance is
1 N 1 N 1 3
C

4 4 4

C

Wl B

=133 puf.
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6.6. ELECTROSTATIC ENERGY STORED IN A CAPACITOR

When the process of charging of a capacitor takes place, there is a transfer of
the charge from one plate to other. In this way, a capacitor stores the charge.
Now, a question arises that, where is the charge stored. The answer of this
question is that the charge or energy is stored in the electric field. To calculate
the energy stored in the capacitor, suppose that the infinitesimally small charge
dq is brought to a capacitor at a constant potential V; so, the work done is

dW =Vdq ..(6.24)
Since V varies during the charging of a capacitor, we have

q
V== (625
c (625)

Thus, on substituting the ¥ from Eq. (6.25) in Eq. (6.24) we get
AW = %dq .(6.26)

We assume that the maximum charge on the capacitor is g,, we can
integrate the Eq. (6.26) to obtain the total work done by the electric field to
charge the capacitor to g. Thus,

w 0 dq
1 q2
or w=_10 ..(6.27)
2 C
Again, gy =CV
W= %CVZ ..(6.28)
This work stored as an electrostatic energy, hence,
14> 1
U=-4L - _cp? ..(6.29)
2C 2

The charge g is in coulomb, C is in farad and V in volts, the energy U is
in joules. Actually, this electric potential energy is not due to the mechanical
work in bringing the charge from one plate to another. But it is a chemical
energy of the battery that transformed into potential energy. Now, we may find
a relation between the energy and the electric field where the energy is stored.
Consider a parallel plate capacitor of the plate area A4 and the plates separation
d. Then, capacitance C of parallel plate capacitance is

C = % ..(6.30)
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Now, the work required to charge a capacitor to ¢ is

U= 1 ﬁ (6.31)
5C ...(6.
since q =c4
where G is the surface charge density, Thus,
1 624
y-Llodd .(632)
2 €

The electric field between the plates of the parallel plate capacitor is given by
. O
o
On substituting in the Eq. (6.32) we get
1

U=-¢ E*-Ad ..(6.33)
If V' is the volume of the space between the plates, V= Ad, Thus,
U 1 5
— =U;==¢ F
v d 7 0
1 2
or U, =560E ...(6.34)

where U, is the energy density. Thus, the energy stored per unit volume (energy
density) depends on the square of the electric field. In general, the electrostatic
energy is given by

_ 1 2
= < jVE av ..(6.35)

Example 6.3. Consider two capacitors of capacitances C; = 2ufand C, = 4uf
in series. The capacitor C, has voltage of 6 volts and C, of 12 volts across their
plates. compute the charge and energy stored in each capacitor.

Solution: Given,

C, =2uf

V, =6 volts
and

C, =4uf

V, =12 volts
.. Charge

g, =C/V,=12uC
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and g, =G V,=48 uC
Now,
1 ) 1 6
U = -Gl =-x2x107x36
2 2
or U =3.6x 1075joules
and
1 1 6
Uy = -CGlV3 =—x4x107 x144
2 2
or U, =2.88 x 104j0ules.

6.7. FORCE BETWEEN PLATES OF A CAPACITOR

Since potential energy is stored in the electric field between the plates of a
capacitor, it allows us to calculate the force between the plates of the capacitor.
For this, consider a parallel plate capacitor of plate area 4 and the separation
between the plates d. Then, capacitance C is

€9 4
c=2= ...(6.36
y, (6.36)
and associated stored energy is given by
= i
2C
2 2
- [ 4 |, (6.37)
2€pd \2¢€y4

Suppose that the electric force between the plates is F and the plates
separation increases by an amount dx where dx is known as the virtual
displacement, then,

dW =—F dx
or dU =—F dx ...(6.38)

with the analogy of Eq. (6.37), for a small displacement dx, we have the change
in electric energy as
2

du = -4 ax ..(6.39)
2e54
on comparing the Egs. (6.38) and (6.39), we get
2
F=_-14 ...(6.40)

2e4
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Here, negative sign indicates that there is an attractive force between the
plates of a capacitor.
Example 6.4. A spring is connected to a parallel plate capacitor as shown in
fig. 6.10. If the capacitor is charged to ¢, show that the expansion in the spring
is given by

q’c

x =
2¢e5k

where £ 1s force constant.

Solution: Let ¢ be the charge density, 6 = ‘]jo .

—do *do K
Fig. 6.10. A capacitor with a spring.

The restoring force acting on the right plate of the capacitor is,

F =—kx
The electric force due to right plate will be
(¢
F=qE=qy—

“2¢

Since restoring force is balanced by the electric force, we have

400 _ 4y
2¢
or x =20
2¢yk

6.8. ELECTRIC ENERGY STORED IN CONDUCTING SPHERE

Consider the conducting sphere of radius R as shown in fig. 6.11. The electric
field for » <R is zero.

Fig. 6.11. Conducting sphere

and electric field at a distance » from the centre of the sphere is
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E-_1 4 .(6.41)
4TEEO }"2

The electrostatic energy is given by
_1 2
U= [E*av ..(6.42)

For » > R, consider a spherical shell of radius » and thickness dr, the
volume of the shell is

dV = 4mrdr ..(6.43)
Then,
1 g Y
U=| —e)|——| 4n’ar ..(6.44)
R 2 dne,r
S
8mey 'R 42
2
v=-—14 ..(6.45)
dney R
Since the potential at the surface of the sphere, is given by,
1
= 4 ..(6.46)
dney R
then, substituting Eq. (6.46) in the Eq. (6.45), we get
1
U= EqV ..(6.47)

6.9. DIELECTRIC MATERIALS

In the previous sections, we have discussed the electrostatic problems in
the absence of the dielectric materials and all the discussions are taken with
the air or vacuum. Now, we shall discuss the electrostatic problems with the
dielectric materials. Dielectric material have no free charges and these are non-
conducting materials such as mica, glass, rubber, wood or plastic etc. When
a dielectric material is filled between the plates of a capacitor, the potential
difference between the plates decreases. Thus, the capacitance C of the
capacitor increases by a dimensionless quantity £ which is called the dielectric
constant of the material.

In the absence of the dielectric, a capacitor of capacitance C;, has the charge
gy as shown in fig. 6.12(a), the potential difference across the plate is given by
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v, =20 (6.
0 C) (6.48)
Now, suppose that a dielectric material such as mica or glass is placed
between the plates of a capacitor as shown in fig. 6.12.(b), the capacitance
increases to a value given by
C =kC, ...(6.49)
where k is known as dielectric constant of the material.
Yo Yo

‘ o o :

+ + |+ +

(a) (b)
Fig. 6.12. Capacitor without dielectric (a) and with dielectric (b)

Therefore, the potential difference between the plates decreases to

_"
V= = ...(6.50)
The charge g,, on the capacitor does not change, thus, we can write,
gy =Cpfy=CV (6.51)
or _ .
<. &= k ...(6.52)
C, vV

If a dielectric slab is placed between the plates of a parallel plate capacitor,
as shown in fig. 6.13, its capacitance is given by

c = So A
()
k
or c=Fk Z)A (6.53)

<-—d —>

Fig. 6.13. Capacitor with dielectric slab.
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where A is the area of plate and d is the separation between the plates. The
dielectric constant £ is just a number and is always greater than 1. That is,
k > 1. The dielectric constant for various materials are listed in the table 6.1.
Each dielectric has its own characteristic value of the electric field which is
known as dielectric strength. By placing the a dielectric material between the
plates of a capacitor, we have

(1) A maximum operating voltage for a capacitor.

(2) The capacitance of a capacitor increases by a factor 4.

(3) It solves the mechanical problem between the conducting plates of a

capacitor.
Table 6.1.
Material Dielectric constant
Free space 1.00000
Dry Air 1.0006
Bakelite 4.9
Glass ~6
Mica 3-75
Paper 3.7
Water 80
Rubber 2.95
Transformer oil 2.0
Benzene 2.3

6.10. POLARISATION

In the solid materials, the atoms are arranged in a defined pattern and is known
as crystal structure. In conductors, there are large number of free charge to
move throughout the lattice. However, there are many solids in which the
electrons are bound tightly to the atomic nuclei. Such solids are called the
dielectrics. The behavior of the dielectrics depends on the electrical nature.
The dielectric materials are unable to conduct the current. It contains the
positive and negative charges in equal amount, it is electrically natural. In the
materials, the binding is divided into two types.

(1) covalent binding.

(2) ionic binding.

In covalent binding, the atoms are tightly bound together, and the positive

and negative atoms are not separated. In case of ionic crystals the positive
ions may or may not be separated from the negative ions. But there are certain
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materials that have separation of the positive ions with the negative ions. Such
materials possess permanent electric dipole moment. Thus, the polarisation
at a point is defined as the vector sum of the electric dipole moments per
unit volume of the material. We can explain the increase in the capacitance
of a capacitor with dielectric on the basis of atomic or molecular point of
view. When a conductor is placed in the electric field, there is a redistribution
of charges on the surface of the conductor. Thus, the electric field inside the
conductor is zero. Moreover, in case of dielectric, no charge is there to move,
therefore a question arises that, how are the charges occur on the surface of the
dielectric material. In this way, to answer the question, the dielectric materials
are divided into two types as,

(1) Polar dielectric
(2) Non-polar dielectric

(1) Polar dielectrics: Such type of dielectrics have permanent electric
dipole moment. The examples of polar dielectrics are HCI, HBr and H,O etc.
In polar dielectrics, the centre of negative charge does not coincide with the
centre of positive charge as shown in fig. 6.14. The electric dipole moment
of HCl is 3.40 x 107° coulomb-meter. In water molecule, the two hydrogen
atoms are situated at an angle of 105° as shown in fig. 6.14(b).

s

H cr 02 )105° r
-

P N . -

H P2

(a) (b) (c)
Fig. 6.14. Dipole moment of HCI and H,O molecules.

For H,0O molecule, the resultant dipole-moment is
- - -
p =pt+p ..(6.54)
In the absence of external electric field, the orientations of these dipoles
are random and the resultant electric dipole moment of the system becomes
zero as shown in fig. 6.15(a). That is,

Z p; =0 ...(6.55)

when these molecules are placed in the external electric field E,, they tend
to orient along the direction of the electric field as shown in fig. 6.15(b). The
orientation of these polar molecules is due to the moment of force set up by
the applied electric field. However, it can be seen that the orientation of these
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molecules along the direction of the electric field is not perfect. This is due to
the thermal agitation. Thus, the orientation of the polar molecules creates a
weak electric field in the direction opposite to the applied electric field.

D o
@@ o
@@ &> >
&>

@) E=0 (b)Eg —»

Fig. 6.15. The alignment of polar molecules without electric field and with
electric field.

(2) Non-polar dielectrics: In non-polar dielectrics, the negative charge
centre and the positive charge centre of a molecule coincide with each other as
shown in fig. 6.16. (a) that is, they do not posses the permanent electric dipole
moment. When the non-polar dielectric materials is placed in an external
electric field, the material becomes polarised. Due to polarization, the positive
and negative charges are then, separated and the electric dipole moments are
induced as shown in fig. 6.16. (b). Such type of dipoles are called induced
dipoles. The examples of non polar molecules are O,, N,, CO,, CH, etc.

® 6606 SESESES)
® 6606 SESESES)
® 666 SESESES

(@)E=0 (b)Eg —»

Fig. 6.16. Non-polar molecules (a) the positive and negative charge centres
are coincide, when E = 0 (b) separation of charge centres in the field.

6.11. ELECTRIC FIELD IN DIELECTRICS

If a dielectric slab is placed between the charged plates of a parallel plate
capacitor, the voltage across the plates decreases and as a result, an additional
field is induced in the dielectric slab due to the polarization. This induced field
points in the opposite direction to the applied electric field £, as shown in
fig. 6.17. In this way, each molecule of the dielectric material becomes a tiny
electric dipole. The charge o, is caused by the polarization and is called the
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bound charge, however, o is the free charge density of the conducting plates of
the capacitor. The charge o, does not leave its parent atom.

%
The polarization P of'the dielectric material is the electric dipole moments
%
per unit volume of the dielectric, and p is a vector quantity. Moreover, if p is

the dipole moment of a molecule and N is the number of such molecules in a
unit volume of the dielectric, then, polarization is

%
P =Np ...(6.56)
Here, p is an average dipole moment of a molecule.
+c -0y +tcy —o o —0y4 +toy —©
+ = ¥ - + = ¥ -
+ - + - + - + -
+ - + — + - + —
+ - 4 - + - - + -
P
+ - + - + T -
+ - + — + - + —
+ - + - + -

Fig. 6.17. Electric field in dielectric material.

N
If P (x, y, z) is the dipole moment per unit volume, the potential due to the
dipole is given by

- -
av = —! P—'S’" d3r .(6.57)
dney r
N
or av = P~V(1) d’r ...(6.58)
4ne r

where d°r is a small volume. The net potential at any point may be found by
integration of the Eq. (6.58). Thus,

%
y=_1 | P.V(l)aﬁr ..(6.59)
4TCEO V r

integrating the Eq. (6.59) by parts, we get

> 7
e [|v.E |- ! jVPd3r ..(6.60)
drey IV ,
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For first term, using divergence theorem to convert volume integration
into surface integration, we have

- - -
- 1 J' P'dS_ 1 J‘ V’Pdg,r
dney 'S r drey 'V r
- -
or y=_1 | PmndS 1 | VP 3, .(6.61)
dney *S  r dney v 1

where S is the surface area which bounds the volume of the dielectric and the
-
surface element dS points in outward direction. For free charge density, we

may write

- 1 J cdS
dney °S r
| ...(6.62)
and V= —J P 3
dney V' r
on comparison the Eqs (6.61) and (6.62), we get
Surface charge density is
= .
c,=Pn ...(6.63)

and volume charge density is given by

b, =-Vv.p .(6.64)

where 6 ;and p; are bound charge densities and are distinguished from the free
charge densities. Furthermore, if the surface covers all volume of the dielectric

%
material, then V- P is sufficient to describe the source.

6.12. GAUSS’S LAW OF DIELECTRICS

The electric field due to dipoles can be evaluated from the bound charge
density. Consider a parallel plate capacitor as shown in fig. 6.18 (a). If the
dielectric material is not present between the plates, the electric field is given
by

o
o

E =

o

.(6.65)

where o is the free charge density. When a dielectric slab is placed between the
plates, a charge 4, is induced over the surface of the dielectric, fig. 6.18 (b).
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l 1
+q —-q \ q - p| qp —-q
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+ - . i i
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\>: + |- +| |-
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+ — '+ —! + —
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__________

(a) (b)
Fig. 6.18. (a) Capacitor without dielectric (b) with dielectric.

the net charge enclosed by the gaussian surface is given by

0=q-gq, ...(6.66)
By Gauss’s law,
- -
[ E-ds = 2
S =
) .(6.67)
€0

If A4 is the area of plate, then,
E = q— qp

...(6.68
— (6.68)
on placing the dielectric slab, the potential is decreased by
Yo
V=— ...(6.69
p (6.69)
where k is known as the dielectric constant, and the electric field is
£y
E=— ..(6.70
p (6.70)
on substituting the value of £ from the Eq. (6.65) in the Eq. (6.70), we get
g - o
ke
q
= ..(6.71
kA € ©.71)

Now, equating the Egs. (6.68) and (6.71), we have
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9 _49749
kA o4
1
or q, = q(l—%) ..(6.72)
The surface charge density is
1
=0|l-— ...(6.73
% ( k) (6.73)
Therefore, from the Egs. (6.67) and (6.72) we have
- -
[ Eas =-1-=1 (6.74)
S key €

where € = €_k is known as permittivity of the material medium.

- -
or ISeE-dS =q

- -
or jSDdS:q =q ..(6.75)

where D = € is called electric displacement vector.

6.13. POLARIZATION CURRENT DENSITY

If a dielectric slab is inserted into the plates of a capacitor, the polarization
current occurs due to the motion of the bound charges. The polarization current
is given by

I, = jSJddS .(6.76)
since,

0
I, = _ngpd d’r ..(6.77)

The surface area bounds the volume d°r. The rate of decrease of the bound
charge at the surface S'is equal to the rate of flow of charge through the surface.
Thus,

9 3 - -
—g.[Vpd &r = '[SJd-dS .(6.78)
Using divergence theorem, we have

[ JardS = [ V-0yd’r
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Now

)
3. _ 3
JV'Jdd r o= ~3, -[Vpd d’r ...(6.79)

5
Substituting p,= -V- P, we get

- 3 :i .—> 3
[ V-dadr atIVVPdr

or [V-g,d’r = % va? dr ...(6.80)
For any arbitrary volume, we write
N -
J = aa—f ...(6.81)

we have used subscript ‘d’ for dielectric.

6.14. LOCAL FIELD IN A DIELECTRIC MATERIAL

To evaluate the local field at a molecule or ion in the state of polarization,
suppose that a dielectric slab is placed between the conductors as shown in
fig. 6.19.

+
+
+
+ . .
Dipole in a
sphere

Fig. 6.19. Local field at the molecule in a sphere of radius a.

Since dielectric is placed in an external electric field, we can evaluate the field
at a molecule at the centre of a sphere of radius a. This microscopic field is
different from the macroscopic field governed by the Maxwell equations The
electric field at the molecule is the vector sum of the external field and the
electric field contributed by the dipoles within the dielectric material. Thus, the
local field at the molecule is given by*

* Principle of Electricity and magnetism by Pugh, chapter-5.
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E

Loc

=EytE +E,+E; ...(6.82)
where

E, = Electric field due to free charge on the plates of a
capacitor.

E, = Electric field due to the surface charge (induced
charge or bound charge) on the dielectric material
between the conductors.

E, = Field due to the polarization charge on the sphere of
radius a

E; = Electric field due to individual dipoles in the sphere
of radius a.

Now, we shall obtain the expressions for these electric fields as
(1) The electric field due to the charges on the surface of plates of the
capacitor is

- - - -
- -
- -
or E, = 22 E +£ ...(6.84)
€o <o

(2) The induced charge on the surface of the dielectric material produces an
electric field at the molecule is,

- -

- D P

El=—-——=—— ..(6.85)
€o <o

(3) The field £, due to the polarization charge density 6, on the sphere may
be calculated as

..(6.86)

> X-axis

Fig. 6.20. Molecule in a spherical cavity of radius a.
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dE,, is the component of the electric field parallel to the x-axis, Fig. 6.20.
The area of the element is

dS =2mna-a sin 6 dO
=2na” sin 0 dO ..(6.87)
Since the spherical cavity contains polarization charge density,

N
G, = P cosB ...(6.88)
Field due to polarization charge density is

P-27a” cos’ 0 sin0d0
E, = j )

41t EO a

£ jcosz 0sin6 do ...(6.89)
2¢

Integrating Eq. (6.89) in the limit 6 =0 to 6 =T,
E, = L " cos?0sin dO
2€y 70

P 2 P

= E 3 E
Thus,
P
E,=— ...(6.90)
3eg
(4) Ej is the field of the individual dipoles. We know that the potential due
to the dipole at a distance 7 is

- -
y-_1 P .(6.91)
4TC GO ]/‘3
The electric field due to the dipole is calculated as
E=-VV
1 - >
= s[3(p-r) - p r’] ..(6.92)
4T EO V

Now, taking summation over all dipoles, we get

3 (pz I" ) I" pl i
Ey= (6,93
z 4r g, r5 ( )
2, _ 2
or E,= 2L 3 10 .(6.94)

4TC EO i }';.5
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since all dipoles are oriented along x-axis, taking the symmetry over
sphere, we have

23)6,2 —132 =0
i

Y xy =0 ..(6.95)
i

and inzi =0

Hence,
%
Ez; =0 ...(6.96)
Thus, the local electric field at the molecule is given by
- - -
- -
Floc —p+ L _L . P
€ € 3¢
%
- - P
or Eroc = E+— ...(6.97)
€o

DIELECTRIC CONSTANT, ELECTRIC SUSCEPTIBILITY
AND POLARIZABILITY

Consider a dielectric slab between the plates of a capacitor, then the surface
charge density is

where

and

Here,

Thus,

where

q
= —=—40 ...(6.98
o= tor (6.98)

o = free charge density.

k = dielectric constant.

A = area of plates of the capacitor.
Gp = polarization density.

[
6 =2 and GP:q—:P
A A
the Eq. (6.98) can be written as
~ - -
6 =¢,E+P ...(6.99)
E=—9  isthe macroscopic field.

ke
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- .
we know that the electric displacement vector D =G, we have

- - -

D =¢,E+P ...(6.100)
for the free space,

N

P =0,

- -

D =¢,E ...(6.101)

Moreover, for dielectric medium,
- -
D =€¢F ...(6.102)

where € is the permittivity of the medium. On substituting the Eq. (6.102) in
the Eq. (6.100), we get

- - -
€eE =eyE-P ...(6.103)
- -
or P =(e-¢g)E
_)
= (kep—&)E
- -
or P =(k-1)eyE ...(6.104)
Now, we write
N
P
€ E
Here, we can define a dimension less quantity
-
X = % ...(6.106)
Sy
where x (a Greek letter, y-chi) is known as electric susceptibility.
- -
or P =yeE ...(6.107)

Thus, dipole moment per unit volume, polarization is directly related to
the macroscopic field in the dielectric. Moreover, the electric polarizability is
defined as the ratio of the induced dipole moment to the local electric field, it
is denoted by a. Thus,

4
a =
Eroc
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- -
or P =aELoc ..(6.108)
or P o B o ..(6.109)

Thus, the induced dipole moment is proportional to the E| .. Since, we
know that
_)

_)
P =Np ...(6.110)
On substituting in the Eq. (6.109), we get

- -
P =NaErLoc ..(6.111)
From the Eq. (6.11), we have

N N
P o< E1oC

That is, polarization is proportional to the local electric field. Such
dielectrics are known as linear dielectrics.

6.16. CLAUSIUS-MOSSOTTI EQUATION

Clausius-Mossotti equation is a relation between the electric polarizability and
dielectric constant. We know that the local field at the molecule is given by
_)

- -
Eroc = E+i ..(6.112)
3¢g

and the dipole moment is given by

- -

p =aFELoc ..(6.113)
where o is electric polarizability. Moreover, the polarization is

- -

P =Np

=NaE o

- N ;

or P =No|E+— ..(6.114)
3¢g

Since, from the Eq. (6.104), we have

- -
P =¢(k-DFE ...(6.115)
Substituting the Eq. (6.115) in eq. (6.114), we get

N -
e (k=) E =Na[§+eo(3k——1)E]
o
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or 3eyk—1) =Na(k+2)
or o = 25 k=D ..(6.116)
N (k+2)

This is known as famous clausius-Mossotti equation. If p is the density of the
mass and N, is the Avogadro’s number, then

P
N=—N ..(6.117
IRl ( )

where M is the molecular weight. Substituting the value of NV from the Eq.
(6.117) in the Eq. (6.116), we get

(%J(("‘D) _ N, (6.118)
o \k+2)) 3¢, e

Furthermore, if the number of molecules per unit volume approaches to

3
(%) . The dielectric constant £ — co. Since £ is finite and small for the liquids

and gases, the Eq. (6.118) provides the better results. This is not valid for
crystalline solids, this is because that the dipole interactions are very complex
in the solids.

6.17. LANGEVIN EQUATION OF POLAR-DIELECTRICS

The polarization is an important phenomenon in some applications of the
physics and engineering. The polar dielectrics are those where the positive and
negative ions are separated with a distance. That is, these dielectrics consist of
permanent electric dipoles. In the absence of the electric field, the dipoles are
aligned randomly throughout the dielectric and an external electric field causes
the electric dipoles to orient in the direction of the field. However, the alignment
of the dipoles is not complete due to the thermal agitation. In Langevin-Debye
theory, the polarizability depends on temperature. Now, suppose that a system
consists of N-dipoles in a unit volume. The potential energy for a dipole in a
uniform electric field is given by
- >
U=-p-E
=—pE cos 0 ..(6.119)

According to Boltzmann’s law, the number of electric dipoles per unit
volume oriented in the direction between 6 and 0 + d0 is

dN = Ce VKT 5in 0 do ...(6.120)
where C is a constant
Thus, dN = C &5 YKT sin 0 do ..(6.121)
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Since N is the total number of molecules in a unit volume, then,

T
N = jo dN o (6.122)
— CJnepECOSG/KT Sine de
Letu= E R
KT
N = "' sin0 a6 .(6.123)
o

Now, polarization of the molecules whose dipole moments lie in the range
0 and 0 + 40 is given by

- -
ap = p cos 0 dN
=~ 0
= Cpe"“®" sinBcos 6 ..(6.124)
on substituting the value of C from the Eq. (6.123) in the Eq. (6.124), we get
d; _ N pe" s sin@ cos 6 d0
[Te 0 sing dg
]

.(6.125)

To compute the net polarization, we may integrate Eq. (6.125) from 6 =0
to 0 = . We have

BN N J'Tceucose sin® cosO d0
P =Npi— .(6.126)
["e"e% sin6 a6

o

Suppose that ucos 0 =y

u sin 0 d0 =—dy
Thus, the equation (6.126) takes the form,
u
. R I yerdy
P =|Np _’;— ..(6.127)
u J. e’ dy
_ N; utt" +e™)— (" —e™)
7 (ell _ e_ll)

v, [(eu+e_”) l]

(" - u
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- - 1
or P =Np [cothu——} ...(6.128)
u

- -
or P = Np L(u) .(6.129)

The Eq. (6.129) is known as Langevin equation and L(u) is called the
Langevin function. We can expand L(u) as
3

u u
Lu) = ———+... ...(6.130
) =3-73 (6.130)
and inverse Langevin function is
L) = Sut ot~ 20,54 ..(6.131)
5 175

The plot of the Langevin function L(u) against u is shown in fig. 6.21.
Now, we have following cases as

. E
Case —1 For large u, that is, at low temperature 7 < < Pz ,
K
we have, L) ~1
Thus, polarization is, then,
- -
P =Np ...(6.132)
At the low temperature, all the dipoles are aligned parallel to the electric

N
field and thus polarization P is maximum.

L(u) 4

0 > u

Fig. 6.21. Langevin function L(u) against u.

. . E
Case-2: For high temperature, that is, 7>>> % ,
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- > u
P =Np—
P 3
N p’E
or P = ...(6.133)
3KT
or P ~ 1
T

Thus, the polarization is directly proportional to the electric field, more-
over if E is uniform, P is inversely proportion to the temperature. This dielectric
is linear and the electric susceptibility is give by

> 2
¥ = 2:3]\% .(6.134)
E
C
or = — ...(6.135
L=7 ( )

6.18. ENERGY STORED IN A DIELECTRIC

Consider a dielectric slab of thickness d inserted into a parallel plate capacitor
of plate area A. Assuming that the dielectric slab is fitted completely between
the plates as shown in fig. 6.22.

5
Fig. 6.22. Dielectric in a field E
The energy stored is given by

U= %e E? Ad ...(6.136)

since potential is,
V =Ed ..(6.137)
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Substituting the value of £ from the Eq. (6.137) in the Eq. (6.136), we get

2
U= 1 € Ad -
2 d?
1
= —(ﬂ) p2 .(6.138)
2\ d
The capacity of the capacitor will be
€A
C=— ...(6.139
= (6.139)

Substituting for C in the Eq. (6.138), we get

1
U= cv? ..(6.140)
From the Eq. (6.136), the energy density is
u 1 2
-~ =—¢cE
Ya=%a™2
1 - -
or U, = 5 (eE)E
- -
E-D
= — ..(6.141
5 ( )
Thus, we have
D2
U =—1| D=¢€F ...(6.142
‘=5 ( )

which is the expression for the energy density.

Example 6.5 Find the capacitance of a capacitor when it is filled with two
dielectrics of dielectric constant k| and k, as shown in fig. 6.23.

Fig. 6.23. Capacitors with different dielectrics.
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Solution: In the fig. 6.23 (a), we have a parallel combination of the capacitors
with dielectric constants k, and k,. In this case, the plate are becomes half, Fig.
6.24.

Fig. 6.24. Two capacitors with different dielectrics.

.. Total capacitance is

C=C+¢C,
But, c, - kyeq A2
d
and c, - ky GEIA/Z

where d is the plates separation and A is the plate area. Thus, on substitution
for C; and C,, we get
_ Sk +hky) 4
= S
For Fig. 6.23(b), we have a series combination of C, and C,, Fig. 6.25.

]

Fig. 6.25. Capacitors with dielectrics.
_ GG
GG
In this case separation between the plates becomes half.
€y k4
dr2

C =
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€y kA

and ) = a0

on substituting in C, we get
C = 2 EO A kl + kz
d \k+ky )

Example 6.6. Two capacitors, where one capacitor is charged to a potential
V| and other capacitor is uncharged, are connected in parallel. Then,

(1) Prove that when equilibrium is reached, the charge on the second
capacitor is equal to the ratio of its capacitance to the sum of two
capacitances of the capacitors multiplied by the initial charge.

(2) Show that the initial energy is greater than the final energy.

Solution: Let C; and C, be the capacitances of the capacitors and V' be the
common potential, then

Total charge

Total capacitances

_ It

C+G,

C1V2 + C2 O _ CII/I
C+GC, C+G,

. Thus, the charge on the capacitor C, is
a =GV
o1 v Gia

q
= V= tial charge).
C+C, ' C+G, (initial charge)

Now, charge on the capacitor C| is

9, =CV
TG ilcz an
_ G
TG +q M
(2) The initial energy
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Final energy, when the uncharged capacitor is connected, will be

1
Up = 5(C1+C2)V2

1 Cv?
:—(C1+Cz)%
2 (G +G)
_lan
2C+GC,
1 1 Cv?
Ui_Uf:_ClVlz__#
2 2 C+G,
1 1 Cv?
=y -— 1
2 2C+C,
1 CC
- 1“2 'V12
2C+C,
or Ul.fo>0
or Ui>Uf

Example 6.7. Consider a parallel plate capacitor of plate area 4 and plates
separation d. A dielectric slab of thickness ¢ < d, is placed between the plates
as shown in fig. 6.26. Compute the capacitance.

Solution: Let C, and C be the capacitances of the capacitor without and with
dielectric respectively. When dielectric is not present, the capacitance is

c = %o A
o
d
Now, to calculate the capacitance C of a capacitor with dielectric, we have
to compute the potential difference between the plates.

+ - + -

+ + + + + +
m
o
|

+ + + + + +
m
o
|

Fig. 6.26. Dielectric slab in an electric field.
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The electric field between the plates are

q
E:
° g4
and E=ﬂ: 4
k  key A

.. the potential difference
AV =Eyd—1)+ Et

= ——(d-1+
OA( ) eOA

d-—
OA[( H+— ]

or AV =4 [d—t(l—i)}
€y 4 k

Thus, capacitance is,

't

c- 4
AV

€y A4

From the above result, we have following points,

or C =

(1) As thickness 7 of the dielectric slab approaches zero, that is, £ — 0,

2) As dielectric constant £ — 1,
(2)
C= e(;’A ¢,
(3) Whent=d,
C= key A keyd
d t
or C =kC,

Example 6.8. Consider two capacitors of equal capacitance C connected
in parallel and this system is charged to a voltage V|. Now, the system is
disconnected from the voltage source and in one capacitor, a dielectric slab of
dielectric constant k is placed. Then, compute
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(a) The free charge transferred from one capacitor to another.
(b) Final potential V, across the capacitor.
Solution:

Fig. 6.27. Capacitors system.

Consider two capacitors as shown in fig. 6.27.
The potential V, is
Total charge

v, = :
Total capacitance

_Gn+G0_ N
C+kC C(l+k)
4
(1+k)
Now, charge on the capacitor is
q =GV,
_kon
-~ (I+k)

. kCn
or T~ (1+k)

or V2 =

6.19. BOUNDARY CONDITIONS AT THE INTERFACE OF TWO
DIELECTRICS

The conditions that satisfied by the field at the interface separating two media

are known as boundary conditions. Maxwell’s field equations are used to

determine these boundary conditions.

N
(1) Boundary Conditions for the Electric Displacement D .
Consider two dielectric media separated by an interface, as shown in fig. 6.28.
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ds,

Fig. 6.28. Gaussian pillbox at the boundary.

we have Maxwell’s equation as

jSB-JS =q= [ods ..(6.143)

- - - -
or jSD-dleerzDz-dSz =5

N

N
or D2p —Din =c ...(6.144)

where o is the surface charge density for free charge. From the Eq. (6.144), it

%
is clear that the normal component of D is discontinuous at the boundary. If
no free charge is present at the interface, o = 0, thus,

- -
Dln = DZ}’I
or kE, =kE, .(6.145)

N

Therefore, the normal component of D is continuous across the boundary.
Now, the behavior of the tangential component of the electric field can be
determined by the Maxwell’s equation

- -
$E-dl =0 ..(6.146)

we have a closed path at the interface, as shown in fig. 6.29. Now, applying
the Eq. (6.146) to the path abcda. The paths bc and da are perpendicular to the
interface, thus, the integrals are vanished, we have

b d
jE-dz—jE-dz -0

a c
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Fig. 6.29. Interface between two media.

or (Ey,—E )L =0
or E,, =E,, ...(6.147)

%
Thus, the tangential component of the electric field £ is continuous across
the boundary.

Example 6.9. Consider a parallel plate capacitor of length / and width b as
shown in fig. 6.30. The plates separation is d. If a dielectric slab is inserted
partially between the plates of the capacitor, Find

(a) Capacitance of the system

(b) energy stored in the system

(c) force acting on the slab due to the electric field in the capacitor.
/ >

\ — | e
=
<« X>» < [Xx> |e—X —>le—I-x—>]
(a) (b)

Fig. 6.30. A dielectric in a capacitor.

Solution: The electric field between the plates

-V
d
or V =Ed
(a) The capacitance of the system is
C=C +C,
where C, = Capacitance without dielectric

S|
d
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and C, = capacitance with dielectric
€y k(I-x)b
ai—
Therefore,
C= e%’lb[x+(l—x)k]

(b) The energy of the system is

U=Lep?
2
= 620—;’[x+(1—x)k]V2
or U= %eo E? bd [x+(I—x)k]

(¢) The force acting on the slab due to the electric field across the capacitor
is

P
dx
Now,
1
F=-2¢& E? bd (k—1)
Thus,

F=%eoEzbd(k—l)

Aliter: Force can also be calculated as
Fdx=-dU+ Vdg

or F= —d—U+ V@
dx dx
since aq =—leo E? bd (k-1)
dx 2

Now, charge on the capacitor is
g=0,4,t06,4,
c c
where E=-1 and E=—2
€ keg
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Thus,

and
Thus,

or
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q = €ybxb + ke E(I - x)b

dq
=< (k—1)

V=Ed

= —%60 E*bd (k1) + E* €, bd (k-1)

F= —%eobd E*(k-1).

Example 6.10. A co-axial cylindrical capacitor of the inner radius a and outer
radius b is half filled with a dielectric of dielectric constant k. The length of the
capacitor is /. Compute the capacitance of the system.

Solution: We may compute the electric field using Gauss’ law.

Fig. 6.31. Cylindrical capacitor.

The flux through the upper half, Fig. 6.31, is given by

or

or

- -
lCﬁE'dS -9
PRL

the potential difference V'is

€p
E-2mrl _4q
2 €
E = q
T EO ll"
b
V= Ja E dr
=9 1y (bla)

Teyl
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.. Capacitance
c, =1
14
c, - Tey !
In (b/a)
Similarly, the capacitance of lower half is
_ ME K
2 In(bla)
Total capacitance is
C=C +¢C,
or _ TSl q4p
In (b/a)

Example 6.11. Find the capacitance of a half spherical shell field with
dielectric of dielectric constant £ as shown in fig. 6.32.

Fig. 6.32. A spherical shell with dielectric.

Solution: According to Gauss’s law

- - q
$E-ds = -1
€k
Eom? = -4
€k
or E = L 4
271: EO k ]"2
.". potential between the spherical conductor is
_ (P_4q dr
aldneyk p?
q ab

T 2negk (b-a)
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Thus, capacitance is
q _2megkab
Vo (b-a)

Example 6.12. A parallel plate capacitor is field with two different dielectrics
of dielectric constants k, and k, as shown in Fig. 6.33. Find the capacitance of
the system.

Fig. 6.33. A capacitor with dielectrics

Solution: Suppose that ¢ and b are the thicknesses of the slabs. At the interface
of two slabs,

- -
D1 = D>
or k\E, = kyE,
where, E, = q
€y k4
and E, = d
€y kA

the potential difference
V =E,a+E,)b

g (a b
_+_
S)) A kl kz

.. Thus, capacitance,

C =

or C =
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Example 6.13. Two capacitors of capacitances C; = 2uf and C, = 6uf are
connected in series with an external voltage source of 200V. Then, compute
the

(a) charge on the each capacitor.
(b) potential difference across each capacitor.

Solution: Let g be the common charge and V', and V, be the potential difference
across C| and C, respectively, then,

(a) V,+V, =200
or 4,9~
¢ G
or g = GG 5
C+G,
_ 2X6 200%107
8
or g =30x107*C
30x1074
(b) = L2220 _isov
¢, 2x10”
3x107
=422 —s0v
G, 6x10”

Example 6.14. Two capacitors C; =4 ufand C, = 6 ufare connectedtoa 12V
supply as shown in fig. 6.34. Compute

(1) equivalent capacitance of the circuit.
(2) voltage across the capacitor.

(3) charge on each capacitor.

(4) charge on equivalent capacitor.

(5) energy stored in the system.

12V
Fig. 6.34. Capacitors in parallel.
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Solution: Both capacitors are in parallel,
(1) The equivalent capacitance is, C = C, + C,
C=4+6=10uf
(2) The voltage across each capacitor is 12V.
(3) Charge on C| = 4pufis

7, =GV,
=4 x12=48 uC
and q, =GV,
=6x12=72uC
(4) Charge on equivalent capacitor C is
qg=CV
=10 ufx 12
=120 pC

(5) Energy stored in the system is
_1 cv?
2

:%-x10x106x144

=72x107*)
Example 6.15. Two capacitors C; and C, are connected in parallel with a
supply of V' volts as shown in fig. 6.35. Show that the sum of energies stored
in the individual capacitors is equal to the energy stored in the equivalent
capacitor.

] [~

Fig. 6.35. Capacitors.

Solution: The energy stored in the capacitors C, and C,

are U = lCIV2
2
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1

and U, = 5C2V2

Thus, U=U,+U,
1

= —(C\+Cy)V?

2

|

U=-Cr

2

But, C=C +¢C,
1

Hence, U= ECVZ

Example 6.16. Two metallic spheres, each carrying equal and opposite
charge of 10uC, are hanging with the weightless insulated threads. The
distance between them is 1.0 cm and potential difference is 100 volts. Find the
capacitance of the system.

Solution: Since, g =10pC

V=100 volts
The capacitance is
-6
c=9_ 10x10
vV 100
or C =0.1pC

Example 6.17. Find the equivalent capacitance of the circuit shown in fig.
6.36.

oA

2uC _> 2uC
/\ __ch/\

°B

Fig. 6.36. System of capacitors.
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Solution: The capacitors of capacitance 2uC are is parallel, the equivalent
capacitance of these,

C'=2+2+2=6uC

Now, C’, 6uC and 6uC are in series, we have
1 1 1 1 3
— ==+=+

C

C

6 6 6 6
6
3
Example 6.18. A slab of dielectric material with the dielectric constant & =
3-0 is placed across an electric field of 107 V/m as shown in fig. 6.37.
Eo

=2uC.

Fig. 6.37. Dielectric slab.

Compute the
- - -
(@) E (b) D © P (@ py ()0,
Solution: (a) The induced electric field is
7
E= %:£:3.33 x10° V/m

(b) D= ek, = €kE
=8.85 x 107" ¢/m?
(c) Now,
D=¢e,E+P
P=D-¢€\E
=885x10°-295x 107
P=59x10"¢/m*
(d) Since there is no volume charge density of free charge, there should be
no volume charge density of the bound charge. Then,

%
p;=—V-P=0

(e) At the outer surface, the bound charge density

- .
Gd=iP-n
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—4p
=+59x 107 ¢/m’.

Example 6.19. If the earth is considered as a conducting sphere of radius R,
compute the capacitance of the earth.

Solution: The potential of the earth is

y=_4
dneyR
and
C= %z 4ne, R
Here, R =64%x10m
Thus, C =4ne,x 6.4 x10°
6
0T 71 me
9x10
or C =710 pF.

Example 6.20. There are four plates of area 4 and the separation between any
two plates is d, as shown in fig. 6.38. Find the capacitance between 4 and B.

Fig. 6.38. Four conducting plates.

Solution:

Lo
Fig. 6.39. Capacitors.

The I and II plates are in parallel, so we have 2C, and III plate is in series
with 2C.
e, 4
d

_2CxC 2

Thus, ' =
2C+C 3

o2,
3
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Example 5.21. In the arrangement shown in fig. 6.40, C, = 2uf, C, = 4uf and
C, = 3uf. Then compute the

(a) total capacitance of the circuit
(b) charge on each capacitor
(c) the potential difference across each capacitor.

Solution:

Cq

||
Cs
| |
1

||

[

C,

—o °—

12V
Fig. 6.40. Assembly of capacitors.

(a) The total capacitance can be evaluated as
1 1
C 16 G
C= (C+Cy)) G _6x3 _
C+C, +G 9
(b) The total charge, g = CV
qg=12x2
=24 uC
Now, charge on capacitor C, is

C
q,= ! q:gx24=8uC
C+G 6

or 2uf

and charge on capacitor C, is

_ C2
LB\ re )

=%><24:16MC

It can also be calculated as
4,=q9-q,=24-8=16 uC
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Now, charge on C; will be same as supplied by battery.

Thus, gy =q=24pC
(c) Potential difference across C, is
_ ¢ _8_
o2
1
Potential difference across C, is
v,=42 4y
G
and potential difference across Cj is
24
vy=B_Z_gy
G 3

It can also be calculated as
Vi=V-V,=V-V,=12-4=8V

EXERCISES

6.1. What is meant by the capacitance of a capacitor?

6.2. What is the difference between the permittivity and the dielectric
constant of a medium?

6.3. Define electric displacement vector and electric susceptibility. What are
their units?

6.4. Find the expression for the equivalent capacitance of three capacitors
having capacities C|, C, and C; connected (a) in series (b) in parallel.

6.5. Derive an expression for the capacitance of a conducting sphere of
radius R.

6.6. Obtain an expression for the capacitance of a cylindrical capacitor
having inner radius a and outer radius b.

6.7. Obtain an expression for the energy of a charged capacitor of capacitance
C.

6.8. Differentiate between polar and non polar dielectrics and define the
electric polarization.

6.9. State and explain Gauss’s law in dielectrics.

6.10. Show that capacitance of a parallel plate capacitor increases with
dielectric material.

6.11. Establish arelation between electric displacement vector and polarization
vector.

6.12. Obtain an expression for the force between charges in a dielectric
medium.
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6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.
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Compute the capacitance of the earth, regarding that it is a conducting

sphere of radius R.

Define electric polarizability and prove the clasusius-mossotti equation
KL sy
k+2 3¢y %

where notations have their usual meanings.

For polar dielectrics, show that

P=Np (coth (_p Eroc ) __KT )
KT P Eroc

Define polarization current density and show that the polarization current
density is equal to the time rate of change of polarization vector.

For bound charge densities, show that
;= P-n
and p;=-V'p

If a dielectric slab (k= 2-1) is inserted into a charged capacitor having
free charge density, o = 1 uC/mz, Find electric displacement D, electric
field E, polarization P and bound charge density G ,.

A parallel-plate capacitor of area 4 and separation d is filled with three
dielectrics, as shown in fig. 6.41 (a), (b). Find the capacitance.

Fig. 6.41. A parallel plate capacitor with dielectrics.

A parallel plate capacitor has capacitance C = 36uF, A =100 cm?® and
space between plates is filled with a dielectric material (k = 2.1). When
¢ =200V, Find

(a) the electric field in dielectric, £
(b) the free charge density, o

(c) the induced charge density, 6,
(d) the polarization, P
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6.21. A parallel plate capacitor is half filled with the dielectric of dielectric
constant £, as in fig. 6.42. Find the capacitance.

k

Fig. 6.42. Parallel plate capacitor.

6.22. Consider a thin conducting disk of radius R, Find the capacitance.

6.23. Find the equivalent capacitance of the arrangement shown in fig. 6.43.
Ans. C=3 uf

Fig. 6.43. System of capacitors.

6.24. A spherical shell has inner radius a and outer radius . Two different
dielectric are filled between a and b, as shown in fig. 6.44. Find the
capacitance of the system.

4n € kik,abc
ka(b—c)+kyb(a—c)

Ans. C=

Fig. 6.44. Spherical shell with dielectirics.

6.25. Seven identical plates, each of area 4 are arranged, as shown in fig. 6.45.
The distance between adjacent plates is d. Find the capacitance.
6ey 4

Ans. C =
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Fig. 6.45. Conducting plates.

6.26. Find the equivalent capacitances of the arrangements shown in fig. 6.46
(a) and (b).

o a

(@)

I
—
OO0 0

AHHHE

ob Ans. C'=2C

Fig. 6.46. (a) Capacitor system.

2uF 2uF 2uF
| | | | | |
a———— |}t
© | | | | |
WF —_—  WF__— 1w _— —
p—b—-«—« +— Ans. C'=2pF.

Fig. 6.46. (b) Capacitor system.

6.27. find the equivalent capacitance between B and H, of the cubic arrangement
of the capacitors, as shown in fig. 6.47.

C

AT

clg

E F I
C==C D ¢ C c
L{JC
o H ¢ G 6C

Ans.C'= —

Fig. 6.47. Capacitors in cubic system. 5

6.28. Four capacitors are arranged, as shown in fig. 6.48. A 12V battery
is connected between a and b. If C; = 2uF, C, = 4uF, C; = 2uF and
C, = 4uF, calculate the total charge drawn from the battery and charge
on each capacitor when

(a) the switch s is closed (b) the switch s is open.
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6.29.

6.30.

6.31.

6.32.

11 11
a l b
C, T/ S ¢,
| | | |

o 12V o

Fig. 6.48. Capacitor system.

A parallel plate capacitor of plate area A and plate separation d has
capacitance C. Find the capacitance when an aluminium plate of
thickness b is placed between the plates of capacitor.

Ans.C’=( cd )
d-b

Find the bound charge density in a sphere of radius R carrying polarization
- -
P =ar ,where ais constant.

Hint: p;,=-V'p
=-3a

A thin rod is placed along z axis from z = 0 to z = L. The rod is polarized
along length and polarization P = az> + b. Find the bound charge
densities.

Hint. 6,=p ;1 .
or oy=at+b|,_,
=al’+b
and c,=-V'p
= 2aZ|,_,
or Gd=—2aL

A point charge ¢ is placed at the centre of the dielectric spherical shell
of inner radius a and outer radius b, as shown in fig. 6.49. Find E, D and
polarization P.

Ans. FE = Lz,r<a
drey r



190 Elements of Electricity and Magnetism Theory and Applications

= Lz,a<r<b

Aregkr

=1 _,<b

- 2
dreyr

D = q2 a<r<b
dmr

p - =
Ankr

a<r<b Fig. 6.49. Dielectric
spherical shell.

6.33. Two capacitors, C; =3 uF and C, = 6uF, are
charged separately to same potential difference 12V. Now, positive plate
of one is connected to negative plate of other and outermost connections
are shorted together. Find the
(a) charge on each capacitor

(b) loss in electrostatic energy.

C(C -GV
Hint: q1=—](] 2) =12 nuC
C+C,
Cy(C =Cy)V
C+G
dU=U,-U;=5.76 x 107 ]



Current, Resistance and

Circuits
CHAPTER

In the previous chapters, we have discussed the electric phenomena associated
with the charge at rest. In the present chapter, we shall describe the situations
having charge in motion. The electric current may exist where the charge is
free to move. In different media, the current is caused by the different charge.
In conductors the current is due to the motion of the free electrons. However,
in semiconductors, the current is caused by the motion of the electrons and
holes. The motion of positive and negative ions constitute a current in the
electrolytes. Moreover, the displacement current is the result of the bound
charge in the dielectrics. It is the important fact that when current flows
through the resistance, there will be dissipation of the energy. In this chapter,
we also analyze the electric circuits with the fundamental electrical theory and
we shall discuss the relations among the electrical parameters viz, current,
voltage, resistance and electric field etc.

7.1. ELECTRIC CURRENT

If there is a flow of charge continuously, it constitutes an electric current. The
direct current is the average motion of the electrons in the same direction.
We know that the charge moves from higher potential to the lower potential,
that is, the current flows from higher potential to the lower potential that is,
current flows from higher potential to the lower potential. Consider a portion of
conductor connected to a voltage source as shown in fig. 7.1. In the conductor,
the charge carriers are the free electrons and these charges move perpendicular
to the area of cross-section A4 of the conductor.

— 1
I/, \\\ o> <O o> > \\\
‘ / o /
N/ &> <O\ Jo> &> <O y

Fig. 7.1. Current in the conductor

The positive charges move from left to right whenever the electrons move
from right to left. That is, the direction of the conventional current is from left
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to right as shown in fig. 7.1. Thus, the electric current is defined as the rate
at which the net charge flows across the area per unit time. If a net charge dg
flows through a area in a time interval df, the current is given by

d
I = _q

dt
current is a scalar quantity, however, the current has direction but it is not

specified and does not obey law of vector addition. In S.I units, the unit of
current is ampere (A4) and

coulomb/sec. .(7.1)

| Ampere = 1 coulomb
1 second

the smaller units of ampere are given by
ImA =107 A
1pA =10°A

7.2. CURRENT DENSITY

The current density is defined as the flow of charge passing through a given area
per unit time. Consider a conductor of cross-sectional area 4 and of length /, as
shown in fig. 7.1, the current density is related to the current by the equation,

- -
) I= jSJ -dS (12)
where dS is the area element. Suppose that # is the number of electrons per

unit volume and the current is due to the drift of the charge carriers. Let v, the
mean drift velocity of the charge carriers. The total charge in the given section
of length / of the conductor is given by

qg=nedl ..(7.3)
Now, the distance covered by each charge carriers in time ¢ will be
[ =v,t .(7.4)

substituting the value of / from Eq. (7.4) in the Eq. (7.3), we get
g =nedv,t
the rate at which the charges are flowing through the cross-section of a

conductor is

;-4
t
or I=nedv, ..(7.5)
The current / depends on 4. The current density which is independent of
A is then,



Current, Resistance and Circuits 193

1
J=—=nev (7.6
y d (7.6)
or in vector form,
- -
J =nevy (7.7
The S.I. unit of the current density is Amp/mz. The direction of the current
%

density is opposite to the direction of flow of electrons, that is opposite to v 4.
Thus, the Eq. (7.7) can be written as

- -

J =—nevy ..(7.8)
Moreover, the charge per unit volume is given by
p =ne
Thus, from the Eq. (7.8), we write,
- -
J =pva ..(7.9)

Now, we want to obtain a relation between the current density and the
electric field. We know that the force experienced by the electrons in the
conductor is,

- -
F =—E ..(7.10)
and the acceleration of the electron is given by
—
- F
q = —
m
5
—elF
- (7.11)
m

where m is the mass of the electron. During the motion, electrons collide each
other. Suppose that v, is the velocity of the electron just after a collision and
the velocity of the electron just before the next collision is given by, Fig. 7.2,
v =Y, + at
ekt

:VO— 7 (712)

Fig. 7.2. Collisions of electrons
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where ¢ is the time interval between two collisions. In the absence of the electric
field, the electrons in the conductor move in any direction, it is due to thermal
agitation as shown in fig. 7.3. As a result, electrons constantly collide with
the other atoms of the conductor. On the application of the electric field, they

N
move with the drift velocity in the direction opposite to the electric field £ .

Fig. 7.3. Zig Zag path of the lectron without field.

Taking the average over v for all time intervals, we get

E
<y> =<y> - L .(7.13)
m

N
when E =0, <v,>=0, and In the presence of the electric field, <v> represents
the drift velocity of the electron. Moreover, <¢> is known as mean free time
and it is the time between two successive collisions and it is represented by
t(tau). Thus, we write,

N
- —eF
vd =

T (7.14)
m

Substituting the value of v, from the Eq. (7.14) in the Eq. (7.8), we get

N -
J = -ne| _eET
m
- 2 e
or J = (”e T)E (7.15)
m

It is clear that the direction of the current density is same as that of the
- -
electric field E . Hence the current density vector J is always parallel to the

N
applied electric field E . Further-more, the current is given by
1 =J4

2
or I = (”e AT)E (7.16)

m
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The Eq. (7.16) predicts that the direction of the conventional current is in
the direction of the electric field E.

7.3. RESISTANCE AND OHM’S LAW

We know that the metallic conductors have a large number of free electrons.
For example, the copper has 10? electrons/m’, but Ge, a semiconductor, has
10" electrons/m®. Since, the current in the conductor is given by

I =nedv, L(7.17)

that is, the current is proportional to the average drift velocity which provides
a linear relation between the current and the potential difference across the
conductor. This linear relation between the current and voltage was first given
by a German physicist, Georg Simon Ohm. Ohm was inspired by the work of
Fourier which was on the rate of flow of heat through the conductor.

On the basis of the experimental observations, Ohm suggested a relation
between the rate of flow of charge and the voltage across the conductor. Ohm’s
law states that, for a conductor at constant temperature, the current flowing
through the conductor is proportional to the potential difference between the
ends of the conductor. Thus, if V represents the potential difference across the
conductor, the current through the conductor is given by

1

”
= (7.18)

14

or = R (constant) ..(7.19)

where R is a proportionality constant and is known as the electrical resistance
The S.I unit of R is ohm (€2). Now,

1 Volt

Q=—"
1 Ampere

The conductors which obey Ohm’s law are called ohmic conductors. This
law is valid for all metals and some semiconductors under certain limitations.
The limitations are

(1) The drift velocity v, is always less than c, the speed of light.
(2) The material should have low resistivity.
(3) Temperature of the conductor.

On the otherhand, there are some materials which do not follow Ohm’s law
and these are called non-ohmic. If we plot current I versus potential difference V,
we get a straight line as shown in fig. 7.4.
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A

<|~
|~

(6] V —
Fig. 7.4. Ohmic behavior of a conductor

Moreover, these are many elements which show non-ohmic behavior. The
examples are semiconductor devices. If a graph between current and voltage
is plotted for such devices, we do not have a straight line, but it is a non linear
curve as shown in fig. 7.5. Thus, semiconductor devices are called non-linear
devices.

— —

O —V
Fig. 7.5. Non-linear behavior of a semiconductor devices

Now, we develop a relation between the resistivity and resistance of a
conductor. Consider a conductor of length / and cross-sectional area a as shown
in fig. 7.6. If we apply an electric field E across the conductor, the charges drift
along the electric field. The drift velocity of the charge is always less than the

_)
random velocity. The current density J depends linearly on the electric field
across the conductor, thus,

- -

J =cF ..(7.20)
where o is called the conductivity of the conductor. The Eq. (7.20) is also
known as Ohm’s law.
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On comparing the Eq. (7.15) and (7.20) we get

neZT
c = ..(7.21)
m
—_ J
-0 -0
-0 -0 -0
\ —E Va

I ! I

Fig. 7.6. A conductor of length / and cross-sectional area A.

Now, we are going to relate the resistance of a conductor to its size. The
electric field across the conductor is
V
= — .(7.22
J (7.22)
where V' =V, — V| is the potential difference, substituting the value of £ from

the Eq. (7.22) in the Eq. (7.20), we get

J= % .(7.23)
The current flowing through the conductor is
1=J4
= GATV (7.24)

If 27 is the mean free time (a time between two successive collisions), the
drift velocity is given by

1
vd:_eE(ﬂ)
2 m

eEt el

= ..(7.25)
m ml
Thus, current is
I =nedv, ..(7.26)
ne*Atv

ml
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The resistance of the conductor is,

V m /
R - = 2 -

1 net) A

1/
or R=—— .(7.27)
c A

we know that the reciprocal of the conductivity is called the resistivity and is
given by

1

p=— .(7.28)
c

or p=-2 (7.29)
ne’t
Thus, the Eq. (7.27) can be written as

R = ’ (7.30)

p y (7.

The Eq. (7.30) shows that the resistance of the conductor is proportional to
its length and inversely proportional to its area of cross-section. On measuring
the quantities ¥, / and /, R and p can be evaluated easily. The unit of resistivity
is ohm-meter, or ohm-m. Let us see, how does the resistivity depend on the
temperature. When the temperature of a conductor increases, the random
velocity of the electrons in the conductor increases and as a result, more
and more collisions of the electrons in the conductor occur. Thus, there is a
increase in the resistivity of the conductor. The resistivity varies linearly with
the temperature and is given by

p(T) =pyll +a(T-T)] ..(7.31)
where o is a temperature coefficient of resistivity, p is the resistivity at the
temperature 7" and p,, the resistivity at some reference temperature 7,,. For
25°C, we write

p(T) =py(25°C) [1 + o (T—25°C)] ..(7.32)
At high temperatures,
pocT ..(7.33)

and at low temperatures, p varies as 7.

At room temperature, p, ¢ and o for some substances are listed in the table
7.1. The variation of p(resistivity) with 7 for a conductor and a semiconductor
are shown in fig. 7.7.
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pA p“

P2 bmmmmmm o
T

o] ﬂ T, T o] T
(a) (b)

Fig. 7.7. Plot of p Vs T (a) conductor (b) semiconductor

From the fig. 7.7.(b), it is clear that the semiconductors consist of negative
temperature coefficient of resistivity.

Table 7.1. Resistivity and conductivity of the different materials.

Substance Res?g_‘;g ®) Cor(lillllit_l;:g)(c) a (per °C)
Aluminum 28x107° 3.5 %107 3.9x107°
Silver 1.6 %1078 6.3 x 10’ 3.8x107°
Copper 1.7x107® 5.8 %107 3.9% 107
Tungusten 55%x10°% 1.8 x 10 45x%10°
Platinum 1.06 x 1077 1.0 x 107 3.9% 107
Iron 1.0 x 107 1.0 x 10’ 50x107°
Manganin 44x1077 2.3 x10° 1.0x107°
Brass 7.0x 107 1.4 x 107 2.0x107°
Nichrome 1.0x 107° 1.0 x 10° 4.0 %107
Silicon 640 1.6 %107 ~7.5%1072
Germanium 0.46 22 4.8 %1072
Teflon 10 1071 -
Glass 1010 10" 1074 - 107 -
Blood 1.5 0.66 -
Polyethylene 108 - 10° 10°-107* -

From the Eq. (7.31) a may be expressed as
o = L (P=Po) .(7.34)
po (T —Tp)
or o= L(ﬁ) ..(7.35)
Po LAT
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For metals, a is very low and positive and for super-conductor, p = 0, thus

o=0.
Example 7.1. For 1Q coil, compute the length of nichrome wire of cross-
sectional are of 1 x 10~® m? for a heater covl. (p=1x 10° Q-m).

L
P A
R4

p

1x1x107°
= T 5 T I m.
1x10

Solution: R =

or [ =

7.4, SUPERCONDUCTORS

The resistance always exists in the conductors that controls the current to
flow. Now, we may have a class of materials that has no resistance. In 1911,
Kamerlingh Onnes succeeded to measure the resistivity of the mercury at a very
low temperature. The resistivity of the mercury drops suddenly to zero at the
temperature 7=4.18 K. This phenomenon is known as the super-conductivity
and the specimen used is called the superconductor. In the super conducting
state, the total d.c. resistance of the material is equal to zero. The temperature
at which this phenomenon exists is known as critical temperature (7). In case
of mercury, T(-=4.18 K as shown in fig 7.8.

A
P

o) Tc=4.18 T

Fig. 7.8. Super-conducting state of mercury.

Below this temperature, the mercury in normal state undergoes a state of
superconductivity after it. Thus, we have a phase transition from one state to
another at this temperature. It is also known as transition temperature. The
superconducting state is also known as ordered state.

Example 7.2. Show that the total charge density at the junction of two
conductors is given by
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c =Je,(py—py)
where p; and p, are the resistivity of two conductors, and .J is current density.

Solution: Consider the two conductors having resistivities p, and p, as shown
in fig. 7.9.

J junction

Y

P1 P2

E‘]_> E2—>

Fig. 7.9. Two conductors of different resistivity.

At the interface, by Maxwell’s equation

5 - -
Pc=V.-D=V(6E) =&V-(pJ)
€J V(p) (V-J =0 for steady state)
dp

or pc=eoJ%

since V(p) is normal to the interface, we have

now, the charge density at the junction is
P2
c = an=¢eyJ | " d
_[PC 0 Jpl P

or 6 =/ (PP

7.5. CIRCUITS CONTAINING RESISTORS IN SERIES AND
PARALLEL

We wish to find the equivalent resistance of the circuit containing the resistors
in series and in parallel.
(a) Resistors in series: Consider three resistors of the resistances R,, R, and
R, connected in series as shown in fig. 7.10.
[ Ri Ry Rs
A AWM AMWWA—AMN B

V> +—Vo,» +V;»

+ -
< I
1k

\Y

Fig. 7.10. Resistors in series with a source.
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The potential difference between the points 4 and B is equal to the voltage
of the battery, and it is equal to V. The potential difference across each resistor
is given by

V, =iR,
v, =iR, (7.36)
V,=iR,

The potential difference across points 4 and B can be obtained by adding
three voltage drops. Thus,
V=V +V,+V, ..(7.37)
= iR, + iR, + iR,
or K =(R,*R,*+Ry ..(7.38)
i
Therefore, the equivalent resistance is given by
R="
i

or R =R, +R,+R, .(7.39)

If n resistors are connected in series, the equivalent resistance is
R=R +R,+..+R,

or R=)YR ...(7.40)
i=1

(b) Resistors in Parallel. Fig. 7.11 shows three resistors of resistances R, R,
and R, are connected in parallel with a d.c. source of voltage V.

Fig. 7.11. Resistors in parallel with a d.c. source.

The current i, from the source, is divided into i, i, and i;. The potential
difference V will remain same across each resistor, thus we have

r
Rl

h
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y

i, = — ..(7.41

2" % (7.41)
and iy = L
Ry

Now, the total current is the sum of individual currents passing through
each resistor, then,

=i iyt (7.42)
VoV
Rl RZ R3
and LA S T (7.43)

V R R, R
The equivalent resistance is

L i+i+L ..(7.44)
R R R R

If n resistors are connected in parallel, then

111 1
— = —t—t.t—
R R R R
1 &1
or LI i ..(7.45
i (7.45)

7.6. ELECTROMOTIVE FORCE AND SINGLE LOOP CIRCUIT

A circuit is a combination of passive elements (e.g. resistor, capacitor and
inductor) and a source of energy which is used to maintain a constant current
in the circuit. This energy source is called the electromotive force (emf). The
source of emf are classified as the constant voltage source and the constant
current source. The example of emf sources are cells, battery and solar cell etc.
The emf is represented by €. The purpose of a battery in a circuit is to maintain
a constant voltage or current in the circuit, then

e =V, ...(7.46)
where V), is a constant potential difference between the two terminals of a
battery. In a battery, the positive terminal is at higher potential while negative
terminal is at lower potential. Thus, the emf is equal to work done in carrying
a unit charge from lower potential to higher potential. That is, the electrons
move from negative terminal to positive terminal of a energy source. The unit
of emf is volt. Since we know, for a close circuit,
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- -
AV = QE-dl=0 (747)

This implies that it maintains a circuit at a constant potential or voltage.
From the Eq. (7.47) it is clear that the electric field can not be used as the
energy source and it can not provide the energy to the moving charge in a
circuit.

The basic difference between emf and potential is that when the potential
difference does the work in moving a charge from one point to another, the emf
provides the energy in this process.

Single loop circuit: Now, consider a single loop circuit containing a
resistor R and an emf as shown in fig. 7.12.

:

i €
Fig. 7.12. Circuit containing an emf source and a resistor

The emf of the source is equal to the potential difference between the
positive and negative terminals of the source. Here, we have assumed that the
internal resistance of the source is zero, and there is only an energy dissipative
element R, the resistance. Then,

€ =iR .(7.48)

or i =

€
- ..(7.49)

which is known as single loop equation.

In case where the source of emf is localized, that is, in a real system, the
losses in the circuit is divided into two parts, viz,

(a) losses within the emf source.
(b) losses in the external circuit.

Now, consider a circuit containing a resistor R and a source of emf with
internal resistance » as shown in fig. 7.13. Then,

€ =iR +ir ..(7.50)
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Fig. 7.13. Circuit with internal resistance of the source.

€
R+r

or i =

(7.51)

Moreover the energy conservation law is
gi = "R+ ir
In this way, the current flowing in the circuit depends on both resistance
Randr.

7.7. ENERGY AND ENERGY DISSIPATION IN A RESISTOR

In an electrical circuit, the energy is transferred from a source of emf to the
load by means of the current. Consider a circuit containing a source of emf and
a resistor of resistance R as shown in fig. 7.14.

L
L

Fig. 7.14. A circuit containing load resistance.

R (load)

MWVWWY

When a current flows through a resistor, it is heated. It means that the
electrical energy is transformed into heat energy. When a small charge dgq is
moving from higher potential to lower potential, the work done is

dW =V dq .(7.52)

where Vis a constant potential difference across the resistor R. Now, the power
is defined as the rate of change of work done and is given by

p=d
dt
or P = V@ ..(7.53)

dt
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But 1= %,
P =V ..(7.54)
since, V =1iR, Thus,
P =R
2
or = 3 ...(7.55)

The unit of electrical power is Amp-volt.
Therefore,
1 Amp-volt =1 J/sec
=1 watt (W)

The electrons are accelerated by the applied emf and they loss their energy
in the collision with the atoms. For a given resistor, large the surface area,
larger the energy dissipation.

Example 7.3. Compute the resistance between 4 and B of an infinitely long
ladder of resistors as shown in fig. 7.15.

Ao——AWA WA e WA ===
R R R R
R R R
Bo——\WWW. WA e WA -------
R

Fig. 7.15. Resistance system.

Solution: Suppose that the series is terminated by equivalent resistance R’ as
shown in fig. 7.16.

R
o MWW
3 L
R
o MW

Fig. 7.16. Combination of resistances.
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The resistance between 4 and B can be found as
RR’
R+ R

R =R+R+

or RZ*-2RR —2R* =0
On solving this equation we get

R =R(1+3).

7.8. COLOR CODE FOR CARBON RESISTOR

Every carbon resistor has color bands on it. These color bands may be read to
compute the value of the given resistor as shown in fig. 7.17.

) ))) ) )

Fig. 7.17. Color bands on a resistor.

The codes for these color bands are listed in the table 7.2. We have
following points for coding the colors bands on the resistor.

(a) the first strip indicates the first digit.
(b) the second strip indicates the second digit.
(c) the third band/strip indicates the number of zeros.
(d) Fourth band denotes the tolerance.
Table 7.2. Color code for resistors.

Color Code
Black 0
Brown 1
Red 2
Orange 3
Yellow 4
Green 5
Blue 6
Violet 7
Gray 8
White 9

Gold +5%

Silver +10%

No color +20%
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Example 7.4. If a resistor has four color strips of colors Red, Red and orange
and fourth strip is of Gold, compute the resistance of the resistor.

Solution: We have following bands on a resistor as shown in fig. 7.18.
—f)))) )
~—/) N

Red Red Orange Gold

Fig. 7.18. Computation of color bands on a resistor.

(a) First band denotes a digit ‘2’.
(b) Second band indicates a digit ‘2’.
(c) Third digit shows number of zeros, i.e. 10°.
(d) Tolerance is +5% as strip is of Gold.
Thus,
R =22x10°+5%
or R =22K+5%

7.9. KIRCHHOFF’S LAWS FOR ELECTRIC NETWORKS

For a given network with sources of emf and the circuit elements, we can
compute the currents and the voltage drops across the various branches of the
network. If the currents in various branches are known, the voltage drops can
be computed by Ohm’s law. To analyze any network, we have two rules called
Kirchhoff’s Laws.

(a) Junction Theorem: This states that the algebraic sum of the currents
flowing into and out of any junction of a network is zero. That is

Yi=0 ...(7.56)

Now, consider five currents at a node as shown in fig. 7.19.

Fig. 7.19. Kirchhoff's node rule
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Now, according to junction theorem, we may write,

iy iy iyt i, —is=0 .(1.57)
or Iy tiy =i +iy+is ...(7.58)

Here, we have assumed those currents as positive which directed away

from the junction and those currents as negative which are directed into the
junction.

Thus, the Eq. (7.58) takes the form
(Xi), = (Zi).., (7.59)

(b) Loop or Mesh Theorem: It states that the sum of the voltage drops is
equal to the sum of the emf sources. That is, In a single mesh, we have

YiR =Y ...(7.60)

The voltage drop across a resistor depends on the choice of the direction
of the travel of current. We may obtain the same equation for the voltage drops
in a mesh whether the mesh is traversed clockwise or counter-clockwise. For
example, consider a network as shown in fig. 7.20.

R1 i2 R2

€1

I+
i
Py
w
Q)
<
1l
L
I+
Ng

Fig. 7.20. An electrical network.

Here, we have three possible currents in different branches of the network.
Now, we shall apply Kirchhoff’s voltage law or loop theorem to this network.
For mesh—1:

IR, +i,R,—€ =0 ..(7.61)
For mesh—2:
—i,R, T i3Ry— &, =0 ...(7.62)
For mesh-3:
LR +1L,R, =¢&,—¢ ...(7.63)
we get three equations for the three currents 7|, i, and i; and on solving these
equations, we can determine the values of i, i, and 5.
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7.10. MATRIX AND DETERMINANT METHOD FOR SOLVING
MESH EQUATIONS

The mesh equations may be written as
[R][1] =[] ...(7.64)
where [R] = Resistance matrix
[/] = Current matrix
and [e] = Emf sources matrix

Here, [R] may be a rectangular or a square matrix of m rows and # columns and
[/] and [¢€] are the column matrices. Now consider a network containing three
loops, then matrices [R], [/] and [E] can be written in form of the matrices as

Rl 1 R12 R13

1 = | i, ..(7.66)

and [e] =€ ..(7.67)

The resistance R, is the resistance of the first mesh, R,, of second mesh
and R, is of third mesh. The resistance R,, and R,, are common resistances
for meshes 1 and 2. Similarly R,, and R;, are common for meshes 2 and 3
etc. These common resistance terms are positive, if there is a current passing
through them in same direction and the resistance terms will be negative
if current flows in opposite direction. Moreover, if there are n meshes, the
dimensions of the resistance matrix is # x n. To understand the concept, consider
a network containing resistances R, R, and R, with the energy sources ¢, and

€, as shown in fig. 7.21.
i, Ry

.
[ =

Fig. 7.21. Two loop network
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According to Kirchhoft’s loop rule,

211

IR, +R)—i,R, =€, —¢, ...(7.68)
and i Ry + (Ry + Ry i, =&, ..(7.69)
In matrix form,
R +R —-R i g —¢€
b S | I B ..(7.70)
_R2 R2 + R3 12 82
R+Ry -R,
If A= =det|R| (771
-R, R +Rs
€ —€ —R
and A= 2 (7.72)
R+R, g —¢
I (7.73)
R, €
Then, the values of the currents 7, and i, can be obtained as
Ay
i = — .on 7.74
1T A (7.74)
A
and i, = —=2 (775
27 (7.75)
Example 7.5. Compute the current in each mesh of network shown in fig. 7.22.
1K 1K
SANANAY VVWWA

€

kCéC

Fig. 7.22. Electrical network.

Solution: We have matrix equation

Ry
or Ry,
Ry,
3
or -2
0

[R][1] = [€]
Ry Rz (4 &
Ry Ry ||| =|%2
Ry Ryz ) \i €3
2 0)(i) (12
s 2| |=]0
2 5 la) Lo
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Here
R, =1+2=3K
Ry, =2+1+2=5K
Ryy =2+1+2=5K

The common resistance between meshes 1 and 2 is 2K and similarly 2K is
common to meshes 2 and 3. We take common resistances as negative.

Now

32 0
A=|2 5 =2

0 -2 5

12 2 0
A =10 5 =2

0 2 5

312 0
Ay=|-2 0 =2

0 0 5

32 12

and Ay =|-2 5
0 -2 0
Now,

A, 252
i1=—1=i:5.89A

A 43

A, 12
i2=—2:—0:2.8A

A 43

A, 4
i3=—3:—8=1.1A

A 43

7.11. THE RC SERIES CIRCUIT
In RC circuit, the current and voltage are time dependent. Using RC circuit, we
can produce a time varying signal.

(a) Charging of a Capacitor: Consider a circuit containing a resistor and a
capacitor in series with a source of emf V" as shown in fig. 7.23.
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:

+I =_ \C

Vv K

Fig. 7.23. Charging of a Capacitor.

To start charging, the key K is closed at ¢ = 0, then, a transient current starts
to flow. At ¢ = 0, the current is given by

iy =— .(1.76)

As a result, the capacitor starts charging and it attains +¢ and —q charges
on its plates. Thus, the potential difference across the capacitor is given by

Ve == (777

Now, applying Kirchhoff’s loop theorem, we have

.4
V =iR+ — (7.78
iR+ (7.78)
since i= @,
dt
we have
dq q
dp=y_ =
dt C
or dq _V_ 4 (7.79)
dt R RC
—d dt
or 4 = ..(7.80)
(q-CV) RC

Since current and voltage are time dependent, at £ = O the charge on the
capacitor is zero, thus current in the circuit is maximum. As the charge on
the plates of the capacitor increases, the current in the circuit decreases and
it becomes zero when capacitor is charged maximum. After that there is
no charging of the capacitor. When i = 0, ¢ = g, (maximum charge). Now
integrating the Eq. (7.80), we have
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qu S .(7.81)
0(g-CV) RC 70
—t

or In(g — CV)—In(-CV) = RC

g-Cry) _
or ln( 7 ) RC
or (q—CV) _ URC

-CV
or q—CV =_CreRC
or q = V(1 - "R ..(7.82)
Assuming CV = g, (maximum charge stored in the capacitor), then

q =qy(1-e""

or g =qy1-e" (7.83)

where t = RC is known as the time constant of a circuit. The variation of the
current can be obtained by differentiating the Eq. (7.82) with respect to ¢. Thus,
we have
;-da_V —urc
dt R

or i=ije’" .(7.84)

vV
where i, = R The Eq. (7.84) shows that the current decreases with time and

i =0, when the potential different across the plates of the capacitor is equal to
V. The Eq (7.83) shows that the capacitor is charged exponentially as shown
in fig. 7.24.

q A

15 = R,C, (large time constant)
14 = R4C4 (small time constant)

>t

Fig. 7.24. The variation of g with respect to time t.
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The equation (7.84) predicts that the current decreases exponentially with
time as shown in fig. 7.25.

N
\\
i // For small t = RC

.. /— For large ©

O
Fig. 7.25. Variation of current with time during charging of a capacitor

Now we have following cases,
(1) When =0, ¢’ =1 and i = iy, Thus ¢ = 0
(2) When t =00, ¢ ” =0 and i = 0, thus the charge on the capacitor is

q =49, ..(7.85)
(3) When ¢t = RC, then

q = %(1—9_1)=%(1—l)
e

1
or = 1-—— [=¢g,(1-0.368
1 qo( 2.712) % )
or g =0.64¢q,
and i=% .(7.86)
e 1
Thus 7 is the time in which i decreases to — times of its maximum value.
e

(b) Discharging of a Capacitor: Now, we shall obtain an expression for
discharging of a capacitor. Since the capacitor is fully charged to ¢, and we
open the key K, then the positive charge begins to flow through the negative
plate of the capacitor as shown in fig. 7.26.

do do
R +| |—
AW
+ 1=
C
+ -
It .
v K

Fig. 7.26. Discharging of a capacitor.
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Att=0, g = g, and the potential difference across the capacitor is
_ 4
V.= ..(7.87
cT ¢ (7.87)

In this case, the direction of current is opposite and applying loop theorem,
we have
"4 4Ri =0 ..(7.88)
C
Since charge capacitor acts as a source, the potential difference across the
capacitor decreases. Thus, the current is given by

= _ﬂ
dt
The Eq. (7.88) takes the form,
—9_pd _,
C dt
dg 1
e e (7.8
or . RC (7.89)
we integrate the Eq. (7.89), we get
J.q @ = _L tdt
9 q RC °0
Ing—1Ing, =-t/RC
or In L = L
9%  RC
or q=q,e"¢ ..(7.90)
Further more, i =i e /RC = iy et ..(7.91)

In the time constant © = RC, the capacitor discharged 64% of the total
charge. The charge and current decreases exponentially with time as shown in
fig. 7.27.

qﬂ i A

a=do -~ i=ip -

>t >t

(0]

(0]

Fig. 7.27. The variation of charge (a) and current (b) with the time
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Example 7.6. In a circuit Fig. 7.28, containing R, =3, R, = 6Q and C = 6uf.
Compute
(1) time constant when key K is open.
(2) time constant when key K is closed.
Ry =3Q

12V — o K — C=6uf

R2 =6Q
Fig. 7.28. Electrical network.

Solution: (1) When K is open,
T=({R,+R)C
=9Q) x 6uf
=5.4x 107 sec.
(2) When K is closed
T =R,C
=6x6x10°
=36 x 107 sec.
Example 7.7. A cube is formed with twelve identical resistors, each of
resistance R as shown in fig. 7.29.

 ww—C

D c
F

A B

Fig. 7.29. Network of resistors.

Compute the equivalent resistance
(a) between points 4 and G.
(b) between points 4 and F'
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Solution: (a) Let i be the current entering from the point A as shown in fig.
7.30.

iAi/3

Fig. 7.30. Network of resistors.
We assume that V- is the potential difference between the point 4 and G,

and choosing the path ABCG for computing the equivalent resistance between
A and G.

Vi =Vag T Ve T Veg

— R+iR+LIR
37603
5

- 2iR
6
Vi 5

or R,.=—=-—R
AG i 6

(b)

Fig. 7.31. Network of resistors.

In Fig. 7.31, considering the path 4 —> B — F,
Viar =Vag ™ Var
iR  SiR
= —+

3012
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E
4
— VAF _ 3
Ry ==F=2R

7.12. POTENTIO-METER

Potentiometer is an instrument commonly used for measuring the potential
difference of the energy source. A voltmeter can be used to measure the
potential difference, but it consists of a finite resistance which causes it to draw
a current from the energy source. The beauty of the potentiometer is that it
measures the potential difference without drawing any current from the source
of emf. In this way, it is called the infinite resistance voltmeter. A simple
arrangement of the potentiometer is shown in fig. 7.32. The potentiometer
works on the principle of the comparing of the unknown potential difference
across the battery with a standard source of emf.

+ &

Fig. 7.32. Potentiometer

It consists of a standard (known) voltage source €g which is connected
across 4 and B. Between the points 4 and B a resistance wire of resistance
R is connected and this wire is of uniform thickness called the slide wire.
Moreover, a unknown source of emf € is connected to a sliding jockey J
through a galvenometer G. The Jockey J moves on the sliding wire back and
forth, and a null or zero deflection position is obtained by sliding the jockey on
the slide wire 4B. At the null point P(suppose). There is a no current passing
in the branch containing galvenometer G.

Now, according to loop theorem,
g =R (i+ ig) +i(R-R) ...(7.92)
and €= (ig + DR, ..(7.93)
To obtain the value of unknown emf the jockey is set at the null position
P at which I, = 0
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Thus, we have

eg = IR ..(7.94)
and e = IR,
on dividing these equations we get
R
I ..(7.95)
€g R

we know that the resistance is proportional to the length thus, we may write
the Eq. (7.95) as

e
€s

&~ ~

/
or € (Z) €g ...(7.96)

where L is the length of wire 4B. The potentiometer is a variable resistor
having a resistance wire, a known emf and a source of unknown emf. We can
compare two unknown emfs also using potentiometer.

Difference between a Potentiometer and a Rheostat

The potentiometer and rheostat both are known as the variable resistors.
Since we know that a variable resistor is used as a voltage divider, we can
differentiate between a potentiometer and a rheostat.

A

B B
(@) (b)

Fig. 7.33. (a) Potentiometer (b) rheostat

Suppose that a variable resistor divides the voltage between the points A
and B as shown in fig. 7.33. Fig 7.33(a) a wire bound potentiometer consisting
of a coil of resistance wire with a central slider. It selects the desired length of
wire to offer a considerable resistance and a fraction of the potential difference.
In this way, the potentiometer is a three terminals device. Now, we may have
another variable resistor called rheostat, fig. 7.33(b). In the rheostat, current
flows through a variable part of the resistor and it is used to control the current.
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7.13. WHEATSTONE’S BRIDGE

Wheatstone’s bridge is an arrangement of the resistors in a circuit used for
measuring the unknown resistance accurately. In 1843, an English scientist
Charles Wheatstone gave an excellent method of measuring the unknown
resistance very accurately. In wheatstone bridge, Fig. 7.34, a galvenometer is
used in the arm BD with a key K. When the key K is closed, no current passes
through the arm BD, and bridge is said to be in balanced condition. Thus the
potentials at the point B and D are same, that is, V; = V).

Fig. 7.34. Wheatstone bridge.

Now, when X is closed, applying Kirchhoff’s loop law in the loops 4BDA
and BCDB, we have

IRy —i,Ry =0
or IR = i)R, .(7.97)
and i\Ry—i,Ry =0
or IRy =i,R, ..(7.98)
on dividing the Eq. (7.97) by the Eq. (7.98), we get
ECH ) ...(7.99)
R, R,

Suppose that R, is unknown resistance and the R,, R, and R, all are known
resistances, then R, can be calculated as

Ry
Ry =R\ 3t ..(7.100)

Wheatstone’s bridge provides the high accuracy of the measurement and the
accuracy depends on the sensitivity of the galvanometer G.
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Example 7.8. A ten wire potentiometer is connected to a battery of 3V. The
potentiometer has resistance per unit length 1.5 O/m, and a laclanche cell of
1.5V is also connected to the jockey through galvenometer as shown in fig.
7.35. If null point occurs at a distance of 6 m, compute the internal resistance
r of the battery.

+ r
[ = AN

3V

Fig. 7.35. A potentiometer.

Solution: Given resistance per unit length = 1.5 O/m
The resistance of 6 m length of wire=6 x 1.5= 9 Q
and the resistance of 10 m wire=1.5x 10=15Q

Applying Kirchhoff’s law,
V =i(r+R)
where R =resistance of 10 m wire.
and V'=R_i
where Ry = resistance of 6 m wire.
Now
i = v =i=0.166A
Ry 6x1.5
Thus,
3 =i(r+10x1.5)
3 =0.166 (r + 15)
or r=3Q.
Example 7.9. Compute the current in each resistor shown in fig. 7.36.
R;=3Q
5Q iy
A o——MAMMN— —o B
6A
i2 R,=6Q

Fig. 7.36. An electrical network.
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Solution: The current passing through 5 Q is 6A. Since the voltage drops

across the resistors R, and R, must be same, Thus,
IR, =i,R,

and i =i+,

on solving these equations, we get

) R, )
11: l
R+Ry
. Ry .
and Iy = R LR i
1 T 1%
Thus,
6
i = 5)6 =44
3
and i2=§><6:2A

Example 7.10. In the circuit shown in fig. 7.37, the internal resistance of the

battery is R,, compute the maximum power delivered to the load R.

s -
[1] 1 MM
V R;

MWWV

R

Fig. 7.37. Electrical network.

Solution: Current from the source V'is

;= V
R+R;
The power dissipation in the load R is
=i’R
P =R

IS+R

(R+R)

or

To obtain the maximum power dissipation in the load R, differentiating P

w.r.to R,
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dP _ L 2R ],
dR | (R+R)" (R+R)’

_ 2 (Bi=R)

(R+R))’
For maximum power,
ar
=

Thus, we get R =R,
Now, maximum power dissipated in R is

_ V’R

" (2R)

1 v?

or P =—-—
mo 4 R

Example 7.11. In the circuit shown in fig. 7.38, compute the current flowing

in each resistor.

Ny —
i1 R1 =2Q

Ao—>—1 > AMWWM——————0 B
i=0A | B Ry=40

e AMAMMAN—
i3 Ry;=6Q

Fig. 7.38. Combination of resistors.
Solution: Let i, i, and i, be the currents passing through the resistors R, R,
and R, respectively. Then
i=i iyt
The equivalent resistance of the circuit is
_ R\ Ry Ry
" RiRy+R,R; + R|R,

since the voltage drops across the resistors R, R, and R, must be same, then,
IRy =Ry = 3Ry
. RyRyi
l =
U RRy+ RyRy + B3R

Therefore,



Current, Resistance and Circuits 225

_ RiRyi
27 RRy + RoRs + ReR,
and iy = RiRyi
RiRy + RyRy + Ry R,
SO, ip =490 A
i, =245A
iy =1.65A

Example 7.12. A rod of length 2 long has diameter 0.5 m. The potential
difference between its ends is 50 V and a current of 5 A flows into it. Then
compute

(1) current density J

(2) electric field across the rod

(3) resistivity of the material of the rod
Solution: Given

i=5A
[=2m
V=50V
Cross-sectional are 4 = mr?
=1.96 x 107> m*
(1) The current density
J=1il4
B 5
1.96x107

=2.55 x 10° A/m?
(2) The electric field,

E=V 20 55 vim
¢ 2
B3)p= £:L5 =9.8x10° Q-m.
J  2.55%10

Example 7.13. The current passing through a rod is given by
ity =3+5¢
where ¢ is the time. Compute

(a) the amount of the charge passing through the rod in the time interval
from ¢ = 0s to ¢ = 2s.
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(b) current in the interval ¢ = Os to ¢ = 2s.

Solution:
. _ dq
a = —_—
() ==
qg = Jidt
2 2
g=| G+s*)di
(2]
2
= [3z+§z3]
3 1
=19.33C
19.
(b) i=%=?=9.66A

Example 7.14. A 2000 watt radiant heater is to be used with 200 V. Then
compute the

(1) current

(2) resistance of the heating coil.

(3) how much heat is produced in one hour by the heater.

Solution: (1) P=Vi
or i= £=w=10fl.
V200
2
2 P=—
(2) z
2
or R = ¥ _2000x10 0
P 2000
3) Heat = Pt
=2000 x 60 x 60
=7.2x10%]

Example 7.15. Three electric bulbs of 40 W, 60 W and 100 W are connected
in series with 200 V mains. Compute the

(1) current in each bulb.
(2) potential difference across each bulb.
(3) energy produced by each bulb and which bulb does glow brightly.
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Solution: Suppose that R,, R, and R, are the resistances of the bulbs 40W,
60W and 100W respectively.

2 2
2
R VRO g
A
2 2
R, = V—= —(200) =0.66KQ
P
2 2
and Ry = V—z®=0.4OKQ
By
since bulbs are connected in series,
R =R, +R,+R,
=2.066 KQ
current i = K = ﬂ =96.8mA
R 2.066
(2) potential difference across the each bulb is
V,=iR,
=968V
V,=iR,= 64V
Vy=iR, =387V

(3) The energy produced by each bulb is
P, =i’R,=9.37]
_2p _
P, =i"Ry=6.18]
and P, =i"R,=3.75]
Since the bulbs are connected in series, the current in all bulbs will be

same. Again, the brightness is proportional to the power dissipation,
thus, 40W bulb glows more brightly.

Example 7.16. A metallic conductor of the length / has diameter 2a. If a
potential difference of V' volts is applied across the conductor, compute the

(1) electric field across the conductor.

(2) resistance of the conductor.

(3) current through the conductor.

(4) current density.
Solution: (a) The electric field across the conductor is

14

E=—
/
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(b) resistance of the conductor is

/

R= pz

Since A =na?
_ Pl

na’

where p is the resistivity.
(c) current passing through the conductor is

.V
l = —
R
 Vnd?
or i=
pl
(d) The current density,
j=t-r
A RA
or J= K
pl
Example 7.17. Consider a circuit as shown in fig. 7.39.
R Cc

i N

K

<

Fig. 7.39. Charging of a capacitor.

compute the
(a) energy supplied by the battery.
(b) energy across the resistor
(c) energy stored in the capacitor.

Solution: The power supplied by the battery is equal to the rate of change of

the energy.
_du

P=—="W
dt

_ . —t/RC
—Vzoe
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since iy = r
© R
p— V_2 o /RC
R
the total energy supplied by the battery is
U= [dU
o 12
= _[Pdt: j V= gire gy
R
1=0
or U =1c

But the energy stored in the capacitor is
1 2
U.==-CV
)

Thus, the energy delivered to the resistor is
1 1
U, =CV— —CV* = -Cr?
2 2
It can be proved as

R ar R? R
The, total energy across the resistor is

2 2
Ve
_4u _ P’R = 4 R ¢ 2RC _ o 21IRC

= V> ure 1 2
U,=|dU = —e dt = =CV
=) J R 2
Thus, the total energy of the battery is equally distributed across C and R.

EXERCISES

7.1. What is the drift velocity and how do you measure it, distinguish between

drift velocity and random velocity of the electrons.

7.2. A wire has length 5 m and diameter 3 mm. Compute the resistance of

7.3. Prove that R= % .

wire, when its resistivity is 1.5 x 10 Q-m.

/

where / and 4 are length and area of cross-section of a conductor.

7.4. Compute the potential difference across 1 m of a wire carrying a current

of 10A and it has a resistance of 50 mQ/m.
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7.5.

7.6.

7.7.

7.8.

7.9.
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Show that the free charge density at the junction of two conductors is

given by
c=J (e—z—i)
G, O

where 6, and o, are the conductivity of two conductors and J is the
current density.
The 10 LED of 20W light every night for 10 hours for a month. Compute
the cost of lighting if the rate is 3 Rg/kwh.
Compute the resistance of a copper rod of length 1 m and cross-sectional
area 5 x 107 m?.
The n resistors of resistance R are connected in series with an emf of
V volt. If 7 is the current passing through the circuit, prove that the
equivalent resistance is

R,=nR
In a RC circuit, R =2.2 K and C = 1.5 mf. If an emf of 12 V is applied,
compute the
(1) charge on the capacitor.
(2) ©=RC, time constant
(3) current i, and
(4) iwhent=1

7.10. Compute the equivalent resistance of the circuits, shown in fig. 7.40.

20 20
WA AV
A 60 B
A ] B A o
WA AV,
40 40
(a)
20 20
WA VWA
A 10 10 B
° WA 10 AN o
WA AMAN
40 40
(b)

Fig. 7.40. Networks of resistors.
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7.11. A RC circuit is shown in fig. 7.41.

R
MWW

/.
K
Fig. 7.41. C with R.

when K is closed, prove that the current is

. & _
j=_ & tRC

7.12. Compute the net resistance between 4 and B, Fig. 7.42.

5Q 20

MV AAA%% oA
ZQ§ % 120

MWW\ WAA%% o B

5Q 20

Fig. 7.42. Resistive network.

7.13. For a metallic conductor, show that the current density is

- 2. >
ne 1t
J = E

m
N
where Tt = time of electron between two collisions, £ is the electric
field, n is number of charge per unit volume.
7.14. Two 20W LED are connected with a supply of 100V. Compute the total
power consumed by the LED when (a) both are in series (b) both are in
parallel.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


https://taylorandfrancis.com

Magnetic Fields and

Materials
CHAPTER

The natural magnets, originally called lodestones were discovered many
centuries ago. It was found that magnetic behavior of materials came into
picture with the ancient city of Magnesia in Asia Minor. In 1820, Danish
physicist Hans Christan Oersted showed that the electric current gives rise
magnetic force. A current carrying conductor is associated with the magnetic
field and causing a deflection in the compass needle. When a magnetized
needle is suspend freely, it always in the north and the south directions. In this
chapter we shall study the magnetic field and magnetic interactions.

8.1. MAGNETS AND THE MAGNETIC FIELD

The magnet attracts the pieces of iron, nails and other magnetic materials.
This property of attracting materials is called the magnetism. A bar magnet or
any shaped magnet has two magnetic poles marked as north N(+) and south
S(-). When a magnet is suspended in air freely, the north and south poles are
decided by pointing the magnet towards north and the south directions. Now,
what does about magnetic interaction between like poles and also in un-like
poles. The like poles repel each other and unlike poles attract each other as
shown in fig. 8.1. Hence,

| unlike poles attract and like poles repel |

I sf— <N S|
(a)
<—N s] [N S f—

(b)
Fig. 8.1. Unlike poles attract (a) and like poles repel (b)

It is not possible to isolate the north pole and south pole of a magnet. If
we cut a bar magnet into two pieces, two new magnets are obtained as shown
in fig. 8.2.
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[N i s ]
(@)
[N S| [N S |

(b)

Fig. 8.2. Two pieces of a magnet means monopoles does not exist.

The new magnets have both north and the south poles. This process of
cutting magnet continues until a tiny particle is obtained. This tiny particle of
magnet has two poles also. This means that the magnetic monopoles do not
exist. This is unlike the electric interaction, where electric monopole exists.

Since a static charge produces an electric field around it, the space around
a magnet in which magnetic effect occurs, is called the magnetic field. The
magnetic field is represented by the magnetic lines of force. The concentration
of the magnetic field lines or number of magnetic field lines per unit cross-
sectional area is proportional to the magnetic field strength. Consider a bar
magnet shown in fig. 8.3.

@/@,.,@—---@---—@\@\
O-x -2

Fig. 8.3. Magnetic lines of force.

The magnetic lines of force emerge from the north pole of the magnet and
enter the south pole. The direction of the magnetic field may be taken as the
direction which a north pole of the compass needle would move when placed
in a magnetic field. The direction of the magnetic field is represented by dot
O oracross ® . The symbol O means that field direction is coming out from
the plane of paper, while ® means the direction of magnetic field into plane
of paper.

8.2, MAGNETIC FLUX

- -
Like the electric field £, the magnetic field is represented by B . This is
also called magnetic induction or magnetic flux density. The direction of the
magnetic field B is the tangent to a line of force at any point. The magnetic
lines of force as drawn in such a way that the number of field lines crossing per
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unit cross-sectional area is proportional to the magnetic field B at any point.
The magnetic flux ¢, passing through a surface area S is shown in fig 8.4.

/( e R
s L4
> S

Fig. 8.4. Magnetic Flux pass through the surface S.

~ i
If the normal vector n to the surface area S makes an angle 0 with the

N
direction of the magnetic field B, then,

- -
bp=B-S ..(8.1)
¢p =BScos 0 ..(8.2)

- —
Here, we have considered a constant magnetic field B . If B is normal to
%

the surface area S, 0 =0, hence

¢z =BS ..(8.3)

- N
Again, if B is perpendicular to the normal 7,
Then, 6 =90°, hence ¢, =0

%
Moreover, if the magnetic field B is non-uniform, Then the equation (8.1)
may be written as

bp = JSB-dS ..(8.4)

The SI unit of area S is m?, and B is weber m 2. The S.I unit of magnetic
flux is the Weber (Wb) in the honor of Wilhelm Weber.
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Example 8.1. A circular coil of area 0.1 m? is placed perpendicular to the
direction of the magnetic field (B = 0-5 Weber m_z). Calculate the flux passing
through the coil.

Solution: Here,

S =01m’

B =0.5Wm >

¢z =BScos 0
=0-5x01x%xcos0

o =0.05 Wb

8.3. MAGNETIC FORCE ON A MOVING CHARGE

N
Suppose that a positive charge ¢ is moving in a uniform magnetic field B with
-

a velocity v in the x-y plane and the magnetic field is along x-axis as shown
in fig. 8.5.

Experimentally, It has been observed that the magnitude of the force ;
on the moving charge,
(a) is proportional to the magnitude of charge q.
(b) is proportional to the component of velocity v perpendicular to the

magnetic field B.
5

N
(¢) is proportional to sine of angle between v and B .

N
(d) is proportional to the magnetic field B. Here the constant of
proportionality is unity.

ZA

AF

+q . X

y v
Fig. 8.5. A magnetic force experienced by a moving charge

Hence,

F =qvBsin 6 ...(8.5)
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- - -
This force F is always perpendicular to the plane containing v and B.
- - -

Thus, the force F' is defined by the cross product of v and B . Hence, we
may write,

- -

1_7) = g(vX B) ...(8.6)

From the equation (8.6) it is observed that
(1) the force is maximum when the charge is moving perpendicular to
-

the magnetic field B .
that is, for 6 = 90°, sin 6 = 1
F .x =9vB (charge opts circular path)
(2) the magnetic force F'is zero if the charge ¢ is moving parallel to the
magnetic field E .1.e.,
for =0° sin®=0
F=0 (charge moves in a straight line)
The direction of force ;“) is given by the right hand rule. According to
this rule, if the fingers of the right-hand are stretched along the direction
of velocity ;) gf the charge and then bend the fingers towards
Igagnetic field B, the thumb will point in the direction of the force

F, as shown in fig. 8.6.

—
F

T

by &

%
Fig. 8.6. Right hand rule for determining the direction of force F .

(3) The force F'is always perpendicular to the direction of moving charge.
Thus, force does not work, hence force F'does not change the magnitude
- -

of v . But it changes the direction of v . The force F is called the
deflecting force. If a charge enters the magnetic field at an angle (0)
and 0 <0 <90°, then, the two components of velocity viz v cos 6 and
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v sin 0 cause to move charge ¢ into helical or spiral path as shown in

238
fig. 8.7.
— v sin 6
>B A
XX v
0oont— |
FEYAYAYAAY; g
/, > > vsin 0
Fig. 8.7. A helical path of charge q.
Now, from the equation (8.5), we have
F
B = - ..(8.7)
vq sin®
For 0 =90°
F
B=— ...(8.8)
vq
Newton

B =
meter sec” x coulomb

Newton

B —
Ampere-meter
Thus, the magnetic field B is defined as the force exerts on a unit charge

moving with a unit velocity when v is perpendicular to magnetic induction B.
-
1

The SI units of B are Weber m ™2, Newton-ampere m ! and Tesla T.
__ Newton _ Weber
~ Ampere meter  meter

1T

and
1T = Wb =10* gauss
meter
%
When a charged particle is moving with a velocity v in a region, where
- - -
the electric field £ and the magnetic field B are present, the total force F is
the vector sum of the electric force g£ and the magnetic force g(v x B):
..(8.9)

F = e
- - -
qgE+q(vxB)
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- -

1_7) = q[g+(v X B)] ...(8.10)

%
The Force F is called the Lorentz force.

8.4. MOTION OF A CHARGE IN A UNIFORM MAGNETIC FIELD

Consider a charged particle moving in a magnetic field (having same magnitude
and direction at all points). Let +¢ be the charge and m be the mass of the
_)

charged particle moving with velocity v in a direction perpendicular to the
magnetic field B as shown in fig. 8.8.

X X
X X
X X
X X
X X
X X

Fig. 8.8. A charged particle moving perpendicular
to magnetic field in a circular path.
The magnetic force on the charge is given by
F =g v Bsin 90°
F=gvB ..(8.11)

_)
This force F is always perpendicular to the velocity v of the particle. The
%

force F acts as a deflecting force, it can change the direction of velocity v
without changing its magnitude. The charge ¢ travels in a circle of radius 7, the
centripetal force is equal to ¢ v B. Then, we may write,

2

qgvB = m (Balancing of forces) ..(8.12)
r
mv
= — ..(8.13
"B (8.13)

Since P = mv (momentum of the charged particle)
Then, equation (8.12) can be written as



240 Elements of Electricity and Magnetism Theory and Applications

.(8.14)

r =

P
qB

The radius of the circle » is directly proportional to p and inversely
proportional to B. If the moving charged particle has larger energy, » will be
larger. The angular speed of the particle is

o =2nf=2 .(8.15)
r
o=4 ..(8.16)
m
o is the cyclotron frequency
Now, =48 (8.17)
21m
8.5. MAGNETIC FORCE ON A CURRENT CARRYING

CONDUCTOR

The free charge experiences a force when it moves in a magnetic field. Here,
we will see what happens, when charges are moving in a conductor. Consider a
conductor of length /, carrying a current i placed in a magnetic field. The force
on the conductor is the average force acting on all charge carriers moving with
a drift velocity v,,. If n is the number of charge carriers, with each charge ¢,
then, the total charge in the segment d/ of the conductor of cross-sectional area
A is given by

0O =q(nAd) ..(8.18)
Fig. 8.9 shows a current carrying conductor in a magnetic field.
dF A

Y Y Y Y Y YVYY

Fig. 8.9. Current carrying conductor in a magnetic field.

The force on a segment d/ will be
- - -
dFF = Q(v; X B) ..(8.19)

- - o
dF = qnddl (v; x B) ..(8.20)
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But current through the conductor is given by

i =nqvA

The equation (8.20) becomes

= > -
dF = i(dlx B) ..(8.21)
the total magnetic force on the conductor of length / is
- - -
F = [i(dlxB) .(8.22)
%
il
- - -
F =i(l XxB) ...(8.23)
The direction of the magnetic force is perpendicular to the plane containing

— —
vector [ and vector B.

The magnitude of the force is

|F| =ilBsin0 ..(8.24)

-
Vlhere 0 is the angle between length / of the conductor and the magnetic field

B.
Now, if conductor is placed in the magnetic field parallel to the field
direction, then, 6 = 0°
F=ilBsin0=0
therefore, no force is experienced by the conductor.
If 6 = 90°, the force on the conductor is
F =ilBsin0
F=ilB
this mean that a maximum force is experienced by the conductor.

Example 8.2. A conductor of 2 m long is placed perpendicular to the direction
of magnetic field (B = 4 Wbm ?), as shown in fig. 8.10. The direction of
magnetic field is along x-axis, and conductor is placed along y axis.

y

z

Y Y YY VY VvYY

Fig. 8.10. A conductor in a magnetic field.
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If a current of 5A is flowing through the conductor, find the force on the
conductor and its direction.

Solution:

~! Wl
Il
N

Then, Force is
— - -
F =i({xB)
=8 x (jxi)
= 8k
The direction of force is along —z axis.

8.6. MAGNETIC DIPOLE MOMENT

It is very interesting to give an idea of the magnetic dipole moment before
going to discuss the torque on a current loop. A bar magnet or a current loop
shows a similar pattern of magnetic lines of force. The magnetic lines of force
emerge from the north pole and enter the south pole of the magnet. Since we
have two poles, this arrangement is called magnetic dipole.

Consider a loop having number of turns n and area of cross-section 4 as
shown in fig. 8.11 (a).

(a) (b)
Fig. 8.11. Current loops

The magnetic dipole moment is defined as the product of the current in a
_)
loop and its area; and it is represented by m .

Thus, dipole moment of a current loop is

- -

m =niA ..(8.25)
%

The direction of dipole moment m is normal to the plane of the loop as

shown in fig. 8.11(b).
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8.7. MAGNETIC TORQUE ON A CURRENT LOOP
Consider a rectgngular loop of length a and width b placed in a uniform

magnetic field B as shown in fig. 8.12. Suppose that an electric current i is
flowing in the loop. This current loop experiences a torque due to the magnetic
force. These forces are acting on the vertical arms of the loop and are equal and
opposite. The magnitude of force is

F=iaB ...(8.26)
4y
i /"I > B (1;: » B
al [ H / .
/! ‘\b
/' > ~= ~7130 >
/ -~ / e Nprme;l to_lplane
[ /i ] / L
;T/ - & -
F i
(a) (b)

Fig. 8.12. (a) Current carrying rectangular loop (b) the normal to the plane of
—
loop makes an angle 6 with B .

The total force acting on the loop is zero. These opposite and equal forces
acting on the loop create a couple which tends to rotate the loop countercloke-
wise. The total torque on the loop is

T=iaB- ésin9+iazB~ésin9
2 2

T=iabBsinb
T=iABsin0 ..(8.27)
where 4 = ab is the area of the loop.
If there are n term in the loop, the total magnetic torque will be

|t =NiABsin0]| .(8.28)
But m = n i 4, then the equation (8.28) can be written as
| T=mBsin0O | ..(8.29)

- -
Since the magnetic dipole moment m and the magnetic field B are both

vector quantities, then we write equation (8.29) as
- - -

T =mXB ...(8.30)
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It should be clear that the direction of the torque is along the axis of
rotation. When the plane of loop is perpendicular to the magnetic field, 6 = 0
and T = 0 i.e. the position of equilibrium. In this situation, the sum of forces
on the loop is zero.

%
When the plane of loop is parallel to the magnetic field B, this means that
%

normal to the plane of loop is perpendicular to B, then,
T =m B sin 90
T=mB
The maximum torque exerts on the loop.

Example 8.3. A rectangular coil of length 10 cm and width 6 cm is placed
in a uniform magnetic field of 0.5 Wbm 2. The coil has 10 turns and carries a
current of 24. Find the torque on the coil when plane of coil is parallel to B.

Solution: Given,

i =24
n =10
a=10x102m
b=6x10"m
B=05T
-
Then, torque when m is perpendicular to B,
T =m B sin 90
=m B =niAB
=10%x2x10x102x 6 x 1072 % 0.5 Nm.
T=6x107Nm.

8.8. POTENTIALENERGY OF ADIPOLE INAMAGNETIC FIELD

When a magnetic dipole is placed in a uniform magnetic field, then, a torque
exerts on the magnetic dipole due to the equal and opposite forces acting on

the dipole as shown in fig. 8.13.
» B

% |

Fig. 8.13. Dipole in a magnetic field.
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this torque tends to rotate the dipole. If dW is the work done in rotating the
dipole through an angle d0, then,

dW =-tdb ..(8.31)
s T =mBsin 6
The equation (8.31) becomes

dW =-mB sin 0 d0 ..(8.32)

- -
where 0 is the angle between magnetic moment m and the magnetic field B .

The work done by the torque is equal to the decrease in the potential energy. Thus,
dU =—dw
dU =m B sin 0 dO ..(8.33)

The potential energy of the system may be obtained by integrating the
equation (8.33) in the limits 6 = 90° to 6 = 0°.

0
U= [ mBsin6de .(8.34)
/2
Thus, we get
U=-mBcos0 ...(8.35)
= >
= U=-m-B ...(8.36)
when the dipole is in stable equilibrium, 6 = 0°
U =-mB,

the potential energy is minimum.

When the magnetic dipole is in unstable equilibrium, 6 = 7, then potential
energy (U = mB) is maximum.

8.9. THE BIOT-SAVART LAW

A current carrying conductor produces
a magnetic field in the space around it.
Consider a wire carrying a current i as
shown in fig. 8.14. Biot-Savart’s law
states that the differential magnetic field
dB at any point is proportional to current
element idl and the sine of angle between
element d/ and the line connecting to point
P. The magnitude dB of the magnetic field
is inversely proportion to the square of Fig. 8.14. Current carrying wire
the distance from the element dl to the glement giving rise to a magnetic
point P. >

field dB at a point P.
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According to Biot-Savart law, the magnetic field at point P is
idl sin©

dB o 2 ...(8.37)

= dB = :‘—;)E ! dlrszine .(8.38)
In vector notation,

B = Z—iia[’{—;; .(8.39)

where W, is a constant called the permeability of free space. The vector distance

- .
of the point P from the element d/ is » =rr . The total magnetic field at P due
to entire current carrying wire can be computed by summing the magnetic field
due to all such segments of the wire.
That is,

- - - - -

B = dB,+dB,+dB; + ...+ dB;

-
or B

_ szgi ..(8.40)

%
The direction of the magnetic field dB is given by the right-hand rule.

N
Here, the direction of dB is perpendicular to the plane containing d/ and » and
is into the paper. The Biot-Savert law is also known as Ampere’s law of the
current element (Do not confuse with Ampere’s circuital law).

From the equation (8.40), it may be written as

- A

- - ;

_ Woi rdlxr

B = @dB=—" ..(8.41
an="2 [ (8:41)

The equation (8.41) is integrated over a closed circuit. The equation (8.42)
in term of current density is

N

- -
p =t J—de .(8.42)
4m V4

8.10. APPLICATIONS OF BIOT-SAVART LAW

We have some applications of the Biot-Savert law. in this section.
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8.10.1. Magnetic Field Due to Long Straight Wire Carrying a Current

Consider along straight wire carrying a current i as shown in fig. 8.15. A point
P, where magnetic field is be determined, is situated at a distance R from the
wire. The distance between a current element id/ and the point P is 7.

Fig. 8.15. Magnetic field due to long straight wire.

According to Biot-Savart law

i - W idlsin6 (8.43)
—s ..(8.
Now, amr
. R R
sin® = —,cosp=—
Then, d d
dp = bt 4050 (8.44)
5 (8.
Since, an oy
2
Lz = Coszq),tanq)zi
r R R
dl - Rdd
cos’ 0
Substituting in equation (8.44), we get
_ Mot
dB = ——cosdd ...(8.45
AnR ¢ do (8.45)
Integrating the equation (8.45) with the limits ¢ = %n to o= g we have
; /2
B =" | cosgdo ..(8.46)
4nR
—1/2
B =M,
4mR
B =t .(8.47)
2R

The direction of the magnetic field B is into the plane of paper.
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8.10.2. Magnetic Field at the Centre of a Current Loop

Consider a current loop carrying a current i placed in a x-y plane as shown in
fig. 8.16. Since current is the cause of magnetism, we find the magnetic field at
a point P situated at the centre of the loop.

z4

idl

»y
Fig. 8.16. Magnetic field at the centre of the loop.

This distance between element d/ and point P is R where R is the radius of
the loop. According to Biot-Savart law,

dB = ”—OM ..(8.48)
4t R
The angle between d/ and line joining the P is 90°,
Thus, sin O = sin 90 = 1, the equation (8.48) becomes
_ W idl
dB = — — ...(8.49
41 R? (8.49)

The radius of loop is constant, thus, the magnetic field due to whole loop
is given by

Kol
B =" (ar (850
4mR* I (8:50)
B = % onR
4mR
or g =t (8.51)
2R

The field at the centre of the loop is inversely proportional to the radius
R of the loop. The direction of the magnetic field at the centre of current loop
points axially outward.
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8.10.3. Magnetic Field Due to Currentin aFinite Straight Conductor.
Consider a conductor of finite length carrying a current i as shown in fig. 8.17.

or

Fig. 8.17. Magnetic field due to finite length conductor
The magnetic field at point P is given by

dB - Mo idlsin®
41 r2
Since, sin @ =cos ¢ = 5
-
Thus, dlsin® =dl cos ¢

The equation (8.52) becomes

dB - % dl cng)
Now, T

cos ¢ =£,I=Rtan<|),dl=Rsecz¢d<|)
r

Substituting in the equation (8.53) we get
_ bt
dB = cos d
4R ¢do

.(8.52)

..(8.53)

.(8.54)

Integrating the equation (8.54) in the limits ¢ = —a to ¢ =, we get

. P
_ MHo?
B = M—R_J.acosq) do

B = —— (sinf3 + sin
L0 (sinp + sinp)

The direction of the magnetic field is out of the plane of paper.

..(8.55)
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8.10.4. Magnetic Field Along the Axis of a Circular Coil

But i be the current passing through a circular coil of radius R, as shown in fig.
8.18. Let P be a point along the axis of the coil at a distance x from the centre
O of the coil.

dl

Py

- iy » dB sin ¢

oO¢-—---

Fig. 8.18. Magnetic field along the axis of a circular coil.

According to Biot-Savart law, the magnetic field at point P is

Ho idl sin©

dB = ...(8.56
4T r2 ( )

The all current elements d/ make the angle with r, will be 90°. Thus, sin 0
=sin 90 = 1. Then
— — ..(8.57
47 r2 ( )

dB =

dB lies in the plane of page, we shall take only the component of the magnetic
field which lies along the axis of the coil. The component of dB not parallel to
the axis of coil will cancel each other. Therefore,

B = [dBsino ..(8.58)
or
B = dl sin ..(8.59
47tr '[ ¢ (8.39)
sin ¢ = R
r
Thus,
_ MoiR
dl ...(8.60
43 J. ( )

_[dl =27R is the circumference of the coil, on substituting in equation (8.60),
we get
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. p2
4nr
or
i R
B = ..(8.61)

B (R* + x2)3/2
At the centre of the coil, x = 0, the expression for magnetic field is, thus,
given by

B :l'l’_Ol.
2R

If the coil has number of turns #, the equation (8.61) may be written as

; 2
B = Mo R

.(8.62)

8.10.5. Magnetic Field Along the Axis of a Long Solenoid

Solenoid is a helical and it is constructed from a wire tightly wound on a
cylindrical surface, as shown in fig. 8.19.

O, ONO, O,
NENCNCY X XN
.mn%.&ﬁﬁ%n-m

xxxxxgxxxxx

Fig. 8.19. Solenoid.

Solenoid produces a very strong uniform magnetic field along its axis.
This strong magnetic field is due to the successive turns in the solenoid. The
magnetic lines of force are directed along the axis of the solenoid. We calculate
the magnetic field at any point lying on its axis. For the calculation of the
magnetic field, consider a coil in the solenoid as shown in fig. 8.20.

& --B---Q--- & - - Q- ®--- B
Fig. 8.20. Magnetic field due to solenoid.
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If n is the number of turns per unit length of the solenoid, d/ = n dx and
we have

3
dB = % (8.63)
X
where R is radius of the solenoid.
From Fig. 8.20. x =RcotH
dx = —R cosec> 0 dO

Substituting into equation (8.63) we get

g5 — Moni do
2 cosecO
or dB = %sine de .(8.64)
Now, integrating equation (8.64). Then,
— / 92
B = 2% [sin6 do .(8.65)
2
6
or g =t [cosB, —cos6] ...(8.66)

If solenoid is long, 6, = w and 0, = 0°, Thus
B = pyni ...(8.67)

The magnetic field B inside the solenoid depends upon current i and the
number of turns per unit length. We can calculate magnetic field at the one end
of the solenoid, for this, we have 6, = 90° or n/2, 6, = 180°.

Then,

B = “02”’ ..(8.68)

The magnetic field at the end of the long solenoid is just half of the
magnetic field at the centre.

8.11. FORCE BETWEEN TWO PARALLEL WIRES

We already know that a current carrying wire produces the magnetic field.
Ampere showed that two parallel wires carrying current would exert a attractive
force on each other. The force between two wires is purely magnetic. Consider
two long parallel conducting wire separated by a distance » and carrying
currents 7, and i, respectively, as shown in fig. 8.21.
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Fig. 8.21. Parallel conductors (a) Parallel currents (b) Antiparallel currents

The current i; in the wire 1 produces a magnetic field B, around it. At a
distance r, the magnitude of B, is

_ Moj
B, = —— ...(8.69
! 2nr ( )

The direction of B, is vertically downward.
Since wire 2, carrying a current 7, lies in magnetic field B,. Then, the wire
2 of length / will experience a force F), as
F, =i,1B, ...(8.70)
where / and B, are perpendicular to each other.

Substituting the value of B, from Equation (8.69) into Equation (8.70),
we get

_ Bohipl
F, = —= ...(8.71
2 2nr ( )

The force per unit length / on the wire 2 is given by

B _ Mohi (8.72)
/ 2nr

If the currents are antiparallel in two conducting wires, they will repel
each other with the force given by Equation (8.72). Furthermore, if i} = i, =
1A and » =1 m. Then

? =2x 107 N/m

Thus, one ampere is defined as the current flowing in each of two long,
parallel wires situated at one meter apart, when the force per unit length on
each conducting wire is 2 X 17”7 N/m.

We the ampere is defined, one coulomb is defined as 1 coulomb =
(1 Ampere) (1 second).
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8.12. AMPERE’S LAW AND ITS APPLICATIONS

Ampere’s circuital law states that the line integral of the magnetic field over
any closed path is equal to p, times the net current flowing through the surface
enclosed by the path. That is,

- - .
gSCde = i (8.73)

where p,, is the permeability of the free space.

Ampere’s law is useful for calculating the magnetic fields in symmetrical
situations, and in closed path around the current i. Suppose that the electric
charge densities are constant and current i is not changing with time, then,
Maxwell’s equations can be written as

%
V:B=0
and ..(8.74)

-

%
VXB:“,O J

N
where J is called the current density. We know that the divergence of the curl
of any vector is necessarily zero. That is,

%
V-(VxB)=0
.(8.75)
_)
V-J=0

Here, the current density is constant. Now, Stoke’s theorem states that the
line integral of a vector field around any closed path is equal to the surface
integral of the curl of a vector field over a surface bounded by the curve.

Thus, for magnetic field, we write
- = - -
gSCB dl = gSS(V X B)-dS
- -
= 1o jSJdS ..(8.76)
But
- -
[ s =i
S

Then, Equation (8.76) may be written as

- - .
qSCB-dZ = i (8.77)
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This is Ampere’s law.

Now, we apply Ampere’s law to a symmetrical case of a long straight
wire. We draw an Amperian loop (analogous to Gaussian surface) to find out
the magnetic field due to long straight wire carrying a current i as shown in
fig. 8.22.

Fig. 8.22. Magnetic field of a long wire

Amperian loop passing through the point P is a circle of radius 7.
Now, according to Ampere’s Law

- - .
gSCB dl = pyi .(8.78)
the magnetic field B is constant at every point on the circle. Thus,
B jcdz = i .(8.79)
or BQ2nr) = pgyi
= Kot ...(8.80)
2nr

The direction of B is the tangent at any point on the Amperian loop (circle).

We have discussed the magnetic filed at the axial point of a solenoid. Now
we calculated the magnetic field inside the solenoid using Ampere’s law. Now,
consider a solenoid carrying a current i as shown in Fig. 8.23. If n is the number
of turns per unit length, then, applying Ampere’s law to the loop ABCDA.

O 0. 0.0.0.0.0.0.0.0.0.0.

?'@'"@"@"@"@'

__________ R R —

TTRRO®
D

Fig. 8.23. Long Solenoid carrying a current i.
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- -
gSCB-dl = N, .(8.81)
where N is number of turns in the solenoid. Applying Eq. (8.81), we get
[PB-d+ [ Bdi+[" B di+[ B-d =Nug (8.82)
Bl + O + O+ O =Ny

Here, the path 4B lies inside the solenoid and parallel to the magnetic field,
so we get a non zero magnetic field. The path BC and DA are perpendicular to

- -
the magnetic field, thus B -dl = Bdl cos 90 = 0. The path CD lies outside the
solenoid, hence B = 0.

Now, Bl = Ny ...(8.83)
or B = % .(8.84)

. N
Since n = R we get

(8.85)

we apply Ampere’s law to another symmetrical system, that is toroid. Toroid is
a long solenoid bent into a circle, as shown in fig. 8.24.

Fig. 8.24. Toroidal Coil

If n is the number of turns per unit length and / is the circumference of the
toroid, applying Ampere’s law, we have

- - )
9SCB~d1 = N, ..(8.86)

where i is the current in the toroid and n = N/I.
Bdl =Ny ..(8.87)
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BQ2nr) = Ny

or ...(8.88)

2nr

-(889)

In the space outside the toroidal coil, the magnetic field is zero. The
magnetic field inside the toroid varies as 1//. On the other hand, if / = 2nr is
very small, then the variation in the magnetic field is negligible and equal to
uoni as obtained in case of long solenoid.

8.13. MAGNETIC FIELD OF A MOVING POINT CHARGE

Biot-Savart law is given by
- .
Wy idlxr
4T r2
_)

If a point charge ¢ moves with a velocity v along x-axis as shown in fig.
8.25, we replace gv in place idl. Then,

B - .(8.90)

- A
.
B = ”—Oq(v—zxr) .(8.91)

®y)

[og)

=1

<!y
xV

Fig. 8.25. Moving point charge

- . .
The position vector » =xi+ yj

and | 7| =\/x2+y2
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-

.. Unit vector along r is
=525
v r

S

or r =cosQi+sin0 j

Since, velocity of the point charge ¢ is along x-axis, then,
v = vi

Thus, from the Equation (8.91), we have

> Beg
B = 101 [wx(cosez+sm9])]
4
— i ~
o B - p,oqz vSl;le k ...(8.92)
4mr r

The direction of the magnetic field is outward from the plane of paper. The
magnitude of the magnetic field is given by

B = “—0&21“9 .(8.93)
4T v
From the Equation (8.93), it clear that,
B oY 521“9 .(8.94)
r
- -

where 0 is angle between v and 7.

8.14. MAGNETIC FIELD IN MATERIALS

The different materials behave in the different way with respect to the magnetic
field. According to the atomic model, the electrons are orbiting round the
positively charged nucleus. Moreover, the electrons are spinning also. Thus, an
atom has magnetic dipole moments due to the orbiting and spinning electrons.
In this section, we investigate the change in magnetic field due to the presence
of magnetic materials. We discuss three types of magnetic behavior of the
materials viz, paramagnetism, diamagnetism and ferromagnetism.

8.14.1. Magnetic Moment of an Electron

Consider an electron of charge e and mass m circulating in a Bohr orbit as
shown in fig. 8.26.
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<!

Fig. 8.26. A orbiting electron

the motion of the electron in the orbit constitutes a current loop. The current
through this loop is given by
e
i T ...(8.95)
where T is the time period of the electron in the orbit. According to Ampere’s
theorem, the current in the loop gives rise to a magnetic moment p, (we
represent the magnetic moment of an electron by u, in Atomic spectra, a usual
notation), then,

=i ..(8.96)
where 4 = 1/, is area of the loop.
Thus,
2
enr
B ..(8.97
T (8.97)
. . t.
the time period 7 = S revolution
v
. or T = 2mr
v

Substituting the value of T in Equation (8.97), we get

evr

the orbital angular momentum of the electron is given by
L=mrv ...(8.99)
From the Equations (8.98) and (8.99) we have
- e

w =—»>L ...(8.100)
2m
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- L, >
or W, =iL ..(8.101)

the negative sign is due to the negative charge of the electron.

8.14.2. Magnetic Permeability

Suppose that a magnetic substance is placed in a magnetic field, as shown
in fig. 8.27. The large number of magnetic lines of force will pass through
the magnetic substance than in air. A degree to which the magnetic lines of
force can permeate the substance is called the magnetic permeability of that
substance.

v

\V
i

|

Fig. 8.27. Magnetic substance in a magnetic field.

The permeability of the material medium is defined as the ratio of the
magnitude of the magnetic induction B to the magnetic field intensity H. Thus,

Permeability p = g ..(8.102)

Further more, the relative permeability of the material medium is given as

B=W,H ...(8.103)

where p is the permeability of free space and p, is the relative permeability.
Then, relative permeability is

B
wo=—=4 .(8.104)
By g

o =4nx 107 Tm/A.

8.14.3. Magnetization

It is a measure of magnetization of a magnetized substance. The magnetization
M is defined as the magnetic dipole moment per unit volume. It is a vector
quantity. If these are n magnetic dipoles having same orientation, there exists
n magnetic dipole moments. Thus, Magnetization vector in is given by
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no—
2.
A—4> _ =l
V
- 1 &~
or M =—=>m ...(8.105)
Vizl

where V' is the volume of the magnetic substance.

8.14.4. Magnetic Susceptibility

We know that the magnetization of a magnetic substance is proportional to the
applied field. Thus, the magnetic susceptibility () is defined as the ratio of the
intensity of magnetization to the magnetic field intensity, i.e.

M

== ..(8.106
=5 ( )

It is a dimensionless quantity.

When a magnetic substance is placed in an external magnetic field B, the
magnetic dipoles are oriented more or less in the direction of the magnetic field.
Thus, a non-zero magnetic moment is exhibited by the magnetic substance.
Therefore,

B =p H +pM ..(8.107)
| B =py(H+M) | ..(8.108)
Moreover,
B = py(xH+ H) ...(8.109)
Here, we have used the equation (8.106),

B =p H (1 +y)=pH ...(8.110)
or B =pounH ..(8.111)
where = (+y)=-— (8.112)

Mo

8.14.5. Diamagnetism

In a diamagnetic substance, the net magnetic moment due to the atomic dipoles
is zero. In diamagnetic materials the outer electronic shell is closed and the
electrons are paired. The diamagnetic property in the materials occurs when
the magnetic fields due to orbital and spin motion cancel each other. Therefore,
each atom has zero magnetic moment. When a diamagnetic substance is placed
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in an external magnetic field, the small induced magnetic dipoles within the
atoms oppose the applied magnetic field. Some diamagnetic materials are
Cu, Ag, Zn, Bi, Au, Sb etc. The diamagnetic materials possess a negative
susceptibility of the order of ~107". Thus, we may write

B <1
and x <0

8.14.6. Paramagnetism

In paramagnetic materials, atoms possess permanent magnetic dipole moment
but these are aligned spontaneously as shown in Fig. 8.28. These magnetic
dipoles are randomly distributed. When an external magnetic field is applied,
they tend to orient parallel to the direction of the magnetic field as shown in

fig. 8.29.
IEENAVAN

WA
VN

Fig. 8.28. Magnetic dipoles in paramagnetic materials.

As a result, the magnetic field or induction is increased, and magnetic
substance acquires a magnetization.

w]

Fig. 8.29. Specimen in external magnetic field.

In the case of paramagnetic materials, the magnetization is weak
and magnetic susceptibility is small at room temperature. The magnetic
susceptibility is given by

Tl

y = .(8.113)

where C = curie constant.
For paramagnetic materials.
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n,21

and | x = small and positive

From the Equation (8.113), it is shown that the magnetic susceptibility is
in-versely proportional to absolute temperature. The variation of y with T is
shown in fig. 8.30.

A

—
—_— |

(0] — T O — T

Fig. 8.30. Variation of y versus T

8.14.7. Ferromagnetism

In ferromagnetic materials, the atoms have large permanent magnetic dipole
moment. Ferromagnetism is due to interation between domains of the magnetic
moments. This interaction is very strong to cause the neighboring atoms
in other domains to align with their magnetic dipole moments in the same
direction. The ferromagnetic materials have small regions and each region has
magnetic dipole moments aligned in same direction, these regions are called
domains as shown in fig. 8.31.

Fig. 8.31. Magnetic domains in ferromagnetic materials.

when a ferromagnetic substance is placed in an external magnetic field, a large
alignment of the magnetic moments in the direction of the applied magnetic
field has been found as shown in fig. 8.32.
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W]

Fig. 8.32. Completely alignment of magnetic moments in the external
magnetic field.

As a result of external magnetic field, the magnetization M increases
abnormally and it is not linear. A plot of the magnetic field intensity H versus
magnetization M is called a magnetising curve, as shown in fig. 8.33.

A

Msat """"""""""

T

M

(0] H—>

Fig. 8.33. Magnetization curve.

- - - -

In this case, M =y H and B=p H are not applicable because y and p are
treated as constants. So to retain these forms of the equations, we must have
x and p as a function of H. In the magnetization curve, the M is increased
enough to reach in saturation. Moreover, in addition to saturation effect, the
ferromagnetic materials show hysteresis effect.

For the ferromagnetic materials, the relative permeability and magnetic
susceptibility are given as

and | y = large + ve number
Furthermore,
X = ¢ ..(8.114)
T-Tc
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When the temperature of the substance is raised, it increases thermal
agitation and this thermal agitation breaks the alignment of all magnetic
dipoles. As a result, the substance is now demagnetized and behaves like a
paramagnetic substance. The temperature at which all the magnetic dipoles
lose their alignment is called the Curie temperature (7). The ferromagnetic
materials are Fe, Ni, Co (transition elements), Gd etc. The properties of
paramagnetic, ferromagnetic and diamagnetic materials are giveninthetable 8.1.

Table 8.1. Properties of different magnetic materials.

and +ve

and +ve

S.No iy Paramagneti Ferromagnetic Dia magnetic
materials materials materials
1. | Cause Spin motion of Ferromagneitc Orbital motion of
electrons domains electrons
2. | In external Less attracted Strongly attracted | expels magnetic
magnetic field lines of force
3. | Magnetic Randomly Have some Zero
moment oriented magnetic moment
due to alignment
4. |p.andy, w, =1y is small | u, >>1yislarge | p, <17y is-ve

8.14.8. Hysteresis

When a ferromagnetic substance (with M = 0) is placed in an external
magnetic field, it is magnetized. The magnetization in the substance changes
with the strength of the magnetising field H. A non-linear relationship between
magnetization M and field strength H is shown by a curve known as B—-H
curve. (Magnetic induction is taken for M). As in fig. 8.34, the magnetization
increases and attains a constant value at 4. Now, M does not increase with H.
This is called magnetic saturation. Suppose that H is reduced to zero slowly,
then, M does not reduced to zero. This is because the magnetic domains have
been aligned by the magnetization M and remained aligned, even though H is
reduced to zero. A residual intensity of magnetization (OB) left in the magnetic
substance is called the retentivity or remanence of the material. Furthermore,
to reduce M to zero, H is increased in reverse (negative) direction, and part BC
is obtained. Here, H = —H - at point C. At, H = -H ., M = 0 then H . is called
coercive force. Hence, the coercivity of a magnetic substance is the strength of
the reverse magnetic field for which the substance is demagnetise completely.
Increasing H further in negative direction until it reaches at point D, then,
substance is magnetized in reverse sense and M versus H curve traces the
path DEFA. In the plot of whole curve, M lags behind H. This lagging of M is
called as hysteresis and the curve M vs H in which a core is magnetized in one
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direction and then in opposite direction is called hysteresis curve.
A MorB

(Saturation) Mg

OB = Remanence
OC = Coercivity

TV

Fig. 8.34. Hysteresis loop of a ferromagnetic substance.

8.14.9. Hysteresis Loss

When an un-magnetized ferromagnetic material is placed in an external
magnetic field, the atomic dipoles in the atoms are aligned in the direction
of the magnetic field applied. Obviously, in the process of magnetization, the
magnetising field works against mutual attraction among the elementary atomic
magnets. If the magnetising field is removed, then, certain magnetization will
be retained in the magnetic material. Thus, the energy supplied during the
process of magnetization is not recovered completely after switching off the
magnetising field. This energy is lost in form of heat during each cycle of
magnetization. This is known as hysteresis loss.

Now, to calculate the energy lost per cycle, suppose that a magnetic
material of unit volume, abcd, is placed in a magnetic field intensity H, as
shown in fig. 8.35.

If there are n molecular magnets per unit volume and m is the magnetic
dipole moment of each magnet inclined at an angle © with magnetic field
intensity H, then, the magnetic moment per unit volume may be given as

M =Y m; cos® .(8.115)

where M is magnetization field.
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A
> B
dir-mmmmmm e c

> dM

@) Q E
D

(b)

Fig. 8.35. (a) Magnetic substance in a magnetising field
(b) and its hysteresis loop.

Differentiating Equation (8.115), we get
dM ==Y m; sin6 do ..(8.116)
i
The restoring couple acting on the magnet of magnetic moment m is

given by mH sin 0 . Thus, workdone is rotating the magnet through —d0 angle
(0 decreases with H) will be

dW =-mH sin 6 dO ..(8.117)
Therefore, work done per unit volume is given by
dW = =Y m; Hsin do .(8.118)
i
Here, we took dW for simplicity.
or AW =—H Y, m; sin6 do (8.119)
dW =H dM ...(8.120)

we have used the Equation (8.116), again the work done for a cycle of the
hysteresis loop will be

W= §Hdm (8.121)

The integration CJ-D is over a complete cycle of M-H (B-H) curve, which is

equal to the area of the M-H curve (4 B C D E F A). Moreover, consider a strip
of length H and thickness dM as shown in fig. 8.35(b).

Area of the strip = H dM ...(8.122)
Now, whole area of the hysteresis curve is given by
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A =HdM .(8.123)

Hence, the area of the M-H curve gives the energy dissipated per unit
volume of the magnetic material during each cycle.

Example 8.4. Find the magnetic field at the centre of a circular segment of
radius 7 shown in fig. 8.36.

Fig. 8.36. Circular segment carrying a current i.

Solution: According to Biot-Savart law,

dB - Ko idl 521n9
4T v
r 6O°<::3®
90° 00

Fig. 8.37. Circular arc
Here, sin 0 = sin 90 = 1, then
B idl
47 r2
Net magnetic field at centre O is given by

dB =

_ Mol
B = |dB=—=|dl
'[ 4mr? '[
But Arc = Angle x Radius

T
= —Xr
3
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Thus, B = ot
127

The direction of magnetic field B is into the plane of page.
Example 8.5. Find the magnetic field at the centre of a square loop of side a.
Solution: Consider a square loop carrying a current i is shown in fig. 8.38.

Fig. 8.38. Square loop
the magnitude of B at the centre ‘O’ is given by
B Kol i (sino, +sinf,,)
g 7,
Since square has four sides, B is given by

_ 2V2 Woi
Ta

B

Note: We can find the magnetic field at the centre of a rectangle using above
formula.

Example 8.6. A long straight wire carries a current i = 1004 along the z-axis
and a constant magnetic field whose magnitude is 1 x 107 Tis directed along
the x-axis as shown in fig. 8.39. Find the magnetic field at point 4 and B.

YA

¢ B(0,2,0)

B=107°T

\/

0 A(0,2,0) X

Fig. 8.39. A long straight wire.
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Solution: The magnitude of the magnetic field at the point 4 is

_ R
B, —2—;
2x100x1077
- =
B, =10°T

The direction of this field is along y-axis (right hand rule)

Thus, net magnetic field at point 4
is
1x10°  Ba=/By?+By?

B, =2x107T
B,=1414x10°T 1x 107

The magnetic field at the point B due to long straight wire will be
BC=1x 10" Tbut it is directed along —x-axis.
Example 8.7. A long straight conductor carries a current ;. Find the force
experienced by a rectangular loop carrying a current i, shown in fig. 8.40.

Solution:
i F,
=a
Fi b"
i1 A 4—“ i — F3
2
— a —» l:
| Fs
Fig. 8.40. Rectangular loop near a long conductor.
The magnetic field
B, - ;loil
Then, Tta
_ _ Moiiph
F,=i,bB = —=—
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The forces F', and F, are equal and opposite and cancel each other.
the force Fy =i, By

Here’ B3 = M
21 (2a)
_ Mohbb
3 21 (2a)
Thus, net force on the loop, F'; > F,,
F=F -F,
_ Mohirh [l _L]
2 la 2a
7= Moih b
47a

Example 8.8. Two point charges g, and g, move non-relativisitically with the
velocities v, and v, respectively (fig. 8.41). Compute

(a) net magnetic field at the origin.
(b) the force exerted on g, by ¢,.
Solution: (a) From the section (8.13), a non-relativistically, the magnetic field
of a moving charge ¢ is given by
p = Mg vsin®
4r r2

AY

¥
z

Fig. 8.41. Motion of two point charges.
The magnetic field due to charge g, is B, and given by

_ Mo qiv sin90

B
1 4T az
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- Mo aiM
or B, ===
1 47 aZ
Similarly, for g,, the magnetic field B, is
_ Mo 92V
2 4nm p?

Since B, and B, both are directed into plane of page, then, net magnetic
field at O will be

B =B, +B,
or B:H_o(CI1V1+CI2V2)
(b) The magnetic force on a moving charge is given by
- - -
F =¢g(vxB)
Here R e 521n9
4t d
F=q,v,B
_ M_O Q9 Vi Vo sin®
4m d>

Since, d = a’>+b? andsin 0= %, hence

F = HRod 192 M1 V2
4n g3
this is the required force.
Example 8.9. A magnet weighs 50 gm and its magnetic moment is 1000 units.
If the density of the material of the magnet is 5 gm/cmS. Compute the intensity
of magnetization.
Solution: magnetic moment = 1000 units

Mass 50
Volume = —=—=10cm
Density 5

3

Now, Intensity of magnetization

= m_1000 _ 00 units.
v 10

EXERCISES

8.1. Discuss a method to identify the north and south poles of a bar magnet.
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8.2. What do you mean by magnetic flux. Obtain an expression of the
magnetic flux originating from a current carrying wire shown in fig.
8.42, and passing through a square sheet of side 1 m.

AY

Fig. 8.42. A square sheet.

8.3. A long straight wire of length 2 m carries a current of 1.0 A lies along
y-axis. Find the force on this wire, where magentic field is given by

B= (2i +4j) Wb/m”.

8.4. Find an expression for the flux density at an axial point of a circular coil
carrying a current i4.

8.5. Show that the area of M-H (B-H) curve represents the energy dissipated
per unit volume of a magnetic material during each cycle.

8.6. Explain residual magnetization, retentivity and coercivity using
hysteresis curve of a magnetic material.

8.7. A point charge ¢ moves in a uniform magnetic field with speed v. Show
that the work done by the magnetic force acting on it is zero.

8.8. A long straight conductor curries a current i, = 1.0A. Compute the force

experienced by a square loop of side 1.0 m and carrying a current i, =
0.5 A, Fig. 8.43.

Ai,=05A

iy =1A KT

Fig. 8.43. A current element.
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8.9.

8.10.

8.11.

8.12.

8.13.

8.14.

8.15

8.16.

8.17.
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Determine the magnetic flux density of a toroid with radius R and
number of turns ». Toroid carries a current i.

Find the magnetic flux density at the centre of a semicircle, Fig. 8.44,
and carries a current of 10A.

A
o

Fig. 8.44. Semi circle.
State and prove Ampere’s circuital law and compute the magnetic field
at an axial point of a solenoid.
Find the magnetic flux density at the centre of a square loop of side 1.0
m and carrying a current of 1.0 A.
Compute the magnetic forces that act on two parallel wires when they
carry unequal currents.
A segment of wire 10 cm long carries a current of 1.0 A. Calculate the
magnetic field at a point Q a distance of 0.5 m at angle of 30°.

. A long solenoid of radius R and number of turns # has a length L. If a

current i flows through its coil, show that magnetic flux density at its
axial point is given by
ni
p=r"
2]

A straight wire of length / carries a current i. Show that the magnetic
field at a distance R is given by

Mol !

(cosB, —cos0)).

A cube of side 1.0 m is placed in a constant magnetic field of 0.1 Wb/m?
and directing along x-axis. Compute the magnetic flux through each face
of the cube.



9 Alternating Currents

CHAPTER

In the previous chapters, we mostly have emphasis on source of direct current
(dc). This current remains constant with time as shown in Fig. 9.1. Direct
current contains zero frequency.

i A
 — ]

e

L———o
(a) (b)
Fig. 9.1. Adirect current source (a) and current versus time (b).

An electric current with periodically varying intensity is called an
alternating current. This passes through a complete cycle of changes at regular
intervals. Each cycle consists of two half cycles : positive and negative. The
voltage and current are given by equations as

v=v, sin ot =v, sin 2nft ..(9.1)
v =i, sin ot =i, sin 2nft ..(9.2)

The source of alternating voltages and currents are sinusoidal as shown in
fig. 9.2.

VA i A

AAA ANANAYS
NV VAV

(a) (b)
Fig. 9.2. Representation of alternating voltage
(a) and alternating current (b).
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where v and 7 are the instantaneous values of voltage and current. v, is called
maximum voltage or voltage amplitude and i the maximum current or current
amplitude. ® is known as angular frequency (o = 27f). Alternating currents in
houses range from 50 cycles/s for lights, clocks and other appliances to 108
cycles/s radar use and microwave communication. The symbol of ac source is
shown in fig. 9.3.

————————— o

&

e

Fig. 9.3. Symbolic representation of ac source.

9.1 AVERAGE AND ROOT-MEAN-SQUARE VALUES OF
VOLTAGE AND CURRENT

The alternating current and voltage are continuously varying in positive and
negative directions, hence, the average values of v and i over a cycle will be
Zero.

The average value of ac voltage over a period:

1 T
<> = ?_O[th (9.3)

T
= Yo fsin ot dt
r 0
27/®
= Yo I sin z d(wt)
21 0

2n
vO : _ —
- ! sind do=0 =0 (9.4)

Similarly, we obtain for ac current.
<i>=0 ..(9.5)
The equations (9.4) and (9.5) predict that voltage and current oscillate
symmetrically about zero, as shown in fig. 9.4.
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Vo Lo-

Average =0 —

Fig. 9.4. Plots of v and i, showing average values of voltage and current.
Now, we define the root-mean-square current i as

s = V< i% > (9.6

This is also known as virtual or effective value of current. The average
value of square of current for a cycle may be computed as :

T
1 .
<i*>=— Jig sin” ooz dr ..(9.7)
U
i2
= iji& sin o dt
2n
l.z 2n
_ .2
=—— |sin“0d
- { 0 do
- ﬁ (9.8)
5 ..(9.
the square root of <i*>
i = N<i?> = ~L =0.707i, (9.9)

NG

Similarly, root-mean-square voltage v may be shown to be

v =< > = % =0.707 v, (9.10)

The instruments read the root-mean-square values of current and voltage,
and they are calibrated to read such values. Instead of using average values of
v and i, we use the average values of i* and v*. The graphical representation is
shown in fig. 9.5.
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/
- A IATTTTTA \
2 1 \ 1 \
! \ 1 \
! \ 1 \
! \ i \
[ \ i \
o 7 | i \
. ! \
-t - fTo——————= A
Irms I \ N \
! \ 1 \
! ] \
) . \
l ’ \
o / \ >t
i =i, sin ot

Fig. 9.5. Arepresentation of 2 and i versus t.

The plot of P2 = ig sin® of is always positive and average value of i is z'02 /2,

which is definite. Because the average value of sin® ot is —.

We say that the ac voltage in houses is 200V, so that rms value of voltage
is 200V. Therefore, the peak value of voltage is v, = 2 Vims = J2 % 200V
= 282.84 V. This means that the ac voltage oscillates between +282.84V and
—282.84V.

The alternating current depends on time, the simple procedures of
solving problems cannot be applied directly. We take rms values of v and i
(instantaneous values) for solving an ac circuit.

Example 9.1. The rms voltage of an ac generator is 100V and it produces
a current of rms value 5SA when connected in circuit. What are maximum

affordable values of voltage and current?
vo= N2 v, = 14142V

iy=~2i_  =707A
Thus current i oscillates between +7.07 and —7.07A and voltage oscillates

between 141.42 and —141.42 V.

9.2 PHASOR DIAGRAMS

A phasor diagram represents a projection of a physical quantity which varies
sinusoidally with time. It is an intuitive visualisation of phase angle of current
or voltage. The projection of a physical quantity must be a uniform circular
motiion. Such quantities are known as phasors. Since ac voltage and current
vary sinusoidally, these may be represented by phasor diagrams. The phasor
diagram of ac voltage v = v, sin o7 is shown in fig. 9.6. Phasor diagrams may

be plotted for resistive, capacitive and inductive circuits.

Solution:
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AY

Fig. 9.6. Phasor diagram for v = v, sin ot

9.3 AC CIRCUIT WITH RESISTANCE

Consider an ac circuit containing a resistance R
and a source of EMF as shown in fig. 9.7.

This ac source supplying the current through @ R _\T;
resistor R is )

[ =i, sin wt ..(9.11)
Therefore, .the 1n§’car.1taneoqs potential differ- Fig. 9.7. AC circuit with a
ence across resistor R will be given by )
resistor and source.
v =Ri ..(9.12)
..(9.13)

=R iy Sin Wt = v, sin ¢

ifwe write v, =i,R, thus, applied voltage and current are in phase at all times and
potential difference across the resistor varies sinusoidally as shown in fig. 9.8.

~ Y

INER

Fig. 9.8. Current through a resistor in ac circuit.
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The two curves attain their maximum values and minimum values
simultaneously. Thus, two waves are said to be in same phase. The phasor
diagram for ac circuit containing pure resistance is shown in fig. 9.9.

yaA
VoR
/// N ~
s N 'T """
, k- \
/ -~ =~a \
/ e ~ \
; _____ ¥ St Rl N \ VgR Sin ot
i / \ v VoR o
lo sin ot | / \ \
T + > X
a | O ! :
\ 1

Fig. 9.9. Phasor diagram for current iy and voltage v.

The value of i, and v, are shown as vectors rotating counterclockwise.
The projections of i, and v, on y-axis give the instantaneous values of i and
vg. The two rotating vectors which represent the current and voltage coincide
each other as shown in fig. 9.9.

Example 9.2. AC current passes through a resistance of 20Q from a ac supply
of maximum value of voltage 280V and frequency 50 Hz. Obtain instantaneous
value of current.

Solution: Here =50 Hz
~ o =2mf=2x3.14x50=314s"".
a.c. voltage v = v, sin ¢ = 280 sin 314¢ volt

Therefore, i= % = 14 sin 314¢ Amp.

9.4 AC CIRCUIT WITH CAPACITANCE

We apply an alternating current to a capacitor of capacitance C as shown in

fig. 9.10.
) —c 1

1

Fig. 9.10. An ac through capacitor.
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The current through the circuit at any instant is given by
[ =i, sin of ..(9.14)
The instantaneous voltage v - across the capacitor is

Vo= %:% idt .(9.15)

1
v.= — |iysin ot dt
c C-[O

Iy

= —-cosmt

Co
i .

v-= ——sin (ot —90

= o ( )

Vo= Vo sin(ot —90) ...(9.16)

where Voo = i (L) and the quantity (L) is
0 N ec oC

known as capacitive reactance of the condenser. It is measured in ohms. Fig.

9.11 shows a plot of i and v..
i,V A

i =iy sin wt

VG = Voc sin (ot — 90)

Fig. 9.11. Plots of current and voltage through capitor.

From Fig. 9.11, it is clear that the voltage v - across the capacitor is not in
phase with the current. The current leads the voltage by 90°, or current varies
a quarter cycle. This implies that the energy is not dissipated. For positive half
cycle voltage and current have same sign while for negative half cycle of ac,
they have opposite sign, so that average power is zero. The ideal capacitor
does not contain resistance, no electrical energy is dissipated in terms of heat.
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The quantity (%) behaves like a resistance and it is represented by X -,
®

1 1
Xp=—= ..(9.17)
oC 2nfC
Here, X is not constant, it decreases with increasing f'and C. Therefore,
the alternating current passes easily through the capacitor. But for dc, =0, it
offers infinite resistance, hence, dc does not pass through the capacitor.

The phasor diagram of capacitor is shown in fig. 9.12.

yA
VOC
s Vo S T ------
p L N
4 - S~ \
4 /’ ~ \
_______________ LA D \ .
K 4 \ \ Vgc Sin ot
. . ’
i sin (ot + 90) / / 90°, Y \
! ! ot \ \
* I ! > X
! \ O ! ! -
1 \ 1 1
1 1

’ 1
\ / 1
N ’

Fig. 9.12. Current leads voltage by phase angle n/2 in a capacitor.

The phase relationship between voltage and current is given in such a way
that the current leads voltage by 90° or /2. The projections of rotating vectors
give the instantaneous values of the voltage and current.

Example 9.3. Calculate the reactance and the current when a voltage across
the capacitor of capitance 10 pfis v = 280 sin 3141.

Solution: Vo= 280 sin 314¢

1 1x10°

= —= =318.5Q
wC  314x10

Now,

i= 318(.)5 sin(314¢+90°) = 0.88 sin (3147 + 1/2).

9.5 AC CIRCUIT WITH INDUSTANCE

An ac circuit with source and an inductor is shown in fig. 9.13.
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Fig. 9.13. An ac flowing through an inductor.

If the inductor consists of self-inductance, it opposes the alternating current
to flow, because of nature of ac, which is continuously changing.

Let the current through the circuit be

[ =i, sin wt ..(9.18)
The voltage drop across the coil is
di
v, =L— ..(9.19
=L (9.19)
Here, L is the inductance of the inductor.
d .
Now, v, = — (iy SIn ¢
L= (i )
v, = Li, ® cos ot ...(9.20)
we may write the equation (9.20) as
v, = vy sin (of + 1/2) ..(9.21)
where, VoL = o (0L) ..(9.22)

The resultant voltage across the inductor is always zero, thus, energy is not
dissipated therein.

The plots of current and voltage for a coil is shown in fig. 9.14. This
indicates that the current and voltage are not in phase, but voltage drop v,
across the inductor leads the current by 90° or 7t/2.

Again, Fig. 9.14 shows that voltage leads the current by a quarter cycle or
a phase angle 90°. The quantity oL = 2rfL behaves like a resistance and it is
known as inductive reactance, X; .

X, = oL =2n/L .(9.23)

Here, the units of X, are ohms and its magnitude increase with increasing
frequency fof ac.

For dc, the frequency f = 0, it offers zero reactance and dc may pass
easily through inductor. Since X, o fL, it offers reactance of ac, and greater
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the frequency of ac, the magnetic flux changes more rapidly in the inductor.
Moreover,

v, =X, i (9.24)

rms

VL = VoL sin ((Dt + 90)

iL =i sin ot

Fig. 9.14. Plots of current and voltage through an inductor.

The phasor diagram for an inductor in ac circuit is shown in fig 9.15,
which indicates that current lags voltage by a quarter cycle or 90°.

yA
Voc
-------------- /// . > N
; lo AN
4 P \
/ - ‘\\ \
. / i S N .
Vo, sin (ot + 90) / / X S Y
/ . .
! ; 90° \ Vo sin ot
! I ot \ \ ¥
T + > X
x | 0 ! ;
1 1
\ 1

Fig. 9.15. Phasor diagram for current and voltage in inductor.
Example 9.4. An ac, i = 5 sin (314 ¢) is passing through an inductor of
inductance 0.3 H. Determine inductive reactance and v, .

Solution: X; = o, =314 x 0.3 ohms
=94.2 ohms.
v, =X, i =942x3.54

rms

=333 volts.
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9.6 AC CIRCUIT WITH RAND C IN SERIES

A series connection of a resistor and a capacitor in ac circuit is shown in
fig. 9.16.

Fig. 9.16. R and C in series.

If i = i, sin oz is the instantaneous value of current through the circuit
containing R and C, then voltage drops across R and C will be

vg = Ri = Ri sin wt ..(9.25)
i
d = L sin(or — /2 ..(9.26
an. VoS oo ( ) (9.26)
Thus,
V=Vt Ve
v=Riysin of + — sin(of - 1/2) (9.27)
oC
If we substitute,
R=Zcos®
...(9.28
L =Zsin¢ ©.28)
oC
Then, equation (9.27) comes out to be
v =Zi, sin (ot — ¢) ..(9.29)
where, Z = R + 202 is known as impedance of the combination, and
0
tan = —— 9.30)
2o ..(9.

From, equation (9.29), it is clear that the voltage v lags behind the current
by an angle ¢, as given in fig. 9.17. (phase diagram).
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0 i=iR=ic
¢

= VR

<

VCvy

Fig. 9.17. Phasor diagram of v and i.

Phasor diagram shows that the phase shift is between 0° and —90°. It tends
to 0° for high frequencies and —90° for low frequencies.

If we take a parallel combination of R and C, then

admittance = #+ 0’C? ..(9.31)

9.7 AC CIRCUIT WITH R AND L IN SERIES

Consider a resistor R in series with an inductor L with an alternating current
source i = i, sin ¢, as shown in fig. 9.18.

.

N

< i
|

Fig. 9.18. R and L in series.
An inductor coil is one which passes both resistance and self inductance. If
vp and v; are voltage drops across resistor R and inductor L. Then,
Ve = Ri = Rij; sin ot ...(9.32)
and v, =X;i= oL sin (of + 1/2) ...(9.33)
Now, the instantaneous value of the voltage across the combination of R
and L, is given by
v=vpty,
= Rij, sin ot + X i, sin (ot + 11/2) ..(9.34)

= Rijy sin oz + X i, [sin @t cos /2 + cos ot sin 1t/2]
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v = Rij, sin of + X} i, cos of ...(9.35)
If we substitute,

R=7 cos0
¥ =74 ...(9.36)

we get, L=Zsm¢
v=zi,sin (ot + ¢) ...(9.37)
where, Z=\R*+ X} ...(9.38)
Z=R?*+*I? ...(9.39)

X, oL

d tan ¢ = —L&=— .(9.40
an an ¢ R z (9.40)

Here, X, = oL is called the inductive reactance of the coil and Z is the
impedance.

The applied voltage leads the current by an angle ¢ and this is shown in
phase diagram, fig. 9.19. It is clear that the phase shift is between 0° and 90°.
It approaches 0° for law frequencies and 90° for high frequencies.

VL A777TTTTTTTTTTTTTTTT T S

¢
» V
0 i=iR=iL R

Fig. 9.19. Phasor diagram of v and i
If we take a parallel combination of R and L, then

admittance = L + L ..(9.41)

R oL
9.8 AC CIRCUIT WITH L AND C IN SERIES
An alternating circuit containing an inductor and a capacitor in series is shown
in fig. 9.20.
Suppose the current through the circuit at any instant is given by
i =i sin of ...(9.42)
If v, and v are the voltage drops across the inductor and the capacitor,

then,
v=v s ...(9.43)
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Here,

then,

Now

where

maximum

which gives
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Fig. 9.20. L and C in series

v, =xp0

Ve=Xci
v=X i+ X ...(9.44)

1
=|loL-——|i ...(9.45
( mC) 045
v = (O)L - L) ip Sin ot ...(9.46)
v = Zi, sin of ..(9.47)
Z= ((:)L - L) ...(9.48)
oC
The specific driving frequency at which the amplitude of the current is
X, =X ...(9.49)
1

0, = — ...(9.50
L' wC ©-50)

1
= ..(9.51
7e 3D

This is known as natural frequency of the LC circuit.

Phasor diagram of LC circuit is shown in fig. 9.21.

L, @)

oL

\

Re (2)

Oc

Fig. 9.21. Phasor diagram of LC circuit.
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9.9 AC CIRCUIT WITH LCRIN SERIES

Now we do an ac circuit that contains, a resistor R, a capacitor C and an
inductor L as shown in fig. 9.22.

VR Vo eV —>]

R C L

S
Fig. 9.22. An ac circuit with R, C, L in series.
Let the instantaneous current i in the circuit is given by
[ =i, cos wt ...(9.52)
Suppose that v, v, and v are the instantaneous value of the voltages
across R, L and C respectively. Then, we may write
v=vptvety, ...(9.53)
Since we known that:
(a) In resistive circuit, the current and the voltage are in same phase.
(b) In capacitive circuit, current leads the voltage by 90°,
(c) While in inductive circuit, current lags the voltage by 90°.
Then, we have,
Vg = Vog COS ®f = Ri, cos wt,

l
V=V, 08 (0f — 1/2) = — cos(wf — /2),
¢ = Voc ©0s ( ) oC ( )
and v, = vy €08 (ot + 1/2) = iy oL cos (wt + 1/2)
where v = Ri, v = L.C and v, = i oL are the peak values of the voltages
0
that drop across R, C and L respectively. Substituting the values of vy, v and

v, in equation (9.53), we get,

i bs i
v= Ri, cos®f + —> cos (wt——)ﬂ' oL cos (o)t+—) ..(9.54
0 oC S )t 5 (9.54)

=iy [R cos ¢ —(wL—L) sinwt:| ...(9.55)
oC

Let R=Zcos ¢

1 ..(9.56)
and ((DL——) =Zsin ¢
oC
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then v = Zi, cos (ot + §) ....(9.57)
12
where, Z= |R? +(0)L——) ...(9.58)
oC
(0 )
and tan ¢ = T‘”C .(9.59)
Again X-= L
s, ¢ oC
and X, =ol
Equation (9.58) and (9.59) may re-write as
Z= R +(X, - X¢)? .(9.60)
and tan ¢ = Xy =Xe) ..(9.61)
R
Also, equation (8.57) may be re-written as
v =y, cos(ot + ¢) ..(9.62)
where, Vo= igZ ...(9.63)

Z= \/ R*+ (X;—-X C)2 is known as the impadance of the circuit.
The equation (9.60) is represented by the diagram shown in fig. 9.23.

XL —Xc

R

Fig. 9.23. Relation between R, X, X, and Z.

The equations (9.52) for current and (9.62) for voltage indicate that voltage
and current are out of phase by an angle ¢. The angle ¢ depends on the values
of X;, X-and R.

There are three cases for the angle ¢, which are
(a) If X; =X Then
tan¢p =0
d=0
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then impedance Z = R, and the voltage and the current are in same
phase.

(b) If X; > X Then, tan ¢ will be positive. Hence ¢ will be positive.
In this situation, voltage leads the current be angle ¢. In a purely
inductive circuit, R — 0 and C — o that gives X = 0 and R = 0.
Therefore, ¢ = 90°.

(c) If X, < X.. Then ¢ will be negative, hence voltage lags the current
by angle ¢. In a purely capacitance circuit, L — 0 and R — 0. Thus,

- and ¢ = —m/2.
oC

9.10 SERIES RESONANCE

In a series resonance circuit, R, C and L are connected in a series with ac
source. The rms value of current is given by

V. V.

— rms rms
= Yims _ (9.64)
4 \/R2+(XL_XC)2

lrms

when X, = X, the voltage and current are in same phase.
1

= — ...(9.65

o,L ~ (9.65)
, 1

= — ...(9.66

D=7 (9.66)

This condition determines the specific frequency for which inductive
reactance cancels the capacitive reactance.

From equation (9.66),

1
Jo= Jndic .(9.67)

The frequency f, is known as resonant frequency. At X; = X, Z =
R(minimum). Thus, current becomes maximum. The amplitude of the current
Y _%

iy = 7 7 ...(9.68)
tan¢p=0
o= 0} ...(9.69)

At resonance frequency f, the voltages across capacitor C and inductor
L are equal and opposite. The variation of current as a function of frequency
is shown in fig. 9.24. The curves obtained by plotting current against the
frequency ® are known as resonance curves. Here three plots of current
i versus o for different values of resistance R are shown in fig. 9.24.
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R1

R3 >Ry >Ry

o
Fig. 9.24. The plots of current versus o for different values of R.

From fig. 9.24, it is observed that
(a) the maximum current occurs at ® = o,
(b) the resistance of the circuit is real and has least value at ® = o,
(c) the peak of any curve depicts the selectivity or sharpness of the
circuit.
(d) for o < w,, the voltage lags the current and for ® > ®,, the voltage
leads the current.

(e) at ® = m,, the voltage and current are in same phase.

9.11 POWERIN AC CIRCUITS

The power is dissipated for resistors while capacitors and inductors store and
release energy to the circuit, there is no dissipation of energy due to capacitors
and inductors. When current flows through the circuit, the inductor stores
magnetic energy and this energy is fed from the inductor back into circuit
when current tends to zero. Similarly, capacitor stores electric energy during
charging. When capacitor is discharged, the electric energy is fed back to the
circuit.

Now power dissipation for a resistor is given by
P=vi ..(9.70)
where v and i are real function of time.
For voltage and current, we may write,

V=1, eim’=vo cos ot ..(9.71)
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and i=i, SO0 = ot b ..(9.72)

= i, (cos ot + i sin w?) (cos ¢ + i sin §)
The real value of i is given by
i =i, (cos o cos ¢ — sin wf sin §) ..(9.73)
From equation (9.70), the power is
P=v,i, (cos2 ot cos ¢ — cos ®f sin ®z sin )  ...(9.74)
The average power over a complete cycle is given by

27/®
j P dt
I .
Py = 207;/0) = 5 Voo COS O ..(9.75)
j dt
0
1
Since <sin® ot) = > and <sin ot cos o> =0
_ Vo g _ .
P, = ﬁ ﬁcosq)—vrms irms COSO
P 1y = Vimg Trms €38 ¢ ...(9.76)

The factor cos ¢ is known as power factor of the circuit

Again, tan ¢ =
g ¢ R
Then, cos ¢ = R >
R2+(03 —1)
ol
R

cos hp=— ..(9.77
o ~ 9.77)

For a complete cycle of an ac current the power consumed by L and C is
zero. The equation (9.76) represents the power consumed by the resistor only.

. . - T
cos ¢ is always positive when e <h< > this means that the energy per

unit time is always expanded by the source.

Pav = vI‘l’l‘lS rms cos (I)
R
=Zit —==i’ R .(9.78)

Z
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Thus, all the energy supplied to the ac circuit by the source is dissipated as
the heat in the resistor R at the average rate of ifmSR.
For resistor R only, Z= R, hence ¢ =0

av Vrms brms

If R =0 and ac circuit must contain L and C, ¢ = 90° or g ,
cosp=0
hence, P,=0

Then, current flowing through the circuit is known as wattless current and
the average power consumed in the circuit is zero.

9.12 AC CIRCUIT WITH LCR IN PARALLEL

Consider an ac circuit that contains R, L and C in parallel as shown in fig. 9.25.

R L
- AMAM—— 0000 ——

()
N7

Fig. 9.25. An ac circuit with R, L and C in parallel connection.

The impedance of the circuit may be calculated as
1 1 joC

= +
Z R+joL 1

1
= —+ joC ..(9.79)
R+ joL

1 _ (R~ jolL)
VA (R+ joL)(R—joL)

+ joC ..(9.80)

we have multiplied by (R — joL) in numerator and denominator.

Now,
1 R JoL
- = - + joC
Z (RP+0’*) (R*+0’?)
R oL
=+ j|0C - ——F5 ..(9.81)
(R* + ©°I*) [ (R*+ msz))



Alternating Currents 295

For resonant frequency of the circuit, the imaginary term of the equation
(9.81) should be equal to zero.

0L
0,C ———2-— =0 ..(9.82)
R+ i)
- w2=|_1 R?
"I 2
1 R?
(,00: E—? (983)

This is the resonant frequency for which the current and voltage are in
same phase. For resonance to occur, , should be real, i.e.

1 R?

L
= = >pR?
C

\E >R ..(9.85)

Now, current may be found as

. )
= — ...(9.86
o= (9.86)
Since 1 —+ joC
’ 7 (R+ jolL)

and its complex conjugate is given by
1 1

— = joC
Z  (R-joL)
on multiplying we get
1 1
L[ sjec]|——-joc (9.87)
72 R+ joL R- joL
1 1
(1 +©>C? + joC —— -
R? + 0212 R—joL R+ joL
1 20°L
Lz S SPAC FoR S ¢

Z? (R*+ 0’ R*+0’I?
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1 1
= — = 575 | 0*R*C* +(1- 0’LC)? -(9.88
i ( 7 0.88)
Then,
1 _ |0’R*C*+(1-0’LC) ©.89)
zZ R*+0’1? o
Substituting in equation (9.86) we get
o \/coszCz +(1-w2LC)>? 990
O 0 R2 + 0)2L2 e .

The current i, is minimum at ®’LC = 1. From above expression of the
current, it appears that the current is minimum at a slightly lower frequency,
and it rejects the current to pass through the circuit. Hence, parallel resonance
circuit is known as a rejector circuit. The parallel LC circuit offers maximum
Z for resonance condition.

9.13 QUALITY FACTOR Q OF SERIES RESONANCE

The quality factor O of series resonant circuit is defined as the ratio of the
voltage across inductor L to the voltage across resistor R. That is,

0=

L
Y _ Dot .(9.91)

where 0)= —

_ 1L
= \E .(9.92)

P =V b €OS O ...(9.93)
R . Y
and cos ¢ = s = “Z“S
Then,
2
P Vims &
av Zz
2

= P = Vims R
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_ vrzmsR
2 2
R2 + 2((,02 — 1)
0 LC
Since, resonance frequency,
1
(D = —_——
O LC
substituting it in equation (9.94), we get
2
v R
P, = Ch

L
R? +¥ (0? _m(z))z

2 2
Vims RO

av (,02R2+L2 (0)2—03(2))2
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.(9.94)

.(9.95)

The variation of the average power as a function of the frequency is shown

in fig. 9.26.

Pav 4

e

/E Pav """"""""""""

ol e
ol e

o 1 o 2

Fig. 9.26. The plot of the average power versus o for small value of R.

when R is small, the quality factor Q is large. The full width at half maximum

determines the Q.
W _ W
W, -0 A®

Q:

..(9.96)
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where A® i1s known as resonance width. The full width at half maximum

determines the sharpness of the resonance (at V2 times of the peak), which
is the half power. Hence, a large value of Q gives narrow and sharp resonance
curve.

Example 9.5. An ac circuit with L, C and R is shown in fig. 9.27.

R C L

S
Fig. 9.27. LCR in series.
Here, v =120 cos 314¢ R =10Q), L =40 mH and C = 20uF. Then Find
(a) Impedance of the circuit.
(b) Phase angle ¢.
(c) Resonant frequency o,
Solution: X; = oL =314 x40 x 107°Q = 12.560
1 1

Xp= —=———Q=15923Q
oC  314x20x10

@) .. Z= R +(X, - X.)?

— J(10)* +(12.56 ~159.23)>

7=1470Q
X, - X
b tanp= =L _2C
(b) ) z
b =—1°39’
© S 1
O JLC \J40x107 x20x10°°
1

) \V8x107’

o, = 1118 sec”".
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9.14 TRANSFORMERS

We have many situations, where low voltage or high voltage is needed. For
example home appliances need a voltage of 200V. In electronic equipments,
we need either 18 V or 12V. A transformer is a device that transform an ac at
high voltage into low voltage and vice versa with very small loss of power.
Ideal transformer decreases or increases an ac voltage without loss of power.
If the output voltage is smaller than the input voltage, it is called step down
transformer, moreover, if the output voltage of a transformer is higher than the
input voltage, it is called step up transformer.

A schematic diagram of transformer is shown in fig. 9.28. It consists of
two coils known as primary and secondary coils. These coils are electrically
insulated from each other and wound on a same soft iron core which is
laminated to prevent the eddy-current losses.

Soft iron core (Laminated)

4
— —
— —
ac input | N, N, | Output
— —
— —
Pri |
rimary
coil Secoqdary
coil

Fig. 9.28. Atypical view of a transformer.

The symbolic view of a transformer is shown in fig. 9.29.

o

input @ H output

O
Fig. 9.29. Conventional view of transformer.

The working of transformer is based on the principle of mutual induction.
That is, the magnetic flux produced by an ac in primary coil passes through
secondary coil. When an ac current flows through the primary coil produces
an induced emf (voltage) in the secondary coil. The frequency of the voltage
in the secondary coil will be same as that in primary coil.
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From Faraday’s law, the rate of change of magnetic flux in primary coil is
equal to emf (voltage) produced, then,

do
V,=-N,— ..(9.97

1 1 (9.97)
where N, is the number of turns in the primary coil. This flux is linked to the

secondary coil, so that, the emf or voltage produced in the secondary coil will
be

do

V,=-N,— ..(9.98

2 2 (9.98)

The magnetic flux in two coils will be same. From the equations (9.97)
and (9.98), we have

h_M

= ...(9.99
Vy N, ©-99)

The equation (3.99) is called transformer equation.

Hence, the ratio of voltages in the primary coil to the secondary coil is
equal to the ratio of their corresponding terms.

If N, > N,, then V', > V,. Thus, it is a step down transformer. Moreover,
if N <N,, V| <V,, the voltage in the secondary coil is larger than voltage
in the primary coil, hence it is called step up transformer. A well designed
transformer is more efficient. In the otherwords, we may say that the input
power in primary coil is equal to the output power in the secondary. Thus,

LV =5LY,
h. b ..(9.100)
o 1
From the equations (9.99) and (9.100) we get,
M_L .(9.101)
Ny

Here, /, and 7, are rms values of the currents.

The equation (9.101) reveals that the currents in the primary coil and
secondary coil are inversely proportional to the number of terms.

Transformers donot operate on direct current (dc), because dc current does
not produce a charge in flux in the primary coil, hence no emf is produced in
the secondary coil.
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9.1.

9.2.

9.3.
94.

9.5.
9.6.

9.7.

9.8.

9.9.

9.10.

9.11.

EXERCISES

A resistor R and an inductor L are connected in series with an ac source
of 100V. An ac voltmeter is connected across R and then across L and
giving same readings. What does it predict. Ans. 70.7

L =40 mH, C=20 pF and R = 10Q

v =100 sin 314z.

Find

(a) voltage across each element.

(b) instantaneous value of current.

(c) total impedance of the circuit.

For the preceding problem. Find the average power of the circuit.

In a parallel LCR circuit, the current is not minimum when X, = X,

1
®, = —— | . Find the frequency for which current is minimum.
[ -7ic) aeney

Find the expression for the current in the parallel LCR circuit.

In a LCR circuit, L = 40 mH, C = 20 puF and R = 100Q2. Find the
frequencies for which power factor is equal to 0.2.

An alternating voltage of amplitude 100V and angular frequency of
1007 rad s is connected in series circuit with R = 10QQ, L =2 mH and
C =20 puF. Determine

(a) The amplitude and phase of current
(b) Potential difference across R, L and C

Why the voltage and current in L and C of ac circuits have a phase
difference of 90°, explain.

A step up transformer is designed to change a voltage 100V into 440V.
The primary coil contains 1000 terns. If transformer has 100% efficiency,
how many terns (V,) in the secondary coil.

Aresistance R and a capacitance C are connected in series across a source
of ac voltage of 100V. A voltmeter across the capacitance reads 75V.
Find the voltmeter reading when it is connected across the resistance R.

Ans. 66.14V

A resistor R and a capacitor C are connected in series as shown in fig.
9.30.
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VR Ve
AW I}

R C

(~)
N

V =V, cos ot

Fig. 9.30. CR in series.
Explain, why [ V) | #| VK [+ Vel
9.12. A 10pF capacitor is connected across an ac source that has rms value of
100V and frequency /= 50 Hz. What is the amplitude of current.



10 Time-Varying Fields

CHAPTER

A static charge produces an electric field and a moving charge produces static
magnetic field. In the previous chapter, we have seen how the electricity
produces magnetism. If we think about the converse of this and a possibility
arises that the magnetic effect produces electric current. After Hans-Christian
Oersted, Michael Faraday started the experiments and showed that the magnetic
field may produce the electric current. In 1931, Faraday observed that if a
magnet is moved in the vicinity of a coil, a current is induced in the coil and
is indicated by a galvenometer, as shown in fig. 10.1. He concluded that the
induced current was dependent not only on the magnetic flux itself, but on its
time rate of change also. The changing magnetic field produces an induced
emf. Faraday gave a relation between time rate of change of magnetic flux and
the induced emf. This relation is called the Faraday’s law of electromagentic
induction.

FAYAYAVAVAVAVAVAVAVAY FAVAVAVAVAYA _
(VAVAVAVAVAVAVAVAVAVAV)
Coil-C, Coil-C,
A Y A
— + 1
2 A l T
— |l II—(- </
Il — =/ 12
K G

(b)
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o

112

+ 2
Battery =  Coil-C, Coil-C, fo

I

G

P
—e

(c)
Fig. 10.1. (a) The induced emf when a magnet moves towards and

away from a coil (b) moving a current carrying coil and
(c) switching on and off a current in a coil.

Fig. 10.1 (a) depicts an experiment, in which a magnet moves toward a
coil C. As a result of this, an emf is induced in the coil C due to the change in
magnetic flux passing through the coil. A current flows in the galvenometer G.
On the other hand, if the magnet moves away from the coil C, the magnetic flux
linked with the coil decreases and a current is observed in the galvenometer
but in opposite direction.

In the fig. 10.1 (b), the magnet is now replaced with a coil C; connected
to a battery. When a current flows in the coil C,, it produces a magnetic field.
Thus, a magnetic lines of force (magnetic flux) is linked to the coil C|. When
coil C; moves toward or away from the coil C, rapidly, the change in flux
causes an emf is induced in the coil C,, and a current flows in the coil C, as
indicated by galvenometer G.

In the circuit depicted by Fig. 10.1 (c), we have two coils C; and C,.
The coil C| is connected to a battery through a key K and the second coil C,
is connected to a galvenometer G. When key K is closed, a current passes
through the coil C; and a magnetic field is produced. It shows that an emf
is induced in the coil C,. A deflection in the galvenometer is produced. The
direction of deflection of galvenometer indicates that the current in the coil C,
is opposite to the direction of the current in the coil C,. If the key K is opened,
the current becomes zero very soon in the coil C;, and a momentary current
is induced in the coil C, in the same direction as in C|. The direction of the
current is opposite in the two cases.

10.1. FARADAY’S INDUCTION LAW

If the magnetic flux passing through a closed circuit is changing, an emf is
induced in that circuit. The magnitude of the induced emf is equal to the
negative of the time rate of change of the magnetic flux passing through the
circuit.
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Changing magnetic field produces an induced emf |

Mathematically, Faraday’s law can be written as

_ =Ndbp __ d(Nop)
dt dt

g .(10.1)

where N is the number of turns in the coil and induced emf ¢ is in volts. The
quantity N, is the total flux linked to the coil.

Since, the induced emf is due to the motion of the electrons, a force is
exerted on the electrons associated with the induced emf. Thus, we write

- -
g = gSlE-dz .(10.2)

From the equations (10.1) and (10.2) we have
> = d(Nog)

E-dl = ..(10.3
g.)l dt ( )
But we know,
- -
No, = .[SB-dS (10.4)
N¢, is the total flux linked to the surface S. Thus we may write.
- - _ - >
§ E-dl = —dj B-dS ..(10.5)
/ dt ’S
-
- - -
or $ E-dl = - 4B s .(10.6)
l S dt
Now, applying stoke’s theorem, we obtain
-
- - dB
J.S(VXE)-dS = —ISE-dS .(10.7)
For any arbitrary surface, we can write the equation (10.7) as
d 0B
VXE =—— ..(10.8
> (10.8)

In the region of time varying magnetic field the electric field is not
conservative and cannot be expressed as the negative of a gradient of a scalar
potential. The Equation (10.8) is known as Faraday’s law. The Equation (10.1)
holds for a stationary circuit (dc networks).
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10.2. LENZ’'S LAW

Since Faraday’s law does not give the direction of the induced emf, the
direction of the induced emf is given by Lenz’s law. This law is based on the
conservation of energy principle. According to Lenz’s law, the induced emf
produces a current and the direction of the induced current is always such as to
oppose the cause that produces it.

To apply the Lenz’s law, consider a single loop as shown in fig. 10.2.

—
B
—> V
(a)
4 //”::——: = ‘\
e >
S‘\\ \{ ,/l /y N
— . 7
B $g<0
_S N do
Rl
\' S/’/ \‘\\N
[ 4 NN
i { 1 ]
AN \\\ ’} /
\\\\‘§:_‘—),
(b)

Fig. 10.2. Direction of the induced current.

When a magnet moves towards the loop, the magnetic flux through the loop

will increases, ¢, > 0 and the magnetic field B will increase, thus d0p > 0.

dt
As a result of this, a current is induced, the direction of the B is pointing

to the right. The induced current will be in a direction such that the induced
field B, 4 is in left direction to reduce the effect. As in Fig. 10.2 (b), when
the magnet moves away from the loop, the magnetic flux linked to the loop

d : .
decreases and ¢, <0, % < 0. As a result, the magnetic across the loop will
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decrease, and B, 4 should point to the right. From the Fleming’s right hand
rule this is possible only if the current in the loop is in counter-clock-wise
direction. In both the cases direction of the induced current opposes the change
in magnetic flux linked to the loop.

Example 10.1. A square loop of 50 turns and side 10 cm is placed with its
plane perpendicular to the magnetic field. Calculate the induced emf if the
magnetic field changes from 0.57to 1.07"in 0.5s.
Solution: N =50 turns
Area of the loop § = 0.1 x 0.1 = 0.001 m?
The plane of loop is normal to B, cos 0 =cos 0 =1
dB 1.0-0.5

Induced emfe = —= =1volts/m?
dt
e -Ndop 3 Nd(BS)
dt dt
or e=—-NS d—B
dt
£=-50x0.001 x 1 volts
€ =0.05 volts

10.3. FLEMING’S RIGHT HAND RULE

This is also called a generator rule because it is useful in generators and motors.
It is applicable when a current is induced in a circuit. When a conductor moves
through a magnetic field, a current is induced in the conductor the direction
of the current induced is given by Fleming’s right hand rule. When right hand
is stretched in such a way that the thumb, forefinger and the middle finger are
mutually perpendicular to each other, then

(a) the thumb represents the direction of motion of the conductor.

(b) forefinger is pointed in the direction of the magnetic field.

(c) and the middle finger points in the direction of induced current as
shown in fig. 10.3.

motion

magnetic T
field ~—~—_

Induced ¢

current

Fig. 10.3. Fleming’s right hand rule
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10.4. EMF INDUCED IN A MOVING CONDUCTOR
According to Faraday’s law of magnetic induction, an induced emf always
produces a current which gives rise to the electric field associated with it.

When a conductor moves through a uniform magnetic field, the emf'is induced
in the conductor also.

When a conductor MN moves through a static field by sliding on a U-shaped
conductor as shown in fig. 10.4.

A Z

o) o yo ® ©
Q
) R
O} O] B O} ©}
q v MN =/
O] O] © O} O]
= YN )y S
© © © © O]
—x——

Fig. 10.4. EMF is produced when a conductor moves
in a uniform magnetic field.

The area of the loop MNPQ is changing with time as the conductor MN
moves. A uniform magnetic field is perpendicular to the area bounded by the
loop and is parallel to the z-axis. Now, the force on a charge ¢ moving with a
uniform velocity v is given by

- - -
F =qg(vXxB) ...(10.9)
- -
Since v and B are perpendicular, then
F=gvB ...(10.10)
or E= L vB ...(10.11)
q

where E is the electric field associated with motion of the charge. Since MN is
moving and the other parts of the loop are in rest, the emf induced in the loop is

e=V,,—Vy=El ..(10.12)
where / is the length of the conductor MN. Thus,

.(10.13)
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Ifv=0,e=0
The Equation (9.13) can be obtained as follows. The magnetic flux through
the loop MNPQ is

- -
05 = gSSBdS:BS .(10.14)
or $p = Blx ...(10.15)
since x is changing with time, then
q0p _ BlﬂzBlv ...(10.16)
dt dt
the magnitude of the induced emf'is given by
= dbg
dt

or .(10.17)

the induced current i is, then, given by

| o

i

vBI
— ...(10.18
R ( )

or i

where R is the resistance of the loop MNPQ, and its direction is clockwise

10.5. EMF INDUCED IN A ROTATING COIL : PRINCIPLE OF
ELECTRIC GENERATOR
Consider a rectangular coil of turns N moving in a static field B as shown in

fig. 10.5. When this coil rotates in a static field, the magnetic flux ¢, passing
through the coil changes with time.

42
| R
S 1
- S
B
N < T TN X
NG 3BT
.
) S
}/ 1 Q
y P |

Fig. 10.5. Rotating coil in a static field.
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Since ¢ is changing with time, an emf is induced in the coil. In fig. 10.5,
-
the normal surface vector S makes an angle 6 with the magnetic field B.

Therefore, Magnetic flux through the coil PORS is
¢z =BScos 0 ...(10.19)
where S is the area of the rectangular coil. The coil is rotating about z-axis with

, 0
the angular velocity © = e Thus,

¢z = BS cos ot ...(10.20)
The emf induced in the coil
£=— %zNBSi(COSwt) ..(10.21)
dt dt
€ = oNBS sin ot ..(10.22)
or ..(10.23)

where g, = ®/NBS is maximum induced emf.
If R is the resistance of the coil, the induced current is given by

i= 2 =80 gingy .(10.24)
R R
or ..(10.25)

€y . .
where i = EO is amplitude of the current.
Example 10.2. A conductor of length 0.5 m is sliding along two conducting
rails with the speed 0.5 m/s. If the resistance of the system is 1 Q, calculate the
induced current, given B = 1.07.
Solution: According to Faraday’s law, the induced emf is

€ =vBI
= (0.5 m/s) x (1.07) x (0.5 m)
£ =0.25 volts
the induced current
;£ 025
R 1
or i=0254.

10.6. EDDY CURRENTS

Eddy currents are due to Faraday’s law of induction. The eddy currents occur
when an ac flows through a conductor. If a metal sheet is moving across the
magnetic field, the magnetic flux ¢, is changing with time and an emf is
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produced, this emf will produce eddy currents also, that are circulating on the
surface of the metal as shown in fig. 10.6.

d
These eddy currents decrease the change in magnetic flux (&) ,

dt
Lo
4_@ .7
S

Fig. 10.6. Eddy currents in a metal.

and produces a force due to which the motion of the conductor occurs. The
detail of eddy currents and skin effect may be found in “a plane EM wave in a
conducting media”.

10.7. SELF-INDUCTANCE

A choke or an inductor is a coil of the wire. If a current flowing in a coil is
changed, an emf is produced. This is due to the change in flux linked with the
coil. This inductive effect is called self-induction.

cm--e---Biyg
_>_B

Fig. 10.7. Self induction

Suppose that the current i is flowing through a coil and as a result, a
magnetic field setup across the coil as shown in fig. 10.7. The current i is
increased or decreased by a rheostat Rh and it changes the magnetic field. This
will result in changing the magnetic flux ¢. If there are N turns in the coil, the
magnetic flux N, is proportional to the current i. Thus,

No, = Li ..(10.26)

or L= ..(10.27)

i

where the proportionality constant L is called the coefficient of self inductance
or simply self inductance.
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According to Faraday’s law of induction, the induced emf is

= —Ndos __d(Nop) ..(10.28)
dt dt
or _ 4y
dt
or €= —Lﬂ ...(10.29)
dt
From the Equation (10.29), the coefficient of self induction is given by
L=-—%_ .(10.30)
(di/dt)
The Equation (10.29) shows a back emf and it is due to Lenz’s law.
The SI unit of self inductance L is Wb/A or Volt per ampere per second
Volt
(;) or henry, in the honor of Joseph Henry.
Ampere-s
It
| henry = Lvo .(10.31)
1 Ampere/Second
or 1 henry = _ Wb ...(10.32)
1 Ampere

10.8. MUTUAL INDUCTANCE

The mutual inductance is arises between a pair of coils which are linked by a

magnetic flux. The change in current in one coil will produce an induced emf

in the other coil, and this phenomenon is known as the mutual induction.
Consider two coils ¢, and ¢, consisting of N; and N, turns respectively as

shown in fig. 10.8.

c, c,
AC @ . N @

Source

Fig. 10.8. A current in coil ¢, produces a current in the coil c,.

The current ; in the coil ¢; will produce a magnetic flux (N,¢p) linking
two circuits. That is, the magnetic flux (NV,¢,) is proportional to the current 7.
Thus,
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Nybp oc i, ...(10.33)
or Nybp = Mi, ...(10.34)
where the proportionality constant M is called the coefficient of mutual

inductance. M is purely a geometric factor and contains permeability, and it
depends on shapes and size of coil and turns N etc.

Now, according to Faraday’s law, the induced emf in the coil ¢, is given by

g, = w ..(10.35)
or €)= — % ...(10.36)

Here, we have substituted the value of (NV,¢,) from the Equation (10.34)
into equation (10.35). Therefore,

€
(dn/dr)
Now, we will calculate the effect on the current i; due the time rate of
change of current in the coil c,.

(10.37)

The emf induced in the coil ¢, is given as

g = - % ..(10.38)
From the Equations (10.36) and (10.38), we have
di _ dip .(10.39)
dt dt
Thus, we write
=205 _ Nabs ..(10.40)
b h

The SI unit of M is same as that of L.

Example 10.3. Compute the self inductance per unit length of a long solenoid.
Solution: Consider a solenoid of length / consisting of number of turns per
unit length #. The magnetic field at axial point is given by

B = Mo
/

The magnetic flux through the solenoid is
$p=BA
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where A4 is the cross-sectional area of the solenoid.

niA
¢B _ Hol

the self inductance L is given as

2
L- s _pord,
l

10.9. ENERGY STORED IN A MAGNETIC FIELD

: : : S 1
Since the capacitor stores an electric energy which is equal to 5 € E 2 an

inductor stores magnetic energy when it is connected to a battery. Consider an
inductor in which a current i is flowing. Then induced emf is given by
di
e=-L— ..(10.41
= ( )
If dW represents the amount of work done in moving the charge dg against

emf g, then

dW = —edqg ...(10.42)
_ Ldidgq
dt
or JW = Ldgdi
dt
dW = Lidi ...(10.43)

Integrating the Equation (10.43) to obtain total work done which is equal
to the energy stored in the inductor.

Uy = IdW:j;Lidi .(10.44)

or Uy = %Liz ...(10.45)

For a particular case, we may calculate the magnetic energy per unit
volume, that is, the magnetic energy density.
Example 10.4. Obtain an expression for the magnetic energy density of a
long solenoid.
Solution: The magnetic field of a long solenoid of length / having number of
turns # is given by

g = Mori
[
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The magnetic flux through the solenoid is

WoniAd
bp = 2077

[

where A is area of cross-section of the solenoid. Thus, inductance of solenoid
is then, give as

2
7 = Mo 4
/
12
U,=—Li
B2
20 Hon
2
or Uy = 18 Al
2 g
Here Al is the volume of the solenoid, the energy density
U 1B
Up= —=——
BZ
or Up= ——
b 2p,

10.10. RL CIRCUIT

Consider an inductor L and a resistor R is series with a battery of V volts as

shown in fig. 10.9.
R L

1] e
\V; K

Fig. 19.9. RL circuit with battery.

when the switch K is closed, a current i is flowing through the circuit. For Fig.
10.9, applying Kirchhoft’s loop rule, we have

V="V, +Vs ...(10.46)
where V}, is the voltage drop across the resistance R and V), is the induced emf

which is equal to L di .
dt
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Ldi
V,=— ..(10.47
L= ( )
V= L—dl+Ri ...(10.48)
dt
or Ldi_ _ 4y .(10.49)
V —Ri
on integration of the Equation (10.49), we get
-L
TIOge(V—Ri)+C =t ...(10.50)
The initial conditions are given as
whent=0,i=0
Therefore,
L
C= i log, V'
Substituting the value of C into Equation (10.50), we have
-R
Log (V—Ri)—log, V= Tl ...(10.51)
1 V —Ri -
or log. V=Ri) _ =R, .(10.52)
vV L
RO wy ..(10.53)
14
.V ~(RIL)t
or i=—((-e ) ...(10.54)
Thus, the Equation (10.54) may be written as
i =iy(1—e "D ..(10.55)

V. ) .
where ih= E 1s the maximum value of current when ¢ — oo. The time constant

T is given by

L
T= —

- .(10.56)

The plot of i versus ¢ is shown in fig. 10.10.
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0]

>t

Fig. 10.10. Growth of current in RL circuit

Now, differentiating Equation (10.55) with respect to ¢z, we have,

di _ Riy o~ (R}

di L

di _ iy e—(R/L)z:(io—i)

a1

..(10.57)

..(10.58)
T

The Equation (10.58) gives the slop of the exponential curve.

After reaching the current to its maximum value i, the switch K is now
opened. It means the applied voltage = 0. Then, the Equation (10.48) takes

the form
Ldi
R+ — =0 ..(10.58(1
iR+ = (10.58(1))
The current starts falling from its maximum value i,.
Now,
LAl _ i ..(10.59)
dt
or ii = dt ...(10.60)
R i
on integration, we get
%logez#C =t ...(10.61)

Initially at # =0, i = i,. Thus,

L .
C= Elogezo
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Substituting the value of C into Equation (10.61), we get

Log, — = ¢ (VX .(10.62)
0

or i=iye R ..(10.63)

The Equation (10.63) shows that the current in the RL circuit is falling
exponentially. The slop of the Equation (10.63) gives the rate at which current
is falling. The plot of i versus 7 is shown in fig. 10.11.

Differentiating (10.63) w.r. to ¢, we get

di _ QR Ry
dt L
The negative sign shows that the current is decreasing exponentially.
i A
io -
o) >t

Fig. 10.11. Decay of current in RL circuit.

The energy is conserved in the process of rise and decay of current in
RL circuit. When the battery is removed or switch K is opened, the energy is
stored in the inductor, as

U= %ng
This energy maintains the current in the circuit.
Example 10.5. A conductor of length / rotates in a static magnetic field with
angular speed m. Obtain an expression for the emf induced in the conductor.
Solution: Consider an element dy of the conductor moving with a velocity v
as shown in fig. 10.12.
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Fig. 10.12.

The conductor is moving in a magnetic field which is directed into the
%

page. Since velocity v is perpendicular to the magnetic field B. Then, the emf
induced in the conductor is

l
€= -[OVde
l
or €= .[onydy
or €= lBa)l2
2

Example 10.6. A stationary square loop of 50 turns and side 1 m lies in x-y
plane, as shown in fig. 9.13. If the magnetic field B = B, sin w? points in z-axis,
compute the induced emf in the loop.

Solution:

Fig. 10.13. Square loop.
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b, = - -
5 IS B-dS
Thus, induced emf is
d
e=—-N—
7 bp
a%
B —>
or e=-N|—-dS
I ot
Now
0B d .
— = — (B, sin ot
o dt (Bo )
= coBO cos ¢
and surface vector
- ~
dS = dxdyj
Thus,
11
e = —50 wB, cos wt de Idy
0 0
or e=-50 coBO cos ®f

Example 10.7. A rod of length L, in fig. 10.14, is moving with a uniform
velocity along the direction of the current i in a long wire. Calculate the emf
induced across the rod.

Solution:

Fig. 10.14. Motion of rod in B

If the moving rod moves a dr distance in the magnetic field which is
directed into page. The emf induced is given by
- 5 -

e=[(vxB)dr
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But B= Ko
2mr

Woi v aJJ:L dr

8 = o—_—— —_—

21 r

l.loi A4 a+L
Y e
27 a
Example 10.8. Obtain an expression for mutual inductance between a long

wire carrying a current 7, and a rectangle with current i, as shown in fig. 10.15.

a

._________l<_________.

Fig. 10.15. A current loop.

Solution: The magnetic flux across the rectangle is

bp= IB bdx
_ I.Loil . l+a@
27 X
or = ——log,| —
0= ge( 7
the mutual inductance is given as
u-%
h
Wob [+a
or - o ()

Example 10.9. Find the emf induced in the rectangle, in fig. 10.16.

Solution: We take a strip of width dx at a distance x from the wire carrying a
current i. The magnetic flux through the strip is

o, = BdS
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. a
Here, p=Hot 2
2mx 7
7
and dS = area of the strip i A 2 |
2 FPev
= bdx 2
7
] ]
dd, = Poib dx —r— 4
2n x .
.. total flux is -dx-
x+au ib dx
= |dd,= | =>==  Fig. 10.16. Current loop.
¢B '[ 05 -)[ 2m x g P

ib
b= ”2°—n[loge (x+a)—log, x]

Thus, emf induced in rectangle is
30 _ -ugib 9
ot 2n ot
_ —uoibl: 1 dx l‘dx]
2n

[lOge (x + a) - loge X]

. X
Since — =v
dt

Szuoibv[ 1 _l:l
2n [x+a x

put x =r, we get
iabv
g = Holdbv
27

EXERCISE

10.1. Define the principle of the electromagnetic induction and deduce the
Faraday’s law of electromagnetic induction.

10.2. Obtain an expression for the growth of current in RL circuit.

10.3. Show that the magnetic energy density of a long solenoid is given by
B2
29

10.4. Define the following physical quantities.

Up

(a) self inductance
(b) Mutual inductance
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10.5.
10.6.

10.7.

10.8.

10.9.

10.10.

10.11.

10.12.

10.13.

10.14.

Deduce an expression for the self-inductance of a toroid.
Show that the magnetic energy stored in an inductor L is given by

|
Up,=—Li
)
Find the inductance per unit length of a co-axial cable of inner radius

r, and outer radius r,.

Two hundred turns of a copper wire are wrapped around a wooden
cylinder of radius 0.1 m. If the current in the coil is 2A and a magnetic
field through the coil is changed from 0.1 Wb/m? to 1 Wb/m? then,
calculate (a) emf induced in the coil (b) energy stored in the coil.

A square loop of side 0.2 m lies in a plane of long straight wire at a
distance 0.5 m from it. Find the mutual inductance when a current of
1A is flowing in the wire.

Obtain an expression for the magnetic flux passing through the
hemisphere, fig. 10.17. Ans. —/°B

B

Fig. 10.17. Hemisphere.

When a current in one coil changes from 0A to 10A in 10 s, and
induced emf is 100 V. Calculate self inductance of the coil.

Calculate the speed of the rod of length 0.5 m in a magnetic field of
0.2 Wb/m? and perpendicular to the motion of the rod.

A resistor of resistance 1002 and an inductor of inductance 0.5 H are
connected to a battery of 18V. Calculate steady state current and value
of it for ¢ = 1s. Plot 7 versus .

If an inductor operates at the voltage 200V and 50 Hz frequency.
The inductor draws a current of 10A, calculate the inductance of the
inductor.
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1 1 Maxwell’s Equations and

Electromagnetic Waves
CHAPTER

James Clerk Maxwell (1832—-1879) gave the relation between charges, current
and electromagnetic field in the form of four mathematical equations. These
equations are a type of unified theory, which describe all the phenomena of
classical electromagnetism. This theory proves that the light waves are the
electromagnetic waves and the speed of the electromagnetic waves is given by

Then, we get
¢=2.99 x 108 m/s
or c~3.0x10%mss

This unified theory of Maxwell predicts that the accelerated charge
produces energy in form of electromagnetic (EM) waves.

11.1 MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM

There are four equations given by J.C. Maxwell. The differential form of the
set of four equations is given as follows.

. —_ b
(1) V.D=p — Gauss’s Law
%
(i) |V-B=0 — No magnetic monopole or charge
-

~ 0B

(i) |[VXE = = Faraday’s Law
ﬁ

. = =~ 9D .

(iv) |[VxH=J + > Modified Ampere’s Law
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where

= Electric field intensity

= Electric flux density or electric displacement

= Magnetic induction or Magnetic flux density

Tl Wl Tl =l

= Magnetic field intensity
p = Electric charge density

= Electric current density
- - -5
=¢€yF and D=€F

-

- "
= WoH and B =pH =pou, H

Wl Ol <!

%
The Maxwell’s first equation shows that the divergence of E is equal to
volume charge density bounded by a surface. This equation predicts that how
much is the electric field intensity spread out from the source of charges. The

value of the V. B will be greater if more charges are present in the volume. If

%
charge source is not present, . p =0.

If we take a straight conductor carrying a current i, the magnetic lines of
force across the conductor is shown in fig. 11.1.

GO ) be

Fig. 11.1. Magnetic lines of force for a conductor

It is very clear that, fig. 11.1, the magnetic lines of force don’t begin or
end. Hence, the divergence of magnetic induction B is always zero, and shows
non-existence of the monopole.

The third equation of Maxwell shows that the rot or curl of the electric
field intensity is equal to negative the time rate of change of the magnetic
induction B. The negative sign is due to Lenz’s law. It predicts that the time
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varying magnetic field produces an electric field. If the magnetic field B is not
varying with time, there is a no effect on the electric field. Thus, The electric
lines of force are straight.

The fourth equation of Maxwell is a modified Ampere’s law. This equation
oD
ot

dealing with capacitors.

contains a term , 1s called a displacement current. This is very helpful in

Moreover, the Ampere’s circuital law is given by

- -
$B-dl = i (111
using stoke’s theorem, we write
- - )
jS(VxB)dS = 1o jSzdS L(11.2)
Since B = n,H and the current density is
J= | ids

Thus, Equation (11.2) may be written for any arbitrary surface as

- -

VXH =J (11.3)
we know that the divergence of curl of any vector is equal to zero. Taking the
divergence of the Equation (11.3), we get

- -
V(VxH)=v.7 =0 L(11.4)

N
However, the equation of continuity predicts that V-J # 0 in time varying
field.

V-J+—=0 (115
o (11.5)
- ap

J == ..(11.6
or vV-J o (11.6)
Hence, 3—? must be added to the right side of the Equation (11.4), we get

- - ap
V-(VxH) :VJ+§: -(11.7)

According to Maxwell’s first equation, we have

N
V-D =p
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Substituting in the Equation (11.7), we get

%
- -
V- (VxH) = V~J+V~8—D
ot
N -
or V-(VxH) =V 9D ..(11.8)
ot
Hence
%
- -
VxH =J +8_D ..(11.9)
ot
The Equation (11.9) contains the curl of the magnetic field intensity H,

N

this means that the field lines involve circulation. The term aa_lt) is called the

N
displacement current to differ it from the conduction current ( J ), and the rate
of change of the electric displacement gives rise to magnetic field.

11.2 DISPLACEMENT CURRENT

The second and third equation of Maxwell are homogeneous and these are
source free.

N
V-B=0
and - ..(11.10)
Vo 9B
ot

while, the first and fourth equations are inhomogeneous and depend on source,
permitivity and permeability of the medium.

%
and - (11.11)
- = 9D
VxH=J+—{
ot

These equations show that electric and magnetic fields are related to each
other and symmetrical equations should describe them. This symmetry led to
introduce the concept of the displacement current.

To describe the concept of the electric displacement current, suppose that
an electrical circuit contains a capacitor C as shown in fig. 11.2.
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® © B 0 ®
AN
+] | -
il -
VA
A® ® ® ®
i
Rh. Battery

Fig. 11.2. Concept of displacement current.

When rheostat is at static position, no current flows but if we vary the
position of rheostat by sliding it, current flows through the capacitor and an
electric field is developed across the C. This electric field £ varies with time

. . . O0E . .
until current reaches maximum value. So, this — is known as displacement
current. Jt

The magnetic field will remain same. At the outside of the capacitor, the
displacement current is equal to the conduction current. That is,

i, = i (outside the capacitor) ..(11.12)
The capacity of the capacitor C is
€y A
C=-"2= (1113
y (11.13)

where A is area of cross-section and d is distance between the plates of a
capacitor. The electric field between the plates.

q
E=— ..(11.14
- (11.14)
differentiating w.r.to ¢
B_E = La_q ..(11.15)
ot €yA ot
oFE 1
or —_— = — ..(11.16
dat €4 d ( )
. d(gy E)
or i, = A———— (1117
4 o (11.17)
Thus,
a%
D
i;= A— ..(11.18)

ot
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Displacement current density

i, oD
J,=4=-"= .(11.19
d 4 o ( )
%
%
or J; = aa_l;) ..(11.20)

11.3 MAXWELL’S EQUATIONS IN INTEGRAL FORM

We have described Maxwell’s Equations in differential form. To describe
Maxwell’s Equations in the integral form, consider an arbitrary volume
bounded by a surface. Thus,

- -
[;p-ds =] par Gauss’s Law L(11.21)
N v
- -
IS B-dS =0 No magnetic Monopole exist ...(11.22)
-
- - OB — ,
(J.DIE- | = — SEdS Faraday’s Law ..(11.23)
%
(j‘>H~ } =I J-dS+| —-dS| Modified Ampere’s Law
S S ot
..(11.24)
Here, we have used Stoke’s theorem and Gauss’s theorem, as stated below.
- - - -
jS (Vx A)-dS = LA dl Stoke’s theorem (11.25)
and
- - -
jVV-AdV = jSA.dS Gauss theorem (11.26)

11.4 MAXWELL’S EQUATIONS FOR STATIC ELECTRIC AND
MAGNETIC FIELDS

(a) The electric flux per unit volume passing through an arbitrary
infinitesimally small volume is equal to the volume charge density.
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Thus, we write

5

V-D ..(11.27)

or v.p =2 .(11.28)
)

Il
©

where p = JVq dV 1is the volume charge density.

(b) Consider a surface enclosing a volume V as shown in fig. 11.3.

Z A
) ¢
—_— —_—
— —
— p—
—_— —_——
> X

y
Fig. 11.3. Flux through an elementary volume

The magnetic flux entering is equal to the flux leaving the volume. Thus,
net outgoing magnetic flux is zero.

_)
V-B =0 ..(11.29)

(c) For a static charge, %—f =0

Thus,
%
VXE =0
and potential is given by
- -
v=—|E-d .(11.30)
i
(d) For a static magnetic field,
- -
VxXH =J
- =
or $B-dl = i (11.31)

As per above discussion, one can say that the Maxwell’s Equations are
the general equations which describe electromagnetism.
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11.5 ENERGY FLOW IN ELECTROMAGNETIC WAVES:
POYNTING THEOREM

When an electromagnetic wave propagates through the space, it transports

the electromagnetic energy from one point to another. According to Poynting
-
theorem, the Poynting vector S is a measure of amount of energy crossing per

unit area per unit time.
-
Mathematically, Poynting vector S is a cross product of the electric field

intensity and the magnetic field intensity. Hence,

- o

ﬁ
S =ExH (11.32)

- -
If £ and B are in the directions of z and y axes respectively, Then, energy
will flow along x-axis as shown in fig. 11.4.

z

E

‘ Eo/vm\/vm\
0 y - y - y
H t&’/ v ¢’ - -5 >
/ H, S=ExH

y

y

Fig. 11.4. Direction of flow of energy.

We have Maxwell’s equations as

- H
VXE :_MOB_ ..(11.33)
ot
- -
and VXH = J+ana—l;j ..(11.34)
But J = oF, Then we write the Equation (11.34) as
- oE
VxXH = GE+GOE ..(11.35)
Taking the dot product of £ in Equation (11.35) we get
%
- - - JE
E-(VxH) = 6E* +¢, p-2E ..(11.36)

ot
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Now, we have a vector identity, and give by
- o5 o

V- (F><G) =G (VXF)- F (VxG)
using this identity in Equation (10.36), we get

- - - - ) - ag
H-(VxE)-V(ExH) = cE* +¢, E—== .(11.37)
- - - - - ag
or ~H| OH|-V(ExH)=0E*+ey E-— ..(11.38)

%
Here, we have substituted the value of (V x E') from Equation (11.33) into
equation (11.37).

Now,
%
- - -

~V(ExH) =CE*+¢, E- a—E+uOH a—H ..(11.39)

ot ot

1 9E®> 1 oH?
V- (ExH)= 6E*+—€) — + — g —— ..(11.39
or ( H) 250 Y 2“0 Y ( )
= GE2+%[1 eOE2+;p0H2:| ...(11.40)

Integrating both sides of the Equation (11 40) over a volume, we get

—| v (E><H) av = | oE*dv + —dV (11.41)
I Iy 4

1 1 . .
where u=u,tug=—¢€y £ 24 o 2 is the energy of the electromagnetic
field. 2 2

Applying Gauss’s divergence theorem to the left side, we get
- - >

~[ (ExH)ds = [ oE*av + j —dV .(11.42)

The physical interpretation of the terms involved in the Equation (11.42)
are as follows;

(a) '[V oE%dV represents the ohmic power dissipated in the volume V.
(b) jVa—L;d V' represents the time rate at which electromagnetic energy
stored in the volume V.

R T
(©) '[ (Ex H)-dS represents the amount of power crossing per unit area,
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- - -
and the cross product of £ and H is represented by S, Poynting

vector. Thus,

- - -
S =FExH

For the plane electromagnetic waves, we have

H= |S0E
Ko

Now,
| S[=|ExH|
=FH
_Eg) E
VEo Ko
or S=ceOE2
we can write,
S=cu
1 2, 1 2
where u= EEOE +5p0H

From Equation (11.43), we may write

- -

ExB
Mo

_)
S =

The SI unit of Poynting vector is watt/m® or Joules/m? — sec.

(11.43)

.(11.43a)

(11.44)

.(11.45)

..(11.46)

(11.47)

11.6 MAXWELL’'S EQUATIONS FOR FREE SPACE AND

DIELECTRIC MEDIA

For free space, we have

6=0, p=0 and J=ocE=0
€ = €, and u = p, (For free space)
Thus, Maxwell’s equations may be written as

%

(a) V-D=0
_)

or V-E=0

(b) V.5 =0

.(11.48)
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N
or vV.-H =0 ..(11.49)
-
-
(©) VXE = —uoa—H ...(11.50)
ot
N
N
(d) VxH = eoaa—]j ..(11.51)

11.7 MAXWELL’'S EQUATIONS FOR CONDUCTING MEDIA

Suppose that the conducting medium is linear and isotropic. Then we can write,
- - -

- - -
p=0,D=€E,J=0cF and B=uH
There is no charge in the conducting medium.

N
(a) V.0 =V-E=0 ..(11.52)
(b) V.5 =V-H=0 ..(11.53)
—
4 —
(©) VxE = “a?H (11.54)
— -
(d) VxH = GE+eaa—]f ..(11.55)

11.8 ELECTROMAGNETIC WAVE EQUATION

A wave is a function of space and time co-ordinates. The most beautiful
result of Maxwell’s equations is the electromagnetic wave equation. We are
developing a general wave equation for a material medium. For a conducting
or material medium.

- -
J =0oF
where o is the conductivity of the material medium. Suppose that the medium
consists of permitivity € and permeability p. No charge is present in the
medium, Thus, p = 0.

In the absence of the external charge, Maxwell’s equations are given by

%
V.E =0 .(11.56)
_)
V-H =0 ..(11.57)
-
g —
VxE = oH .(11.58)

ot
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%
and VxH = (5E+eaa—f ..(11.59)

Taking the cross-product of del (V) in Equation (11.58), we get
- J -
VX(VXE) = —HE(VXH) ...(11.60)

%
Substituting the value of (V x H) from Equation (11.59) into equation

(11.60). Then,
0

i oE
Vx(VXE) = —u—[0E+e—:| ..(11.61)
ot ot

Using the vector identify,

- - -
VX(VXE)=V(VE)-V*E
Thus, we get
- - 2
V(V-E)-V?E = —uc%—t—pe% ..(11.62)
But V-E=0
Hence, we get
- 2 7
V2E—epa—2E—uGa—E:0
ot or (11.63)

Similarly, Taking the cross product of (V) del in Equation (11.59) and

N
substituting the values of V-;I and VX FE . From the Equations (11.57) and
(11.58), we get

- 2H oH

(11.64)

The Equations (11.63) and (11.64) are the differential equations of second
order and involving first order term also as in differential equation of damped
harmonic oscillator. These are the wave equations for conducting median.

11.9 PLANE ELECTROMAGNETIC WAVES IN FREE SPACE

We have already derived the general differential equations for the
electromagnetic waves. For free space, we write, 6 =0, p=0, u = p,and € =
€, Then the equations (11.63) and (11.64) take form as
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_) 2
VZE-¢, uoa—f =0 ..(11.65)
ot
) -
> H
and VzH—eouoa—z =0 ...(11.66)
ot
Here, the velocity of the wave
1

. VEo Mo
1

J8.85%10712 x4x3.14x10~7
or v=3x10%m/s (11.67)

which is equal to velocity of light. It means that the electromagnetic wave
propagates with the speed of light in the free space.

m/s

The Maxwell’s equations for free space are

_)
V-E =0 ..(11.68)

-
V.-H =0 ..(11.69)

%

5

VXE = —uoaa—]j ..(11.70)
%

_)

and VxH =g aa—f .(11.71)

The plane wave solutions for the equations (10.65) and (11.66) are given
by

- - ,;—>
E(}"t):EO el( S —t)
and .(11.72)

- -

H(l”,t):HO ei(k'l’ - o)

Now, we define operators as

_)
Voik (11.73)

and — = —i®
ot
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Substituting these operators into equations (10.68), (10.69) (11.70) and

(11.71) we get

> ;i >l =
Tl &l Tl el

X

and

S

()

-

= Ko OH

5
—€)OF

(11.74)
(11.75)
.(11.76)

(11.77)

_)
To find the propagation constant, taking the cross product of K in (11.76)

we have,
e - -
kx(kxE)=pyo(kxH)
- > )7 )7
or K= eouowz
we have used Equations (11.74) and (11.77).
Thus,
2
©#=2
c
or k= @
c

—

H

Poynting vector is
%

S
ﬁ
= S

-

or S =

- o >

;(Ez)—E(k -E)

using equation (11.68) we get

Ho®

%
- E2
g = KE”

Ho®

(11.78)

(11.79)
..(11.80)

.(11.81)

.(11.82)

(11.83)

.(11.84)

.(11.85)
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2| kE?
|§]=]|—
Ho®
2
or S=— ...(11.86)
Ho¢
For intrinsic impedance of the free space,
2
g— ko S
Ko
2
or s= |Sop2-E ..(11.87)
Ko 4
where Z = S is called intrinsic impedance of the free space.
Ko

z= [0 =3770 .(11.88)
Mo

However, the average power per unit area is

2
<§>= f_z .(11.89)

11.10 PLANE WAVES AND POLARIZATION

A plane wave is a constant frequency wave whose wavefronts are the infinite
parallel planes. A plane monochromatic transverse wave propagating in
z-direction is given by

- - .
E(z,1) = Eg &= @)

- =
H (z,t) = Ho ') ...(11.90)
The one dimension wave equation in charge free region is
IE _ e IE
oz2 070 92
..(11.91)
and ’H = UoE E)Z_H
a2 0 ol
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The equation (11.90) is solution of the wave equations given in (11.91). Of
course, there are miscellaneous solutions, in fact, both real and imaginary parts
of the equation (11.89) are the solutions of the wave equations. If we write,

- A
E = yEysin (kz — ot) ..(11.92)
as a solution of the wave equation (11.90), then wt = 2%, 47, 67 ... and so on.
The propagation vector for z = A is given by

kz=2n
21
k= — ...(11.93
or ’ ( )

where A is wavelength of the propagative plane wave.
The angular frequency ® = 27f, the propagating wave repeats for every

interval 7'= 2_7t
(O]
The phase velocity of a plane wave of a constant phase is
kz — ot = constant ..(11.94)
on differentiating it, we get
kdz — odt =0
dZ o
or v, T ...(11.95)

The electric vector plays a key role in describing the polarization of a

- -
wave. A plane wave is polarized with its electric vector £ in the E¢ direction
(Amplitude), as the wave given in the equation (11.92) is polarised in
y-direction. In general, we take both components of the electric field when
describing the different polarizing conditions. Generally, the polarizations are
of the three types viz,

(a) Linear polarization
(b) Circular polarization
(c) Elliptical polarization.
%
(a) Linear Polarization. If the electric vector £ is fixed along a straight line
for all space and time co-ordinates, the electromagnetic wave is called linearly

polarized. Suppose that a wave is propagating in z direction and is given by
the equation

d N ,
E = xEy =) ..(11.96)
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This wave is linearly polarized in x-direction as shown in fig. 11.5.

Fig. 11.5. Linearly polarized wave.
_)

(b) Circular Polarization. If the tip of the electric vector £ traces a circle,
the wave is called circularly polarized wave. To describe a circularly polarized
wave, we are taking two linearly polarized waves as

d A . A .

E = x& K700 4y /(K200 (11.97)
Here,i= /-1,
Moreover, &2 = cosg+ising

=i

. T : . > :
Thus, with phase angle ¢ = EE the tip of electric vector £ rotates in
%
the clockwise direction and for ¢ = —m/2, E rotates in the counter clockwise

direction.
The equation (11.97) shows a right hand circularly polarized wave as

shown in Fig. 11.6.
v
N\,
%
» X
J

Fig. 11.6. Circularly polarized wave

(c) Elliptical Polarization. The linear polarization and the circular polarization
are the special cases of the elliptical polarization. For linear polarization, phase
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difference, ¢ = 0 and for circular polarization, ¢ = +n/2. If the amplitudes of the
two waves are not equal, the polarized wave is called elliptical polarized wave.

An elliptical polarized wave may be constructed by two linearly polarized
components as given below.
%

E = (Ex+iE,y) e K=o ..(11.98)
where i = v/=1 which decides the phase of the wave.
The angle of the field is given by

0(z, )= tan”! (%) .(11.99)
1

11.11 ELECTROMAGNETIC WAVES IN CONDUCTING MEDIA

Consider an electromagnetic wave propagating in the conducting medium in
the absence of an external charge.

For conducting medium, there is only ohmic current.

N - - - - -
Then, J =GE, p=0, B=pH, D=cE ..(11.100)

The electromagnetic wave equations for the conducting medium are given
by the equations (11.63) and (11.64) as

PE JE
- E E
VPE-ep—-po— =0 ..(11.101
h=3 THO ( )
2 9H
= H H
and VPH-ep——-po— =0 (11.102
W5 RO ( )
Now, Maxwell’s equations for conducting medium are as
V.E =0 (11.103)
V. =0 (11.104)
ﬁ
%
VXE = —ua—H ..(11.105)
ot
%
and VxH = GE+€E ...(11.106)

The plane wave solutions of the equations (11.101) and (11.102) are given
by
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- .
E(z,1) = Eje”' (=1
and ...(10.107)

— .
H(z,t)= Hye ' &)

Now, we have

V=-ik
and 0 . ...(10.108)
— =i
ot
Substituting into Equation (11.101) we get
)7 )7 -
(—ik)  E —ep(io)” E—po(im)E=0 ..(11.109)
or K = iopc — o’ep .(11.110)
k= \ipw(c+iew) L(11.111)
For good conductors, ¢ >> e, Thus, equation (11.111) reduces to
k= \/ipwc (11.112)
= i Juwo (11.113)

Now we evaluate \/;

()'"? = (cosT/2 + i sinm/2)"?

= (cosTt/4 +isinT/4)

N d+0)
\/(7) N ..(11.114)

Thus, the equation (11.113) takes form

k=(1+i)‘/$=oc+iﬁ L(11.115)
where a=p= 4/%

or = 4D (11.116)
)
where § is called skin depth or depth of penetration, and is given by
2
8= ,—— (11.117)

LOC
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Now substituting the value of k& from the equation (11.116) into the

equation (11.117), we get
E= Eoe—z/ﬁ e—i(z/ﬁ —wr)

L(11.118)

In the equation (11.118), the term ¢ 7% is known as dumping factor while

Eoe_i(Z/ 8- o) represents the wave propagating into conductor. Thus, amplitude

of the wave is
E= Eype

Atz =298, we have

It means that the actual amplitude of the wave decreases to (

when the wave penetrates the conductor to a distance 6.

Moreover, the current density is

J=coF
=k, e
or J=J, e’
where J, = ok,
J=Jye?

The current density decays exponentially with the skin depth 5.
The phase velocity of the wave in good conductor is given by

O]
VP—E

— 6 . _1

or v,=® o B—g

The average power dissipated per unit area is given by
oo |EIH]

E — EO 6_2/6 e—i(z/S — )

The value of H can be obtained using the equation given as
oH

VXE = -p—
% “az
oH 1 0E
or — =
ot u oz

.(11.119)
.(11.120)
l) times
e

.(11.121)

(11.122)

(11.123)

(11.124)

(11.125)

(11.126)

(11.127)
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Thus we get
= G E, I EL R 2)
2
Now,
2
<8§>= %e‘m’ (11.128)
11.12 SCALAR AND VECTOR POTENTIALS
In time varying field, the potential ¢ can’t be written as
%
E =—grad $ =-Vo
_)
otherwise VXE =V x(-V$)=0
Now, we write the Maxwell’s equation for electric field
%
ﬁ
VXE = —aa—fj ..(11.129)

This equation predicts that the curl of the electric field is not equal to zero
but it is equal to time rate of change of the magnetic field. The static electric
field is conservative but time varying field is not conservative we write, now,
Maxwell’s equation as

%
V-B =0 ..(11.130)
This equation (11.130) enforces to write the magnetic field as a curl of a
%
vector quantity 4 as

%
B =Vx (11.131)

I oxl

Substituting the value of B from the equation (11.131) into equation
(11.129), we get

- 9 -
VXE = E(Vx A) (11.132)
-
or VX[EJraa_AJ =0 (11.133)
t

Since the curl of sum of two vector quantity is equal to zero, this may be
written as the negative gradient of a scalar potential ¢, Thus,
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%
N
E+a—A =-V¢ ..(11.134)
ot
%
N
or E = —V(t)—a—A ..(11.135)
ot
Hence, we get
- -
B =Vx 4 ...(11.136)
- aZ
and B =—"Vo-7- (11.137)

_)
where ¢ is called as scalar potential and A is called as vector potential.
The equation (11.137) consists of two parts viz

(a) —V¢ which is due to the electric charge distribution.

A . .
(b) — ?)_t is due to the time dependent current density J .

11.13 NON-HOMOGENEOUS WAVE EQUATIONS FORVECTOR
AND SCALAR POTENTIALS

Most of the problems of the electromagnetics are solved with Maxwell’s
equations. We already mentioned the homogeneous wave equation for free
space or non conducting media. A wave equation may be put forward with the
scalar and vector potentials.

Starting with Maxwell’s equation given as

-
- -
Vi =g +22 (11.138)
ot
- - — —
B = ”’OHﬁ DZEOE
a%
- - E
VX B =)+ 5 .(11.139)

- -
Substituting the values of B and E from the equations (11.136) and
(11.137), we obtain

- - d -
Vx(Vx A)=pe/ +hoo 5 _Vq)_a_A ...(11.140)
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using vector identity
- - )
Vx(Vx 4)=V(V-4)-V° 4
then, we have
9 9% 4
- - - A
V(V-A)=VP A =) +€ 1 V(%)—ewo

rearranging the terms, we get

N
- 2% 4 N p -
VZA—Eo}lo?—V(V'A_FGOHOa_q;):_MOJ

Now, taking Maxwell’s equation
-
V-D=p
5
or e V'E=p

_)
Substituting for £ from the equation (11.137), we get

.
v (—w _a_AJ .
ot €
_)
or vip+v o4 - =P
a g
—
04 0% %0 p
V20 + V-2 + gy — — oty — = —
(b ot Solo 812 Soto atz =

2
Here, we have added and subtracted the term €py —- -

rearranging the terms in the equation (11.147), we get

% df_~ aq)) —p
\2 2 2y =r

Now, we put the term in bracket is equal to zero, we get

aq)
V-A+ep — =0
Ooat

or?

347

(11.141)

(11.142)

.(11.143)

(11.144)

(11.145)

.(11.146)

(11.147)

(11.148)

.(11.149)

The equation (11.149) is Lorentz condition. Thus, the equations (11.142)

and (11.148) take the form as
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, 02 -
Vid-epy—=-pnJ ..(11.150)
ot
2 f—
and V2¢—e0poa—ﬂ’=—p (11.151)
ot S

The equation (11.150) and (11.151) are non-homogeneous equations for
-
vector potential A4 and scalar potential ¢. From these equation it is clear that

N
the source of em field is present. In time varying field, if the curl of a vector £

N
is zero, then it is represented by the equation (11.137), and if V- B = 0, then

ﬁ
B is represented by the equation (11.136).

Moreover, we take Ampere’s equation as

- -
VXB = pyJ (11.152)
- -
then, VX (VX A) = pyJ (11.153)
- ) -
or  V(V-A)-V*4=p,J (11.154)

there is only possibility to choose

%
V-4=0 (11.155)

)= —
Hence, Vod =—pyJ ...(11.156)

5
This is known as Poisson’s equation in vector potential A . In views of the
equations (11.150) and (11.151), the solution will be in form of-

pdV
- (11,157
¢ JV drneyr ( )
and A= [ BoSdV =gf>“0’dl (11.158)
V. A4nr Ay

Example 11.1. A parallel plate capacitor consists of two plates with area A4
separated by distance d. If the ac source v = v, cos wt is applied between two
plates of the capacitor, calculate displacement current.

Solution: .. E =v/d, then,
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. D
displacement current i, = Aaa_t
E
or i;= €4 aa—t
€Addv_ _odv
:> = —— —= C—
“T T4 o o
where C= S04
d

i;= C%(vo COS Y)

de—Cvooasmoat.

Example 11.2. Deduce Poissons’s equation from Maxwell’s first equation.
Solution: Maxwell’s First equation is given by

%
V-D=p
- -
Since D = gyE , then
%
V-E= £
€o
_)
or V'[—V¢—8—A]=£
ot €
or V3¢ - av-4) _ p
ot €
%
But V-4=0
Thus, Vi = _P
o

Example 11.3. A monochromatic plane polarized electromagnetic wave
travelling in free space is given by
- .
E =y E,sin(of - kz)
- -
Find magnetic field intensity H and poynting vector S .

Solution: By Maxwell’s equation,
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N
=VXE

x oy oz

_|9 9 9

ox dy oz

0 E 0
_ _L9E
0z

—x Egk cos (o — kx)

on integrating it w.r.to ¢, we get
- kY .
B = xE, (—) sin (ot — kz)
(O]
>  ~E
or B = x —Lsin (of — kz)
c
-
H=% (M) sin (f — kz)
c
= A
or H = x Hsin (0t — kz)
where H, = (M) andc= (9)
c k
Poynting vector
e
S =ExH
i ) ~
or S = EyH sin” (0 — kx) (=z)

N
Example 11.4. The vector potential A is given by

-

5
Find the curl of 4.

.—)
1= Woidl

4mtr
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%
N .
Solution: .. A= Mcﬁ ﬂ
4T r
Now
%
N .
Vx4 = Ho? \Y xcﬁ ﬂ
4 r

_)
. . N
_ Mcﬁ Vxdl +M¢ V(l) < dl
41 r 47 r
- -
The curl of source term d/ is zero, dl is current source element. Now,

- ; - -
Vx4 =t QS(__FJ X dl
4n r2

AN
= kol g dlxr

4T r2
- -
Vx4 =B
Since, V(l) = _Lz
r r
%
and 3 :9Spoldl><r
47 12

- -
Example 11.5. Show that £ and B are not affected under gauge
%
transformation as A and ¢ are given by
-, -
A = A+V\u
¢’ = ¢——

where v is any arbitrary scalar.
Solution: Given
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oA
> A
Si E=-V¢ ———
ince, 0 o
aw) Jd =
=-Vlo-—|-—(4+V
( or ) ATV
-
_ _yp-24,90% _9d(Vy)
ot ot ot
a—)
- A
E=-Vo-——
or 0 o
Now,
- -,
B =VxA4
N
= Vx(4+Vvy)
-
=VxA4+Vx((Vy)

Since curl grad of scalar is zero, then

- -
B =Vx4

Example 11.6 A plane polarized wave is travelling in free space and is given

by

-

E =y E, sin (ot — kx)

If £,=0.02 V/m and /=9 MHz, calculate E, H, and poynting vector § and
<S>

Solution: .. ® =27nf=2m X 10° rad/s
8
and k=£=&9m/s=0.3m
J/  1x10" Hz
Then

E=E;,sin 2n(ﬁ —%)

E =0.2 sin 2n(10° — 3.33x) V/m

Now H, - E_OE():&:OQV/m
Ko Z 377Q

or Hy=53x10"A/m
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- H=H,sin2n (10° - 3.33x) A/m
or H=5.3x10"*sin 2n(10° — 3.33x) A/m
Poynting vector
S=|E||H]
=1.06 x 10~ sin® (109 — 3.33x) W/m>

<S§>= % x 1.06 x 1074 W/m?>
or <S>=053%x104=53x10" W/m®

EXERCISES

11.1. Write the four equations of Maxwell in differential form.

11.2. Describe the displacement current and show that for a parallel plate
capacitor the displacement current is given by

. av
ld:CE

11.3. Write Maxwell’s equations in integral form.

11.4. State and prove Poynting theorem and explain the physical significance
of the terms in it.

11.5. Derive the wave equation for a monochromatic electromagnetic wave
travelling in free space.

11.6. Derive the wave equation for a wave propagating in a conducting
medium and for a plane wave show that

k2=ico;,tcs —coze},t

11.7. Describe linear, circular and elliptical polarizations.

11.8. An electromagnetic wave is propagating in conducting medium,
obtain an expression for depth of penetration and show that for current

density
J=J,e®
11.9. Obtain the expression for wave equation for vector and scalar
potentials.

11.10. Write down the Lorentz condition and explain its physical significance.
11.11. Show that the vector potential may be written as

_ [ oidl
A= Lo
CJ‘) 4ntr
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A Physical Constants

APPENDIX

Electron charge

Electron Mass

Electron charge to mass ratio
Permittivity constant
Permeability constant

Speed of Light

Proton Mass

Electron Volt

Magnetic Moment of electron

magnetic Induction

e ~1.6 x 107" coulomb
m 9.1 x 103 kg
e/m 1.76 x 10" coulomb/kg
€ 8.85 x 107! coulomb?/N-m?
By  1.26x10°=4nx10"7 Wb/A-m
¢ 3% 108 m/s
mp  1.67x107% kg
eV 1.6 x 107'% joule
W, 9.29 x 10~'® joule-m?/Wb
B 1 Wb/m” = 10* gauss
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B Trigonometrical Relations

sin (90° — 0) = cos 0
cos (90°—0) =sin O
sin (180° — 6) = sin 6
cos (180° —0) =—cos 6
sin (4 £ B) =sin 4 cos B £ cos 4 sin B
cos (A+B)=cosAcosB ¥ sindsinB
cos® 0 +sin® 0 =1
sin 20 =2 sin O cos 6
c0s20=2cos’0—1=1-2sin’ 0 =cos’ 0 —sin’ O

Y, cus[422)
2 2
cos A+ cosB= ZCOS(A+B)-COS(%)

cosA—cosB= Zsin(A+B

. . . (Ax
s1nAis1nB:2sm(

3 45
sin®=06- 9— + 6_ .........
31 5!
2 4
cos 0= 1—6—+6— .........
21 4!

Angle 0° 30° 45° 60° 90° 120°
sin 0 12 /42 NEY,) 1 V32
cos 1 NEY) 172 0 0 -12
tan 0 13 1 NE) © NE

R
sin O = ¢
2i
i0 —i0
cos 0= ¢ te
2




C Algebraic Relations

Circle — Circumference - 2nr
Area — e
i X 2mr
Length of arc - 360
L
Area of Sector - 360
Sphere — Surface Area - 4
4
Volume - gnr3
Cone —  Surface Area — nrh
1
Volume - gnr3h
e=2718
=1
e’=0
Log,e=1
Log,1=0

Log,xy =Log,x + Log,y

Log, (f) =Log,x—Log,y
y

Log,x“=a Log, x
Log,x =2.303 Log,, x

x2 3 x4
Lo 1+ x)=x——+—+—+...
g (I Hx) = x=—rtty

1 radian = 57.3°
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1°=0.01745 radians

2 3 X4

X
e =l+x+—+—+—+
20 31 4!

Quadratic Equation

ax’ +bx+c=0

b+t \/b2 —4ac

Roots of equation are x =
2a

, a#0

Binomial Expansion

(I+x)"=1+nx+

n(n—l)xz N n(n—1) (n—2)x3 .
2! 3!

n 2
(a+x)'= a”(1+£) =a”[1+n(f)+n(n—_l)(f) T
a a 2! a

n n!

c,= ——
ri(n—r)!

Arithmetic Progression

Sum of nterms S i

§[2a +(n—=1)d]

Geometric Progression

1_ n
Sum of » terms Sn=a(1 !
—r

a

Sum of infinite terms §_ = —



D " Vector Identities

APPENDIX
- - - - - -
A-B =|A4]||B|cos (4, B)
- - - - - -
AXB =|A||B|sin (4, B)
- -5 > s T T
AX(BxC)=(A-C)B—-(4-B)C
%
V-Vx4 =0
VxVéo =0

- - -
V(@A) =¢V-A4+ 4-Vo
- - - - - -
V- (4xB) =B-VXA—-A-VXB
- - - - - - - - - -
Vx(AxB)= AV-B)—B(V-A)+(B-V)A+(4-V) B

Vx(¢,—4>) = (I)VXZ-FV(I)XZ

-

1 _; r
r 2 =
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Alternating Currents 275
Ampere’s Law 254

B
Biot-Savart Law 245
Boundary Conditions 172

C
Capacitance 136

capacitance 280

Carbon Resistor 207
Charge Densities 23

Charge on Conductors 59
Circular Coil 250

Circular Polarization 341
Clausius-Mossotti Equation 162
Color Code 207
Conducting Media 342
Conducting Sphere 120
Conductors and Insulators 2
Coulomb’s Law 3,5

Current Density 192
Current Loop 243, 248
Cylindrical Capacitor 140

D

Diamagnetism 261

Dielectric Constant, Electric
Susceptibility 160

Dielectric Constants 7

Dielectric Materials 148

Displacement Current 328

INDEX

361

E

Eddy Currents 310
Electric Charge 1
Electric Current 191
Electric Dipole 28, 30
Electric Energy 147
Electric Field 13, 16, 18
Electric Field 47, 50

Electric Field Due to Non-conducting
Sphere 56

Electric Flux 37

Electric Generator 309

Electric Lines of Force 20

Electric Potential 70, 72, 77

Electric Potential Energy 84
Electrical Images 118
Electromagnetic Wave Equation 335
Electromotive Force 203
Electrostatic Energy 144

Elliptical Polarization 341

EMF 308

Energy Dissipation 205

Energy of Dipole 32

Energy Stored in a Magnetic Field 314
Equipotential Surfaces 80

F

Faraday’s Induction Law 304
Ferromagnetism 263

Finite Straight Conductor 249
Fleming’s Right Hand Rule 307

Force Between Two Parallel Wires 252
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G Magnetization 260

Gauss’s Law 41 Magnets 233

Gauss’s Law in Differential Form 54 Maxwell’s Equations 325, 330
Gauss’s law of Dielectrics 154 Moving Charge 236
Gaussian Symmetrical Surfaces 45 Mutual Inductance 312

H N

Hysteresis 265 Non-polar dielectrics 152
Hysteresis Loss 266 [0)

I Ohm’s law 195

Industance 282 P

K Parallel Plate Capacitor 137
Kirchhoff’s Laws 208 Paramagnetism 262

L Permittivity 7

Langevin equation 163 Phasor Diagrams 278

Laplace’s Equation 107, 109, 113
LCR in Parallel 294

LCR in series 289

Lenz’s Law 306

Line Charge Density 25

Poisson’s and Laplace’s Equations 103
Polar dielectrics 151

Polarisation 150

Polarizability 160

Polarization 339

Line Integral 69 Polarization Current Density 156
Linear Polarization 340 Potential Difference 70
Local Field 157

Long Solenoid 251

Loop Circuit 203

M
Magnetic Dipole Moment 242
Magnetic Field 233

Potentio-meter 219
Power in AC Circuits 292
Poynting Theorem 332

Properties of Equipotential Surfaces 83

Q

Quality Factor 296

Magnetic Flux 234 R

Magnetic Force 236 Resistance 195
Magnetic Permeability 260 Resistance 279
Magnetic Susceptibility 261 Rheostat 220

Magnetic Torque 243 RL Circuit 315
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Self-Inductance 311

Series Resonance 291, 296
Solid Angle 39
Superconductors 200
Superposition Principle 5
Surface Charge Density 25
T

The Capacitor 135
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Transformers 299

U

Uniqueness Theorem 101

Unit of Charge 1

\%
Voltage and Current 276
Volume Charge Density 24

w

Waves in Free Space 336
Wheatstone’s Bridge 221
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