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Preface

The idea to write a textbook on thermodynamics came to my mind after teaching this
subject during the last eight years at the University of Lisbon. My target audience
includes second year undergraduate students in Physics, Physics Engineering, and
Biophysics and Biomedical Engineering. All of them have undertaken a first year
of freshman Physics, being familiarised with calculus, Newtonian mechanics, and
electromagnetism. Some of them will not be taught other courses on thermal physics,
while others will enrol in statistical physics in their third year. Therefore, this book
is an introductory text on thermodynamics, which was designed for undergraduate
students in Physics and in the physical sciences.

Thermodynamics is one of the more general physical theories, with a remarkably
broad scope of applicability. It is becoming an ever more interdisciplinary subject
with its concepts and ideas being exported from its traditional arenas into economics,
biology, and ecology. The book is a first encounter with thermodynamics and pro-
vides a synthetic overview of its laws and formal aspects. Its contents were selected
to be taught in a one semester course, but it can also be used for self-study. The book
is concise, and as sophisticated as possible at an introductory level. The language
and mathematical notation adopted throughout the text is simple and consistent with
that commonly adopted in other courses; this is essential in a first encounter with
thermodynamics to avoid making it more difficult than necessary. The tools of calcu-
lus for thermodynamics (exact differentials, Legendre transforms, and homogeneous
functions) are integrated in the main text as text boxes, but may be skipped if the
reader is already familiarised with these topics.

This textbook presents a phenomenological, physically motivated theory of ther-
modynamics that smoothly and gradually unfolds into a formal and generalised the-
ory. It is divided into three parts: Part I addresses the fundamentals and laws of ther-
modynamics, Part II focuses on its structure and formal aspects, and Part III explores
selected applications, namely, phase transitions, magnetic systems, and thermal ra-
diation.

While this is a self-contained book on thermodynamics (i.e. focused on macro-
scopic physics), emphasis is also placed on the microscopic underlying model. This
facilitates the understanding of key concepts (e.g. entropy) by reducing the level of
abstraction, and motivates a future course on statistical physics. Therefore, the ideal
gas is used both as a thermodynamic system and a model system throughout the
book, which also contains a short introduction to the kinetic theory of gases.

Nowadays, many students find it difficult to concentrate. Therefore, all presented
materials are delivered in small batches. The book uses active reading strategies (in-
cluding conceptual problems which are responded within the main text) to stimulate
engagement with the subject through active, critical though, and raise awareness for
tricky issues. Since many people, especially undergraduate students, learn from ex-
amples and from problem solving, each chapter terminates with two or three worked
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xii Preface

problems and a selection of proposed problems, whose solutions are offered online
as supplementary materials.

My expectation is that by using this book, the reader will understand the funda-
mental principles of thermodynamics, and be able to apply it to the study of different
physical systems.

I am very grateful to my collaborators and friends Antonio Rey (Universidad
Complutense de Madrid), Raffaello Potestio (Universita di Trento), and Rui Travasso
(Universiade de Coimbra) who have carefully revised many chapters. Their helpful
comments have greatly contributed to improve the clarity of the text.

I would like to deeply thank my department colleagues Margarida Cruz and Ana
Nunes for their enthusiasm regarding this book and their willingness to contribute
the last two chapters on magnetic systems and thermal radiation, respectively.

Finally, I am particularly pleased to acknowledge my students who have helped
me to evolve as a teacher and, perhaps more importantly, with whom I have been
deepening my understanding of thermodynamics.

Patricia Faisca
Lisboa, February 2, 2022
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University of Lisbon University of Lisbon
Lisbon, Portugal Lisbon, Portugal
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1 Thermodynamics Key
Concepts

This chapter introduces key concepts of thermal physics and thermodynamics. Focus
is placed on the notion of thermodynamic equilibrium, equilibrium fluctuations, and
types of thermodynamic processes. The ideal gas is presented as a thermodynamic
system as well as a model system. The concept of internal energy is discussed. Tem-
perature is presented as an empirical property, and the zeroth law of thermodynamics
is stated. The chapter ends with a brief introduction to the kinetic theory of gases,
and the ideal gas equation of state is derived in this context.

1.1 INTRODUCTION

Thermal physics comprises the study of thermodynamics, kinetic theory of gases,
and statistical physics. This book is focused on thermodynamics, but it will make a
small detour to briefly introduce the kinetic theory of gases.

Thermodynamics was developed in the 19th century in the context of the indus-
trial revolution. By then it was necessary to build efficient steam engines, a type of
heat engine in which hot steam, usually supplied by a boiler, expands under pres-
sure, and part of the heat is converted into work to generate motion. From an applied
point of view, thermodynamics can be viewed as a branch of science and engineering
whose scope is that of understanding the processes associated with energy conversion
and energy transfer. However, the scope of thermodynamics is remarkably broader.
Indeed, thermodynamics is a branch of Physics that studies macroscopic systems,
which are systems comprising a very large number of components.

The system formed by the Earth and the Moon, both massive objects, is likely
identified as a mechanical system. By using Newton’s law of gravitation, it is possible
to write the equations of motion, solve them analytically, and obtain the trajectories.
If, instead of two celestial bodies, one considers three (or more), there is no longer
an analytical solution. The system is still considered a mechanical system, and given
accurate values for the initial positions and velocities, one can solve the equations of
motion numerically and make accurate predictions for the trajectories.

If instead of a group of celestial bodies, one considers a gas inside a small box
with a volume of 1 cm?, this is likely no longer viewed as a mechanical system.
Indeed, this is an example of a thermodynamic system. In this case, the number of
constituent particles (atoms or molecules) is so large, that even if we had extraordi-
narily powerful computers to integrate the equations of motion, we would still have
the problem of accurately determining a prohibitively large number of initial posi-
tions and velocities. Fortunately, for such large systems, it is possible to attain a new
level of simplification and perform accurate calculations and experimental measure-
ments. Indeed, in thermodynamics the number of particles N forming a system is
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so large that the system’s description is limited to a certain number of the so-called
thermodynamic properties, i.e., measurable macroscopic physical properties such
as the pressure (P), temperature (T'), volume (V), and density (p = N/V) of a fluid
(Figure 1.1 A), without worrying about the microscopic details of the system (Fig-
ure 1.1 B). Thermodynamic properties can be also designated by state variables or
thermodynamic observables.

As it will become clear as our story unfolds, thermodynamics offers a rigorous
mathematical formulation on the relation between thermodynamic properties that are
used to describe the equilibrium state of macroscopic systems, as well as the exper-
imental methods used to measure them. It applies to systems that are sufficiently
large so that equilibrium fluctuations can be ignored. The kinetic theory of gases,
on the other hand, seeks to determine the properties of gases using the probability
distributions associated with the movement of each individual particle.

A B

!

Z|
=)
>

Figure 1.1 Relation between macroscopic state (A) and microscopic state (B) of a system.
For a gas composed of N particles, a macroscopic state (or macrostate) is a description of a
thermodynamic system based on measurements of macroscopic properties such as P, T, V,

7
/ /\f

and p. On the other hand, a microscopic state (or microstate) is defined by the ensemble of
6N coordinates, which are the three position coordinates (x;, y;, z;) and the three momentum
coordinates (py;, py.i, P-,i) of each particle.

At this point it is necessary to answer the following questions:

1. What is the meaning of equilibrium and equilibrium fluctuations?
2. What is the exact meaning of a very large number of components?

1.2 THERMODYNAMIC EQUILIBRIUM

In order to understand the meaning of thermodynamic equilibrium, let us start by
looking at Figure 1.2, which represents the time evolution (i.e. the value observed
at time ¢) of some thermodynamic property X, as well as the moving average of
that property. We see that after some specific time 7, termed the relaxation time,
the moving average converges to a well-defined mean value X, and X () rapidly de-
viates from X by an amount AX = X (¢) — X that is either positive or negative. We
say that X fluctuates around X and AX represents the fluctuation. A state of ther-
modynamic equilibrium is attained when the moving average becomes constant.
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The random instantaneous deviations from the property’s mean value observed in
thermodynamic equilibrium are termed equilibrium fluctuations. Because of these
fluctuations, which result from the fact that the system has an underlying microscopic
structure (Figure 1.1 B), one cannot say that X is strictly constant in equilibrium.

X(t)

N
C

I
»

T t

Figure 1.2 Thermodynamic equilibrium. When a system attains a state of thermodynamic
equilibrium after time 7, the average value X of any thermodynamic property X becomes well
defined, and X (¢), the instantaneous value of X, rapidly fluctuates around X.

The size of equilibrium fluctuations is quantified by the so-called relative fluctu-
ation, (AX?) 3 /X, with (AX 2)% standing for the root-mean-square deviation. In con-
sequence of a fundamental result of statistics, this quantity tends to zero as 1/ VN,
when N, the number of independent parts of the system, tends to infinity (e.g. for a
gas of N particles, the total energy is essentially the sum of order N contributions
that are approximately independent). The limit where the number of particles N in
a system goes to infinity (N — o0), and the system’s volume V increases in propor-
tion to N, such that N/V is finite, is termed thermodynamic limit. Of course, strictly
speaking, physical systems are not of infinite size. However, if N is large enough (e.g.
of the order of the Avogadro number Ny = 6.02214 x 1023), the size of relative fluc-
tuations is smaller than the accuracy of the measurement, and fluctuations are very
difficult to detect experimentally. On average, a small volume of 1.0 cm? of matter
in the solid or liquid phase contains up to 10?* particles, and up to 10?° particles if
matter is in the gas phase.

For a macroscopic system in thermodynamic equilibrium, the equilibrium fluc-
tuations can be neglected

The macroscopic states of a thermodynamic system in equilibrium (also termed
macrostates) (Figure 1.1 A) are thus characterised by properties that do not change
with time. Additionally, in equilibrium, these properties are uniform throughout the
system. On the other hand, the properties of a thermodynamic system will change
with time if the system is perturbed by an external action. Think, for example, of a
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gas that has been pushed towards one of the sides of the container by dislocating a
piston. In this case, the density on that side of the container will be higher than else-
where, and the system will no longer be in a state of thermodynamic equilibrium. The
density will vary with time until a new state of equilibrium is reached. It is important
to stress that the time necessary to reach a state of thermodynamic equilibrium will
depend on the specific system under study, and for some systems it can be extraordi-
narily long. In the case of some glasses it can be hundreds of years. Therefore, one
needs to be careful when making experimental measurements because temporal in-
dependence during the observation time is not sufficient to guarantee that the system
is in a state of thermodynamic equilibrium. In practice, the criteria of equilibrium is
circular: a system is in a state of thermodynamic equilibrium if its properties obey
the laws of thermodynamics.

One should mention as well the possibility for the system to be in a stationary
state. The latter is a non-equilibrium state with no macroscopic time dependence. In
this case, thermodynamic properties become constant within a sufficiently small part
of the system. However, there always exists an energy or particle flux passing through
it. In contrast, for a system in a state of thermodynamic equilibrium there is no net
flow of energy or matter, either within the system or between different systems.

1.3 THERMODYNAMIC SYSTEM

So far, we used the word system to refer to any macroscopic entity composed of a
large number (N »~ Ny ) of particles. However, in thermodynamics, system has also an
operational meaning. Indeed, the experimental or analytical analysis of the system
can be more or less straightforward, depending on the manner according to which it
is defined.

In thermodynamics the system is a part of the universe that we want to study.
In this sentence the word universe stands for the thermodynamic universe, which
should not necessarily be identified with the cosmological Universe, although the
latter can be studied from a thermodynamics perspective. The system is enclosed by
a surface termed boundary, which can be real or imaginary, and whose shape and
size can, or not, be well defined. The boundary separates the system from the rest of
the universe, which is termed surroundings (Figure 1.3). Depending on the type of

Fm———————— surroundings

1
1 system :_L
] | boundary

Figure 1.3 Thermodynamic system. A thermodynamic system is separated from the sur-
roundings by a boundary. The thermodynamic universe comprises the system and the sur-
roundings.
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boundary, the surroundings can affect, or be affected, by the system. Thermodynamic
systems are generally classified as:

1. Isolated: when neither energy nor matter can be exchanged with the surround-
ings.

2. Closed: when only energy can be exchanged with the surroundings.

3. Open: when both energy and matter can be exchanged with the surroundings.

Regarding the type of boundary one can consider:

1. Diathermal or adiabatic: depending on whether or not it allows for energy to
be exchanged with the surroundings.

2. Permeable or impermeable: depending on whether or not it allows for matter
to be exchanged with the surroundings.

3. Movable or fixed: depending on whether or not it allows for the system’s
volume to change.

% reservoir
T energy constant T
=l

diathermic wall
& reservoir
(2]
T constant P
S

movable wall
&g reservoir
@ particles
T constant p
3 h)

permeable wall

Figure 1.4 Three types of reservoirs. A system that is placed into thermal contact with a
heat reservoir by means of a diathermal wall equilibrates at the reservoir’s temperature. If
the system is placed into mechanical contact with a volume reservoir, it equilibrates at the
reservoir’s pressure. Finally, if the system is placed into chemical contact with a particle’s
reservoir, it equilibrates at the reservoir’s chemical potential.

It is important to define a specific type of surroundings that is termed reservoir or
bath (Figure 1.4). The latter is a system whose size is so large when compared with
the size of the system under study, such that the reservoir’s thermodynamic properties
do not change when placed into contact with the system. An idealised reservoir has
an infinite size. We distinguish three types of reservoirs:

1. Heat reservoir: A system that can lose or gain energy while keeping a con-
stant temperature when placed in contact with another system. When a system
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is placed in thermal contact with a heat reservoir by means of a diathermal
boundary, its equilibrium temperature will be identical to the reservoir’s tem-
perature.

2. Volume reservoir: A system that can increase or decrease its volume while
keeping a constant pressure. When a system is separated from a volume reser-
voir by a mobile boundary, its equilibrium pressure will be identical to the
reservoir’s pressure.

3. Particle reservoir: A system that can gain or lose particles while keeping a
constant chemical potential. When a system is placed in contact with a particle
reservoir by a permeable boundary, its equilibrium chemical potential will be
identical to the reservoir’s chemical potential. The concept of chemical poten-
tial will be carefully addressed later on in this book. For now, it suffices to
say that the chemical potential is related to the number of particles in much
the same way that temperature is related to energy and pressure is related to
volume.

Throughout this book, and unless otherwise stated, we will be focusing on simple
thermodynamic systems. The latter are macroscopically homogeneous, isotropic, un-
charged, chemically inert, and sufficiently large so that surface effects can be ne-
glected. Furthermore, they are not acted on by gravitational, electric, or magnetic
fields. We will often recur to a simple thermodynamic system called the ideal gas. Its
simplicity allows performing relatively simple analytical calculations that illustrate
the theory of thermodynamics.

1.4 THE IDEAL GAS

In Physics one creates models of real systems in order to replicate and predict the
system’s behaviour. A model is a simplified representation of the physical system
under study, and of the intermolecular interactions establishing between the system’s
components (be it electrons, atoms, molecules, planets, etc.).

The ideal gas model is the simplest representation of a gas, that correctly cap-
tures a gas at low density. It represents the gas particles as point particles (i.e. a mate-
rial body having mass but no spatial extent), and assumes that there are no (attractive
or repulsive) physical interactions between them. The particles of an ideal gas can
change energy between each other, and with the walls of the container, exclusively
through elastic collisions, i.e., collisions that conserve momentum and energy. For
an ideal gas composed of N particles in equilibrium, the pressure (P) is related with
the volume (V') occupied by the gas and its temperature (7'), through the pressure
equation of state:

PV = NkgT (1.1)

In equation (1.1) kg = 1.3807 x 10723 JK~! is the Boltzmann constant, 7 is the abso-
lute (or thermodynamic) temperature, P is the absolute (or thermodynamic) pressure



Thermodynamics Key Concepts 9

(measured relative to absolute zero pressure, which is the pressure of a perfect vac-
uum). The SI unit of temperature is the kelvin (K). In the Kelvin temperature scale 0
K corresponds to the absolute zero. The SI unit of pressure is the pascal (Pa). Per-
haps, a more familiar version of the pressure equation of state is PV = nRT, with n
being the amount of substance, whose SI units is the mole, and R=8.31457J mol 'K~!
being the gas constant. In order to switch between the two forms if suffices to take
into account that n = N/N4 and kg = R/N4. The pressure equation of state is com-
monly known as the ideal gas equation. The ideal gas equation was stated in 1834 by
Benoit Emile Clapeyron (1799-1864) and results from combining the old gas laws:

1. If temperature is kept constant, the pressure is proportional to the density:
Pocp

This is known as Boyle’s law, empirically established in 1662 by Robert Boyle
(1627-1691).
2. If volume is kept constant, the pressure is proportional to the temperature:

P<T

This is known as Amonton’s law, empirically established in 1702 by Guil-
laume Amonton (1663—-1705).
3. If pressure is kept constant, the volume is proportional to the temperature 7

VoT

This is (often inaccurately) named as Charles’ law. As a matter of fact, it was
established empirically in 1802 by Joseph Gay-Lussac (1778-1850).

The original formulation of the ideal gas law has, therefore, an empirical basis but
it can be derived in the context of statistical mechanics and of the kinetic theory of
gases, as we will show later on in this chapter.

The ideal gas equation shows that in order to characterise the equilibrium state of
a closed system it is enough to specify the value of two thermodynamic properties.
Indeed, if one writes the equation of state as

T = l, (1.2)
Nkg
with N and kp being constants, T can be taken as a function of Pand V, T =T (P,V),
being actually fixed by the values of P and V. If we write the equation of state such
that P = P(V,T), then P stays determined by V and T'. Finally, if one considers V =
V(P,T), V stays fixed once we specify P and T.

Properties P and V in equation (1.2) are termed independent properties and T is
the dependent one. Two properties are independent if the value of one of them can
be changed without affecting the other. For a simple, single-phase fluid system with
a fixed number of particles, the equilibrium state stays completely specified by two
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independent properties (P,V), (V,T) or (P,T). When the number of particles N is al-
lowed to change it is necessary to consider three thermodynamics properties, and one
of them must necessarily be N. For more complex systems, it is likely that more than
two independent thermodynamic properties are necessary to specify the equilibrium
state; in that case the equation of state is more complicated being generally expressed
as T =T(X;,X2,X3,...,X,). Note that a mathematician would express the functional
relation between the different variables (or thermodynamic properties) using the let-
ter f for the function and T for the property, T = f(X1,X>,X3,...,X,). In Physics we
simplify this notation by using the same letter for both function and variable.

It is interesting to note that the ideal gas law shows that the pressure depends on
the number of particles forming the gas, but does not depend on any property of the
particles (e.g. their mass). Likewise, any set of N particles sufficiently diluted always
occupy the same volume V, when T and P are kept constant.

In the next section we introduce another equation of state of the ideal gas, this
time for a rather important thermodynamic property called internal energy.

1.5 INTERNAL ENERGY

In Newtonian mechanics, in order to calculate the kinetic energy of a mechanical
system (e.g. a body with a certain mass sliding down an inclined plane) one con-
siders the translation of the system’s centre of mass in a given coordinate axis. The
potential energy results from the interaction of the system with the Earth’s gravita-
tional field. In thermodynamics one does not consider these forms of energy, which
are associated with macroscopic movement, because the system under study is usu-
ally at rest. Instead, one considers the so-called internal energy, that we denote by
the capital letter U.

Consider a thermodynamic system composed of N interacting particles. For the
sake of simplicity, let us assume for now that the particles are atoms. In this case the
total energy of the system, which we denote by E, is

1Y 1
E = meivi2+qu,~j(r),
23 2

i+

where the first term is the kinetic energy of the system of particles E; (which is the
sum of the kinetic energy of all particles measured in a reference frame at rest relative
to the system’s centre of mass), while the second term is the potential energy of the
system of particles, £, (which is the sum of the energies associated with the total
number of pairs of intermolecular interactions that establish between the system’s
particles). In the equation above u;;(r) stands for the interaction energy between
particles i and j, and r represents the distance between them. Typically, for non-
charged particles, the intermolecular energy potential, u(r), is given by

u(r):4£|:(c:)6—(c:)12:|, (1.3)
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and has the shape represented in Figure 1.5. The first term in (1.3) represents the
repulsive short-range interactions, and the second term represents the attractive long-
range interactions. When the distance between the particles is 7,,;,, ¢ takes a mini-
mum value ;.

u(r)

--%-9

Umin

Figure 1.5 Intermolecular potential. Interaction potential between two electrically neutral
particles separated by a distance r. The distance ¢ corresponds to the sum of the van der
Waals radii of the two atoms, and r,,;, is the distance at which the interaction is optimal (i.e.
corresponds to the lowest interaction energy). The interaction potential is strongly repulsive
when r < 0. The attractive tail, which has a 1/ 0 dependence in distance, results from dipole-
dipole interactions between the atoms.

If energy is allowed to enter or leave the system, E will change with time such
that E = E(¢). In thermodynamic equilibrium the internal energy is defined as

1

s
:m o E(l)df, (14)

U=(E(1))

or, equivalently
U = (Ex)+(Ep),

with #y > 7. We recall that 7 is the relaxation time (Figure 1.2).

If the system under study is an ideal gas, the internal energy only contains the
kinetic term because there are no intermolecular interactions between the particles.
For an ideal gas of N particles, a calculation based on statistical mechanics shows
that the internal energy is given by

3
U= NksT (1.5)

The equation above is another equation of state of the ideal gas. It shows that when N
is fixed the internal energy only depends on the absolute temperature T, U = U(T).
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In the case of a real gas, where the particles interact with each other, the en-
ergy also contains the potential energy term. Furthermore, if the particles have in-
ternal structure (as in the case of a gas is formed by diatomic particles such as O,
molecules), one has to consider the kinetic energy of vibration, Ey (corresponding
to the stretching of the chemical bond), and the kinetic energy of rotation, Eg (corre-
sponding to the rotation of the molecule around one or more axis of rotation). Other
energy terms may contribute to E, depending of the specific system under study.
The internal energy associated with the disorganised, small-scale motion, is often
designated as thermal energy.

1.6 EXTENSIVE AND INTENSIVE PROPERTIES

Consider an ideal gas formed by N particles in equilibrium enclosed in a container
with volume V at absolute temperature 7. Every time a particle collides with the
walls of the container, a force is applied to the container’s surface. The pressure P
is defined as the force per unit area A. Let U be the internal energy of the gas. Now
imagine that the size of the container doubles, together with the number of particles.
Which thermodynamics properties keep their values in the larger system? Only the
P, T, and p. The latter are termed intensive properties. An intensive property does
not depend on the size (or extent) of the system; it is a scale invariant. On the other
hand, an extensive property scales linearly with the system’s size. Properties such as
U, V,m (mass), n, and N are all examples of extensive properties; they will double
their values upon doubling the size of the system. The ratio between two extensive
properties is an intensive property. The molar mass M is therefore an intensive prop-
erty.

Mathematically, extensive properties are homogeneous functions of first order,
while intensive properties are homogeneous functions of order zero. Some prop-
erties are neither extensive nor intensive. Mathematically, these properties are still
homogeneous functions, but not of degree one or zero.

HOMOGENEOUS FUNCTIONS

Let f = f(x,y,z) be an homogeneous function of order k such that
F (e, Ay, Az) = 25f (x,y,2) with A > 1
f is considered an homogeneous function of first order if k = 1, and an homoge-

neous function of order zero if k£ = 0.

Think about it...
Can you think of a property that is neither extensive nor intensive?
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Answer
Consider a sphere of radius R and volume V, such that V = (4/ 3)71:R3. Expressed
as a function of V the radius is R(V) = (3/4r) V3. Thus

R(AV) = (3/47)3 ATV = ATR(V),

showing that (relative to the volume of a sphere) the radius is an homogeneous
function of degree 1/3.

1.7 THERMODYNAMIC PROCESSES

A thermodynamic process occurs whenever the system moves from one initial equi-
librium macrostate i to a final equilibrium macrostate f. We already mentioned that
the number of independent variables characterising a macrostate depends on the sys-
tem under study. For the sake of simplicity, let us consider an ideal gas formed by a
fixed number of particles. In this case the number of independent variables is two.
Let us consider that one of the variables is kept fixed during the process. Now for a
process to occur, one must externally perturb the system by changing one thermo-
dynamic property. Let us denote it by X. During a thermodynamic process X will
move from an initial equilibrium state where it takes the value X;, to a final equi-
librium state where it takes the value Xy, such that a finite change AX = (X —X;) is
observed. In thermodynamics we are not interested in studying how such transitions
occur, nor in determining how long they take to occur, i.e., in evaluating relaxation
times. Rather, we are interested in studying the measurable physical properties of
equilibrium states. The designation thermodynamics is therefore somehow mislead-
ing.

It is natural to expect that an external perturbation will drive the system into a
non-equilibrium state before it reaches its final equilibrium state. On the other hand,
the equation of state is a mathematical relation between the system’s equilibrium
properties. Does this imply that the equation of state does not hold for thermody-
namic processes? In other words, does it imply that processes cannot be described
thermodynamically? In order to answer this question it is convenient to envisage a
thermodynamic process as a continuous succession of intermediate states. Further-
more, it is also useful to classify the intermediate states as:

1. An equilibrium state of the system and the surroundings (i.e. an equilibrium
state of the universe). In this case the process is termed reversible.

2. An equilibrium state of the system only. In this case the process is termed
quasi-static.

The direction of a reversible process can be reversed. This means that the thermody-
namic universe can be restored spontaneously to its original equilibrium state, leav-
ing no residual changes elsewhere. On the other hand, a quasi-static process may be
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reversible, but only if it occurs in the absence of energy dissipation (e.g. due to fric-
tion, viscous damping of fluid motion). In reality there are no such processes because
they result from an infinitesimal change of the system’s properties, which mean that
a finite change would take an infinite time to occur. However, if the change is made
sufficiently slow with regard to the system’s equilibration time, the process can be
considered to approach the limit of a quasi-static process and it can be studied in
the context of thermodynamics. To understand these ideas better let us analyse the
following thought experiments.

A — N B — ~ C  — N
N N— N

Vv

}L dy Ay

Figure 1.6 Gas compression. A gas inside a cylinder to which a frictionless piston is ad-
justed is in equilibrium occupying a volume V; to compress the gas, a macroscopic disloca-
tion L of the piston should be performed (A). If the external force is infinitesimally small it
will cause an infinitesimal dislocation dy and an infinite time would be necessary to cause
a dislocation L of the piston (B). This process corresponds to a reversible process. A small
compression of the gas is done by applying an external force that dislocates the piston by an
amount of Ay (C). The successive application of small compressions would approximate the
full compression process to a quasi-static process.

Consider an ideal gas formed by N particles, confined to the interior of an iso-
lated cylinder with a piston that moves without friction. The gas is in equilibrium and
occupies a volume V (Figure 1.6 A). Let us perform an infinitesimal compression of
the gas by applying a downward infinitesimal force to the piston (Figure 1.6 B). This
can be achieved by placing a tiny grain of sand on the top of the piston causing it
to dislocate by an infinitesimal amount dy. Since the piston moves without friction,
both the system (i.e. the gas inside the cylinder) and the surroundings go back spon-
taneously to its initial equilibrium state once grain of sand is removed, and there is
no net work done in this process. In theory, one could go on, and on, by successively
adding grains of sand until a macroscopic dislocation L of the piston had occurred.
However, this process would take an infinite time to perform; it is an idealisation.

Now, let’s consider the situation in which a downward force is applied that leads
to a small macroscopic dislocation Ay (Figure 1.6 C). The density is no longer uni-
form because the number of particles near the piston’s surface increases. This means
that the system is no longer in equilibrium. Let 7 be the time needed to achieve a
state of thermodynamic equilibrium. After time 7 the density of particles within the
cylinder will be uniform again. If (v,) is the average velocity of the particles, then
it will take 7 » Ay/(v,) for the system to equilibrate. In the context of kinetic theory
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of gases, we will see that (v,) is of the order of magnitude of 10*~10° cms™' . On
the other hand, the characteristic time of the process is given by 7, » Ay/v,, with v,,
being the velocity used to dislocate the piston in the experiment. Thus, it suffices that
(vg) >> v, for the system to be considered effectively in equilibrium throughout the
process. In this case, we say that the process approaches the limit of a quasi-static
process and thermodynamics will correctly describe the process.

In a quasi-static process it is only the system that must be in equilibrium, and a
system can attain an equilibrium state after dissipating energy to the surroundings.
All quasi-static processes that occur with energy dissipation are not reversible.

A reversible process is necessarily quasi-static, but a quasi-static process may
not be reversible

In nature processes are typically irreversible. Irreversible processes are those whose
direction cannot be reversed since it is not possible to spontaneously recover the ini-
tial state of the universe. They result from an abrupt, or sudden, change in the state
of the system (e.g. a large pressure difference leading to a sudden change in volume).
In irreversible processes there is always energy dissipation. Since they occur sponta-
neously in only one direction, irreversible processes establish the so-called arrow of
time.

1.8 CONSTRAINTS AND PROCESSES

In the context of thermodynamics, a constraint is a property of the thermodynamic
system which is held fixed by the observer during a thermodynamic process. De-
pending on the constraint, it is common to consider and perform the following types
of processes:

1. Isothermal: the temperature of the system is constant (e.g. by placing it in
thermal contact with a heat bath).

2. Isochoric: the volume of the system is constant (e.g. by placing the system
inside a closed rigid container).

3. Isobaric: the pressure of the system is constant (e.g. by placing it in contact
with a volume bath).

4. Adiabatic: there is no transfer of thermal energy between system and sur-
roundings.

Thermodynamic processes can be represented in the so-called state space. This is an
hyperspace whose coordinates are the several independent thermodynamic properties
that describe the system’s equilibrium states. In the case of a simple homogeneous
fluid (like the ideal gas) with a fixed number of particles, the state space is a plane
along whose two cartesian axis are plotted any of two pairs (V,T), (P,V), etc. Only
equilibrium states can be represented in the state space. Any two points in the state
space specify a thermodynamic change. The path connecting the two points defines
a thermodynamic process.
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Think about it...
What kind of process is represented in panel (A), (B), and (C) of Figure 1.7?

Answer

In panel (A) only two equilibrium states of the system could be measured cor-
responding to the initial and final state, respectively. The absence of a path con-
necting the two states means that the process is irreversible. In panel (B) a set of
intermediate equilibrium points could be measured, and the distance between them
is small. This process may be seen as an approximation to a quasi-static process. In
panel (C) there is a continuous succession of equilibrium points linking the initial
and final states of the system. The continuous line indicates that the process can
be reverted. Therefore, the process in panel (C) is reversible and, by definition, it
is also quasi-static.

Pl ® Pl ® P

> I >

V" V™ V™

Figure 1.7 Three types of thermodynamic processes represented in the (V, P) state space.

1.9 HEAT AND HEAT CAPACITY

Heat is defined as being energy in transit from a system at higher temperature to a
system at lower temperature. The in transit part of the definition is very important
because it means that heat is not a form of energy. Instead, it is a way (or a mode) to
transfer internal energy during a thermodynamic process as a result of a temperature
difference; the expression heat flow is often used to refer to energy transferred as
heat.

It is incorrect to say that a thermodynamic system contains an amount of heat
because there is no way to identify some part of the internal energy of a thermo-
dynamic system as being heat

Energy can be transferred as heat via three general mechanisms: conduction, also
termed thermal conduction, according to which particles transfer thermal energy be-
tween each other, convection in which the mass motion of a fluid occurs as a result of
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temperature differences across that fluid (e.g. when a fluid in placed in contact with a
hot source) carrying energy with it, and radiation, which refers to the emission and
absorption of electromagnetic radiation.

When energy in transferred into a system, the system’s temperature increases,
and the system becomes hot. Alternatively, when energy is transferred from the sys-
tem, its temperature decreases, and the system becomes cold. Let dQ be the amount
of energy that must be transferred into a system by heating it such that the system’s
temperature is raised by d7'. The heat capacity C, is defined as:

a0 = CdT (1.6)

The heat capacity is then a measure of the amount of energy that is needed to increase
the temperature of a system. The SI unit of heat capacity is J K™!. The heat capacity
often depends on temperature, C = C(T'). Note that the 4 notation in equation (1.6) is
used to indicate that the infinitesimal dQ is not the differential of a function. There-
fore, C is not the derivative of Q with respect to T. The reason why this is so will
become clear in Chapter 2.

Heat capacity is an extensive property. The so-called specific heat, c, is the heat
capacity by mass unit ¢ = C/m, and the molar heat capacity, C,,, is the heat capacity
per mole of substance, C,, = C/n. Both are intensive properties.

The amount of energy transferred as heat to a thermodynamic system that
changes from an initial state i whose temperature is 7;, to a final state f, whose
temperature is Ty, is

Ty
Q,;f=fr C(T)dT. (1.7
When C is independent of temperature the equation above can be written as
Qi%f =CAT,

with AT =T, - T;.

Think about it...

Taking into account the definition of heat, does the designation heat capacity make

sense?

Answer

The literal meaning of heat capacity is capacity for holding heat. The designation
does not make sense because it is not possible to quantify the heat content of a
system.
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1.10 THE ZEROTH LAW OF THERMODYNAMICS

While discussing the ideal gas equation of state we said that T is the absolute or
thermodynamic temperature, a quantity that is measured in the Kelvin temperature
scale. However, we have not yet defined 7 thermodynamically. Indeed, at this stage,
the notion of temperature one may have is merely sensorial. Temperature is related
with the sensation of hot and cold: we say that a hot body has a higher temperature
than a cold one. Empirical temperature scales, such as the Celsius and the Fahrenheit
reflect our notion of hotness.

Let us consider two systems, one, termed S;, has a low temperature 7;, and the
other termed Sy, has a higher temperature 7j, (Figure 1.8 A). The two bodies are
placed in thermal contact such that energy can be transferred through thermal con-
duction between them via a diathermal wall (Figure 1.8 B). Since T}, > T}, energy will
be transferred spontaneously from S, to S;. As long as energy is being transferred,
the internal energy content of the two systems will change over time, along with their
temperatures. After some time we will note that:

1. The two systems exhibit the same temperature T (Figure 1.8 C), and the latter
no longer changes with time.
2. The internal energy of each system does not change with time.

A B C

T, T, T, \ T, T T

energy

Figure 1.8 Thermal equilibrium. Two systems with different temperatures 7, > 7; (A) are
allowed to exchange energy via a diathermal wall (B). After some time they will equilibrate
at the same temperature 7' (C).

Conditions 1 and 2 define a state of equilibrium termed thermal equilibrium. Con-
dition 2 implies that there is not a net energy flow between the two systems: If any
energy is being transferred from Sy to S, exactly the same amount of energy is be-
ing transferred from S; to S;,. The process that leads to thermal equilibrium is called
thermalisation. It is important to stress that if one starts from a situation of thermal
equilibrium, the reverse process, i.e., the process of energy transfer that restores both
systems to their original temperatures, will not occur spontaneously. This means that
thermal processes define an arrow of time.

Think about it...
If systems S; and Sy, are ideal gases what is the mechanism of energy transfer that
leads to thermal equilibrium?
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Answer

Thermal equilibrium results from a process of thermal conduction driven by the
elastic collisions between the gas particles.

If several systems are in thermal equilibrium with each other, their temperatures
are the same. This observation motivates the statement of the zeroth law of thermo-
dynamics.

Zeroth Law: Two systems A and B that are each one in thermal equilibrium with
system C, are in thermal equilibrium with each other

The zeroth law justifies the use of the thermometer, a device that measures the
temperature of a system. The thermometer is placed in thermal contact with the sys-
tem and a thermometric property (a thermodynamic property that depends linearly
on temperature, such as the pressure of a gas, the height of a mercury column, the
electrical resistance of a wire, or the length of a metal rod) is measured in thermal
equilibrium. A device that satisfies this request is the so-called gas thermometer.
The latter consists of a sufficiently diluted gas (e.g. helium) enclosed in a fixed vol-
ume such as a copper bulb, which is attached to a manometer. If the system behaves
as an ideal gas, the equation of state PV = NKpT should correctly capture its equi-
librium behaviour. If both N and V are fixed, the relation 7 (P) = CP holds, with C
being a constant. To determine C it is necessary to calibrate the thermometer. This
may done by choosing the size of the unit in such a way that a given number of
units lies between two fixed points. An alternative is to use a reference tempera-
ture, which is the temperature of a physical process that consistently occurs at the
same temperature. A commonly used reference temperature is that corresponding to
the triple point (tp) of water. The triple point is the exact temperature and pressure at
which liquid water, ice and water vapour coexist. The triple point temperature is de-
fined as T;, = 273.16 K, and the triple point pressure is F;, = 611.657 Pa. Taking this
reference temperature into account, the temperature of a gas thermometer is given by

T:273.16(P).
Fip

In the gas thermometer, the thermometric property used to report the temperature of
some physical system is the pressure of the gas, P. Note that this equation indicates
that if the pressure is zero the temperature must be 0 K. This means that if a tem-
perature of 0 K could be achieved, there would be no collisions with the walls of the
container and, therefore, the particles should be at rest. It is important to stress that
the gas thermometer will only give reliable temperature measurements as long as the
gas behaves as an ideal gas. In particular, the pressure should be low and the temper-
ature should be high. At high pressures and low temperatures, the two assumptions
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of the ideal gas model (namely, that the particles have no volume and establish no
intermolecular interactions) are no longer valid, and the ideal gas equation breaks
down.

Think about it...

For a device to work properly as a thermometer, its heat capacity should be larger
or smaller than that of the system whose temperature one wishes to measure? And
what about its size? Should it be larger or smaller?

Answer

The thermometer’s heat capacity should be considerably smaller than that of the
system. Otherwise, the system would need to transfer a large amount of energy into
the thermometer, and this would change the system’s original temperature. Since
the heat capacity is an extensive property, the size of the thermometer should be
smaller than that of the system for the same reason.

1.11 A BRIEF INTRODUCTION TO THE KINETIC THEORY OF
GASES

The focus of this book is thermodynamics, the macroscopic description of physical
systems. However, here we will make a small detour to discuss microscopic physics
in the particular context of the kinetic theory of gases. The latter is a branch of
thermal physics that uses Newton’s equations of motion and probability distributions
to explain the macroscopic properties of dilute gases. This theory was the first to
provide a connection between the microscopic realm of a physical system, and the
system’s macroscopic properties. Many famous scientists contributed to the devel-
opment of the kinetic theory of gases, but the most important contributors are James
Clerk Maxwell (1831-1879) and Ludwig Boltzmann (1844—-1906). It is important
to mention that during the 1880s, the existence of atoms and molecules was still a
matter of dispute. Indeed, it was only in 1908 that the french physicist Jean Perrin
(1870—-1942) was able to experimentally demonstrate the discontinuity of matter, an
achievement for which he was awarded the 1926 Nobel Prize in Physics. In this con-
text, Maxwell’s and Boltzmann’s insights and contributions to thermal physics are
particularly remarkable.

1.11.1 VELOCITY SPACE

We consider a thermodynamic system formed by N rigid particles of a monoatomic
gas without internal structure. The size of these gas particles is small when compared
with the average distance separation between them, i.e., the gas is dilute. Moreover,
the particles do not interact through intermolecular forces, and they move ballisti-
cally (in a straight line) until they collide elastically with each other, or with the rigid
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walls of the container with rigid walls. The latter has volume V, and is thermally in-
sulated from the surroundings. The particles are given random initial velocities. After
a great number of collisions among the particles, a state of thermal equilibrium will
be achieved characterised by temperature 7'. Because there are no forces between the
particles, we assume that all the positions inside the container are equality probable.

Figure 1.9 The velocity space, with an infinitesimal element volume dV = dvx dvy dv;.

While discussing the kinetic theory of gases, we will be working is the so-called
velocity space (Figure 1.9), a Cartesian space whose axes are the components of
velocity vector

V= (Vx,Vy,vZ).

A point in the velocity space represents a particle, or, more specifically, the velocity
vector of some particle. An element dV = dv, dv, dv, of the velocity space contains
a statistically significant number of particles. The velocities of the particles in the
element dv are such that the x component lies between v, and v, + dv,, while the y
and z—components lie within vy, to v, +dvy and v, to v, +dv, respectively.

We will follow Maxwell’s footsteps (1860) to derive an expression for two proba-
bility distributions: one for the component v;, (i = x,y, z) of the velocity vector, which
will be represented by g(v;), and another one for the speed v = ||, which will be
represented by f(v). Both v; and v are continuous variables, which means that their
probability is described by a density function. The probability density function
represents a continuous probability distribution.

PROBABILITY DENSITY FUNCTION

Let x be a continuous random variable. Since x is continuous it can take an
infinite number of values. Therefore, instead of asking what is the probability of x
taking some particular value (which is zero), we should ask what is the probability
of finding x in some interval [a,b],

Pla,b] = fabpx(x)dx7
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with pyx (x) being the probability density function, and px(x)dx providing the prob-
ability to find x between x and x + dx. Like probabilities, probability densities must

be normalised. Thus o
f px(x)dx=1.

If we wish to evaluate the mean value of x, we need to compute

(x) = /_::oxpx(x)dx‘

Similarly, to evaluate the n-th moment

()= [T paaa,

and to evaluate the n-th central moment

(") = [ e ) palw)ie

It is also important to recall that two continuous random variables x and y are said
to be independent if
Pry(x%,y) = px(x)py(y)-

Also note that
px(x)py(y)dxdy

provides the probability that x takes values in the interval x and x + dx, and, simul-
taneously, y takes values in the the interval y and y +dy.

1.11.2 VELOCITY DISTRIBUTION
We define g(v;) such that

dN,,
g(vi)dv; = N" 7 (1.8)

is the fraction of particles whose i component of the velocity v; lies between v; and
vi +dv;, with dN,, being the corresponding number of particles. Maxwell wanted to
find the number of particles within the element volume dv. To succeed in his goal,
he made the supposition that, in equilibrium, the velocity distributions are isotropic
(i.e. the same in the three cartesian axes):

Ng(vy)dv, =Ng(vy)dvy =Ng(v.)dv..

Since the three components of the velocity vector are independent, the number of
particles within the element volume dv is

Ng(vx)g(vy)g(vz)dvxdvydvz-
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Moreover, since all directions are equally likely, the function ¢ (V) = g(vy)g(vy)g(v;)
must only depend on the magnitude of v:

0(5) =g(r)g(n)8(v:) = F(v) = [ (493 +42)3 .

Note that ¢(V)dv.dv,dv. is a probability per unit volume in velocity space. The
equation above is an example of a functional equation, which is a type of equation
in which the unknown represents a function. By inspection, a possible solution is

2
g(vi) =CeM,

such that )
f)y=C3eM.

Maxwell reasoned that since the distribution must converge (when v — co), A must
be negative (A < 0). To determine A and C, we use the fact that since g(v;) is a density
function, it must be normalised. Therefore,

+o0o
/ g(vi)dvi = 17

1
f+°° A} dv

The integral in the denominator is a simple Gaussian integral.

such that
C=

GAUSSIAN INTEGRAL

2
A Gaussian is a function of the type e~** . Gaussian integrals are very im-
portant in statistical mechanics and it is important to know how to evaluate them.

Consider the integral
+o00 2
G= / e % dx,
—oo

and perform a change of variables y = x+/a such that
1 +00

2
G=— > dy.
Va J-oo © @

To evaluate the integral above, we square it and recast the product as a two-
dimensional integral:

- % —oo ¢ \/a
+o0o +00o
= lf e_(fwz)dxdy
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Making a change of variables to polar coordinates

2
G = re” dr

2
a Jo
T
a

Thus

TED 2 3
—0X

f e dx=+/—.

—oo a

Two general formulas for the integral of a Gaussian are:

* on —a? 2n! T
[oo X e dx:m W, (19)

+o00 ]
f 2l g M (1.10)
0 205’”’1

and

Using equation (1.9) (with n = 0), one gets C = %, and consequently

2

A —Av;
D=1/ —e M. 1.11
svi) =1/~ (1.11)
Therefore s
A\2 2,2 2
N¢(V)dvidvydv, =N ( - ) oAty )dvxdvydvz
is the number of particles within the volume element dv.

To succeed in achieving Maxwell’s goal we still need to determine f(v) and A.
Let us do so by performing a change of variables to spherical coordinates:

A\2
O (ve, vy, v, )dvy dvy dv, = ¢ (v,0,0)v* sin 0dvdOd ¢ = (;) e \2in 0dvd0d .
Since ¢ (v, 0, @) is independent of 6 and ¢, one can integrate ¢ over these variables

2 T 4 3 2
.0, 0 )V sin0dvd0de = —A2v e ™ dv.
/0 /(; ¢ (v,0,0)v"sinOdvdOd @ NG Ve V.

Thus
4 35 42
f)dv=—=A2ve™" dv. (1.12)
Nz
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At this point we recall that in a gas without intermolecular interactions, the energy
only contains the kinetic terms. Therefore, the average energy of one gas particle is

1
Em(vz).

In the thermodynamic limit it is expected that U as given by equation (1.4) is
identical to

N 5
U=~ m(v?).
2’"(")

Moreover, we know from equation (1.5) that U = %NkBT for a gas of non-interacting
particles. It then follows that
() = 3kgT /m.

On the other hand, the average value (vz), is also given by

+ 00 4 3 + oo 2
() = f VF(v)dv = —A2 / vie ™ dv.
0 N 0

Considering (1.9) with n =2:

+ 00
f Ve gy = 1 E\ / .
0 2\4V A5

(v?)=3/24,

and since this should be identical to 3kgT /m, it comes that A = m/2kgT.
By inserting A in equation (1.11) we have thus succeeded in achieving Maxwell’s
goal in finding an expression for the distribution of the velocity component g(v;):

Thus

1 2

m 2 my;
D=(-2 i 1.13
s() (anBT) eXp( 2kBT) (113)

Similarly, by inserting A in equation (1.12), we obtain an expression for f(v):

nmy

3 2
- m_\* 2 _
Fv) _47r(27rk3T) v exp( ZkBT) (1.14)

Equation (1.14) is designated by Maxwell-Boltzmann (MB) distribution. The
MB distribution is represented in Figure 1.10 A. It has a long tail, and exhibits a
strong dependence on the temperature, with the curve broadening, and v shifting to
higher values as the temperature increases.
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Think about it...
What do the shaded areas indicated in Figure 1.10 B represent?

Answer

The first, smaller area represents the fraction of particles with velocities between
Vg and vp, 17\\’,‘ = fvz” f(v)dv, and the larger area represents the fraction of particles

with velocity larger than v, % = fvjm Ff(»av.

f(v)ll

Figure 1.10 The Maxwell-Boltzmann distribution at three different temperatures (A), in-
terpretation of the area under the MB curve (B), and the distribution at 7 highlighting three
important quantities: the most likely speed (v), the average speed (v), and the rms speed, vims
©).
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Having derived the MB distribution, one can determine the average speed of a
gas particle

+oo k
o= [ o)=L (1.15)

m

and the root mean square speed of a gas particle

Vems =\ (V) = M. (1.16)

m

The most likely speed v, (v) and v,,, are indicated in the curve represented in Fig-
ure 1.10 C. These quantities depend on the particle’s mass and therefore they will be
different for different gases. The average speed of a molecule of N>, at room temper-
ature (7 =300 K) is 515 ms™!.

Interestingly, the experimental verification of the MB distribution was only
achieved in 1955 by Miller and Kusch, who performed high-resolution measure-
ments of the velocity distribution in beams of potassium and thallium over a range
of speeds from 0.3 to 2.5 times the most likely speed, having obtained a very good
agreement with the MB distribution.

1.11.3 DERIVING THE PRESSURE EQUATION OF STATE

We are now in conditions to evaluate an expression for the gas pressure by using
Newton’s laws of motion, and the probability distribution ¢ (V) = g(vx)g(vy)g(vz),
with g(v;) given by (1.13).

If a particle with velocity ¥ = (vy, vy, v;) collides with a rigid surface of area A at
an angle 0 (Figure 1.11), its momentum in the x-direction changes according to Ap, =
—2px. A momentum change of equal magnitude and opposite direction is transferred
to the rigid wall

Apx=2py,

vOt

v
. y4

Figure 1.11 Adopted setup for the calculation of pressure. A particle with velocity v collides
with a rigid wall of area A whose perpendicular makes an angle 8 with v . During a time
interval At the particles colliding with with velocity v sweep a volume Avcos@At, with vcos 8 =

Vx.
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due to one collision.
On the other hand, the number of collisions, dn.,;, with the surface in a time
interval At due to particles in the volume element dv is given by

dNjy
dncol:(Avat)x( v ), (1.17)

where the first term represents the volume swept by the particles with velocity v that
collide with the surface in At, and the second term is the density of those particles.
If we multiply and divide (1.17) by N, we can rewrite it as

dNV), (1.18)

N
dneor = (Av,At) x (V) x ( N

with

dNj - m \2 m(v:+v2 +v?)
NV = (V)dvdvydv, = (m) exp(—XZkB}TZ dvdvydv:,

being the fraction of particles in the volume element dv.

The total force F acting perpendicularly to the surface is the force due to all
collisions. It is equal to the total momentum transferred to the surface during a time
interval At divided by Ar. Since each particle transfers a momentum 2mv,, the total
momentum transferred during Az is equal to 2mv, times the number of particles that
collide with the surface during Az. The total force F is thus obtained by integrating

2mvydngy;
in all directions of the velocity. In doing so, we note that
0<ve<+00

in the adopted setup represented of Figure 1.11, and therefore

3 2 o 2 . 2
F :ZM(%)(M’,:'BT)Z f0+°° dvxv)zcexp(—z'zg’})ffm dvyexp(—%)ffm dvzexp(—%) .

Note that the first integral in equation above is of the type (1.9) with n = 1:

3
+oo my? 1 e mv? VT (2kpT \2
./0 vfexp(—ZkB" )dvx:2 . vﬁexp(—Zka )dvx:4( - ) .

The other two integrals are also of the same type but with n = 0:
f+oo LAY (2nkBT)%
- Vi = )
oo TP\ 2T )T T

) e ) T ) (o)

F =2mA (—
V ) \2rkgT 4 m m

Thus
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After simplifying the expression above, and taking into account that P = F/A, one
finally obtains the ideal gas equation of state:

PV =NkpT.

Think about it...
Why did we obtain the ideal gas pressure equation of state, despite the fact that the
derivation did not require the particles to be point particles?

Answer

Because we used a result from statistical physics, namely, that U = %NkBT, which
is derived for an ideal gas system.

1.12 LEARNING OUTCOMES

At the end of this chapter the reader is expected to:

1.

2.

11.
12.

13.
14.

Identify the scope of thermodynamics and be able to distinguish it from other
disciplines of thermal physics, namely, the kinetic theory of gases.
Understand the meaning of thermodynamic equilibrium and equilibrium fluc-
tuations, relaxation time, and thermodynamic limit.

. Know the basic concepts of thermodynamics (e.g. thermodynamic system,

boundary and reservoir; open, closed and isolated system; thermodynamic
properties; equation of state).

Know the difference between extensive and intensive thermodynamic proper-
ties and their relationship with homogeneous functions.

. View the ideal gas as model system and list its assumptions, as well as a ther-

modynamic system.

Appreciate the importance of the ideal gas equation of state and know the
meaning of independent thermodynamic properties.

Understand what is internal energy and why it differs from the energy of a
mechanical system.

Be able to classify a thermodynamic process as irreversible, quasi-static, or
reversible.

Know the meaning of constraint in relation to thermodynamic processes.

. Understand that heat is a way to transfer energy driven by a temperature dif-

ference and not a form of energy.

Be able to relate temperature, heat, and heat capacity.

Be able to state the zeroth law of thermodynamics and identify its implications,
namely, the possibility to measure temperature with thermometers.

Know what is thermal equilibrium and the meaning of thermalisation.

List the assumptions of the kinetic theory of gases.
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15. Understand the derivation of the Maxwell-Boltzmann distribution and appre-
ciate its significance.

16. Be able to derive the ideal gas equation in the context of the kinetic theory of
gases.

17. Relate temperature with average speed.

1.13 WORKED PROBLEMS

PROBLEM 1.1

A cylinder whose diameter is 4 cm contains an ideal gas compressed by a
piston of mass m = 13 kg that can move in the cylinder without friction (Fig-
ure 1.12). The cylinder and piston are immersed in a heat reservoir whose
temperature can be controlled. The system is initially at equilibrium at tem-
perature 7; = 20°C. The initial height of the piston above the bottom of the
cylinder is /2; = 4 cm. The temperature of the water bath is slowly increased
to a final temperature 7 = 100°C. Determine the final height / r of the pis-
ton.

_

]
>
s

Figure 1.12 A cylinder, tapped by a frictionless piston of mass m in thermal contact with a
bath at temperature 7.

Solution

A slow temperature raise indicates that the process can be taken as a quasi-static pro-
cess during which the gas inside the cylinder will be in equilibrium. The equilibrium
condition requires that the total force acting on the piston must be null throughout
the process. Assuming that the piston has area A, P is the pressure of the gas (which
is the pressure inside the cylinder), and P,y is the external pressure. The equilibrium
condition implies that
PA-P,;A-mg=0.
Solving for P one gets
mg

P= X_Pexta
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which remains constant along the isobaric process. For the initial state i of the system
with V; = Ah;, the ideal gas pressure equation of state is

PAh; = NkgT;.

Noting that no particles enter or leave the system, for the final state f one has

PAhy = NkpTy.
Solving for Az, one gets
ho = hiTy
f= 7*1 :

Taking into account that Ty =393 K, T; = 293 K, and &; = 0.04 m, one finally obtains
hy=0.05m.

PROBLEM 1.2
The temperature of an ideal gas in a tube of very small cross-sectional area
A varies linearly from one end (x = 0) to the other end (x = L), according to
the equation
T.-Tp

L
If the volume of the tube is V, and the pressure is uniform throughout the
tube, show that the equation of state for » moles of gas is given by

T(x) =Ty+

X.

T.-Ty

n(3)

PV =nR

Solution

The considered system is an example of a stationary (non-equilibrium) system. In
order to solve this exercise one must consider that the system is locally (i.e. at each
point x) in equilibrium. If we consider a small piece of tube located at distance x
from the edge, one can ask how many moles of substance are there between x and
x+dx. Let this amount be denoted by dn. Since the system is locally in equilibrium,
the pressure equation of state holds, and one can write

P(x)dV (x) = dnRT (x).
Since the pressure is uniform, P(x) = P, and taking into account that dV (x) = Adx,
PAdx = dnRT (x).
Thus

_PA_dx
TR T(x)

dn
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Integrating the equation above from x=0to x=L:

n-@ L dx

Making the change of variables

T - T;
u:(T0+ L Ox),
L

one obtains

PA L / T du
n=— —
R T.-Tp
Since V = AL, the number of moles is finally given by
PV 1 ( 11 )

=———In
R T -Ty Ty

Ty u

1.14 SUGGESTED PROBLEMS

PROBLEM 1.3

Use the ideal gas pressure equation of state to determine the density p of
an ideal gas at standard atmospheric temperature (7 = 20°C) and pressure
(P =1 atm).

PROBLEM 14
The mean radius of an air molecule (O, or N») is 0.15 nm. The average dis-
tance between nearest neighbour particles in the gas is 3.5 x 10~° m at stan-
dard atmospheric pressure and room temperature. Can the air be modelled
as an ideal gas?

PROBLEM 1.5

Consider the isothermal, isobaric, and isochoric processes of the ideal gas
represented in Figure. 1.13. Determine the order (from smaller to larger)
between T, 7> and T3, P, P>, and P3, and V|, V,, and V3.

Figure 1.13 Three types of thermodynamic processes of the ideal gas.
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PROBLEM 1.6

A closed cylinder has a freely moving diathermal piston separating two
chambers of lengths L; and L;. Chamber 1 contains 25 mg of N, while
chamber 2 contains 40 mg of helium gas. In thermodynamic equilibrium,
what is the ratio L,/L;? And the ratio between the number of moles of N,
to the number of moles of He?

PROBLEM 1.7
Estimate the number of molecules in an isothermal atmosphere as a function
of height.

Hint: Model the atmosphere as an ideal gas and consider a molecule at temper-
ature T subjected to gravity.

PROBLEM 1.8

A vertical right cylinder oh height /2 = 30 cm and base area A = 12 cm? is
sitting open under standard atmospheric temperature and pressure. A 5.0
kg piston is placed into the cylinder and allowed to move without friction to
a final equilibrium position. Assuming the final temperature to be 7 = 0°C,
what is the equilibrium height and pressure?

PROBLEM 1.9
From a thermodynamics standpoint, what is the difference between a /ot
baseball at rest and a cold baseball moving at high speed?

PROBLEM 1.10
Consider a sphere of radius R and volume V. Show that when expressed as
a function of V, R*(V) is an homogeneous function of degree one.

PROBLEM 1.11

Classify the following processes as reversible, irreversible, or quasi-static.
a) Squeezing a plastic bottle.

b) Ice melting in a glass of hot water.

¢) Pumping air into a tyre.

d) Compressing a gas with a real piston (i.e. with friction).

PROBLEM 1.12

The Celsius temperature scale is defined by setting the freezing point of wa-
ter equal to 7y = 0°C and the boiling point of water equal to T = 100°C.
On the other hand, the Kelvin (or absolute) temperature scale is defined by
setting the freezing point of water equal to 7, = 273.15 K and the boiling
point of water equal to 7' = 373.25 K. Determine the relation between the
two temperature scales, i.e., show that 7(K) = T(°C) +273.15.

33
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PROBLEM 1.13
Consider the Maxwell-Boltzmann distribution. Evaluate v;,.

PROBLEM 1.14

Use a software of your choice to evaluate the Maxwell-Boltzmann distribu-
tion of the following gases at 7 = 273 K: O,, N,, He, H,, H,O. What do you
conclude?

PROBLEM 1.15

Starting from the Maxwell-Boltzmann distribution, determine f(Ex)dEk,
i.e., the fraction of gas particles with Kinetic energy between Ex and Eg +
dEk.

PROBLEM 1.16
Evaluate the fraction of oxygen molecules with 199 < v <201 (ms_l) at 7 =
27°C.

PROBLEM 1.17
In a gas, which fraction of particles have v < v;us and v > vy ?

PROBLEM 1.18

Derive an expression of the number of collisions between the particles of an
ideal gas and a planar surface of area A, during time interval Az, by unit
area and unit time. Express your answer as a function of the gas pressure P.

PROBLEM 1.19

A solid surface with dimensions 2.5 nm by 3.0 nm is exposed to gaseous ar-
gon at 7 = 500 K and P = 90 Pa. How many collisions occur with the surface
during 15 seconds?
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2 The First Law

This chapter is dedicated to the first law of thermodynamics. It starts by defining
thermodynamic work, W, and presents the first law as AU = Q + W. To formally
distinguish heat and work from thermodynamic state functions, the meaning of exact
differential is presented. The first law is applied to the study of the isothermal and
adiabatic compression of the ideal gas, and to analyse a cyclic process of the ideal
gas.

2.1 INTRODUCTION

This chapter is dedicated to the first law of thermodynamics, often perceived as the
most easy to grasp. While the zeroth law is centred on temperature, the first law is
dedicated to energy, and provides a framework to better understand this important,
but somehow elusive physical concept. Indeed, as we shall see, the first law repre-
sents a general statement of the law of energy conservation, which is presented for
mechanical systems in the context of introductory courses on Newtonian mechanics.
There, energy conservation is discussed in association with changes in kinetic and
potential energy, together with their relationship to work. Thermodynamics gener-
alises the law of energy conservation by including the effects of heat and thermody-
namic work on the internal energy of a system. The first law, as we know it today,
was stated by Rudolph Clausius (1822-1888), and is used extensively in the analysis
of the so-called heat engines, which are devices that played a critical role in the path
that lead to the formulation of the second law of thermodynamics.

2.2 THERMODYNAMIC WORK

The internal energy of a thermodynamic system can be modified through two differ-
ent ways. One of them, heat, was discussed in the previous chapter. The other, work,
is the focus of the present section. In thermodynamics, work is defined as energy in
transit. Contrary to what happens when energy is transferred as heat, a temperature
difference is not directly involved with an energy transfer as work. Work is energy
transfer via the macroscopically observable properties of a system (e.g. the volume
in the case of a fluid). Work always involves bulk movement, which microscopically
leads to a net molecular flux. Heat, one the other hand, involves a direct energy trans-
fer between the particles that constitute the system, without causing a net molecular
flux.

Let us consider a system composed by an ideal gas of N particles that is confined
to the interior of a cylinder, which is tapped on one of its sides by a piston of area A.
The piston moves without friction. Let us assume as well that the mass of the piston is
negligible (m ~ 0), and that a force of magnitude F,,; is applied to the piston creating
an external pressure P,y = F,;; /A. Let P be the gas pressure (i.e. the pressure inside
the cylinder). If the system is in thermodynamic equilibrium, P, = P. If a differential
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(or infinitesimal) pressure difference dP = P - P, exists between the system and the
surroundings, the piston will be reversibly dislocated by an infinitesimal distance dy.
Since F' = PA, the reversible work done on the system is defined as

aw = —PdV @2.1)

where we took into account that dV = Ady. The minus sign in (2.1) ensures that
dW > 0 if the gas is compressed (dV < 0). On the other hand, the work done by the
gas (—dW) is positive when the gas expands (dV > 0). As in the definition of heat
capacity (1.6), the notation & is used to indicate that the infinitesimal dW is not the
differential of a function.

Using the ideal gas equation, one can rewrite (2.1) as

aw = -

NkpT
B av. (2.2)
Vv

Since the process is reversible, and N is constant, (2.2) can be integrated from the

initial equilibrium state i to the final equilibrium state f, to obtain the total energy

transferred as work: y

f

T
Wi r=-Nk —dV. 2.3
(N B )y (2.3)

Think about it...
Would it be it correct to use the notation AW instead of W;_, ¢?

Answer

The notation AW suggests that it is possible to measure an initial and a final amount
of work in the system such that AW = W —W;. Therefore, it is not correct. The same
is true in the case of heat, where one uses the notation Q; , s to denote an amount
of energy transferred as heat in a thermodynamic process that takes the system
from the initial equilibrium state i to the final equilibrium state f.

Let us further assume that the process is isothermal (7 is constant). In this case,

. . Ve .
by evaluating the integral ]V_f ‘17‘/ one obtains
1

Vy
Winp= —NkBTln(—) . 24
Vi
According to (2.4), energy W;_.; is transferred fo the system from the surroundings
in the case of a compression, and energy —W;_,s is transferred from the system to
the surroundings when the gas expands. In the first case one says that the system
consumes work, while in the second case one says that it produces work.
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If a large pressure difference AP = P — P, exists, a sudden change will cause the
process to be irreversible due to energy dissipation, and the ideal gas equation only
applies to the initial and final equilibrium states. However, if the external pressure is
uniform, the work done on the system can still be defined asdW = —P,;dV . If P,y > P
the gas will compress (dV <0). Since reversible work done on the gas isdW = -PdV,
it is easy to see that dW > —PdV . This inequality also holds for an expansion of the
gas (P < P and dV > 0), with the work done by the gas (-dW) being less than
the work done in a reversible expansion, (-dW) < PdV. As a matter of fact, the
work the system does reversibly is the maximum work the system can produce. This
can be easily understood on physical grounds because energy lost by dissipation in
irreversible processes is energy that could have been used to produce work during a
thermodynamic process.

Think about it...

To transfer energy reversibly as work it is necessary to perform an infinitesimal
dislocation of the piston such that dP = P — P.y;. How can energy be transferred
reversibly as heat?

Answer

If S and S, are two systems in thermal contact, for energy transfer to occur re-
versibly, an infinitesimal temperature difference must exist between the two sys-
tems (i.e. 7} = T +dT) . If so, the hottest system may become the cooler by an
infinitesimal reduction of its temperature, and the direction of energy transfer may
be reversed.

Work and heat depend on the particular steps used to perform a thermodynamic
process. We say that work and heat are path dependent. This can be easily illustrated
in the case of work. Consider the processes represented in Figure 2.1. Both are cyclic
processes, which start and end at the same point in the (V, P) plane. However, while
cycle A is performed clockwise, cycle B is performed in a counter clockwise manner.
Since V| = V4 and V, = V3 both cycles contain two isochoric processes for which the
work is zero, Wi_.4 = Wy_,; =0 and W,_,3 = W3_,5 = 0. The remaining processes are
isobaric. For a process at constant P, the total energy transferred as work from the
initial state i to a final state f is

17
Wi = —Pf Yav =—P(v;- V).
) Vi
Thus the total work of cycle A is
Wa=Wisa+Ws4
= (P[ —Ph)(Vz —Vl) <0,
and that of cycle B is

W =W + W3
=(P.—-P)(V2-V1) >0,
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Figure 2.1 Two thermodynamic cycles in the (V, P) state space.

showing that work is indeed path dependent.

2.3 THE FIRST LAW OF THERMODYNAMICS

Having discussed energy transfer as heat and work, we are now in conditions to state
the first law of thermodynamics.

First Law (system): The variation of internal energy of a closed system is given
by
AU =0+W (2.5)

In the equation above AU represents the variation of internal energy of a system
as a result of a thermodynamic process that drives the system from an initial state
i to a final state f, AU = Uy —U;, while Q and W represent energy transferred to
the system as heat and work, respectively. An alternative convention, is to consider
energy transferred as work from the system to the surroundings. In that case AU =
Q—-W, with the minus sign indicating the work done by the system.

A process is designated as adiabatic when Q = 0. In that case AU = W. Alterna-
tively, if W =0, AU = Q. If the thermodynamic system is isolated, Q and W are both
zero, and AU = 0. The thermodynamic universe is itself isolated. For the thermody-
namic universe the first law reads:

First Law (universe): The internal energy of the thermodynamic universe is

AUuniverse =AU + AUsurroundings =0 (26)

This is the most general form of the first law, which shows that energy is conserved:
whenever energy is gained by the system it must be lost by the surroundings and
vice-versa (AU = _AUsurroundings)-
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2.4 EXACT DIFFERENTIALS AND STATE FUNCTIONS

The first law shows that contrary to what happens with work and heat, the change
in internal energy upon a process depends only of the final and initial states of the
system (Uy and U;, respectively), being independent of the path used to connect them.
U is said to be a state function or function of state.

If a function f(x) is a state function,

[ ar= s~ f) = o, @.7)

which implies that
jf df =0. 2.8)

From a mathematical point of view, for a function f to be a state function its total
differential d f must be exact. In other words, if the total differential d f is exact, then
f is a state function.

EXACT DIFFERENTIAL

Consider a differentiable function of two independent variables x and Yy,
f(x,y). Differentiating by parts we have

or-(2) e (L) o

The expression above is the differential of function f. The differential provides
the value of an infinitesimal change in f as a result of infinitesimal changes in the
independent variables. Likewise, it has one term for each variable, consisting of a
partial derivative multiplied by the differential of the independent variable.
The differential
dF = Mdx+ Ndy

is exact, if and only if, dF =d f for all x and y.

If dF is exact,
_(9f _(9f
M= (Bx )y andN = (ay)x.
On the other hand
oM 2% f (aN) 0% f
— | = and | — | = .
dy ). dyodx dx /), dxdy
Since

f _9f
dydx 0dxdy’
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then

(5)-(5),

It may be shown that (2.9) is a necessary and sufficient condition for dF to be exact.
For that reason it is termed the exactness condition.

All measurable thermodynamic properties (such as U, T, V, P) that can be used
to specify the state of a thermodynamic system are state functions that have exact
differentials. On the other hand, the amount of energy transferred as heat or work
depends on the path that moves the system between states. Sometimes the expression
path function is used in association with work and heat.

The reader is now in conditions to understand the formal reason behind the use
of the d notation in dQ and dW. It denotes the fact that since heat and work are not
state functions, their infinitesimals cannot be expressed as exact differentials.

Think about it...
How can you use (2.9) to show that 7', V, and P are state functions?

Answer
Taking T = T'(P,V), the differential dT is

dT=(a—T) dP+(a—T) dVv.
v avV Jp

For T to be a state function d7 must be exact.
Consider the ideal gas equation PV = nRT.

Let o7 .
M:(_) " nRT’
JP )y nRT

and
N- (a_T) _ L
JdV Jp nRT
It is easy to see that dT is an exact differential, because
oM JON 1
G =

The same reasoning can be used to show that P and V are also state functions.
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2.5 REWRITING THE FIRST LAW

Let us go back to the first law of thermodynamics. If one considers an infinitesimal
change of the system (keeping N constant), the first law must be written as:

du =dQ+aw (2.10)

If the system under study is a fluid then
dU =dQ-Pdv. (2.11)

At this point it is important to clarify that the number of state functions is not limited
to the ones we already encountered while discussing a fluid like the ideal gas. As
stated before, thermodynamics is a very general physical theory and can be used to
study any macroscopic system. Other state functions are the surface tension () and
the area (A) of a liquid film, the electric field (E) and polarisation (P) of a dielectric
material, the tension (T) and length (L) of a metallic (or elastic) rod, the chemical
potential (1) and the number of particles N, just to mention a few examples. There-
fore, thermodynamic work is not limited to energy transferred during the expansion
(or compression) of a fluid (the so-called expansion work), and also includes energy
transferred by stretching films (elastic work), charging an electric system (electric
work), adding or removing particles from the system (chemical work). In general,
this is taken into account by writing work dW as a generalised work

aw = Xdx, 2.12)

ordW =X -dx, for vectorial quantities, where X stands for some generalised force (an
intensive property) (e.g. P, v, E, 7ir, and u) and x is the corresponding generalised
displacement (an extensive property) (e.g. V, A, P, B, and N). Some examples of
thermodynamic work are thus: dW = -PdV ,dW = ydA,dW = E-P,anddW = UdN. In
Chapter 8 we will study in detail the specific case of magnetic work, which is work
added to a magnetic system in order to magnetise it.

2.6 JOULE EXPERIMENT

From a experimental point of view, the most important demonstration of the first
law of thermodynamics is the paddle-wheel experiment, based on a series of re-
markably accurate experimental measurements carried out by James Prescott Joule
(1818-1889), that culminated with the publication of a very famous article in 1850
entitled The mechanical equivalent of heat. To carry out his experiment, Joule at-
tached weights to strings and pulleys, and connected them to a paddle-wheel that
could rotate in the inside of a copper cylinder covered with adiabatic walls made
of wood (Figure 2.2). Upon raising the weights of mass m to an appropriate height
h, and by subsequently letting them drop slowly, the paddle-wheel rotates and stirs
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e 4

Vertical Section. of
Calorimeter

Horzontal Section of
Calorimeter

Joule's Water-Churning Apparatus for Determining the
Mechanical Equivalent of Heat.

Figure 2.2 The set-up used in Joule’s paddle-wheel experiment. Wikimedia commons.

the liquid (Joule used water, mercury, and sperm whale oil) of mass M placed on
the inside of the cylinder. The cylinder contained fixed sections that prevented the
liquid from rotating. The potential energy of the weights is converted into kinetic
energy of the paddles, which is essentially converted into fluid friction that causes
energy transfer as heat, with the consequent increase of the liquid’s temperature by
AT . Joule found out that it was necessary to raise the weights about 20 consecutive
times to register a temperature increase of 0.5°C-2°C. In this experiment, mechan-
ical work is thus used to change the internal energy of the system. In particular, it
shows that mechanical energy of the weights is converted into energy transferred as
heat (Q = CAT) in the fluid. In the particular case of water

mgh=Mcp,oAT,

which can be written as,

mgh

MAT"

Joule found out that 4157 J of mechanical work (the actual value is 4186 J!) were
necessary to increase by 1°C, the temperature of 1 kg of water (measured in vacuum),
when the air temperature is between 12.7°C and 15.5°C. This quantity, which Joule
termed the mechanical equivalent of heat, is, in nowadays language, the specific
heat of water ¢y, = 4.186 J/g°C. It is also the definition of (small) calorie, i.e., 1 cal
=4.186J.

CHy,0 =
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Think about it...
Why is it important that the vessel used by Joule for his experiments contains fixed
sections that prevent the liquid from rotating?

Answer

If the liquid rotates, part of the work of the gravitational force would be converted
into rotational kinetic energy of the liquid, which is not internal energy.

2.7 USING THE FIRST LAW

Let us recall the definition of heat capacity (1.6). Since Q is not a state function,
the heat capacity depends on the mode according to which the system is heated. In
particular, the temperature increase resulting from energy transfer may occur at con-
stant pressure or at constant volume. In the former case we define the heat capacity
at constant pressure, denoted by Cp, while in the latter we define the heat capac-
ity at constant volume, denoted by Cy. The subscripts P and V in the definition of
heat capacity identify the constraint. In what follows, we will start by illustrating
the importance of the first law of thermodynamics by deriving an expression for the
thermodynamic definition of Cy and Cp. Subsequently, we will use the first law to
study in detail the isothermal compression and the adiabatic compression of the ideal
gas.

2.7.1 HEAT CAPACITY AT CONSTANT VOLUME

For a system where the number of particles N is fixed, the equilibrium state stays
specified by two thermodynamics properties. To derive the thermodynamic definition
of Cy, it is useful to consider the internal energy (which is a state function) as a
function of T and V, U = U(T,V). In this case

U U
dU:(ﬁ)VdT+(W)TdV. (2.13)

On the other hand, since dQ = CdT, according to the first law one can write
dU =CdT - PdV. (2.14)
Solving (2.13) and (2.14) for CdT one gets

cur (22 arfre(22) Jav
oT Jv oV Jr

Thus, the heat capacity at constant volume (dV = 0) is defined as
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Cv= (%)\/ (2.15)

In the particular case of the ideal gas, U = %NkBT and Cy = %ng. However, in
general, Cy will depend on temperature. Therefore,

AU:Q:fTT"CV(T)dT. (2.16)

Think about it...
Is it true that for the ideal gas dU = CydT?

Answer

By using the thermodynamic definition of Cy we can write

oU
= T+|= .
dU =Cyd +(3V )TdV

For the ideal gas U = U(T). Consequently, the second term of the equation above
vanishes. So, it is true that dU = Cy dT for the ideal gas.

2.7.2 HEAT CAPACITY AT CONSTANT PRESSURE

To derive the thermodynamic definition of heat capacity at constant pressure, it is
useful to consider U = U(T,P). In this case

oU oU
du = (a—P)TdP+(a—T)PdT. 2.17)

Solving (2.14) and (2.17) for CdT one gets

U U
CdT—PdV+(ﬁ)TdP+(ﬁ)PdT. (2.18)

The term dV is not useful, but one can get rid of the dependence on V by taking into
account that for V =V (T, P),

v v
dv:(ﬁ)ﬂ”(ﬁ)pﬂ' (2.19)

Substituting dV in (2.18) by (2.19) and rearranging one obtains

ca-[e (30 o (30,2 o
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Finally, the heat capacity at constant pressure (dP = 0) is defined as

Cp = [P(%)P+ (g#)p] (2.20)

Think about it...
Would we obtain the same expression for Cp by considering U = U (P,V)?

Answer
Yes, because V=V (P,T).

An important quantity that will be often used throughout this book is the so-called
adiabatic index

cr
Cy

Y 2.21)

Using (2.20), it is easy to see that for the ideal gas Cp = %ng, and consequently
Y= % Note as well that for the ideal gas

CP—CV =NkB :nR, (222)

which is known as Mayer relation.

These simple applications of the first law anticipate that the use of exact dif-
ferentials and partial derivatives is a critical part of thermodynamics calculations.
Therefore, in what follows we review some important and very useful properties of
partial derivatives.

PROPERTIES OF PARTIAL DERIVATIVES

Let us consider a differentiable function f(x,y,z), such that the relation
f(x,y,z) = ¢, with ¢ constant, holds (an example is the ideal gas pressure equation
of state). In principle, this equation can be rearranged to express one variable in
terms of the other two as independent variables, x = x(y,z), y =y(x,z), or z=z(x,y).
Therefore, one can write the differentials

ox ox
dx = (E)Zdyﬁ'(a—z)ydz,
_(9» 9y
dy = (ax )de+((9Z )xdz,
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and 92 5
z
dz= d dy.
¢ ( dx ) o ( dy ) i’
Only two of the above three differentials can be independent. If one substitutes the

second equation in the first, one obtains a relation between the two independent
differentials dx and dz:

ox\ () _ o) () (%)
GG (B G) fero
By taking z constant (dz = 0) one obtains the reciprocal rule:

gl L (2.23)
e

By taking x constant (dx = 0) one obtains

(5:)(52). - (5)

dy ).\ dz oz )y’

and applying the reciprocal rule to the term on the right hand side of the equation
above one obtains the reciprocity rule:

(%) (gi) (ii) =L (2.24)

Another rule of partial derivatives that is quite useful in thermodynamics calcula-
tions is the chain rule. To recall the chain rule, consider two single valued func-
tions x =x(y) and y = y(z). Then

£(3))

2.7.3 ISOTHERMAL COMPRESSION AND EXPANSION OF THE
IDEAL GAS

Let us consider a reversible isothermal process that takes an ideal gas of N particles
from the initial state i to the final state f (Figure 2.3). For this process dU = 0. Indeed,
dU =CydT, and dT =0 because T is constant along an isotherm.

From the first law of thermodynamics dQ = -dW = PdV . Taking into account that
both N and T are constant

/ v dv v
0= [ PV =NKsT [ f—:NkBTln(—f). (2.26)
’ Vi Vi Vv Vi
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isotherm

adiabath

a

\Y

Figure 2.3 Reversible isothermal and adiabatic processes of the ideal gas. Note that the
slope of the adiabath is larger than that of the isotherm.

For an isothermal compression V¢ <V; and Q;_. y <0, which means that energy —-Q;_.
is transferred from the system to the surroundings. For an expansion, V¢ > V; and
Qi_.r >0, which means that energy O, is transferred to the system from the sur-
roundings. In the first case one says that the system rejects heat, while in the second
case one says that the system extracts heat. Since AU =0, W;_,y = —Q;_, r. Therefore,
the system consumes work in the compression, and produces work in the expan-
sion. Finally, at constant temperature, the ideal gas pressure is directly proportional
to the inverse of the volume (P o< %), which means that pressure decreases in the
expansion, and increases in the compression. In sum, in an isothermal compression
(expansion) of the ideal gas:

AT =0and AU =0

PV = constant

AP <0 (expansion)

AP > 0 (compression)

0>0and W = -0 <0 (expansion): the system extracts heat and produces work
Q0 <0and W = -0 >0 (compression): the system rejects heat and consumes
work

S S

2.7.4 ADIABATIC COMPRESSION AND EXPANSION OF THE IDEAL
GAS

For an adiabatic process dQ = 0, and from the first law of thermodynamics dU =dW.
Since we are considering a reversible adiabath of the ideal gas (Figure 2.3), this
equation can be written as CydT = —ngng. Integrating both sides by taking into
account that both N and Cy are constant

Ty dT _ Nkg Vy av

T Cy Jvi V

Tr k :
ln(—f):&ln Vi ]
7)o "\,
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Now, let us go back to (2.22) and divide it by Cy:

Nkp
(r-1)= T
Thus
T; Vi (r-1
(7))
or, equivalently
vaf(.y‘l) -, (2.27)

Equation (2.27) is the so-called adiabath equation, which is normally presented as:

TV =D = constant (2.28)

An alternative form of (2.28), which can be derived from (2.27) with T given by the
ideal gas equation, is:

PV = constant (2.29)

In sum, in an adiabatic compression (expansion) of the ideal gas:

1. 0=0

2. VD = constant

3. PVV = constant

4. AT <0 (expansion) and AT > 0 (compression)

Think about it...
For an adiabatic process Q = 0 but the temperature decreases in the expansion and
increases in the compression. Why is that?

Answer

For an adiabath of the ideal gas dU = dW, with dU = CydT. Thus, dW = CydT.
Integrating this equation between an initial state i and a final state f, one gets

Wif = Cy (Ty —T5). (2.30)

In the adiabatic expansion Ty < T;, and therefore W;_, ; <0 as a result of energy
being transferred from the system to the surroundings. On the other hand, in the
adiabatic compression Ty > T;, and therefore W;_, r > 0, as a result of energy being
transferred to the system from the surroundings.
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2.7.5 THERMODYNAMIC CYCLES

A thermodynamic cycle is a sequence of thermodynamic processes that return the
system to its initial state. In principle, a cycle leaves the system unchanged, although
it changes the surroundings. Since

j§ dU =0,

AU,y = 0. Thus, for a cyclic process the first law of thermodynamics reads
Qcycle + chcle =0.

In section 2.9, we will apply the concepts and results we have derived so far to the
study of a thermodynamic cycle.

2.8 LEARNING OUTCOMES
At the end of this chapter the reader is expected to:

1. Understand the meaning of thermodynamic work and realise that work is path
dependent.
2. Be able to define expansion work against a constant pressure and know that
other forms of thermodynamic work exist besides expansion work.
. Understand the relation between reversible work and maximum work.
4. State the first law of thermodynamics and understand that the internal energy
of a system can be changed by transferring energy as heat and/or work.
5. Realise that the first law of thermodynamics is a generalisation of the law of
energy conservation for mechanical systems.
6. Be familiarised with the Joule experiment and understand that it represents the
first experimental demonstration of the first law.
7. Understand that state functions are exact differentials and know how to apply
the exactness condition.
8. Use the first law of thermodynamics to derive and expression for the heat ca-
pacity at constant pressure and for the heat capacity at constant volume.
9. Use the first law of thermodynamics to quantitatively analyse an isothermal
and an adiabatic expansion of the ideal gas.
10. Use the first law of thermodynamic to quantitatively analyse a thermodynamic
cycle of the ideal gas.

W

2.9 WORKED PROBLEMS

PROBLEM 2.1

Consider the cycle represented in Figure 2.4 A, which refers to 1.00 k mol of
ideal gas. The process B — C is an isothermal, P4 = 1 atm, V4 = 22.4 m3, and
Pp =2P4 = 2.0 atm. Compute the total work and total heat corresponding to
this cycle.
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A B
A

PrB
Q

Cc

o
»

\Y

Figure 2.4 A thermodynamic cycle of the ideal gas, where B — C represents an isotherm
(A), and a diagrammatic representation of the cycle (B).

Solution

The cycle is composed of three reversible processes: The isochor A — B, the isotherm
B — C, and the isobar C — A. Consider the definition of work dW = —PdV, with P
given by the ideal gas pressure equation of state

_ NkgT
Vv

aw =

dv, 2.31)

and start by evaluating the work corresponding to each branch of the cycle.

1. Isochoric heating A — B
In this case dW4_ g = 0 because dV = 0. Thus

Wa_p=0.

2. Isothermal expansion B - C
Integrating (2.31) with constant 7', and taking into account that Vp = Vj:

Ve dV v,
WB—»C:_NkBTBf 7:NkBTBln(—A).
vg V Ve

3. Isobaric compression C - A
Integrating (2.31) with constant P :

Va
Wen =Py [ dV =Po(Ve=Va).
C

To evaluate 7, T¢, and V¢ let us consider the ideal gas pressure equation of state:

PgVy  2P\Vy
Ty = = =
Nkg  Nkp

and NkgTe NkgT;
Vo= VksTe _ NksTs ),
Fc Py
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Thus,
PcVe  Py2V,
Te= =224 o,
Nkp Nkp
In sum:
1. Wap=0
2. WB—>C = ZPAVA In0.5
3. WC%A = PAVA

Finally, the work corresponding to one cycle is

chcle =Wasp+Wpoc—Weoa
= PAVA(Zan.S + 1)

Now, we evaluate the heat corresponding to each branch of the cycle.

1. Isochoric heating A - B
Since W4_,g =0, from the first law it follows that dQ = CydT. Thus

T
Qa-B =Cva dT =Cy (T —-Ty) =Cv1,.

A

2. Isothermal expansion B - C
In this case dU =0 because dT = 0. From the first law it follows that dQg_.c =
—dWB_,Cn Thus
Opc=-Wp_c=-2P4V41In0.5.

3. Isobaric compression C — A
Using the first law dQ = dU —dW . Thus

Ty
Oc-a=Cy f dT —We-a
Tc

=Cv(Ty—Tc) - PaVa
=-CvTx—PaVy

Finally, the heat corresponding to one cycle is

Qcycle =Q0a-p+0B-c+0c-a
= CvTA —ZPAVA In0.5 —CvTA —PAVA
= —PAVA(Zan.S + 1),

For this cycle the first law of thermodynamics reads —Q + W = 0. In Figure 2.4 B
we show a diagrammatic representation of the cycle. It is important to note that (un-
less otherwise stated) Q and W reported in the schematics always represent unsigned
quantities (i.e. magnitudes), with the arrows indicating the direction of energy trans-
fer.
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PROBLEM 2.2

Two bodies have heat capacities C; and C,, which are independent of tem-
perature, and initial temperatures 77 and 7,. They are placed in ther-
mal contact. Show that their final temperature is given by 7, = (CiT; +
Gh)/(Cr+G).

Solution

Considering that system formed by the two bodies is an isolated system, the total
internal energy must be conserved

AU :AUl +AU2 =0.

On the other hand, from the the first law of thermodynamics AU = Q because there
is no volume work in this process. Thus

Ty
AU1=/ CldT:C1(Tf—T1),
T :

and ’
!
AU2=f CldT:CQ(Tf—Tg),
5

where we used the fact that C; and C, are both independent of temperature. Since
AU| = —AU,, the result follows.

2.10 SUGGESTED PROBLEMS

PROBLEM 2.3
Consider the differentials

dg= (x2 +y2) dx+2xydy,
and
dh= (x2 +y2) dx—2xydy.

a) Show that dg is exact and dh is non-exact.

b) Integrate dg and dh along the following paths:

Path A: stepl x=0—3,y=0(dy=0),step2x=3(dx=0),y=0-1

Path B: step 1 x=0—4,y=0(dy=0), step 2 x=4(dx=0),y=0— 1, step 3
x=4-3,y=1(dy=0).

What do you conclude?

PROBLEM 24
Consider the ideal gas pressure equation of state and take

P=pP(T,V).

(5. (o), (57),

Show that
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PROBLEM 2.5
Let
F(T)=PV.
Show that
a)
(LP) _Lldf
T ) vdrT
b)
() - Ldr
oT Jp~ PdT
PROBLEM 2.6

Consider U = U(T,V) and show that
aU\ (dV
o=-(57), (7).

PROBLEM 2.7
Consider an adiabath and an isotherm starting at the same initial state.
Show that the slope of the adiabath is higher than that of the isotherm.

PROBLEM 2.8

Consider the cycle represented in Figure 2.5, which refers to the ideal gas.
The process B — C is an adiabath. Compute the total work and total heat,
and represent the cycle in a diagram.

Pl B
i vie

Figure 2.5 A thermodynamic cycle of the ideal gas, where B — C represents an adiabath.

PROBLEM 2.9

A thick walled insulated chamber contains » moles of helium at high pres-
sure P,. It is connected through a valve with a large, almost empty container
of helium at constant pressure Pj, very nearly atmospheric. The valve is
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opened slightly and the helium flows slowly and adiabatically into the con-
tainer until the pressures on the two sides of the valve are equal. Assuming
the helium behaves like an ideal gas with constant heat capacities, show that

=D

Pf Y
T, =T,
! ’(P,»)

PROBLEM 2.10

An ideal gas is initially confined to volume V) in the interior of a container
with total volume V| +V,, which is surrounded by adiabatic walls as shown
in Figure 2.6. Volume V; is initially under vacuum. The partition that sepa-
rates V| from V; is rapidly removed, the gas expands and eventually occupies
volume V| +V,. If T is the initial temperature of the gas, what will be its final
temperature?

v, v,

«—partition

L adiabatic, rigid wall

Figure 2.6 An ideal gas confined to volume V;. Volume V, is under vacuum. The container
is surrounded by an adiabatic wall.

Figure 2.7 An experimental setup used to measure the adiabatic index.

PROBLEM 2.11

In the Ruchardt method to determine the adiabatic index 7, a ball of mass
m is placed inside the interior of a tube with transversal section of area A,
which is connected to a gas container of volume V (Figure 2.7). The gas pres-
sure inside the container is slightly higher than the atmospheric pressure 7,
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due to force done by the ball,

p=py+28.
A
Show that if the ball is slightly dislocated downwards, the resulting move-
ment will be of the simple harmonic type with period given by

mV
T=27\/ —=.
\ yrA2

PROBLEM 2.12

Two systems, S| and S,, with heat capacities C; and C, are placed into ther-
mal and end up having a final temperature 7. If 7; is the initial temperature
of system S|, what is the initial temperature of system S,?
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3 The Second Law

This chapter is dedicated to the formulation of the second law. While the zeroth law
is focused on temperature and the first law on energy, the second law is about a novel
state function called entropy. The chapter starts with the analysis of the Carnot cycle
and of the Carnot engine. It then uses these concepts to prove the logical equivalence
of the Kelvin and Clausius statements of the second law. Subsequently, Carnot’s
theorem is demonstrated, and entropy change for reversible processes is defined. It
moves on by proving Clausius’s theorem, which is then used to establish the principle
of maximum entropy for isolated systems. Entropy change is calculated for different
thermodynamic processes. Finally, the statistical meaning of entropy, and the relation
of entropy with disorder is discussed.

3.1 INTRODUCTION

Thermodynamics was developed in the 19th century in the wake of the industrial
revolution (1760-1840). The establishment of the second law, in particular, is tightly
associated with the necessity to build efficient heat engines, devices that produce
maximum work out of heat. A rather famous heat engine, which is considered a ma-
jor driving force of the industrial revolution, is the steam engine designed by James
Watt (1736-1819). Steam engines basically consisted of a combustion chamber (the
heat source), water (the working substance), and a condenser (the heat sink). Unfor-
tunately, steam engines were not particularly efficient.

The birth of the second law starts with the seminal work of Sadi Carnot
(1796-1832), Reflections on the Motive Power of Fire (1824), where he recognised
that in order to design efficient heat engines, it would be necessary to understand the
physical principles underlying their functioning. The way he approached the prob-
lem, led him to be the first to understand that work produced by an heat engine strictly
requires heat to flow from a hot body to a cold one through the working substance.
In other words, he understood that engines that produce work without exchanging
heat between two bodies are forbidden, and he conceived a theoretical heat engine,
termed Carnot engine, which is the most efficient of all heat engines. The Carnot en-
gine sets an upper bound for the efficiency of any heat engine designed for practical
purposes.

The work of Carnot, and also that of Joule on the relation between work and
heat, established the grounds for Rudolph Clausius (1822-1888) to formulate the
first law of thermodynamics, and make the very first statement of the second law
(1850). Later, Clausius formulated the second law mathematically by introducing a
novel state function named entropy (1865). Contrary to the first law, the second law
of thermodynamics has a reputation for being markedly difficult, and in part this is
due to its connection with entropy, whose microscopic meaning was only established
in1872 by Ludwig Boltzmann (1844—-1906) in the context of statistical mechanics.
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This chapter is dedicated to the second law of thermodynamics, which is one of
the most important laws of Physics. It is the law that explains why things happen.
Indeed, while the first law determines that all processes that conserve internal energy
are possible, the second law selects those that will happen spontaneously. We start by
unfolding the establishment of the second law with the analysis of the Carnot engine.

3.2 THE CARNOT ENGINE

The Carnot engine (or machine) is a theoretical heat engine envisioned by Sadi
Carnot that operates a cyclic process termed Carnot cycle. The Carnot cycle com-
prises a sequence of four reversible processes of a thermodynamic system, namely,
an isothermal expansion, an adiabatic expansion, an isothermal compression, and
an adiabatic compression (Figure 3.1). When discussing heat engines the thermody-
namic system is designated by working substance (after Carnot), or working body
(after Clausius). For the isothermal expansion, the working substance is placed into
thermal contact with a heat reservoir at temperature 7j,, while for the isothermal com-
pression the heat reservoir is at temperature 7; < 7, (h and [ stand for high and low,
respectively). The heat reservoirs also have special designations. The one at temper-
ature 7, is named heat source, and that at temperature 7; is the heat sink. Consider,
for simplicity, that the working substance is an ideal gas formed by N particles. Since
we already studied in detail the isotherm (section 2.7.3) and the adiabath (section
2.7.4) of the ideal gas, we can readily summarise what happens in each process that
comprises the Carnot cycle (Figure 3.1):

1. Isothermal expansion A - B
Since Q4-,p > 0, the system extracts heat

Vi
QhEQAeB:NkBThln(ij) (3.1)

from the heat source. Since Wy_.p = Q4.5 < 0 the system produces work
_WA—>B«

2. Adiabatic expansion B - C
In this case Qp_.¢ =0, and since

Wpe ZC\/(T[ -Ty) <0,

the system produces work —Wp_,c.
3. Isothermal compression C — D
Since Qc-.p <0, the system rejects heat

%
Ql = _QC—>D = NkBT[lIl (Vl) (32)
D

to the heat sink. Since We_.p = -Qc—p > 0, the system consumes work We_, p.
4. Adiabatic compression D - A
In this case Op_.4 =0, and since

Wpoa=Cv(T;,-T;) >0,

system consumes work Wp_, 4.
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P

B->C(T}) C—D D=A(Tt)

Figure 3.1 The Carnot cycle represented in the (V,P) state plane, and a schematics of the
four processes emphasising the two heat reservoirs at temperatures 7, and 7;. Note that Q;,
and Q; represent unsigned quantities. This representation of the Carnot cycle is due to Emile
Clapeyron (1799-1864), and was originally presented in an article published in 1834.

The heat corresponding to one cycle is thus

Vi Vi
Qcyele = 0asp +Ocp = NkpTy, 1n(—3 ) +NkBT11n(—D ) :
Va Ve

Since the work of the two adiabaths cancels out

Wgc+Wp_a =0,
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the work corresponding to one cycle is

V V
Woscte = Wao + Weop = -NkaTiln (32 -NkaTin (32,
Vi Ve

showing, as expected, that AUy, = 0.
Now, let us analyse the adiabaths in light of (2.28). For the adiabath B — C the
relation
vy =y

holds, and for the adiabath D — A one has
y-1_ y-1
TV, =TV, .

From the two equations above, it follows that

Ve _Vc 3.3)
Va Wp '

Using (3.3) and taking into account that 7; < Tj,, one can write

chcle =Nkgln (&) (Tl - Th) <0.

Vb
Thus, after one cycle, the system produces work W = —W,,.. Since the goal of an
heat engine is to produce work from heat (more precisely, from the energy Q, trans-
ferred as heat from the heat source to the working substance), it makes sense to define
the heat engine’s efficiency as

w
Nhear = @ 34
Considering that
W=0,-0,
the last equation can be written as
0
Mhear =1 - 52 (3.5)

Taking into account (3.1) and (3.2) it is easy to see that

O _Ti

o T G0
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Using (3.6) we can rewrite (3.5) as

T
Ncarnot = 1- 72 3.7

Equation (3.5) shows that although the Carnot engine may be the most efficient heat
engine operating between two heat reservoirs, it is not able to completely convert
the energy transferred from the heat source into work. Indeed, according to (3.7) for
the efficiency of a Carnot engine to be 1, either the heat source should be at infinite
absolute temperature (7, = c0), or the heat sink at absolute zero (7; = 0 K), which are
both impossible.

Later in this chapter (section 3.5), we will use the second law of thermodynamics
to demonstrate that the Carnot engine is the most efficient of all heat engines, and that
all reversible engines operating between a heat source and a heat sink have the same
efficiency. This last result has profound consequences. In particular, it implies that
either (3.6) or (3.7) can be used to establish a temperature scale which is independent
of the thermometric properties of the working substance. Either (3.6) or (3.7) thus
determine the absolute, or thermodynamic temperature scale, named the Kelvin
temperature scale in honour of Lord Kelvin who firstly established this remarkable
result.

3.3 THE INVERTED CARNOT CYCLE

Since the Carnot cycle comprises four reversible processes it can run backwards.
We can leave the adiabaths aside because Q =0, and, as in the Carnot cycle, their
combined work is zero. That leaves us with the isothermal processes. An analysis
similar to the one carried out for the Carnot cycle shows that in the isotherm B — A
the system rejects heat

\%
Qh E—QB_,A :NkBThln(—B), (38)
Va

to the heat source, and consumes work Wg_,4 = —Qp_,4 > 0. On the other hand, in the
isotherm D — C, the system extracts heat

Vi
01=0poc = ngnln(—c) , (3.9)
Vb

from the heat sink, and produces work -Wp_.c = Op_c.
The total energy transferred as work after one cycle is thus

Vi
Wagete = Wsoa + Wpac =Nk31n(v—f)) (Ti-T) >0, (3.10)

showing that after one cycle, the system consumes work W = Weye..
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There are two engines that operate on the basis of an inverted Carnot cycle. One
is the refrigerator, and the other is the heat pump. Their efficiency is defined dif-
ferently because they have different purposes. In the case of the refrigerator, the goal
is to extract energy from the cold body to keep its temperature low. Thus, for the
refrigerator

0
Nrefrigerator = Wl (3.11)

Using (3.9) and (3.10), the efficiency of a refrigerator based on an inverted Carnot
cycle can be written as
T

—_— 3.12
Tl (3.12)

Nrefrigerator =
which can be larger than one.
An heat pump, on the other hand, transfers energy from a cold body to a hot body,
keeping the latter’s temperature high. Thus, for the heat pump

Moy = % (3.13)

Using (3.8) and (3.10) the efficiency of an heat pump based on an inverted Carnot

cycle can be written as
Ty

npump = ﬁ> (314)

which is always larger than one.

We finish this section by showing a diagram of the Carnot engine (Figure 3.2 A),
and of the inverted Carnot engine (Figure 3.2 B). We will used them extensively in
the following sections. In this simplified representation, the black bars represent the
heat reservoirs, and the circle represents a heat engine that has undergone one cycle.
In the Carnot engine heat is extracted from the heat source, the system produces
work W, and heat is rejected to the heat sink. In the inverted Carnot engine, on the
other hand, the system consumes work W, to extract heat from the cold reservoir, and
reject it into the hot reservoir. Note that W, Q;, and Oy, represent unsigned quantities.
Thus the first law of thermodynamics reads

On-W-0,=0,

for the Carnot engine, and
-Op+W+0Q;=0,

for the inverted Carnot engine.
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Carnot

inverted

Figure 3.2 The Carnot engine (A), and the inverted Carnot engine (B).

3.4 THE SECOND LAW OF THERMODYNAMICS

After the publication of Joule’s article that establishes the relation between work and
heat, Rudolph Clausius formulated the first law of thermodynamics as we know it
today (2.5) and stated, for the first time, the second law of thermodynamics (1850).
One year later, Lord Kelvin (1824—1907) stated the second law in an alternative way.

Second law (Clausius’ statement): A process whose only result is to extract
heat from a heat reservoir and reject heat to an hotter reservoir is impossible

Second law (Kelvins’ statement): A process whose only result is to extract heat
from a heat reservoir and produce work is impossible

It must be emphasised that these statements were established on the basis of exhaus-
tive empirical observations. They are verbally different but, as we will see shortly,
they are logically equivalent. The expression whose only result is very important,
because it means that once the process occurred the system is left unchanged. We
already know that a thermodynamic process where the system is left unchanged is
a cyclic process. Clausius and Kelvins’ statements of the second law can be repre-
sented by using the diagrams shown in Figure 3.3 A and Figure 3.3 B, respectively.
To prove their logical equivalence we will consider the following propositions:

Proposition 1: Clausius’ statement implies Kelvins’ statement.
Proposition 2: Kelvins’ statement implies Clausius’ statement.

If both propositions are true, the two statements are logically equivalent. We will
prove that both propositions are true by contrapeosition. Thus, we will show that a
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\

Figure 3.3 A heat engine that violates Clausius’ statement (A) is not possible, and a heat
engine that violates Kelvins’ statement (B) is not possible.

violation of Clausius’ statement leads to a violation of Kelvins’ statement, and that a
violation of Kelvins’ statement leads to a violation of Clausius’ statement.

Proof of propositionl. Let us assume that an engine that violates Clausius’
statement exists, and name it Clausius violator. The latter extracts heat Q; from
the heat sink and rejects heat Q; into the heat source. The Clausius violator can
be combined with a Carnot engine as shown in Figure 3.4 A. Assume without
loss of generality that Q; = Q;. If not, consider two positive integers N and N’
such that the ratio N/N’ approximates Q;/Q; with arbitrary precision. Adjust
the cycles of the two engines taken as the two components of the combined
system by taking N’ cycles of the Clausius violator and N cycles of the Carnot
engine. The combined system (Figure 3.5 B) will satisfy Q; = Q; within the
chosen precision. By applying the first law to one cycle of the combined sys-
tem (AUqyci. = 0) one gets

0n-0,-W=0.

Thus, we conclude that the combined system only extracts heat (Qj, — Q,’l)
from the heat source, and produces work W, violating Kelvin’s statement of
the second law.

Proof of proposition 2. We assume that an engine that violates Kelvin’s state-
ment exists, and name it Kelvin violator. The latter extracts heat Q;l from the
heat source and produces work W'. The Kelvin violator can be combined with
an inverted Carnot engine as shown in Figure 3.5 A. We adjust the work pro-
duced by the Kelvin violator, and the work consumed by the inverted Carnot
engine such that W = W' for the combined system (Figure 3.5 B). By applying
the first law to one cycle of the combined system (AU, = 0) one gets

0, +01-0; =0,
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and therefore, the combined system only extracts heat Q; from the reservoir
at T;, and rejects heat (Q), — Q) into the reservoir at 7, > 7;, which violates
Clausius’ statement of the second law.

A

Figure 3.4 Proof of proposition 1. We assume that an engine that violates Clausius statement
exists and combine it with a Carnot engine (A). The combined system only extracts heat from
the reservoir at high temperature (7},) and produces work, which violates Kelvins’ statement

(B).

Figure 3.5 Proof of proposition 2. We assume that an engine that violates Kelvin’s statement
exists and combine it with an inverted Carnot engine (A). The combined system only extracts
heat from the reservoir at low temperature (7;) and rejects it into the reservoir at higher tem-
perature (7}, > T;), which violates Clausius’ statement (B).

Think about it...
Consider an isothermal process of the ideal gas. Does it violate Kelvins’ statement
of the second law of thermodynamics?
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Answer

No because although O = W, the complete conversion of heat into work is not the
only final result of the process. There is also a change in the volume of the gas,
which increases in the expansion and decreases in the compression.

3.5 CARNOT THEOREM

In this section we will use the second law of thermodynamics to prove the Carnot
theorem.

Carnot theorem: Of all the heat engines operating between two given tempera-
tures, none is more efficient than a Carnot engine

To demonstrate this theorem by contraposition let us consider two engines operating
between two heat reservoirs as before. One of the engines is an inverted Carnot en-
gine, and the other is an hypothetical irreversible heat engine named Irr (Figure 3.6
A). Let us assume that the efficiency of Irr is higher than the efficiency of the Carnot
eﬂgiﬂe Nirr > Ncarnot:

ww

7, > .

Qh On
Adjust the cycles of the two engines in the combined system such that W’ = W. Recall
that the unsigned quantity W is the same for the Carnot engine and for the inverted

Figure 3.6 Demonstration of Carnot theorem. We assume that a heat engine Irr exists that is
more efficient than the Carnot engine, and combine it with an inverted Carnot engine (A). The
combined system only extracts heat from the reservoir at 7; and rejects heat into the reservoir
at T, > T, which violates Clausius’ statement (B).
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Carnot engine. Since Ny > Ncarnot s

On> Q.

By applying the first law to the combined system, it is easy to see that (Q; —Q},) =
(Q1 - Q). Moreover, since (Qy, - @) >0, we conclude that the combined system
only extracts heat (Q; - Q;) from the reservoir at low temperature (7;), and rejects
heat (Qy, — Q;l) into the reservoir at Tj, > T, thus violating Clausius’ statement. There-
fore, an heat engine that is more efficient than a Carnot engine does not exist. The
following is a corollary of Carnot’s theorem, whose demonstration is left as an exer-
cise to the reader.

Corollary: All reversible heat engines operating between two heat reservoirs
have the same efficiency

3.6 ENTROPY CHANGE IN REVERSIBLE PROCESSES

Since the efficiency of a Carnot engine does depend on the working substance, for
any Carnot cycle it is true that
O _Ti
o T
or, equivalently
O, ~Qr _
I, T
This result is of critical importance because apart from determining the absolute
temperature scale, it also allows establishing a mathematical expression for entropy
change in reversible processes. Clausius was the first to recognise the existence of
this novel state function, which is one of the most important thermodynamic proper-
ties. As we will see, the most popular statement of the second law of thermodynam-
ics determines the direction of entropy change in isolated systems. Here, we start by
generalising (3.15) for a reversible continuous cycle L (Figure 3.7 A).
In one Carnot cycle there is only heat in the isotherms. Therefore, (3.15) can be
rewritten as

0. (3.15)

Qrev B
Z T _O’

cycle
where we use the superscript rev to emphasise the fact that energy is transferred
reversibly. We now approximate the continuous cycle L by a series of n Carnot cycles
(Figure 3.7 B). If the Carnot cycles are executed in the same direction (as indicated by
the arrows within each cycle), the work contributions of the adiabaths that are shared
by each pair of cycles cancels out. Therefore, for n Carnot cycles it is possible to

write
n Q;’ev
(= &)

i=1 \cycle(i) Ti
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A
T T

\

Figure 3.7 A continuous reversible cycle L represented in the (V, T') state plane showing two
paths I and /7 (A), and the same cycle covered by Carnot cycles (B), which are all executed in
the same direction.

For an infinitesimal amount of energy transferred as heat, dQ;, the equation above
becomes exact when n — oo. In this case:

ereV B
ﬁ —— -0 (3.16)

By considering paths (1) and (II) (Figure 3.7 A), one can rewrite (3.16) as

rev rev
f 0 +[ a0 =0. (3.17)
Lg T gy T

Since, except for its sign, dQ™" takes on the same values in the process that goes
from A to B along path /I, and in the process that goes from B to A along the same
path, it is true that

erev / erev

=- . 3.18

/113A T g T ( )
By substituting equation (3.18) in (3.17) it comes that
in’é’V / d‘QF@V

= . 3.19

flAB T e T ( )

The property expressed by (3.19) allows the definition of a novel state function.
The latter, represented by the letter S, was designated by Clausius as entropy. The
name was inspired by the Greek word tropi, which means change. Clausius added
the prefix en to connect it to energy. For a reversible process that takes the system
from a certain fixed equilibrium state O, to some equilibrium state A, the entropy of
equilibrium state A is given by

A gore
&:%+f o (3.20)
o T

The equilibrium state O is called a reference state, and, in principle, it may be ar-
bitrarily defined. This implies that in the context of thermodynamics entropy is not
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determined in absolute terms, but rather measured relative to an arbitrary value that
is assigned to some conveniently chosen reference state. The SI unit of entropy is J
K-!

Now, let us consider a reversible process from equilibrium state A to the reference
state O, and another reversible process from reference state O to equilibrium state B.

It comes that B 3O’ 0 rev B rev
[raen. e, rraet,
A T A T o T

o g0 A gorev
[t rae g,
A o

Since

T T
and the entropy of state B is

B erev
Sp=S fA——,
B=v0+t o T

the change in entropy between equilibrium states A and B is

B g0’
M:&—&:/‘éL— 3.21)
A T

If states A and B are infinitesimally separated, the equation above becomes

erev
= T

ds (3.22)

For an adiabatic process dS = 0. For this reason, such a process is also termed isen-
tropic.

Think about it...
Based on equation (3.21) can you explain why the Carnot engine has an efficiency
lower than 1?

Answer

Because an efficiency equal to one would require the temperature of the heat sink
to be 7 = 0 K, and, according to (3.21), no energy can be exchanged as heat with
areservoir at 7 = 0 K.
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3.7 THE FUNDAMENTAL CONSTRAINT

Now that we have defined entropy for reversible processes, let us go back to the first
law of thermodynamics for a fluid system with a fixed number of particles, namely,

dU =dQ-Pav,

where —PdV, stands for reversible work. If energy is transferred as heat reversibly,
the equation above becomes

dU =TdS - PdV (3.23)

Equation (3.23) is known as the fundamental constraint or fundamental equation
of thermodynamics. The variables T and S, and P and V form conjugate pairs. If
one considers a set of generalised forces, the fundamental constraint can be written
as
dU =TdS+ " Xdx;, (3.24)
i

with the dot product ¥, X; - dX; in the case of vectorial quantities. In a conjugate pair
Xdx, one of the variables, X, is intensive and the other, x, is extensive. Note that Xdx
has dimensions of energy.

As we discussed in Chapter 2, the equilibrium state of an ideal gas (or any fluid
system in general) where N is fixed, stays specified by a pair of independent state
variables, e.g., (T,V) or (T, P). Equation (3.23) shows that U changes whenever, S
and V change. This means that U = U(S,V). The difference between the (S,V) pair
and other pairs of state variables, is that S and V' are the natural variables of the
internal energy. We will address this concept in the next chapter.

Given that

U=U(S,V), (3.25)
then, 5 5
U U

Comparing (3.26) with (3.23) it comes that

U oU
T=\== andP:—(—).
(35 )V aV /s
The equations above provide thermodynamic definitions of temperature and pres-
sure, respectively. They are equations of state for the internal energy because

they establish a connection between the state functions, namely, 7 = T(S,V) and
P=P(V,S).



The Second Law 73

Think about it...
Which of the systems in Figure 3.8 exhibits absolute negative temperature?

Answer

By using the thermodynamic definition of temperature, only system A exhibits
absolute negative temperature, because it is the one where the curve representing
the dependence of U on S has a negative slope.

S A B C
U/ U|/
S S s

Figure 3.8 Dependence of U on § for three hypothetical thermodynamic systems.

C

It follows from the reciprocal rule (2.23) that

=(3)

T \oU v’
and therefore,

S=S(U,V) (3.27)
in a system where N is fixed. U and V are the natural variables of S. The differential
of §=S(U,V)is

S aS
dS=|=—) dU+| =] dV. 3.28
( U )V (8V )U ( )
To evaluate the second partial derivative we consider equation (3.23) with U constant.
In that case
(ﬁ) _P
vl T’
and,
1 P
dS=—=dU+—=dV. (3.29)
T T
Think about it...

Consider the Carnot cycle. How does entropy change in the isothermal expansion?
And in the isothermal compression? Can you draw the Carnot cycle in the (S,7)
state plane?
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Answer

In both cases dU = 0. Using (3.29) and the ideal gas equation

ds= N—dev.
%

Integrating between an initial equilibrium state i and a final equilibrium state f

Vs
AS=Sf—S,' =Nk31n(—) o
Vi
Thus AS > 0 for the isothermal expansion (V> V;), and AS < 0 for the isothermal
compression (V¢ < V;). It is easy to see that AS;yc;, = ASq_.p +ASc_.p =0, a re-
sult that could have been anticipated because S is a state function. Based on this
analysis one can draw the Carnot cycle in the (7,S) state plane (Figure 3.9).

A

T Q

T.F- B

K --DI |C
Sa=Sp Sg=S¢ S'

Figure 3.9 The Carnot cycle in the (S,T) state plane. The entropy increases in the isotherm
at 7, and decreases in the isotherm at 7;. From the definition of entropy change for a reversible
process (3.21), the entropy is constant in the adiabaths because Q = 0.

Think about it...

Although V and U are the natural variables of S for a system where N is fixed,
one can always express S in terms of other pairs of independent variables. As a
matter of fact, two rather important thermodynamic relations can be obtained by
considering S = S(7,V) and S = S(7, P), namely,

s\ _Cy

(ﬁ)v =T (3.30)
and 55 .
_Lpr

(a_T)p == (3.31)

Can you think of a way to derive (3.30)?
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Answer
If $ = S(T,V), then

aS a2S
"S‘(a—r)v"”(w)ﬂ“

Replacing dS as given by the equation above in equation (3.29) one obtains the
following equation:

dU aS as P

— === dT - | —= |4V

T (aT)V +[(aV)T T]

Thus, if V is constant,
1(2Y) ()
T\oT Jy \oT )’

with Cy = (g—;{) .
Vv

3.8 CLAUSIUS THEOREM

According to the Carnot theorem, the efficiency of an irreversible heat engine oper-
ating between two heat reservoirs 7}, and 7; is lower than the efficiency of a Carnot
engine:

1
22l
On T,
Equivalently,
9, =9 (3.32)
T, T

The Clausius theorem (or Clausius inequality) generalises the Carnot theorem for
continuous irreversible cycles. Thus, equation (3.32) is a particular realisation of
Clausius inequality, which we will derive in the present section. The Clausius in-
equality will lead to a third formulation of the second law of thermodynamics, which
establishes the direction of entropy change in isolated systems.

Consider a generic thermodynamic system S that undergoes a continuous irre-
versible cycle Irr (Figure 3.10 A). The system exchanges energy Qi, O2, O3, Qu, ...
0O, with n heat reservoirs at temperatures 71, T», 13, 14, ...T,, respectively. Note that
in the particular context of this demonstration we will be assuming that Q; represents
a signed number. Likewise, Q; is positive if energy is transferred to the system, and
negative if energy is transferred from the system.

Let us further consider n Carnot engines, Cy, C3, C3, Cy, ..., C,. Each Carnot
engine operates between a heat reservoir at temperature Ty, and another heat reservoir
at temperature 7;. The size of each Carnot cycle is such that at each point of the
continuous cycle Irr, energy Q; is transferred from the i-th heat reservoir 7; to the
system (Figure 3.10 B).
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Figure 3.10 A continuous irreversible cycle Irr (A) is combined with n Carnot cycles (B).
In (B) the arrows represent a particular realisation of energy transfer, which corresponds to
positive Q;s. However, we are assuming that along the /rr cycle energy transfer can occur in
both directions.

Think about it...
Why is the continuous cycle Irr in Figure 3.10 not represented in a state plane as
the continuous cycle L of Figure 3.7A?

Answer

Because an irreversible cycle leads the system from an initial equilibrium state
to a final equilibrium state through intermediate states which are non-equilibrium
states. The latter cannot be represented in the state plane.

For each Carnot cycle C; it its true that

Qo _ Qi
v T’
or, equivalently,
O;
i=Tp—.
Qo.i=Tp T

Now consider a combined cycle that comprises one complete cycle Irr and one com-
plete cycle of each Carnot engine C;. For the combined cycle, the net heat extraction
at each one of the heat reservoirs 7; will be zero, because the energy that is transferred
from the heat reservoir at 7; to the system, is exactly the same as that transferred to
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the same heat reservoir by each Carnot cycle C;. However, the total energy transferred
to the set of n Carnot cycles by the reservoirs at Ty is:
- Qi

Oo=Ty) —.
i=1 T;

Since both the system S and the set of n Carnot cycles return to their initial state upon
completion of one combined cycle, the only result of the latter is to convert Qg into
work
n
W = ‘/Virr + Z ‘/Vh

i=1
which would violate Kelvins’ statement of the second law if Qy is positive. We must
therefore require that Q¢ must be negative. In this case

i % <0, (3.33)

i=1
because Ty and 7; are measured in the absolute temperature scale (i.e. they are pos-
itive quantities). Equation (3.33) is the generalisation of (3.32) for a set of n heat
transfers between the system and heat reservoirs. To derive it we considered finite
energy transfers Q; with the heat reservoirs at temperature 7;. If, instead, one con-
siders infinitesimal energy changes dQ;, with a continuous distribution of reservoirs
such that n — oo, the equation above becomes

J—TQ <0 (3.34)

Equations (3.16) and (3.34) are summarised in Clausius (heat) theorem.

Clausius (heat) theorem: For a thermodynamic system that exchanges heat 4Q
with a reservoir at temperature 7', and undergoes a cyclic process

C? <0, (3.35)

with the equality being valid for a reversible cycle

Think about it...
What is the meaning of 7 in (3.35)?
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Answer

In the case of the reversible process (equality) it is the temperature of both the
system and heat source. In the case of the irreversible process (inequality) it is the
temperature of the heat source because the system is not in equilibrium during an
irreversible process.

Figure 3.11 A continuous cycle showing an irreversible path (/) and a reversible one (I1).

We will now consider a cycle that combines an irreversible path (I) with a re-
versible one (I) (Figure 3.11) (note that the cycle as a whole is considered irre-
versible and cannot be represented in a state plane). By applying Clausius theorem

we can write P 10
f —Q+ [ o <0,
Lg T Iga T

/ @<\/« dQVL’V
s T ~Jig T

which is equivalent to

Using (3.21):

In general, for any type of thermodynamic process between the initial state A, and

the final state B 540
— < Sp—S4,
fA T B —9A

with the equality holding for reversible processes.
When the two states are separated by an infinitesimal amount

% cas.
T

The following equation summarises what we have learnt regarding entropy change:
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d‘QF{,’V N @
T T

ds= (3.36)

Equation (3.36) shows that if the system under consideration is thermally isolated
@Q=0)
dS>0. (3.37)

The inequality expressed by (3.37), which shows that the entropy of an isolated sys-
tem cannot decrease, has an important corollary, which is the third formulation of
the second law of thermodynamics:

Maximum entropy principle: In approaching thermodynamic equilibrium, the
entropy of an isolated system must tend to a maximum, and the final equilibrium
state is the one for which the entropy is greatest

Thus, the equilibrium state of an isolated system is such that
ds=0, (3.38)

and
S =S (3.39)

3.9 ANALYSIS OF IRREVERSIBLE PROCESSES

In this section we analyse in detail some irreversible processes.

3.9.1 JOULE EXPANSION

We start with the Joule expansion, which is also called free expansion. In this pro-
cess an amount of ideal gas is kept in one side of a thermally isolated container via
a small partition. The pressure and volume of the gas are respectively P; and V;. The
other side of the container is under vacuum. The partition between the two parts of
the container is then removed and the gas fills the whole container, ending up at a
final equilibrium pressure Py and Vy = 2V; (Figure 3.12). What is the entropy change
associated with this process?

This process is clearly irreversible due to the large pressure difference that exists
between both sides of the container. The equilibrium states are only the initial and
final sates. Since entropy is a state function, entropy change only depends on the
initial and final states of the system. Therefore, for the purpose of evaluating AS one
can consider a reversible path taking the system from the initial to the final state for

which £ a0
AS = f o
i T
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P..Vi

Pfyan Pf ,Vf

)

Figure 3.12 Joule expansion.

Since the whole container is thermally isolated the process is adiabatic (Q =0). More-
over, since the gas expands freely (because there is no external force opposing the gas
movement), the work associated with this process is also null (W = 0). The number
of particles is kept constant. According to the first law of thermodynamics AU = 0.
Therefore, the reversible process that shares with the irreversible process the same
initial and final states, will be an isothermal expansion since for the ideal gas AU =0
implies that AT = 0. Consequently 40" = PdV, and thus

V'P
AS:/ "Eay
v, T

1

Since no process occurs in the surroundings

ASsurrot,mdings =0.
Thus

ASyniverse = AS + Aqurmundings
= NkgIn2 >0,

in accordance with the second law.

3.9.2 SYSTEMS IN THERMAL CONTACT

We will now consider a particular case of two systems in thermal contact in which
one of the systems is a heat reservoir R at temperature T, and the other is a system
with heat capacity C, and temperature Ts. How to evaluate AS;;;?
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We start by evaluating AS. The macroscopic temperature difference AT = (T —
Ts) leads to an irreversible energy transfer process. Since the entropy is a state func-
tion we will — as we did in the Joule expansion — use a reversible path between the
initial and final states to evaluate AS. In this case

f rev
AS = f 0 )
i T

with Q" = CdT. Since the system is in thermal contact with a heat reservoir, the
system’s final temperature, will be the reservoir’s temperature 7. Thus,
TR dT T;
AS=C —f:cm(R).
5 T

Ts

To compute the entropy change of the reservoir, we need to recall that by definition
of reservoir its temperature is constant. Thus,

Ql”e\/
T

1 f
ASyeservoir = 7 f d Qrev =
Tr Ji R

We also need to realise that in both the reversible and irreversible processes the
amount of energy transferred to (or from) the system has the same magnitude (with
opposite sign) of that transferred from (or to) the reservoir. In particular, using
Q = CAT, and taking into account that the system’s final temperature is that of
the reservoir, the system’s temperature change between the final and initial states is
AT = (Tg - Ts). Therefore, in the expression above, Q™" = —C(Tg - Ty) is the energy

transferred from (to) the reservoir. Thus,
C(Ts-Tg)
R

ASreservoir =

Finally,

ASlmiverse =AS+ ASreservoir

:Cln(ﬁ) + 7C(TS_TR)
Ts Tk

T T
:Cfi—m(i)—q.
Tr Tr
Since C > 0, it is easy to see by plotting the function (x—Inx— 1) that AS,,iverse > 0.

3.9.3 MIXING TWO IDEAL GASES

Let us consider two different ideal gases, 1 and 2, at the same temperature 7 and
pressure P, and occupying volumes (1-x)V and Vx as represented in Figure 3.13 A.
The partition that separates the two gases is removed, and each gas expands ending
up occupying the whole volume V. What is the entropy change associated with this
process? Since the process occurs at fixed temperature, the internal energy does not
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Figure 3.13 Mixing two ideal gases (A), and the corresponding entropy change (B).

change. Therefore, we can consider an isothermal reversible expansion for each gas
to evaluate the corresponding entropy change. For gas 1 we get

vl
AS, = xkg f —av,,
xV V1

and for gas 2,
v

ASy = (1- kf 4V,
2= (1=x)k (1-x)Vv Vo 2

Since there is nothing occurring elsewhere, the entropy change of the universe is
ASuniverse = AS1 +ASy = —Nkp (XIHX+ (1 —)C) ln(l —x) ) .

A plot of AS,iverse 1S represented in Figure 3.13 B, where it is possible to see that
the maximum entropy change corresponds to x = 0.5.

Think about it...
If the two gases are identical what is AS,,iverse?

Answer

In that case there is no thermodynamic process because removing the partition has
no observable macroscopic consequences. Therefore, AS,,iverse = 0.

3.10 THE STATISTICAL MEANING OF ENTROPY

In thermodynamics the equilibrium state of a system, the so-called equilibrium
macrostate, stays completely specified by a subset of its macroscopic properties.
Indeed, in the case of a simple fluid with a fixed number of particles, any pair of
variables (7,V), (T,P) and so forth, is enough to completely determine the sys-
tem’s macrostate (Figure 3.14 A). From a microscopic point of view, however, the
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fluid is an ensemble of dynamic N point particles, and each particle i has a position
vector, 7 = (x;,y;,z;) and a linear momentum vector p = (mviy, mv;y,,mv;;). Therefore,
the ensemble of N particles stays completely characterised by a point in the 6N di-
mensional space called the phase space. Each point in the phase space represents a
microstate of the system.

B e N

— —
~ \& X \/[
~_10L1[ — NFIRFEN
\f\/ \i\[x/\/z \:\

<

Figure 3.14 A macrostate of a thermodynamic system (A), and several microstates compat-
ible with the macrostate (B).

In a famous paper dated from 1872 Ludwig Boltzmann showed that in thermo-
dynamic equilibrium the entropy is given by

S=kglnW, (3.40)

where W, the first letter of the german word wahrscheinlichkeit (probability), rep-
resents the number of microstates compatible with a given equilibrium macrostate
with fixed energy U = E, volume V, and number of particles N (Figure 3.14 B). No-
tice that while W is generally called the probability of a given macrostate, in fact,
it is only proportional to the probability in the usual statistical sense. This famous
equation, despite reflecting Boltzmann’s ideas, was actually written by Max Planck
(1858-1974) in 1900, and is craved in Boltzmann’s tomb.

The second law of thermodynamics states that in an isolated system entropy
tends to a maximum, and is maximum in equilibrium. Boltzmann’s equation allows
to understand why this happens: An isolated system tends toward an equilibrium
macrostate with maximum entropy, because then the number of microstates is the
largest, which makes this state the statistically most likely.

Boltzmann equation also allows us to understand the reason why entropy in-
creases in Joule expansion, a process that occurs at constant energy (of both the
system and the thermodynamic universe). In the Joule expansion, nothing occurs in
the surroundings. Thus we need to focus our analysis only on the system. In the final
equilibrium state, each particle of the gas has access to a volume which is twice as
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larger as that of the initial state, V; = 2V;. Therefore, the number of microscopic con-
figurations (i.e. spatial arrangements of the particles) within the available volume is
also larger. In other words, the number of system’s microstates compatible with the
equilibrium macrostate characterised by some V is also larger. The final state is thus
the one that maximises the number of microstates of the thermodynamic universe.
This reasoning allows one to understand the dependence on V in the equation

ds= de + d—U
T T

To understand the dependence on U, we need to consider a non-isolated system, but
take into account that the thermodynamic universe will itself be isolated. Let us con-
sider the case of two systems in thermal contact. More precisely, let an ideal gas
enclosed by some container, be placed into thermal contact with a heat reservoir. In
this case since the volume is kept fixed there is no energy transfer as work, and the
only way to change the internal energy of both the system and reservoir is by trans-
ferring energy as heat. Again, the final state should be the one that maximises the
number of microstates of the thermodynamic universe. At this point it is useful to
recall that the energy of a system in contact with a thermal bath is not fixed (only
the temperature is fixed) fluctuating around an equilibrium value. Indeed, the energy
is a random variable to which corresponds a probability distribution which depends
on the temperature 7' of the heat reservoir. In Figure 3.15 we show the probability
distribution function of the energy of an ideal gas (which is only kinetic energy) at
three different temperatures (see problem 1.15). We see that the distribution becomes
broader as T increases. This means that at higher T the system has access to a larger
number of microstates. This information allows one to understand why the entropy
of a system increases when it is placed with a heat reservoir with 7T > Ts. In the op-
posite case, when Ty < Ty, energy will be transferred as heat from the system to the
reservoir, and the entropy of the system decreases. However, the entropy of the ther-
modynamic universe, and, in particular, the number of microstates of the reservoir,
must necessarily increase according to the second law.

E

Figure 3.15 Distribution of energy of an ideal gas in thermal contact with three reservoirs.
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3.11 ENTROPY AND DISORDER

It is often said that entropy is a measure of disorder. But what does disorder actually
mean? It appears that Hermann von Helmholtz (1821-1894) was the first to establish
the association between entropy and disorder in a paper on the kinetic theory of
gases from 1882 where, at some stage, it reads: Unordered [ungeordnete] motion,
in contrast, would be such that the motion of each individual particle needs to have
no similarity to that of its neighbours. We have ample ground to believe that heat-
motion is of the latter kind, and one may in this sense characterise the magnitude of
the entropy as the measure of the disorder [unordnung]. In this sentence, Helmholtz
associates the unordered motion of the gas to a lack of structural order, and considers
that energy transferred as heat to the gas (which leads to an entropy increase) should
result into this kind of unordered motion.

Contrary to a gas, a solid exhibits long-range order, which results in a regu-
lar arrangement of particles which repeats itself periodically over the entire crystal.
Considering the Boltzmann’s definition of entropy, the number of microscopic con-
figurations compatible with a certain volume, energy and number of particles of the
system will be much higher for the gas state than for the solid state, where the parti-
cles are constrained to the vertices of a lattice, vibrating around their fixed positions.
In this sense, it seems reasonable to consider entropy a measure of structural dis-
order, with the more structurally disordered state being the one with higher entropy.
However, this association may not always be correct. An illustrative example from
the macroscopic world helps to understand the reason it may fail for some physical
systems. Consider packing a rigid (i.e. fixed volume V) suitcase, when the number
of items is such that their combined volume is similar to that of the suitcase (in
thermodynamic terms this would be a high-density system). In this scenario, one
cannot simply randomly place the items inside the suitcase (as we probably would
if the available volume was larger), but one has to place them in an orderly manner
to be able to close it. Therefore, in this case, there are more structurally organised
arrangements compatible with the suitcase’s volume than disorganised ones. If one
considers that an arrangement of the suitcase corresponds to a “microstate” compat-
ible with volume V, then the number of structurally organised microstates is larger
than the number of corresponding disordered microstates. Therefore, the entropy of
the structurally ordered state is higher than that of the structurally disordered one.
What this example suggests is that there may be physical systems at high density,
where packing considerations dominate, and in which the more ordered phase pos-
sesses a higher entropy (i.e. a higher number of microstates) than a spatially disor-
dered phase at the same temperature and density. This was originally observed in
molecular simulations of a fluid modelled as a system of hard spheres undergoing a
freezing transition, which is known to provide a good description of certain classes
of colloidal systems. For these systems, the more efficient packing of the ordered
phase leads to both a greater free volume and local mobility, which overcomes the
effect of increased positional ordering in determining the entropy at high density.

While the view of entropy as a measure of structural disorder is the most
common, sometimes the word disorder interpreted as lack of information is also
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employed in association to entropy. The justification in this case being that the greater
the number microstates compatible with a given equilibrium macrostate, the less in-
formation is available about the precise microstate, i.e, the higher the uncertainty
associated with the occurrence of a given microstate.

Entropy is a precise, measurable quantity, and while the associations described
above may be tempting, it is important to use them correctly (i.e. for the physical sys-
tems where they actually apply) so that they help us understand instead of hindering
the correct meaning of entropy.

3.12 LEARNING OUTCOMES

At the end of this chapter the reader is expected to:

1. Be able to quantitatively analyse the Carnot cycle and other cyclic processes
used to operate heat engines.

2. Understand the importance of the Carnot engine for the formulation of the
second law of thermodynamics.

3. Be able to prove the logical equivalence between Kelvin’s and Clausius’ state-
ments of the second law.

4. Be able to prove Carnot’s theorem.

5. Understand that the relation %’[’ = % determines the absolute (or thermody-
namic) temperature scale.

6. Establish the definition of entropy change for reversible processes by general-
ising the relation %’; = % to continuous reversible cycles.

7. Appreciate the importance of the fundamental equation of thermodynamics,
namely, that it establishes the equations of state T =7'(S,V) and P = P(V,S).

8. Understand that Clausius theorem generalises Carnot’s theorem for continuous
irreversible cycles and be able to demonstrate it.

9. Appreciate the importance of Clausius theorem and use it to establish the max-
imum entropy principle.

10. Know how to compute entropy change for different types of irreversible pro-
cesses.
11. Know the statistical significance of entropy, and understand the connection

between entropy and disorder.

3.13  WORKED PROBLEMS

PROBLEM 3.1

The Stirling cycle that uses the ideal gas as working substance consists of the
following processes: 1) isothermal compression from state (P;,V}) to state
(P2,V2), 2) heating at constant volume from (P,,V,) to (P3,V;), 3) isother-
mal expansion from (P3,V;) to (Py,V;), and 4) cooling at constant volume
back to (P, V).

a) Draw the Stirling cycle in the (P, V) state plane.

b) Determine the sign of O, W, and AS after one cycle.
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¢) What is the efficiency of a engine operating on the basis of this cycle?

Solution

a) The Stirling cycle is represented in Figure 3.16.
b) In the isotherms (dU = 0):

N Stirling
P 3
2 4
V=V, Vi Ve

Figure 3.16 The Stirling cycle, where the processes 1 — 2 and 3 — 4 are isotherms at 7; and
T, > T;, respectively.

V;
012 = NhaTin 2 ) <0.
Vi

and v v
03,4 =NkBThln(i) :NkBThln(—l) >0.
V3 V2

In the isochors (@Q = dU). Thus
023 =Cy(Tj,—-T)) = =041 =Cv(T;, - T)).
Therefore,
V. V
Ocyele = NkgTjIn (V?) +NkgT,1n (7;)
Vi
=Nkg| — (Th—T[) >0.
V2

Since AUye =0,

Vs
chcle = *Qcycle = Nkp (vl) (Tl 7Th) <0.

Since S is a state function, AS¢y = 0.

¢) Since this is a cycle operating between two heat reservoirs, the efficiency
of an engine that operates this cycle must be the same as that of the Carnot
engine:
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To confirm it, let us use the definition of efficiency of a heat engine, i.e., the
ratio between the and work produced after one cycle (W = ~W,,,), and heat O,
extracted from the heat reservoir at 7j,,

w Nk (%) (T-10) .0
O NkTyn(%) T,

PROBLEM 3.2
Prove that two reversible adiabaths cannot intersect.

Figure 3.17 Two hypothetical adiabaths that intersect at point A.

Solution

Assuming that two adiabaths intersect at some point A on the (P,V) state plane, it is
possible to draw an isotherm at T = T that intersects the adiabaths at points B and
C as shown in Figure 3.17. The corresponding cycle extracts heat from the reservoir
at T; without producing any other effect, in clear violation of the second law of
thermodynamics. Therefore, two reversible abiabaths cannot intersect.

PROBLEM 3.3

Consider an arbitrary heat engine A that operates between systems 1 and
2, working as heat reservoirs, which have identical heat capacity C inde-
pendent of temperature. Let 77 and 7> > 7 be the initial temperatures of
the reservoirs. The heat engine will work until the two heat reservoirs at-
tain the same final temperature 75. Assume that the bodies do not contract
nor expand upon changing their temperatures. Show that 73 > \/717, and
determine the maximum work produced by the engine.

Solution

In this problem the systems acting as reservoirs have a finite heat capacity (i.e. they
are not ideal reservoirs). This means that their temperature will change as a result of
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energy being extracted from 2 and rejected into 1 by the heat engine. If one considers
the isolated system formed by the two reservoirs and the heat engine, the second law
of thermodynamics implies that after one cycle

AS = AS; +AS, >0,

where we have used the fact that after one cycle AS4 =0, and the equality refers to a
reversible process.

To evaluate the entropy change of the reservoirs we consider a reversible path for
which 40
==

dS

with dQ™" = CdT. Thus
dS=dS;+dS, >0.

Taking into account that both reservoirs equilibrate at temperature 73, we can inte-
grate the equation above between 77 and T3 in the case of reservoir 1, and between
T, and T3 in the case of reservoir 2 to get:

3 dT 3 4T
AS=C —+C[ — >0
T n T

T 2
=Cln(§)+Cln(§) >0
T T
T2
=In| —— ] >0,
T,

where we have used the fact that C is constant. The last inequality implies that

T2
73217
nr

and, therefore, T3 > /11 T5.

To compute the maximum work produced by engine A, the cycle must be re-
versible. In this case AS =0 and 73 = /71 I». In a reversible cycle of A, AU, =0, and
according to the first law:

On—0r =W
Let O, be the energy that is extracted from the reservoir at 7 and Q; the energy that

is rejected into the reservoir at 77.
Since dQ = CdT,

T
0, = fT 3CdT:C(T3—T2) =C(VIiT2-1T3) <0,

2

and

T-
Ql = /T‘ 3CdT:C(T3—T1) :C(\/Tsz—Tl)>0.

1
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Thus, the energy transferred to the system from the reservoir at 7 is

On=-0,
and the energy rejected by the system to the reservoir at 77 is
Q=01
Therefore
Wi =C(T\+ T -2V T»).
PROBLEM 34

Consider equation 3.29 and show that the entropy of a gas composed of N
particles can be written as

S=CyInT +NkgInV +c, (3.41)

with ¢ being a constant.

Solution

Considering that for the ideal gas dU = CydT and that P/T = Nkg/V, equation (3.29)

becomes c N
ds —VdT —de (3.42)

Integrating equation (3.42) at constant temperature from state S(7p,Vp) to state
S(Tp,V) one gets

8(To,V) =S(To,Vo) + f( )dV

\%4
=S(Tp,Vo) +Nk31n(—).
Vo

Subsequently, integrating (3.42) at constant volume from state S(7,Vp) to S(T,V)
one gets

T
S(T,V) = S(T,Vo) +fTO (%)Vﬂ

T
:S(T,V0)+Cvln(—)
To

Vv T
=S(T0,V0)+Nk31n( )+Cvln( )

Vo To
=Nk31nV+CV1nT+S(T0,V0)—NKBIHVO—NKBIHTo.

Finally one can write
S(T,V)=CyInT +NkglnV +c,

with C=S(To,Vo)—NKBIHVO—NKBIHT().
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3.14 SUGGESTED PROBLEMS

PROBLEM 3.5

91

What is the maximum efficiency of a heat engine operating between T =

20°C and T = 500°C.

PROBLEM 3.6

If a real engine operating between T = 20°C and T = 500°C produces 120
J of work and rejects 180 J of heat into the colder reservoir, what is the

efficiency of this engine?

PROBLEM 3.7

Consider the ideal gas cycle represented in Figure 2.5. Show that a heat
engine operating on the basis of this cycle has an efficiency given by

where 7 is the adiabatic index.

Otto 4 Atkinson
Pl 3 P
2 4
4
1 P=P, 1
VoVs ViV, \) V,=V, Vo
Brayton A Diesel
P P
pp,| 2 3 P,=P, 3
&n ‘
Pi=P, 1 4 T
V' V1:V4V'

Figure 3.18 Four cycles of the ideal gas. In all the cycles the processes 1 — 2 and 3 — 4 are

adiabaths.

PROBLEM 3.8

Consider the four cycles of the ideal gas represented in Figure 3.18 where
the processes 1 — 2 and 3 — 4 are adiabaths. Show that:



92

A Concise Introduction to Thermodynamics for Physicists

a) The efficiency of a engine operating on the basis of the Otto cycle is

B v\ (=7
n=1 (72) :

b) The efficiency of a engine operating on the basis of the Brayton cycle is

T

-1 (3)

I,

¢) The efficiency of a engine operating on the basis of the Atkinson cycle is
1
Y ar -1
=1-
1 r(V—l)((xl )

with =V, /V, and o = P3/P;.
d) The efficiency of a engine operating on the basis of the Diesel cycle is

ne1 L{r=r"
y\rgt=rt )

with r=V;/V, and r, =V} /V3.

PROBLEM 3.9

In the Joule expansion AU = 0 and W = 0. However, the entropy increases
in agreement with what is expected for an irreversible process. Are these
results compatible with dU = TdS - PdV?

PROBLEM 3.10
Starting from S = S(7, P) show that

(25) -C
aT Jp T
Hint: Use the definition of Cp as given by equation (2.20).

PROBLEM 3.11

One mole of ideal gas is originally at 7, and occupies a volume V. The gas
expands at constant temperature, and the final volume is 2V). Show that
AS > 0, and explain why the entropy increases in this process.

PROBLEM 3.12

An ideal gas is placed inside a cylinder tapped by a piston. The gas is com-
pressed by moving the piston very slowly while the temperature is kept con-
stant at 20°C. During the compression the system consumes work corre-
sponding to 730 J. Determine AS.
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PROBLEM 3.13

An ideal gas composed of N particles is placed inside a cylinder with adia-
batic walls tapped by a piston. The initial volume is V|, and the initial tem-
perature is 7;. Determine AT, AP, and AS that result from a process where
the volume suddenly increases to V, upon removing the piston.

PROBLEM 3.14
Taking into account that the average velocity of the gas particles is

| 8kpT
(V) = W7

how should we move the piston so that the equation dS = (P/T)dV applies
during the whole process?

PROBLEM 3.15

Let O be the energy transferred as heat from one reservoir at temperature 7}
to another reservoir at temperature 7> > 7. The heat capacity of the reser-
voirs is so large, so that their temperatures do not change. Show that the
entropy change associated with this process is positive.

PROBLEM 3.16

Two reservoirs have internal energy U = CNT, with C being constant, N the
number of particles, and 7 the temperature. The initial temperatures of
the reservoirs are 7; and 7,. They are connected with a Carnot engine to
produce work until they relax to a final temperature 7. Determine 7.

PROBLEM 3.17

One kg of water at T = 0°C is placed into contact with a reservoir at
T = 100°C. When the water’s temperature is 7 = 100°C. What is ASy,o?
And AS,,iverse? How should one heat the water up to 7 = 100°C, so that
ASyniverse = 0?
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4 The Third Law

This chapter terminates the first part of this book that is dedicated to the laws of ther-
modynamics. We have extensively used the first law in the analysis that led us to the
formulation of the second law, and, in particular, to the establishment of the maxi-
mum entropy principle. The third law, on the other hand, is completely independent
of the other laws of thermodynamics. The major goal of this chapter is to introduce
the two most important formulations of the third law and show that they are logically
equivalent.

4.1 INTRODUCTION

The third law of thermodynamics is about the behaviour of physical systems as the
temperature approaches absolute zero. We have already seen that 7 = 0 K lies on
the boundary of ordinary thermodynamic parameter space. 7" shows up in the de-
nominator of many equations we have written down, and if, for instance, a Carnot
cycle could be made to operate between a heat source at temperature 7;, and a heat
sink at temperature 7; = 0 K, its efficiency would be Ncgnor = 1 (3.7) and so it would
completely convert heat into work, violating Kelvin’s statement of the second law.
The third law goes beyond this observation. It reflects experimental results ob-
tained for many different substances, and cannot be deduced from the first and second
laws. Firstly stated in 1906 by Walther Nernst (1864—1941) as an independent uni-
versal principle, it has known since then several formulations. There is still on-going
debate about the equivalence of different formulations and the universal validity of
some of them. In this sense, it does not share the status of the first and second laws.

4.2 NERNST THEOREM

Let us begin by considering the following formulation of the third law:

Nernst (heat) theorem: The entropy change of a system in any reversible
isothermal process tends to zero as the temperature of the process tends to abso-
lute zero

This means that, for any extensive parameter X,
AS=S(T,X;)-S(T,X,) >0, as T — 0,

and so, assuming that S(7,X ) remains finite and is continuous in the limit 7 — 0, the
entropy must approach a limiting value that is independent of the other thermody-
namic variables:

S(0,X,) =5(0,X3) = Sp. 4.1
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Another consequence of assuming a finite limit for the entropy is that the heat
capacity will tend to zero when cooling down to absolute zero. Indeed,

CXZT(%S:)X:(rIanST )X—>O, as T -0, 4.2)
because when 7' — 0, InT — oo, and § — Sj.

Both Nerst’s theorem and (4.2) were supported by extensive and very precise
thermochemical measurements performed by Nernst on many different substances at
low temperatures. The heat capacity measurements inspired Albert Einstein (1879—
1955) to develop his quantum model for the heat capacity of solids in 1907. Later, in
1912, Peter Debye (1884-1966) improved Einstein’s model of an insulating solid to
obtain a better fit to Nernst’s results, with C oc T at very low temperatures.

For his work on this subject, Nernst received the 1920 Nobel Prize in Chem-
istry. However, while the heat theorem may be valid for many systems, it is unlikely
to be universal. Indeed, there are quantum systems for which the ground state (i.e.
the state of minimum energy) is degenerate, and the degeneracy of the ground state
may depend on the external parameter X. Since the degeneracy of the ground state
determines the entropy according to Boltzmann’s entropy equation (3.40), for these
systems, the entropy S is not independent of X at 7 =0 K.

4.3 MAXIMUM COOLING

Before we discuss another formulation of the third law, we analyse the process of
cooling a system, and how maximum cooling can be achieved.

In principle, an adiabatic process should be an efficient means to cool down a
thermodynamic system as it ensures that no heat will flow into the system when the
temperature of the surroundings is higher than the system’s temperature. From the
analysis of the Carnot cycle we know that a reversible adiabatic expansion (dQ =0,
dV > 0) is a process that lowers the temperature of the ideal gas. Does it lead to
maximum cooling?

In order to answer this question let us consider that the state of a system is de-
scribed by the independent variables S and V. In this case T = T'(S,V), and the dif-
ferential change in temperature during an expansion is given by

dT = ldS+
Cy

( 3—5 )s dv. (4.3)

The first term on the right hand-side is positive because T is positive, and Cy (and, in
fact, any other heat capacity) is always positive for the equilibrium state to be stable
(see section 5.11.1). Thus, cooling by expansion will be maximised when dS =0, i.e.,
for an adiabatic reversible expansion. The same conclusion holds for more general

systems which can do other kinds of work apart from expansion work: maximum
cooling is achieved by a reversible adiabatic process.
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4.4 NERNST UNATTAINABILITY PRINCIPLE

With the final remark of the previous section in mind, it is reasonable that the fol-
lowing formulation of the third law, also first stated by Nernst, should be called the
unattainability principle.

Nernst (unattainability) principle: No isentropic process starting at a non-zero
temperature can take the system to zero temperature

The unattainability principle is sometimes taken as stating that it is not possible to
cool any system to absolute zero temperature in a finite number of isothermic and
isentropic reversible changes, since such a finite sequence would have to end with
an isentropic cooling from a non-zero temperature down to zero. However, in spite
of its name, the unattainability principle does not forbid reaching zero temperature
following a different equilibrium path or a non-equilibrium process.

4.5 LOGICAL EQUIVALENCE BETWEEN NERNST THEOREM
AND THE UNATTAINABILITY PRINCIPLE

The logical relation between these the two formulations of the third law is readily un-
derstood by considering the two panels of Figure 4.1, where the slope of S = S(7,X;),
i = 1,2, must be positive, because (4.2) holds and the heat capacity is positive.

A A A B
S X2 S X2
X1
S(0, X,), X
1
1
S(0, X !
(0, X1) : S,
] .
0 T T 0 T

Figure 4.1 The dependence of entropy on temperature for two different values of the param-
eter X (e.g. V). (A) The heat theorem is violated and there is an isentropic curve connecting
(T;,X1) to (0,X3). (B) The heat theorem is satisfied, and an infinite number of isentropic pro-
cesses S(T;,X;) — S(Ty,X,) combined with isothermal changes S(7r,X,) — S(Ty,X;) would
be necessary to cool the system down to absolute zero.

Assume first that the unattainability principle does not hold, and that there is an
isentropic process connecting (7;,X;) to (0,X>), so that S(7;,X;) = S(0,X) (Figure
4.1 A). Since the slope of S = S(T,X;) is positive, we must have S(7;,X;) > S(0,X;),
and so S(0,X5) > S(0,X;), in contradiction with the heat theorem formulation.
Therefore, the heat theorem implies the unattainability principle, and reaching zero
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temperature requires an infinite number of isothermic and isentropic reversible
changes, as illustrated in Figure 4.1 B.

Assume now that the heat theorem does not hold, and so the distance between
the curves S(7,X;) and S(7,X>) tends to a finite entropy difference as T tends to
zero. Then, as shown in Figure 4.1 A, we have S(0,X2) > S(0,X;), and the curve em-
anating from S(0,X) must intersect the isentrope emanating from S(0,X,) at some
T;. This is an isentropic process connecting (7;,X;) to (0,X,), which contradicts the
unattainability principle.

4.6 OPEN QUESTIONS

The two statements of the third law are then formally equivalent, but some questions
remain from the physical point of view. Can other cooling protocols be devised that
allow zero temperature to be reached when the heat theorem formulation holds? Is
the isentropic process of Figure 4.1 A physically possible for systems that violate
the heat theorem formulation? In particular, the connection between attainability of
zero temperature and the cooling time is not explicit in these formulations, although
the infinite number of cooling steps required by the unattainability principle must
involve an infinite time too.

A study by Oppenheim and Masanes published in 2017 revisits these issues, pro-
viding universal lower bounds for the attainable temperature as a function of cooling
time. In doing so, the authors also showed that it is possible to violate the heat the-
orem without violating the unattainability principle, the latter stated as the impossi-
bility of reaching zero temperature by any process in finite time.

4.7 THE IDEAL GAS NEAR ABSOLUTE ZERO

While no real system will ever reach T =0 K, it is still possible to get close to absolute
zero. Therefore, it is important to analyse the behaviour of physical systems and their
models in this limit. Consider the case of an ideal gas. As shown in solved problem
3.3, the entropy of the ideal gas can be written as

SICvll‘lT -*-I\Ith'lV-i-C7

with Cy = %ng and ¢ another constant independent of 7" and V. Thus, as T — 0,
InT - —o0 and S - —co. However, Cy remains finite, in contradiction with the ex-
perimental results that lead to the third law. This means, of course, that the ideal gas
model breaks down at very low temperatures, a fact that should not come as a sur-
prise, since intermolecular interactions that become relevant at low T are not taken
into account in the model. However, we shall see in Chapter 7 a more sophisticated
model of a gas, developed by van der Waals, which considers intermolecular interac-
tions still fails to predict any dependence of the heat capacity on temperature. Indeed,
quantum effects that are negligible at high temperatures must be considered in order
to correctly capture the low temperature behaviour of any substance.

A model in physics is only valid within the limits of its applicability and the third
law highlights a fundamental limitation of classical models.
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4.8

LEARNING OUTCOMES

At the end of this chapter the reader is expected to:

1.
2.

Know the Nernst heat theorem.
Know that the third law of thermodynamics derives from the Nernst heat the-
orem, being independent of the other laws of thermodynamics.

. Understand the importance of the heat theorem in the calculation of absolute

entropies.

Know the unattainability principle.

Be able to prove the logical equivalence between the heat theorem and the
unattainability principle.
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5 Thermodynamic Potentials

This chapter is dedicated to formal aspects of thermodynamics. It starts by physi-
cally motivating the need for special thermodynamic potentials called free energies.
The Legendre transform is presented to understand the formal origin of thermody-
namic potentials. The chemical potential is defined, and the fundamental equation
of thermodynamics is presented for single and multicomponent systems. The chem-
ical potential motivates the formulation of thermodynamics in the internal energy
representation, and entropy representation. Massieu functions are presented as the
Legendre transforms of the entropy. The conditions for thermodynamic equilibrium
are discussed. The criteria for thermal and mechanical stability are established based
on the analysis of local stability of equilibrium states.

5.1 INTRODUCTION

The second law of thermodynamics, expressed by the principle of maximum entropy,
tells us that an isolated system tends to an equilibrium state that is characterised for
having maximum entropy. We also learnt from Clausius inequality (3.36) that when
the system is not thermally isolated, the entropy change associated with a thermody-
namic process is such that

dQ<Tds,

with the equality applying to a reversible process.
On the other hand, the first law states that dQ = dU + PdV, and therefore

dU <TdS-PdV. G.n

Equation (5.1) shows that if the entropy is constant and the volume is kept fixed
during a thermodynamic process occurring in a closed system, then dU < 0. Since
U is constant at equilibrium (dU = 0), the system will relax towards an equilibrium
state characterised by a minimum value of the internal energy, Upp,.

The following principles resume what we have learned so far:

1. Maximum entropy principle: The equilibrium state of an isolated system is
the one that maximises the entropy (dS > 0).

2. Minimum energy principle: The equilibrium state of a closed system, with
constant entropy and fixed volume is the one that minimises the internal
energy (dU <0).

The statements expressed by 1 and 2 are known as extremum principles, because S
and U take on extremum values at equilibrium. The extremum principles are part of
the reason why S and V are designated as natural variables of the internal energy,
and U and V are the natural variables of the entropy. A graphical representation of
the extremum principles is provided in Figure 5.1.
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A B

Figure 5.1 Geometrical illustration of the principle of maximum entropy (A), where the
equilibrium state is the point of maximum S for constant U, and principle of minimum energy
(B), where the equilibrium state is the point of minimum U for constant S.

Since an isolated system is not allowed to interact with the surroundings (i.e. it
cannot be externally perturbed), it is of no interest from an experimental point of
view. Furthermore, while it may be easy to keep the system’s volume fixed, no prac-
tical instruments exist to control and measure entropy, which makes the extremum
principle for the internal energy of no practical use either. On the other hand, in the
laboratory we have the possibility to control other state functions such as the temper-
ature and pressure. For that it suffices to place the system in contact with a thermal
reservoir or a volume reservoir, respectively. Moreover, the temperature can be mea-
sured with a thermometer, and the pressure with a barometer. The question is then, if
there are any state functions for which other extremum principles may apply. More
precisely, are there any state functions that have a minimum value at equilibrium un-
der conditions that can be controlled in the laboratory? The answer is yes and they
are called free energies. As we shall see, systems hold at constant temperature do
not tend to equilibrium states of maximum entropy. Instead they tend to equilibrium
states of minimal free energies. To arrive at these novel state functions we have to
mathematically recast the dependence of U on two controllable state functions (T
and V or T and P), and this is possible through a mathematical operation called
Legendre transform.

In general, any state function that has a minimum at equilibrium is designated
as thermodynamic potential by analogy with the potentials of mechanical systems,
whose minima correspond to equilibrium (i.e. null force) configurations of the sys-
tem. Before we introduce the free energies, we discuss another useful thermody-
namic potential called enthalpy.
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5.2 ENTHALPY

Many natural processes, as well as laboratory experiments, occur at constant pres-
sure. In that case, and since dP =0, heat can be defined as

dQ=d(U+PV).

Since U, P, and V are all state functions, U + PV is also a state function called en-
thalpy and denoted by the letter H:

H=U+PV (5.2)

The reader can easily check that H has dimensions of energy and the SI unit of H is
the joule.

While it is generally true that heat depends on the path chosen to perform a
thermodynamic process, it ceases to be so if the pressure is kept constant. Indeed, at
constant pressure

dQ=dH,

or, equivalently
Q=AH. (5.3)

Equation (5.3) motivates the definition of two types of processes:

— Exothermal processes are those for which AH < 0 as a result of energy
being transferred as heat from the system to the surroundings.

— Endothermal processes are those for which AH > 0 as a result of energy
being transferred as heat to the system from the surroundings.

By using equation (5.2) to compute the differential of H, and by considering dU =
dQ— PdV, it comes that dH =dQ + VdP. Since dQ = CdT, it is possible to define the
heat capacity at constant pressure as a partial derivative of the enthalpy:

Cp= (%’;)P (5.4)

Think about it...
What is the enthalpy of an ideal gas composed of N particles?
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Answer
For the ideal gas U = %NkBT and PV = NkpT . Then, by using equation (5.2)

5
H = —NkgT
) B1,
and
C —éNk
P =5 Nkg-

In general, Cp will be a function of temperature and therefore, for a change of tem-
perature at constant pressure

AH=Q= fT_TfCP(T)dT.

It is also interesting to note that for the ideal gas Cp > Cy. This relation holds in
general because if a fluid it is free to expand and transfer energy as work to the
surroundings, more energy transferred as heat is required to increase its temperature
than when its volume is kept fixed. In the worked problems we derive a general
expression that relates Cp and Cy .

As we show below, systems kept at constant entropy and pressure during a ther-
modynamic process relax to an equilibrium state where the enthalpy is a minimum.
For a process to occur at constant entropy, it should be carried reversibly with no
heat exchange. Thus, enthalpy is not often used as an extremum principle. However,
it is an important state function which, in view of equation (5.3), can be measured
in calorimetry experiments. The latter use an apparatus called a calorimeter that
measures energy transferred as heat during a physical or chemical reaction. As we
will also see, the enthalpy offers a route to determine the Gibbs potential which is of
critical importance in Chemistry and Biology.

To establish the extremum principle for the enthalpy we note that

dQ=dH-VdP<Tds,

whence,
dH <TdS+VdP. (5.5

The equality in (5.5) is valid for a reversible process, and establishes the differential
of the enthalpy

dH =TdS+VdP (5.6)
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According to equation (5.6), in a reversible process performed at constant S and
P, the system is always in an equilibrium state of constant enthalpy. On the other
hand, the inequality in equation (5.5) shows that for all irreversible processes, any
change in H will be negative. This means that all irreversible processes will decrease
H towards a constant value at equilibrium. Thus the equilibrium state of a system
that is kept at constant pressure and constant entropy is a state where enthalpy is a
minimum, H,,;,, (enthalpy minimum principle).
The natural variables of the enthalpy are S and P,

H=H(S,P). (5.7)
The differential of H(S,P) is

JH J0H
an = (55 ) 45+(55 ) 4P

and comparing the latter with equation (5.6) one obtains the equations of state for

the enthalpy
oH oH
T=[=— (2=
(85 )p andV (aP )s’

according to which T =T(S,P) and V =V (S, P).
When moving from internal energy U (S,V) to enthalpy H (S, P), the natural vari-
able V is substituted by the natural variable P which, as we know, is a partial deriva-

tive of the internal energy
(5)
P=——].
AN

This observation motivates the introduction of a mathematical tool called the Legen-
dre transform, which may be known to the reader from classical mechanics, where
it shows up as the operation that relates the Lagrangian L of a mechanical system,
with natural variables (x,x), and the Hamiltonian, with natural variables (x, p = g—f .
The Legendre transform of a function f, in general, allows to change the independent

variable from x to the slope s = d f/dx, preserving a certain symmetry.

LEGENDRE TRANSFORM

The geometric idea behind the Legendre transformation is that for a convex
function f(x) there is a one-to-one mapping between the independent variable x
and the slope s = df/dx, and so the change of variables x — s is allowed. Instead
of an ordinary change of variables, the Legendre transform g(s) of f(x) is defined
as

8(s) = £ (x(s)) +s x(s), (5.8)

so that g(s) + f(x) = s x. From this it follows that dg/ds = x, and that g(s) and
f(x) are each other’s Legendre transforms. The geometrical interpretation of (5.8)
is illustrated in Figure 5.2.
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A

Figure 5.2 The geometrical interpretation of the Legendre transform.

In contrast with classical mechanics, in thermodynamics it is conventional to
compute the transform as

8(s) = f(x(s)) =5 x(s), (5.9)
and in this case dg/ds = —x.
Thus ] X
d0%g  dx ds\~ ’f\~
(%) (az) ! ©-10)

which shows that if f(x) is convex (3% f/dx? > 0), then g(s) will be concave.

For a function of two (or more) variables it is necessary to specify the variable
used to perform the Legendre transform. In particular, we define the Legendre trans-
form of a function f(x,y) with regard to variable x as

Ex[f(x,y)]:g(s,y):f((x(s),y)—sx(s,y) (5.11)

Il (5.11) S I'S gi\/e]l by
= . y.

A similar definition holds for the Legendre transform with regard to the variable y

Ly[f(x)] = g(x;5) = f(x,3(s)) = sy(x;5)

_(2f
s = gx.

When computing the Legendre transforms of thermodynamic potentials, the two
variables x, s of the pair thus related are of different types — one of them will be

with
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extensive and the other one intensive — and it may be useful to go back and forth
from one to the other, depending on the constraints of the system under considera-
tion.

Let us then compute the Legendre transform of the internal energy with respect
to the volume. Since U =U(S,V) and

U
P=—|=
(aV)s7

Ly[U(S,V)] = H(S,P) =U(S,V(S,P)) +PV(S,P). (5.12)

then

By taking into account equations (5.2) and (5.7) we see that (5.12) yields the enthalpy
expressed in its natural variables. Note that H, just like U, is a convex function of the
extensive variables S and V. However, in light of (5.10), H is a concave function of
P.

Equation (5.2) on its own relates the physical quantities involved, and holds ir-
respectively of the chosen independent variables and mathematical functions. Al-
though there is only one function that expresses the enthalpy as a function of its
natural variables, H = H(S, P), defined by (5.12), we will always use the letter H to
denote the enthalpy irrespectively of the representation. From a mathematical point
of view this stands as a notation abuse, but it is a physically motivated one.

5.3 FREE ENERGY

Here we introduce two important thermodynamic potentials called the Helmholtz
free energy (1882), and the Gibbs free energy (1873), named after the 19th century
German physiologist and physicist Hermann von Helmholtz (1821-1894) and the
contemporaneous American physicist Josiah Willard Gibbs (1839-1903). As we will
see, the natural variables of these thermodynamic potentials can be experimentally
controlled and measured.

5.3.1 HELMHOLTZ FREE ENERGY

The Helmholtz free energy, denoted by the letter F, is the state function defined as

F=U-TS (5.13)

F has dimensions of energy and the ST unit of F' is the joule. As we will see shortly,
systems kept at constant volume and temperature during a thermodynamic process
relax to an equilibrium state where F is a minimum. Since these conditions are more
often found in experiments carried out in physics experiments (e.g. in the study of
solids), the Helmholtz free energy is more often used in Physics than in Chemistry.
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By computing the differential of F, taking dU as given by the first law, and con-
sidering that 4Q < TdS, it comes that

dF <-SdT - PdV. (5.14)

As in the case of the enthalpy, the equality in (5.14) indicates a reversible process
and establishes the differential of the Helmholtz free energy

dF = -SdT - PdV (5.15)

Also, an argument similar to the one we used to analyse the consequences of the
inequality in (5.5) leads us to conclude that if T is kept constant and V is fixed,
dF <0, which means that the system will relax to a state of equilibrium (dF = 0)
where F' is a minimum, F,,;, (Helmholtz free energy minimum principle).

The natural variables of F are the temperature and the volume,

F=F(T,V), (5.16)

which can both be easily controlled and measured in laboratory experiments.

Think about it...
Use the Legendre transform operation to identify the natural variables of F

Answer

To move from U(S,V) to F(T,V) one needs to perform the Legendre transform
of the internal energy with respect to the entropy:

Ls[U(S,V)]|=F(T,V)=U(S(T,V),V)-TS(T.V),

U
T:(x)v’

showing that the natural variables of F are V and T'.

with

The differential of F(T,V) is

JdF JoF
ar = (55) ar+ (5 ) v

and comparing the latter with (5.6), we obtain the equations of state for the

Helmbholtz free energy
dF JdF
S=—|== dP=-|=—],
(aT )V an (3V )S
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according to which §=S(7T,V) and P = P(V,S), respectively.
From (5.13), it is easy to see that if T is kept constant

dF =dU -TdS.

But

dU-TdS=-PdV.
Thus

dF =-PdV =dw,
or, equivalently

V.
AF=— [ ' pav, (5.17)
Vi

at constant 7.

Thus, if the temperature is kept constant during a thermodynamic process that
transfers energy as work, the latter behaves as a state function. In this case the
Helmholtz free energy can be interpreted as the maximum (i.e. reversible) work done
by the system (AF < 0), or the maximum work done on the system (AF > 0). For this
reason F is sometimes referred as the work content of the system, and the letter
A (from the german word arbeit, which means work) is also used to represent the
Helmholtz free energy.

Think about it...
How can one evaluate AF for an isothermal compression of the ideal gas?

Answer
By using (5.17) with P = NkgT /V one gets

v, v
AF:—NkBT/V deV:—NkBTln(—f)>O,

L

because Vi < V.

5.3.2 GIBBS FREE ENERGY

Finally, we introduce the Gibbs free energy, another useful state function, denoted
by the letter G. There are several equivalent ways to define G. One that is often used
is

G=H-TS (5.18)
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Since H = U + PV, it is also common to define G as

G=U+PV-TS (5.19)

Since F =U - TS, G can also be defined as

G=F+PV (5.20)

From all the definition above it is easy to see that G also has dimensions of energy,
and its SI unit is the joule.
At this stage, it should be easy for the reader to find out that

dG < -SdT +VdP, (5.21)

from which it follows that the equilibrium state (dG = 0) of a system kept under
constant temperature and pressure will be the one for which G is a minimum, G,
(Gibbs free energy minimum principle). The Gibbs free energy is thus a partic-
ularly important potential because constant 7 and P are the easiest constraints to
impose on the laboratory as the atmosphere provides them. The vast majority of
chemical reactions and biological processes occur under these conditions and this is
the reason why the Gibbs potential is the most often used in Chemistry and Biology.
Perhaps the most important application of the Gibbs free energy is in the case of
phase transitions, for which there will be a dedicated chapter in this book.

As before, the equality in (5.21) refers to a reversible process, and establishes the
definition for the differential of the Gibbs free energy

dG=-8dT +VdP (5.22)

Since the natural variables of G are T and P

G=G(T,P), (5.23)

20G G
"G‘(ﬁ)})d“(ﬁ)ﬂ”'

Comparing the last equation with (5.22), it comes that the equations of state for the

Gibbs free energy are
G G
S=—| == dv=|—
(8T)pan (8P)T7

from which it follows that S = S(7,P) and V =V (T, P).

it comes that
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Think about it...
Identify the natural variables of G by using the Legendre transform

Answer

According to equations (5.18)—(5.20) this can be accomplished in three different
ways. Expressed as a function of their natural variables, H = H(S,P) and G =
G(T,P). Thus G can be obtained by performing the Legendre transform of H with
respect to the entropy:

Ls[H(S,P)]=G(T,P)=H(S(T,P),P)-TS(T,P),

o0H
“(%)V

Alternatively, since F = F(T,V) and G = G(T,P), the latter can be obtained by
performing the Legendre transform of F with respect to the volume:

with

Ly[F(V,T)]=G(T,P)=F(V(T,P),T)+PV(T,P),

JdF
P=-(%).
( A% )s
Finally, since U = U(S,V) and G = G(T, P), one can obtain G by performing two

Legendre transforms of the internal energy at the same time, one with respect to
the volume, and another one with respect to the entropy:

with

Lys[U(S,V)]=G(T,P)=U(S(T,P),V(T,P))+PV(T,P)-TS(T,P),

U U
P——(W)sandT— (X)V

with

Table 5.1 provides a summary of the four thermodynamic potentials, U, H, F,
and G, together with S, including their first derivatives.

The complete set of state functions that describe the equilibrium state of a closed
single-component system with a fixed number N of particles are U, S, V, T, and
P. Only two of them are necessary to completely specify the system’s equilibrium
state. Expressed as a function of its natural variables, the internal energy contains the
complete set of state functions that describe the equilibrium state of such a system.
Indeed, U = U(S,V) determines U directly, the equations of state obtained from the
differential of U univocally determine the state functions 7" and P, while S and V are
specified by the corresponding constraints. The same is valid for the entropy when
expressed in terms of its natural variables (see equations (3.27) and (3.29)), and for
the potentials obtained from U through the Legendre transform operation.
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Function Differential Natural variables First derivatives

as as

s das=>Yav+LZav u,v 1=l=)].2=(=
T T ( ’ ) T 3U v T aV U

U U

U dU =TdS-Pdv (S,v) T=\—),.P=-|—
as J, av /s

JoH JoH

H=U+PV dH =TdS+VdP (S,P) T=|—]).V=|—
s Jp oP )

JoF JoF
F=U-TS | dF =-8dT - PdV (1,V) S=-|—|.P=- —)
aT |}, av J;

G G

G=H-TS | dG=-SdT +VdP (T,P) S:—(— ,Vz(—)
T)p JoP ),

Table 5.1

Differentials, natural variables and first derivatives of the entropy and ther-
modynamic potentials for a closed system.

Additional functions such as U(P,V), U(S,P) etc. do not uniquely specify the
equilibrium state of a system. Imagine that we had an expression for the function
U(S,P). Then, instead of taking the derivatives of U(S,V) to obtain the state func-
tions 7 and P, we would have to integrate the equation

(%)

vV Js
to obtain the volume V, which requires an integration constant. In other words, we
would need to have a value for U at some reference volume V. Thus, U(S,P) does
not provide a complete description of the thermodynamic system. This is, in fact,
another reason why S and V are the natural variables of U. Other functions such as

U(T,V),S(T,V) or H(T,P) are not associated with extremum principles. They are,
however, useful being components of F(7,V) and G(T,P).

Think about it...
Why should the potential G be considered a free energy?

Answer

To answer this question we need to consider the more general situation in which
the system performs expansion work (i.e. —PdV), as well as at least another form
of work that we represent by dW’. The first law then reads dU = dQ +dW, with
dW = dW' - PdV, and the fundamental constraint is dU = TdS +dW. Consider
G =F +PV.If P is constant and T is constant as well, it is easy to see that dG =
dW'. Thus, dG represents the maximum work done by (or on the) system during a
reversible thermodynamic process, except the volume work. Note that in the more
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general case that dW' is considered, the differential of F is dF = —~SdT — PdV +
dW'. Thus, if T is constant dF represents the maximum reversible work done by
(or on the) system or the system, including expansion work.

5.4 MAXWELL RELATIONS

Since U, H, F, and G are state functions, their differential equations are exact differ-
entials. This observation has an important consequence, which is the establishment
of the so-called Maxwell Relations that we now discuss.

Consider, for example, the exact differential of the internal energy

dU =TdS—-PdV,
with oU oU
T=(==) andP=-{==] .
(as )V o (av )5
Since dU is exact
U U
oVaS 9SaV’
Thus o7 9p
o) (22 5.24
(5 ) (5s), 529

Equation (5.24) is an example of a Maxwell relation.
Since dH, dF, and dG are also exact differentials, the following Maxwell rela-
tions follow:

(%)s: (%)P (5.25)

(%)T B (%)y’ (5.26)
and s .

(ﬁ)T :_(ﬁ),,- (5.27)

The Maxwell relations are not exhausted by equations (5.24)—(5.27). Indeed, as we
will see shortly, other Maxwell relations can be established for open systems, and for
other thermodynamic systems with different work functions. In Chapter 8, we will
study in detail the case of magnetic work.

Partial derivatives are not just mathematical expressions. They tell us how the
dependent variable (in the numerator) changes when the independent variable (in the
denominator) is varied in a process where some other state function is kept constant.
The last two Maxwell relations are particularly interesting because they give quanti-
ties one cannot measure from measurable ones. Consider the case of equation (5.26),
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where the state functions on the right hand side are all easily measured in the labo-
ratory. The equality expressed in (5.26) tells us that the fractional change in pressure
(the dependent variable) with temperature (the independent one) when the volume is
kept fixed, is equal to the fractional change in entropy with volume when the temper-
ature is kept constant. The negative sign on equation (5.27) is also quite informative.
Indeed, since the volume is expected to increase with temperature at constant pres-
sure, the minus sign means that the entropy will decrease with increasing pressure at
constant temperature.

5.5 THERMODYNAMIC COEFFICIENTS

In thermodynamics, a generalised force is any property that can be defined as a
partial derivative of the internal energy with regard to any other variable. 7" and P are
examples of generalised forces. Another generalised force is the internal pressure

U
Iy = (av )T, (5.28)
which is associated with the existence of intermolecular interactions between the
system’s particles. In the case of the ideal gas, where no such interactions exist, and
U=U(T), nr =0.

On the other hand, a generalised susceptibility is an entity that quantifies the
degree of variation of a thermodynamic property resulting from a generalised force.
Since a generalised susceptibility quantifies the response of a property as a result
of changing another property it is also termed of response function. Two important
examples are the coefficient of isobaric expansivity

1 (dV
=—| = 5.29
Pr Vv (8T )P’ ( )
and the coefficient of adiabatic expansivity
1(dV
=—|=—]. 5.30
Ps %4 (8T )s >30)

Bp and Bs measure the fractional variation of the volume with temperature (i.e. the
amount of system expansion) when P and S are kept constant, respectively. Bp is also
designated by the expansion coefficient and represented by the greek letter ¢c. The
reader can easily check that Bp = 1/T in the case of the ideal gas. In general, Bp is
positive for fluids, except in the case of water between 0°C — 4°C.

The thermal pressure coefficient, 7/, quantifies the variation of entropy with
volume at constant temperature

o202,

where we used Maxwell relation (5.26) in the second equality. For the ideal gas
W = Nkg/V . In general, the pressure is expected to increase with temperature at fixed
V. Thus, the entropy should increase with volume at constant temperature.
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To quantify the fractional variation of volume with pressure (i.e. the level of
system compression) there are two entities. One is called the coefficient of adiabatic

compressibility
1(dV
ks=——(=—], 5.32
Y (aP )s 632
and the other is the coefficient of isothermal compressibility
1[0V
=——=— . 5.33
=y (aP )T 639

Since the volume is expected to decrease with pressure at constant temperature, k7 is
defined with a minus sign in order to be a positive quantity. For the ideal gas k7 = 1/P.
For solids and some liquids k7 ~ 0, while gases present much higher values of k7 as
a result of being much more compressible.

A particularly interesting coefficient, which is often used to provide a measure of
how areal gas deviates from the ideal gas behaviour, is the so-called Joule-Thomson
coefficient

aT) . (5.34)

or-(3),

The Joule-Thomson coefficient measures how temperature changes with pressure
during an isenthalpic thermodynamic process, i.e., one that occurs at fixed enthalpy.
This type of process is often called a throttling process. To perform the measure-
ment one uses an apparatus that consists of a vessel with a porous wall that separates
two parts, each one tapped by a piston (Figure 5.3). The pistons and the walls of the
vessel are made of a thermally insulating material, so that no energy is transferred
as heat, during a thermodynamic process. The gas whose Joule-Thomson coefficient
one wishes to measure is placed within the two parts, say one mole of gas is placed
in part 1 with P;, Vi, T1, and another quantity is placed in part 2 with P, < Py, V3, T>.
Since there is a pressure difference, the gas on part 1, which is at P; > P>, will pass

part 2
(P21 V2! TZ)

porous wall

Figure 5.3 An experimental setup to measure the Joule-Thomson coefficient of a gas. The
vessel composed of two parts separated by a porous wall, as well as the two pistons that tap the
two parts are composed of adiabatic materials. The porous wall allows for gas to pass slowly
from 1 to 2.

slowly through the porous wall towards part 2. To keep the pressure of both compart-
ments constant the pistons are moved slowly in the direction that is consistent with
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P > P,. To see that this corresponds to a process at fixed enthalpy it suffices to note
the following. The variation in internal energy associated with the passage of the gas
is given by AU = U, — Uj. On the other hand, the work performed by the gas during
the process is W = P| V| — P,V,, because in part 2 the gas is compressed, while in part
1 it is expanded. Since there is no energy transferred as heat, the first law states that

U,-U =PV -PV;,

which is equivalent to
H, = Hj,

because H = U + PV . Since the gas in each compartment is at temperatures 77 and 75,
in order to measure f;7 is suffices to note that

( aT ) lim (AT )
= _— = 1 —,
Hor 8 P H h-T AP
with AP=P,— P, and AT =T, -T;.
The use of Maxwell relations in combination with the properties of partial deriva-
tives can be extraordinarily useful while manipulating the thermodynamic coeffi-

cients and establishing relations between them, and between them and other entities
such as the heat capacities. In particular, it is possible to show (see problem 5.2) that

Vv
( or ) i (5 )P v
oPly  Cp

which is zero for the ideal gas. Thus, for one mole of ideal gas u,r is actually zero.
Real gases have negative p;r at high temperatures (the gas cools on expansion)
and positive ;7 at low temperatures (the gas heats on expansion). The tempera-
ture regime in which p;r passes through zero, approaching the ideal gas behaviour,
is termed the inversion temperature.

Several thermodynamic coefficients have been tabulated for many substances. In
the case of solids the latter are particularly useful in engineering, materials science
and related areas.

5.6 OPEN SYSTEMS AND CHEMICAL POTENTIAL

So far, we have focused on thermodynamic processes for which N is constant. In
other words, we have been developing the theory of thermodynamics for closed sys-
tems. For these systems we found that U =U(S,V), or equivalently, that S = S(U,V).
However, we need to bear in mind that the number of particles is not conserved
in many physical processes. Clearly, if the number of particles that composes the
thermodynamic system is allowed to change, then the system’s internal energy will
change as well. Thinking of an ideal gas, where the particles have only kinetic en-
ergy, it is clear that if particles enter or leave the system, the system’s internal energy
will change. The same reasoning applies in the case of entropy, as the number of
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microstates depends on the number of particles. Therefore, in general, the internal
energy and the entropy depend on the number of particles that compose the thermo-
dynamic system. In particular, if the system only contains one type of particle

U=U(S,V,N), (5.35)

and
S=S(U,V,N). (5.36)

Equation (5.35) is termed the fundamental equation in the energy representation,
while (5.36) is the fundamental equation in the entropy representation.
From (5.35) the differential of U is

w-(20) ase(28) wvs(2) av
S lvn IV Jsn IN Jsy

where the last partial derivative defines a novel intensive state function called chem-
ical potential:

The concept of chemical potential was introduced by Josiah Willard Gibbs in his
famous work On the Equilibrium of Heterogeneous Substances (1874) that forms the
basis of modern physical chemistry and of the thermodynamics of phase transitions.
The chemical potential represents the change in internal energy when one particle is
transferred to, or from, the system. The SI unit of g is J mol™".

The designation chemical potential is perhaps a misnomer as it may suggest that
a change in the number of particles necessarily requires the occurrence of a chemical
reaction, which is definitely not the case. A familiar situation is that of phase transi-
tions in which there is transfer of particles between different phases in the absence
of chemical reactions.

As we will discuss later in this chapter, the chemical potential is related to the
number of particles in much the same way that the temperature is related to the
internal energy, and the pressure is related to the volume. However, since we do not
have a direct way to measure the chemical potential (as we do for the temperature
and pressure) it is more difficult to develop an intuition for its meaning.

By taking into consideration the exposed above, a more general form of the fun-
damental constraint is

dU =TdS-PdV + 1tdN (5.38)
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In equation (5.38)

oU
T-(ﬁ)m’
oU
P—‘(W)S,N’
and
_(97’])
H= IN S.V-

Note that the partial derivatives above are taken with the additional constraint N.
The fundamental equation contains the complete set of thermodynamic informa-
tion of a single-component system that exchanges particles with the surroundings,
namely, U, T, P, i, N, S, and V. Indeed, (5.35) gives U directly, the differential of U
gives T, P, and i, and V and N are specified by the constraints.
Taking into account that dU is exact, it comes that

U U
INIS  9SIN’
and
°U 90U
ONIV ~ JVIN'
These equations define two additional Maxwell relations for the internal energy:
aT d
(30,0,
ON A% S V.N
and 9P 5
-(7) - (—“) . (5.40)
ON % A% SN

For an open system composed by one type of particles it is easy to see that the
differential form of the fundamental equation in the entropy representation is

dS:(%)dU+(§)dV—(%)dN (5.41)

The fundamental equation in the entropy representation also contains the complete
set of thermodynamic information of a single-component system that exchanges par-
ticles with the surroundings. The two formulations expressed by (5.35) and (5.36) are
therefore equivalent.

Think about it...
Show that
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Answer
The differential of S = S(U,V,N) is

as as as
ds = (W)V’NdU‘F (W)U’Ndv-'— (W)U’VdN
=ldU+£dV+(£) dN.
T T ON Uy

Using the fundamental constraint for dU (5.38), the result follows immediately.

5.7 MULTICOMPONENT SYSTEMS

If the system contains particles of m different types:

U=U(T,S,V,Ni,....Nn), (5.42)
and
S=8(T,U,V,Ni,...,Np). (5.43)
The differential of (5.42) is
m
dU =TdS—-PdV + Y l;dN; (5.44)

i=1

In equation (5.44), u; is the chemical potential of species i:

i:(aU) . (5.45)
INi ) 5.V 4N}
The differential of (5.43) is
1 P % lii)
dS=|=1dU+|=]dV - — |dN; 5.46
(7)a(7)ev -5 (% 549
In equation (5.46)
_(&):(85) . (5.47)
T INi Jy v (N}

Equations (5.44) and (5.46) are the most general differential forms of the fundamen-
tal constraint in the internal energy representation and in the entropy representation,
respectively.
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Since the thermodynamic potentials H, F, and G are obtained from the internal
energy, they must also depend on the number of particles that compose the system.
In the more general case of an open system containing particles of m different types
we have:

H :H(SvpaNlaN27 "'7Nm)7

F :F(TaVaN17N27---7Nm)7

and
G=G(T,P,Ni,N,...,Ny).

The differential equations for H, F, and G are thus given by

dH =TdS+VdP+ Z/.L,dN,, with y; = ( oH ) , (5.48)
aN S P{ ¢I}
oF
dF =-8dT - PdV + Z W;dN;, with y; = ( ) , (5.49)
INi )7V 4N}
and
n ) G
dG =-SdT +VdP+)_ wdN;, w1th/.L,-:( ) , (5.50)
i=1 IN; T.P{Nji}
with

3 IO ) IO 9 I )
BRCLY sv.iNey  VONspv.y \ONryin.n \ONiJren.y

The equalities above indicate that there are several alternative methods to determine
the chemical potential. According to the last term, one can determine ; by adding
N; particles to the system while keeping 7', P, and the number of the other particles
constant. The corresponding change in G, dG, to dN; (in the limit as dN; — 0), then
measures ;.

5.8 THE GRAND POTENTIAL

Another useful thermodynamic potential, is the so-called grand potential. The grand
potential also goes by the name of Landau potential, and is generally represented by
the Greek letter Q. The grand potential is the Legendre transform of the Helmholtz
free energy with regard to the number of particles

‘L:N[F(T7V7N):| :F(T,V,N(V, Tmu)) —‘U,N(T,V,,U), (5.51)

(5v),

The natural variables of Q are 7, V, and u:

with

Q=Q(T,v,u).
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In Chapter 6 we will derive a very important relation between G and u according to
which

_G
= N
Using this result in (5.51), it comes that
Q=F-G.
Since G = F + PV, we can finally write
Q=-PV (5.52)

The grand potential, as defined by (5.52), turns out to be a very useful equation to
calculate the equation of state of various physical systems, especially in the context
of statistical physics.

5.9 MASSIEU FUNCTIONS

By considering the fundamental relation of thermodynamics in the internal energy
representation U = U (S,V,N), we were able to define four thermodynamic potentials,
namely H, F, G, and Q, by means of the Legendre transform. Since thermodynamics
can be formulated in the entropy representation S = S(U,V,N), it is natural to ask
what are the Legendre transforms of the entropy, and if they share the same interest
and applicability of the thermodynamic potentials. The Legendre transforms of the
entropy are designated by Massieu functions or free entropies, being particularly
useful in statistical mechanics, in the theory of irreversible thermodynamics, and in
the theory of fluctuations. In general, these functions do not have any special names,
but there are two exceptions. One, the so-called Helmholtz free entropy and denoted
by the Greek letter @, is the Legendre transform of S with respect to the internal
energy

LolS(UVN)) = SW/T).V.N) - ZU(1/TV.N),

l_(ﬁ)
T \oU /vy’

The natural variables of @ are 1/T,V and N

with

®=d(1/T,V,N).
The reason why @ is called Helmholtz free entropy is simply because

_-U+TS -F

(o .
T T



124 A Concise Introduction to Thermodynamics for Physicists

The second Massieu function that is entitled to have a specific name is the Gibbs
free entropy. It is denoted by the Greek letter E, and is the Legendre transform of
the entropy with respect to both the internal energy and volume

Louv[SW,V,NY] =SWU1/T),(P/T),N) - %U(I/T,P/T,N) - §V(1/T,P/T,N)

(2, (2
T \oUu V.N T \ov UN

_ -U-TS-PV -G

T T’
which justifies the name Gibbs free entropy.

with

Note that

5.10 THERMODYNAMIC EQUILIBRIUM REVISITED

Let us consider a system that is composed of two parts (A and B), separated by an
imaginary boundary. The latter behaves as a movable diathermal wall that is also
permeable allowing particles to be transferred between A and B.

The system is isolated, which means that it does not change energy, volume or
particles with the surroundings (Figure 5.4). Likewise, the total internal energy is
fixed

U = Uy +Upg = constant, (5.53)

the total volume is fixed
V =V, + Vg = constant, (5.54)

and the total number of particles is also fixed
N = N4 + Np = constant. (5.55)

Equations (5.53)—(5.55) are often termed conservation equations.

part B

T.adiabatic, rigid wall

Figure 5.4 A system composed of two (internal) parts separated by a diathermic, permeable,
and movable wall. The system is isolated from the surroundings by an adiabatic, impermeable,
rigid wall.
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According to the maximum entropy principle S =S4 + S =S4 +Sp is maximum at
equilibrium. Therefore
dS=dSy+dSp=0.

Considering that S4 =S4 (Us,Va,Na) and Sg = Sp(Ug, Vg, Ng), the differential of S is

A aS aS,
dsz(—i) duﬁ(giﬁ dm+(—ﬁ) dNy
U )y, N, oValu, N, ONg /)y, v,
S aS, aS,
+(—5) ﬂ@+(—£) dm+(—£) dNg,
oUg /v, N VB g Ny B/ Uy Vs
Since
dUZO:>dUA Z—dUB
dv =0=> dVA = —dVB
dN =0 = dN, = —dNg,
we can rewrite dS as
dS:'(8SA) _(QEE) ]dU4
[\ 9Ux Va.Na U /vy ng
[/ 0 d
(@) @) Jm 550
[\OValy, N, \OVB/yyn,
N (Qﬁi) _(QEE) ]dA%'
L INa Ua,Va dNpg Us,Va

Because dS =0 in equilibrium, for arbitrary and independent values of dUy4, dV4, and
dN,, we must have

(25) -(2%) 55
OUp )y, N, \OUs)yun,’
9S4 ) ( dSp )
oA -2k , (5.58)
(3 Valuyn, NV ugn,
A ) ( dSp
e - ==£ . (5.59)
(9NA uva  \ONB/yg v,
Equations (5.57)—(5.59) are equivalent to
1 1
T (5.60)
b _ Iy (5.61)
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and
Ha _ Hs

Iy Tp
Equation (5.60) establishes the condition for thermal equilibrium, and is equiva-
lent to T4 = Tg. We decided to keep the fractional expressions to emphasise the fact
that they were derived from the fundamental equation in the entropy representation.
Since Ty = Tp, equation (5.61) establishes the condition for mechanical equilibrium,
which occurs when the pressures of the two parts are equal

(5.62)

Py = Pg.

Finally, equation (5.62) establishes the condition for chemical equilibrium, which
occurs when the chemical potential of the two parts are equal

Ha = Hp.

A system that satisfies the three equilibrium conditions is said to be in thermody-
namic equilibrium.

To get a more physical intuition for the chemical potential, let us consider the
situation in which the parts of the system do not exchange energy (because Ty = Tp =
T), and do not exchange volume either (because P4y = Pg = P). In this case equation
(5.56) resumes to

S = [NB—MA
T

Jan,

So, if up > ua, dN4 must be positive to ensure that the entropy will be maximum at
equilibrium. This means that particles will move from part B to part A until 4 = Up.
Alternatively, if up < s, dN4 must be negative, which means that particles will move
from part A to part B, until us = up.

In approaching equilibrium, particles flow from parts with high chemical poten-
tial to parts with low chemical potential

So, just like energy must change to equalise the temperature, and volume must
change to equalise the pressure, the number of particles must change to equalise
the chemical potential.

Think about it...
If instead of the equilibrium condition for the entropy one uses the equilibrium
condition for G, does one arrive at equations (5.60)—(5.62)?

Answer

The conditions for thermal and mechanical equilibrium are automatically satisfied
because dG = 0 when both T and P are fixed. To see if the condition for chemical
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equilibrium is satisfied we need to consider that G4 + Gp = G and, therefore, dG4 +
dGp = 0. Interpreting the index i in equation (5.50) as identifying the particles in
part A and the particles in part B one can write that

dG = updNy + updNp = 0.

Since dNy = —dNp, it follows that L4 = up. Thus, G yields the same result as S.

The reader may confirm that H and F lead to the same conditions for internal
equilibrium.

5.11 STABILITY OF EQUILIBRIUM STATES

Due to the molecular motions occurring at the microscopic scale, intensive proper-
ties continuously fluctuate (i.e. exhibit very small changes around their equilibrium
values) (Figure 1.2), causing the corresponding extensive properties to fluctuate lo-
cally. Since the equilibrium state of an isolated thermodynamic system is the one
for which the entropy is maximum, any fluctuation of the volume, internal energy,
number of particles, or any combination of the former, can only reduce the system’s
entropy. If, in response to a fluctuation, the system spontaneously goes back to its
original equilibrium state, the system is considered intrinsically stable.

Let us consider a differential fluctuation of the internal energy, volume, and num-
ber of particles from their equilibrium values such that U = U,y +dU, V =V, +dV,
and N = N, +dN, respectively, and expand the entropy, S = S(U,V,N), in a Taylor
series around the equilibrium point:

1
AS:dS+§dZS+..., (5.63)

where AS = S-S, the term dS represents the first-order term containing dU, dV/, and
dN and is given by equation (5.41), while dS represents the second-order terms, and
SO on.

Since dS is zero at equilibrium, the leading term deviating S from S, is the
second-order term d>S. From a mathematical standpoint, the maximum entropy prin-
ciple implies, not only that dS =0, but also that the second-order variation of S (also
termed second-order response) is negative (Figure 5.1 A)

d*s <0, (5.64)

since the surface S(U,V,N) is concave around a maximum (Figure 5.1 A).

An equation equivalent to (5.63) can be written for the internal energy, U. In this
case, the principle of minimum energy implies that dU =0, and that the second-order
variation of U is positive

d*U >0, (5.65)
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since the surface U(S,V,N) is convex around a minimum (Figure 5.1 B). When an-
other thermodynamic potential (always expressed as a function of its natural vari-
ables) is considered, a condition equivalent to (5.65) applies. Namely, d*H >0,
d*F >0, or d*G > 0.

The condition that S is a maximum or, alternatively, that U (or H, F or G) is a
minimum, is the requirement of stability of the corresponding equilibrium states. In
what follows we analyse the consequences of stability of thermodynamic states with
regard to small fluctuations, namely, on the sign of certain partial derivatives, and on
the sign of thermodynamic coefficients.

part B

1 adiabatic, rigid wall

Figure 5.5 A system composed of two (internal) parts separated by a diathermic and mov-
able wall that can be real or imaginary. The system is isolated from the surroundings by an
adiabatic, rigid wall.

In the previous section we explored the consequences of dS =0 for an isolated
system in equilibrium composed of two parts. Here we explore the consequences that
d*S<0and d*U >0.

In order to do so, let us go back to the composite system of the previous section,
but this time we will consider a simpler situation in which the system can still ex-
change energy and volume between its parts, but no particles move from one part to
the other because the boundary is impermeable (Figure 5.5). In this case

as=(2o)

aUA Va,Ng

+(ﬁ)
BUB Vg,Np

dUA+(aﬁ

dVy
8VA )UA-,NA

dUB+(%

dVp.
8VB )UB7NB

The second-order variation in S is given by

d>S =S4 (dUA)* + 284 dUydVy + Sy (dVy)?

(5.66)

+ 84 (dUB)* + 289 dUpdVi + Sy (dV)?,
where the notation $* is used to represent the second derivative d2S/dXdY. This
equation takes into account all possible variations in S, resulting from energy ex-
change, volume exchange, or both energy and volume exchange between two parts.
Using the conservation equations (5.53) and (5.54), and the fact that in equilibrium
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the intensive properties 7' (5.57) and P (5.58) are the same in parts A and B, the
condition expressed by (5.64) requires that

% [$“(dU)* +28"dUaV + 8" (dV)?*] <0, (5.67)
where we dropped the subscripts A and B because we are only interested in the sign
of d*S. In the context of linear algebra the left-hand side of equation (5.67) is termed
a quadratic form.

For infinitesimal changes in U with V fixed, equation (5.64) requires that $** < 0.
Alternatively, for infinitesimal changes in V with U fixed, it is necessary that §"¥ <
0. However, for all possible changes in U and V a more general condition can be
established, which ensures that d2S < 0.

The quadratic form on the left-hand side of (5.67) can be written as

2 du
d*s = [dUdV]S[dV],

with S being the symmetric Hessian matrix:
_ Suu Suv
5= [SW S|

For d’S to be negative, S must be negative definite for all possible variations of U
and V. It is a necessary and sufficient condition for S to be negative definite that:

Suu <0, (5.68)

and
SMM SMV

Suv va = SuuSvw = SuvSuy > 0 (569)

Equations (5.68) and (5.69) determine the stability criteria for the equilibrium
state. A condition of the type given by (5.69) is designated by Callen as fluting
condition. When both equations are satisfied, the equilibrium state is locally stable,
i.e., it is stable with regard to differential changes of U and V. They insure locally
that the surface S will not lie above its local tangent plane.

If, instead of considering a variation in S, we consider a variation in the internal
energy U, we obtain an equation equivalent to (5.67)

1o .
3 [U™(dS)*+2U"dSav + 8" (aV)*] > 0. (5.70)

For d2U to be positive, the Hessian matrix

USS USV

U= |:Us‘v va] =UU,y, — Ustsw

must be positive definite.
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Thus, it is necessary that
Ug >0, (5.71)

and
Us‘stv - U\‘VUYV >0. (572)

Equation (5.72) is the fluting condition for the internal energy. Equations (5.71) and
(5.72) determine the stability criteria for the internal energy.

Think about it... o
Use the stability conditions for the internal energy to show that (ﬁ) >0 and
V,N
JdP
— 0.
( v )S,N )
Answer

The first inequality follows from Uss > 0 and the second from Uy, > 0:

U= (22U -2(28) (&)
B\ o982 VTN_aS as V,N_ S V7N’

v (V) _ 2 (aU) __(ap)
W\ ov2 SN_aV A% S,N_ oV 371\]7
where we used the thermodynamic definitions of temperature and pressure.
Thus

and

aT
Uss >0 — (ﬁ)V,N>O’

Upy>0 — (8P) <0
SN

and

v

5.11.1 STABILITY AND THE SIGN OF THERMODYNAMIC
COEFFICIENTS

The stability criteria for the entropy and for internal energy determine the sign of
thermodynamic coefficients. To illustrate this point we explore the consequences of
equations (5.68) and (5.69). We start by evaluating S,,;:

s [ S o p—
“\ou?), oul\tT)y T2\OU)y T2y’
where we used the reciprocal rule, and Cy given by (2.15). To satisfy the stability
criterion established by (5.68) it is necessary that
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Cy>0 (5.73)

The inequality expressed by equation (5.73) determines the criterion for thermal
stability: the internal energy of a system in a well-defined equilibrium state must
always increase in response to a isochoric fluctuation that increases the system’s
temperature.

Let us now evaluate S,,,:

o= a7 [(55),], 757 (7)
“ovI\oulvly ov\T)y

1 (T

it

1 (QUJOV), Ty -P
T T2(9U/IT), T2Cy '

where ¥ is given by (5.31), and we used the reciprocity rule. To establish the last
equality we used the result of Problem 5.5.
To evaluate S, we use again the fundamental equation,

2%s p) (P)
va: S0 =35 | =
avt), IVI\T/y

_l(ﬁf)_hﬂ(ﬁf)
S T\oV )y T2\oVv)y’
Using the result, we find that

Py _-w( G B
(W)U_ G (V/BP+TW P), (5.74)

with Bp given by (5.29).
On the other hand, from the evaluation of S, it comes that

(50), "6
A% U_ Cy

) (5.75)

Inserting (5.74) and (5.75) in the equation for S,, one obtains:

1 (Tw-P)?
TVkr T2Cy

Sy =

with k7 given by (5.33).
Hence, we finally obtain

1

Suu _va - (Suv)2 = m
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Since Cy > 0, the fluting condition for the entropy (5.69) implies that:

kr >0 (5.76)

The inequality expressed by (5.76) determines the criterion for mechanical stability:
for a thermally stable system to be also mechanically stable, the volume of the system
must always decrease in response to a fluctuation that increases the temperature at
constant pressure. We can therefore conclude that any fluid system, which is in a state
of thermodynamic equilibrium, must exhibit a positive heat capacity at constant V
(5.73) and a positive isothermal compressibility at constant 7' (5.76).

A criterion for material or diffusional stability can be established if parts A and
B are allowed to exchange particles as in Figure 5.4. The interested reader is referred
to the textbook of O’Connel and Halle to explore this case.

Also, the reader is likely to anticipate that local stability of the equilibrium state
of other thermodynamic potentials will lead to more stability criteria. When consid-
ering H and F to derive stability criteria one needs to take into account that one of
their natural variables is an intensive state function (P in case of H, and T in the
case of F'). This means that in equilibrium they take on the same value in each part
of the composite system (Figure 5.5). In such cases, local stability requirements in-
volving the potential’s derivatives must be obtained indirectly from their Legendre
transforms

Hpp=-1/Uyy <0,

and
FTT = _1/USS <0.

The sign of Hpp and Frr tells us that H and F are concave functions of their inten-
sive variables. Since, on the other hand, they are convex functions of their extensive
variables, the fluting condition (e.g. HssHpp —HSZP <0) is true by default. Thus, for
these two potentials, the stability requirement reduces to their extensive variables:

J’°H oT
Hy=| =% - =a 5 .
( 5 )RN >0 ( o )RN >0 (5.77)
2
FWI(BIZ) >0 - (ai) <0. (5.78)
A% TN oV /)rn

The fluting condition for the Gibbs free energy is not trivial and its derivation is
outside the scope of the present chapter. To explore these matters in more detail the
reader is referred to the textbook of Sekerka.

5.11.2 METASTABILITY OF EQUILIBRIUM STATES

As discussed in the previous section, in a stable thermodynamic system the second-
order response of the internal energy U (or H, F, G, or —-S) is positive for all the
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differential variations of its natural variables. The most observed thermodynamic
equilibrium states are stable states (Figure 5.6 A). An unstable state (Figure 5.6
C), on the other hand, will never be observed because the underlying microscopic
nature of the thermodynamic system ensures that if the system is moved away from
equilibrium by some small fluctuation, there will be another spontaneous fluctuation
that will drive it towards another equilibrium state. For an unstable state, the second-
order response of the internal energy can be made negative for some variations of its
natural variables.

A B C

x: x: x:
Figure 5.6 Schematic representation of the types of equilibrium states found in a simple
mechanical system such as a ball on a gravitational field with potential energy E; x is the
displacement from the equilibrium position. By analogy, the equilibrium states of a thermody-

namic system can be classified as stable (A), metastable (B), and unstable (C). In (A) the ball
is in a stable equilibrium because it always returns to the same equilibrium state after any (i.e.

small or large) displacement. In (B) the ball is in a metastable equilibrium and it can return to
it after a small displacement, or move into another equilibrium state after a large displacement.
In (C) the ball is in an unstable equilibrium because the latter will not be maintained after any
displacement. Note that in a thermodynamic system the thermodynamic potential is a function
of at least two variables and the corresponding surface is multidimensional.

Sometimes, it is possible to observe metastable states. In mathematical terms a
metastable state is a local minimum (Figure 5.6 B), and differential variations cannot
distinguish it from a stable state, which is a global minimum. In particular, a local
and a global minimum are both characterised by a positive second-order response of
the corresponding potential to differential variations. To determine if an equilibrium
state is metastable, it is necessary to perturb the system with a finite (instead of
differential) variation of its natural variables. If the equilibrium state is stable against
all finite variations of the natural variables, then it is a stable equilibrium state (i.e. a
global minimum of U, H, F, G, and —S). If some finite variations lead to a decrease of
U,H, F, G, or -S, then the corresponding equilibrium state classifies as metastable.
The so-called supercooled state of water, which is liquid water kept at T < 0°C and
P =1 atm is an example of metastable state. Another example, is that of a substance
kept in a superheated state, i.e., in the liquid phase above its boiling point.

The condition that d2U =0 (or, alternatively, that d*H =0, d*F = 0, d*G=0or
d*S = 0) provides the limit of metastability, and the curve corresponding to this
condition is termed the spinodal. When, in the course of a thermodynamic process,
a system moves from an initial equilibrium state that satisfies this condition, it passes
from metastability to instability, and a phase transition is observed. For example, a
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tap on a beaker of water in a supercooled state triggers a phase transition whereby
the system suddenly and dramatically crystalises. Phase transitions will be discussed
in Chapter 7.

5.12

LEARNING OUTCOMES

At the end of this chapter the reader is expected to:

1.
2.

~N N LA

Nelioe]

10.

Know the extremum principles for the entropy and for the internal energy.
Understand that the conditions that are standardly used in the laboratory re-
quire the need for other thermodynamic potentials, namely, the free energies.

. By able to obtain thermodynamic potentials and identify their natural variables

by using the Legendre transform.

. Appreciate the importance of natural variables.

. Know that Massieu functions are the Legendre transforms of the entropy.

. Know how to derive Maxwell relations.

. Appreciate that thermodynamic coefficients are measurable quantities used to

quantify the behaviour of a system thermodynamically.

. Correctly interpret the meaning of chemical potential.
. Know the fundamental equation of thermodynamics in the internal energy and

in the entropy formulation.

Be able to formally understand the stability of thermodynamic systems and
realise that thermal and mechanical stability of physical systems are a direct
consequence of the signs of the second-order derivatives of the internal energy
or other thermodynamic potential.

11. Know the difference between stable, unstable, and metastable thermodynamic
states.
5.13 WORKED PROBLEMS
PROBLEM 5.1
Consider the coefficient of isobaric expansion p, and the coefficient of
isothermal compressibility k7. Starting from S = S(7, P) show that
VTB}
cr-cy = VTP2.
kr
Solution

We start by recalling from (5.33) and (5.29) that

and

1 (dV
o= (57),

1/(0V
kT“V(ﬁ)T'
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Let us consider S = S(T,P). Since P = P(T,V) we can write S =S[T,P(T,V)].
Thus, be applying the chain rule

(7)), (55, G,

( ) — !
' 7 ’

s
aT
(ﬁi) _
aT Jy
G __(25) (20
T \oP)r\oT )y’
According to the Maxwell relation for the Gibbs free energy
(ﬁ) - (i")
P )y \oT Jp’
Therefore, using the definition of Bp, it comes that

Cp-Cy (97P
T _VﬁP(aT)v.

and

~|Q

Hence

Considering P = P(T,V) and using the reciprocity rule one gets

(57), (G ). (5e), )

By using the reciprocal rule

(57), (&%), 57

Using again the definition of p, and considering the definition of k7, it comes that

(‘Lp) _Pr
oT V_kT’

Thus, we finally get

2
VT
Cp-Cy = ﬁ.
kr
PROBLEM 5.2
Show that 5
T( V) v

(55), -~
opP H_ Cp
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Solution

Considering H = H(T,P) and using the reciprocity rule one gets

(%)T(%)H(%)P:_l' (5.80)

According to the reciprocal rule,

P\ 1
(ﬁ)[-]_ oT\ ’
(5%,
and

aT\ 1 1
(ﬁ)}) T (OH\ FP
(57 ),
Substituting the two equations above in (5.80)

(57)
(‘LT) __\dP)r
Py~ Cr

Therefore, we need to show that

o))
oP T_ aT Jp

The differential of H = H(T,P) is

oH oH
dH=|\—) dP+|=—| dT. 5.81
( P )T " ( oT )p G581
On the other hand
dH =TdS+VdP. (5.82)

Eliminating dH, and solving for dS one obtains
dS:l(aﬂ) dT+l[(a£) —V]dR
T\JoT P T opP T

#l(57), -G ),

Using the Maxwell relation of the Gibbs free energy
(ﬁ) __ (‘LV)
P Jr N oT Jp
JH 0
RN
OP ) oT Jp

oV
(81) :T(ar)p_v
OP Jy Cp

with

Hence,

and finally,
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5.14 SUGGESTED PROBLEMS

PROBLEM 5.3
Consider U = U(S,V) and show that
U
=) =Tw-P
( av )T w

PROBLEM 54
Consider S = S(7,P) and show that for a reversible isothermal expansion

0 =-VTPBpAP.

PROBLEM 5.5
Show that

U JdP
(W)T*T(W)V‘P’

and evaluate this expression for the ideal gas. What do you conclude?

PROBLEM 5.6
Consider U =U(T,V) and to show that

oP
(91) _P_T(ﬁ)v
ov ly ™ Cy :

PROBLEM 5.7
Use the previous result to show that

(8&) (2P
A% T_ aT? V.

PROBLEM 5.8
Use the identity proven in Problem 5.2 to show that

PA% oP
CP:T(ﬁ)p(ﬁ)s'

PROBLEM 5.9
Show that

(57 )= 77,
oT Js VTBp
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PROBLEM 5.10
Show that

(%) -or o’V
oP 7'_ dT? P.

PROBLEM 5.11

Show that
Cp _kr

Cy kg

PROBLEM 5.12
Show that

PROBLEM 5.13
Use the result obtained in Problem 3.4 to show that

F=CyT-CyTInT -NkglnV -Tc+¢',

where ¢’ is a constant. Provide an explicit expression for ¢’.

PROBLEM 5.14
Use the results obtained in the previous problem to show that

G=CpT -CpTInT +NkgTInP-Td +¢’

where d is a constant. Provide an explicit expression for d.

PROBLEM 5.15
Consider an hypothetical fluid for which

SZ
U(S,V)=a>—,
(S.V)=a;,

where a is a constant. Determine the equations of state that assume the form
T=T(S,V)and P=P(S,V).

PROBLEM 5.16
Show that Cp is always positive.

PROBLEM 5.17
Show that the isothermal compressibility k7 is always positive by using the
stability criteria for the Helmholtz free energy.
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6 Thermodynamics of
Extensive Systems

This chapter is dedicated to derive general thermodynamic relations. Special focus
is placed on understanding the consequences of extensivity for the formal structure
of thermodynamics. The importance of molar quantities and partial molar quantities
is also discussed.

INTRODUCTION

In the first chapter of this textbook we discussed the difference between extensive
and intensive property. Here, we will explore the consequences of extensivity for
thermodynamics. However, before doing so, we should analyse the requirement that
a system must be homogeneous for extensivity to hold. Let us then consider a gas
that is enclosed in a cylindrical vessel tapped by a piston. This time, however, the
gas is not ideal and apart from interacting with each other, the composing particles
also interact with the internal surface of the vessel. If the interaction with the sur-
face is strong enough, some particles will become adsorbed at the surface, and the
corresponding intermolecular interactions will contribute to the systems’s total in-
ternal energy. Does extensivity hold in this scenario? In other words, can we say
that for such a system the internal energy, the volume, the number of particles, etc.
scale linearly with the systems’ size? The answer is no. Indeed, if the size of the
cylinder changes, the surface-to-volume ratio changes, and the fraction of adsorbed
particles will also change. Therefore, the properties of the system will depend on
the surface-to-volume ratio, and will not be extensive. It is interesting to note that
many thermodynamics textbooks assume tacitly that systems are homogeneous, but
in most real cases (such as that of the simple example described above) they are not.
Extensivity will not hold whenever boundary effects exist. On the other hand, if one
is interested in the thermodynamic behaviour of the bulk of the system without taking
into account what happens at surfaces and interfaces, then it is reasonable to assume
that the system, being homogeneous, will satisfy the postulate of extensivity. In what
follows we will be assuming that extensivity holds and determine the consequences
of extensivity for thermodynamics.

6.1 THE EULER EQUATION

In thermodynamics, the Euler equation is a consequence of Euler’s theorem, which is
a general statement about homogeneous functions of degree k. In particular, Euler’s
equation follows from the application of Euler’s theorem to homogeneous functions
of degree one, which are extensive functions, as discussed in Chapter 1.
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EULER THEOREM

If X (x,y,z) is an homogeneous function of degree k,

X 0X X
x(g))’7z+y($)x7z+z(a_z)x7y:kX(x7y’Z)' (61)

The proof of the Euler theorem is straightforward. Consider an homogeneous func-
tion X (x,y,z) of degree k. Then,

X(Ax,Ay,Az) = A X (x,.2).

Taking the partial derivative with respect to A one gets

IX (Ax,Ay,Az) d(A IX (Ax,Ay,Az) d(A dX (Ax,Ay,Az) d(A k-1
G oG ¢ G 20 o XD 50D At DX (x,3,2).
Noticing that d(Ax)/dA =x, d(Ay)/dA =y, and d(Az)/dA =z, and taking A = 1

the result follows.

In the demonstration above we used a function of three variables, but the theorem
holds for any number of independent variables. It is also important to remark that if
X depends on additional variables such that X (Ax,Ay,Az,a,b) = A*X(x,y,z,a,b),
equation (6.1) still holds, without the corresponding terms for @ and b on the left-
hand side.

Let us now apply the Euler theorem to the internal energy U, which is an exten-
sive function, i.e., an homogeneous function of degree one (k = 1) in the extensive
variables S, V, and N. Let us consider the most general case in which the system is
composed of N particles of m different types, such that

N=N{+Ny+...+N,,.
In that case U is an extensive function of S, V, and Ny, Ny, ..., Nj.:
U=U(S,V,N,Na,...,Np).

From equation (6.1) with k = 1 it comes that

S(a—U) +V(a—U) + Ni(au) =U.
aS Jvn IVisn I \INilsyin.,

Using the thermodynamic definitions of temperature, pressure, and chemical poten-
tial one obtains the Euler equation for the internal energy:

s

1

TS-PV+Y Npi=U 6.2)
i=1
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Substituting the Euler equation in the definition of the Gibbs free energy (5.19) one
obtains

G= ZN,‘HI'. (63)
i=1

Note that one could have derived (6.3) directly from the application of Euler’s theo-

rem to G = G(T,P,N;,N,...,Ny,). This is left as an exercise.
In the case of a one-component system equation (6.3) simplifies to

G=UN, 6.4)

and we can interpret the chemical potential as being the Gibbs free energy per parti-
cle. Dividing equation (6.3) by N, one obtains the molar Gibbs free energy

G m
== = i, 6.5
8 N ;xl.ul (6.5

with N
X; = Nl’ (6.6)

being the so-called molar fractions.
Since .

Yoxi=1, 6.7)

there are only (m - 1) independent molar fractions.
An equation similar to (6.2) can be derived for the the entropy, which is an ex-
tensive variable of U, V, N1, Na, ..., Ny:

S=S(U,V,Ni,Ny,...,.Np).

In this case the application of Euler theorem leads to the Euler equation for the
entropy:

(1o (Ee- (D)5

6.2 THE GIBBS-DUHEM EQUATION AND THERMODYNAMIC
DEGREES OF FREEDOM

The Gibbs-Duhem equation is easily derived from the Euler equation. We start by
taking the differential of equation (6.2):

k m
dU =TdS+SdT —PdV —VdP+ Y dN;u;+ Y Nid ;.

i=1 i=1
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By subtracting from the equation above the fundamental constraint as given by equa-
tion (5.44), one obtains the Gibbs-Duhem equation for the internal energy of a mul-
ticomponent system:

m
0=S8dT-VdP+) Nidu, (6.9)
i=1

Equation (6.9) shows that changes in the intensive variables 7" and P, and changes in
the m chemical potentials up, U, ..., Wy, cannot all be independent. In other words,
T, P, and Uy, W, ..., i, are not all independent variables.

Consider the case in which the system is formed by one particle type only (m = 1)
and rewrite the equation (6.9) as

du =—-sdT +vdP, (6.10)

where g
S= (6.11)

is the molar entropy, and v
v=u (6.12)

is the molar volume.
Other molar quantities such as the molar internal energy or the molar entropy,
are similarly defined:

U
=—, 6.13
U=y (6.13)
and S
=—. 6.14
5= (6.14)

Molar quantities are sometimes termed specific quantities (e.g. specific volume).
Equation (6.10) expresses the change in the chemical potential as a function of a
change in T and in P,
w=pu(T,P).

Thus, for a one-component system, there are only two independent intensive vari-
ables.

For a multicomponent system with m types of particles, there will be (m+ 1)
independent intensive variables
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The number of independent intensive variables that are needed to specify the ther-
modynamic state of a system is the number of thermodynamic degrees of freedom.

An equivalent version of the Gibbs-Duhem equation can be obtained for the en-
tropy. In this case one takes the differential of equation (6.8) and subtracts the differ-
ential of S as given by equation (5.46) to obtain

Ud(;)Wd(i)—iNid(‘;"):o (6.15)

Think about it...
Derive the Gibbs-Duhem equation by considering the enthalpy of a multicompo-
nent system.

Answer

Since H = H(S,P,N1,N3,...,Nn), with P being intensive, the application of Euler’s
theorem to H leads to

m
TS+Z[J,‘NZ':H.

i=1
The differential of H is thus
m m
dH =TdS+S5dT + Y widN; + Yy dwN;.
i=1 i=1

On the other hand "
dH =TdS+VdP+ " t;dN;.

i=1
By subtracting the last two equations one gets
m
0=SdT -VdP+ ) Nidp;,
i=1

which is the Gibbs-Duhem equation.

6.3 APPLYING THE GIBBS-DUHEM EQUATION

In what follows we apply the Gibbs-Duhem equation to determine the chemical po-
tential and the entropy equation of state of the ideal gas. In Chapter 7, we will illus-
trate the importance of the Gibbs-Duhem equation while studying phase transitions.

We start by considering the Gibbs-Duhem equation for the entropy of a one-

COmponent SyStem
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with u and v being molar quantities.
According to the ideal gas pressure equation of state
P k
PV = NkpT < — = -2, (6.16)
T v
with v being given by equation (6.12).
Using the equation of state for the internal energy

3 1 3k
U=>NkgT < —=>-2, 6.17)
2 T 2u
with u given by (6.13). Therefore,
P
o(3)--tg0
T V2
and | 3 g
u
d|=)=-zkg—.
(T) 2782

The Gibbs-Duhem equation for the ideal gas is then

u 3 du dv
dl=)|=-=kp— —-kp—.
(T) ZBM Bv

By integrating the equation above one obtains the equation of state for the chemical
potential of the ideal gas

. T . (u) (v)
Z =2 Zkgln(— |- kgln| — 6.18
T T ZBn uop s VO’ ( )

where (Uo,up,vo) specify a reference state.
For a single component system the Euler equation for the entropy (6.8) can be

written as p
s:—ﬂ+(3)+(l), (6.19)
T T T

with s being the molar entropy (6.14).
Using equations (6.16) and (6.17), equation (6.19) simplifies to

=—-—+—kp,
STTr T

with /T being given by equation (6.18).
Therefore, the entropy equation of state for the ideal gas is

s:s0+§k31n(l)+k31n(l), (6.20)
2 up Vo
with 5

S0 = *kB— @

2 T
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Think about it...
From a formal point of view what is the difference between the ideal gas equations
PV =NkgT, U =3/2NkpT, and equation (6.20) ?

Answer

Although all of them are equations of state, only the one for the entropy is a fun-
damental equation of state, expressing s as function of its natural variables u and
V.

6.4 MOLAR QUANTITIES

Molar quantities are intensive properties because they represent the ratio between
two extensive quantities. What is the mathematical consequence of working with
molar quantities? In order to answer this question let us consider the example of the
internal energy. Since U is extensive in all its natural variables, it is true that

U(AS,AV,AN{,AN>,...,ANy,) = AU(S,V,Ni,Na, ..., Nyy).

On the other hand, taking into account that A is arbitrary, we can take A = 1/N and
obtain

S VN N Np\ _U(S,V,Ni,N,...,Ny)
(N’N’W’W"”’W)_ N '

Given the definition of molar entropy (6.14), molar volume (6.12), molar fraction

(6.6), and molar internal energy (6.13), the equality above can be rewritten as

U (8,V,X1,X0, ..., X ) = U. (6.21)

Equation (6.21) can expressed in terms of the (m - 1) independent molar fractions
(6.7) as
w(S,V,X1,X2, ., Xm—1) = U. (6.22)

Thus, the mathematical consequence of using molar quantities is that:

When working with molar quantities the number of independent variables is re-
duced by one

This can be seen by considering the differential of u:
m—1
du=Tds—Pdv+ Z (Wi = W )dx;, (6.23)

i=1

whose derivation is presented in worked Problem 6.2.
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For a one-component system (for which dx; = 0) equation above reduces to
du=Tds—Pdv, (6.24)

with u = u(s,v).

The approach described above can be used for other molar quantities, and equa-
tions equivalent to (6.23) and (6.24) can be obtained for s, &, f, and g. We leave this
as an exercise for the reader.

6.5 PARTIAL MOLAR QUANTITIES

When studying multicomponent systems (such as liquid mixtures and metal alloys),
each particle species can have molar properties that are different from the molar
properties of the other species. This is a consequence of the fact that the number of
particles Ni, Ny, ..., N;, can be specified independently and different particles can be
present in different amounts. Thus, a single molar property such as v is no longer
enough to specify V. In this case, in order to determine how a certain extensive
thermodynamic property depends on the different components, it is useful to consider
the so-called partial molar properties.

Consider a multicomponent system, and a generic thermodynamic extensive
property Y, that is expressed as a function of P, T and Ny, Ny, ..., Ny;:

Y =Y(P,T,N1,Ns,....Ny,).
Since Y is an extensive function in Ny, Na, ..., N,,, it is true that:
Y(T,P,AN,AN;,....,AN,,) = AY (T,P,N1,Ns,....Ny).

Applying Euler’s theorem we obtain

3

Y(T,P,N\,N;,....Np) = > ViN;, (6.25)
i=1

1

where y; are intensive properties called partial molar quantities:

) )
- (6.26)
g (91\’1' PT{Njsi}

Thus, ¥; represents the change in Y that is observed upon adding a small amount of
species i to the system while keeping P, T, and the amounts of all the other species
constant. Partial molar quantities depend on temperature, pressure, and composition.
They are intensive state functions.
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Think about it...

Is the chemical potential
_ (‘9_U)
"IN sy Ny

a partial molar quantity?

Answer
No, because in the definition of partial molar quantities the constraints are 7', P,
and all the other particle numbers except /N;, and in the definition above the con-
straints are S, V, and all the other particle numbers except N;.

The chemical potential is a partial molar property only when it is defined from
the Gibbs free energy:

G
i = (

a_jvi)TJ),{Nj*,’} .

Note that since P and T are held constant in the definition of partial molar quan-
tities one can differentiate equations (5.2), (5.13), and (5.20) to obtain h; = ii; + Pv;,
ﬁ' =it;—T5;, and g; = it; — TS; + Pv;.

To analyse the consequences of extensivity in N, let us focus in the case of the
volume. According to equation (6.25)

m
V(T?RN13N27"'3MH) = Zil'Niv (627)
i=1
with
= ((LV)
C\ON pr vy

For many mixtures the volume is independent of the composition of the mixture, but
for several others it is not. An example, is a mixture of water and alcohol, where for
small amounts of the latter the volume of the mixture is actually smaller than the sum
of the volumes of water and alcohol.

By computing the differential of V from equation (6.27) one obtains

dv = Zfid]\f,' + Zdﬁ,’Ni. (628)
i=1 i=1

On the other hand, since V =V (T,P,N;, N, ...,N,,), the differential of V is also given

by
dV:(a—V) dT+(a—V) dP+Z(aV) dN;.
IT Jpin;y IPIpNy  S\OINi 1 piN.

By using equations (5.29), (5.33), and (6.26) the previous equation can be rewritten
as

dv = VﬁpdT —~VkrdP + ZV,'th (6.29)
i=1
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which simplifies to

dV(T,p) = Z\F,-dNi, (6.30)
i=1

at constant temperature and pressure, as indicated by the subscripts in dV'.
For equation (6.30) to be consistent with (6.28) it is necessary that at constant
temperature and pressure
m
Zdﬁ,N,» =0. (6.31)
i=1
It is possible to obtain equations similar to (6.27) and (6.31) for other state functions
that are extensive in the number of particles. In the case of the Gibbs free energy, for
example, the equivalent equations are

m m
G(T,P,N1,Ns,...,Np) = 3 &iN;i = ) Jil; (6.32)
i=1 i=1
and
m m
ng_iNi = ZduiNi =0. (6.33)

i=1 i=1
Equations (6.31) and (6.33) show that at constant 7" and P, the partial molar volumes
dv;, and the chemical potentials L; are not independent of each other. The reader
may recall that the non-interdependence of the chemical potentials is expressed by
the Gibbs-Duhem equation (6.9) when the temperature and pressure are both kept
constant.

6.6 LEARNING OUTCOMES

At the end of this chapter the reader is expected to:

1. Use Euler theorem to derive the Euler equation.

2. Know how to derive the Gibbs-Duhem equation and understand the concept
of thermodynamic degrees of freedom.

3. Understand the importance of molar quantities and distinguish them from par-
tial molar quantities.

6.7 WORKED PROBLEMS

PROBLEM 6.1
Derive an expression for dg at constant 7" and P.

Solution

The differential of equation (6.5) is

m

m
dg = ind/.ii + de,',u,‘.

i=1 i=1
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Dividing the Gibbs-Duhem equation (6.9) by N, and rearranging one obtains

m
ind,u[ =vdP - sdT.
i=1

Substituting the equation above in the equation for dg,

m
dg=vdP-sdT + Z,uidx,-.
i=1

Finally, if P and T are fixed

m
dg(r.py = ) Midxi.
i=1

PROBLEM 6.2
Derive equation (6.23).

Solution

The differential of u is given by

du= —EdN+d—U
N2 N

Using Euler’s equation (6.2) and the fundamental constraint (5.44) the equation
above can be written as
du = _TS—PV+ > 'uiNidN+ TdS-PdV + ¥ WidN;
N2 N ’

Considering that
_ds S ds S

ds=——-—dN < — =ds+—dN,
N N? N N2
dv = d—VdeNc» av :dV+LdN,
N N? N N2
and dN; N, dN; N,
dxj= —* -~ —tdN < — =dx;+ —=dN,
N N? N N?

and substituting the corresponding terms for dS/N, dV [N, and dN;/N on the
right-hand side of the equation for du, the latter can be rewritten as

m

du=Tds—-Pdv+ Zﬂidxi~

i=1
Taking into account that there are only (m— 1) independent molar fractions {x;},
one finally obtains equation (6.23):

m—1

du=Tds—Pdv+ Y. (i tm)dx;.
i=1
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6.8 SUGGESTED PROBLEMS

PROBLEM 6.3
Show that the function f(x,y,z) = (x> +y” +z* /x> +y?) is a homogeneous func-
tion of degree 2 in x, y, and z.

PROBLEM 6.4
Show that the area of a sphere, A = 47rR2, can be considered a homogeneous
function of degree 2/3, such that A(AV) = /12/3A(V).

PROBLEM 6.5
Apply Euler’s theorem to H = H(S,P,N;,N,, ...,N;»). What do you conclude?

PROBLEM 6.6
Derive the fundamental equation for the molar entropy, ds, and for the mo-
lar enthalpy, d/ of a multicomponent system of m: different species.

PROBLEM 6.7
Use the Gibbs-Duhem equation for a multicomponent system of m different

species to show that
g i =0.
) aN,‘ PT
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7 Phase Transitions

This chapter provides a brief introduction to the study of phase transitions in the con-
text of thermodynamics. Focus is placed on the van der Waals gas and on the analysis
of a very particular point of the phase diagram called critical point. In doing so, it
highlights the applicability of the concepts and tools of thermodynamics presented
in the first and second parts of this book.

7.1 INTRODUCTION

Throughout this book we have been often invoking the ideal gas model. Its simplic-
ity allows one to perform simple analytical calculations that are extremely useful to
apply and learn the theory of thermodynamics. Furthermore, the physical behaviour
of a diluted gas can be easily interpreted on the basis of the underlying microscopic
model. However, we must insist that thermodynamics is a remarkaby general subject
with an outstanding broad scope of applicability. One example is the study of phase
transitions. Simply put, a phase transition is the process according to which a sys-
tem changes its physical state as a result of changing some thermodynamic parameter
in the absence of chemical reactions (e.g. water vapour condensing into liquid water
when the temperature is lowered at standard atmospheric pressure).

As we have seen in Chapter 5, at constant temperature and pressure, a closed
system evolves towards an equilibrium state where G = H —T'S is a minimum. When
the temperature is high, the entropic term (-7'S) prevails and the equilibrium state is
the one dominated by entropy (e.g. the gas phase); at lower temperature the enthalpic
term dominates and the equilibrium state is the one that minimises the enthalpy (e.g.
the liquid phase).

Phase transitions require the existence of intermolecular interactions between the
system’s particles. The strength of intermolecular interactions relative to thermal
energy (kpT) becomes progressively larger as one moves from the gas to the liquid
phase, and from the latter to the solid phase. Indeed, in liquids, the relative strength
of attractive intermolecular interactions is large enough to keep the particles much
closer than in a gas, and almost as close as in a solid. However, the particles exhibit no
regular arrangement, while in a solid they are locked into the positions of a crystalline
lattice, vibrating around their equilibrium positions.

The dutch scientist Johannes van der Waals (1837—-1923) was the first to develop
a model of a fluid system that takes into account the effects of intermolecular inter-
actions in the system’s behaviour. As we shall see, despite its simplicity, the van der
Waals model is — up to a certain extent — able to predict phase transitions such as
the one converting a gas into a liquid, and it is also able to predict the existence of
the critical point. The latter is a peculiar point of the phase diagram dominated by
fluctuations that occur at every scale (e.g. density fluctuations in the case of the gas-
liquid phase transition), including the macroscopic scale of the system. To study this
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unique point of the phase diagram a new physical theory is required that correctly
captures and quantitatively predicts the system’s behaviour.

7.2 PHASE

A phase is a part of a system, physically distinct, macroscopically homogeneous, and
containing one or several components (i.e. particles of different types). It is physi-
cally separable from the rest of the system.

Consider the case of a thermodynamic system that is exclusively composed of
water molecules. We know from our daily experience that at standard atmospheric
pressure water may be in the solid, liquid, or gas phase, depending on the temper-
ature. We recognise ice, liquid water, and gaseous water as three different phases
of the same substance. If a system consists of liquid water and ice cubes in a glass
jar, we identify the ice as being one phase and liquid water as being another phase.
Indeed, as we will see briefly, under certain conditions different phases may coexist
in contact with each other in thermodynamic equilibrium.

Other, perhaps less familiar examples of thermodynamic phases include plasmas,
superfluid helium, and superconductivity. A plasma is a gas composed of charged
particles (electrons and ions) obtained by superheating a gas between several thou-
sand and several million kelvin, i.e., in extreme conditions which are not naturally
found on Earth. Superfluid helium is characterised by the absence of viscosity when
the temperature approaches absolute zero, and the superconductivity of certain ma-
terials (e.g. certain metals and alloys), is characterised by the absence of electrical
resistance.

Think about it...
Consider a system formed by water and oil at room temperature. How many phases
are there in the system? And in a mixture of alcohol and water?

Answer

In principle, at room temperature the oil will not mix with water and it will be
possible to identify two phases. On the other hand, water and alcohol are fully
miscible and the resulting mixture will have only one phase.

7.3 THE GIBBS PHASE RULE

Gibbs derived an important relationship among the number of components m, the
number of phases, ¢, and the number of intensive variables, f, that must be speci-
fied in order to characterise the equilibrium state of a non-reacting multicomponent
system. The latter is a system a system in which the passage of a component from
one phase to another does not involve any chemical reaction. In particular, the Gibbs
phase rule, or simply phase rule, determines the number of independent intensive
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variables (or thermodynamic degrees of freedom) as a function of ¢ and m according
to

fem+2-g (7.1)

The derivation of the phase rule following Gibbs is straightforward. Let us consider
a closed system in equilibrium that consists of parts @, B, ..., ¢. Each part has its
own temperature and pressure, and contains particles of species i = 1,2,...,m (Figure
7.1). Let us recall the equilibrium conditions for a thermodynamic system composed

a B

{C.Cyp ..C,} {Cy Cy...C}

T_adiabatic, impermeable rigid wall

Figure 7.1 A thermodynamic system that is formed by several phases o, f3, ..., ¢. Each
phase has m components, C, C, ..., Gy that can be exchanged between the different phases
in the absence of chemical reactions.

of different parts from equations (5.60)—(5.62). Applying those conditions to our
multiphase system yields:

Ta:TB:"':T¢:T7

Po=Pg=..=Pp=P
and

Uia=H1p=--=HLe,
Wa=Hap=--=H2p,

Mmoo = Hp,g = - = Hm,p-

Therefore, the multiphase system is characterised by (m +2) variables.

However, the (m +2) variables are not all independent since there is one Gibbs-
Duhem equation (6.9) per phase relating the intensive variables T and P with the
chemical potentials of the different species,

m
0=8dT -VdP + ZNld[.L,
i=1
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Indeed, to get the number of independent variables of the multiphase system one
must subtract from (m+2) the number of Gibbs-Duhem equations, which is ¢. The
system is then characterised by f = (m+2) — ¢ independent variables. In the case of
a single-component system, the phase rule reduces to

f=3-0.

7.4 PHASE DIAGRAMS

A phase diagram is a graphical representation of the equation of state. Consider, for
example, the general case of a multicomponent fluid system. In this case the equation
of stateis f(T,P,V,Ny,N,...,N,,) =0 and it is impossible to graphically represent the
corresponding multidimensional surface. One the other hand, for a one-component
system with a fixed number N of particles the equation of state f(7,P,v) = 0 can be
represented by a three-dimensional surface on the (T, P,v) space, with v=V /N be-
ing the molar volume. Often, a two-dimensional representation is considered, which
shows a projection of the phase diagram on the (7, P) plane (Figure 7.2 A), or on
the (v,P) plane (Figure 7.2 B). In most cases, phase diagrams are experimentally
determined with the aid of the phase rule. In what follows we will be considering a
one-component fluid with a fixed number of particles.

TP

coexistence

gas A
region

1
1
|
1
1
1
1
1
T

v
v

[

Figure 7.2 Phase diagram of a single-component fluid projected on the (7,P) state plane
(A) and on the (v,P) state plane (B). In the (T, P) projection there are three coexistence lines
(solid-liquid, solid-gas, and liquid-gas) that intersect at the triple point (TP). The liquid-gas
coexistence line terminates at the so-called critical point (C). Above T¢ and P¢ the system
exists as a supercritical (SC) fluid, rather than a supercritical gas or liquid. The (v,P) projec-
tion contains the isothermal curves. Below the critical temperature T, the isotherms exhibit
an horizontal section which is a zone of phase coexistence. Above 7 the isotherms resemble
those of the ideal gas.

In the (T, P) projection of the phase diagram there are three areas that correspond
to the solid, liquid, and gas phases. According to the phase rule, the number of de-
grees of freedom of a one-component system (m = 1) with one phase is f = 2, which
means that the temperature and pressure can both be independent.

The so-called coexistence lines in the (7, P) projection separate the areas corre-
sponding to the single phases and represent the coexistence of two-phases: solid and
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liquid (melting line), solid and gas (sublimation line), and liquid and gas (boiling
line). By using the phase rule, the number of degrees of freedom of a one-component
system with two phases is f = 1. In this case the temperature must be a function of
pressure T = T(P), or vice-versa. The melting line, sublimation line, and boiling
line thus respectively provide the melting temperature, the sublimation temperature
and the boiling temperature at any pressure. The liquid-gas coexistence line is also
termed vapour-pressure line because it provides the maximum pressure the system
can stand as a gas for a given temperature. The three coexistence lines intersect at a
the triple point in which the three phases coexist in equilibrium. Since in this case
f =0 the TP stays determined by a unique T7p and Prp. The crossing of a coexistence
line while moving from one area (i.e. from one phase) to another corresponds to the
occurrence of a phase transition (e.g. sublimation and deposition; vaporisation and
condensation; melting and freezing).

The boiling line, and only it, terminates at a particular point termed critical
point, which is characterised by a critical temperature 7¢ and a critical pressure Pc.
For P > Pc and T > T the system is in the so-called supercritical state. In this case
it is impossible to distinguish whether the system is a liquid or a gas. As a result,
supercritical fluids do not have a definite phase.

Note that beyond the critical point it is possible to continuously transform a liquid
into a gas without crossing the liquid-gas coexistence line. We will discuss the critical
point of the phase diagram in more detail later on.

A
P

Bl

Vl Vg V

P, liquid

gas

>

Figure 7.3 Shape of a liquid-gas isotherm below the critical temperature, which highlights
the region corresponding to the liquid phase, the region where the liquid and gas coexist, and
the region corresponding to the gas phase. Py is designated by vapour pressure.

7.5 PHASE TRANSITIONS

In order have a better feeling of what a phase transition is, we will now look into
the (v, P) projection of the phase diagram, and, in particular, we analyse the liquid-
gas isotherm (Figure 7.3). A similar analysis leads to similar conclusions for the
liquid-solid and solid-gas isotherms.
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In isotherms the temperature is constant. The liquid-gas isotherm contains three
different parts. The part where the absolute value of (dP/dv)r is large, that is, the
pressure increases sharply with a reducing volume, corresponds to the relatively in-
compressible liquid phase. The part where the pressure decreases smoothly with an
increasing volume, that is, the absolute value of (dP/dv)r is small, corresponds
to the highly compressible gas phase. Finally, the intermediate region at constant
vapour pressure Py corresponds to the transition region in which the liquid (/) and
gas (g) coexist in equilibrium. Note that when projected on the (7,P) state plane
the coexistence region of the isotherms appears as the lines separating the different
phases, i.e., the coexistence lines. In the coexistence region some particles are in the
liquid phase, while others are in the gas phase such that N; + N, = N. In point (Fp,v;)
of Figure 7.3 the particles are all in the liquid phase with density p; = N/V;, while
in point (Py,v,) the particles are all in the gas phase with density py = N/V,. Since
the two phases have different densities the total volume changes abruptly at constant
pressure (or as a result of an infinitesimal change in pressure) form v; to v, >>v; or
vice-versa, as the relative amount of particles in the liquid and gas phases changes.

Since the (molar) volume v is thermodynamically defined by

~(3)
“\oprP /)y’

a discontinuous change in v means that the first derivative of the (molar) Gibbs free
energy with respect to pressure is not a regular function. The same observation holds
for the first derivative of the (molar) Gibbs free energy with respect to temperature,

__(ﬁ)
s = o )

as a result of a discontinuous change in (molar) entropy s when the system moves
from the liquid to the gas phase, or vice-versa. When at least one of the first deriva-
tives of the molar (Gibbs or Helmholtz) free energy are discontinuous, the phase
transition is termed a first-order phase transition.

Since the isothermal compressibility is defined as

L __(ﬂ) __ (2%
= oP T_ oP? T’

and the (molar) heat capacity at constant pressure is defined as

cp _[(ds) _ d’g

T (aT )p_ (8T2)P’
a discontinuity in v and s must cause a singularity (i.e. a point at which it becomes
infinite) in k7 and cp, respectively. Phase transitions are thus described theoretically
by the appearance of singularities (non-analyticities) in functions representing ther-
modynamic quantities that are generally used to characterise a thermodynamic sys-

tem. A phase, on the other hand, is described by the Gibbs free energy, or by the
Helmholtz free energy, which are analytical functions of its natural variables.
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Figure 7.4 Types of phase transitions. Schematic representation of the temperature depen-
dence of the molar Gibbs free energy, molar entropy, and molar heat capacity at constant
pressure in a first-order phase transition (A—C). Pressure dependence of the molar Gibbs free
energy, molar volume and isothermal compressibility in a first-order phase transition (D-F).
Schematic representation of the temperature dependence of the molar Gibbs free energy on the
temperature, molar entropy, and molar heat capacity in a second-order phase transition (G-I).

Paul Ehrenfest (1830-1933) proposed a classification of phase transitions accord-
ing to which the order of the phase transition is defined by the lowest derivative
of the (Gibbs or Helmholtz) free energy that has a discontinuity upon crossing the
coexistence curve. Thus, first-order phase transitions are those for which one of the
first derivatives of the free energy is discontinuous (Figure 7.4 A-F), and second-
order phase transitions are those for which both of the first derivatives of the free
energy are continuous but at least one of the second derivatives is a discontinuous
function (Figure 7.4 G-I). In first-order phase transitions, cp and k7 go to infinity
when the transition point is approached from either side (Figure 7.4 C, F), while in
second-order phase transitions the kink in the entropy results in a step in its derivative
(Figure 7.4 1). The infinite value of cp results from the fact that a nonzero transfer
of energy as heat causes no change in the temperature as one phase is converted
to another. As we shall see in the next section, this amount of energy is the latent
heat.
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Think about it...
Why does the isothermal compressibility k7 go to infinity at the liquid-gas coex-
istence region?

Answer
The infinite value of k7 results from the fact that a finite change in volume occurs

at constant pressure Py when moving from the liquid to the gas phase along the
coexistence region.

The order of a phase transition must be experimentally determined by perform-
ing accurate measurements of the compressibility and heat capacity, and check if
these quantities become infinite at the phase transition. Second-order phase transi-
tions are rather unusual. One well established example is the transition from normal
to superconducting state.

The coexistence region in the (7, P) projection (dashed line in Figure 7.2 B) is
enclosed by a line that is concave downwards, with a critical point at the top. In
his classical theory of phase transitions Lev Landau (1908—1968) argued that the
shape of this line, and, in particular, the existence of a critical point, results from the
dependence of the molar free energy on the molar volume along the liquid-vapour
coexistence line. In particular, according to Landau’s theory, for a given T = T (P)
in the coexistence line, the free energy expressed as a function of v, G(v), has two
minima separated by a barrier, one corresponding to the liquid phase and another
to the gas phase. The barrier becomes progressively smaller as the critical point is
approached, with the two minima actually merging into a broad minimum at the
critical point (Figure 7.5). In light of Landau’s theory, a phase transition is called

"/
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Figure 7.5 The shape of the free energy g(v) along the liquid-gas coexistence line. The free
energy barrier that separates the liquid and the gas phase becomes progressively smaller as
the critical point is approached, actually vanishing at the critical point. Adapted from Dill and
Bromberg (2002).
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first-order when the free energy has two minima separated by a barrier, and higher-
order when it has no barrier.

It is also common to classify phase transitions as first-order or continuous. Con-
tinuous phase transitions are those for which the second, or higher-order derivative
of the free energy shows a discontinuity.

7.6 CLAUSIUS-CLAPEYRON EQUATION AND LATENT HEAT

The discontinuous change in entropy that occurs in a first-order phase transition is as-
sociated with the existence of a quantity termed latent heat. The latter is the amount
of energy transferred as heat that is necessary to make a thermodynamic system
change state without changing its temperature.

In what follows we will derive an equation that relates the slope of the liquid-
gas coexistence line with latent heat for a one-component thermodynamic system. A
similar equation exists for the other coexistence lines and the derivation is identical.
The equation that describes the slope of the coexistence lines is called the Clausius-
Clapeyron equation.

As we already know, a system composed of two phases (such as the gas phase
g, and the liquid phase /) is in equilibrium if 7, = T;, P, = P;, and U, = ;. Moreover,
we also know from the Gibbs-Duhem equation (6.10) that 7, P, and u are not all
independent. In particular, we can write i = i (T, P). Thus, the condition of thermo-
dynamic equilibrium along the liquid-gas coexistence line reduces to

.u'l(TaP) :uv(T,P). (7.2)

Taking the differential of the equation above one gets

(G- (G-l (GJor o>

For a one-component system dg = du with dg = —sdT +vdP. Thus
d
()~
oT Jp

3

Using the two last equations, we can rewrite equation (7.3) as

and

=51dT +vidP = —5,dT +vgdP,
and rearranging one obtains
dP  sg—si
dT  ve—v;’
Recall from equation (6.4) that for a one-component system = g. Since g=h—-1T's
it is true that

(7.4)

u=h-Ts.
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On the other hand, along the coexistence line
Hg=Hy.
Thus, along the coexistence line the following equality holds:
hy—=Ts;=hg—Tsg,

where T is the coexistence temperature.
Rearranging the last equation one gets
hg =My
i

5551 = (7.5)

Finally, substituting (7.5) in (7.4) we obtain the Clausius-Clapeyron equation:

dj:M (7.6)
dT  T(vg-vi) '

The quantity [ = (hy — ;) in equation (7.6) is the latent heat of vaporisation per
particle from liquid to gas. Alternatively, taking into account equation (7.5), the
latent heat can be defined as

[=T(sg—s1)- (7.7

The entropy and volume of the gas phase are typically larger than those of the liquid
phase; the same is true for the molar volume and molar entropy. Consequently, the
slope of the liquid-gas coexistence line is positive.

Think about it...
Consider a piece of ice that sits on the top of a table. What can you say about the
ice’s temperature?

Answer

Even if the ice cube (or part of it) had melted, its temperature could yet be 0°C due
to latent heat. Since the ice has not melted one can say for sure that its temperature
is lower than the table’s temperature.

To obtain the Clausius-Clapeyron equation for the solid-liquid, and for the solid-
gas coexistence lines one uses the same procedure as above but starting from the
corresponding equilibrium condition. Namely,

.u'S(T7P) = .u'l(TvP)a (78)

and
:uS(T7P) :nug(TvP)’ (79)
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In the particular case of water, the slope of the solid-liquid coexistence curve is,
contrary to that of most substances, negative. Thus, for water, a higher pressure cor-
responds to a lower melting temperature. The reason for this strange behaviour of
water is related to the network of hydrogen bonds between the water molecules,
which causes them to be closer to each other in the liquid phase than in the ice phase.
As a result, the molar volume of the liquid phase is smaller than that of the solid
phase, and ice floats on liquid water.

Think about it...
Can you use the Clausius-Clapeyron for the melting line of water to try to explain
the movement of glaciers?

Answer
Contrary to most substance, water exhibits a decrease of melting temperature with
increasing pressure. In principle, one could argue that the bottom of a glacier ex-
periences a very high pressure as a result of its weight, which can lead to some ice
melting and forming a liquid layer of water that facilitates the movement of the
glacier.

7.7 THE VAN DER WAALS GAS MODEL

The isotherm of the ideal gas model does not exhibit a phase transition. Microscop-
ically, this stems from the lack of intermolecular interactions between the ideal gas
particles. While nowadays it is well-known that non-charged particles interact with
each other through pairwise forces derived from an intermolecular potential as the
one represented in equation (1.3), things were not this clear back in the 19th century.

The Dutch physicist Johannes van der Waals (1837-1923) was the first to con-
sider the effect of intermolecular interactions in the behaviour of a gas, although he
was not absolutely sure about the nature and origin of those interactions. Basically,
he imagined that each particle attracts all the others, within a fixed range of influ-
ence. He also reasoned that since liquids strongly resist compression, it should be
because the constituent particles, which are also the ones present in the gas phase,
must keep a minimum distance between them. The van der Waals gas is the first
model of a real gas that takes into account the size of the gas particles, and the exis-
tence of forces between them. It is the basis of the van der Waals pressure equation
of state, which granted van der Waals the Nobel prize in Physics in 1910. In what
follows we will make a phenomenological derivation of the van der Waals equation
of state. The reader should bear in mind that the van der Waals model provides a
qualitative description of a simple fluid. This means that while it is able to replicate
several physical features of its behaviour, it is not able to replicate the corresponding
experimental values.

Consider a monoatomic gas formed by N identical particles that interact in a
pairwise manner. The gas particles are represented as rigid spheres, i.e., impenetrable
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spheres that cannot overlap in space. Each sphere has radius r. Let P and V be the
measured (or observed) pressure and volume of a real gas, respectively. We take as a
starting point the ideal gas equation of state

P'V' = NkgT, (7.10)

where P’ and V' are the pressure and volume of the ideal gas. In what follows we
start by considering the effect of the size of the particles to correct V'; in doing so
we will estimate V. Subsequently, we will consider the effect of the existence of
intermolecular forces to correct P’ and estimate P.

Since the rigid spheres cannot interpenetrate each other, the distance between
two particles cannot be smaller than o = 2r (Figure 7.6 A). Therefore, to each pair of
interacting particles one can associate an excluded volume

4 3 4 3
Vioair = =7(2r)° = =mo".
patr =3 (2r) 3

Thus, the excluded volume per particle is

Vpair
V]mrtcle = )

Considering that the gas is formed by N particles, the total excluded volume is
Vexcluded = Nb,
with 5
b=-mo
3

being a parameter characteristic of each specific particle. Based on these simple con-
siderations one can estimate the measurable volume as being

V =V’ +Nb. (7.11)

Figure 7.6 Excluded volume (in light-grey) for a pair of rigid particles. The minimum dis-
tance between the two particles is ¢ = 2r (A). Pull force on particles located on the surface of
the container (B).
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Let us now turn our attention to the estimation of the pressure P of a real gas. In
order to do so, we assume that the particles do not interact with the surface of the
container. Since the forces between particles are isotropic, the resultant force acting
on each particle in the bulk is null. On the other hand, a particle located on the surface
of the container will be acted upon by a total non-null attractive force that will pull
the particle towards the bulk (Figure 7.6 B). This pull towards the bulk, acting on
the particles colliding with the surface per unit area and per unit time, results into P
being smaller by an amount AP than the pressure P’ corresponding to an ideal gas:

P=P -AP.

The number of particles that collide with the surface is proportional to the gas den-
sity, p. Moreover, according to van der Waals, the net attractive force acting on any
particle in any direction is proportional to the density of molecules within its range
of influence. Therefore, the net attractive force acting on the particles located on the
surface will be proportional to pZ. Thus, the correction of the pressure due to the pull

must be proportional to p2:
()
AP=al|l—| ,

1%

where the parameter a is also specific of each particle type.
The pressure of a real gas can then estimated to be,

P:P'—a(]‘\/[)z. (7.12)

Using equations equations (7.11) and (7.12) to respectively obtain P’ and V', and
inserting the corresponding expressions in (7.10) one finally obtains the van der
Waals pressure equation of state:

NkgT (N )2
=————-al| = 7.13
v-nb) “\v 7-13)
Equation (7.13) is sometimes presented in the following form
P 2
PP (7.14)

ksT 1-bp kgT

with p=N/V.

The isotherms corresponding to the van der Waals equation are represented in
Figure 7.7 A. We note, in particular, that below the critical temperature, the isotherm
shows a region of non-physical behaviour. Indeed, one observes that an increase in
the volume results into a pressure increase leading to a negative value of the isother-
mal compressibility, k7 (5.33). This happens in the part of the curve that corresponds
to the coexistence region observed experimentally for a real fluid. However, at point
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Figure 7.7 The isotherms predicted by the van der Waals equation of state (A), and the
Maxwell construction (B). Below the critical temperature the van der Waals isotherm exhibits
a zone of non-physical behaviour where the pressure increases with increasing volume.

(Py,vy) the derivative of the pressure with the volume is rather large, which is in line
with what is expected for a liquid. On the other hand, at point (P, v, ), the derivative
is rather small, which is typical of a gas. Furthermore, above the critical temperature
Tt the van der Waals equation correctly describes the behaviour of a real fluid. Thus,
the van der Waals isotherm does not correctly capture the coexistence region, but it
is able to predict the existence of the gas phase, the liquid phase, as well as the criti-
cal and supercritical isotherms. Can one use the van der Waals equation to establish
the pressure at which the two phases coexist? The answer to this question is yes and
can be obtained by the so-called Maxwell construction, which we discuss in the next
section.

7.71 MAXWELL CONSTRUCTION

Let us consider a van der Waals isotherm below T¢. Since T is constant along the
isotherm, by using the Gibbs-Duhem equation (6.10) one can write

(5¢),-
oP )r "

du =vdP, with constant 7.

which is equivalent to

Since
vdP = d(Pv)—Pdyv,

it follows that
dp =d(Pv) - Pdv.

By integrating the equation above between v; and v, one obtains

pep= [ () - pay]

\Y
= Pyvg—Pvi - f * Pdv. (1.15)
Vi
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Since the system is in thermodynamic equilibrium in the coexistence region, the
condition t; = [, must hold. Moreover, along coexistence region F; = P, = Fy. Thus
equation (7.15) simplifies to:

Po(vg—vy) = f * Pav.
Vi
Considering a point v, such that v; <v, <v, (Figure 7.7 B), the last equation can be
rewritten as ; )
x g
Po(ve—v)) + Po(vg—vy) = f Pdv+f Pdv, (7.16)
v, A%

1 X

and rearranging (7.16) one obtains

Vy v
Po(vx—vl)—f Pdv:f * Pdv—Py(vg—vy). (71.17)
vy Vx
The left hand side of equation (7.17) corresponds to area A in Figure 7.7 B, while
the right hand side corresponds to area B.

Thus, in order for the equality in (7.17) to hold, it is necessary to ensure that the
graphical condition

area A =areaB

is satisfied, which will only happen for a certain value of the vapour pressure . In
other words, Py is the pressure for which the two areas are equal. This geometric
analysis of the van der Waals isotherm that predicts the value of Fy is known as
the Maxwell construction. The latter allows one to conclude that while the van der
Waals model does not correctly predict the occurrence of the liquid-gas coexistence
region, it is nevertheless able to provide the pressure of phase coexistence.

The fact that the van der Waals model is able to qualitatively predict the super-
critical isotherm (T > T¢), the critical isotherm (T = T¢), the existence of liquid and
gas phases, together with the vapour pressure (7 < T¢) is quite remarkable given its
simplicity. This makes the van der Waals model an important step towards the un-
derstanding of phase transitions. In what follows we analyse in detail the critical
isotherm.

7.7.2 CRITICAL ISOTHERM AND CORRESPONDING STATES

As previously mentioned, the liquid-gas coexistence line terminates at the so-called
critical point. At the critical point the volume of the gas phase coincides with that
of the liquid phase, i.e., there is no distinction between the two phases and the la-
tent heat vanishes. Liquid and gas become a supercritical fluid. The volume changes
continuously in moving from the liquid to the gas phase across the critical point. It
is experimentally observed that at the critical point the isothermal compressibility
and the heat capacity are both infinite. However, there is no sudden jump to an in-
finite value at one point as it happens below the critical temperature. They both rise
smoothly towards an infinite value at the critical point. As we will see, this kind of
phase transition is generally associated with anomalous phenomena.
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The van der Waals equation of state predicts the existence of a critical isotherm as
the one depicted in Figure 7.7 A. The critical isotherm does not possess an horizontal
part as the isotherms below 7¢, which is consistent with the fact that there is no
distinction between the liquid and the gas phase. However, the slope of the isotherm
is still zero at the critical point, indicating that the pressure does not change with
volume. On the other hand, the isotherm’s curvature changes sign at the critical point.
From a mathematical standpoint the critical point is a stationary inflection point of
the critical isotherm. This means that not only the first derivative of the pressure with
respect to volume is zero

JP
( — ) =0, (7.18)
8v Tc
but that the second derivative is zero as well
9P
—-— =0. (7.19)
),
C

At the critical point it is not only the first and the second derivatives of the pressure
that vanish. Indeed, by looking into the (v,T) projection of the phase diagram of
the van der Waals fluid it is possible to see that the same happens with the first and
second derivatives of the temperature,

aT 9°T
(av)PC = (avz) ) =0. (7.20)

Thermodynamics breaks down at the critical point because, as previously mentioned
and now illustrated by the van der Waals equation of state, the heat capacities to-
gether with other measurable thermodynamic coefficients (such as the thermal pres-
sure, isothermal compressibility etc.) that are generally used to quantitatively char-
acterise a thermodynamic system, become either zero or infinite at the critical point.

By using equation (7.13) to compute (7.18) and (7.19) one obtains an expression
for the critical volume

ve = 3D, (7.21)
and for the critical temperature
8a
kpTc = — 7.22
sle= (7.22)

expressed as a function of parameters a and b.
By substituting V¢ and T¢ in (7.13) one gets the critical pressure

_ a
T 27b2°

The critical parameters P, V¢, and T¢ allow one to define a parameter, Z¢, termed
universal compressibility ratio, which measures how much a van der Waals gas
deviates from the ideal gas (Z¢ — 1)

Pc (7.23)

P
_beve 3 49s. (7.24)
keTe 8

C
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In general, it is observed that real gases deviate more from the ideal gas limit than
as predicted from the van der Waals theory (e.g. in the case of water Z¢ = 0.226),
indicating that they are not perfectly captured by the van der Waals model.

The critical parameters allow defining the so-called reduced variables:

P

P=— 7.25
B (7.25)

—_ T

T=— 7.26
o (7.26)

-V

V=— 7.27
Ve (7.277)

and

—_ P

= . (7.28)

P pc

In equation (7.28), pc = v¢/v is the critical density.

If P=T =V =1 the system is in the critical state. If P> 1 and T > 1 the system
is above critical conditions. Alternatively, it will be in subcritical conditions when
P<landT < 1.

The van der Waals equation expressed in reduced variables becomes

P= EiT - i (7.29)

(3v-1) v*
The reduced form of the van der Waals equation of state is somehow universal in the
sense that the coefficients a and b, which are specific of each substance, are no longer
there. All substances obey the same equation of state in terms of reduced variables.
Reduced variables determine the so-called corresponding states. The principle of
corresponding states, as originally established by van der Waals in1880, states that:

At a given value of the reduced volume, V, and reduced temperature, T, all gases
have the same reduced pressure, P

Van der Waals conjectured that the principle of corresponding states is independent
of the equation of state. It is viewed as one of the most — if not the most — useful
contribution of van der Waals theory.

7.8 GUGGENHEIM CURVE AND CRITICALITY

In 1945, Edward Guggenheim (1901-1970) considered eight different substances
(Ne, Ar, Kr, Xe, N;, Oy, CO, CHy) and studied experimentally the liquid-gas phase
transition. The Guggenheim curve (Figure 7.8) shows that when plotted in reduced
variables (p and T), the coexistence curves of the eight different substances super-
pose remarkably well in the vicinity of the critical point, showing that the reduced
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liquid

551 L

Figure 7.8 Guggenheim curve. Liquid-gas coexistence curve for eight different substances
showing the reduced temperature as a function of reduced density. The solid line is the fit to
a cubic function with a singularity of the form (p — p¢) o< (—t)ﬁ with r = (T - T¢) /T¢c and
B =0.33. Adapted from Guggenheim (1945).

densites of the liquid phase and gas phase at the coexistence region depend on the
reduced temperature in a universal manner. This is consistent with van der Waals’
principle of corresponding states.

Actually, as the temperature approaches T¢, the difference between the densities
of the liquid phase and gas phase, (p; — pg), approaches zero indicating that it is
no longer possible to distinguish between the two phases. At the critical point, the
density of liquid phase and of the gas phase become the same, and the difference
between the two phases disappears. As previously mentioned, they become a single,
supercritical fluid. In the context of the study of phase transitions the quantity (p; —
pg) is termed order parameter. Order parameters are quantities which are non-zero
below the critical temperature and zero above it.

7.9 CRITICAL EXPONENTS

The macroscopic properties of a thermodynamic system near the critical point are
determined by the temperature. More precisely, they are a function of the amount
by which the temperature deviates from the critical temperature. For this reason it is
convenient to define the temperature in such a way that all critical points are equiva-
lent. In general, the dimensionless parameter

t=(T-Tc)|Te (7.30)

is used to study critical behaviour.
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Experiments show that near the critical point thermodynamic properties are often
proportional to () raised to some power, i.e., they are determined by power-laws

X~ (_t)kv

with X denoting some thermodynamic property, and k being the critical exponent.
For example, in the case of the Guggenheim curve it is observed that

(p=pc) o< (-1)P. (7.31)

with 8 = 0.33 being the critical exponent. In what follows we briefly discuss the
concept of critical exponent and why these quantities are important.

Critical exponents are the entities used to characterise critical phenomena, and
the theory of critical phenomena is the theory behind the calculation or prediction
of critical exponents. Some examples of power laws describing critical behaviour are

(p1-pg) ~ (-1)P (T <T¢) 03<B <05 (7.32)
(vi=ve) ~(P-Pc)®  (P>Pe) 4.0<8<5.0 (7.33)
Cy~t"% (T>T¢) —02<0<0.3 (7.34)
Cy~(~1)"% (T<Tc) 0<a’'<0.2 (7.35)
kr~t™" (T>T¢) 1.2<y<14 (7.36)

kr ~(-t)" (T <T¢) 1.0<y <12 (1.37)

with the critical exponents being represented by 8, 8, o, &', ¥, and ¥'.

As shown in the equations above, the values of critical exponents are strongly
conserved among different fluid systems (e.g. the eight substances represented in
the Guggenheim curve all share the same critical exponent = 0.33), and even so
among physical systems that are clearly different (e.g. binary mixtures, metal alloys,
and ferromagnets). This remarkable observation is another statement of universality.

A property of power laws is that they are scale invariant. Given a function
f(t) = a*, and scaling the argument by a constant factor ¢ one obtains f(ct) =
a(ct)™ = ac™*f(t) o< f(t). Thus, it follows that all power laws with a particular
scaling exponent are equivalent up to constant factors, since each one is simply a
scaled version of the others.

In the particular case of a fluid system at the critical point the density has fluctu-
ations of all length scales, from microscopic to macroscopic ones, which are about
the systems’ size. Since there is not a preferred density scale, the system is scale
invariant. In particular, there are density fluctuations whose size is comparable to
the wavelength of light, and scattered light causes the normally transparent liquid to
become opalescent, exhibiting a milky appearance. This so-called critical opales-
cence was firstly reported by Charles Cagniard de la Tour (1777-1859) in 1823 for
mixtures of alcohol and water, but its importance was only recognised by Thomas
Andrews (1813-1885) in 1869 after experiments on the liquid-gas transition of car-
bon dioxide. It is therefore one of the first investigated manifestations of critical
phenomena.
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The van der Waals equation of state is able to qualitatively predict critical be-
haviour but it is not able to correctly predict the experimental values of the critical
exponents (e.g. it predicts § = 0.5 instead of 0.33). A successful treatment of criti-
cal phenomena is one that is able to quantitatively predict the critical exponents by
properly treating fluctuations. It was developed by Ken Wilson (1936-2013), and is
called Wilson’s renormalisation group method. For his achievements, Wilson re-
ceived the Nobel Prize in Physics in 1971. The interested reader is referred to the
classic textbook by Eugene Stanley, and to the more recent textbook by Nishimori
and Ortiz to learn more about criticality and the physical theory behind it.

7.10 LEARNING OUTCOMES

At the end of this chapter the reader should be able to:

1. Know the concept of phase and understand what is a phase diagram.

2. Be able to analyse the phase diagram of a simple fluid. In particular, to un-
derstand that the (T, P) projection provides the coexistence lines, and that the
(V,P) projection provides the isotherms. To know what is the triple point, and
that the liquid-gas coexistence line terminates at the critical point.

. Know the Gibbs phase rule.

. Know what is a phase transition, and how to classify phase transitions.

5. Derive the Clausius-Clapeyron equation; understand that it provides the slope
of a coexistence line, which is related with latent heat.

6. Know that the van der Waals model is the first proposed model of a real gas
and understand why it is important.

7. Be able to derive the van der Waals pressure equation of state by including
excluded volume and intermolecular interactions.

8. Be able to critically analyse the van der Waals model by understanding its
virtues and pointing out its limitations.

9. Use the Gibbs-Duhem equation to derive the Maxwell construction and under-
stand that it provides the pressure vapour as predicted by the van der Waals
model.

10. Know what are reduced variables, the principle of corresponding states, and

understand its importance.

11. Understand that the Guggenheim curve is a manifestation of the principle of

corresponding states.

12. Know that critical exponents describe the behaviour of a physical system in

the critical point.

B W

7.11 WORKED PROBLEMS

PROBLEM 7.1
Determine the internal energy of a van der Waals gas by considering an
isothermal compression of an ideal gas.
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Solution

In this process N is fixed and we take U =U(T,V).
Then

dU:(8—U) dT+(a—U) av.
oT Jv A

By performing an isothermal gas compression (d7 = 0) from an initial state (U;,V;)
to a final state with (Uy, V) the previous equation can be rewritten as

Vi (U
Uf—U,»:[ (—) dV, constant T'.
vi \dV/r

According to Problem (5.7)
U P
(2)(3p)
av Jr aT Jy
By differentiating the van der Waals pressure equation (7.13) it comes that

(ap) Nk, 1 N2a
— = =—|rP+=—"],
T )y V-Nb T V2

(2y) -
ov )y vz’

so that

and therefore Ve qv
_ A2 /
Ur-U;=N-a [V’ v
In the limit V; — oo, the real gas approaches an ideal gas. Choosing V; = co fixes the
integration constant U; = Ujgeq. Taking Uy = U,qw and Vy =V we can thus write

N%a
Uvaw =Uigeal — 77
with Ujgeq = %NkBT
PROBLEM 7.2
Based on the result of the previous problem determine the critical exponent
a.
Solution

The critical exponent o describes the behaviour of the heat capacity at constant vol-
ume in the vicinity of the critical point according to equations (7.35) and (7.36).

U
Using the definition of Cy = (a—T) it comes that for the van der Waals fluid
14

.3
2
Thus, for the van der Waals fluid @ = a’ = 0.

Cy Nk3=l‘0%NkB.

PROBLEM 7.3
Consider S = S(7,V) and compute the entropy change of an expansion pro-
cess of a van der Waals gas of N particles from state (71,V)) to state (7>,V,).
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Solution
Since S =S(T,V),

a8 as
dS‘(ﬁ)vd“(W)T”’V'

Using the equality expressed by equation (3.30),

(25) -<
oT )y T’

and the Maxwell relation expressed by equation (5.26),
(ﬁ) . (‘LP)
ov)r \oT Iy’

= gdT+(£) dv
T oT v

= ng+ R
T V -Nb

it comes that

ds

dv.

Integrating the equation above, first at constant temperature from state (77,V;) to
state (T1,V2):

V2098
S(TlaVZ):S(TIaV1)+[V (W)Tdv
1

ST,V fv2 R
= +
DU voNb

Vz—Nb)
Vi-Nb)’

dv

= S(T],V1)+R1n(

and then at constant volume from state (77,V>) to state (73,V5):
S(12,V2) = S(T1,V2) fTZ(aS) dT
= + —
2,V2 1,V2 n \or ),

TZC\/
- STy, V- +f SVar
(1 2) T T

T:
:S(T],V2)+Cvln(—2)
T

V2—Nb) (Tg)
= S(Ty,V1) +R1 +Cyln(:2
(Ti.V1)+ n(Vl—Nb T )

where we have taken into account the fact that for a van der Waals gas, Cy does not
depend on the temperature (see problem 7.2). Thus

Vz—Nb) (TQ)
S(Ty.Va) = S(T;,V;) =Rl +Cyin(2).
(12,V2) =8(Ti, V1) n(Vl—Nb vin{ o
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7.12 SUGGESTED PROBLEMS

PROBLEM 7.4
Determine the number of degrees of freedom for a two-component liquid
mixture in equilibrium with its gas.

PROBLEM 7.5
In a two-component system, what is the maximum number of phases that
can exist in equilibrium?

PROBLEM 7.6

At atmospheric pressure, silver melts at 7 = 1235 K and its volume expands
about 4%, the actual volume change along melting being about 0.4 cm’/mol.
Its latent heat of fusion is 11.950 J/mol. How much must the pressure in-
crease to raise its melting point by 1 K?

PROBLEM 7.7

Derive an approximate expression for the Clausius-Clapeyron equation by
taking into account that the latent heat Ak is a positive constant, the molar
volume of the gas is much larger than that of the liquid, v; —v; ~ v¢, and that

N -

Vg

PROBLEM 7.8
Consider the van der Waals equation as given by (7.13). Evaluate P¢, T¢,
and V.

PROBLEM 7.9
Consider the van der Waals equation expressed in molar volume. Show that
it can be written as a cubic equation in v

PV - (Pb+RT)v2 +av-ab=0,
and that at the critical point (P¢,vc,T¢) the equation above reduces to

(V*VC)3 =0.

PROBLEM 7.10
It is observed that near the critical point the dependence of pressure on
density is

P Pe

ksT - kpT:

where C is a constant. What does the van der Waals theory predict for §?

+C(p-pc)°,

Hint: Expand the equation of state about the critical density and temperature.
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PROBLEM 7.11
Consider the definition of isothermal compressibility, k7. What does the van
der Waals theory predict for y?
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8 Magnetic Systems

So far, we have been illustrating the theory of thermodynamics in the context of sim-
ple fluid systems. The present chapter is focused on a completely different system,
that of a simple magnetic system. It starts by defining magnetic work done on the sys-
tem and to establish the differential of the internal energy. It moves on by presenting
the thermodynamic potentials for magnetic systems, and the equations of state for
paramagnetic and diamagnetic systems. It ends up by discussing a particular cooling
process termed adiabatic demagnetisation, and the occurrence of absolute negative
temperature in systems that exhibit a phenomenon called population inversion.

8.1 INTRODUCTION

A magnetic system differs from a non-magnetic system because its internal energy
depends on an external applied magnetic field; this is generally described as the sys-
tem interacting with the magnetic field. The extensive property of the thermodynamic
system associated with this interaction is the magnetic moment.

The magnetic moment first appears in classical electromagnetism, to describe
the interaction between the magnetic field A and an electric current / circulating in
a flat loop. If the area enclosed by the loop is A, the magnetic moment 7 of the
current loop is defined as a vector with magnitude /A, perpendicular to the plane
of the loop, pointing towards the side from which the current is seen to circulate
counterclockwise. The (magnetic) energy associated with this interaction is

E:_uoﬁ/"g7

with o being the permeability of empty space. This concept generalises to any sys-
tem interacting with a magnetic field, but, in most materials, the magnetic moment
cannot be explained by an electric current flowing in its volume. It involves the con-
tribution of atomic magnetic moments associated with the existence of electron and
nucleon spins. These quantities can only be described in the scope of quantum the-
ory, and the corresponding magnetic moments are considered an intrinsic property
of matter.

In general, all materials respond to an applied magnetic field, even if in zero
magnetic field their magnetic moment is zero. That is the case of paramagnetic and
diamagnetic materials that only develop a magnetic moment in a non-zero mag-
netic field. Other materials may display a magnetic moment in the absence of ex-
ternal magnetic field. These are the ones generally designated magnetic materials,
which include ferromagnets, ferrimagnets, and antiferromagnets, and correspond
to materials having ordered arrangements of the atomic/electron magnetic moments
(Figure 8.1).

Note that a difference is made in this text between magnetic system, which is
a system whose internal energy depends on magnetic field, and magnetic material,

DOI: 10.1201/9781003091929-8 179


https://doi.org/10.1201/9781003091929-8

180 A Concise Introduction to Thermodynamics for Physicists

Ml \://'/'\

1\
Vﬂ//

Figure 8.1 Organisation of the atomic magnetic moments inside a material, showing the
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most frequent three types of magnetic ordering: Paramagnetic (A), ferromagnetic (B), anti-
ferromagnetic (C), and ferrimagnetic (D). Diamagnetic materials have zero atomic magnetic
moments in zero field.

which is a material that exhibits magnetic moment in the absence of a magnetic field.
The former is more general and includes the magnetic materials.

The magnetic state of a material is characterised by the magnetisation M, de-
fined as magnetic moment per unit volume (the molar magnetisation, magnetic mo-
ment per mol, or the mass magnetisation, magnetic moment per mass unit, can also
be used).

Consider a region in empty space where a constant magnetic field H,y; is applied
(the subscript ext indicates that it has no dependence on the system and must be taken
as external). In that region we can characterise the magnetic field by H,; or by the
magnetic induction field By = toH,y. If a material is placed in that region, the local
relation between B and H inside the material is

B=uy(H+M)=pH, 8.1

which defines the magnetic permeability p of the system (not to be confused with
the chemical potential). Due to the homogeneous assumption, we will consider that
the relation remains valid for any finite region of the thermodynamic system.

Each microscopic magnetic moment in the material creates a magnetic dipolar
field. The addition of these fields for all the magnetic moments in the material re-
sults in a magnetic field opposite to the external field, named demagnetising field.
In general, this demagnetising field is not important for diamagnetic and paramag-
netic systems since the magnetisation values are small compared with the magnetic
field, but for magnetic materials both applied field and demagnetising field can be of
the same order of magnitude, implying, in equation (8.1), a magnetic field value cor-
rected for the demagnetising field. The demagnetizing field is, locally, proportional
to the magnetisation, but it is in general non uniform.

In conclusion, placing a magnetic material in a magnetic field usually im-
plies two important modifications inside the material: 1) the magnetic induction
field changes, and 2) it can be non-uniform, varying from one region to other.
The non-uniformity may be due to the demagnetising field and its dependence
of the shape of the material or, for ordered states, it can be a consequence of
the existence of different magnetic domains. (A magnetic domain corresponds to
a region where the microscopic arrangement favours a specific alignment of the
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magnetic moments. In a magnetic material, different directions of alignment are
possible due to the bonding states symmetry, allowing for the coexistence of sev-
eral magnetic domains). Since we are studying macroscopic homogeneous systems,
it will be assumed that the magnetic induction is constant within the system, which
implies a material with a particular shape (the exact condition for a spatially uni-
form magnetic field is fulfilled for an ellipsoid in a uniform external field). We will
also assume that, in the case where magnetic domains can form, that the system is
contained in one single domain.

Think about it...
The validity of equation (8.1) for any region of a homogeneous system, requires
that the magnetic permeability is constant?

Answer

Yes, since the system is homogeneous, any part of the system must verify the same
relation for the intensive variable.

8.2 MAGNETIC WORK AND INTERNAL ENERGY

To deduce the internal energy term associated with the magnetic interaction, we
will calculate the magnetic work supplied to the system when its magnetic moment
changes under a magnetic field.

As source of the external magnetic field, we choose a long solenoid, whose length
L is much larger than our system, with diameter D << L, through which flows an
electric current / supplied by an electrical source (Figure 8.2 A).

A

—~

Figure 8.2 Solenoid in empty space showing the uniform field in the interior region (far

él'I'I'TQTCT.T.T.T.TQI'I'L\_
- -

from the solenoid ends) (A). System inside the solenoid occupying N’ loops (B).

We will consider that the coil has N turns (each spanning an area A) and is fab-
ricated with a superconducting material, so no power is dissipated when the con-
stant electrical current I flows in the solenoid. Far from the edges, the geometry of
the solenoid is such that (1) the magnetic field is approximately uniform inside the
solenoid (in empty space B = oH = ponl with n = N/L), and null outside and (2) the
energy stored in the magnetic field is essentially the energy in the uniform region of
the magnetic field.
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The electric work supplied by the source to implement a magnetic field in empty

space is
t
W = f VI d.
0

With no resistance, the potential difference V supplied by the source is only that
required to overcome the electromagnetic field induced by the variation of magnetic

flux ¢ =BNA:
W= f S Idt—Nf A—Idt (8.2)

Performing the change in integration variable ¢ — H = B/ = nl,

Hext H Hex H2
W:NA[O uo—dH:,uoLAfO H dH = po V-, (8.3)
n

where ) denotes the volume enclosed by the solenoid.

With the system placed inside the solenoid (Figure 8.2 B), the work will be dif-
ferent. We will assume that the field in the system region is uniform and that the
system does not influence the magnetic field outside its volume. The magnetic field
is changed but only inside the system. Indeed, outside the system one has, as before:

Bo = toH . = ponli, (8.4)
with i a unit vector along the axis of the solenoid, while inside the system one has:
B = o (Hew + M) = o (nlii+ M) . (8.5)

The electric work supplied by the source inside the solenoid,

t t
W:f VIdt:f 99 4
0 0o Jt

¢t OB t dB
W= fA'—”Idt fA"—“Idz,
; 0o ot +Zn: 0 ot

where B denotes the component of the magnetic induction field along the axis of
the solenoid, the first sum covers the turns occupied by our system, filling an area A’,
and the second sum covers the turns over empty space. For simplicity we will assume
that the system occupies the whole transverse section of the solenoid, and that it is
much longer than wide (in this case the cylindrical shape approaches an ellipsoidal
shape to assure homogeneity). Computing the sums and substituting I = H/n ,

’Afotag ~dr+(N- NA[ aBo”H

and changing variable in the first integral from ¢ to B and in the second integral from
t to H as before,

can be rewritten as

BH HH
W=N'A [T apye (NN [ dH.
0 n 0 n
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Using (8.5), dB| = uo(dH +dM)), and we obtain

H N' M H M
WA [ H dHpola T [ HaM = Vi [T H dH o [ LA H du).

Finally, since L'A =) is the volume occupied by the system inside the solenoid,

H? m
W:V,LL07+/J,0[0 H dmy, (8.6)

with
my =V'M)

being the component of the magnetic moment of the system M parallel to H.

The first term in equation (8.6) is recognised as the work required to establish the
magnetic field in the empty solenoid and does not depend on the system. So, we can
identify the second term as work done on the system by the magnetic field H:

my
W=p | HdM, (8.7)

so that,

Thus, we may conclude that the internal energy of the magnetic system, U, is a
function of entropy, volume, number of particles, and magnetic moment component
along the external magnetic field:

U=U(S,V,NMm). (8.9)
The differential dU is given by

dU =TdS -PdV + {1 dN + floHd = TdS—PdV + p dN + poH -d9,  (8.10)

oU )
i = loH.
(3% SVN

For magnetic systems it is common to write the internal energy in terms of the
magnetisation:

with

Vv

or molar magnetisation,

~ ]\'714\)9jt
Mot = ——.
N
In the former case, for constant volume processes:

du=Tds+ L dn+ oH -dM, (8.11)
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where u=U/V,s=S/V,andn=N/V.

Although we took the source of the magnetic field to be independent of the sys-
tem to obtain this result, the same expression can be extended for systems other than
diamagnetic and paramagnetic, if linearity is assumed between B and H.

Using the energy density deduced from Maxwell equations:

l(g.g):

- Ho 72
2

5 (M-H+H?), (8.12)

the linearity between B and H, written as B = LH, also implies a linear relation be-
tween the magnetisation and the magnetic field, M = yH, with y being the magnetic
susceptibility and u = po(x + 1). Based on these considerations equation (8.12) can
then be written as

:%(X+l)1312.

Antiferromagnetic systems and ferromagnetic systems at low fields obey the linearity
condition, but H can be significantly different than H,y due to the demagnetising
field. This implies that subtracting the energy density associated with the external
magnetic field production in empty space will not totally cancel the H? term:

0 —
U= Uempty space = %XHZ 'L;O (H2 Hezxt)

and
du=poH -dM + o (H-dH — Hpyy -dHexy ).

This poses some formal questions concerning the convexity of the internal energy,
defined in (8.11), but it is not considered relevant in general.

8.3 THERMODYNAMIC POTENTIALS FOR MAGNETIC
SYSTEMS

As in the case of a simple fluid system, it is possible to define thermodynamic po-
tentials for a simple magnetic system, sometimes referred to as thermodynamic
pseudo-potentials due to the convexity issue question mentioned above.

Let us consider a one-component system with a fixed number of particles N and
fixed volume V. In this case equation (8.10) simplifies to:

dU = TdS + toH - d (8.13)

For transformations where the intensive parameters are the controlled variables, it
will be useful to define the associated thermodynamic potentials using the Legendre
transforms discussed in section 5.2 of Chapter 5.

The magnetic enthalpy E,, = E,,(S,V,N,H) is defined as the Legendre transform
of U with respect to M

Ep=Lg (U)=U - poH -0,
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and by using equation (8.13) it is easy to see that the differential of E,, is given by
dE,, = TdS— uyM-dH. (8.14)

The magnetic free energy F, = F,,(T,V,N,0) is defined as the Legendre trans-
form of U with respect to S:

Fn=Ls(U)=U-TS,
and the differential of F;,, is
dF,, = —SdT + loH - dM. (8.15)

Finally, the magnetic free enthalpy G,, = G,,,(T, V.N ,H) can be defined as the Leg-
endre transform of U with respect to both S and 91:

Gm=Lgg (U)=U-TS-poH-M,

and its differential is -
dG,, = -SdT — uy"M-dH. (8.16)

Note that the magnetic energy term of equation (8.7) is present in dF,,, but this term
is replaced by —,uoi)ﬁt'dljl in dE,, and in dGy,.

Table 8.1 provides a summary of the four thermodynamic potentials, U, E,,;, Fy,,
and G,,, for a closed single-component system with fixed volume, including their
first derivatives.

Function Differential Natural First derivatives
variables
U dU =TdS+upH -d | (S,9)) T = v H:L(LU)
fhedd | R m”, o 9 )

- L E, E,
En=U—uoH -9 | dE, =TdS—uo-dd | (S,H) T:(aa—s’”) ,sm”=—i(a—”‘)
H N

L oF,
Fn=U-TS |dFy=-SdT +oH -d9 | (T,9M)) 5:7(—’”) ,H:i(a";;;")
] Ho W

oT
S G G,
Gn=Hu~TS |dGu=-SdT—poM-dA | (T,H) |S=-—=] .My=-1(==
Ho (T.H) (M )fm| I uo(a )T
Table 8.1

Differentials, natural variables, and first derivatives of the thermodynamic
potentials that are useful to study closed, single-component magnetic systems
with fixed volume.

Since dU, dE,,, dF,,, and dG,, are exact differentials, equations (8.13-8.16) es-
tablish the following Maxwell relations for a closed magnetic system where V is
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fixed:
(am”)s Ho aS m, ¢4
( )S _“0(89ﬁ|)H (8.18)
(3937”) ‘9T m, ¢
(@)H:M(;i)T (8.20)

Let H,, be the enthalpy of a magnetic system (different from E,,), such that
H,=U+PV.
For a closed magnetic system the differential of H,, is given by
dH,, =TdS+VdP+ loH - d. (8.21)

At constant pressure, equation (8.21) is formally equivalent to equation (8.13).
Therefore, a set of Maxwell relations equivalent to (8.17)—(8.20) can be obtained
by considering equation (8.21), and the differentials of the Legendre transforms of
H,=H, (S, P, 9)?” ) with respect to S, P, and with respect to both S and P. This is left
as an exercise for the reader.

8.4 THERMODYNAMIC COEFFICIENTS

The experimental study of magnetic systems, like all other systems, is carried out by
studying how some thermodynamic variables depend on the others, using adequate
physical processes. The derivatives that relate the rates of change of the different
variables define thermodynamic coefficients that parametrise the behaviour of the
systems. In section 5.5 of Chapter 5 we introduced several thermodynamic coeffi-
cients such as the coefficient of isobaric expansivity Bp (or &) (5.29), and the coeffi-
cient of isothermal compressibility k7 (5.33), and we also discussed the importance
of the heat capacities at constant volume, Cy, and constant pressure, Cp. For closed
magnetic systems, kept at constant pressure, there are other important coefficients,
defined in a similar way, namely:

The heat capacity at constant magnetic field:

as
Cy=T 8.22
"= ( oT ) (8.22)
The heat capacity at constant magnetisation:
as
Cy=T 8.23
M= ( oT ) (825
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The coefficient of thermal magnetisation, associated with the dependence
of magnetisation on temperature:

ocpyz oM (8.24)
v\or ),

And the two coefficients relating magnetic variables, namely, the isother-
mal magnetic susceptance

Kp= - ( oM, ) 7 (8.25)
and the isothermal magnetic susceptibility:
_ (M (8.26)
Ar = oH . . .

In homogeneous systems, where demagnetising field can be neglected k7 = xr
The four magnetic coefficients are not independent (see worked problem 8.3) and

T
Chy—Cpy = —V“XLaH? (8.27)

T

8.5 EQUATIONS OF STATE

As mentioned before, magnetic systems can have different behaviours, and for each
one different equations of state are defined. We discuss equations of state for para-
magnetic and diamagnetic systems. Since linearity was assumed between M and H,
all equations of state share this property.

8.5.1 DIAMAGNETIC SYSTEMS

A diamagnetic system only exhibits magnetic moment in an applied magnetic field,
the magnetisation being proportional to the magnetic field but pointing in the oppo-
site direction. The negative magnetic susceptibility is usually small (typically of the
order 1076 in SI units) and depends on the atomic density.

In the case of insulators, these materials are in general composed of particles,
atoms or molecules, with zero magnetic moment. When a magnetic field is applied,
opposite magnetic moments are induced at the particles positions, an effect that can
be thought of classically as a manifestation of Lenz’s law. The equation for the
magnetisation is proportional to the density of particles and to the magnetic field:

M=xH= —Agm (8.28)

where A is a constant characteristic of the material. Since (8.28) involves an intensive
variable, it can be considered an equation of state.
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According to equation (6.29), for liquids and solids, the volume depends weekly
on temperature and pressure as

V:V0(1+(X (T_TO)_kTP))’

where o (or Bp), the coefficient of isobaric expansivity (5.29), has values of the order
of 1074, and k7, the isothermal compressibility (5.33), has values of the order of 1070
Pa~!. Ty and V; are the volume and temperature of a reference state. Including this
dependence in the equation of state (8.28) one gets:

N

M=-A H.
Vo(l+a (T-Ty) —krP)

The constant A can be expressed in terms of the susceptibility ), defined as the
magnetic susceptibility at Ty with P = 0:

yielding
M =20

l+o (T-Ty) —krP (8.29)
The situation is different in the case of metals because their behaviour depends on the
conduction electron states. Diamagnetic metals display negative susceptibilities with
the same order of magnitude as insulators above 100 K, with a weak temperature
dependence, but at low temperatures quantum effects must be considered.

Another important class of diamagnetic materials are superconductors. These
materials are perfect diamagnets exhibiting y = —1. They cannot be considered nor-
mal diamagnets as they are characterised by zero electrical resistance and only exist
at low temperatures, below a critical temperature. Superconductivity must be treated
as a different thermodynamic state characterised simultaneously by zero electrical
resistance and y = —1.

8.5.2 PARAMAGNETIC SYSTEMS

As diamagnets, the paramagnetic systems only exhibit a non-zero magnetisation in
an applied magnetic field. In this case, the magnetisation is proportional and par-
allel to the magnetic field with the positive magnetic susceptibility having typical
values ranging between 1073 and 107 in SI units. Paramagnetic materials are com-
posed of atoms or molecules that present permanent magnetic moments 7. In zero
magnetic field, all magnetic moment orientations are equally probable, and equally
represented in the N particle system, so that their average sum yields a zero total
magnetic moment. Under an applied magnetic field, the magnetic moments tend to
align with H, the field alignment competing with the thermal misalignment that priv-
ileges a high entropy state. This competition is associated with a strong dependence
of the magnetisation with temperature:

M:xH:%H. (8.30)
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N m’
V 3kg’
Curie Constant, depends on N/V and on the magnetic moment m. Replacing C in
(8.30),

The relation above is named Curie law and the constant C = Ly designated

m*> N 1
_#03kBVTH' (8.31)
Like in the case of diamagnets, the volume depends weakly on the temperature and
pressure, but due to the strong dependence of the magnetisation on temperature,
the variation of the volume with temperature and pressure can be ignored in a first
approximation. Note that expressions (8.30) and (8.31) diverge as T approaches O
K. Since the system’s magnetisation cannot grow indefinitely, these expressions are
only valid in the high temperature range, defined as mH /(kgT) << 1. The magnetic
moments of atoms and molecules are typically of the order of 3x 1072* A m? and
magnetic fields in laboratories rarely exceed 10 T, meaning that the expression is
valid for 7' > 10 K for most materials that remain paramagnetic at lower temperatures.
In some cases, like for some paramagnetic salts its validity extends below 1 K range.
Most magnetic materials are paramagnetic at high temperatures, and the ordered
state appears below a critical temperature 6. In those cases, the expression (8.30) is
replaced by
C
M—xH—T_eH. (8.32)
In the case of a transition to a ferromagnetic state, 8 > 0, while in the case of a
transition to an antiferromagnetic state, 6 < 0. The equation of state (8.31) is only
valid for temperatures above 6, where the material can be considered paramagnetic.

8.6 ADIABATIC DEMAGNETISATION

The most efficient way to cool down a system to low temperatures is to put it in
contact with a heat reservoir, generally consisting of a fluid whose boiling point is
lower than the desired temperature. Of the possible cryogenic fluids, liquid helium
has the lowest boiling point (4.2 K at normal atmospheric pressure, reaching 0.7-0.8
K at low pressure (Dixit, 1938); 0.7 K is therefore the lowest temperature attainable
using a cryogenic fluid. In order to cool below this limit, a different process must
be used to remove heat from the system. The first method available for that purpose
is a magnetic cooling process that uses a magnetic system characterised by an im-
portant change in temperature when the magnetic field is varied adiabatically. The
cooling or heating of a system when the applied magnetic field is varied is called
magnetocaloric effect and the process of cooling using this effect is named adia-
batic demagnetisation.

Think about it...
Why does the adiabatic variation of the magnetsation of a paramagnet, results in
cooling?
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Answer

In a solid, the atoms vibrate around their equilibrium positions in the crystal lat-
tice. By increasing temperature the atoms will vibrate with increasing amplitude.
The magnetic moments in an ideal paramagnet were considered independent in
the sense that we can discard magnetic interactions between them. Nevertheless,
the magnetic moments cannot be considered independent of the material atomic
structure (crystal lattice), since the magnetic moments depend on the atom’s elec-
tronic states, and bonding between the atoms involves the valence electronic states.
This means that the magnetic moments cannot be considered non interacting with
the lattice. This interaction allows magnetic energy to be converted to atomic vi-
brations of the atoms and vice-versa. From the thermodynamic point of view, we
can think of the magnetic system being coupled to the lattice system. If both sys-
tems are not at the same temperature, they evolve to reach thermal equilibrium.
For instance, a paramagnetic salt in a high external magnetic field will have a non-
null magnetisation, with the magnetic moments aligned to some extent. Removing
the magnetic field in an adiabatic transformation, will leave the ordered magnetic
moments in a non-equilibrium state, exhibiting lower entropy than expected, and,
immediately after removing the magnetic field, the magnetic moments are con-
sidered at a “lower temperature” than the lattice. The magnetic moments increase
their entropy by getting energy from the lattice, and both magnetic moments and
lattice reach thermal equilibrium.

The dependence of the temperature on the magnetic field in an adiabatic transfor-
mation at constant pressure is an important quantity, a magnetocaloric coefficient,
which can be quantified using the Maxwell relation (8.18)

aT 8932”
— | =-w| —==1] . 8.33
(aH )S “0( s |, (8.3
For materials having low demagnetising field and assuming the linearity condition,
H can be approximated by the external field H,, and 9t =V x H. Therefore, (8.33)

can be recast as
( oT ) . ( 82711” )
aHext N as Hm7

or
(asmu)
oT aIT ), /.LOT(ax)
=—yy——=412 =" (£ H. 8.34
(52, (3), e \orly (839

Note that the specific heat is defined per unit volume and apart from depending on
temperature, in general it will also depend on the magnetic field.

Magnetic cooling was proposed independently by Peter Debye (1844—1966) in
1926 and by William F. Giauque (1895-1982) in 1927, but experimental demon-
stration came only in 1933 with the work of Wander J. de Haas (1878-1960), W.F.
Giauque, and collaborators.
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The adiabatic demagnetisation scheme is illustrated in Figure 8.3 A. The sam-
ple to be cooled is placed in thermal contact with the cold finger that is always kept
in close thermal contact with P (a material with important magnetocaloric effect —
usually a paramagnetic salt). The adiabatic demagnetisation cooling includes two

A B
cold finger s S(T,0)
cryogenic bath exchange gas
S -2
1 /
2 /
/

S,t - y;

1 1S(TH)
1 1
% | 7
1 P s 1
! = !

magnetic field source T T, T

Figure 8.3 Scheme of an adiabatic demagnetisation system, with cooling being determined
by the magnetocaloric material P (A). The processes 1 (isothermal) and 2 (adiabatic) in the
(S, T) state plane showing the decrease in entropy and temperature associated with cooling by
adiabatic demagnetisation (B).

thermodynamics processes indicated by 1 and 2 in Figure 8.3 B. In process 1, keep-
ing thermal equilibrium between the paramagnetic salt P and a cryogenic reservoir at
temperature 7] (the thermal contact with the reservoir is achieved through exchange
gas in the exchange chamber), an external magnetic field H,,, is applied that supplies
work to the system. The magnetic moments of P become partially oriented in the
direction of the applied magnetic field, P and the system’s entropy decreases isother-
mally. In this process energy flows as heat from P to the cryogenic fluid. In process
2, the exchange gas is removed, and then the magnetic field is reduced to zero. In this
process, magnetic work is performed by P that cools down to 75 through an adiabatic
process.

To calculate the temperature variation during adiabatic cooling, we will consider
a paramagnetic salt as the magnetocaloric material P. This allows replacing the sus-
ceptibility in (8.34) using the Curie law:

() - 2y
N

OH,v cuT
The specific heat cy of a paramagnetic salt has two main contributions: the lattice
specific heat that increases with temperature as 77, and the magnetic specific heat
2 2
that is related with the magnetic susceptibility by cpmag = ,LLOHT X = ,uocTiz. At very
low temperatures, the lattice specific heat is negligible compared with the magnetic
2
contribution, implying cy ~ “OCTLZ for non-zero magnetic fields. Then,
aT dT dH T, H T H
(—) = HoC TH— — = — — ln(—f):ln(—f)z—f:—f
JdH /s CugH? T H T; H; T, H;
Assuming that the applied field is yoH ~ 5 T, the reduction of H to the magnetic field
of upH ~ 5 mT, will reduce the temperature from 4 K to about 4 mK. The millikelvin
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region is the lowest temperature range obtained with paramagnetic salts, since the
assumption of a Curie law behaviour breaks down at very low temperature due to the
interaction between the magnetic moments. To obtain lower temperatures, there is
the possibility of using the ordering of nuclear magnetic moments, that are
much smaller than the atomic ones, in a technique named adiabatic nuclear
demagnetisation.

8.7 ABSOLUTE NEGATIVE TEMPERATURE

Thermodynamic temperature is the derivative of the internal energy with respect to
entropy, or its inverse as the derivative of the entropy with respect to the internal
energy, keeping all other extensive variables {X;} constant:

)
98 Jixy T \oU)xy

If the entropy is considered a monotonic function of energy, the conclusion is that
temperature is always a positive quantity. We will now show that magnetic systems
can exhibit negative absolute temperatures.

Consider a thermally isolated system composed of N localised, non-interacting
magnetic moments 7;, i = 1,...,N with the same magnitude m, but different orien-
tations in the presence of a uniform external magnetic field B. A microstate of the
magnetic system is then a microscopic configuration of the system specifying the
orientation of each magnetic moment. The (magnetic) energy of the system is

B

o

Il
—

U-=-

1

and the entropy S can be calculated for each value of U using Boltzmann’s equation
(3.40)
S= kB In W7

with W representing the number of microstates that have energy U. The lowest
energy state (U = Uy, = —NmB) corresponds to a microstate in which all mag-
netic moments are aligned parallel to the magnetic field B, while the highest en-
ergy state (U = U,,qx = NmB) corresponds to the microstate in which all magnetic
moments are aligned anti-parallel to B. Since for both energy states the number
of possible microstates is exactly one, both energy states have the same entropy
S(Unin) = S(Unax) = 0. The change of orientation of a single magnetic moment in
each one of these two energy states corresponds to an entropy increase, and there are
N possible corresponding microstates (as many as the number of magnetic moments
whose orientation can be changed). However, if the initial state is U,,;;,, the change of
orientation of one magnetic moment corresponds to an energy increase, while if the
initial state is s Uy,,y, the energy will decrease when one magnetic moment changes
its orientation. In the latter case dU/dS < 0, which corresponds to a negative absolute
temperature.
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For simplicity, let us consider a system comprising six magnetic moments that
have only two possible orientations relative to the magnetic field, parallel or antipar-
allel, with +m and —m being the corresponding values of the component of the mag-
netic moment along B. The list of the possible values of U for this system, together
with the number of corresponding microstates and entropy is provided in Table 8.2.

State U Number of microstates S
Hrttt | —6m G =1 0
Ut | —4m =6 kg In6
Wttt | —2m CcS=15 kgln15
Wittt | 0 C8=20 ksln20
WL | 2m c8=15 kglnl15
WY | 4m Cci=6 kpln6
WL | 6m ct=1 0

Table 8.2

Energy, number of microstates and entropy for six non-interacting magnetic
moments in the presence of a magnetic field B.

By using the values of Table 8.2 it is possible to plot the entropy as a function
of the energy (Figure 8.4 A). A macroscopic system would have an almost contin-
uous curve with the same behaviour, depicted by the full line. The U = 0 axis sep-
arates the region where S increases with increasing energy (positive temperatures)
from the region where S decreases with energy (negative temperatures). In the re-
gion where entropy decreases with energy, the number of microstates that realise a
state decreases with energy. This is only possible because the system is composed
of particles that have an upper limited energy. As the system energy approaches its
maximum the negative temperature increases (Figure 8.4 B), which means that the
negative temperature increases with energy, but the system at negative temperature
has more energy than the same system at any positive temperature. Between two sys-
tems at a negative temperature the one with a higher temperature can supply power
to a system at lower temperature. In Figure 8.4 B, T = (dU/dS) — oo at U =0, which
means that the temperature as a function of energy has two separate branches without
any possible path between them.

Another way of looking] at the relation between temperature and energy in this

system is to plot the ratio —= as a function of energy, where higher energy states are

associated with higher —% for both negative and positive temperatures (Figure 8.4
C). This plot was first suggested in 1956 by Norman Foster Ramsey (1915-2011),
who also discussed the experimental observation of negative temperature systems
and wrote: The occurrence of systems at negative temperatures will necessarily be
relatively infrequent since a very special combination of rarely met requirements
must be satisfied before negative temperatures are even a possibility for the system.
Negative absolute temperature appears associated with systems formed by parti-
cles whose energy is bounded from above, for high internal energies (corresponding
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Figure 8.4 Energy as a function of entropy for six magnetic moments system characterised
by limited number of energy levels (full circles), and for a similar system with a macroscopic
number of magnetic moments (full line) (A). Temperature determined as the energy deriva-
tive of entropy as a function of energy (B). The symmetric of the temperature inverse orders
monotonically with magnetic energy (C).

to the particles having energies in the top half part of their spectra). In this case, we
speak of particle systems with limited energy spectrum and population inversion.
In general, these systems are in quasi-equilibrium states because they cannot be kept
completely isolated from their surroundings and they will evolve slowly to positive
temperature states.

8.8 LEARNING OUTCOMES

At the end of this chapter the reader is expected to:

. Know the fundamental equation of thermodynamics for magnetic systems.

. Be able to define thermodynamic potentials for magnetic systems.

Know the magnetic coefficients and understand that they are not independent.
Know the equations of state for paramagnetic and diamagnetic systems.

. Understand cooling by adiabatic demagnetisation.

. Understand the meaning of negative absolute temperature.

8.9 WORKED PROBLEMS

PROBLEM 8.1

Consider the first process (isothermal increase of the magnetic field) in the
adiabatic demagnetisation method and calculate the entropy variation of
the paramagnetic salt when the magnetic field increases from zero to H.

Solution

To calculate the entropy variation, the appropriate thermodynamic potentials
must be chosen for the isothermal process. Since the controlled variables are
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the magnetic field and temperature, the magnetic Gibbs energy is chosen:
dg=—-sdT — uyMdH
with
7s:(37§")H and uoM = (881(3)
For the paramagnetic material M = QH ,and

H2
[ H dH = —uo——:gUH) §(T.0) -

The entropy can be calculated as the derivative of the magnetic Gibbs energy

_s_(@) g CH o CH?
“\or), =ttt T

PROBLEM 8.2
Determine the relation between thermodynamic coefficients expressed in
equation (8.27).

Solution

Use the definition of the specific heats

ds ds
. _c =Tll= | == .
cup—cip (( aT)p,M ( ar)p,H) (8.35)
and define the entropy per unit volume
s(T,H) = S(TVH) s(T,M(T,H))

The derivatives appearing in equation (8.35) are related in the following manner:

(57), () ), (57),

Multiplying the previous expression by 7',

cy =c +T(as) [0
H=CM oM H s

and using a Maxwell relation:

(57)
(8s) _ (8H) L T H_IJO(XH
o)y~ P\GT ), TRy R,
T M (ﬁ)r xr
cy can thus be written as
2 2
CH =CM-+-[,L()TO£i = CM—CH:—‘U()TOCL.
Xr Xr

And finally,
(XH2
Cy—Cqy=-UgTV—.
xr
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8.10 SUGGESTED PROBLEMS

PROBLEM 8.3
Show that for a paramagnetic system, characterised by a Curie constant C
and a heat capacity Cy the following relations hold:

a)
(32), et (20)
0H T_ Ho T2\0H /g
b)
oT H
(ﬁ)s““ocfc,,r
PROBLEM 8.4

Consider a block of SiO, as a diamagnetic system and take the following
values of magnetic susceptibility at p = 1 atm: —1.65 x 107 at 7 =20°C and
~1.64x107% at 7 = 60°C. The system undergoes an isobaric and isothermal
increase of the magnetic field from O to tpH =1.00 Tat 7 =20°C and P = 1
atm.

a) Calculate the entropy variation of the system.

b) Calculate the heat flow across the system’s boundary.

c) Calculate the work done by the system.

Hint: At constant P and T equation (8.29) reduces to y = ﬁ with a = (1-

o Ty—xrP)/xo and b = 21 4 and b can be calculated from the experimental
values of the susceptibility.

Xo

PROBLEM 8.5

Consider two paramagnetic systems S| and S, with the volume of 1em®
each in a magnetic field H = 1.0 x 10° A/m. S1 has a magnetisation of 2.0 x
10 emu and S, has a magnetisation of 0.5 x 10~* emu at T =293 K. The
corresponding heat capacities can be considered constant in the field range
assumed and are equal to 0.8 J/K and 0.5 J/K respectively.

a) Calculate the susceptibility of both systems at 7 =293 K and 7 = 150 K.

b) If the two systems are separated by a diathermal and impermeable wall, and
together are isolated from the exterior, what will be the equilibrium temperature
of both systems when the magnetic field is removed.
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9 Thermal Radiation

Electromagnetic radiation interacting with matter reaches a state of thermodynamic
equilibrium with a definite temperature called thermal radiation. This chapter pro-
vides a brief introduction to the study of this system, in what may seem an unex-
pected application of thermodynamics. Yet, thermal radiation is the simplest thermo-
dynamic system studied in the present book.

9.1 INTRODUCTION

The application of thermodynamics to electromagnetic radiation is often presented
as a brief episode in an exciting story, involving a series of experiments and theoreti-
cal contributions that ultimately lead to the development of quantum theory. Indeed,
the concept of energy quantisation was a truly revolutionary outcome of the study of
thermal radiation, and its importance sometimes overshadows the accomplishment
of extending the scope of thermodynamics beyond the systems it was first formu-
lated for. Until then, thermodynamics dealt with the equilibrium of such systems,
and radiation, apart from its different nature, is not normally associated with equi-
librium. The concept of cavity radiation, introduced by Kirchhoff, brought radiation
into the realm of thermodynamics, and created a new model system, simpler even
than a fluid. In this chapter, we will explore this system and see how thermodynam-
ics, overarching the whole of Physics, anticipates quantum theory. We will then apply
the thermodynamics of radiation to stars and to the universe as a whole.

9.2 KIRCHHOFF’S LAW AND BLACK BODY RADIATION

Gustaf Robert Kirchhoff (1824—1887) is well known for his electric circuits laws,
but he was also a prominent figure in the field of spectroscopy, whose work set the
ground for spectrochemical analysis in laboratory and in astrophysics. Together with
Robert Wilhelm Bunsen (1811-1899), he undertook a systematic analysis of the light
emitted by incandescent substances and discovered the unique spectral patterns that
characterise each element. They also realised that light viewed through a layer of gas
of a given element would loose the same frequencies the hot element emits, and went
on to correctly deduce that dark lines in the solar spectrum are caused by absorption
by chemical elements in the solar atmosphere.

His experimental work on emission and absorption spectra lead Kirchhoff to con-
sider the relation between these two properties in an equilibrium setting. He thought
of electromagnetic radiation enclosed in a box with opaque walls maintained at uni-
form temperature 7. Let E,,(1,T) denote the spectral emissive power of the cavity
walls, defined as the energy emitted in the wavelength range (1,4 +dA) per unit
time and unit surface area. We know that radiation, visible light in particular, inter-
acts differently with different materials, and the index w highlights the dependence
of this quantity on the material the walls are made of. E,,(A,T) will depend on the
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nature of the cavity walls, and so will the spectral absorptivity A,,(A,T), defined
as the fraction of the spectral intensity (the incident energy in the wavelength range
(A,A +dA) per unit time and unit surface area) absorbed by the wall.

In contrast, the quality of the radiation inside the cavity cannot depend on the
properties of the walls and must depend only on their temperature. Imagine it was
not so and assume that we have two such cavities at temperature 7' connected by a
very narrow tube through which radiation may pass. If there is any difference be-
tween the energy carried by radiation on each side, it would be possible to transfer a
finite amount of energy from side A to side B, increasing the temperature of B in the
process. We would then have a flow of energy from a colder to a hotter body with no
other change, in violation of the second law. By adding a colour filter to the imagi-
nary narrow tube in the preceding argument we conclude that the spectral intensity
of the cavity radiation must also depend on temperature alone, and not on any other
physical property of the enclosure.

In equilibrium, there is no net energy flow in the walls, and therefore

Ew(A,T)=Aw(A, T)I(A,T), .1

where I(A,T) is the universal function that characterises the spectral intensity of
thermal radiation. Equation (9.1) is Kirchhoff’s law of thermal radiation, and its
consequences can be explored in different directions.

On one hand, it means that emissive power and absorptivity are simply related,
for all bodies and in all frequency ranges. Dark surfaces, being good absorbers, must
also be good emitters in thermal equilibrium. Assume this was not true, and consider
two objects, one dark and another one light, with the same emissive power, enclosed
in a cavity in thermal equilibrium. Then, either the dark object will absorb more
energy than it emits, and heat up, or the light object will absorb less energy than it
emits, and cool down (or both). In either case, the process would entail a flow of
energy from a colder to a hotter body with no other change. Not surprisingly, we find
that contradicting this consequence of (9.1) leads to a violation of the second law, by
an argument similar to the one used above to derive it.

The deeper meaning of Kirchhoff’s law stems from the construction of the uni-
versal function /(A,T) that establishes cavity radiation as a simple thermodynamic
system whose properties can be derived using the theory. To overcome the difficulty
that cavity radiation cannot really be studied experimentally, Kirchhoff went one step
further in abstraction and defined a perfect black body as one for which A(A,T) = 1
and so E(A,T) =I(A,T). So, by definition, a black body absorbs all incident radi-
ation, reflecting none, and its emissive power E(A,T) coincides with the spectral
intensity of thermal radiation. In spite of its idealised nature, a black body can actu-
ally be built, by punching a small hole in the walls of an otherwise closed cavity with
rough or irregular walls (Figure 9.1). If the hole is small enough, almost all incident
radiation will remain inside the cavity as it is partially reflected by the walls. The hole
will therefore behave as a perfect black body, and the radiation it emits in thermal
equilibrium can be used to probe cavity radiation. Indeed, not long after Kirchhoff’s
challenge this construction was being used to conduct experiments on what became
known in the literature as black body radiation.
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Figure 9.1 An approximate realisation of an ideal black body.

9.3 THERMODYNAMICS OF RADIATION AND THE STEFAN-
BOLTZMANN LAW

We now have everything we need to approach the study of a new model, a cavity
with radiation instead of a vessel containing a fluid. The spectral intensity of thermal
radiation I(A,T) contains all the information about the system in equilibrium at
temperature 7. Instead of I(A,T'), the spectral energy density u(A4,T'), defined as the
the energy per volume contained in the wavelength range (A,A +dA ), is better suited
for thermodynamics. The two functions are related simply by I(A,T) = u(A,T),
which holds for any quantity propagating isotropically at velocity c (the factor of
1/4 comes from the isotropy property).

LAMBERT COSINE RULE

If we consider an energy density u(A,T) propagating at speed ¢ in a given
direction, we obtain radiation intensity ¢ u(A,T) on a surface placed perpendicu-
larly to the propagation direction. If instead the direction of propagation makes an
angle 6 with the normal n to the surface, then the radiation intensity on the sur-
face will be ¢ u(A,T) cos 0 (Figure 9.2). In order to take into account all incoming
directions, we must then average ¢ u(A,T")cos 6 over all possible solid angles Q.
Using spherical coordinates (6, @) with respect to the normal to the surface,

I(A,T) =cu(A,T) [gcos® 42 = %[gﬂfoﬂ/zcosesine do do = M

Note that the integral in 6 in taken only between 0 and 7/2 because only incoming
directions contribute to the intensity.

We have then that the overall energy density is a function of T only,

uW(T) = /;M(A,T) da, 9.2)
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Figure 9.2 Geometry of Lambert’s cosine rule.

and therefore the energy of the system is U = Vu(T). In order to learn more about the
function u(T'), let us consider an enclosure with a piston, so that the radiation “gas”
can expand or contract, and write down the fundamental equation in the form

TdS = dU + PdV, 9.3)
so that 55 oU
(=) =(%2) +P 4
(av)T (av)T+ ©4
Using U = Vu(T) and Maxwell’s relation (5.26)
as P
) o2 9.5
(av)T (aT)v’ ©)
this can be recast as
T(‘i’)) —u(T)+P 9.6)
oTly ' '

In the scope of classical electrodynamics, the radiation pressure P had been shown
to be related with the energy density u by P = u/3. This relation is exact and can be
derived as well in the framework of a quantum theory of radiation. Introducing in
(9.6), we obtain a simple differential equation for the unknown function u(7T'):

Tdu 4 d 4
22T, ——logu=— 9.7
37 = 34T, Jplogu=—, 9.7
yielding
u(T)=aT*, 9.8)

where a is an integration constant, called the radiation constant. In terms of the over-
all intensity of thermal radiation I(T') = [, I(A,T) dA we have then

I(T)= % T*=oT*, (9.9)

where o is called the Stefan constant, because (9.9) was established in 1879 by Josef
Stefan (1835-1893) as an approximate empirical relation, based on experimental
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results on the emissive power of hot metals. The thermodynamic derivation of (9.9)
we just revisited was given by Boltzmann in 1884, and (9.9) became known as the
Stefan-Boltzmann law. It was not until 1897 that careful experiments by Lummer
and Pringsheim on black body radiation showed that the law is correct with high
precision.

Unlike the Stefan-Boltzmann law, the value of the Stefan constant cannot be
derived in the scope of classical physics. It can be defined exactly in terms of other

fundamental constants, including Planck’s constant 4, as
27k,
=8 ~x5670410°Wm2 K™ (9.10)

15h3¢2

The thermodynamic relations we have established until now for radiation are the
equations of state

U=aVT?, 9.11)
and a
P= gT“. 9.12)
From (9.11) we obtain the heat capacity
U 3
Cy=\=—| =4aVT 9.13
v ( aT )V “ ’ ©-13)

with Cy - 0 as T — 0, in agreement with the third law. We also know from (3.30)
that Cy =T (g—;)v, so we may integrate Cy /T given by (9.13) to obtain the entropy
of the system as a function of 7 and V:

4
S= 3¢ VT3, 9.14)

where we have set to zero the value of the entropy at 7 = 0. Combining (9.11), (9.12),
and (9.14) we obtain different alternative expressions for the internal energy,

3
U:aVT4:ZTS:3PV, 9.15)

from which the other thermodynamic potentials follow :

1 1

F:U—TS:—ZTS:—gaVTA' (9.16)
4

H:U+PV:TS:§aVT4 9.17)

G=H-TS=0 (9.18)

The fact that the Gibbs potential G comes out identically zero for the radiation “fluid”
deserves some attention. First, it means that, in accordance with equation (9.16) for
the free energy F, no forms of work other than expansion work are possible in this
system. If we think of the radiation “gas” as a system of N particles, then we have
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G = uN =0, and so the chemical potential of the system tt = 0. But by looking closer
at the thermodynamic relations we derived, we see that the equation of state (9.12)
implies that P and T are not independent variables, and therefore neither G nor u
are well defined for this system. We know in general that intensive variables are
conjugate to conserved extensive variables, so our observation has a deep meaning:
the quantity particle number that came up naturally when we studied the ideal gas
has no analogue for the radiation fluid, whose “particles” would not be conserved
in a closed system. Indeed, the quantum mechanical description of the system is
that of a photon gas in thermal equilibrium, and photons can be emitted from or
absorbed by the cavity walls. Although it makes sense in that description to compute
the average number of photons in the cavity, and photons share some properties of
classical particles, their thermodynamic status is clearly that of energy, not particles.

Table 9.1 sums up the differences between our two main model systems, the ideal
gas and the photon “gas”,

Ideal Gas Photon Gas
Internal energy U= %NkBT U=aVT*
Volume dependence g—[‘f =0 % =0
Pressure P=NkgT|V = %u P= %aT“: %u
Heat capacity Cy = %ng Cy =4aVT?
Entropy S = Nkp (log NVT; + %) S= %aVT3
Adiabatics TVY~! = constant TV/3 = constant
Chemical potential u=—kpTlog NL)L} u=0

Table 9.1
Comparison of the thermodynamic properties of the two model systems.

9.4 WIEN’S DISPLACEMENT LAW AND THE BLACK BODY
SPECTRUM

Let us go back to the spectral energy density u(A,T). By the end of the nine-
teenth century, the determination of Kirchhoff’s universal function was one impor-
tant open problem in Physics, and experimental results were becoming available.
As we saw in the previous section, the complete understanding of thermal radiation
involves energy quantisation, but it was still possible, following Boltzmann’s deriva-
tion, to go further into the derivation of the black body spectrum using only classical
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thermodynamics. This is what Wilhelm Wien (1864—1928) achieved in 1893, a land-
mark contribution for which he received the Nobel Prize for Physics in 1911. As in
Boltzmann’s derivation of (9.9), Wien’s argument combines thermodynamics with
Kirchhoff’s law.

The starting point will be to consider the adiabatic expansion of the radiation
“gas”. Since dQ = dU + PdV =0, we have

1
d(uV)+ gudV =0

Vdu+udV+%udV=0
@ 44V

u 3V

. . _4 . .
and, integrating, u = constant V~3. But u = aT*?, so, in accordance with (9.14),

1
TV 3 = constant

or, in terms of the linear size r of the expanding volume V,

T~ 1 9.19)
r

Next comes a geometrical argument to show that, if we follow a particular set of
waves inside the expanding cavity, their wavelength A will change as A ~ r due to
reflections in moving wall. Consider a plane mirror moving to the right with velocity
u as shown in Figure 9.3 and the reflection of two wave fronts of an incoming wave
separated by a full period Ar. Since during that time interval the wall receded AX =
u At, the second wave front will see its path increase and therefore its wavelength
increase by the same amount, say AA. Indeed, since we are comparing two in-phase
consecutive wave fronts, the distance between them is the wavelength, and the figure

tells us that AL = AB+BN =A’N =2AX cos 6, 0 being the incidence angle. Then,

A
AL =2 cosOulAt~2 cosQu— (9.20)
C

is the wavelength change associated with one reflection. Consider now the reflecting
walls of an expanding, spherical volume to compute the change in wavelength asso-
ciated with a small change Ar in the radius of the sphere. Since the incidence angle
6 will be approximately the same in consecutive reflections, we only have to take
into account how many reflections in the expanding walls there will be (Figure 8.3
B). The time between consecutive reflections being 2 rcos 6 /¢, the number of reflec-
tions in a small time interval Ar/u will be ¢ Ar/(2 u rcos 6). Hence, from (9.20) the
overall wavelength shift associated with an increase Ar in the radius of the sphere is

A?Lz?tg
,



206 A Concise Introduction to Thermodynamics for Physicists

Figure 9.3 Change in wavelength due to a single reflection on a moving plane (A). Consec-
utive reflections on the inner surface of an expanding sphere (B).

and, integrating,
A~r 9.21)

Combining (9.19) and (9.21), we get
T~A7" (9.22)

This is true in particular if we follow the set of waves that correspond to the max-
imum of the spectral energy density, u(A,ca,T ), as the equilibrium temperature
slowly changes through adiabatic expansion or compression of the cavity. Hence,
(9.22) implies that the maximum of the black body radiation spectrum is attained at
a wavelength that shifts with temperature according to

)LpeakT =b, (9.23)

where the constant b, called Wien’s constant, has the value 2.898 103 mK. Equation
(9.23), known as Wien’s displacement law, was found to be in very good agreement
with experiment. Qualitatively, it implies that hotter sources will emit bluer light,
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or higher frequency electromagnetic radiation, since A4 is the dominant colour
of the spectrum. This is related with common everyday experiences, such as body
temperature determination by infra-red camera imaging, or the change in colour of
metal heated at high temperatures (Figure 9.4).
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Figure 9.4 Black body radiation becomes bluer, as well as brighter, as the temperature in-
creases.

Wien’s contribution goes beyond the displacement law. His goal was the de-
termination of the universal function u(A,T), so he combined (9.22) with Stefan-
Boltzmann (9.8) for the adiabatic expansion of the cavity from an initial temperature
Ty to a final temperature 7,. At all stages of the expansion, the radiation will be in
thermal equilibrium and therefore will maintain the black body spectral and over-
all energy density, so the function u(A,T) must scale appropriately. Considering the
energy density in an arbitrary wavelength interval, it will change with 7% to com-
ply with the Stefan-Boltzmann law as its wavelength is shifted according to Wien’s
displacement law. Hence,

w(A, Th)dA B T14

= 9.24
(A, Tr)d Ay T24 ( )
must hold with A; T} = A, T5. Introducing this relation, (9.24) becomes
u(h,Ti) Ti
u(ﬁ,z, Tz) T25 ’
or
u(A,T)AS = constant. (9.25)

Any function of the product AT may play the role of the constant in the second
member, so the most general form for the equilibrium spectral energy density is

u(A,T) = A7 f(AT). (9.26)



208 A Concise Introduction to Thermodynamics for Physicists
In terms of the frequency v = ¢/A, Wien’s ansatz for the energy density is
u(v,T) =V f(v/T), 9.27)

where again f is an arbitrary function (see problem 8.3).

Wien went still further to conjecture a particular form for the unknown function
f. Taking into account experimental results for the black body spectrum and inspired
by Maxwell-Boltzmann distribution, he suggested

u(v,T) = a vie PVIT, (9.28)

with some constants @, . Equation (9.28) is a good approximation at high frequen-
cies and it played an important role in guiding Planck towards the correct law. In-
deed, in 1900, John William Strutt and Lord Rayleigh (1842-1919), used a classical
argument and wave mode counting to derive another expression for the black body
spectral energy density that worked well as an approximation at low frequencies,

8mv?

u(v,T) = kT, (9.29)

o3
and also verified Wien’s ansatz. Equation (9.29) is known as the Rayleigh-Jeans
law.

The correct result is Planck’s radiation law,

v o1

w(v,T) = MTVM (9.30)
published on that same year. The comparison in Figure 9.5 shows how it interpolates
between Wien’s law, at high frequencies, and Rayleigh-Jeans law, at low frequen-
cies. However, Planck’s law is much more than a heuristic interpolation of (9.28) and
(9.29). It introduces a single new constant, Planck’s constant s, whose appropriately
chosen value yields a superb agreement with the experimental results. In deriving
it, Planck follows a convoluted line of reasoning, based on a model of cavity where
matter is represented by a system of electrically charged oscillators of all frequencies
that exchange energy with the electromagnetic field. In thermodynamic equilibrium,
the energy density spectrum for this particular system must also be given by Kirch-
hoff’s universal function. In the study of his chosen model system, Planck departs
from purely classical arguments only to impose the form of the function S(E) for the
entropy of an oscillator that leads to the simplest interpolation of Wien’s approxima-
tion and Rayleigh-Jeans law. To justify this assumption, Planck postulated that the
oscillators can emit and absorb electromagnetic radiation only in finite amounts of
energy of size hv.

This is the revolutionary ingredient of (9.30), and Planck won the Nobel prize
in Physics 1918 “for his discovery of energy quanta”, but he did not actually pro-
pose that electromagnetic radiation is quantised, and even struggled for many years
to come to terms with the full consequences of his own contribution. It was Albert
Einstein (1879-1955) who first thought of light quanta, or photons, as real physical
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Figure 9.5 Comparison at a given temperature 7~ of Planck’s radiation law with Wien’s
and Rayleigh-Jeans in linear scale (A) and log scale (B).

objects whose existence explained not only Planck’s law but also the photoelectric
effect and other phenomena involving the interaction of radiation with matter that
were being discovered at the time. By calling our universal model system a pho-
ton gas in the previous section we were anticipating the status it would get in the
framework of quantum theory. But it is remarkable how far into this framework mere
thermodynamics, together with experimental results on black body radiation, has

lead physicists and Physics.

9.5 THERMAL RADIATION AND ASTROPHYSICS

The physics of thermal radiation laid the foundations for the development of twen-
tieth century astrophysics. The connections between the two fields go back to the
work of Samuel Langley (1834—-1906), an astrophysicist and aeronautical pioneer. In
a paper published in 1886, Langley reported a displacement towards smaller wave-
lengths with increasing temperature in the radiation emitted by heated copper, antic-
ipating Wien’s displacement law. Langley was also the inventor of the bolometer, an
instrument to measure electromagnetic radiation, initially in the infrared part of the
spectrum. Further developed by Lummer and coworkers in Germany, this instrument
allowed the very precise measurements of thermal radiation that accompanied the
theoretical developments covered in the preceding sections.

It also began to be used in astrophysics, to determine the temperature and the
luminosity — the total emitted electromagnetic power — of the sun and of some of the
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stars. Although stars are not perfect black bodies, their spectrum can be fitted quite
well to a Planck curve (9.30) at a given temperature, overlaid by a few dips that cor-
respond to absortion lines of the stellar atmosphere. A precise determination of the
temperature of stars can be achieved by comparing the energy emitted in different
narrow frequency or wavelength bands to obtain a colour index from which the tem-
perature can be determined directly. This relation can be deduced from Planck’s law,
and can be improved to include information on how different types of stars deviate
from black body behaviour, as well as other corrections. The method yields for the
Sun an intermediate value of the colour index, and a surface temperature of 5800
K. Two stars of the Orion constellation, Bellatrix and Betelgeuse, are examples of
extreme surface temperature values, with 22,000 K and 3500 K, respectively.

Bluer, hotter stars are also brighter, according to Stefan-Boltzmann law (9.9).
More precisely, the emitted power per unit area of the surface of the star is approxi-
mately given by 67, and therefore the luminosity L will depend only on temperature
T and size according to

L=4wcr’T?, 9.31)

where r is the star’s radius. Notice that luminosity is an intrinsic property of the star,
in contrast with its apparent magnitude, which depends also on the star’s distance to
the Earth.

As astronomers developed methods to determine these distances, it became pos-
sible to measure L for a large set of stars, whose temperature was also known through
their colour index. A temperature-luminosity scatterplot, called a Hertsprung-Russell
diagram (HRD, for short) in honour of the astronomers who first thought of present-
ing in this way the information available at the beginning of the twentieth century, be-
came a centrepiece in the development of stellar physics. It showed that stars grouped
in certain regions of the diagram forming well defined families, and guided the first
theories of stellar structure and evolution. More than a century later, astrophysicists
are still adding information and detail to the HRD and using it to learn about the
physics of stars.

But the most spectacular manifestation of the laws of black body radiation in
astrophysics was also the least expected, and it came later. Two American radio as-
tronomers, Arno Penzias and Robert Wilson, discovered accidentally in 1965 a faint
but pervasive, highly uniform and isotropic signal, with a black body spectrum at a
temperature of around 3 K. This low temperature thermal cosmic microwave back-
ground radiation (CMB) had been predicted as a remnant of the first stages of the
creation of the universe by proponents of the Big Bang theory, but at the time of
Penzias and Wilson discovery this was not yet the prevailing cosmological model.
Indeed, even the fact that the universe is expanding was not uncontroversial at that
time, and the discovery of the CMB became the most important single contribution
in support of our current picture of the universe and its evolution. For that reason,
Penzias and Wilson together won one half of the 1978 Nobel Prize in Physics for
their serendipitous discovery.

Let us consider the physics of this space filling radiation as a photon gas in adi-
abatic expansion as the universe expands. The corresponding energy density u com-
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puted from Stefan-Boltzmann law for the currently observed temperature yields a
very small value, when compared with the contribution of ordinary matter. Denoting
by L= V13 the length scale of the expanding universe, the thermodynamics sum-
marised in Table 9.1 tells us that the universe cools down as it expands with 7 ~ L~}
and u ~ T* ~ L™, meaning that temperature and energy density of radiation are un-
bounded and must have been huge in the early universe — it all started with a Hot
Big Bang. Equally important is the fact that the product A T is kept constant in this
expansion, because radiation must be redshifted as A ~ L, A being a length. Together
these imply that the black body form of the spectrum (9.30) is preserved by the ex-
pansion, so that, provided there were at some stage enough interactions for thermal
equilibrium to be established, in the absence of further interactions the spectrum will
always be thermal from then on.

But how did all the radiation in the universe thermalise in the first place? When
the universe was much smaller, and the temperature much higher, photons were con-
stantly interacting with matter. Hydrogen atoms were unstable because typical pho-
ton energies were larger than the ionisation energy, and so the universe was a hot,
opaque plasma of free electrons and protons. As the universe expands and cools
down, this ionisation process becomes progressively less likely, until at about T =
3000 K there are no longer enough energetic photons to interact with matter. At this
stage, called the recombination stage, stable hydrogen atoms form and, in a rela-
tively short time scale, the universe becomes transparent. This phenomenon is called
photon decoupling, because from then on, the radiation component evolved indepen-
dently, cooling and redshifting while preserving its thermal equilibrium spectrum,
until it reached the current temperature of 2.72548 +0.00057 K. Since 7' ~ L™}, de-
coupling occurred when the universe was about one thousand times smaller than its
present size,

The CMB continues to be the central piece of modern cosmology and several
large scale missions have been devoted to measuring it as precisely as possible. The
tiny variations in temperature of the radiation coming from different directions have
been explained in the scope of the standard cosmological model and are among the
main leads available to develop our understanding of the evolving universe.

9.6 LEARNING OUTCOMES

At the end of this chapter the reader is expected to:

1. Understand the concept of cavity radiation, and how how it paves the way to
study electromagnetic radiation as a thermodynamic system.

2. Apply the theory developed in Part I to thermal radiation to derive the law of
Stefan-Boltzmann and Wien’s displacement law.

3. Learn that, in contrast, Planck’s law cannot be obtained without taking into
account the quantum nature of electromagnetic radiation.

4. Know about the main applications of thermal radiation in astrophysics.
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9.7 WORKED PROBLEMS

PROBLEM 9.1

Star temperatures shown in HRD diagrams correspond to the star’s outer
layers, where the measured black body like radiation comes from. To-
wards the centre, the temperature increases steeply, attaining several mil-
lion kelvin at the core. There is a steady radial outflow of energy and a stable
temperature gradient, where radiative heat transfer, as well as other mecha-
nisms, play a role. Consider a simple model of a core burning nuclear fuel at
a temperature 7', surrounded by a thin dust cloud heated by the core. Show
that, in radiative equilibrium, the dust cloud reduces by half the outflow of
energy, and its temperature is 7’ = 274t (adapted from [1]).

Solution

Let p be the power emitted by the core, and p), p! the power emitted by the outer
surface and by the inner surface of the dust layer. We are assuming that the layer
is thin, and so p) = p! = p’. In radiative equilibrium, the total power outflow from
the dust cloud, 2p’, is balanced by the power inflow p coming from the core. Thus,
p' = p/2 — the power radiated to the outside is reduced by half. According to Stefan-
Boltzmann law, p’/p = (T'/T)*=1/2,s0 T" =27'/*T.

9.8 SUGGESTED PROBLEMS

PROBLEM 9.2

What is C), for cavity radiation?

Hint: Consider Cp = (g—? )P.

PROBLEM 9.3

Using the relations A = c/v, dA = —v%dv, derive (9.27) from (9.26).

PROBLEM 94

What’s the wavelength of maximum emission associated with the black-
body temperature of the sun, 7 = 5800 K ? In what region of the electro-
magnetic spectrum does it fall?

PROBLEM 9.5

The law of Stefan-Boltzmann can be used to relate the temperature of an
orbiting planet with that of its star. Treating the Sun and the Earth as black
bodies, show that the ratio 7z /75 of the Earth’s temperature to that of the
Sun is given by \/Rs/(2L), where Ry is the Sun’s radius and L is the distance
between the Sun and the Earth.
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PROBLEM 9.6

The Sun’s surface temperature is 7, = 5770 K and the total power it emits is
P, =3.826 10*° W. Another star is observed with a surface temperature of
4400 K and a total emitted power of 0.22 P.. Find the radius of that star.

PROBLEM 9.7

The CMB has a black body spectrum at a temperature of 7 = 2.725 K. Find
the peak frequency and the corresponding wavelength. Compute the total
energy density of this microwave background (adapted from [2]).
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