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Preface

Many of us associate thermodynamics with blotchy photographs of men in
old-fashioned garments posing in front of ponderous steam engines. In fact, ther-
modynamics was developed mainly as a framework for understanding the relation
between heat and work and how to convert heat into mechanical work efficiently.
Nevertheless, the premises or laws from which thermodynamics is developed are so
general that they provide insight far beyond steam engine engineering. Today, new
sources of useful energy, energy storage, transport, and conversion, requiring
development of novel technology, are of increasing importance. This development
strongly affects many key industries. Thus, it seems that thermodynamics will have
to be given more prominence particularly in the physics curriculum—something
that is attempted in this book.

Pure thermodynamics is developed, without special reference to the atomic or
molecular structure of matter, on the basis of bulk quantities like internal energy,
heat, and different types of work, temperature, and entropy. The understanding
of the latter two is directly rooted in the laws of thermodynamics—in particular the
second law. They relate the above quantities and others derived from them. New
quantities are defined in terms of differential relations describing material properties
like heat capacity, thermal expansion, compressibility, or different types of con-
ductance. The final result is a consistent set of equations and inequalities. Progress
beyond this point requires additional information. This information usually consists
in empirical findings like the ideal gas law or its improvements, most notably the
van der Waals theory, the laws of Henry, Raoult, and others. Its ultimate power,
power in the sense that it explains macroscopic phenomena through microscopic
theory, thermodynamics attains as part of Statistical Mechanics or more generally
Many-body Theory.

The structure of this text is kept simple in order to make the succession of steps
as transparent as possible. Chap. 1 (Two Fundamental Laws of Nature) explains
how the first and the second law of thermodynamics can be cast into a useful
mathematical form. It also explains different types of work as well as concepts like
temperature and entropy. The final result is the differential entropy change
expressed through differential changes in internal energy and the various types of
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work. This is a fundamental relation throughout equilibrium as well as
non-equilibrium thermodynamics. Chap. 2 (Thermodynamic Functions), aside from
introducing most of the functions used in thermodynamics, in particular internal
energy, enthalpy, Helmholtz, and Gibbs free energy, contains examples allowing to
practice the development and application of numerous differential relations between
thermodynamic functions. The discussion includes important concepts like the
relation of the aforementioned free energies to the second law, extensiveness, and
intensiveness as well as homogeneity. In Chap. 3 (Equilibrium and Stability) the
maximum entropy principle is explored systematically. The phase concept is
developed together with a framework for the description of stability of phases and
phase transitions. The chemical potential is highlighted as a central quantity and its
usefulness is demonstrated with a number of applications. Chap. 4 (Simple Phase
Diagrams) focuses on the calculation of simple phase diagrams based on the
concept of interacting molecules. Here the description is still phenomenological.
Equations, rules, and principles developed thus far are combined with van der
Waals’ picture of molecular interaction. As a result, a qualitative theory for simple
gases and liquids emerges. This is extended to gas and liquid mixtures as well as to
macromolecular solutions, melts, and mixtures based on ideas due to Flory and
others. The subsequent chapter (Microscopic Interactions) explains how the exact
theory of microscopic interactions can be combined with thermodynamics. The
development is based on Gibbs’ ensemble picture. Different ensembles are intro-
duced and their specific uses are discussed. However, it also becomes clear that
exactness usually is not a realistic goal due to the enormous complexity. In Chap. 6
(Thermodynamics and Molecular Simulation) it is shown how necessary and crude
approximations sometimes can be avoided with the help of computers. Computer
algorithms may even allow tackling problems eluding analytical approaches. This
chapter is therefore devoted to an introduction of the Metropolis Monte Carlo
method and its application in different ensembles. Thus far, the focus has been
equilibrium thermodynamics. The last chapter (Non-equilibrium Thermodynamics)
introduces concepts in non-equilibrium thermodynamics. The starting point is linear
irreversible transport described in terms of small fluctuations close to the equilib-
rium state. Onsager’s reciprocity relations are obtained and their significance is
illustrated in various examples. Entropy production far from equilibrium is dis-
cussed based on the balance equation approach and the concept of local equilib-
rium. The formation of dissipative structures is discussed focusing on chemical
reactions. This chapter also includes a brief discussion of evolution in relation to
non-equilibrium thermodynamics. There are several appendices. Appendix A:
Thermodynamics does not require much math. Most of the necessary machinery is
compiled in this short appendix. The reason that thermodynamics is often perceived
difficult is not because of its difficult mathematics. It is because of the physical
understanding and meticulous care required when mathematical operations are
carried out under constraints imposed by process conditions. Appendix B: The
appendix contains a listing of a Grand-Canonical Monte Carlo algorithm in
Mathematica. The interested reader may use this program to re-create results pre-
sented in the text in the context of equilibrium adsorption. Appendix C: This
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appendix compiles constants, units, and references to useful tables. Appendix D:
References are included in the text and as a separate list in this appendix. Of course,
there are other texts on Thermodynamics or Statistical Thermodynamics, which are
nice and valuable sources of information—even if or because some of them have
been around for a long time. A selected list is contained in a footnote on page 18.
Another listing can be found in the preface to Hill (1986).

The first edition of Thermodynamics is structured according to concepts,
allowing a compact but nonetheless comprehensive presentation. This I wanted to
preserve. However, since the book’s first appearance in 2014, various applications
of thermodynamics, not or not sufficiently mentioned in the first edition, from a
number of modern fields in physics and materials science have caught my attention.
In this second edition, I have added those which I consider the most important and
most fitting. A stylistic device I have used for this purpose, which was introduced in
the first edition, is the “example box”. Most of the examples are intended to apply
and practice the application of thermodynamic concepts introduced up to this point.
The second edition contains a number of more elaborate examples which them-
selves are self-contained subjects founded nevertheless on thermodynamic
concepts.

Experiments carried out during the past three decades have considerably
advanced our understanding of the universe. Thermodynamics is indispensable for
the interpretation of these experiments. Instead of the two mere remarks in
Section 2 in the first edition, the new edition now contains an extensive example
discussing the expanding universe as well as its thermal history and future based on
the components of the cosmic energy density and their equations of state. This
complements the previous description of the temperature of black holes and the
temperature at recombination in the context of the Saha equation. Another field
shifting more and more into our focus is atmospheric physics. The first edition
features short examples addressing the (dry air) temperature profile of the tropo-
sphere and the cloud base. In the second edition this is extended significantly
adding discussions of the Earth’s equilibrium temperature, droplet growth inside
clouds, and the effect of moisture on the aforementioned temperature profile. These
examples are distributed throughout the text following the discussions of the
attendant thermodynamic concepts. A third field which is given more prominence
are modern multi-component materials. The morphological structure and thus the
performance of these materials is strongly influenced by the free energies of the
component’s internal interfaces. There are also the more “obvious” interfaces or
surfaces when we apply coatings to protect or to change the appearance of surfaces.
Unfortunately, the 1st edition lacks a thorough discussion of surface tension in
terms of theory and measurement. The new edition includes a rather broad expo-
sition of the underlying theoretical concepts like the Young-Laplace equation,
Young’s equation, or the OWRK-theory including applications and experimental
techniques. Another “materials topic”, already present in the first edition and now
enhanced in the new edition, is the application of thermodynamics to polymers. The
previous discussion of rubber elasticity has been completely rewritten and exten-
ded. Additionally, I have joined the discussion of conformation entropy of
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macromolecules in the context of rubber elasticity to the discussion of the free
enthalpy of macromolecules in the context of polymer melts and mixtures. The
result is the Flory-Rehner equation describing the swelling equilibrium of polymer
networks. It is also worth mentioning that a fair number of mistakes are now
corrected. Most of them were minor but some were not. In particular, Fig. 2.16
(capillary rise) and Fig. 3.20 (fraction of ionized hydrogen vs temperature) are
replaced by their revised versions. Finally, I want to express my gratitude to Dr. Jan
Plagge for his critical reading of the new material and to Alexander Weiss for
pointing out a number of mistakes in the first edition.

Wuppertal, Germany Reinhard Hentschke
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Chapter 1 )
Two Fundamental Laws of Nature Check or

1.1 Types of Work
1.1.1 Mechanical Work

A gas confined to a cylinder absorbs a certain amount of heat, dg. The process is
depicted in Fig. 1.1. According to experimental experience this leads to an
expansion of the gas. The expanding gas moves a piston to increase its volume by
an amount 0V = V;, — V,,. For simplicity we assume that the motion of the piston is
frictionless and that its mass is negligible compared to the mass, m, of the weight
pushing down on the piston. We do not yet have a clear understanding of what heat
is, but we consider it a form of energy which to some extend can be converted into
mechanical work, w.' In our case this is the work needed to lift the mass, m, by a
height, Js, against the gravitational force mg. From mechanics we know

b b
éwdane by gas — / df'fgas = _/ ds - mg
a a
Vi
= Pex/ dV = P, 0V.

Here P,, = mg/A is the external pressure exerted on the gas due to the force mg
acting on the cross-sectional area, A (0V = A0s).

! Originally it was thought that heat is a sort of fluid and heat transfer is transfer of this fluid. In
addition, it was assumed that the overall amount of this fluid is conserved. Today we understand
that heat is a form of dynamical energy due to the disordered motion of microscopic particles and
that heat can be changed into other forms of energy. This is what we need to know at this point.
The microscopic level will be addressed in Chap. 5.

© Springer Nature Switzerland AG 2022 1
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2 1 Two Fundamental Laws of Nature

Fig. 1.1 A gas confined to a
cylinder absorbs a certain
amount of heat, dg

gas

[
T

(Q:{g@

The process just described leads to a change in the total energy content of the
gas, OE. The gas receives a positive amount of heat, dq. However, during the
expansion it also does work and thereby reduces its total energy content, in the
following called internal energy, by —P,,0V. The combined result is

OE = 5q — P,oV.

Notice that after the expansion has come to an end we have P,, = P, where P is
the gas pressure inside the cylinder. In particular we know that P is a function of the
volume, V, occupied by the gas, i.e. P = P(V). In the following we assume that the
change in gas pressure during a small volume change JV is a second order effect
which can be neglected. Therefore for small volume changes we have

(1)

This is the first law of thermodynamics for this special process. It uses energy
conservation to distinguish the different contributions to the total change in internal
energy of a system (here the gas) during a thermodynamic process (here absorption
of heat plus volume expansion).

We just have introduced two important concepts frequently used in thermody-
namics—process and system. The latter requires the ability to define a boundary
between “inside” and “outside”. Both, the inside and the outside, may be considered
systems individually. Systems usually are distinguished according to their degree of
openness. Isolated system means that this system exchanges nothing with its
exterior. An open system on the other hand may exchange everything there is to
exchange, like heat or matter. A closed system holds back matter but allows heat
exchange, e.g. the above gas filled cylinder. Systems are sometimes divided into
subsystems. Subsystems, however, are still systems. After having defined or (better)
prepared a system we may observe what happens to it or we may actively do
something to it. This “what happens to it” or “doing something” means that the
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system undergoes a process (of change). A special type of system is the reservoir.
A reservoir usually is in thermal contact with our system of interest. Thermal
contact means that heat may be transferred between the reservoir and our system of
interest. However, the reservoir is so large that there is no measurable change in any
of its physical properties due to the exchange.

Now we proceed replacing the above gas by an elastic medium. Those readers
who are not sufficiently familiar with the theory of elastic bodies may skip ahead to
“Electric work™ (p. 7).

Mechanical Work Involving Elastic Media

We consider an elastic body composed of volume elements 4V depicted in Fig. 1.2.
The total force acting on the elastic body may be calculated according to

/V avy, (1.2)

for every component o (=1, 2, 3 or x, y, 2). Heref is a force density, i.e. force per
volume. Assuming that the f, are purely elastic forces acting between the bound-
aries of the aforementioned volume elements inside V, i.e. excluding for instance
gravitational forces or other external fields acting on volume elements inside the
elastic body, we may define the internal stress tensor, &, via

do, 0o,
=Y 2= (1.3)

Fig. 1.2 Elastic body
composed of volume elements
dv
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Fig. 1.3 The relation §}
o p
between indices, force $
components, and the faces of A
the cubic volume element ﬂ |
a —
dx
shear force on f3-face / area B
oV
BT
O €—— |3 <
normal force on [-face / area |«
dx
p

Here we apply the summation convention, i.e. if the same index appears twice on
the same side of an equation then summation over this index is implicitly assumed
(unless explicitly stated otherwise). The relation between indices, force compo-
nents, and the faces of the cubic volume element is depicted in Fig. 1.3. Upper and
lower sketches illustrate the shear and the normal contribution to the force com-
ponent f; acting on the volume element in o-direction. Notice that f; can be written
as the sum over two shear stress and one normal stress contribution. The latter are
stress differences between adjacent faces of the cubic volume element. Note also
that the unit of g,4 is force per area.

We want to calculate the work éw done by the f, during attendant small dis-
placements Ju,, i.e.

ow = /dea5um(L:3)/dVaaaﬁ Ouy.
8x,;

The integral may be rewritten using Green’s theorem in space:

0ouy
8x,; '

ow = ?{aaﬁéudip - /dVaaﬁ
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We neglect the surface contribution® and use the symmetry property of the stress
tensor’ to obtain

Odu,, 1 Ou,  Oug

ow=— [ dVo,g——=—= | dVopé( — .
W /‘V“ﬁaw 2/,V“ﬁ(m¢+aa)
———

22U,

The quantity u,g is the strain tensor (here for small displacements). The final
result is

ow = 7/dVG%[;5uxﬁ. (1.4)

We want to work this out in three simple cases. First we consider a homoge-
neous dilatation of a cubic volume V = L,L,L,. We also assume that the shear
components of the stress tensor vanish, i.e. o,5 = 0 for o 7 f. In such a system the
normal components of the stress tensor should all be the same, i.e.
0 = 0y = 0Oy, = 0. We thus have

OapOUlyp = OxxOlly + Oy Oty + 020Uz, = 0(Ottyy + Oty + Ot). (1.5)

Homogeneous deformation means

oL
Ouy _ OLy (1.6)
ox, L,
And because u,, = du,/0x, (no summation convention here) we obtain
oL, oL, OL oV
Gaﬁéuxﬁd(llx' +Z)+L—;) :07. (17)

2 For a discussion see Landau et al. (1986).

*To show the symmetry of the stress tensor, i.e. 045 = Opy, Wwe compute the torque exerted by the
f» in a particular volume element integrated over the entire body:

. _ " ao'w 60'[)’«/
/dV(fxxﬁ 7f/3x9() = / dV(axv X axy Xac)

:/W%M%ﬂ@L/WWMF%%)

v

= ?{(am}.x,; — Opyxy)dA, — /dV(azﬂ — Opa)-

The volume integral must vanish in order for the net torque to be entirely due to forces applied to
the surface of the body.
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Integration over the full volume then yields
ow = —adV, (1.8)

i.e. we recover the above gas case with P = —o.

In a second example we consider the homogeneous dilatation of a thin elastic
sheet. The sheet’s volume is V = Ah = L,L,h, where the thickness, /4, is small and
constant. Now we have

oL, JL, 0A
O’ﬁéu/gzo’<—+—)=6— (1.9)
e L L A
and therefore
ow = —ghoA = —yoA. (1.10)

The quantity 7y is the surface tension.

An obvious third example is the homogeneous dilatation of a thin elastic column
V = hL,. Here h? is the column cross sectional area and L, is its length. This time
we have

Jaﬁéua[;0<%> (1.11)
74

and thus

ow = —gAoL, = —TOL,, (1.12)

where T is the tension.

Example—Expanding Gas We consider the special case of the first law
expressed in Eq. (1.1). If we include the surface tension contribution to the
internal energy of the expanding gas, then the resulting equation is

OE = 3q — POV + 70A. (1.13)

We remark that the usual context in which one talks about surface tension refers to
interfaces. This may be the interface between two liquids or the surface of a liquid film
relative to air, e.g. a soap bubble. In the latter case there are actually two surfaces. In
such cases we define y = fr/(2l), which reflects the presence of two surfaces.

Example—Fusing Bubbles An application of surface tension is depicted in
Fig. 1.4. The figure depicts two soap bubbles touching and fusing. We ask
whether the small bubble empties its gas content into the large one or vice
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Fig. 1.4 An application of
surface tension

versa. We may answer this question by considering the work done by one
isolated bubble during a small volume change:

5Wdone by gas in bubble = Pex5V + VéA

Notice that the sign of the surface tension contribution has changed
compared to Eq. (1.10). This is because in Eq. (1.10) we compute the work
done by the membrane. But here the gas is doing work on the membrane,
which changes the sign of this work contribution. The same work, i.e.
OWdone by gas in bubble; Can be written in terms of the pressure, P, inside the
bubble,

5Wdone by gas in bubble = PoV.

Combining the two equations and using 6V = 4nr?6r and JA = 8nrér,
where r is the bubble radius, yields

2
P=P.+ "
r

We conclude that the gas inside the smaller bubble has the higher pressure
and therefore the smaller bubble empties itself into the larger bubble.

1.1.2 Electric Work

We now consider work involving electric and magnetic variables*” starting with an
example.

* Here we use Gaussian units. The conversion to SI-units is tabulated in Appendix C.
5 Three early but very basic papers in this context are: Guggenheim (1936a, b); Koenig (1937).
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Example—Charge Transfer Across a Potential Drop A charge dg in an

electric field experiences the force F= 5qE (Do not confuse this dg with the
previously introduced heat change!). Consequently the work done by the
charge-field system if the charge moves from point a to point b in space is

b b
5wq:/ ds.ﬁ:faq/ ds-Vo. (1.14)

Here ¢ is the potential, i.e. E = —ﬁqﬁ, and thus

oWg = —0qdp,, (1.15)

where ¢,, = ¢(b) — ¢(a) is the potential difference between b and a. The
corresponding internal energy of the charge-field system changes by

O0E; = —owy = 0qdy,. (1.16)

This equation may be restated for a charge current I = dq/dt, where dt is a
certain time interval:

SE; = I¢h,, 0. (1.17)

In the presence of the resistance, R, the quantity 0. = RI?5t is the
Joule heat generated by the current (James Prescott Joule, British physicist,
*Salford (near Manchester) 24.12.1818, fSale (County Cheshire) 11.10.1889;
made important contributions to our understanding of heat in relation to
mechanical work (Joule heat) and internal energy (Joule-Thomson effect).).

Now we consider the following equations appropriate for continuous dielectric
media:

L. 104 4n.
VxH=-2D+ 7 (1.18)
c ot c

and

VxE=—-—B. (1.19)
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The second equation simply follows by the usual spatial averaging procedure

applied to the corresponding vacuum Maxwell’s equation.® Here E (¥) is the average
electric field in a volume element at point 7. This volume element is large compared to

atomic dimensions. In the same sense D is the displacement field given by
D =E+4nP. P is the macroscopic polarization, i.e. the local electrical dipole
moment per volume. Analogously B =H+4nM is the average magnetic field
(magnetic induction), and M is the macroscopic magnetization, i.e. the local magnetic
dipole moment per volume. The first equation is less obvious and requires a more
detailed discussion.

We consider a current density }; inside a medium due to an extra (“injected”)
charge density p,. The two quantities fulfill the continuity equation

ape =

V.j, =0.
o +V-J
We also have
€~5:4npe.

Differentiation of this Maxwell equation with respect to time and inserting the
result into the previous equation yields

- (oD .
| = +4n, | =0.
\Y% <8t + n]e>

The expression in brackets is a vector, which may be expressed as the curl of

=/,
another vector ¢’H , 1.e.

Comparison of this with Ampere’s law in vacuum suggests indeed H = H and
¢’ = c. We thus arrive at Eq. (1.18). An in depths discussion can be found in
Lifshitz et al. (2004).

We proceed by multiplying Eq. (1.18) with ¢E/(4n) and Eq. (1.19) with
—cH /(4n). Adding the two equations yields

C o (= =\ €= (= = 150D 1. 0B - -
EE-(VXH)—EH-(VXE)—EE~E+EH-E+]-E.

6 James Clerk Maxwell, British physicist, *Edinburgh 13.6.1831, +Cambridge 5.11.1879; partic-
ularly known for his unified theory of electromagnetism (Maxwell equations).



10 1 Two Fundamental Laws of Nature

With the help of the vector identity V - (@ x b) = b - (V x @) —a- (V x b) this
is transformed into

Cv.(ixE) -L5.9P,

T d4n Ot 4Anm ot S B

Now we integrate both sides over the volume V and use Green’s theorem in
space (also called divergence theorem), i.e. [, dvV - (H x E) = IR dA - (H x E),
where A is a surface element on the surface A of the volume oriented towards the

outside of V. If we choose the volume so that the fields vanish on its surface, then

i) n dA - (ﬁ X E) = 0 (The configuration of the system is fixed during all of this.).
Thus our final result is

-

L 6D - 6B - -
/dv<E.5—+H-j +j-E5:>—o. (1.20)

47 4n

The third term in Eq. (1.20) is the work done by the E-field during the time dt.
To see this we imagine a cylindrical volume element whose axis is parallel tof
depicted in Fig. 1.5. Then 6V = Ads and V] = (q/0t)55, where g is the charge
passing through the area A during the time 8¢. Thus 8V - Edt = gE - 55, where gE
is the force acting on the charge g doing work (cf. the above example).

We conclude that we may express the work done by the system,
ow= [ dVj- E ot, by the other two terms in Eq. (1.20) describing the attendant
change of the electromagnetic energy content of the system. For a process during
which the system exchanges heat and is doing electrical work we now have

OF = oq-+ [av(E -2 +H-3E). (1.21)

The quantities E", f), l_??, and H are more difficult to deal with than fields in
vacuum. Nevertheless, for the moment we postpone a more detailed discussion and
return to Eq. (1.21) on p. 66.

Fig. 1.5 A cylindrical
volume element whose axis is o

parallel tof
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1.1.3 Chemical Work

As a final example consider an open system—one we can add material to.
Generally, work must be done to increase the amount of material in a system. The
work done depends on the state of the system. If we add dn moles of material,” we
write the work done on the system as

OWdone on system — ,uén (122)
The quantity u is called the chemical potential (per mole added). In a more

general situation a system may contain different species. We shall say that these are
different components i. Now the above equation becomes

OWdone on system — Z :uiéni' (123)

Here ; is the chemical potential of component i. Thus for a process involving
exchange of heat as well as chemical work we have

| 0E = 6q+ >, won, | (1.24)

1.1.4 The First Law

The first law is expressing conservation of energy. The specific terms appearing in
the first law do depend on the types of work occurring in the process of interest. The
following box contains a number of examples.

Example—Statements of the First Law for Different Processes

(i)  OE=0q—PoV+y0A+ > won;

7 One mole (n = 1) is an amount of substance of a system which contains as many elementary
units as there are atoms of carbon in 12 g of the pure nuclide carbon-12. The elementary unit
may be an atom, molecule, ion, electron, photon, or a specified group of such units.
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This describes a process during which heat is exchanged by the system and
its exterior. Mechanical work in the form of volume work and surface work is
done in addition. The composition of the system changes as well.

(i)  OE=0dq— / dvj - Edt

Here the process of interest involves heat exchange and electrical work.

E-SD+H - 6B
(iii)  OF = 6q— POV + /dV;
4r
This example is for a process during which heat is exchanged and both
volume and electrical work is done.

More generally the first law is expressed via
OE = 6q — ow. (1.25)

However, there is an alternative sign convention used in some of the literature,
ie.

OE = dq+ ow. (1.26)

The sign preceding éw depends on the meaning of the latter. In Eq. (1.25) dw
always is the work done by the system for which we write down the change in the
system’s internal energy, oF, during a process involving both heat transfer and
work. In Eq. (1.26) on the other hand Jw is understood as work done on the system.
In the following we shall use the sign convention as expressed in Eq. (1.25)!

Another point worth mentioning is the usage of the symbols J, A, and d. ¢
denotes a small change (afterwards—before) during a process. A basically has the
same meaning, except that the change is not necessarily small. Even though d
indicates a small change just like J, it has an additional meaning—indicating exact
differentials. This is something we shall discuss in much detail latter in the text. But
for the benefit of those who compare the form of Eq. (1.25) to different texts, we
must add a provisional explanation.

In principle every process has a beginning and an end. Beginning and end, as we
shall learn, are defined in terms of specific values of certain variables (e.g. values of
P and V). These two sets of variable values can be connected by different processes
or paths in the space in which the variables “live”. If a quantity changes during a
process and this change only depends on the two endpoints of the path rather than
on the path as a whole, then the quantity possesses an exact differential and vice
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versa. In the case of mechanical work, for instance, we can imagine pushing a cart
from point A to point B. There may be two alternative routes—one involving a lot
of friction and a “smooth” one causing less friction. In the former case one may find
Eq. (1.25) stated as

dE = 6q — ow. (1.27)

This form explicitly distinguishes between the exact differential dE and the
quantities ¢ and ow, which are not exact differentials. In the case of dw this is in
accord with our cart-pushing example, because the work does depend on the path we
choose. For the two other quantities we shall show their respective property latter in
this text (cf. p. 327ff), when we deal with the mathematics of exact differentials.

However, already at this point we remark that the expressions we have derived in
our examples for the various types of work will reappear with d instead of d. This is
because we focus on what we shall call reversible work. Friction, occurring in the
cart-pushing example or possibly in Fig. 1.1 when the gas moves the piston, is
neglected as well as other types of loss. The following is an example illustrating
what we mean by reversible vs. irreversible work.

Example—Reversible and Irreversible Work In an isotropic elastic body
the following equation holds (Landau et al. 1986):

o aua 6uﬁ
8 2 2y = . 1.2
) = (axﬁ + 5‘xa> (1.28)

On the right is the stress tensor and on the left the product of 2u with the
strain tensor (for small strain). The quantity u is the shear modulus (not to be
confused with the chemical potential). This equation is related to the two upper
sketches in Fig. 1.3. If in the depicted situation (shear force acting on f-face is
applied in a-direction) there is little or ideally no strain in S-direction (this is
like shearing a deck of cards), then the above equation may be written as

_ Ouy
O'H:O'“[g:,ua—xﬁ:,uuu. (129)

Real shear is accompanied by friction. Experience suggests that friction
often can be described by an equation akin to the above:

oy = Nity. (1.30)

The quantity # is a friction coefficient and i, is a strain rate. Figure 1.6,
showing a spring and a dashpot, is a pictorial representation of Eqgs. (1.29)
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Fig. 1.6 Pictorial
representation of Eqs. (1.29)
and (1.30)

1
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Fig. 1.7 Three simple (a) u
combinations (a, b, ¢) of the
two elements
-
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and (1.30). Figure 1.7 shows three simple combinations (a, b, c) of the two
elements depicted in Fig. 1.6. These combinations may be translated into
differential equations and serve as simple models for so called viscoelastic
behavior (Wrana 2009). Important viscoelastic materials are the tread com-
pounds in automobile tires. In the following we merely focus on sketch (a).
Its translation is

0=0,+0, = puu+ni (u=uy = uy). (1.31)

We assume that the applied stress is ¢ = g, sin(w? + J), where o is a
frequency, ¢ is time, and 0 is a phase. The attendant strain is u = u, sin(wt)
(This is a simple mathematical description of an experimental procedure in
what is called dynamic mechanical analysis.). Inserting this into Eq. (1.31) we
find the relations

G,C080 = puy, = Wu, (1.32)
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6, 5in & = nou, = 1'u,. (1.33)

The two newly defined quantities ' and u” are called storage and loss
modulus, respectively. Their meaning becomes clear if we compute the work
done during one full shear cycle, i.e.

2n/w
7{ odu = / oidt = nu'u?. (1.34)
0

Actually this is work per volume (cf. Eq. (1.4)). However, if we do the
same calculation just for the first quarter cycle (form zero to maximum shear
strain) the result is

7/ (2w) 1 1
/ oudt = — v + — i u?. (1.35)
0 2 4
The first term is the reversible part of the work, which does not contribute
to the integral in the case of a full cycle. This term is analogous to the elastic
energy stored in a stretched/compressed spring. The second term as well as
the result in (1.34) cannot be recovered and is lost, i.e. producing heat.
Models like ours only convey a crude understanding of loss or dissipative
processes in viscoelastic materials. Considerable effort is spend by the R&D
departments of major tire makers to understand and control loss on a
molecular basis. In tire materials the moduli themselves strongly depend on
the shear amplitude. Understanding and controlling this effect, the Payne
effect, is one important ingredient for the improvement of tire materials, e.g.
optimizing rolling resistance (Vilgis et al. 2009).

1.2 The Postulates of Kelvin and Clausius

The first law does not address the limitations of heat conversion into work or heat
transfer between systems. The following two postulates based on experimental
experience do just this. They are the foundation of what is called the second law of
thermodynamics.®

8 Here we follow Fermi (1956). Dover (Enrico Fermi, Nobel prize in physics for his contributions
to nuclear physics, 1938).
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1.2.1 Postulate of Lord Kelvin (K)

A complete transformation of heat (extracted from a uniform source) into work is
impossible.’

1.2.2 Postulate of Clausius (C)

It is impossible to transfer heat from a body at a given temperature to a body at
higher temperature as the only result of a transformation.'®

Remark At this point we use the “temperature” 6 to characterize a reservoir as
hotter or colder than another. The precise meaning of temperature is discussed in
the following section.

These two postulates are equivalent. A way to prove this is by assuming that the
first postulate is wrong. This is then shown to contradict the second postulate.
Subsequently the same reasoning is applied starting with the second postulate, i.e.
the assumption that the second postulate is wrong is shown to contradict the first.

First we assume (K) to be false. Figure 1.8 illustrates what happens. At the top is
a reservoir at a temperature 0, surrendering heat g to a device (circle) which
converts this exact amount of heat into work w. A process possible if (K) is false. At
the bottom this setup is extended by a friction device (f) converting the work w into
heat ¢, which is transferred to a second reservoir at 6,( > 0;). Thus the only overall
result of the process is the transfer of heat from the colder to the hotter reservoir.
We therefore contradict (C).

Now we assume that (C) is false. The upper part of Fig. 1.9 shows heat g flowing
from the colder reservoir to the hotter reservoir—with no other effect. At the bottom
this setup is extended. The heat g is used to do work leaving the upper reservoir
unaltered. Clearly, this is in violation of (K). Therefore both postulates are
equivalent. They have important consequences, which we explore below.

9Thomson, Sir (since 1866) William, Lord Kelvin of Largs, (since 1892), British physicist,
*Belfast 26.6.1824, tNetherhall (near Largs, North Ayrshire) 17.12.1907; one of the founders of
classical thermodynamics; among his achievements are the Kelvin temperature scale, the discovery
of the Joule-Thomson effect in 1853 with J. P. Joule and the thermoelectric Thomson effect in
1856, as well as the development of an atomic model with J. J. Thomson in 1898.

19 Rudolf Julius Emanuel Clausius, German physicist, *Koslin (now Koszalin) 2.1.1822, 1Bonn
24.8.1888; one of the developers of the mechanical theory of heat; his achievements encompass
the formulation of the second law and the introduction of the “entropy” concept.
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Fig. 1.8 Assumption of W
postulates: Kelvin —

Fig. 1.9 Assumption of 0
postulates: Clausius

— >
D
8]

1.3 Carnot’s Engine and Temperature

Consider a fluid undergoing a cyclic transformation shown in Fig. 1.10. The upper
graph shows the cycle in the P-V-plane, whereas the lower is a sketch illustrating
the working principle of a corresponding device. Here the amount of heat g, is
transferred from a heat reservoir at temperature 0, (6, > 0,) to the device. During
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Fig. 1.10 Fluid undergoing a P
cyclic transformation

the transfer (path from a to b in the P-V-diagram) the temperature in the device is
0. This part of the process is an isothermal expansion. Then the device crosses via
adiabatic'' expansion to a second isotherm at temperature 0;, the temperature of a

"' A transformation of a thermodynamic system is adiabatic if it is reversible and if the system is
thermally insulated. Definitions of an adiabatic process taken from the literature:

Pathria (1972): “Hence, for the constancy of S (Entropy) and N (number of particles), which
defines an adiabatic process, ...”

Fermi (1956): “A transformation of a thermodynamic system is said to be adiabatic if it is
reversible and if the system is thermally insulated so that no heat can be exchanged between it and
its environment during the transformation.”

Pauli (1973): “Adiabatic: During the change of state, no addition or removal of heat takes
place; ...”

Chandler (1987): “... the change AS is zero for a reversible adiabatic process, and otherwise
AS is positive for any natural irreversible adiabatic process.”

Guggenheim (1986): “When a system is surrounded by an insulating boundary the system is
said to be thermally insulated and any process taking place in the system is called adiabatic. The
name adiabatic appears to be due to Rankine (Maxwell, Theory of Heat, Longmans 1871).”

Kondepudi and Prigogine (1998): “In an adiabatic process the entropy remains constant.”

We note that for some authors “adiabatic” includes “reversibility” and for others, here Pauli,
Chandler, and Guggenheim, “reversibility” is a separate requirement, i.e. during an “adiabatic”
process no heat change takes place but the process is not necessarily reversible. (See also the
discussion of the “adiabatic principle” in Hill (1956).)
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second reservoir (path from b to ¢ in the P-V-diagram).'? Now follows an
isothermal compression during which the device releases the amount of heat g, into
the second reservoir (path from c to d in the P-V-diagram). The final part of the
cycle consists of the crossing back via adiabatic compression to the first isotherm
(path from d to a in the P-V-diagram). In addition to the heat transfer between
reservoirs the device has done the work w. Any device able to perform such a cyclic
transformation in both directions is called a Carnot engine.'>'*

According to the first law, 0F = dg — ow, applied to the Carnot engine we have
AE = 0 and thus w = g, — g1. Our Carnot engine has a thermal efficiency, gen-
erally defined by

_ work done w (1.36)
T~ Yeat absorbed q’ '
which is
q1
=1-=—. 1.37
1 q2 ( )

Remark 1If the arrows in Fig. 1.10 are reversed the result is a heat pump, i.e. a
device which uses work to transfer heat from a colder reservoir to a hotter reservoir.
The efficiency of such a device is 1/5. Here the aim is to use as little work as
possible to transfer as much heat as possible.

Now we prove an interesting fact—the Carnot engine is the most efficient
device, operating between two temperatures, which can be constructed! This is
called Carnot’s theorem. To prove Carnot’s theorem we put the Carnot engine
(C) in series with an arbitrary competing device (X) as shown in Fig. 1.11.

First we note that if we operate both devices many cycles we can make their total
heat inputs added up over all cycles, g, and ¢}, equal (i.e., g = ¢, with arbitrary
precision). After we have realized this we now reverse the Carnot engine (all arrows
on C are reversed). Again we operate the two engines for as many cycles as it takes
to fulfill ¢» = ¢5. This means that reservoir 2 is completely unaltered. But what are
the consequences of all this?

According to the first law we have

Llaw
Wiotal = {2.,total — 41 total (138)

2po you understand why the slopes of the isotherms are less negative than the slopes of the
adiabatic curves? You find the answer on p. 48.

13 Nicolas Léonard Sadi Carnot, French physicist, *Paris 1.6.1796, fibidem 24.8.1832; his cal-
culations of the thermal efficiency for steam engines prepared the grounds for the second law.
4t you are interested in actual realizations of the Carnot engine and what they are used for visit
http://www stirlingengine.com.
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Fig. 1.11 Proof of Carnot’s | | | 0 |
theorem : 2
%,y ¥4,
CalOx
—»
g &
[V Voo |
where

q2,t0tal = —q2 +q/2 =0
q1,t0tal = —q1 +q/1

Because the second reservoir is unaltered we must have
Wiotal § 0. (139)
Wi > 0 violates Kelvin’s postulate! However, this implies
41 total Z 0
=q,>q
= q\92> q19,
61/1 q1

et
9 92

=
And therefore

g q1
=1 - <12 =y 1.40
Nx q/2 = 9 Ne 3 ( )

There is no device more efficient than Carnot’s engine. Question: Do you
understand what distinguishes the Carnot engine in this proof from its competitor?
It is the reversibility. If the competing device also is fully reversible we can redo the
proof with the two engines interchanged. We then find 7¢,,,,,; <%y, and thus
Neamor = Nx- We may immediately conclude the following corollary: All Carnot
engines operating between two given temperatures have the same efficiency.

This in turn allows to define a temperature scale using Carnot engines. The idea
is illustrated in Fig. 1.12. We imagine a sequence of Carnot engines all producing
the same amount of work w. Each machine uses the heat given off by the previous
engine as input. According to the first law
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Fig. 1.12 Defining
temperature scale using
Carnot engines

W={qit1— qi (1.41)
We define the reservoir temperature 6; via
91‘ = X{qi, (142)

where x is a proportionality constant independent of i. Thus the previous equation
becomes

XWZGH_l 79,‘. (143)

We may for instance choose xw = 1 K, i.e. the temperature difference between
reservoirs is 1 K. We remark that this definition of a temperature scale is inde-
pendent of the substance used. Furthermore the thermal efficiency of the Carnot
engine becomes

0,
Ncarnot = 1- 0_2 (144)

(6, > 0,). Notice that the efficiency can be increased by making 6, as low and 0, as
high as possible. Notice also that ; = 0 is not possible, because this violates the
second law. 0; can be arbitrarily close but not equal to zero. On p. 50 we compute
the thermal efficiency for the Carnot cycle in Fig. 1.10 using an ideal gas as
working medium. We shall see that for the ideal gas temperature T o 6. Thus from
here on we use 0 =T.
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1.4 Entropy

Some of you may have heard about the thermodynamic time arrow. Gases escape
from open containers and heat flows from a hot body to its colder environment.
Never has spontaneous reversal of such processes been observed. We call these
irreversible processes. The world is always heading forward in time.
Mathematically this is expressed by Clausius’ theorem.

1.4.1 Theorem of Clausius

In any cyclic transformation throughout which the temperature is defined, the
following inequality holds

(1.9

The integral extends over one cycle of the transformation. The equality holds if
the cyclic transformation is reversible.

Proof We make use of the assembly of Carnot engines and reservoirs shown in
Fig. 1.13. The device called system successively visits all reservoirs indicated by
the temperatures 7 to T,,. After it has visited reservoir T, it is in the same state as in
the beginning.'” According to Eq. (1.42) we may write

Ty

qio = Ti%-

Thus the total heat surrendered by the reservoir at Ty (Tp > T; and
i=1,2,...,n) in one complete turn around of the system is

n n .
qo0 = Zqi,o = Toz%-
i-1 i1 i

As before, when we compared the thermal efficiency of the Carnot engine to the
X-machine, we use the first law, i.e.

i=1

n n
0=AE = Z qi0 — Z qi —Wioral -
i=1

=qo =0

'3 To achieve this not all Carnot engines operate in the same direction.
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Fig. 1.13 Use of the assembly of Carnot engines and reservoirs

Because wy,, <0 if Kelvin’s postulate is correct, we must have go <0 and
consequently

n .
9i .
i=1 T‘l

Taking the limit n — co and ¢; — dq we have

dq
— <0.
%T_O

If the cycle is reversed, then the signs of all g; change and we have
>(-2) <o
i=1 Ti

Thus, for a reversible cycle the equal sign holds. This completes our proof.

1.4.2 Consequences of Clausius’ Theorem

(i) Note first that (1.45) implies that ff d—T” is independent of the path joining A and
B if the corresponding transformations are reversible. If I and II are two
distinct paths joining A and B we have
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(i) Next we define the entropy S as follows. Choose an arbitrary fixed state O as
reference state. The entropy S(A) of any state A is defined via

S(A) = [ %. (1.46)

The path of integration may be any reversible path joining O and A. Thus the
value of the entropy depends on the reference state, i.e. it is determined up to
an additive constant. The difference in the entropy of two states A and B,
however, is completely defined:

qu

S(B) — S(A) = T

Therefore
dq

_ % 1.47
ds == (1.47)

for any infinitesimal reversible transformation.

1.4.3 Important Properties of the Entropy

(i) For an irreversible transformation from A to B:

/ % < §(B) - S(A). (1.48)

Proof We construct a closed path consisting of the irreversible piece joining A and
B and a reversible piece returning to A. Thus

dq dq dq
ox 78 i
T irreversible path from A to B T reversible path from A to B T

and therefore

/ d—Tq < S(B) - S(A). (1.49)
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(i) The entropy of a thermally isolated system never decreases.

Proof Referring to the previous equation thermal isolation means dg = 0. It fol-
lows that

0<S(B)—S(A) or  S(A)<S(B). (1.50)

This is the manifestation of the thermodynamic arrow of time.

All of the above follows from the two equivalent postulates by Kelvin and
Clausius. They constitute the second law of thermodynamics. However, mathe-
matical formulations of the second law are the Clausius theorem or the last two
inequalities above.

(iii) Another important property of the entropy, as we have shown above, is its
sole dependence on the state in which the system is in. Like the internal
energy the entropy is a state function whereas ¢ is not (cf. Remark 1 below!).
Combining the first law'® with Eq. (1.47) yields

dS=LdE+ Lav —LH -dii — 3 Bdni+ ..., (1.51)
where
oS 1
I == 1.52
OFE vin,.. T’ ( )
oS 1
v =P 1.53
ov Ein,... T ’ ( )
oS 1 -
pr =--H 1.54
OmlEvan,... T ( )
and
os 1 (1.55)
8n,- E.V.iitnjs... - T'ul

Equation (1.52) may be viewed as a thermodynamic definition of temperature.
Note also that here the H-field is assumed to be constant and &7 = Iy dV3M. In the
analogous electric case H - dini is replaced by E - dp, where dp = I dVOP. If the

1 The type of work to be included of course depends on the problem at hand. The terms in the
following equation represent an example.
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field strengths and the moments are parallel, then we have H - dit = Hdm and
E - dp = Edp.

Notice the correspondence between the pairs (H,m), (E,p) and (P,—V). In
other words, we may convert thermodynamic relations derived for the variables
P, —V via replacement into relations for the variables H,m and E,p. Even more
general is the mapping (P,—V) < (E,VD/(4n)) or (P,—V) < (H,VB/(4n)),
where we assume homogeneous fields throughout the (constant) volume V.

Equation (1.51), including modifications thereof according to the types of work
involved during the process of interest, is a very important result! For thermody-
namics it is what Newton’s equation of motion is in mechanics or the Schrodinger
equation in quantum mechanics—except that here there is no time dependence.'’

Remark 1 Thus far we have avoided the special mathematics of thermodynamics,
e.g. what is a state function, what is its significance, and why is g not a state
function etc. At this point it is advisable to study Appendix A, which introduces the
mathematical concepts necessary to develop thermodynamics.

Remark 2 The discussion of state functions in Appendix A leads to the conclusion
that Eq. (1.51) holds irrespective of whether the differential changes are due to a
reversible or irreversible process!'®

7We return to this point in the chapter on non-equilibrium thermodynamics.
18 We shall clarify the meaning of this in the context of two related equations starting on p. 64.
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Thermodynamic Functions e

2.1 Internal Energy and Enthalpy

We consider the internal energy to be a function of temperature and volume, i.e.
E = E(T, V). This is sensible, because if we imagine a certain amount of material at
a given temperature, 7, occupying a volume, V, then this should be sufficient to fix
its internal energy. Thus we may write

O O
_OE OE 2.1
dE aT’VdTJr av‘rdv' (2.1)

The coefficient of dT is called isochoric heat capacity or heat capacity at constant
volume:

_OE

=— . 2.2
Y =oT v (22)

It is useful to define another state function, the enthalpy H, via

H=E+PV.

We find out on which variables H depends by computing its total differential:
dH = dE+d(PV)

OE OE
= 22| ar+ 50| v+ Pav -+ vap.
oT ’v + ovir + +
Replacing dV via
ov av
d :—) T —‘ dP,
v oT Ip + OP It
© Springer Nature Switzerland AG 2022 27

R. Hentschke, Thermodynamics, Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-93879-6_2
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V = V(T,P), leads to

OE OE| 0V ov
dH = (a_T vtavlarl, T ar P>‘”

OE| oV ov
| S| 4P|+ v ).

+<8V T OP T+ opP T+ )
Application of Eq. (A.1) with A = E yields

(oar = (Z] 4 p2Y| 08 _0E) Y
U o \orlv Carle aTle 9Ty
8 E+PV)
( + ’ .
Applying Eq. (A.2) again setting A = E yields

(...)dP:(a—E‘ +P8—V’ —i—V)dP

O(E PV
7( i | ap.
Thus we find

OH OH

dH:—’dT —}dp 23
oT Ip * OP It (23)

and therefore

H=H(T,P).

Replacing the dependence on volume by a dependence on pressure is of great
practical importance. From a theoretical point of view working at fixed volume
usually is convenient. But experimenting with a closed apparatus, inside which a
process leads to the buildup of uncontrolled pressure, is likely to produce
uncomfortable feelings.

The coefficient of dT in Eq. (2.3),

c, = (2.4)
P

is the isobaric heat capacity, i.e. the heat capacity at constant pressure. Two other
useful quantities are
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Table 2.1 Selected compounds and values for Cp, ap, and k7

Compound Cp [J/(g K)] ap [1074 K] K7 [1075 MPa™!]
Air (20°C, 1 bar) 1.007 36.7 106
n-pentane (20°C, 1 bar) 2.3 16 247
Ethanol (20°C, 1 bar) 2.43 11 117
Water (20°C, 1 bar) 4.18 2.06 459
Water (0°C, 1bar) 4.22 —0.68 50.9
Ice I, (0°C, 1 bar) 2.11 1.59 13.0
Tron (20°C, 1 bar) 0.45 0.35 0.6
10V
op=——| , (2.5)
Vor lp
the isobaric thermal expansion coefficient, and
10V
Kr = ———| , (2.6)
VOPIr

the isothermal compressibility. Selected compounds and values for Cp, ap, and k7
are listed in Table 2.1. There is no need to discuss these quantities at this point. We
shall encounter many examples illustrating their meaning.

2.2 Simple Applications
2.2.1 Ideal Gas Law

Here we consider a number of simple examples involving gases. Most of the
following applications are based on assuming that the gases are ideal. This means
that pressure, P, volume, V, and temperature, 7, are related via

PV = nRT. (2.7)
The quantity R is the gas constant
R = 8.31447 m*PaK 'mol . (2.8)

Figure 2.1 shows PV, /R, where P = 10° Pa is the pressure and V,,,; is the
molar volume of air, plotted versus temperature. The data are taken from HCP
(Appendix C). The mass density c in the reference is converted to V,,,; via V,, =
M1/ ¢ using the molar mass m,,,; = 0.029 kg. We note that air at these conditions
is indeed quite ideal. Notice also that the line, which is a linear least squares fit to
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Fig. 2.1 The ideal gas law 1000 |
800 [
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the data (crosses), intersects the axes at the origin. The temperature 7 =0 K
corresponds to T = —273.15°C.

Remark 1 For an ideal gas we easily work out

(2.9)

1
and Kr =5

1
OCPZ?

Remark 2 Equation (2.7) is simple but nonetheless important, because it is used
frequently throughout this text as a first and often satisfactory approximation.

OE/0V|; = 0 for an Ideal Gas

First we prove that

OE
—| =0 2.10
ovir ( )
for an ideal gas, because we shall rely on this equation a number of ties. Starting
from Eq. (1.51) we have
1dS = dE+ PdV, (2.11)

because all other variables like n etc. are constant. Immediately it follows that

0S| _OE

o _ ok (2.12)
ovir oVir

But this does not look like much progress. With some foresight we compute the
following differential

d(E — TS) = dE — TdS — SdT

(2.13)
= —SdT — PdV.
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Thus we find
O(E — TS)
= _ 2.14
or ‘V S ( )
and
O(E —TS)
= —P. 2.15
v ‘T ( )
Consequently
0 OE-T5) ] = _5s (2.16)
ov  oT vir ovir
as well as
0 A(E-TS) TS)‘ ‘ __or (2.17)
or oV Tlv oT lv
and therefore
o5, _oPy (2.18)
ovir OTly
For an ideal gas this becomes
oS
T—| =P. 2.19
ovir ( )

Inserting (2.19) into Eq. (2.12) completes the proof of the above statement.

Remark Integrating Eq. (2.19) using (2.7) we immediately obtain

\%
S(T,V) = S(T,V,) = nRIn - (2.20)

This means that if an ideal gas is compressed (expanded) isothermally, i.e.
V<V, (V>1V,), its entropy is decreased (increased).

Kinetic Pressure

Concrete thermodynamical calculations require concrete models. Here we consider
a gas of point particles with masses m, i.e. atoms or molecules without internal
structure or specific spatial extend and shape, confined to a volume V. The particles
posses a momentum distribution dNj = Nf(|p|)d°p. N is the total particle number
and dNj is the fraction of particles whose momenta occupy a momentum space
element d°p. The quantity f(|]) is the attendant momentum probability density.
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Fig. 2.2 A particle reflected
from a wall
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Figure 2.2 shows a particle reflected by one of its containment’s walls. The sum
of very many (simultaneous) momentum transfers, Ap,, each contributing a force
f: = Ap;/ A, yields the pressure P = F /A, where F is the total force and A is the
wall area.

¢ Kinetic pressure: First we want to show that

1

Pv/,dzvﬁ(ﬁﬁ)(vﬁ.ﬁ), (2:21)

where p = mVj is the momentum of a particle with velocity V5. The prime ' is a
reminder that the angle 6 is between 0 and 7/2 for particles impinging on the
wall.

We consider a single particle for which

Ap. 2mfi i

fo= At At

Here Az is the thickness of a narrow layer adjacent to the wall in which the
momentum transfer occurs. This layer is ill defined, because we consider point
particles interacting with a completely smooth wall. Fortunately the final result does
not require to specify Az assumed to be the same for all particles. We define the
collision time, i.e. the time a particle spends inside the layer, Az, via vz, = 2Az/At,
ie.

1 [
At 2Az7

Combination of the two formulas yields

@10 7). (2.22)

fo=0
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In order to obtain the total force on the wall exerted by the gas we must sum or
integrate over all collisions, i.e.

/! AZA
F:/dWTTﬁ (2.23)
—

*

*: number of particles inside the surface layer volume AzA possessing momenta j in
d*p. Limiting 0 to values between zero and 7/2 includes particles colliding with the
wall only. Thus we obtain Eq. (2.21).

e Ordinary particles: For an ideal gas' we can deduce the important result

E:%MT (2.24)

Consequently the isochoric heat capacity of an ideal gas of point particles is
given by

3
Cy = 3nR. (2.25)

In order to show Eq. (2.24) we express the internal energy of the gas via

! —2
p
E = dNz — . 2.26
/ o (2.26)

Notice that we continue to use the prime (consistent with the normalization of
our above probability density f(|7])). It is now easy to deduce

2F
P_

=35 (2.27)

This is because the 0-integration in the case of E is

/2 /2 1
/ d@sin9:—/ dcosf):/ de=1
0 0 0

! Whether or not our assumption of point particles already implies ideality is a matter of definition
of the inter particle interactions.
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and thus

- 2n 00 p2
E—N/O d(b/_oodppz%f(p). (2.28)

In the case of P we have instead

n/2 1 1
/ cos? 0sin 0d0 = / Xdx = =,
0 0 3

and therefore

P= W ndqb/ dpp (p) (2.29)

Comparison of Eqgs. (2.28) and (2.29) immediately yields (2.27), which in

combination with the ideal gas law yields Eq. (2.24).
Finally we take another look at the entropy. We have

1 P
=_—dE+ —d 2.30
ds T +T % (2.30)

(cf. Eq. (1.51)). Using (2.24), i.e. dE = (3/2)nRdT, and once again (2.7) we find
ds = nR(dln 7% 4 dn v). (2.31)

Integration yields the generalization of Eq. (2.20)

T\>?v
) v

This is the ideal (point particle) gas entropy change as function of temperature
and volume.

S(T,V) — S(T,,V,) = nR1n (2.32)

e Photons: Now let us assume that the gas particles are photons obeying the
energy-momentum relation € = ¢p. Inserting this relation into (2.21) and (2.26)
yields

I 1/
P= V/ dNjpc cos Q_W/ dNzpc (2.33)
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and

/
E:/ dNjpc. (2.34)

Notice that vj is replaced by the velocity of light, c. Comparison of the two
equations produces

1E
P=——. 2.35
3 (2.35)
We can even relate the photon pressure to the gas temperature via
OE OoP
—| =T—| —-P 2.36
ovir oT lv (2.36)

derived in the previous example. Because the classical energy, E, of the photon gas
is given by

E 1 E’+H
Z—— [ av 2.37
1% V/V 8’ (2.37)

where the argument of the integral is the electromagnetic energy density, we
conclude that P does not depend on V and therefore

OE

—| =3P.
ovir
The resulting differential equation is
dar dp
4—=— or dinT*=dInP
T P
and thus
4
P <1> (2.38)
P, T,
or
Soer (2:39)
Vv

where ¢, is a constant. This is Stefan’s law of the energy density dependence on
temperature in the case of black body radiation.
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This also is a good place to mention the entropy of the black body, i.e. a volume
containing (and possibly emitting) radiation in thermal equilibrium with some
reservoir.” We start by inserting (2.39) into the thermodynamic definition of tem-
perature, Eq. (1.52), i.e.

as 1
= =, 2.40
4¢,VT30T lvap,.. T ( )
Integration of this equation yields the entropy of the black body
4F
=—— 241
s=32, 241)

which is proportional to T3. Notice that S = 0 at T = 0. However, there is more to
learn here. Subtracting the two differentials

4
TdS = 4¢,VT3dT + gc,.T“dv and dE = 4¢,VT3dT + ¢, T*adV (2.42)
yields

1 A
1dS — dE = 3¢,V C2) pay. (2.43)

Comparing this result to (1.51) we conclude that the chemical potential of the
photons vanishes, u = 0. We shall return to this conclusion later in this book (on
page 253).

Figure 2.3 shows an experimental setup in the author’s office allowing to verify
Stefan’s law. The red cube in the center is an oven (black body) emitting radiation
through the aperture shown in the inset. The radiation energy is measured and con-
verted into volts shown on the instrument panel on the right. The attendant oven
temperature is shown by the instrument on the left. Figure 2.4 contains data taken by
the author upon heating (up-triangles) and subsequent cooling (down-triangles) of the
oven (T, = 25°C). The solid line is a linear fit through the data points. Even though
there is some room for improvement the result is clearly in accord with Eq. (2.39).

It is interesting to calculate the energy a black body looses per unit time due to
radiation emanating from its surface. If 0A is an area element on the black body’s
surface, a distant observer may look at 0A from an angle 6. Here 6 is the angle
between the surface normal of JA and the direction of the observer. Thus the

2 The term “black body” may be somewhat misleading, because a black body is not necessarily
black. In fact the radiation spectrum of our sun measured above the atmosphere is very closely a
black body spectrum. Here we merely deal with the temperature dependence of the total energy
density of a black body. The spectrum is calculated in Sect. 5.3.
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Fig. 2.3 Experimental setup in the author’s office allowing to verify Stefan’s law

Fig. 2.4 Data obtained with
the experimental setup
(including cooling of the
aperture plate) shown in the
previous figure

¢[mV]

T4—T%

K]

1010

observer does not see the full 0A but the projection dA cos 0 instead. Every volume
element on the surface contains the energy density E/V, and therefore emanates a
total flux density cE/V. Along a particular direction this is cE/(4nV). This means
that the energy per time passing through the area element projection in the direction
of the observer is cE/(4nV)dA cos 0. Collecting together the energy per time
passing through JA towards all possible observer directions therefore yields

2n 1cE
— ——5A/ d(p/ d@sm@cos@———c—éA (2.44)
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or after integration over the full surface
—~ZZA = —oT*A. (2.45)

The minus sign indicates that the energy of the black body diminishes. The

quantity ¢ = 5.67 - 107 Wm™2K~* is Stefan’s constant, which we learn how to
calculate in Sect. 5.1 (cf. Eq. (5.109)).3

Example—Earth’s Equilibrium Temperature Let us consider the last
footnote from a different angle. The radiation energy emanating from the sun
per unit time intercepted by the Earth is

dEin

—= oTeAsf . (2.46)

Here the solar surface temperature is 75 and Ag = 4nr§ is the Sun’s surface
area. The factor f is the solid angle covered by the earth divided by the total
solid angle, i.e. f = nrg/(4nR3,) = 3 (re /Rsg)*. Since the earth has a certain
average surface temperature, which we call the equilibrium temperature T,
we expect that the incoming flux dE;,/dt is balanced by a corresponding
energy flux emanating from the Earth’s surface dE,,, /dt, i.e.

dE,,
— 1 O’TéAE, (2.47)
where Ag = 4nrZ. Hence
dEl’ dEout
1—-A) = . 2.48
o ( ) & (2.48)

The quantity A is called albedo (not to be confused with an area). It is a
measures for how much of the sun’s radiation is reflected from the irradiated
body into space. Earth’s albedo is ~ 0.3, of which roughly three quarters are
contributed by cloud. Solving Eq. (2.48) for T yields

3Tt is interesting to apply this formula to the sun. We use a solar surface temperature of 5780 K, a
sun radius of rg ~ 7.0 - 10% m, an earth radius of rz ~ 6.4 - 10° m, and the mean sun-to-earth
distance Rgp ~ 1.5-10'! m. With these numbers we calculate a radiation energy annually
received by the earth’s surface of about 1.6 - 10'> MWh/y. At the time of this writing the entire
world’s electricity consumption is roughly 1.9 - 10" MWh/y (based on data collected between
2002 and 2010). In other words—a quadratic surface of about 40 by 40 km positioned in space
near the earth would receive just this energy!
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Ty = Ts <M> " (2.49)

Substituting the previous numbers for T, rs and Rsg we find Tp ~ 254 K.
This is roughly 35 K less than the average surface temperature of about 288
K. We can apply (2.49) to other planets or moons as well if we use their
albedo and their distance from the sun. In the case of Earth’s moon, pos-
sessing an albedo of around 0.12, the equilibrium temperature is about 269 K
whereas its average surface temperature is roughly 255 K. This is a smaller
difference than in the case of Earth. We may suspect that Earth’s atmosphere
is responsible for most of the difference (Greenhouse effect), even though the
example of the moon suggests that there are other factors as well—like the
somewhat ill-defined concept of an average temperature. An extreme example
is Venus. It has an equilibrium temperature of approximately 260 K but a
surface temperature of 740 K.

Remark 1 Tn the late 1930s the famous physicist Paul A. Dirac* speculated
that the large size of certain dimensionless numbers, constructed from com-
bination of fundamental constants, may indicate their monotonous variation
tied to the age of the universe. The concept of a changing, or rather expanding,
universe had been developed a decade before mainly by Alexander Friedmann,
Georges Lemaitre, and Edwin Hubble—the former two studied solutions to
Einstein’s field equations of General Relativity and the latter measured the
redshift of galaxies depending on their distance. The suspected changes should
be slow, which would make them difficult to observe, since the “measure-
ments” have to cover several hundred million years.

In 1948 Edward Teller published a paper in which he derives the
dependence of T, on the gravitation constant G. G affects not only Rgz but
also Ts and we do not want to present his derivation here (the interested
reader is referred to Teller (1948)). He showed that T ~ G>2°. Thus, if G had
been 10% smaller 300 million years ago this would have resulted in a 20%
higher Tr compared to the present—sufficiently high to affect the develop-
ment of live on Earth as we know it. This, so his conclusion, can be viewed as
evidence against Dirac’s hypothesis.

“Paul Adrien Maurice Dirac, British physicist, *Bristol 8.8.1902, fTallahassee (Florida)
20.10.1984; numerous seminal contributions to the development of quantum theory (e.g. Dirac
equation); he shared the 1933 Nobel prize in physics with E. Schrodinger.
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Remark 2 We can combine Egs. (2.41) and (2.48) to obtain

dSou/dt
dSp/dt

T
Tg ’

(1-A) (2.50)

This means that the long wavelength radiation emitted from the earth
carries much more entropy than the incoming short wavelength radiation
received from the sun, which, as we shall discuss in the last chapter, is of
great significance for the development of life on earth.

Example—The Expanding Universe and Its Temperature We want to
apply what we have learned to the relation between the size of the universe
and its temperature. This, however, requires one paragraph of cosmology
before we can start.

In the 1920s the aforementioned American astronomer Edwin Hubble’
carried out measurements which led him to conclude that far away galaxies
recede from us with a velocity proportional to their distance D, i.e.

v = HD. (2.51)

The proportionality constant H became the Hubble constant. Since Earth’s
location is not a special place in the universe, Hubble’s law (2.51) is valid for
any reference point. For simplicity’s sake let us assume that our universe is an
elastic band. On the band there are regularly spaced marks indicating
galaxies. The spacing between neighboring marks or galaxies is a. In the
following we shall call a the scale factor. If we sit on any one of the galaxies,
then the distance from us to the fourth galaxy on either side is 4a. More
generally, the distance from us to the xth galaxy is D(¢) = xa(z). ¢ is time and
a(t) means that the elastic band stretches or contracts with time. Note that x is
a mere number and therefore does not depend on time. In the real universe
this means that space itself expands or contracts. With v = xa, where the dot
indicates a time derivative, Hubble’s law becomes a(¢) = Ha(t). However,
Hubble’s constant is not really a constant but instead

H =222 p0), (2:52)

3 Edwin Powell Hubble, American astronomer, *Marshfield, Missouri, United States 20.11.1889,
¥San Marino, California, United States 28.9.1953.
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where G is the gravitation constant and p(z) is the energy density of the
universe. Hence

. 2
(%) = % p(). (2.53)

This, apart from a term accounting for the “curvature of space” which is
not important here, is the first Friedmann equation. The first Friedmann
equation follows from General Relativity but there is also a simpler
Newtonian approach which yields (2.53) (see for instance Chap. 8 in
Hentschke and Hoélbling 2020). In the following we consider three contri-
butions to p(z) called p,(¢), the radiation energy density, p,,(z), the mass
energy density (note that according to the Special Theory of Relativity every
mass can be converted into energy) and p, (), a mysterious vacuum energy
density (also called dark energy), i.e. p(¢) = p,(2) + p,,(2) + p,(£).

Now we return to thermodynamics, pursuing the dependence of the scale
factor of the universe a on time as well as its relation to the temperature 7' of
the universe. Note that a is not the size of the universe but nevertheless a
measure of its size. Our starting point is the first law in the form

dE = —PdV. (2.54)

The only contribution to the internal energy change of the universe is
volume work. Equation (2.54) expressed in terms of p and a become

d(a’p) = —Pda’. (2.55)

At this point we need an equation of state, i.e. an equation relating the
pressure to the (energy) density. Inspired by Egs. (2.27) and (2.35) we assume

P = wp, (2.56)

where o is unknown. Inserting this equation of state into Eq. (2.55) yields

dlnp = -3(1+ w)dIna, (2.57)

which has the solution
_ const 558
P= Ao+ (a8

In the following we discuss (2.58) for p,,, p, and p,, separately. This means
that the development of the universe can be described as succession of
epochs. In each epoch p is dominated by either one of the three densities. If p

41
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is for matter only, i.e. p = p,,, we expect p,, o< a > and thus w,, = 0. For
radiation, as represented by photons, we conclude from our previous
Eq. (2.35) that @, = 1/3 and thus p, < a*.

These conclusions are not trivial and we must discuss them. w,, = 0 in the
case p = p,, seemingly contradicts Eq. (2.27), according to which we would
have expected w,, = 2/3. However, there are great differences between Eqs.
(2.27) and (2.56) when p = p,,. First, the energy density E/V on the right
hand side of Eq. (2.27) only includes the classical kinetic energy of the matter
particles and not the much greater energy equivalent of their (rest) mass
included in p,. Second and even more importantly, Eq. (2.27) describes a gas
of particles possessing a certain temperature 7 and therefore a non-zero
pressure P. In the universe most mass is found in lumps, i.e. galaxies (in-
cluding black holes, ...), which are cold in terms of their overall kinetic
energy (even if they contain many hot stars), since they merely move with the
expansion of the universe, and do not exert a pressure. Thus, @,, = 0 in this
case is not a contradiction. Nevertheless, we shall return to P,, = 0 in the
universe versus P > 0 in an ordinary gas in a separate example. Next is
p, o< a—* and the question how the extra factor ! arises in comparison to
P o< a—3? The radiation particles which make up p, move with the speed of
light ¢ and have no rest mass. Each of them possesses an energy hc/A, where
h is Planck’s constant. Their energy density is the product of their number
density, which is proportional to a3, and hc/ . Since hc is a constant,
p, o< a~* requires that the radiation’s wavelength / oc a. And this is indeed
the case. While a photon travels towards us from a distant galaxy the scale
factor, as we shall see, grows, i.e. the longer the photon must travel to reach
us the longer its wavelength becomes. Or in other words, the more redshifted
the photon is the greater is the distance to the galaxy in which it originated.
This is what Hubble had exploited.

The last of the energy density contributions, and the most mysterious, is
the vacuum energy density p, (¢). Observation suggests that it is constant, i.e.
p,(t) = p,. This means the vacuum energy does not thin out when space
expands. It leads to w, = —1 and thus P, = —p,. Since p, is positive P, is
negative. This and the other relations between pressure, energy density and
scale factor are compiled in the two upper rows in Table 2.2. The upper panel
of Fig. 2.5 depicts the a-dependence of the three energy density components.
In the early universe p, dominates. It is followed by p,, since a~* decreases

Table 2.2 Com.ponents of Matter Radiation Vacuum energy
the energy density 3 7
P P X a- prxa Py =Po
P,=0 P, =p,/3 P, = —p,
a ~ 123 ~ 172 ~ expl/ ]
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Fig. 2.5 Summary of the p .
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faster than a=>. Finally both p, and p,, decrease below p, = p,. The calcu-
lation of the various crossover times, e.g. 5-10* y after BB (Big Bang),
requires additional tools which we cannot develop here (see for instance
Hentschke and Holbling 2020).

The third row in Table 2.2 lists the time dependence of the scale factor in
the three epochs, i.e. matter dominates, radiation dominates and vacuum
energy dominates. The respective a(z) are obtained by inserting the first row
energy densities into Eq. (2.53). For instance, inserting p,, yields
(a/a)* o a=3. Using the ansatz a(¢) o ¥ and equating the exponents of 7 on
both sides of the resulting equation yields g = 2/3. For p, we find g = 1/2
instead. In the case of p, the right hand side of Eq. (2.53) is a constant and we
find an exponential grows of a. Note that ... in Table 2.2, which is pro-
portional to p,, is very small. Nevertheless, measurements have shown that
we are currently in this epoch. The lower panel in Fig. 2.5 shows a sketch of
the scale factor’s expansion during the three epochs.

Let us briefly address one obvious question. Just how much p,, is there in
comparison to p, or p, in our current universe? Experimental evidence
indicates that Q,, ~ 0.3, Q, ~9- 107> and Q, ~ 0.7. Here Q; stands for the
respective fraction of i compared to the current total energy density p, ~
8-107'° J m3. In addition, Q,, = Qb +Qy pu, Where Q,, 5, = 0.05 is the
baryonic matter, i.e. the matter of which we know what it consists of, and the
much larger rest consisting of dark matter.

One epoch, which we completely ignore here, was extremely short and
occurred right after the Big Bang. It is called inflation. It is thought that the
scale factor during this epoch grew very rapidly. We can understand this type
of rapid growth if we assume that the scale factor during inflation was also
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growing as a~ exp[\/Tt], but that during inflation ..., i.e. p,, was very
much larger than today.

But what about the temperature of the universe? Matter, as we have dis-
cussed, is cold. But the radiation energy density is tied to 7" via Stefan’s law
(2.39), i.e. p, oc T*. Since p, < a~* as well, we conclude

T x 1 (2.59)
a

We can use this relation to actually compute one of the numbers in the
lower panel in Fig. 2.5 i.e. ~4-10° y after the Big Bang. Note that the

universe was matter dominated during most of its existence, i.e. a x 23,
Hence

T1(2>2B_ (2.60)

in 51

Today the universe is #; ~ 14 - 10° y old and its temperature is T; ~ 3 K.
When its age was 1, = 4 - 10° y Eq. (2.60) implies the universe therefore had
a temperature #, ~ 3000 K. This is a special temperature, because it was low
enough for the protons and the electrons, which until then had been separate
components of an optically opaque plasma, to combine into hydrogen atoms.
From then on the universe was transparent. In an example in Chap. 3 we shall
estimate this temperature, which in turn means that we can estimate the time
at which this so called “recombination” took place (rather than assuming that
we already know T, in order to be able to estimate 7,).

Example—P,, = 0 Versus the Ideal Gas Law PV = NT > 0 In the previ-
ous example we have motivated P,, = 0 with the lumpy masses suspended in
space. But there was a time when the content of the universe could be
described as a fairly hot “soup” of non-relativistic massive particles in
equilibrium with photons (prior to or right around recombination). Shouldn’t
the particles under these conditions possess a pressure greater than zero—like
a gas at a certain density and temperature?

Let us approximate the internal energy of the universe by a sum of three
terms, i.€.

3
E:me+§N@T+qVﬂ. (2.61)

The first term is the volume of the universe multiplying the energy density
contributed by the rest mass of the particles contained in it. The second term
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is the ideal gas contribution (2.24), where N is the number of the afore-
mentioned particles. The last term accounts for the radiation according to
Eq. (2.39). Note that vacuum energy is not included here.

According to the first law

3
dE = d<mc21v+ ENkBTch,VT“) = —(P,+P,)av. (2.62)

Here m is the particle mass (for simplicity we consider one type of particle
only), mc? is its energy equivalent, and P,, and P, are the partial pressures of
the particles and the photons, respectively. Using P,,V = NkgT and P, =
1¢,T* as well as V o a’, we obtain after some algebra

_ 1+4+3x/4

dInT = —Y(x)dlna where Y(x)—m.

(2.63)

Here x = VIZ']_‘% = %Pm/P,. Currently we use P, =0. Thus x =0 and

Y(x) = 1, which yields T o< a~!~—our previous result! But if P,, > P, then
Y(x — 00) = 2 and consequently T o a2
Can P,, > P, occur? Using N ~ N,n, where N, is the number of photons,

it is not difficult to see that

18
— 7. 2.64
p S (2.64)

This result is independent of temperature. The quantity # is the baryon
(composite particles made from quarks) to photon ratio obtained from the
theory of nucleosynthesis in the early universe. According to this theory
7~ 1072 and we find that P,, = 0 is indeed a very good approximation.

However, in order to convince ourselves that the universe is quite different
from our usual surroundings, we compute P, /P, inside an average office
(office pressure is 1 bar; office temperature is 293 K). Assuming the office is a
black body cavity, we can describe the cavity’s radiation pressure via P, =
%ch“ ~ 1.9-107° Pa, where we have used that Stefan’s constant ¢ =
(c/4)c, (cf. Eq. (2.45)). Therefore P~ P, or P,/P.~5-10", ie.
Hoffice ™ 10'°.

Remark Our description of massive particles or radiation is somewhat loose.
A massive particle may be non-relativistic or relativistic depending on tem-
perature. In the ultra-relativistic case, i.e. mc? is much less than the total
energy, their equation of state is the same as for radiation. p,,, according to

45
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the current cosmological standard model, consists mostly of “dark matter”. It
is not known what dark matter is. What is known is that it must have certain
properties to not contradict certain observations. In particular the mass of dark
matter particles (if dark matter is due to particles) is not known—which, in
principle, could affect our above conclusions based on #. The universe
contains neutrinos, which in current models contribute significantly to p,. But
neutrinos are believed to possess mass and measurements are underway to
determine this mass. Thus, there are these and other open issues.

Remark—Black Hole Entropy In the early 1970s Hawking® (1976; and references
therein) showed that a black hole of mass M should emit radiation possessing the
spectral distribution of black body radiation’ corresponding to the temperature

_ 1 &l
T 8mkzGM’

This formula, joining ideas and concepts from quantum theory and the theory of
general relativity, is engraved in a plaque in Westminster Abbey marking Stephen
Hawking’s burial site (cf. Fig. 2.6). Here kg is the so-called Boltzmann constant, G
is the gravitational constant, % is Planck’s constant divided by 27, and c is the speed
of light. The origin of this radiation is the separation of virtual particle pairs,
spontaneously created just outside the event horizon of the black hole due to
vacuum fluctuations, such that the partner with positive energy is traveling away
from the horizon and the other in turn vanishes behind the horizon. This negative
energy partner diminishes the energy of the black hole by an amount that is carried
away by the other. In this sense a black hole may “evaporate” over time. As already
mentioned, remarkably this radiation has the same distribution as the radiation of a
black body—despite its different nature!

According to Eq. (1.52) the black hole should posses entropy, which we can

calculate by integrating this equation (S = f(f dE'T(E")™" + consr):

Ty (2.65)

kgGM?
Sy = 4n-2 ) (2.66)
he

We have used E = Mc? (dE = ¢*dM) and assumed that const = 0. Notice that
Eq. (1.52) holds if the other variables (V, .. .) are held fixed. In the case of the black
hole the corresponding quantities are its charge and angular momentum. The
entropy in Eq. (2.66) may be cast in a different form, i.e.

SStephen William Hawking, British theoretical physicist, *Oxford 8.1.1942, tCambridge
14.3.2018.

7 This distribution is shown for one particular temperature in Fig. 5.13.
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Fig. 2.6 Hawking’s burial
site in Westminster Abbey,
London, UK

kg A
Sbh - ZE (2.67)

A = 16nG*M?/c* is the horizon area® and 1120 the square of the Planck length
Jp = (hG/c*)"* ~ 10735 m. Equation (2.67) is the Bekenstein-Hawking entropy
formula. Bekenstein (1973) was the first to systematically explore that “a black hole
exhibits a remarkable tendency to increase its horizon surface area when under-
going any transformation” in analogy to the second law of thermodynamics (as
expressed via (1.50)). He concluded that a black hole should posses entropy pro-
portional to A. His reasoning, predating the discovery of black hole radiation, was
based on the connection between entropy and information or rather the lack of
information.” The formula for Spn, which he obtained, differs from (2.67) by a
numerical factor (he introduced /1,23 on dimensional grounds!).

8 This formula may be obtained classically! The velocity necessary to escape from a mass M
starting at a distance R is v, = (2GM /Rbh)l/ 2, Substituting v,,. = ¢ and solving for Ry, yields
A via A = 4nR2,.

° This connection is discussed in Sect. 5.1.1.
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We may estimate the time #,,, (very roughly!) it should take for the black hole to
evaporate via

aMm dE 4 1
N AT~ — 2.68
dt dt M2’ ( )

i.e.
tyap M
/ df' ~ / dm'M”. (2.69)
0 0
Our final result is
G2M3

tyap ~ — (2.70)

where the factor G?/(hic*) follows from dimensional analysis. Table 2.3 compiles
some numbers for M equal to the mass of the sun, the earth, and two arbitrary masses
(one corresponding to the cosmic background temperature discussed in the context
of Fig. (5.13), and illustrates the extreme numbers (The age of the universe is
estimated at 5 - 10'7 s!). This shows that the radiation is significant only for black
holes much smaller than those that are expected to form by the collapse of stars.
Black holes possessing smaller masses could have formed in the early universe, but
thus far no conclusive experimental evidence for black body radiation, especially for
the brief intense flash indicating a vanishing black hole, has been found. A detailed
discussion of the underlying theory is given in Susskind and Lindsay (2005).

Isotherms and Adiabatic Curves

Discussing the Carnot engine we had studied the thermodynamic cycle in the P-V-
plane depicted in Fig. 2.7. The two curves labeled T} and T, are called isotherms
(T = constant). The two other curves are adiabatic curves (dg = 0).

Starting from the ideal gas law, PV = nRT, we may show that the sketch is
correct in so far as the isotherms are less steep than the adiabatic curves, i.e.

Tablg .2.3 Characteristic ' M (kg) Ry, (m) Ty, (K) tyap (S)
quantities for black holes with
selected masses Sun 2-10% 3-10° 61077 1070
Earth 6-10* 9.1073 6-1072 10%*
4.10% 6-107° 2.75 10¥
710! 10715 210" 109
1 10—27 1023 10—2()
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Fig. 2.7 Carnot cycle

op| _op
OVir™ 0V lsg=0

Notice that the combination of the first law, i.e. dE = —PdV (if g = 0), with
Eq. (2.2) yields

—PdV = CydT. (2.71)
From
orT oT
dT = —‘ av —’ dP
ovlp + OP lv
follows
P
dTl = —dV + KdP.
nR nR
This means
P %4
—PdV = — —dP
dV Cv<anV+ an )
or

Cy\dV CydP
— 1 4+ —=)|—=——
nkR) VvV nR P
and therefore

din P
dlnV

nR
5g=0 Cy’

(2.72)
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Along an isotherm we have

dP nRT P

avir — vz v

and therefore

dInP
=—1. 2.73
dinVir ( )

Combination of (2.72) and (2.73) yields

dlnP - dlnP
dinVir  dInVlsg=0

or

dP - dP
dvir = dvVlsg=0

Efficiency of Engines with Ideal Gas as Working Substance

We study three examples: (a) the Carnot engine or cycles, (b) the Otto cycle, and
(c) the Diesel cycle.

(a) Figures 1.10 and 2.7 both show the Carnot cycle. Assuming that the working
medium is an ideal gas we want to compute the thermal efficiency for this cycle.
We consider the work done by the gas along the different parts of the cycle:

Vi oT=0 Vb
a—b: wip :/ PdV = nRTzlnv
v,

a a

Ve - T,
b—c: Wpe= / pav =" —CV/ dT = —Cy(T, — T»)
Vi T:

b 2

Va 5T=0 Va
c—d: We.qg= / PdV "="nRT), lnv
v,

. c

Va N TZ
d—a: Wi.= / PdVaq:_O—CV/ dT = —Cy(T, — Ty).
V. T

d 1

The total work done by the gas is
W = Waosp +Whse +Weed +Waa = Wab +Wea- (2.74)

Now we compute the heat input g,. Notice that for an ideal gas, as we just have
seen, AE = AE(T). The path from a to b is along an isotherm however and



22

(b)
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therefore 0 = AE,_, = g2 — Wa—p, 1.€. g2 = Wa_p. We thus obtain for the
thermal efficiency

w Weosd Ty In[V,./V,]
= =1+ S e 2.75
g q> Wa—b Tz h’l[Vh/Va] ( )
Integrating Eq. (2.71) for the ideal gas yields
V T/ Cv/(l’lR)
I 2.76
= (%) (276)

along an adiabatic curve. We can use this to express V,; via V, and V, via V.
The result is

n=1--+ (2.77)

in accord with Eq. (1.44).
Figure 2.8 shows the Otto cycle. The contributions from the different parts of
the cycle are

a—b “qa—b =0 —wip :CV<Tb_Ta)
b—c:wp..=0 qb—c = CV(TC - Tb)
c—diqeeqg=0 —wey= CV(Td - TL)
d—a:wig=0 qg.o=Cy(T,—Ty).

The thermal efficiency is

w - *Cv(T}, — Ta) — Cv(Td — TC) -1 Td — Ta
qb—c CV(TC - Tb) Tc - Tb ’
Fig. 2.8 Otto cycle pA
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(c)

Fig. 2.9 Diesel cycle

Along the adiabatic curves we have

T, _ (1) e

With V;, =V, and V, = V,; follows

T,

T,

Ty
— or
T,

and therefore

n=1-

Ty
T,

2 Thermodynamic Functions

(2.78)

Figure 2.9 shows the Diesel cycle. This cycle is similar to the Otto cycle. The
difference is that the isochor, i.e. the line of constant volume from b to ¢, is
changed to an isobar, a line of constant pressure. The contributions from the

different parts of the cycle are in this case

a—b:q,.p=0
Whe = Pp(Ve — Vi)
c—d:geq=0

d—a:wig.,=0

b—c:

Here the thermal efficiency is

—Wa—p = CV(Tb - Ta)

gb—c = CV(TC - Tb) + Wpe
— Weed = CV(Td - Tl‘)

dd—a = CV(Ta - Td)

w _ —Cv(Tb — Ta) +Pb(VC — Vb) — Cv(Td — TC)

qb—c

Cv(T. = Ty) + Py(Ve — Vi)

W,
qb;c \ Wewd
b ¢
¢ 0gq=0 d
0g=0 -

! qd» a

A a— [
' v

W
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Fig. 2.10 Two cycles in the T
T-S-plane

Using the ideal gas law together with Eq. (2.76) this may be rewritten as

nR/Cy 1+nR/Cy
1— ﬁ 1 (Vc/Vb) 1 ] (2'79)
V., 14+nR/Cy V. /V,—1

17:

Notice that there is the following relation between the efficiencies of Otto and
Diesel cycles:

A
l—n= (12 2.80
" (V) g (2.80)

where

1¥-1  Diesel
&= { 1" oo (281)

with x = V,./V,, and y = 1 +nR/Cy. One can show (exercise'?) that gpieser > 1
for x > 1 and y > 1. This means that a reversible Otto cycle with an ideal gas as
working substance is more efficient than a reversible Diesel cycle at the same
compression ratio, V,,/V,. However, real Diesel engines can operate at greater
compression ratios and therefore greater efficiencies than Otto engines.

Remark In Fig. 1.11 we compare the Carnot engine to a competing X-engine.
A conclusion in the attendant discussion is that #¢,,,,; = 1x if X is reversible. This
may inspire the idea to replace X with reversible Diesel and Otto engines. The result
is that both engines should have the same efficiency in contradiction to the above
calculation. Where is the mistake? If we apply Eq. (1.37),i.e. n = 1 — q1/¢2, to our
two engines using g; = —qq4—, and g2 = gp_., then we can indeed use the same
1 =1—=(—q4—a)/qp—c in both cases. The respective results agree with the results

19Tdea: (a) expansion in terms of x — 1 near x = 1 shows that g > 1 in this limit; (b) comparison
of x-derivatives of denominator and numerator of g.
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of (b) and (c). The difference is that the two cycles are not the same, leading to
different efficiencies for identical compression ratios.

Cycles in the T-S-Plane

Figure 2.10 shows two reversible cycles in the T-S-plane (scales are identical).
Which of the two has the greater thermal efficiency? The basic equation is

dE = TdS — dw. (2.82)

In both cases E = E(T,S) and ¢

eyele dE = 0, because E is a state function. The

work done during one complete cycle is

w:jf a’w:f Tds (2.83)
cycle cycle

(clockwise). The heat absorbed is obtained by integration along the parts of the
cycle for which dS > 0, i.e.

= 7{ dw = f Tds. (2.84)
cycle, > cycle, >

Thus the two thermal efficiencies are

w areal —2-3—1

n=—=

= 2.85
qin areaa-2—3—b-a ( )

While the areas in the numerators are equal, the area a-2-3-b-a is larger for cycle
IT and therefore

Ny >Ny (2.86)

Temperature Profile of the Troposphere

At high altitude the air temperature may be much lower than the ground temper-
ature as some of us know from traveling on airplanes. How can we explain this?

We consider an air parcel rising in the atmosphere. According to the first law the
differential change of its internal energy is
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OE
dE = 8q — PdV = CydT + | av.
ovir

Assuming that the air is an ideal gas the last term on the right is zero as we have
just shown. We also assume that the bubble does not exchange heat and thus rises
adiabatically, i.e. g = 0. Again we simply have

—PdV = CydT. (2.87)

We want the temperature, 7, expressed in terms of the height, &, the air bubble
has risen. The quantity which we may connect easily to / is the pressure—as we
shall see. Therefore we use the ideal gas law to replace dV via

—PdV = —nRdT +nRTd In P, (2.88)

Combination of Egs. (2.87) and (2.88) yields
zdInT =dInP, (2.89)

where z = Cy/(nR) + 1.

In order to express P in terms of # we consider a column of air parallel to the
gravitational field of the earth as shown in Fig. 2.11. The pressure at the bottom of
the column element (solid cube), P(h), is related to the pressure at its top,
P(h+ oh), via

P(h) = P(h+ 5h) + 5"%"‘5" (2.90)

Here om,; is the mass of the air contained in the column element and g is the

gravitational acceleration. Via the expansion P(h + 6h) = P(h) + (dP(h)/dh)oh we
find

Fig. 2.11 A column of air
parallel to the gravitational
field

h+6h

amair
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dP(h) = —cgdh, (2.91)

where ¢ = 0myg;,/(AOh) is the mass density in the column element. ¢ of course
depends on £, the position of the element in the column. Assuming that the column
element contains n moles of air we write ¢ = nm,,,;/(nRT/P) using the ideal gas
law. Here m,,; = 0.21mg, +0.78my, ~ 0.029 kg is the molar mass of air, where
mo, ~ 0.032 kg and my, ~ 0.028 kg are the molar masses of oxygen and nitrogen.
Thus Eq. (2.91) turns into

T,dh
dinP=—2", (2.92)
TH,
with
RT,
H, = , (2.93)
Mpol§

ie. H, ~29.2T, mK~!, where T, is the air temperature at & = 0. Usually H, is
close to 8500 m.
Combination of Eq. (2.89) with Eq. (2.92) yields after integration

T = T0<1 —ZZO>. (2.94)

According to this equation the temperature drops linearly with increasing alti-
tude. However, we need z before we can compute concrete numbers. We may look
up z in a table. In Ref. HCP we find Cp = I.OO7JK‘1g‘l at T =300 K and
P = 10° Pa. For an ideal gas Cp = Cy +nR (cf. p. 74) and therefore z ~ 3.5.11
Thus, according to Eq. (2.94) the temperature reaches absolute zero at around
3-10* m.

Before we compare this to the experimental data we want a corresponding
pressure profile P(h), which is readily obtained by inserting Eq. (2.94) into
Eq. (2.92). We find

dh

dnP=—z7—. 2.95
n ZZHo—h (2.95)

"' Some of you may already know that Cy/(nR) = 3.5 =7/2 on the basis of the so called
equipartition theorem, because every degree of freedom contributes 1/2 to Cy/(nR). Every O,-
and every N,-molecule, the majority of what air consists of, has three center of mass kinetic
degrees of freedom (3 - 1/2; cf. Eq. (2.25)). In addition both have two axes of rotation (2 - 1/2).
Finally they both are one-dimensional oscillators (2 - 1/2). A more detailed, i.e. quantum the-
oretical, calculation reveals that these two degrees of freedom do not contribute at the tem-
peratures considered here. Therefore Cy/(nR) =5/2 to good approximation and thus
Cp/(nR) = 7/2.
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If zH, > h we can neglect h in the denominator and the pressure profile
becomes

P = Pyexp[—h/H,], (2.96)

where Py is the pressure at & = 0. Equation (2.96) is called barometric formula.
Integration of the full Eq. (2.95) yields

P = Py(T/T,) (2.97)

instead.

Fig. 2.12 Summary of results
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Fig. 2.13 A volume element P P+SP
experiencing a pressure 1
difference | |

i Al &

Figure 2.12 summarizes our results (solid lines—Eqs. (2.94) and (2.97); dashed
line—Eq. (2.96)) and compares them to data (crosses) taken from the literature
(here: “http://www.usatoday.com/weather/wstdatmo.htm”; “Source: Aerodynamics
for Naval Aviators”). Notice that the temperature data are not direct measurements
but rather data points computed from simple formulas describing the average
temperature profile at different heights. Our calculation applies to the troposphere,
i.e. to a maximum altitude of roughly 10,000 m. Beyond the troposphere other
processes determine the temperature of the atmosphere. We see that our result
somewhat underestimates the actual temperature. The middle graph shows the
pressure profile. We notice that the two theoretical models (2.96) (isothermal
case'?) and (2.97) (adiabatic case) bracket the true pressure profile. The bottom
graph shows the compressibility factor, Z = PV /(nRT), versus h. The data points
scatter because of scatter in the density values. Nevertheless the graph shows that
our assumption of ideal gas behavior is very reasonable.

Before moving on we want to estimate one interesting number—the total mass
of the earth’s atmosphere, M,,,. Notice that the ground pressure is
P, = Ma,mg/(4nR%), where R =~ 6.37 - 10° m is the earth’s radius. With P, = 1
bar the total mass of the atmosphere is M, ~ 5.2 - 10'® kg.

Speed of Sound in Gases and Liquids

Figure 2.13 depicts a volume element in a medium. The medium can be a gas or a
liquid. The volume element experiences a pressure difference along the x-direction.
This means that the left face of the element experiences the pressure P while the
right face is under slightly higher pressure P+ P. Here P = P is a constant average
pressure in the medium, whereas 0P = 0P(¥,t) depends on position and time.

In order to derive an expression for the speed of sound we work from the
continuity equation

G (1) + V(7 1), 1)) = 0. (2.98)

2 With T = T, we can directly integrate Eq. (2.92) to obtain the barometric equation.
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Here c(7,7) is the mass density inside the volume element. Again we assume
c(F,t) = ¢+ dc(¥, t). The pressure modulation causes a corresponding slight spatial
and temporal variation of the density relative to its average, ¢. The quantity u(7, ) is
the instantaneous velocity of the volume element due to the pressure gradient.
Using the approximation (7, t)c(7, ) = i(7,t)¢ and taking another partial deriva-
tive with respect to time yields

2
o

de(P, 1)+ V (E%fj(?, z)) ~ 0. (2.99)

The term in brackets is the average mass density times the acceleration of the
volume element, which can be expressed via the pressure gradient according to the

equation of motion ¢dii(7, 1)/t = —VP(F, ). Therefore Eq. (2.99) becomes

2

5 0c(F1) = V20P(F, 1) ~ 0. (2.100)

In a final step we express OP(F,t) in terms of dc(7, t) using the thermodynamic
definition of the adiabatic compressibility,

10V
= ——— 2.101
ST TVorls (2101
defined analogously to the isothermal compressibility in Eq. (2.6). Adiabatic in the
present context means that the density changes in the volume element are fast and
no heat is transferred during the fluctuation. On p. 66 we work out in detail the
relation between kg and x7. But for the moment we make use of —0V/V = dc/c
and obtain OP = (EKS)fléc. This immediately yields the (density) wave equation
62

wéc(?, 1) — %6256’(7, t) ~ 0. (2.102)

The velocity of the waves, the sound waves, is

1

CK

vy =

. (2.103)

E

First we want to apply this formula to air and we ask: What is the speed of sound
in this medium? Air is an ideal gas for our purpose. When we work out xg in detail
(beginning on p. 66) we also show that in an ideal gas kg = (z — 1)/(zP). The
quantity z = Cy/(nR) + 1 was introduced in the context of Eq. (2.89). As in the
previous example, the temperature profile of the troposphere, we use
Cy/(nR) =5/2. Thus in air
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yy = R (2.104)
57nmol

where m,,,; =~ 0.029 kg is the air’s molar mass. At T = —100°C we calculate
vy = 264 m/s, while for T = 25°C we find v, = 346 m/s. Both numbers are in
excellent agreement with vs-values tabulated in HCP.

And what is the speed of sound in water? Here we need to know xs. Below we
shall show that kg = Ky — TVoc)%/Cp (cf. Eq. (2.165)). In Table 2.1 we find the
necessary values for water at for instance 20 °C. We also find that kg ~ k7 in this
case, and we obtain v, = 1481 m/s at this temperature—again in very good
agreement with the corresponding value in HCP.

Joule-Thomson Coefficient

The release of propane gas from its metal can causes significant cooling of the
latter. However, there may be situations when a gas leak causes heating and the
possible danger of explosion. The so called Joule-Thomson coefficient,

or

= 2.105
Ky P |y ( )

is the quantity which tells us whether the temperature will increase or decrease in
such a process. Here u;; > 0 means cooling (refrigerator) whereas u; <0 means
heating.

The general process is depicted in Fig. 2.14. A gas initially is under pressure P
and confined to a volume Vj. In an adiabatic process (dg = 0) the gas is pushed
through a throttle and expands into the volume V,, where the pressure is P;.
According to the first law the internal energy change is AE = E; — E; = Aw. The
net amount of work is Aw = PV, — P,V,, because P;V; is the work done to the
system and —P,V; is the work done by the system. Overall we find E; + P, V| =
E; + P1V; and therefore AH = 0. The process is said to be isenthalpic. This is why
the derivative in Eq. (2.105) is at constant enthalpy.

Fig. 2.14 A gas being throttle
pushed through a throttle \

el
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For concrete computations Eq. (2.105) may be transformed into

1 12)'%
or
TV 1
wr=¢ (ap - T). (2.107)

Let us find out how to get from Egs. (2.105) to (2.106).
We start with

OT| 3 0T | OH

M =3pln = "oHIroPIr
1 0H

Cp oP T.

(2.108)

The quantity OH/OP|; is similar to the quantity OE/OV|, calculated on p. 30,
i.e. the general approach is analogous. Via Eq. (2.11) it follows immediately that

TdS = dH — VdP
and thus

0S| OH

2 == vy, 2.109
OPlr  OPIr v ( )

Similar to the derivation of OE/JV|; we now compute

d(H — TS) = dH — TdS — SdT

(2.110)
= —8dT + VdP.
Here we find

O(H —TS)
= _ 2.111
or ‘P $ ( )

and

O(H —TS)
VT = 2.112
oP ‘T Ve ( )

Using the interchangeability of partial derivatives, i.e.
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8 d(H — TS) as

77‘ ‘ - (2.113)
oP 0T piT OP It
and
0 9(H - T5) TS)‘ ‘ _ov (2.114)
or  opP rlp 0T lp
we finally obtain
o’y _ vy (2.115)
OP It oT Ip

Combination of this equation with Egs. (2.108) and (2.109) completes the proof.
If we assume that V o T* then the Joule-Thomson coefficient becomes

L(kf T

Ly o 1 (k1T —TY) =
Cp

Cp

Because Cp > 0 (we shall show this), we find that for the ideal gas u; = 0. If

the gas is not ideal we have u;; > 0 for k > 1, which means cooling, and y; <0

for k<1, which means heating. We can now go ahead and measure k in order to

find out what will happen. Below we return to the Joule-Thomson coefficient in the

context of the van der Waals theory. The latter provides insight as to why a gas will
do one or the other.

2.3 Free Energy and Free Enthalpy

In the preceding section we found the two quantities E — TS (cf. Eq. (2.13)) and
H — TS (cf. Eq. (2.110)) to be rather useful. We therefore define the two new
functions called the free energy'?

F=E-TS (2.116)
and the free enthalpy'

G=H-TS. (2.117)

13 Or also Helmholtz free energy; Hermann Ludwig Ferdinand von Helmholtz, German physiol-
ogist and physicist, *31.8.1821 Potsdam, Germany; 18.9.1894 Charlottenburg, Germany.

4 0r also Gibbs free energy; Josiah Willard Gibbs, American scientist, *11. 2.1839 New Haven,
Connecticut, 128.4.1903 New Haven, Connecticut; the founder of modern thermodynamics.
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Computing their total differentials we find

dF = dE — d(TS) = dE — SdT — TdS

(151) (2.118)
= —8dT — PdV + pdn+. ..
and
dG = dH — d(TS) = dH — SdT — TdS
(151) (2.119)
="—8dT + VdP + udn+. . .,

where
oF
— =-S5 2.120
or Von,... ’ ( )
oF
— =—P 2.121
(‘3V Tn,... ’ ( )
oF)  _ (2.122)
onlry.,.

and analogously
oG
- =_9 2.123
GT Pn,... ’ ( )
oG
e -V 2.124
oP Tn,... ’ ( )
oG _ (2.125)
onltp,.

Obviously F = F(T,V,n,...) whereas G = G(T, P,n,...). The two are related
via

G=F+PV, (2.126)

i.e. they are Legendre transforms of each other (G =F — VOF/0V|; and
F =G — POG/OP|;).

Remark 1 F is called a thermodynamic potential with respect to the variables T, V,
n, .... The same is true for G with respect to T, P, n, .... In general we call a
thermodynamic quantity a thermodynamic potential if all other thermodynamic
quantities can be derived from partial derivatives with respect to its variables.
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Remark 2 By straightforward differentiation and knowing that S and E are state
functions it is easy to show that F and G are state functions also.

2.3.1 Relation to the Second Law

According to the first law we have
dE = dg — ow. (2.127)

Combination of this with Clausius’ statement of the second law (cf. Eq. (1.48))
yields

dE —TdS < — dw (2.128)
or

dF |t +éw<0. (2.129)

If 0w stands for volume work only, then we may deduce
dF [rv <0. (2.130)
From this follows (cf. Sect. A.3) the attendant relation for the free enthalpy, i.e.
dG |rp <0. (2.131)
An illustration in the case of the free enthalpy is shown in Fig. 2.15. A system

initially may be prepared in a state corresponding to the solid circle. It lowers its
free enthalpy as much as possible, which brings it down to a point on the surface

Fig. 2.15 An illustration of G A
the relation of G to the second
law dGIT,p<O

dG =-SdT + VdP

\
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shown in the sketch, where dG is given by Eq. (2.119). This surface represents the
states of lowest free enthalpy above the T-P-plane.

Of course there may be other types of work, not just volume work, involving
variables, X, other than V, which are controlled from outside the system (the
examples below explain what is meant here). In this case Eq. (2.130) and Fig. (2.13)
still apply if ... |7y and ... |7 p are replaced by ... |7y x and ... |7 px.

This book contains a number of applications of both (2.130), e.g. phase sepa-
ration in the context of van der Waals theory, and (2.131), e.g. chemical reactions.
Nevertheless, already at this point we want to look at three instructive examples.

Example—Capillary Rise Figure 2.16 shows a tube of radius R with one
end submerged in a liquid. In the figure the liquid has risen to a height A
against the pull of gravity. We want to calculate the equilibrium height of the
liquid in the tube.

This system comprises the liquid, the tube, and the earth. Ignoring all other
effects we use OF |r= (0E — T9S) |r, and find that 0F |r may be expressed
by the following types of work involved when & changes by the small amount
oh:

OF |7r= y71.0A — y40A + cghdV. (2.132)
Here 5A = 2nRoh and 6V = nR20h, i.e.
SF |r= [2nR (7 — v1a) + nR*cgh] oh. (2.133)

The quantities y7; and g, are the surface tensions of the tube-liquid and
tube-air interface, respectively (cf. Eq. (1.13)). The last term in (2.132) is the
negative of the work done by the system when raising the liquid volume 6V
to the height h. Notice that c¢ is the mass density of the liquid, and g is the
magnitude of the gravitational acceleration.

In the above equations /4 is a parameter not controlled from outside the
system. We are not doing work to the overall system nor do we extract work.
The equilibrium height may be affected from the outside only by altering the

Fig. 2.16 Capillary rise Tia

5

TL

-— 5
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temperature, changing the surface tension or the liquid density. But here T is
held constant together with the overall volume of the system. Thus we may
apply Eq. (2.130) to the above free energy, i.e. we find the equilibrium value
of 4 by minimization of the above free energy with respect to /. This means
we simply set the term in square brackets equal to zero:

0= (77 — 774)27R + cghnR>. (2.134)
Solving for £ yields the equilibrium height

h— 2(914 — 71L) ) (2.135)
cgR

Because & depends on the sign of Y74 — 77, it may be positive or negative.
The difference y;, — y7; can be expressed in terms of the liquid-air surface
tension y and the contact angle 0 (cf. Fig. 2.16) via the “force balance”
Yra — Y = ycos 0. This is Young’s equation, which we shall discuss in
more detail in the next chapter. Hence

2
p = 2reost (2.136)
cgR

(e.g. y = 0.0728 N/m for water-air at 20 °C). A nice discussion of capillarity
and wetting phenomena can be found in de Gennes et al. (2004) (Pierre-Gilles
de Gennes, Nobel Prize in physics for his contributions to the theory of
polymers and liquid crystals, 1991).

Example—Dielectric Liquid in a Plate Capacitor The next, partially related
problem is illustrated in Fig. 2.17. A plate capacitor is in contact with a liquid
possessing again the mass density ¢ and the dielectric constant ¢,. If a con-
stant voltage, ¢, is applied to the capacitor, the liquid rises to a certain

Fig. 2.17 Dielectric liquid in i
a plate capacitor |
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equilibrium height between the capacitor plates. This is what we want to
calculate.

However, first we must discuss the relation of the free energy, F, to the
electric work expressed in Eq. (1.21) ...to be continued...

We start from

OF = (E — TS) = 0E — SOT — T4S

5B soT— (5E_/dvm+...)
4r

E- oD
= 86T + /dV—,
4r

i.e.

OF — —SoT + /dvEfD. (2.137)
T

Momentarily we use only the electric field contribution from Eq. (1.21). The dots
in the second line indicate that there are other types of work in general, which here
either do not occur (e.g., chemical work) or can be neglected (e.g., volume change)
or will be added later (work against the gravitational field). Also notice that

E_¥) (2.138)
4t 9D I1yV,...
where f is a free energy density.

Thus we find that in the present case we have F = F(T, l_j) However, this is not
appropriate here—why? Notice that the scalar potential (voltage drop), ¢ is related
to the (mean) electric field in the capacitor via

-

E=-V. (2.139)

The equation applies to both the filled and the empty part of the capacitor. This
means that if we hold the voltage on the capacitor plates constant, we also hold the

E-field between the plates constant. If we want to minimize F = F (T, D; h) with
respect to A, in order to compute the equilibrium height, we must do this keeping 7

and D fixed. But D is not the same as E, which is constant in the present setup. Thus
we need a new function F = F(T, E; h) instead.
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We try the Legendre transformation

. E-D
F=F— /dV (2.140)
4z
and obtain
5F:5F—/dV5E—'D—/dvE'5D
4z 4r
2.5
= —S5T—/dV(S ,
4n
ie.
~ OE -D
oF = —SéT—/dV P (2.141)

Indeed we have F = F(T, E;h). We now continue our example.

... The explicit E-dependent contribution to F |7 is obtained by integration of
the differential relation OF /OE|; = —¢,EV /(4r) with respect to E from zero
to the actual field strength. Notice that we assume a constant field strength
between the capacitor plates as well as D = &.E (This equation is used in
several places throughout this book, which means that the attendant calcu-
lations do depend on its validity!). Notice also that the field strength is the
same with and without the dielectric. Analogous to Eq. (2.132) we collect all
relevant work terms expressing oF | via

E jp1 v E g0 v

~ dE' - E dE' - E

OF |r= —er/ 5V+/ OV + cghdV (2.142)
0 4 0 4n

The first term is due to a volume increase, 0V, of liquid between the
capacitor plates. The second term is due to the corresponding reduction of
vacuum (or air). Following the same reasoning as in the previous example,
here the system includes the capacitor, the liquid, and the earth, we find the
equilibrium height by setting the right side of the above equation equal to
Zero:

1
0= —g(g, — 1)E? + cgh. (2.143)
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Solving for 4 yields

he M (2.144)

8mcg

Remark Somebody may comment that the introduction if F is not necessary,
because D and E here are related via a constant &,. This is not true. Using F instead

of F changes the sign of the first term in brackets in Eq. (2.143) and there would be
no sensible solution.

Before leaving this subject we study the same problem from another angle. We
detach the capacitor from its voltage supply. This means that we switch from
¢ = const to a situation where Q = const. Here £ is the charge on the capacitor
plates. What happens to Eq. (2.144)?

Figure 2.18 illustrates the situation. At (a) we have the boundary conditions

(E[ — E[[) xn=0 and (5[ - 511) = O, (2145)

where 7 is a unit vector perpendicular to the interface between liquid and vacuum
(or air) at (a). At (b) we have instead

E;xi=0 and  D;-ii =4na;. (2.146)

Now 7 is perpendicular to the capacitor plates. If we move (b) up into region II
the boundary conditions become

E[] xn=0 and 511 A= 47'[0'11. (2147)

ar and oy are the surface charge densities in these respective regions. From (2.145)

we can see that E,; = E, ;. Because 5, = 8,E, and 51, = E"H we can conclude
from (2.146) and (2.147) that

Fig. 2.18 Different
boundaries in the case of the
liquid inside the plate
capacitor
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o] = &0y, (2148)

i.e. the surface charge densities in the two regions are not equal. We can use this
result to obtain

&-Q/L,

0]
= oilyh+ ~L,(H —h = 2.149
Q= oaily +8r o ) o o1 (& — Dh+H’ ( )
where L, is the width of the capacitor in y-direction.
We now work out
E-D E.D
/ av — / av
Veapacitor 8m filled Veapacitor 8n empty
4 A 2.150
- (herfJ +(H - h)EfJ,) - HEY, (2.150)
A
= (& — 1)hE".
g = 1)

In the last step we have use Ey; = E, ; = E. This shows that we can treat this
case analogous to the fixed potential case above. The result of course is the same as
before. However, this time we must express E2 via the total charge Q.

Example—Euler Instability The third example in this series is illustrated in
Fig. 2.19. The figure shows a thin plate in a vice subject to a compressive
force, f.. This systems encompasses the plate only. The pressure exerted by
the vice is controlled from the outside. In this case there is an elastic F|, i.e.

eh? Pr\’
F, = — | .
“ |T 24 /plate dXdy <8x2>

The quantity £ is the plate’s thickness, ¢ is the elastic modulus of the
plate’s material. The function { = {(x) describes the shape of the plate when
looked at along the y-direction. The expression on the right side of the
equation is the work done by the plate’s internal forces, when it is bent into
the shape described by {(x). This result of continuum theory of elasticity may
be found in Landau et al. (1986).

What is the equilibrium shape of the plate depending on the applied
compressive force? To find the answer we now employ relation (2.129), i.e.

OF |1 + 0w <0. (2.151)
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Fig. 2.19 Buckling of a thin £
plate ~

X - L
/L) z L l ,,,,,,,
7 e
VS =
-~
g e
_—~ ////
Here w is the negative of the work done by the vice, i.e. w. = —w. We

compute w, by adding up the total displacement parallel to the direction of the
force from infinitesimal increments (cf. the inset in Fig. 2.19):

ds — dx = \/dx® + (d¢(x))* — dx ~ dx<1 + % <ag(;)) —1).

Thus

o 1 o
-3¢ f(5) =z [ (5)
V is the volume of the plate, and ¢ is the stress equal to f./(hL,), where L, is

the extend of the plate in y-direction.
We search for the minimum of the left side in (2.151) by “offering”
suitable shape alternatives to the plate, i.e. we carry out a variation (or

minimization) in terms of (:
¢ o (F0) e (00
ox2 2\0x) |

We write 7 [* hf/z dzz? = 5h* =7 and thus

—5( el—wc)—ég/dv
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oy fan|a(G8) <o) | -0 )

Carrying out the variation we obtain

feenle(Ge) () - (@) ()] -o

Partial integration using 6{(x) = 0 at £L/2 finally yields the differential
equation for the “shape function”:

84C 5‘2C

Making the Ansatz {(x) = {, sin(gx) we find
¢Zq' —0q* =0 or Gy = eLq,

The planar solution is ¢ = 0, whereas the bent plate corresponds to g > 0.
The smallest possible non-vanishing g-value, g, defines the critical stress
limit, o, at which the transition from planar to bent occurs spontaneously.
This value of ¢,;; depends on the boundary conditions. Here we have
qn = (n/L)n, where n = 1,2, ... and therefore

w2l

= (2.153)

Ocrit =

In the literature this phenomenon is called Euler buckling. The problem
may be modified by embedding the plate into an elastic medium. This results
in larger values for g,;, depending on the medium’s stiffness (Young’s
modulus).

Remark Notice that the above system has the freedom to decide to which side it
buckles. This phenomenon is a spontaneous symmetry breaking.

2.3.2 Maxwell Relations

Equating the right sides of (2.16) and (2.17) as well as the right sides of (2.113) and
(2.114) we have used that both F" and G are state functions. The resulting formulas,
(2.18) and (2.115), are examples of so called Maxwell relations.
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It is easy to construct more Maxwell relations via the following recipe. Take any
state function g and any pair of variables, x and y, it depends upon. If g = pdx + gdy
then

dp

| _%
dy

xiax

(2.154)

y

yields a Maxwell relation. In general we may use the differential relations in
Appendix A.2 to generate even more differential relations between thermodynamic
quantities, i.e. more Maxwell relations.

Example—Relating Cy and Cp A nice exercise useful for practicing the
“juggling” of partial derivatives, which is so typical for thermodynamics, is
the derivation of the general relation between Cy and Cp. We start from

OH OE
_ — | = 2.155
Cr=Cv oT lp OTlv ( )
Using G = H — TS and
_g 96 _oH . .08 (2.156)
orlp  OT Ip oT |p
as well as F = E — TS and
g OF| _OE| _o .05 (2.157)
oTlv  OTlv oT lv
yields
oS
=T— 2.158
Cy T v ( )
and
oS
=T—]| . 2.159
Cp 3T |p ( )
With
Q‘ ey, G5 67 (2.160)
oT Ip oTlv oV IrdT lp
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we have

0S| ov

v lrar lp
OP| 0V
arlvar lp

Cp—Cy=T

43 _g 0P| (V)
- oV Ir\oT Ip

2

(25),26) v oxp '
Kt
Using (2.9) we find for an ideal gas
Cp — CV = }’lR,

(2.161)

(2.162)

which we had used in the calculation of the air temperature profile on p. 56.

Example—Adiabatic Compressibility Another exercise similar to the pre-
vious one is the derivation of «g, the adiabatic compressibility. This quantity

is defined in Eq. (2.101), i.e.

ST " vorls

We transform the right side via

V| @wnav, aT|  av

OP Is 78TP6PS+ OP T
~—~— ——
@5) (2.6)
=" Voap = —Vkr

The remaining unknown derivative is

OP s ~aSlpoPlr — OSlp 8P8T
~——

(2.159)
- o

oT| a3 OT| 0S| OT 88GH

Putting everything together yields

7dT| =Vap

(2.163)

(2.164)



2.3 Free Energy and Free Enthalpy

75
)
Ks = K7 — TV—P (2165)
Cp
or if we combine this equation with (2.161)
C
5 = (2.166)
Kt Cp
Again we can calculate kg for an ideal gas. The result is
z—11
== . 2.167
Ks="—7p (2.167)

The quantity z = Cy/(nR) + 1 was introduced in the context of Eq. (2.89) (cf. its
discussion in the footnote on p. 56).

Example—Electric Field Effect on Cy, What is the effect of an electric field
on Cy? We find the answer by working from

o O*F

‘ > OF ‘
— 72 . :72 = =9
OE OT*pE rp OT* QEITp IpE (2.168)
eH g, CL _vp)(am)
ie.
dCy 2D
vi| _TV&D| (2.169)
OE ITp 47 OT? p.E

where p = N/V and assuming constant fields throughout V. With D=¢kE
we may easily integrate this equation from zero to the final field strength,
which yields

TVE? §%¢
E) = Cy(0 . 2.170
Cu(E) = Cv(0)+ g~ | (2.170)

Remark A similar strategy helps to find corresponding expressions for x7 or op.



76 2 Thermodynamic Functions

Example—Electrostriction Here we want to show the validity of

Vo _Eon
pOElur  4m 0P

2.171
i (2.171)

(cf. Frank 1955). Imagine a plate capacitor completely submerged in a
dielectric liquid. The dielectric constant of the liquid is &,. The size of the
capacitor is small compared to the extend of the liquid reservoir. This means
that far from the capacitor the latter has no effect on the chemical potential, u,
of the liquid, i.e. u is constant. In addition the temperature, T, is held constant
as well. The mean electric field, FJ, between the capacitor plates will affect the
density, p = N/V, inside the capacitor. This is the expression on the left. The
change does depend on electric field strength, E, and the derivative of &, with
respect to pressure, P. Our starting point is relation (A.3), i.e.

l&_p _ 1op ou
OElur —  pOulerOE | p1
p K pPOou p (2.172)

()
= prr

Note that (*) follows via pd/0p = —VO/9V and using dG/OV|; y p =
—1/xr derived below (cf. (2.195)). We continue with

o _DOF) | _00F) | o Ed
OE lpr~ OEON|tvEelpr ONOE|prirve 4 dp lET
(2.173)
The final ingredient is
e, (A2) OP e, 1 Oe,
Zor = = _r =" . 2.174
e op T 2 ap ‘E,T OP |ler k1 OP |ET ( )

Combination of the last three equations yields the desired result.

In order to estimate the magnitude of this effect we integrate Eq. (2.171)
assuming that the derivative on the right side can be replaced by its value at zero
field strength, i.e.

Ap B 0o (2.175)
p T 8n P log '
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The transition to SI-units is accomplished by replacing E with /4ne¢,E, i.e. in
SI-units Eq. (2.175) becomes Ap/p = (80/2)E288,/8P\oj. Because ¢, is a small

constant (~ 10~!! in these units), an appreciable effect requires rather high fields
and/or conditions for which the derivative becomes large."

2.4 Extensive and Intensive Quantities

An important concept is the characterization of thermodynamic quantities as either
intensive or extensive.

Imagine two identical containers filled with the same kind and amount of of gas
at the same temperature. What happens if we bring the two containers in contact
and allow the gas to fill the combined containers as if it was one. Obviously
temperature and pressure do not change. The quantities 7 and P therefore are called
intensive. Volume on the other hand is doubled. Mathematically this means V  n.
Such quantities are said to be extensive. n itself is therefore extensive. Thus far:

e intensive: T, P, ...
e extensive: V, n, ...

The ratio of two extensive quantities, e.g. n/V, again is intensive of course.
Another intensive quantity is the chemical potential, u. Whether one mole of
material is added to a large system or to twice as large a system should not matter.'®
This however has implications for the free enthalpy, G. According to Eq. (2.119)
we have for a one-component system

dG|, , = pdn, (2.176)
where . .. stands for other intensive variables in addition to 7 and P. Because u is
intensive and dn is extensive, we conclude that dG is extensive also. By adding (or
integrating over) sufficiently many differential amounts of material, n = [ dn, we
find the important relation

G(T,P,n,...) = un. (2.177)

For a K-component system this becomes

K
G(T,P,ny, .. ng,...) =y 1n,. (2.178)
i=1

"% In liquid water d1ne, /0P|, ~ 5 - 107> /bar.

16 Momentarily we talk about one-component systems and not about mixtures.
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K
Equating dG on the left with d(>_ w;n;) on the right, i.e.

i=1

K K
—SAT +VdP+ ...+ > pdni = (pdn; +midp;), (2.179)
i=1 i=1
yields
K
—SdT +VdP+ ... = mdy; =0, (2.180)
i=1

the Gibbs-Duhem equation. The significance of this equation will become clear in
many examples to come.

Remark 1 Suppose we consider the potential energy U/ of a system consisting of N
pairwise interacting molecules. Disregarding their spatial arrangement we may
write U ~ (N?/2)V~ [ drr*™". The factor N> ~ N(N — 1)/2 is the number of
distinct pairs, V is the volume, a is a certain minimum molecular separation, and
r~" is the leading distance dependence of the molecular interaction. If n > 3 the
integral is finite and consequently U/V o p?, where p is the number density
molecules. This means that ¢ (and also E) is extensive by our above definition.
However, if n < 3 the situation is more complex. Now it is necessary to include the
spatial and orientational correlations between the molecules. In general these
conspire to yield an extensive /. An exception is gravitation, where U/ V ~ p?V?/3
including an additional shape dependence.

Remark 2 Looking at the two Egs. (2.176) and (2.177) we may wonder whether
one can apply the same argument to

dF|T,V,.“ = pdn,

valid according to Eq. (2.118). This immediately leads to F' = G, which clearly is
incorrect! The point is that we cannot keep the volume constant and simultaneously
add up increments dn to the full n. Therefore this procedure does not work for

Example—Partial Molar Volume Consider a binary liquid mixture (A and
B) at constant temperature and pressure. The volume change due to a dif-
ferential change of the composition is

oV
dng +—
T,P.np Ong

v

dV=—
87’1A

dng = vadny + vdngp. (2.181)

T,Png

The quantities v4 and vp are called partial molar volumes. In this sense p;
is the partial molar free enthalpy of component i.
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Now we argue as in the case of Eq. (2.176). V is extensive and so is 7.
Therefore we may ad up dV’s to the full V at constant 7 and P and thus

V = vany + vgng. (2.182)

However, the quantity of interest here is not V but the volume difference
upon mixing, AV. The volumes of the pure substances are v;n;, where v; =

aV/ani|T7P’nj:0<i#j) (i,j = 1, 2) and thuS
AV = (v4 —v})na + (vg — vi)np. (2.183)

Notice that v4 and v are not independent. To see this we simply must
realize that we can carry out the steps from Eq. (2.178) to the Gibbs-Duhem
Eq. (2.180) with G replaced by V and y; replaced by v;. At constant 7" and P
this means

dvAnA +denB =0. (2184)

In addition we notice that this may immediately be extended to more than two
components. And this is not the end, because the same reasoning applies to every
extensive quantity ® = ®(T,P,ny,ny,...), i.e.

K
AD = (b — ¢, (2.185)

i

and
K
Znidqﬁi =0 (T, P = constant), (2.186)
i1

where ¢; = 0®/0n;|; p n(i+j) are the respective partial molar quantities. Here 0]
stands for extensive thermodynamic quantities like V, H, Cp, . ...

2.4.1 Homogeneity

Before leaving this subject we look at it briefly from another angle. In mathematics
a function f(xy,x2,...,x,) is said to be homogeneous of order m if the following
condition is fulfilled:
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FOx1, Axa, . Axy) = A" (1, %, - - oy Xn)- (2.187)

Thus we may consider the extensive quantities free energy and free enthalpy as
first-order homogeneous functions in V, n; and n; respectively, i.e.

F(T, /LV7 /lnl,/an, . ) = }F(T7 V,I’ll , o, .. ) (2188)
G(T,P,iny, Jny,...) = AG(T,P,ny,ny,...). (2.189)

Differentiating (2.188) on both sides with respect to /4 yields

dF  OF ‘ K oF
== V4 - n;=F. 2.190
di 8(AV) T.nyna,... lz:; 8(Ani) T,V (i) ( )
For A = 1 this becomes
OF K oF 121),2.
F=2 il n G _py (2.191)
8‘/ T,ny,ny,... =1 81/1,' T,V i)

in agreement with Eq. (2.126). This also implies

OF

5= (2.192)

T.Visy

i.e. the generalization of Eq. (2.122) to more than one component. Differentiating
(2.189) on both sides with respect to 4 and setting 4 = 1 reproduces Eq. (2.178).
Clearly, we may apply the same idea to other extensive thermodynamic functions
like S(E, V,l’l[,nz,...), i.e. /LS(E, V,I’l],lflz,...) :S(/IE,)»V,an,lnz,...),
E(T,V,ni,ny,...),1e. AE(T,V,ny,ny,...) = E(T,AV,iny, Any,...), or others.

Likewise we may consider the intensive quantities as zero-order homogeneous
functions in their extensive variables, e.g.

P(T, V,nl,l’lz, .. ) = P(T, AV, )J’ll,/l}’lz7 .. ) (2193)

Differentiating with respect to A on both sides and subsequently setting 4 = 1
yields

(2.194)

oP
- W T.ny,ny,.. Z an,

TVnk )
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Using P = —0F /9V|;,, ,, . and changing the order of differentiation we find

0G 1
oV =—_ 2.195
8V T ny,ny,... KT ( )

This easily is verified by insertion of (2.126) and subsequent differentiation.

The concept of homogeneity does not produce otherwise unattainable relations,
but it is an elegant means to compute them. We revisit homogeneity in a gener-
alized form in the context of continuous phase transitions in Sect. 4.2, where again
it proves useful.
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Equilibrium and Stability ki

3.1 Equilibrium and Stability via Maximum Entropy

3.1.1 Equilibrium

The first row of boxes shown in Fig. 3.1 depicts a number of identical systems
differing only in their internal energies, E,, volumes, V,, and mass contents, n,. The
boundaries of the systems allow the exchange of these quantities between the
systems upon contact. The second row of boxes in Fig. 3.1 illustrates this situation.
All (sub-)systems combined form an isolated system. We ask the following ques-
tion: What can be said about the quantities x,, where x represents E, V or n, after we
bring the boxes into contact and allow the exchanges to occur?

According to our experience the exchange is an irreversible spontaneous process
and therefore relation (1.50) applies to the entropy of the overall system. We can
expand the entropy of the combined systems, S, in a Taylor series in the variables
E,, V,, and n, with respect to its maximum, i.e.

as, |o as, |o as, |o
S=5 AE, — AV, — An, —
+ Z( OE, v, n, + oV, |E,n, +an on, EV>
1 g |0 o |° 0
- AE, — AVy— Any .
i 2;( aEv’ Vg * aV‘;’ Eny + Any anv’ E‘,/,V‘/> (3 1)
8SV o aSV o aSV 0
AE, — AV, — An, — ,
% ( OE, v, n, + oV, |E,.n, +An on, EV)

where S =3 Su(Ey Vy,ny.). The quantity S is the maximum value of the
entropy. Notice that this quantity is somewhat hypothetical. The usefulness of this
approach relies on the differences between time scales on which certain processes
take place.
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Fig. 3.1 Identical systems initially differing only in their internal energies, volumes, and mass
content

Leaving a cup of hot coffee on the table, we expect to find coffee at room
temperature upon our return several hours later. If we come back after some weeks
of vacation the coffee has vanished, i.e. the water has evaporated. Only the dried
remnants of the coffee remain inside the cup. After waiting for a much longer time,
how long depends on numerous things including the material of the coffee cup, the
cup itself has crumbled into dust. However, if we are interested merely in the initial
cooling of the coffee to room temperature, we may neglect evaporation and we may
certainly neglect the deterioration of the cup itself.

In this sense we shall use the expression of equilibrium. For all practical pur-
poses equilibrium is understood in a “local” sense, i.e. the time scale underlying the
process of interest is much shorter than the time scale underlying other processes
influencing the former. In the case at hand equilibrium means that all variables, E,,
Vy, and n,, have assumed the values EY, V7, and n{ corresponding to maximum
entropy. However, we may impose deviations from these values in each subsystem,
Ax,, as illustrated in the bottom part of Fig. 3.1. The long dashed line indicates the
equilibrium value(s), which is the same in all (identical) systems. The short dashed
lines indicate the imposed deviations from equilibrium in each system, Ax,.
Because the whole system is isolated, we have the condition(s)

Z Axy = 0. (3.2)

Equation (3.1) is nothing but a Taylor expansion of S to second order in the Ax,,
which we can freely and independently adjust except for the condition(s) (3.2).

Here the value of §° is of no interest to us. But already the linear terms, i.e the
first sum, leads to important conclusions. If for the moment we consider two
subsystems only, i.e. v = 1,2, then the condition of maximum entropy yields



3.1 Equilibrium and Stability via Maximum Entropy 85
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851 o 8S2 o
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where we have used S =) S,(E,,V,,n,) and Eq. (2). Via the Eqgs. (1.52) and
(1.53), and (1.55) this becomes

11 P P
AE (o — =)+ Aav (2 - 22) —an (B F2) —
T1 T2 Tl T2 Tl T2

Because AE;, AV, and An; are arbitrary, we conclude that

T=T =T, (3.4)
P=P =P, (3.5)
L= =l (3.6)

at equilibrium.

These conditions of course may be generalized to an arbitrary number of sub-
systems. The latter in general are different regions in space within a large system. In
some cases different regions in space may contain distinct phases. An example is ice
in one region of space and liquid water in an adjacent region. One and the same
material may occur in different phases depending on thermodynamic conditions.
A phase is a homogeneous state of matter. Each phase usually differs from another
phase by certain clearly distinguishable bulk properties. Ice, for instance, has a
lower symmetry than liquid water. At coexistence, defined by the above conditions,
ice has a lower density than liquid water etc. Changing from one phase to another
often, but not always, is accompanied by a discontinuous change of certain ther-
modynamic quantities. We shall discuss phase transformations in detail below.

Equation (3.6) is derived for a one-component system. Of course we can extend
our reasoning to a K-component system, which yields

O (3.7)
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(i=1,...,K). Here ) and @ are the subsystem indices. Again (! and %) may refer
to different phases, i.e. at equilibrium the chemical potential of each component is
continuous across the phase boundary. In particular if there are IT phases, each
considered to be a subsystem, we find

) = (3.8)

where v, u=1,2,..., I

3.1.2 Gibbs Phase Rule

In general there are K components in Il different phases (solid, liquid, gas, ...) at
constant 7 and P. We may ask: What is the maximum number of coexisting phases
at equilibrium? Or to be pictorial, is the situation in Fig. 3.2 possible, where a
one-component system contains four coexisting phases—*“Gas”, “Liquid”, “Solid”,
and “Flubber”?

We assume a system containing K components and I coexisting phases. Each
phase may be considered a subsystem in the above sense. The state of each phase v
is then determined by its temperature T("), its pressure P(*), and its composition

(n,al, . al}. All in all we must specify

IT(K +2) (3.9)

quantities.

On the other hand, equilibrium, as we have just discussed, imposes certain con-
straints. In the case of two subsystems (now phases) and just one component we had
to fulfill the Egs. (3.4) to (3.6). In the case of Il phases and K components we have

Fig. 3.2 Hypothetically
coexisting phases Gas Gas /
} }
v v
Liquid Liqui/
A A
v v
Solid ;
*
\J $ /
Flubber /
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T — 7(2) — ()
p = p@ = — p(I)
(1) 2) (IT)

== =
1 2 ul
W =i ==l
2 I
W=k = =P

and therefore
(IT-1)(K+2) (3.10)

constraints. In addition there are constraints having to do with the total amount of
material in each phase. In the one-component system illustrated in Fig. 3.2 we may
for instance insert a diagonal partition without physical effect—it is a key
assumption that the shape of our container has no influence on the type of phases
present. This means that the total amount of material in a phase v,

does not affect the phase coexistence. This yields
IT (3.11)

constraints. The net number of adjustable quantities, i.e. the number of overall
adjustable quantities, (3.9), minus the number of constraints, (3.10) and (3.11), is
called the number of degrees of freedom, Z. Thus

Z=K-TI+2>0 (3.12)

Applied to our above system we find 1 — 4 4+ 2 <0. This means that four phases
cannot coexist simultaneously in a one-component system. The maximum number
of coexisting phases in a one-component system is three—but thermodynamics
does not specify which three phases. Relation (3.12) is Gibbs phase rule.
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Remark 1 Our reasoning is based on subsystems whose state is determined by
temperature, pressure, and composition. However, we may also include external
electromagnetic fields requiring recalculation of the degrees of freedom.

Remark 2 Below we shall discuss in more detail what we mean by component.
This in turn will affect the statement of the phase rule (cf. p. 110).

3.1.3  Stability

We now return to Eq. (3.1) and focus on the second order term. According to our
discussion the linear term vanishes at equilibrium. In addition, in the second order
term, the cross contributions (v # V') also vanish and therefore AS =S — S° is
given by

1 a | a|° 9 1°
AS=2 |AE—|  +AVio—|  +An—
22 ‘aEv anv vav\, E\‘Jl‘- ‘anv E\r,V\]
aSV ’ aSv ’ 8Sv ?
X { AE, — + AV, — + An, =2
{ ! aEv V\-,n\, v aV‘, E\u,nr va}’lv E‘-.V\‘ }
—— ————
=T =P/T =T
1 (3.13)
— EZ[' .]AS,
IS (=LA r+ L gTasy)
=3 v 7ASL- 7l )
1
=57 (—=AS,AT, + AP,AV, — Au,An,),
where we have used
TAS = AE+ PAV — uAn (3.14)

(cf. Eq. (1.51)). Equation (3.13) quite generally expresses the entropy fluctuations
via the corresponding fluctuations in the subsystems.
Now we choose the variables T, V, and n, which yields
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We need to transform this equation one last time using

0 av, 0
AT,
*op,

Py,ny
av,

=AV,, +—
vt on,

AP +avv

oV,
" On,

= a7, An,

TPy

AV,

T,,ny
o

An,.

T,.P,

The quantity AV, , is the volume fluctuation at constant mass content. We obtain

1
— AV, -
VKT Y 8nv

An?. (3.15)

C
(..)=——=LAT? - 2
T Ty,Py

According to the second law AS must be negative, because otherwise the fluc-
tuations would grow spontaneously in order to increase the entropy. Therefore we
find

Cy>0 kr>0 2 >0 (3.16)
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for the isochoric heat capacity, Cy, the isothermal compressibility, x7, and the
quantity %}; p- These relations are sometimes denoted as thermal stability,

mechanical stability, and chemical stability." Consequently we also have

PG 1 0*G

| = —=Cp<0 —| =-Vir<0 3.17
72 . TCP_ P2 - Kr > ( )
O*F 1 O*F 1

Il 2oy <0 2] —— >0 3.18
arx|,, T V=7 avE|.. Vir = (3.18)

0<Cy<Cph.

Remark The above condition for chemical stability can be generalized to K
components by replacing the one-component terms, An,. . ., in the derivation with
their multicomponent versions, » k Anyy. ... The result is

Oy e
> L AnAn > 0. (3.19)
<~ Ony |T.p
Jik=1
The simplest way to get rid of the subsystem indices v is to consider two
subsystems only, i.e. Anj = —Any; = An.

3.2 Chemical Potential and Chemical Equilibrium

3.2.1 Chemical Potential of Ideal Gases and ldeal Gas
Mixtures

Pure gas: Based on the Gibbs-Duhem equation (2.180) we may write for the
chemical potential of a one-component gas A at fixed temperature T

1 [P
ﬂg@(r, P;) — u (T,P3) = - /P VP (3.20)
A

The various indices do have the following meaning. The index (¢) reminds us
that we talk about gases. The index * indicates that the gas is a pure or
one-component gas and not one component in a mixture of gases. The other index °

! The conditions (3.16) are are mathematical statements of Le Chatelier’s principle, i.e. driving a
system away from its stable equilibrium causes internal processes tending to restore the equilib-
rium state.
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indicates a reference pressure. In thermodynamics the chemical potential is not an
absolute quantity. We rather compute differences between chemical potentials—
often there is some standard state, defined by specifying temperature and pressure
values, with respect to which the difference is calculated. If our gas is ideal the
above equation becomes

Py ap
W (1.p3) =g () = kT [
P
ie.

W (1, Py) = W8 (1, P5) +RT1n%. (3.21)
A

Mixture: For a mixture of K components at fixed 7 the Gibbs-Duhem equation
yields
K
nidy; = VdP. (3.22)
i=1
Here we can make use of Dalton’s law stating that for a mixture of ideal gases

K (2)
P=>"P and P,-:RTn;/ . (3.23)

The quantities P and V are the total pressure and the total volume. The quantities P;
are called partial pressures. P; is the contribution to the total pressure due to the

g)

presence of nl( moles of gas i. Thus Eq. (3.22) becomes

l

K
3 (duﬁg) — RTdIn n§g>) —0. (3.24)
i=1

In general this will be true only if dul(g) — RTdIn nl(»g) =0 for all i, which after
integration yields

(8)

(8) © (7 pr) — ng .
i (T.Pa) = (T P;) = RTIn 4o (3.25)
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The chemical potential difference on the left is between a mixture of a certain
composition {n''}X . where n{’ = P,V/(RT), and a pure A-gas at given

PZ =P = RTn(g>/V Because n<g> — ZK n(g) we may erte

i=1"% >

P
i (T,Pa) = ) (T,P) + RTIn (3.26)
A
or
1T, Py) = ¥ (T, P) + RTIn x| (3.27)

where we have used the definition

(g)
(&) _"a 3.28
= (3.28)

The quantity xgg> is the mole fraction of component A and

Sa =1 (3.29)

Even though we use P4 as the pressure argument in the chemical potentials on the
left sides of Eqgs. (3.26) and (3.27), the total pressure still is P, i.e. the total pressure
is the same on both sides of these equations. Egs. (3.26) and (3.27) describe the
difference between the molar chemical potential of the A-component in an ideal
mixture and the molar chemical potential of A in the pure and ideal A-gas at
temperature 7 and identical overall pressure P.

Combining Eq. (3.26) with (2.178) we may write down the free enthalpy of
mixing for a K-component ideal gas, i.e.

K
A,G(T, P, ngg), e nzg), )= n(g)RTngg) Inx'®. (3.30)

i
i=1

3.2.2 Chemical Potential in Liquids and Solutions

Pure liquid: Thus far we have dealt with gases. The new situation is illustrated in
Fig. 3.3. A pure gas A coexisting with its liquid. This may be achieved by partly
filling a container with the liquid of interest. After closing the container tightly an
equilibrium between liquid and gaseous A develops according to the conditions
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Fig. 3.3 A pure gas A coexisting with its liquid

(3.5) and (3.6).? In particular according to Eq. (3.6) the chemical potentials of A
must be the same in the gas and in the liquid, i.e.

l k. %
Wy (T, Py) = ud (T, Py). (3.31)

Here the index ) indicates the liquid state and P} now denotes the equilibrium gas
pressure at coexistence. Assuming that the gas above the liquid is ideal we may
obtain the right side of Eq. (3.31) by integrating from a reference pressure P; just as
in the case of Eq. (3.26), i.e.

WP = (1B = i (1. P) +RTIGE. (332)
A

This result applies along the coexistence curve separating gas and liquid in the 7-P-
plane. There should be such a curve according to the phase rule (3.12) applied to a
one-component system. In this case Z =1 —2+2 = 1. We may vary one degree
of freedom, T or P, which then fixes P or T, respectively. Figure 3.4 shows a partial
sketch of the coexistence curve for a one-component system.” Equation (3.32)
applies to point (a) but not to point (b) inside the liquid region. However, we can
calculate the chemical potential at point (b) in the liquid via

(b)
/ b ! a 1 [P
T ) =) P+ o [ v, (3.33)
=P* 4

A

2 Thermodynamics does not predict the states of matter or describe their structure. Their existence,
here gas and liquid, is an experimental fact, which we use at this point.

3 We shall show how to calculate this curve on the basis of a microscopic interaction model—the
van der Waals theory.
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Fig. 3.4 Partial gas-liquid A
coexistence curve in a liquid
one-component system (b) 1qu
p y PA B B b [ ]
a
Py
i gas
T

We do not know V(P) in the liquid. But we do know from experience that the
volume of a liquid changes little, compared to a gas, when the pressure is increased.

Thus we simply Taylor-expand V(P) around V(P\"), i.c.
v(P) ~ V(P (1= ke (P)(P - PYY)), (3.34)

where kr is the isothermal compressibility defined via Eq. (2.6). Typical liquid

compressibilities are in the (GPa)fl—range. This means that the second term usually
can be neglected, i.e.

l b [ a 1 a b a
i (T B (T P ) VB (P - P,

Example—Relative Humidity An experiment is carried out at temperature
T pressure P and 50 % relative humidity—what does this mean? The relative
humidity, ¢, is defined via

PD(T) = q)Psal(T)' (336)

Py(T) is the saturation pressure of water at 7, which is the pressure Pl(f) in
Fig. 3.4. Pp(T), on the other hand, is the partial water vapor pressure in air at
T and relative humidity ¢ - 100%.

Before we come to the actual problem, we want to get a feeling for relative
humidity, i.e. we ask: what is the mass of water contained in cubic meter of
air if the relative humidity is 40 %? We look up the vapor pressure from a
suitable table, e.g. HCP. At T = 0°C and T = 20 °C we find P,,; = 0.006 bar
and Py, = 0.023 bar, respectively. Using the ideal gas law, P,V = nRT, we
obtain the corresponding masses of water vapor, i.e. 4.8 and 17.3g/m?, on
the coexistence line. The water content at ¢ = 0.4 is therefore 1.9 and
6.9 g/m>. This is quite small compared to an approximate mass density of air
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of 1000 g/m?>. Figure 3.5 shows the gas-liquid coexistence or saturation line
for water (solid line). The data are from HCP. On this line the relative
humidity is 100%. The dashed lines correspond to lines of constant humidity
as indicated. The horizontal arrow indicates the cooling of air originally at
25% relative humidity at constant pressure until the saturation line is reached.
The temperature at which this happens and the water vapor starts to condense
is called dew point. The vertical arrow indicates a portion of a drying process.
Dry air increases its moisture contents. Subsequently it may be cooled and
upon reaching the saturation line the vapor in the air condenses. By moving
along the saturation line towards lower partial water pressure more water is
removed form the air. Eventually heating of the air restores it to its starting
point at low relative humidity.

However, our real problem is the following. We are interested in the

difference between the chemical potential of water in the gas phase,

ugzo(T, P), at a relative humidity ¢ and the chemical potential in the liquid

phase of pure water, ,ug)ZO(T ,P), under the same conditions (for example

T = 40°C and P = 1 bar). Such a question may arise when the water uptake in
a material is measured by one experiment at fixed 7, P, and ¢ in the gas phase
or by another experiment via submerging the same material in liquid water at
otherwise identical conditions. According to Egs. (3.26) and (3.35) we have

Pp

1 (T, Pp) ~ wf) (T, Put) + RT In

sat

and

1
) [
Higyo(T P) ~ (T, Poar) + ~g5 V(P) (P = Pua).

With ,ugfzo(T, 1Bn) = g)zo(T7 Ps,) and using Eq. (3.36) we obtain for the
. !
difference Apuy,o(T) = iy o(T, P) — 1o (T, Pp)

Apty,o(T) = —RT In . (3.37)

Notice that the neglected term, i.e. ﬁ V(Psar)(P — Pgy), is small. With a
liquid water molar volume of 18 cm? and P, (40 °C) = 0.0737 bar we obtain

~ 1.7 x 1073kJ mol~'. Because @ = 0.5, i.e. 50 % relative humidity, we
find finally

Ay, 0 = 1.8KJ mol .

95
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Fig. 3.5 Water saturation 030
line including lines of
constant humidity 025}
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Remark 1 In the preceding discussion we have implicitly assumed a
one-component system, i.e. neat water. However, relative humidity belongs to our
everyday life. This means that we deal with air, a mixture which includes gaseous
water as one particular component. In addition ordinary liquid water also contains a
certain amount of each of the gaseous components which can be found in the air.
Therefore we must ask, how much is the saturation line of neat water shown in
Fig. 3.5 affected by the presence of other components. We shall answer this
question on page 100 after we have discussed solutions.

Remark 2 cloud base: We want to estimate the lowest altitude of the visible
portion of a cloud, i.e. the cloud base. The idea is as follows. Our study of the
temperature profile of the troposphere (see p. 54) has resulted in the Eqs. (2.94) and
(2.97) allowing to relate pressure, temperature, and corresponding height above see
level for air. If we apply these two formulas to the partial pressure of water vapor in
air at a given humidity, we can estimate at what temperature (if at all) the partial
pressure in air will become equal to the saturation pressure of water. The resulting
temperature may then be used to compute the height at which this happens. This is
the height when the water vapor condenses an thus defines the cloud base.
Neglecting the effect of the different molar weights of water and (dry air), we

compute the partial water pressure via P = Po(T/T,)*”, where P, = oP120(T,).
T, =20°C is the ground temperature. The two dashed curves in Fig. 3.6 are for
@ =0.5and ¢ = 0.7, i.e. 50 and 70 % relative humidity, respectively. The solid
line in Fig. 3.6 is the saturation line for water. The two temperatures at which the

curves intersect are converted into heights, i.e. ~2100 and ~1100 m. We notice that
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the cloud base is lower when the humidity is greater. Taking into account the molar
weight difference mentioned above decreases these values by roughly 10 %.
A sensitive quantity is T,, i.e. decreasing T, also decreases the cloud base.

Solution: A more complex system is shown in Fig. 3.7. A binary solution of the
components A and B is in equilibrium with its gas. The coexistence conditions are

W(T, Py, Pp) = 1 (T, Py, Py) (3.38)
and
W (T, Py, Pg) = ) (T, Py, Pp). (3.39)

Assuming that the gas phase is an ideal mixture we make use of Eq. (3.26) to
express this as

P
! (T,Pa) = ) (T,P3) + RTIn (3.40)
A
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and

P
W (T, Pp) = 1) (T, Py) +RT1nI7f. (3.41)
B

Note that * refers to the same system with all B-moles in (3.38) replaced by A-
moles and vice versa in (3.9). This means that P;* is the vapor pressure in the pure i
system at coexistence. Therefore we may write

P
w1, Py) = (T, P}) +RT 1nP—jj (3.42)
A
and
0 0 . Pg
g (T, Pg) = py (T, Py) +RTIn 2. (3.43)
B

Using partial pressures is somewhat inconvenient. There are two limiting laws,
which are very useful here. The first is Raoult’s law,

Py =Pixl), (3.44)

(O))

valid if x| > xf

> xp
Notice that xff)) —i—xg) = 1. Inserting Raoult’s law in Eq. (3.42) yields

, i.e. the liquid is a (very) dilute solution of solute B in solvent Al

7T, Py) = W (T, Py) + RTIna. (3.45)

Raoult’s law is an example for a colligative property of the solution. Colligative
properties of solutions depend on the number of molecules in a given amount of
solvent and not on the particular identity of the solute.

The second useful law is Henry’s law,

PB = KB.XE;I), (346)
where Kp is called Henry’s constant. Henry’s constant is not a universal constant. It

depends on the system of interest and on temperature. Henry’s law is valid in the
same limit as Raoult’s law, i.e. xz < 1. Inserting Eq. (3.46) into (3.43) yields

K
s (T,Ps) = i (T Py) +RTIn =2 +RT Inxy. (3.47)
B

* The meaning of A and B can of course be interchanged.
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Table 3.1 Henry’s law Component | T [K] Ky [10°Pa] | cHy0 Cair
applied to three gases in water [g/m’] [g/m’]
0, 288.15 |3.7 10 284
298.15 |44 8.6 275
308.15 |5.1 7.4 266
N, 288.15 |73 17 924
298.15 |8.6 14 893
308.15 |9.7 13 864
CO, 288.15 |0.12 78 71
298.15 |0.16 59 68
308.15 |0.21 45 66

The first two terms may be absorbed into the definition of a new hypothetical

reference state with the chemical potential Jig
w (T, Pg) = ip(T) + RT Inx). (3.48)

We call this reference state hypothetical, because ,u,g)(T7 Pg) = [ip(T) requires
xpg = 1, a concentration at which Henry’s law does not apply.

Table 3.1 compiles Henry’s constant for oxygen, nitrogen, and carbon dioxide in
water (based on solubility data in HCP). In the third column cg,o is the mass
density of the respective component in water in equilibrium with air at a pressure of
1 atm. The last column shows the corresponding mass density in air.

Figure 3.8 shows the partial pressures in the two-component vapor-liquid system
acetone-chloroform at 7 = 308.15 K (Ozog and Morrison 1983). Solid lines are

polynomial fits to the data points. The long dashed lines illustrate Raoult’s law
applied to the two components while the short dashed lines illustrate Henry’s law.

Fig. 3.8 Partial pressures in 350 F
the two-component
vapor-liquid system 300
acetone-chloroform at T = 250 b
308.15 K =
5 200
&
o 150F
100 £
50
0

0.0 0.2 0.4 0.6 0.8 1.0
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Remark We now return to the question on p. 96—how much is the saturation line
of neat water shown in Fig. 3.5 affected by the presence of other components?

When water vapor coexists with liquid water we have

.L‘Z)ZO(Ta PsahP) = MSZ)O(Ta P;rataP)

(340)  (g)

P (3.49)
= Wy,o(T,P)+RT1n R

Here P is the overall gas pressure and Py, is the partial water pressure at
coexistence. The star indicates pure water. Let us assume we change P by an
amount dP. This will alter the two sides of the above equation but the changes still
will be the same on both sides: still

) o (T, Py, P o) (T, P = P P,
luHZO( t ) dP — luHZO( sat) dP + RTd In sat )
opP T opP T

P (3.50)
:"ZLO(Tva«,m :vz’g*o(T,P):RT/P

Here \)I(Lﬁ)z()(T7 Psa, P) is the partial molar volume of water in contact with air at

pressure P, and v;i)g(T, P) is the same quantity for pure water vapor at pressure P.

Under standard conditions (1 bar) we do not make a big mistake if we replace

vg)zo(T, Pyq, P) by the same quantity for pure water, vg)z*o(T, P). Thus we obtain

Vo (T, P)dP ~ RTd In Py,. (3.51)
Now we integrate the left side from P} ,, the saturation pressure of pure water at
T to the ambient pressure of air (including water vapor), P. The corresponding
integration limits on the right side are also P}, and Pg,. This yields

sat

* * Psa
Vigso(T P)(P = Pi,) ~ RTdIn = (3.52)

sat

or
(D«
sat VHZO(T7 P) *

~ ———(P—-P . 3.53
St~ exp | RO (P - P (3.53)

Let us assume P = 1 bar = 10°Pa and T = 293 K. The saturation pressure of
pure water at this temperature is P! =12338.8 Pa. In addition

sat
vg);‘o ~ 18 x 107°m>. And thus we find
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P L ~exp[7x 1071 (3.54)
PS(,II

This means that the saturation pressure of water under ambient conditions is
scarcely different from the saturation pressure of pure water at the same temperature.

3.3 Applications Involving Chemical and Mechanical
Equilibrium

3.3.1 Osmotic Pressure

Figure 3.9 shows a beaker containing the pure liquid A. Immersed in the liquid is a
tube with its lower end closed to the liquid by a membrane. The membrane allows A
to permeate into the tube and vice versa. Inside the tube there is a binary mixture of
two components A and B. The latter however is held back inside the tube by the
membrane. What happens? As far as A is concerned the two subsystems, the pure
solvent outside the tube and the binary mixture inside the tube, do exchange A-
moles and therefore chemical equilibrium requires

1,(T,P) = iy (T, P+T1,x). (3.55)

The left side is the chemical potential of pure A outside the tube. The right side is
the chemical potential of A inside the tube. Because we do not consider the gas
phase we may omit the index (). The temperature is the same in both subsystems.
The outside pressure is P, whereas the inside pressure is different i.e. P+ I1. Why?

Initially the tube may contain B only. Chemical equilibrium therefore requires
flow of A across the membrane into the tube. For simplicity we assume that the
initial surface level inside and outside the tube is the same and the density of A and
B is the same as well. The pressure difference across the membrane, I1, can then be
determined by measuring % (at equilibrium) and computing the force of gravitation
exerted by the mass of material above the surface level of the surrounding A
solvent. The reason for the sustained pressure difference is the membrane, which
does not allow the chemical equilibration of B on both sides.

Fig. 3.9 Sketch of a simple
osmotic pressure experiment

u, (P+ID)

membrane W A(P)
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Making use of the Gibbs-Duhem Eq. (2.180) we have
1
W (T, P+11) ~ u, (T, P) + n—*V*(P)(P—H'I—P). (3.56)
A

Again it is assumed that incompressibility of the liquid is a good approximation
(cf. Eq. (3.34)). Combination of (3.55) and (3.56) then yields

1
WG (T P+ T1) ==V (P)IL & (T, P+ 1, x4), (3.57)
A

and according to Eq. (3.45), if x4 > xp, we obtain

1
#(T, P+ T1) =V (P)IT & i3 (T, P+ TT) + RT In . (3.58)
A

At first glance this may seem strange, because in Eq. (3.45) the pressure argu-
ments of the chemical potentials are P4 and P}, which are presumably different. In
general the chemical potential of a particular species does depend on temperature,
total pressure, and composition. In Eq. (3.45) the total pressure is the same on both
sides of the equation and does not show up explicitly in the lists of arguments. The
composition dependence is expressed in terms of different partial pressures via
(originally)Dalton’s law. Here the total pressure is included in the argument of the
chemical potential and the composition is expressed in mole fractions. Having
explained this we can write down the final result for I given by

RT
I~
VA,mol

XB, (359)

where we have used the molar volume of A in the liquid state at pressure P and
temperature T, i.e. Vo mo = V*(P)/n}, and Inxs = In(1 — xp) = —x3.
One final transformation of this equation is useful. Inside the tube we have

np np
B na+ng ny ( )
In addition Vyusion = Vameina and thus
RT
M~ 2% (3.61)
Vsolution

This is the so called van’t Hoff equation (Jacobus van’t Hoff, first Nobel prize in
chemistry for his work on chemical dynamics and osmotic pressure, 1901). Note
that the osmotic pressure only depends on the molar concentration of component B
and temperature (under the approximations we have made in the course of the
derivation). Here osmotic pressure is another example for a colligative property.
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Remark—Reverse Osmosis According to our derivation leading to Eq. (3.61), it
should be possible to apply extra pressure to the tube in Fig. 3.9 and by doing so
reduce its solute content. A technical example is desalination of sea water, which is
forced through a membrane using a pressure exceeding the osmotic pressure. This
process is called reverse osmosis.

Example—QOsmotic Pressure in Hemoglobin Solutions As an application
we consider the following problem. Use the osmotic pressure data (p,ps.) from
table X in Adair (1928) to estimate the molar mass of (sheep) hemoglobin.
Gilbert S. Adair was a pioneer of macromolecular biochemistry and suc-
ceeded in determining the correct molecular weight of hemoglobin from
osmotic pressure measurements. He also supplied the horse hemoglobin
crystals which allowed Max Perutz (Nobel prize in chemistry for his work on
the structure of globular proteins, 1962) to obtain the first hemoglobin X-ray
structures.
We may rewrite van’t Hoff’s equation as

IT RT

c mpyp

Here ¢ = (ngp/V)mumy and mpy, is the molar mass of component B (Hb:
hemoglobin). Figure 3.10 shows the data from the above reference plotted in
the original units. The solid line is a fit on the basis of a theory explained later
in this book. Notice first that van’t Hoff’s equation describes the data only at
very low hemoglobin concentration. This is expected, because we have used
the approximation x4 > xp. The deviation from van’t Hoff’s equation arise
due to non-ideality, which basically means that there are complex
solute-solute interactions—something we have no information about at this
point. However, we can still determine mpyp, i.e.

Fig. 3.10 Concentration
dependent osmotic pressure in
hemoglobin solutions
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RT
mgp %H—/c’

in the limit ¢ — 0. From the figure we extract the value Il/c ~ 0.3cm
Hg/(g/dl). In addition T = 0°C = 273.15 K. After converting the units,

lem Hg = 1333.224 Pa
1g/dl = 10kg/m”,

we obtain my;, ~ 57 kg/mol. This is roughly 10% below the exact value—
but not bad at all.

The example also shows that van’t Hoff’s equation is valid at small concen-
trations only. We continue our discussion of osmotic pressure on page 125 and a
second time in Sect. 4.4.1 dealing with extensions of different origin. In particular
we shall discuss the so called scaled particle theory behind the solid line through the
data in Fig. 3.10 beginning on p. 213. This theory allows to estimate the size of Hb
(=5.5nm in diameter) based on its osmotic pressure data.

3.3.2 Equilibrium Adsorption

Consider a gas in contact with a solid surface. Molecules from the gas may adsorb
onto and subsequently desorb from the surface. Eventually an equilibrium develops
characterized by a constant coverage depending on temperature and the pressure in
the bulk gas. Coverage here refers to the net amount of gas adsorbed. We obtain the
net amount adsorbed by counting the gas molecules in a column-shaped volume
perpendicular to the surface. This column continues out into the bulk gas, where the
surface is no longer felt by the gas molecules. Subsequently we subtract the (average)
number of gas molecules present in an identical column when the surface is removed
(The number is equal to the volume of the column multiplied by the bulk density of the
gas). Just how long the column has to be, in order for it to extend into the bulk gas,
depends on the interaction forces between the gas molecules and the surface as well as
on thermodynamic conditions. In some cases the “interfacial thickness” to good
approximation is just one molecular layer. One speaks of monolayer or even
sub-monolayer coverage. In other cases the interface is “thicker” and more “diffuse”.

The examples in Fig. 3.11 show computer simulation generated gas density
profiles above an adsorbing surface at z = 0.° The units used here are so-called

5 The system is methane gas adsorbing on the graphite basal plane located at z = 0. A computer
program generating profiles like these is included in the appendix. The theoretical background
needed to understand the program is discussed in Chap. 6.
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Fig. 3.11 Computer PILI]
simulation generated gas 1.0
density profiles above an
adsorbing surface at different
temperatures
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Lennard-Jones units®—but this is of no particular interest to us at this point. What is
shown is the gas number density, p(z), as function of distance, z, from the surface.
In the top panel we recognize a first peak at z =~ 1 (cut off at 1) and a second smaller
one at z ~ 2. Beyond the second peak the density levels off (with fluctuations)

S In these units the gas pressure in Fig. 3.11 is P = 0.04. The temperatures from top to bottom are
T=12.0,12,1.05.
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indicating the bulk phase. The eventual drop at z = 12 is merely due to the finite
extend of the simulation box to which the gas is confined. The “gap” between the
surface and the first peak is due to the finite extend of the atoms in the surface and
the molecules in the gas—p is a center of mass number density. This figure shows
that at the given conditions there exists a dense layer of adsorbed molecules
adjacent to the solid surface. A much less dense second layer is followed by a rather
rapid transition to bulk behavior. Altered conditions do change the picture. In this
case the temperature is reduced. In fact we approach the saturation line of methane
at constant pressure (the transition temperature at this pressure in LJ-units is just
about 1). We notice that the adsorbed layer thickness increases as more peaks
emerge. However, at this point these graphs merely serve as illustration to bear in
mind when we talk about adsorption on solid surfaces.’

An important quantity characterizing the interaction of the molecules with the
surface is the isosteric heat of adsorption g, defined via

Ok, ot (3.62)

=T — .
st OT v, N, orT lp,

The indices s and b refer to the surface and the bulk, respectively. Note that
.+ly, n, means “at constant coverage”, whereas ...|, means “at constant (bulk)
pressure”. The temperature is the same in both cases.

Using the equilibrium condition u, = p, we may write

ou Oy Oty
duL. _ Ol At P _’ dPy, 3.63
Fslvon, = 37 Ly, ot |p, + op, I " (3:63)
which yields
on | _ 0wy %‘ Py
T lvn, 0T lp, ~ OPylT OT v, (3.64)
——
Vi /Ny=p,"

Combination of this equation with Eq. (3.62) yields another, and perhaps the
most common, expression for g:

- T an _ Pb 81I1Pb (3 65)

qsr_p_ba—T vine  p,TO(/T) v,

At very low gas pressure one may assume that N is proportional to Py, i.e.

Ny = kyPy +O(P}). (3.66)

7 We return to Fig. 3.11 in an example in Sect. 5.3.
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The leading term is a “surface version” of Henry’s law (3.46). In this approxi-
mation Eq. (3.65) becomes

(0) _ R Olnky
qst a(1/T) I (3.67)

Here qﬁf) is the molar isosteric heat of adsorption in the limit of vanishing

coverage. Experimentally this quantity may be determined by measuring the amount
of adsorbed gas (e.g., by weighing the sample) at a given (low) pressure. The general
relation N(T, P) versus P is called adsorption isotherm, the low pressure slope of
which again is ky. In an example in Sect. 5.3 we return to the isosteric heat of
adsorption and discuss one explicit method how to calculate it theoretically.

3.3.3 Law of Mass Action

In the following we discuss an important application of (2.131), i.e.
dG|, ,<0. (3.68)

At equilibrium we can use the equal sign and based on Eq. (2.119) (with udn
replaced by ZlK:l W;dn;) we have

i,u,-(T, P)dn; = 0. (3.69)

i=1

This equation requires some thought. If K = 1 then Eq. (3.69) implies dn = 0. The
inequality (3.68) applies to cases where, aside from keeping 7 and P at fixed values,
we leave the system alone. In particular we do not change its mass content.® If
K > 1 there exists however the possibility of a suitable relation between the dn;,
developed by the system itself, allowing Eq. (3.69) to hold without requiring
dn; = OVi. For instance we may replace dn; in Eq. (3.69) via

8 Potentially this may be disturbing. According to the steps leading from Eq. (2.176) to Eq. (2.177)
one may be led to conclude that G = 0 all the time and everything falls apart. However this
reasoning confuses two very different situations. Inequality (3.68) means that we prepare a
system subject to certain thermodynamic conditions 7 and P and leave this system alone until no
further change is observed. This fixes the equilibrium value of the free enthalpy, G, for a
particular pair 7', P. Repeating this procedure for many 7', P-pairs we map out the equilibrium
values of G above the T-P-plane (cf. Fig. 2.15). With this function G = G(T,P) or G =
G(T,P,n) we now can do calculations, differentiating or integrating, involving 7, P, n and
possibly other variables. This is how we have obtained the Eqs. (2.176) and (2.177). Therefore
there is no problem here!
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d}’ll’ = Vidf, (370)

where of course not all v; do have the same sign. It turns out that chemical reaction
equilibria may be described in this fashion. For a chemical reaction the dn; obey
according to experimental evidence

d}’li - Vi 371
dnj - Vj7 ( ' )
where v; and v; are integers.
We proceed writing the chemical potentials of the components as
w(T,P) = ,(T,P)+RT Ina;. (3.72)

This particular form is analogous to the special limiting forms (3.27) and (3.45).
The quantity a;, which is called activity of component i, contains interaction and
mixing contributions to the chemical potential of component i, i.e. all effects due to
the interactions of this component with all other components. Often the activity is
expressed via

a; = YiXi, (373>

where y; is the activity coefficient. This is the usual terminology in condensed
phases. In the gas phase the fugacity,

fi =P, (3.74)

where y! is the fugacity coefficient and P is the pressure, replaces a;. We see that the

special limiting forms (3.27) and (3.45) correspond to 7; = 1. The reference

chemical potential, i;(T, P), may be identified if we let y; and x; approach unity.
Combining Egs. (3.69), (3.70), and (3.72) we obtain

K

> (&(T,P)+RT na;)v; = 0 (3.75)
i=1
or
K
[1a"=k(,P), (3.76)
i=1
where
S vily(T, P)
K(T,P) = exp —’ZIR—]f7 . (3.77)
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Equation (3.76) is called law of mass action and K(T, P), not to be confused
with the index K, the number of components, is the equilibrium constant. The
equilibrium constant is not really a constant. It depends on 7 and P. By convention
v; <0 for reactants and v; > 0 for products.

The law of mass action in its present form provides little insight. Therefore we
study the special case of a gas phase reaction assuming that the gas is ideal.
Combining (3.26) and (3.21) we obtain

P;
W (T P) = W (T.P9) + RT In . (3.78)

Here P; is the partial pressure of component 7, and P{ is a standard pressure,
which remains constant during the reaction. In addition we have

A (3.79)

(cf. Eq. (3.28)), where P(®) is the total pressure. Combination of (3.78 ) and (3.79)
yields

Pple),®)
W (TP = (T.PY) + RTIn = (380)

Inserting this into Eq. (3.69) we find the law of mass action
K(T,P) = P> [ [+, (3.81)

where —RT In P? is absorbed into K (T, P°). Notice that we have omitted the index
(g), and we assume that P° = P?Vi. This equilibrium constant is independent of the
gas pressure P and the mole fractions x;.

Example—A Chemical Reaction In the following simple example of a
chemical reaction,

2H, + O, = 2H,0, (3.82)
we have vy, = =2, vo, = —1, and vy,p = 2. Thus Eq. (3.81) becomes
1 x%, 0
K(T,P°) = === (3.83)

=—— )
P x3, %0,
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Increasing the total pressure (at constant temperature) shifts the reaction
equilibrium to the right. Analogously we can see what happens if the con-
centrations are changed.

Remark What is different if in addition to H,, O,, and H,O another inert gas is
present or there is an excess of one or more of the aforementioned components? The
corresponding mole fractions do not appear explicitly on the right side of
Eq. (3.83), but they do enter into the pressure, P.

At this point we may ask: What is a component? Thermodynamic knows nothing
about atoms, molecules, and details of the interactions/reactions between them. But
we know that there are even smaller building blocks than atoms—electrons, pro-
tons, and neutrons. And this is not the end. So what is a component? In principle we
may apply thermodynamics on all levels. For the above it is important, however,
that there exists a meaningful chemical potential for everything we want to call
component. That is a component must exist long enough (on average) under well
defined thermodynamic conditions like equilibrium 7 and P.

This requires us to rethink our derivation of the phase rule. Consider the fol-
lowing example for a chemical reaction:

3A = A;. (3.84)

If we consider A and Az as components, then the phase rule (3.12) allows up to
four coexisting phases. However, we have an additional equilibrium constraint
imposed by Eq. (3.69), reducing the degrees of freedom by one and the maximum
number of coexisting phases to three. The modified phase rule therefore is

Z=K-Q-T+2 (>0), (3.85)

where Q is the number of additional constraints imposed via Eq. (3.69). Notice that
Q is not necessarily one all the time. There may be independent chemical reactions
occurring simultaneously in which case the summation in Eq. (3.69) breaks up into
independent parts, e.g.

3A=A+A; = As.

Here we have a system containing three components according to our definition.
But for each reaction we have to fulfill Eq. (3.69). Therefore K = 3 and Q = 2.

Example—<Critical Micelle Concentration Figure 3.12 shows a sketch of a
system containing typo-amphiphilic molecules. Amphiphilic molecules con-
sist of two covalently bonded moieties—one, depicted as zigzag-line, does
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Fig. 3.12 Sketch illustrating »/g

the reversible assembly of V\‘\z

amphiphilic molecules into m
micelles

monomer
s=1
*

1

not like to be in contact with water, not shown explicitly, whereas the other,
depicted as solid circle, does like to be in contact with water. An example of
such a molecule is Hexaethylene-glycol-dodecylether
(C12H25(OCH,CH,)OH). In this case it is the CjpH»s-moiety that does
not like to be in contact with water. The natural thing to happen therefore is a
clustering of the zigzag “tails” into droplets shielded on the outside by their
water loving “head” groups. In a sense this is a phase separation, which we
study in the next chapter, on a molecular scale. Because of this the molecular
“shape” strongly couples to the “shape” of the drop or aggregate and in fact
determines it (The aggregates we have in mind can be spherical, cylindrical or
transform into layered structures with complicated topology. It also is pos-
sible to extend this approach to vesicles. But this is not our topic here.). The
type of droplet aggregate we just described is called a micelle. However, our
current approach covers other types of aggregates as well.
As our starting point we choose the “chemical reaction equation”

SA| = A, (3.86)

Here A; denotes a s-aggregate containing s molecules or monomers A;.
We put “chemical reaction” in quotes, because the bonding forces between
monomers considered here are different from chemical bonds within mole-
cules. In principle s can be any integer number and therefore Eq. (3.86)
represents many “reaction equations”. Expressing this in terms of the
chemical potential yields

SUy = K- (387)
Assuming low monomer concentration we may use Eq. (3.48), i.e.

sty +SRT Inx; = g+ RT In(x,/s). (3.88)
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Note that the quantity x;/s is the mole fraction s-aggregates. Therefore x;
is the mole fraction of monomers in s-aggregates. We may solve for x;, i.e.

X = s(x1e%)’ (3.89)

with

o ! (Ml—%ux) (3.90)

T RT

We assume that fi, is an extensive quantity in terms of s and that therefore
o is independent of s (see also the next example). Equation (3.89) has an
interesting consequence. To see this we note that the total monomer mole
fraction is given by

X=x+ sz = s 4F Zs(xle“)x. (3.91)

Here x; is the mole fraction of free monomers, whereas the sum is the mole
fraction due to all other monomers bonded inside aggregates. We note that m
is a minimum aggregate size. In the case of spherical micelles for instance, it
accounts for the fact that a certain number of head groups are required to form
a closed surface avoiding contact of the tail groups with water. This number
may be large—say m ~ 50—depending of course on the type of monomer.
But m = 2 also is possible. This is the case of linear aggregates (chains of
monomers—These monomers may be disk-shaped with flexible tails on their
perimeter. In water the disk-like cores tend to form stacks. It also is possible
to apply this idea to dipolar molecules forming chains due to dipole-dipole
interaction.). The right side of Eq. (3.91) is bounded, because x < 1. In par-
ticular this requires xje* <1, because the sum > ° sqg* diverges at g = 1
(geometric series!). Putting in some numbers we find > ° < s¢* ~ 4 x 1072
ifg=08and ) ~5,5¢° ~3if ¢ =0.9, i.e. for x; <0.8¢™* virtually all of x
is due to free monomers. Addition of monomers at this point leads to their
assembly into aggregates. Figure 3.13 illustrates this for different combina-
tions of assumed values for m and a (Notice the change of scale in the third
panel.). Because of the sharpness of the “transition” in the typical case of
large m the threshold concentration

Xcme ~ e (3.92)

is called critical aggregate concentration or, in the case of micelles, critical
micelle concentration (CMC). While the sharpness is governed by m, the
amphiphile concentration at which the change of behavior occurs is deter-
mined by .
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Fig. 3.13 Mole fractions free
monomers and aggregates
versus total monomer mole
fraction for different
parameter combinations
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We note that the existence of a CMC is not tied to the specific form of
Eq. (3.89). For instance, assuming that monomers may form minimum
aggregates only, i.e. only the s = m-term in the sum in Eq. (3.91) is present,
still yields a CMC. The true size distribution, x;, in fact is a complicated
function of molecular interactions as well as thermodynamic conditions. One
interesting and quite general ingredient ignored here is the aggregate
dimensionality, which is discussed in the following.

X
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More information on molecular assemblies (micelles, membranes, etc.) can be
found in J. Israelachvili (1992) Intermolecular & Surface Forces. Academic Press
or in D. F. Evans and H. Wennerstrom (1994) The Colloidal Domain. VCH.

3.3.4 Surface Effects in Condensation

The assumption underlying Eq. (3.90) is that all monomers inside an aggregate are
equivalent. For a spherical micelle this is in accord with intuition. But what if we
study droplets containing monomers completely embedded in their interior and
monomers on their surface? These two are certainly different and Eq. (3.90) no
longer holds.

A simple model for « allowing to distinguish between bulk and surface mono-
mers in aggregates is

o = Olpulk — &S‘il/d, (393)

where d is the dimensionality of the aggregates (d = 1: linear aggregates; d = 2:
disk- or layer-like aggregates; d = 3: spherical aggregates). o, is the same for all
monomers inside aggregates and independent of s. The second term, —ds~ '/, is a
surface contribution. We note that a three-dimensional spherical droplet containing
s monomers has a volume proportional to s. Thus its radius is proportional to s'/3
and its surface is proportional to s%/3. Expressed more generally the surface is
proportional to 5@~ 1)/¢ = gs=1/4_ This means that in this simple case i, can be

expressed as
iy = Shy + RTOs 1, (3.94)
where 1., the chemical potential of a monomer in the interior of an aggregate, is
s-independent. What are the consequences?
First we study the question whether monomers and/or finite size aggregates can

coexist with infinite size aggregates, i.e. the bulk phase. If the answer is yes, then
the following must be true:

1 s
Bt = P+ RTSs™ ¥+ —RT nZ. (3.95)
s s
This means
X, = sexp[—0s' @ V/4], (3.96)

Consequently ) x, <1 is possible only if d > 1. If d = 1 we have x,; o s and
the sum diverges. This means that the total monomer mole fraction x diverges. The
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inconsistency that this imposes (note: x < 1) is interpreted as the impossibility of
coexistence between monomers and/or finite aggregates with a bulk phase in one
dimension!

But there is more to discover here. We concentrate on d > 1 and simplify our
calculation by requiring the aggregates to be monodisperse, i.e. s is the same for all
aggregates. The total free enthalpy therefore is

ng
Guotal = nipy + ?,Us (397)

Here n, denotes moles monomer on average bound in aggregates. This equation
describes coexistence between a gas of monomers and aggregate droplets. Using
Eq. (3.94) yields

ng _
Gotal = nipy + ?:us,bulk +nSRT5S 1/d7 (398)

where iy, = SHp, +RT Infx,/s]. If we vary the mass distribution between
monomers and aggregate droplets near equilibrium we find

1
tholal = dns <_:u1 + ;:ux,bulk +RT5sl/d) =0. (399)

Note thatdn; = —dn,. We may usefully apply this equation using du /0P|, = 1/p
or du = p~'dP at constant T. Because the monomers form a gas with density Pgass
while pj;, > p,,, is the (liquid) monomer density inside the droplets, we may write

1 1 1 Hs~1/d ‘

n (3.100)
P gas p lig P gas op

Replacing p,, by P/(RT), the ideal gas law, and s'/¢ by cr, where r is the
droplet radius and c is a constant, we find

cr

dinP = éd i 3.101
(2) (3.101)

or

P = Py exp [5] . (3.102)
cr

This equation describes the radius, r, of a droplet at equilibrium when the
external pressure is P. P, is the saturation pressure, when the monomer gas
coexists with the infinite bulk phase. Figure 3.14 shows a sketch of P versus r
according to Eq. (3.102).
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Fig. 3.14 Sketch of P versus
r according to Eq. (3.102)

\

But what happens to droplets which do not have the proper equilibrium radius?
At point A in Fig. 3.14 a droplet will find the external pressure too low for its size,
which is less than the proper equilibrium size r,, and therefore evaporates mono-
mers. This decreases the radius and the evaporation continues until the droplet
disappears. At point B the droplet is under too high a pressure and additional
monomers from the gas phase condense on its surface. The droplet continues to
grow and finally the limit of a continuous bulk phase is approached. Thus
Eq. (3.102) defines the critical size of a droplet at a given pressure. Below the
critical size droplets disappear, above the critical size they grow without bound. In
turn this means that finite droplets in general are not stable for d > 1. In the
following example we reexamine Eq. (3.102) in a specific context for d = 3 and
from a slightly different angle.

Example—Critical Droplet Size This example from the microphysics of
clouds combines the above with our previous discussion of relative humidity
in Sect. 3. We consider what is called homogeneous nucleation, i.e. the
condensation of pure vapor, water vapor in this case, into droplets.

Let us assume that a small droplet is created through chance collision of
molecules in the vapor. The subsequent fate of the droplet is decided by the
balance between condensation and evaporation of molecules. This balance we
study in terms of the free enthalpy change dG in a system containing the
droplet inside surrounding bulk gas, i.e.

dGrp = (ugz)o — :“%)20) dngz)o —+ ydA. (3.103)

The thermodynamic variables temperature 7" and total (air) pressure P are

constant. The factor multiplying dngz)o is equal to RT In ¢ (cf. Eq. (3.37)),

where @, defined in Eq. (3.36), is the ratio of the partial water vapor pressure
to the saturation pressure at the same 7 and P. Finally, the quantity 7 is the

surface tension of the droplet and dA is the change of its surface resulting

from condensation or evaporation. Note that dngz)o o —dr® and that
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Fig. 3.15 Reduced free 1016 G1 pRT
enthalpy Grp/(RT) of a 10 ,
water droplet versus the ,/
droplet’s radius r at different 08¢ J
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dA x dr?, where r is the droplet radius. Thus we can express dGr p in terms
of ¢, y, r and dr, i.e.

%:d<_ 4’”““’r3+ﬂr2>_ (3.104)
RT 3 VH,0 RT

The quantity vy, is the (partial) molar volume of pure water under the
given thermodynamic conditions.

Figure 3.15 shows the expression inside the brackets plotted versus the
droplet radius at different ¢-values. Here y = 0.0728 N/m is the surface
tension of water, 7 = 293 K, and vgy,o = 18 cm?®. Below and at saturation,
i.e. ¢ < 1, the curves rise monotonously and the equilibrium droplet radius is
zero. In the case of supersaturation (¢ > 1), however, the free enthalpy Gg 1
features a maximum at

_ 2yvho

= (3.105)

(63

A droplet possessing this radius evaporates following a fluctuation causing
an arbitrarily small reduction of r.. An opposite fluctuation increasing the
droplet’s size ever so slightly will result in its unlimited growth. Note that this
corresponds, for the case of water droplet condensation, to our previous
discussion of Eq. (3.102). Solving this equation for r(=r.) yields
re = 0/(cln @), where ¢ = Py,0/Ph,0,- The special case of Eq. (3.105) is
also known as Kelvin’s formula.

Equation (3.102) also tells us that the saturation vapor pressure over a
curved (water) surface is greater than over a flat surface. Expanding the
exponential to first order Eq. (3.102) becomes

0
Pr,0 = PH,0,00 (1 + 5) (3.106)
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In the present case of course d/c = 2yvy,o/(RT). This is a curvature
correction that enters into most equations in cloud physics.

It is important to note that the above assumption, i.e. “Let us assume that a
small droplet is created through chance collision of molecules in the vapor”,
is nearly impossible to satisfy. A droplet possessing the radius ., ~ 0.54 um,
as shown in Fig. 3.1 requires the collision of around 2 - 10!° molecules. And
even if we increase ¢ from 1.002 to, for instance, 1.1 this number is still
around 2 - 10> molecules. In principle we can keep increasing the supersat-
uration, but an experimental supersaturation exceeding 1% is rarely observed
(see Chap. 9 in Salby 2012).

Equation (3.102) or, equivalently, Eq. (3.105) must be modified when a
second component is present in addition to water (solute correction). This
means we are talking about the situation depicted in Fig. 3.7. Let’s use the
same notation as in the figure, i.e. water is indicated by the index A and the
second component, the solute, is B. We shall assume that the mole fraction A

greatly exceeds the mole fraction B in the liquid phase, i.e. xg) > xg>. In this
case we can apply Raoult’s law (3.44) to calculate the saturation pressure of A
in the gas phase, Py, from its value when A is the only component present,

Py, ie. Py = PZxX). Thus far both pressures in (3.106) refer to pure A, even
though we have not given them an asterisk. Hence, if there is B present in the
droplet as well as in the gas phase, then we must change Eq. (3.102) or,
equivalently, Eq. (3.105) to

Pro [2y Dot 1] xi,0(7) (3.107)
PH,0,00 RT  r] xp,0(0)
Next we must calculate xﬁf)(r) = xp,0(7), i.e.
0 (0
) n, 1 ng
Xy = = ~ 1= 3.108
n/(f) I ng) (1 + ng) / nfp) n/(f) ( )

Now we use Nan, = (M,/m,), where o = A or B. Ny is Avogadro’s
constant, M, is the total mass of o in the droplet, and m,, is the molecular mass
of o. We express the total solvent mass via My ~ cadmr /3, where c,4 is the
bulk mass density of liquid A. Putting everything together we find

MB ny 1
ZmB drcy /373

&) = (3.109)

The extra factor z accounts for the important cases of salts like NaCl,
dissociating into two ions which means z = 2. Inserting this into (3.107) we
obtain our final result
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Fig. 3.16 Kohler curves -1
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where b is the factor multiplying 1/r* in Eq. (3.109). This function, i.e.
@ — 1 = Pu,0/Pu,0,.00 — 1, is depicted in Fig. 3.16. The dashed line is the
line of the maxima in the Fig. 3.15, i.e. ¢(r.) — 1, for ¢ > 1. The two solid
lines are obtained with Eq. (3.110), which includes the concentration effect.
The left curve, possessing the higher maximum, is for Mg = 107! g solute
(NaCl in this case and z = 2). The right curve is for Mz = 10~!> g. Note that
a spherical volume containing 10~'® g of crystalline NaCl has a radius of
about 0.02 pm. This is between 4 to 5 times smaller than the smallest r in
Fig. 3.16 for which Mz = 1076 g and ¢ — 1 > 0. In particular this confirms
that xX) > xg) is cloud satisfied.

The one on the right of the two circles in Fig. 3.16 including its two
arrows, has the same meaning as the point at r, in Fig. 3.14. Let us assume
the droplet spontaneously increases (decreases) its size at constant ¢ — 1. For
this increased (decreased) droplet the pressure is too high (low) and it will
grow (shrink). The left circle on the solid line, on the other hand, corresponds
to a droplet reacting to size fluctuations in exactly the opposite way. When the
radius increases (decreases) at constant ¢ — 1 the droplet shrinks (grows)
back to its original size. Thus, the concentration effect tends to stabilize
droplets on the left side of the maximum. This of course is true for both solid
lines or for any other so called Kohler curve. Note in particular that the
concentration effect reduces the supersaturation necessary for continuous
droplet growth. This reduction is enhanced when, at constant Mg, mp is
increased.

We have omitted the range ¢ — 1 <0 in Fig. 3.16. Cloud formation usu-
ally takes place by heterogeneous nucleation instead of homogeneous
nucleation. Heterogeneous nucleation means that water vapor condenses onto
already existing aerosol particles—so called cloud condensation nuclei.
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Hygroscopic condensation nuclei may build up significant layers of water
(note the relation to our previous discussion of adsorption and Fig. 3.11),
thereby increasing the “original droplet”, which then requires less supersat-
uration to grow—especially when the droplet at this point contains dissolved
salts, like sodium chloride or ammonium sulfate, as we have seen.

In Chap. 4 we shall resume this discussion venturing into the topic of the
growth dynamics of droplets—Ilooking at diffusion as well as collision.

3.3.5 Debye-Hiickel Theory

An overall neutral system contains mobile charges. Of special interest in this
context are electrolytes, i.e. substances containing free ions. Typically these are
ionic solutions, e.g. aqueous solutions of dissociated acids, bases or salts (e.g.
NaCl ;) — NagaB + Cl(la’q)). What we want is an approximate description for the
electrostatic interaction as part of the chemical potential of the (ionic) charges. In
Sect. 2.3.1 we had discussed the relations of the free energy and the free enthalpy to
the second law. In the present case electrical work must be included and therefore
we have

dGlyp < — dwg (3.111)

or at equilibrium and expressed as free enthalpy per mole.
115 g
dluq|T,P = —NAéwq(:l)NAdqd)l(ﬂz (3112)
The meaning of last equation on the right in the current context is illustrated in

Fig. 3.17. One of the charges, charge g, is shown as thick vertical bar. The charge ¢
is part of a charge density p(r), assumed to be radially symmetric and centered on

Fig. 3.17 Spatial distribution p(r)
of charge

~
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q. An observer on g should notice that the surrounding charge (distribution) pref-
erentially is negative if g is positive and vice versa. However, this g-induced
distribution extends over a finite range only. Beyond a sufficiently large distance r
the central charge g is electrically invisible or screened. The quantity ow, is the
work done on the system when a infinitesimally small (molar) amount of charge dg
is brought in from infinity (index a) and added to the central charge at zero (index
b). In principle the result is infinite, no matter how small dgq is, and therefore useless
to us. But what we really want, is the work due to the screening part of the potential
¢,,—indicated by the index (s)—excluding the “bare” potential, ¢/r, causing the
divergence. It is this screening part of the potential which is the manifestation of the
interaction between the charges in the system.

But how do we calculate db;fa)? One equation which comes to mind is Poisson’s
equation, i.e.

—V §(F) = dmp(7), (3.113)
where ¢ (7) is the electrostatic potential of a charge density p(¥). In the present case

p(7) = qo(7) +e ) cizihi(F). (3.114)

The first term on the right is the central charge g at the origin. The second term is
the charge density in a volume element dV located at 7. The factor e is just the
magnitude of the elementary charge. The index i indicates different types of charges
possibly present. ¢; is the overall number concentration of these charges, and z; is
the charging of type i. For instance in the case of NaCl in an aqueous solution there
are Na™ and CI™ ions for which zy, = + 1 and z¢; = —1. But there also may be
ions for which z; # +1, e.g. CO_%’ with zco, = =2 or Zn*t with zz, = +2. The
function h;(7) = h;(r) describes the variation of the i-type screening charge. Notice
that A;(¥) should vanish as r approaches infinity—but this is all we can say about
h;(F) at the moment. We therefore anticipate the following form of 7;(r):

(3.115)

The argument of the exponential is the ratio of the electrostatic energy of one
mole of i-charges (at 7) divided by the “thermal energy” RT. This form of A;(F) is
by no means exact. It neglects completely structural correlations between charges in
the vicinity of the central charge. It merely considers the effect of the surrounding
charges in the form of a smooth “screening field” as part of the potential ¢(7), i.e.
no two charges interact directly—each charge interacts with the others through their
collective “screening field”. Equation (3.115) relates 4;(F) as a measure of the
probability for finding a certain charge concentration at distance r from the central
charge to the electrostatic energy of this assembly. The specific form, however, we
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can understand only on the basis of microscopic theory as explained in Chap. 5
(notice in particular Eq. (5.150)). Nevertheless, the combination of Eqgs. (3.113) to
(3.115) yields

V' (F) ~ 4n<q5 +eZC,Z,exp[ Z’NA¢( )} 1). (3.116)

This is the desired equation for ¢ (7). However its nonlinearity is inconvenient
and thus we go one step further by expanding the exponential, i.e.

exp [— 761"”‘[’(?)} ~ 1 - Elad () (3.117)
RT RT ' '

This additional approximation is quite in line with our above assumption for the
form of A(¥). It requires that the electrostatic energy is much less than the thermal
energy and thus that the temperature is “high” (the theory still should be applicable
at room temperature though). High temperature also tends to diminish structural
correlations. The final equation for ¢(7) is

8me? NA

~Vp(F) ~ 4ngd(F) - 1(7). (3.118)

The quantity
=33 ad =53 wde
24T LT

1
N —
=p

(3.119)

is called ionic strength. Here ¢; = v;c, where c is the electrolyte concentration and v;
is the number of j-ions per electrolyte molecule.
We solve Eq. (3.118) via Fourier transformation. That is we insert

d(7) = /_ h Lrp®)e " (3.120)

and

S5(F) = ( /: e (3.121)
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to obtain

$(k) ~ — (3.122)

with

RT
Ap = 4{/———. 3.123
b \ 8me2 NI ( )

Insertion of (3.122) into (3.120) and solving the integration yields

o(F) ~ _4 (er/i-u _ e*"/il)) (3.124)

r

Because the first term in brackets grows without bound for r — oo, we discard
this unphysical part of the mathematical solution and thus use

—r/ip
¢(7) ~ L r/ . (3.125)

When the central charge is approached from a distance, its bare potential, g/,
becomes “visible” when r < Ap. On the other hand, if » > 1 then the potential
essentially vanishes, i.e. the central charge is screened. Ap is the Debye screening
length.

How big is 4p? We first note that the system of our current units requires the
replacement of e? by e?/(4ne,¢,) if we want to use Sl-units. Notice that &, is the
dielectric constant of the background medium containing the charges, e.g. ions in
water (water: ¢, = 78.3 at T =298 K and P = 1 bar). Thus we have

Te, .
Jp = 1.988 x 10—3,/78 nm  with[T] =K and [c] =mol/l.  (3.126)

For example, in the case of a 0.1 molar aqueous NaCl solution 4p = 0.96 nm.

The ¢(s) we want is obtained by subtracting the bare potential ¢/r from the
above ¢(7), i.e.

—r/ip
oA ~ 2 _1 (3.127)

r r

The potential difference ¢)ZZ) is

o) = $(0)) — p(o0)) mtim T2 = O —a 4 (3158

r—0 r LD
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Returning now to Eq. (3.112) we can write

Nag
dquV,z-—jﬁjdq. (3.129)

The complete p, we obtain by increasing dq to the full g, i.e.

q ! 2
%z_/}wﬁﬁ:—fmq. (3.130)
0 }VD 2 )L,D

This is half the electrostatic energy of two charges +g (Sl-units:
q* — ¢*/(4ne,¢,)) at a distance Ap (multiplied by N,). Notice also that y,, is what
we must add to the ideal chemical potential of charge ¢ in order to approximately
account for its electrostatic interaction with all other charges in the system. In other
words, we may write for the (electrostatic) activity coefficient

1 Nag?

Before we proceed with an example, we want to discuss the inclusion of
excluded volume. Thus far the ions are point-like. We may include the effect of
finite ion size as follows. Due to overall neutrality we require

1 o0
4@%—7/fwm (3.132)
ADb

(cf. the second term on the right side of Eq. (3.118)). Here b is the radius of the ion
carrying the charge . Inserting ¢(r) = Ar~! exp[—r//p], where A is a constant, we
obtain

ge~r=)/7

~ T B (3.133)

¢(7)

instead of Eq. (3.125). The potential difference now becomes

—(r=b)/p
() _ p(p) ©) x fim (26— " _4
¢ba d)( ) ¢(OO) 5r1£>n0<}"(1 +b//LD) r=b+or r

__a v
 Ipl+b/ip’

(3.134)
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Fig. 3.18 Spherical cell with

a semipermeable wall

containing an electrolyte

solution -

- .

and the charging process yields

N ]
M 14 b/

(3.135)

However, for the moment we continue to use Eq. (3.130), i.e. the limit b — 0,
and return to Eq. (3.135) when we discuss the phase behavior of simple systems in
Chap. 4. Setting b = 0 results in the so-called Debye-Hiickel limiting law.’

Example—QOsmotic Pressure in Electrolyte Solutions In this example we
begin by studying osmotic pressure from a somewhat different angle than
before. The spherical cell in Fig. 3.18 is submerged inside a water (or solvent)
reservoir kept at constant temperature, 7', and pressure, P. The water passes
freely between the cell, which has a constant volume V, and the reservoir.
A suitable mechanism allows to add electrolyte (or solute) to the cell.
Contrary to the water the electrolyte, which we assume fully dissociated into
its ions, cannot pass the cell’s wall. We know from our previous discussion of
osmotic pressure that the total pressure inside the cell will rise to P+ I1. The
dependence of osmotic pressure, I, on solute concentration follows via the
Gibbs-Duhem Eq. (2.180) applied to the interior of the cell, i.e.

VAP |r=") ndu; Ir - (3.136)
j

Here j stands for the different types of ions (or different solute compo-
nents). The water chemical potential does not appear, because it may adjust to
the same value inside and outside the cell. And the outside water chemical
potential is constant of course. According to Egs. (3.72) and (3.73) we may
express the change of the j-ion’s chemical potential via

° Peter Debye, Nobel prize in chemistry for his many contributions to the theory of molecular
structure and interactions, 1936.
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dy; = RTd In[x;y;]. (3.137)

The desired relation between the osmotic pressure and the electrolyte
concentration expressed in moles, n, inside V follows via integration of
Eq. (3.136):

RT (" RT ("
IT = Iy + 11, = 7/ andlnxj—k 7/ andln V;- (3.138)
0 0

Using n; = v;n the ideal part becomes

I RTZV / 'd1n " (3.139)
id — i n ° 3
1Ty - " Jo nmo(n') + > vin'

Note that dIn ), v; = 0. We recover the van’t Hoff equation if we replace
nmo(n) + >, vin by ny, o, where ny, , is the water content of the cell at
vanishing electrolyte concentration. This approximation requires a negligible
solute content, i.e. small electrolyte concentration, and also neglects com-
pressibility effects. Now we can use dIn[npy,o(n) + >, vin] = dlnny, 5 =0
and thus we find

RT
g = Iy = 72 vjn. (3.140)
J

Remembering Eq. (3.131), the Debye-Hiickel result for the activity coef-
ficient, we can approximate the excess osmotic pressure, Il,,, via

~ _RT " 1 Nag;
Hex~HDH—7§j:vj-/0 ”d(_if : (3.141)

With /' o« \/n and

n 1 n l
/ ndvn' = —/ n'dn =~} (3.142)
0 2 o 3
we finally obtain
RT
pu = TN (3.143)
D

Of special interest is the ratio ¢ — 1 = I1,,/T1;; ~ py /I1,y. Here ¢ is
the osmotic coefficient, i.e.
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Fig. 3.19 Osmotic coefficient
versus electrolyte
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Figure 3.19 shows ¢ versus electrolyte concentration for AgNO3; and NaCl
in aqueous solution (the data are from Hamer and Wu 1972)—squares:
AgNOj3; circles:

NaCl; solid line: Eq. (3.144). The limiting law is a good approximation at
very small electrolyte concentrations only. However, various approximations
like the neglect of finite ion size, ion-ion correlations, and the explicit
interaction with the solvent quickly cause deviations with increasing elec-
trolyte concentration.

3.3.6 Gibbs-Helmholtz Equation

In the following we need the Gibbs-Helmholtz equation:

dG)T
oT

H
- (3.145)
P r*

It may be derived via Eq. (2.117) combined with Eq. (2.123), i.e.

0G
=H-T—
¢ or

P
Dividing both sides by 72 immediately yields Eq. (2.117). It is useful to rewrite

(3.145) in terms of the chemical potential y; in a multicomponent system.
Differentiation of the left side of Eq. (3.145) with respect to n; yields
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oot | _o10 w7
anj or PrilT Py orT anj TP | p p, or P.n;
and thus
8,uj(T, P, I’l,)/T hj
o o - (3.146)
or |, 17

where h; is the partial molar enthalpy of component j.
We note that equations analogous to (3.145) and (3.146) hold for the free energy,
ie.

OF|T E
Vv
and
ou(T,V,n;)/T ;
'u](a—T)/V __%7 (3.148)

where ¢; is the partial molar energy of component j.

Example—Saha Equation During the cosmic evolution a phase called
recombination occurred. Neutral hydrogen and helium was formed, when the
temperature had dropped to about 3000 K (In his book Cosmology (Oxford
University Press, 2008) Steven Weinberg (Nobel Prize in physics for his
contributions to the unification of fundamental interactions, 1979) points out
that recombination may be misleading because no neutral atoms had ever
existed until this point. But this is the usual term and in addition recombi-
nation is still occurring today in the atmospheres of stars.). Even though we
cannot provide a complete discussion of this process, which can be found in
the aforementioned reference, we still want to get a feel for why it is asso-
ciated with such a distinct temperature.
Here we study the reaction

p+e=ls.
p and e stand for one proton and one electron, respectively, while 1s denotes

the atomic hydrogen ground state. In analogy to the example on p. 109 we
write
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Xls

— PK(T, P°)
XpXe

assuming ideal gas behavior. However, what we want to calculate is the
fraction of ionized hydrogen

X
X = L
Xp + X1s

We may combine the last two equations into one, i.e.
X(1+8X) =1, (3.149)

where S = (p, + p,)PK(T,P’)/p. Note that x, = x, and p; = px;, where p
is the total number density of massive particles in the universe at this time.
Equation (3.149) is the Saha equation (Meghnad Saha, 1893-1956, Indian
astrophysicist).

What we really want is X = X(7') and thus we need the explicit temper-
ature dependence of K (T, P°). The latter quantity is given by

K(T.P) = gresp |z (1T P7) + . P) = (0,2 |

Using Eq. (3.146) we have

T /
hi(T')
7

odT 77

T T°

.ui(Tvpa) :ui(Tovpo)i/

The partial molar enthalpy is h; = e; +RT, where the internal energy is

e; =¢\” +3RT/2. We also use ¢\ — ¢l — i) = —13.6 VN, where the
right side is the ionization energy for one mole of 1s hydrogen. Overall we
obtain

_ 2]
RT RT? R tan

2T

w(T, P w(T0,P°) /1 1\ 5 T°
T To

and thus
S = S,(p, + p1,)(T/1K) >/ exp[158,000K / T,
where we have used the ideal gas law to replace P and

13.6eV = 1.58 - 10°K. Here S, is a number depending on the reference state
(T°, P°), which thermodynamics does not reveal.
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This factor we shall obtain later from Statistical Mechanics, where we
learn that the chemical potential of an ideal system of point-like particles is

w; = RT In[p,A3. ] + e\”). Here

2mh?
Ari=1/
T, mikBT

is the so called thermal wavelength and e§”> is an internal contribution to the

particle’s chemical potential in the above sense. Setting the masses of the
proton and the 1s hydrogen equal, i.e. m, = m,, we find

S, =4.14- 1072 m’.
Finally we need to know p, + p;,. This quantity is given by

Qm,bpc()
Ppt P15~ (1= ¥)—=22(T/Tp)".
my,c

The quantity Q,,;p, o(T/ T,)® is the baryonic mass density at the time
when the radiation temperature is 7" (cf. the example “The expanding universe
and its temperature” in Sect. 2.2) and m,c?, the proton mass multiplied by the
speed of light squared, is the rest energy of a proton. In the aforementioned
example it is stated that €, , ~ 0.05 and p.; ~ 8 - 10-193 m=3. The current
temperature of the background radiation is 7, ~ 2.7K. The factor 1 —Y,
where Y is the primordial helium fraction, is roughly 1 —0.25 =0.75 . It
follows from the theory of primordial nucleosynthesis (a topic which we
cannot cover here). With this we have

S~ 4-107(T/1K)*? exp[158,000K /T]. (3.150)

The result is shown in Fig. 3.20. It is worth noting that neither the position
nor the shape of the step do significantly depend on the exact values of
pp + pig or S, (the reader is encouraged to check this).

Weinberg points out that the calculation thus far gives the correct order of
magnitude of the temperature of the steep decline in fractional ionization, but
it is not correct in detail. However, the in depth discussion is complicated and
the interested reader is referred to the above reference.

3 Equilibrium and Stability
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Fig. 3.20 Fraction of ionized X
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3.3.7 Boiling-Point Elevation

Figure 3.21 sketches a hypothetical crossing at constant pressure from a liquid
phase into the gas in a one-component system consisting of the substance A. The
temperature at which this happens is 7). From what we know already we may guess
the general form of the attendant chemical potential—in a narrow temperature range
around 7. This guess is shown in the upper portion of Fig. 3.22. The solid line
depicts the chemical potential along our path. The dotted lines are extensions of the
liquid and gas chemical potentials, respectively, to where they are not stable any-
more. Essentially this picture is based on the inequality (3.68).

Now suppose we do add a small amount xz of a second component B to the
liquid. According to Eq. (3.45) we find

sl = 1) — ¥ = —RTInx) ~ RTAY. (3.151)

As always * indicates the pure A and x4 + xg = 1. In addition x4 > xg. Equation
(3.151) predicts a downward shift of the liquid chemical potential of A, which is
shown as long-dashed line in Fig. 3.22. We note that we are interested only in the
immediate vicinity of the boiling temperature 7p. Therefore this line and the cor-
responding solid line are parallel to good approximation. Furthermore we assume

Fig. 3.21 Hypothetical PA
crossing of the saturation line

gas

T
Tb
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Fig. 3.22 Sketch illustrating uA
boiling-point elevation

that the amount of B in the gas phase is negligible or causes only a negligible shift
of the gas phase chemical potential. Therefore we find that the intersection of the
chemical potentials of A in the liquid phase and the gas phase has shifted to a higher
temperature Tp, + 0T

Using the Gibbs-Helmholtz equation we may relate 5/15‘1) at T, to the
boiling-point elevation 67. Geometrically 5,u/(f) is given by

sul! = (i) — (i), (3.152)

where (ii) and (i) are defined in the bottom portion of Fig. 3.22. By simple
trigonometry

o) ou!

(i) = — 57 oT and (i) = ~ar oT. (3.153)
Ty Ty
Thus we have
(8) 0)
) 8(,qu — Hy ) _ OApy.
= — T = T.
O, 3T ) 0 3T T,,(S (3.154)
b
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Table 3.2 Latent hea.ts of Compound AvapH [J/g] AmeltH [J/g]

vaporization and melting for

various compounds Ice 2838 (T =273.15K) | 333.6 (T = 273.15K)
Water 2258 (T = 373.12K)
N, 199 (T = 77.35K) 25.3 (T = 63.15K)
0, 213 (T = 90.2K) 13.7 (T = 54.36K)
Octane 364 (T = 298K) 182 (T = 273.5K)

The Gibbs-Helmholtz equation enters via

5,4” - _M ST = _g (T%> ST
aT T, oT T T,
_ AHA*(TIJ) +T8A.UA*/T ST (3.155)
T, oT T,
A
5'%(4)(3 137) W,ph ST,
b

Notice that Ap,.(Tp) =0 (chemical equilibrium!) and A,k is the molar
enthalpy change upon crossing from pure liquid A to pure gaseous A, i.e. the
enthalpy of vaporization of pure A. The enthalpy change during a phase transition
also is called latent heat—here latent heat of vaporization. Table 3.2 compiles latent
heats of vaporization and melting for a number of substances. We remark in this
context that the heat content of a substance build up without changing phase,

AH =m f dTC (T), where m is the mass of the substance, is called sensible heat.
Combmmg (3.155) with Eq. (3.151) we finally arrive at

P (3.156)

If we look up A,,,h for the transition of water to steam at 1bar, e.g. from

Table 3.2, we obtain 6(7/K) =~ 28.5xg), i.e. for amounts B in accord with our
above approximations the shift is quite small.

3.3.8 Freezing-Point Depression

Here the above solution containing mostly A and little B is in equilibrium with the
solid A, where again the B-content is negligible. Analogously to Fig. 3.21 we may
draw the sketch shown in Fig. 3.23. Apparently this time the transition temperature,



134 3 Equilibrium and Stability

Fig. 3.23 Sketch illustrating i A
freezing-point depression
~ Tt
solid ~ o
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which is the melting temperature 7,,, is reduced by the addition of B. A completely
analogous calculation yields

RT?
6T ~ _ﬁxg’% (3.157)
melt

where A, h is the molar melting enthalpy at given pressure. For water at 1bar we
obtain the freezing-point depression §(7T/K) =~ —103xg). Figure 3.24 shows this
relation (solid line) in comparison to data points for D-Fructose (crosses) and
Silvernitrate (AgNO3) (open squares) taken from HCP. Notice that in the case of
AgNOs the mole fraction refers to mole ions, i.e. Ag™ and NOj3 taken individually.
The dashed line, apparently an improved description of the AgNOs-data, is dis-
cussed in the next section.

Remark—cooling This is a good place to address the following question.
Figure 3.25 depicts a glass of water with a floating ice cube. Their respective
weights are 200 and 20 g and their momentary temperatures are 20 and 0 °C. What
will the temperature of the contents of the glass be after the ice has melted?

Fig. 3.24 Theoretical
predictions of freezing point
depression compared to
experimental data
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Fig. 3.25 A glass of liquid
water with a floating ice cube

20g
ice
T=0°C

200g
liquid water
T=20°C

We assume, as so often, no transfer of heat between the contents of the glass and
its surroundings including the glass itself. Then according to the first law we have

AE + Aw = Exoy — Exog — E2og +P(Va20g — Vaoog — Vaog) = 0, (3.158)
i.e. the overall enthalpy change is zero:
Hyy0 — Hoo0g — Haog = 0. (3.159)

Here the indices refer to the initial water and ice by their respective weights as
well as to the final liquid by its weight.

Neglecting for the moment the melting enthalpy of the ice, i.e. the enthalpy
change when the ice is converted into liquid at 7 = 0°C, we obtain the final
temperature 7' via

220gCpT — 200gCpT29-c — 208CpTooc = 0. (3.160)

Cp is the isobaric heat capacity (we use its value at T = 0°C which is 4.22J/(gK)),
also assumed to be constant in the relevant temperature range. The resulting final
temperature after the ice has melted is 7 = 18 °C. But this is incorrect, because we
have not yet included the enthalpy change during melting. There is a cost associated
with the breaking down of the ice structure—most notably the reduction in
hydrogen bonding. The price is paid in the form of heat extracted from the content
of the glass. This melting enthalpy is tabulated for numerous substances in HCP,
where we find A,,.,H = 6.01kJ/mol for water at ambient pressure and 0°C.
Including this contribution yields

(20 g/18g) AperrH + 220 gCpT — 200 gCpTagec — 20gCpTooc = 0. (3.161)
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Here 18g is the molar weight of water. The new result is 7 = 11°C. This is
considerably colder than the previous temperature. Apparently the transition
enthalpy is the major contribution'®!

If we redo our calculation with more ice, let’s say 100 g, we obtain even lower
temperatures—7 = —13°C in this case. We immediately object that this is
unreasonable, because the whole content of the glass freezes before reaching this
temperature. Correct''! Nevertheless it brings up an idea connecting our present
discussion to freezing point depression. We need to depress the freezing point
sufficiently in order to reach such low temperatures.

From Fig. 3.23 we can see that melting above T}, results because the chemical
potential of the liquid is lower. Therefore melting continues until the temperature is
T,,.'> If for instance we add salt to our liquid water in the above example, we may,
depending on the amount we add, lower the temperature far below the freezing
temperature of pure water.

In addition we may take advantage of a second and third enthalpy change
associated with a possible phase change of the substance we add or the mixing
process itself. If we select the proper substances then we can get quite low tem-
peratures in this fashion—around —100 °C! Of course, the disadvantage is that this
method allows to maintain low temperatures over short periods of time only.

Remark The above reasoning is very much simplified. It is incorrect to conclude
that increasing the amount of solute (e.g., salt) allows to continuously depress the
freezing point. For instance in the case of NaCl we can only get down to about
—21.1°C. At lower temperatures ice and solid salt coexist. What this means we
discuss in the next chapter, where we study simple phase diagrams (in particular
liquid-solid coexistence in binary systems (cf. Sect. 4.3.3)).

3.3.9 The Osmotic Coefficient Revisited

Boiling point elevation and freezing point depression can be tied to the osmotic
coefficient, ¢, and are practical means for its measurement. We start with the
Gibbs-Duhem equation at constant pressure and temperature:

' This also is something to keep in mind when buying a new washing machine. A higher spin
speed is usually better, because of the decreased residual water content in the laundry. This water
must be evaporated in the dryer, and the enthalpy of evaporation again is considerable. On the
other hand, a modern condenser dryer often is capable of reclaiming some of the invested energy
upon condensation.

"' More precisely, the process comes to a halt at coexistence of ice and liquid water.

12 Under “pool conditions” the sun transfers heat to the contents of our glass and the melting
continues until the ice is gone.
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_nAd:“A‘TP = Z”jdﬂj‘TP' (3.162)
s :

Here j stand for different solute components. This equation expresses an
infinitesimal change of the A-chemical potential via corresponding changes of the j-
chemical potentials. The right side of this equation is comparable to the right side of
Eq. (3.136). The difference is that in Eq. (3.162) the pressure is constant while in
(3.136) it is not.

However, in the liquid phase, where the compressibility is small, we may to very
good approximation equate the two right sides and consequently we arrive at

VI,
na

0 =~ . 3.163
Ha TP ¢ ( )

Here ou, is the chemical potential change due to increasing the solute con-
centration from zero to some final concentration. The sign is just the opposite of the
definition in Eq. (3.151) and thus

0
b~ LAL”?&T. (3.164)
Zj n; RT;,

This is the desired equation for the osmotic coefficient in terms of the
boiling-point elevation, where we have inserted the van’t Hoff equation for IT,;. An
analogous relation follows for the osmotic coefficient in terms of the freezing point
depression:

HX) Amelzh

- ST 3.165
>;nj RT,? ( )

¢~

The dashed line in Fig. 3.24 is obtained if the osmotic coefficient is calculated
via Debye-Hiickel theory according to Eq. (3.144). However, the reader should be
aware that AgNO3 is an example for which the limiting law works particularly well.

3.3.10 Measuring Surface Tension

Consider the interfacial area A = xy in Fig. 3.26 (left surface). Increasing A to
A+dA = (x+dx)(y+dy) (right surface) requires the reversible work dw = ydA.
Here v is the interface tension. We may also express dw in terms of the pressure
difference on the two sides of the surface AP multiplied by the volume change
dV = Adz, i.e. dw = APAdz. Hence
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Fig. 3.26 A Mechanical
equilibrium for a curved
surface

(x+dx) (y+dy)

APAdz = ydA. (3.166)

This transforms into a very useful equation if we can rewrite dA as a function of
dz. Expressing dA first in terms of dx and dy yields

dA = xy<x+dx) (ﬂ) — . (3.167)

x y

Now note that the dotted cross on the inner surface in Fig. 3.26 is a local xy-
coordinate system. Its x-axis points towards the reader and the positive direction of
y-axis is up. The dotted section of the x-axis is swept out by an infinitesimal angular
rotation of R; relative to its origin, whereas the dotted piece of the y-axis is obtained
by an analogous sweep of R,. The origin of R, (generally) is different from the
origin of R;. Ry and R, are the principal radii of curvature of the interface at this
location. Using the theorem of rays we can rewrite dA as

Ry +dz\ (Ry+dz 1 1
dA = —xy = xydz( — + — . 1
xy< R >( 2 > Xy = xy Z(Rl + Rz) (3.168)

Combination of the Egs. (3.166) and (3.168) yields the Young-Laplace equation

AP = y(RL] + R%) . (3.169)

Example—Capillary Adhesion We practice using the Young-Laplace
equation by calculating the force between two smooth plates squashing a
drop of liquid between them as shown in Fig. 3.27. Eq. (3.169) is applied at
the position marked by the black dot. One of the two radii of curvature is R,
which also is the radius of the liquid drop if we look down on it through one
of the plate’s surfaces. The magnitude of the other radius of curvature, let’s
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Fig. 3.27 Capillary adhesion <« R —>»

)

call this one r, is the radius of the circle whose partial circumference is
indicated by the dashed line. The angle between the dashed line and the upper
plate at the black dot is 6, the contact angle of the liquid on the plate. Simple
geometry yields

[— T
/g
-

2 (H/2)
tanezﬁ’ (3‘170)
H/2
which can be solved for r, i.e.
H
=— 3.171
" 2 cos ) ( )
If, in addition, we assume R > r then Eq. (3.169) becomes
Ap = — 21080 (3.172)
H

The extra minus sign is due to the fact that the center of the second circle lies
outside the liquid. In the opposite case it would have been positive. Note the
similarity of this equation to Eq. (2.136) derived in the context of the capillary rise
problem in Chap. 2. We can convert AP into a force between the plates, i.e.

2y cos 6

)

F = —nR* (3.173)

Here the minus sign indicates attraction between the plates (as long as 0 <7 /2).
For example, if the liquid is water (y = 0.0728 N/m), (assuming) 0 =0, R =1 cm
and H =5 um then F~ — 10 N.

The Young-Laplace equation can be used also to calculate the shape of a drop
suspended from a dosing capillary as depicted in Fig. 3.28 (the capillary is omitted).
Here the pressure difference is a function of z, i.e.

AP = AP(0) — Acgz. (3.174)

Note that the origin of the z axis is at the bottom of the drop. Ac is the mass
density difference between the liquid inside the drop and the medium surrounding
the drop, which may be air or another liquid. g is the acceleration of gravity. The
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Fig. 3.28 Pendant drop

two (principal) radii of curvature at z = 0 are identical due to the axial symmetry of
the problem, i.e. R; = R, = R (In the figure the two radii are shown for a different
point on the drops surface where they are different.). Inserting this into Eq. (3.169)
yields

AP(0) = %. (3.175)

Substituting (3.175) back into Eq. (3.169), this time for an arbitrary z, yields

1 sin®d 2 A
— a2 ez (3.176)
R| X R b

Note that x = R, sin @. Note also that the pendant drop is a figure of revolution
and that R, therefore must originate on the z-axis. The same is not true for R; (cf.
Fig. 3.28). It is useful to introduce a parameter variable s, which is the contour
length along the drop’s surface starting at the bottom (z = 0) and going up (see
again Fig. 3.28). This leads to the following set of three coupled first order dif-
ferential equations:

dd  sin® n 2 Acgzdx

dz .
— = = o— = () 3.177
ds x R y ds o8y T ( )

where we have used R d®=ds, di=R,cos®dD =cosdds, and
d(Ry — z) = d(Rycos D), i.e. dz = sin D ds.
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Fig. 3.29 Pendant drop z [mm]
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In practice the drop shape is recorded by a camera and the Eqs. (3.177) are
solved to fit the theoretical contour to the recorded contour using R and y as
adjustable  parameters. The initial conditions are 0=x(s=0)=z2
(s =0) = ®(s =0). Figure 3.29 shows two numerical solutions, i.e. the first
solution (solid line) is for R = 1.5 mm and 7 is the surface tension of water,
whereas the second solution (dashed line) is for the same value of R but a 10%
smaller surface tension. The first solution can be calculated via the following

Mathematica code:

R = 0.0015;y = 0.0728;

t = ND Solve[{¢'[s] == —Sin[¢[s]]/x[s] +2/R — (9810/y)z[s],¥'[s] ==
Cos[¢ls]],

Z[s] == Sin[¢[s]], x[0] == z[0] == ¢[0] == 0.000001}, {¢, x,z}, {s,0.006}]
ParametricPlot[Evaluate[{x[s] * 1000, z[s] * 1000}/.7], {s,0,0.006},

PlotRange — {{0,2},{0,4.2}}, AxesLabel — {**x [mm]", *z [mm]"}]

The second solution is obtained by changing the y-value (In addition, in the

figure this contour is shifted horizontally so that the two contours match up at the
top.). This method is the so called pendant drop method. It can be used to obtain
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(a) light source

Camera b e =

droplet on a solid surface

Fig. 3.30 a Schematic of the sessile drop measurement. b Picture of a liquid drop on a solid
surface

either the surface tension, if the surrounding medium is air, or the interface tension,
if the surrounding medium is another liquid. Another common technique for
measuring surface tensions is the sessile drop method depicted in Fig. 3.30a.
A small drop (= 1 — 2 pl) of a liquid is deposited on a clean smooth solid surface.
After the droplet has settled into its equilibrium shape a camera snaps a picture (cf.
Fig. 3.30b). This picture is then used to measure the contact angle, i.e. the per-
pendicular angle between the solid surface and the tangent to the droplet’s contour
at its base. There are two such angles on either side of the drop. Usually they differ
slightly due to surface irregularities, a possible tilt of the substrate surface, etc.

The theoretical analysis of this measurement is based on the following three
equations, the first of which is Young’s equation:

[ys = 74 +y1cos 0]. (3.178)

The sketch in Fig. 3.31 depicts the droplet and the contact angle, 0, in relation to
the tensions in Young’s equation. Here the index s indicates the solid surface and /
is the liquid. y, is the surface tension of the solid-gas interface and 7y, is the
analogous quantity for the liquid instead of the solid. y,; is the interface tension of
the solid-liquid interface. Notice that the unit of y is energy/length? or force/length.

Fig. 3.31 Standard setup for Vi
Young’s equation liquid
. A

\—

Vs solid
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The interpretation of Eq. (3.178) in terms of a force equilibrium is quite obvious.
The change in surface free energy at constant temperature when we put the drop
down on the surface is

AGY = (7, — 9, — 7,)AA. (3.179)

A second, albeit empirical, approximation of the same quantity is
AGY) = —2( yiyd + y‘,’y{:) AA. (3.180)

Here y? is the dispersive part of the surface tension 7; and y” is its polar part, i.e.

=7+ (3.181)

Combination of the Egs. (3.178), (3.179) and (3.180) yields

cosO+1
WA = 0 ) —— (3.182)

The distinction of “dispersive” versus “polar” is not always easy and never
clear-cut. Two examples may suffice at this point. Let’s consider the liquid phase of
an n-alkane. Its methylene groups do not exhibit a particular separation of charges
(partial charges) and its polarizibility is small. In this case ¥ & 0. The (attractive)
dispersive inter and intra-molecular interactions, which are at work here and
essentially govern yf , are due to interacting quantum fluctuations of the electron
distribution around the nuclei. These fluctuations of course are universally present.
Water, our second example, is very different from any n-alkane. In the gas phase it
possess a, compared to its size, large dipole moment of about 1.85 D. In the
condensed phase, due to polarization, it has an even larger (average) dipole
moment. Thus, liquid water is the liquid of choice when a large 7/ is needed.

While an accurate distinction between y¢ and y? can be difficult on the level of
microscopic interactions, it is quite straightforward in the following analysis.

Dividing Eq. (3.182) by /7 yields the equation of a straight line, y = mx + b, with

y; cosO+1 W
= 7’(172 and x= \/Vz' (3.183)
Vi !

If the experiment is repeated with at least two test liquids, i.e. liquids whose
surface tension components are known, then the y-intercept b and the slope m will
yield the dispersive part and the polar part of the solid’s surface tension:
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Fig. 3.32 Standard application of Eq. (3.182)
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| | Substance
o || 1-bromonaphtalene 68.52 (£3.42)

x || Ethylencarbonat

| MeanCA [?] |

93.35 (£1.31)

Surface free energy

Disperse

Polar

and ¥ =

m?.

20.15 £2.12 mN/m
19.48 +£1.79 mN/m
0.67 +£0.33 mN/m

(3.184)

Figure 3.32 shows a fairly typical example taken from a customer application
report (KRUSS GmbH, 2020). Only two liquids are used, but some care is taken
that these liquids cover a significant x-range. The temperature is 60 °C. The values
of the substrate’s surface free energy per area, the substrate is a polymer in this case,
and its components are shown in the box in the lower right corner. The measured
contact angles (CA) are shown in the box above. The quality of the result obviously
benefits from a wide range of x-values and a “large” number of test liquids.
Table 3.3 lists y,, ¢ and y? for a number of test liquids. Among these liquids water

Table 3.3 Surface tension of some test liquids (taken from a KRUSS GmbH customer application

report)

Test liquid 7y [mN/m] yd [mN/m] P [mN/m]
Water (25°C) 72.8 21.8 51.0
Ethylene glycol (20°C) 47.7 30.9 16.8
1-bromonaphthalene (20°C) 44.6 44.6 0.0
1-bromonaphthalene (60°C) 43.0 424 0.6
1-bromonaphthalene (80°C) 42.1 414 0.7
1-bromonaphthalene (120°C) 40.6 39.6 1.0
ethylene carbonate (60°C) 519 20.2 31.7
ethylene carbonate (80°C) 50.3 20.6 29.7
ethylene carbonate (120°C) 47.5 21.1 26.4
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at room temperature has the largest x-value (= 1.5), whereas 1-bromonaphthalene
has the smallest x-value (= 0). Note the temperature dependence of the surface
tension.

The development of Eq. (3.180) into (3.182) is called the OWRK-method in the
literature. Here OWRK stands for D. Owens and R. Wendt (1969), W. Rabel (1971)
and D. H. Kaeble (1970). However, much of the OWRK-method is described in
earlier work by F. M. Fowkes (1964). Motivated by the form of certain key for-
mulas in the theory of intermolecular and surface forces, Fowkes introduces the
geometric mean approximation (3.180) for the dispersive parts of the surface ten-
sions, i.e. he also arrives at Eq. (3.182) albeit with y? = 0. In his paper he considers
the entire range of interfaces occurring between gases, liquids and solids. He also
obtains the value for y;’h o in Table 3.3 based on the combination of Egs. (179) and
(3.180). In his case the index [ stands for water and the index s stands for a series of
hydrocarbons with negligible polar parts of their surface tensions. Since 7y, is
known (it can be measured by a number of methods), Fowkes’ procedure also fixes
yfqzo. Similarly one can obtain 7¢ and VZ for other (test) liquids.

In principle we can divide Eq. (3.182) by /7%y, instead of 1/7¢. The result is

another straight line equation in which b = /y¢/y, and m = /37 /7,. Thus we can
obtain the unknown components of a liquid’s surface tension by measuring its 6 on
at least two “test surfaces”.
Eq. (3.182) may be cast into another useful form by defining
7/ =Rcos¢ and 7} =Rsin¢. (3.185)

Inserting this into Eq. (3.182) and solving for R yields:

V77 cos ¢+ /7% sin ¢ 2 4 (3.16)
cos ¢ + sin ¢ (cos0+1)* .

R=R(¢,0) = (

For every fixed value of 0 we now can obtain ¢ and 7/ by letting ¢ vary from 0
to 7t/2. Figure 3.33 shows two examples of so called wetting envelopes. In the case

v [mJim?] md/m?
50 vs [ |

40

30

20 y,d=10 mJ m2

d -2
ye=20mJd m
s 6=r/d  yP=10 my m2

10
¥2=10 mJ m™2

2
% VP Imym?) 0 % y2 [mJ/m?]

0 5 10 15 20 25 0 10 20 30 40

Fig. 3.33 Examples of wetting envelopes
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(a) y? and }? are assigned fixed values and Egs. (3.185) and (3.186) are used to plot
7, vs. ¥ for two values of 0. If 6 = 0 wetting is complete. Panel (b) shows the
analogous result if Eq. (3.185) is replaced by

7 =R cos¢’ and 7’ =R'sin¢. (3.187)

We obtain R’ if we insert (3.187) once again into (3.182):

2
y;i—i—ﬁ (cos@—&-l)2

\/y;icos ¢+ \/y;i sin ¢’ 4

R(¢',0) = (3.188)

In panel (b) of Fig. 3.33 7/ and 7/ are assigned fixed values and the Egs. (3.187)
and (3.188) are used to plot y; versus y for two values of 0. The information
content is the same in both cases, because it is always Eq. (3.182) which is solved.

There are quite a few techniques and methods available for measuring contact
angles or surface and interface tensions. Surface tensions may be extracted from the
shape of drops in various configurations (hanging (pendant drop), rotating, deposited
(sessile drop), ...). As we have mentioned, interface tensions are obtained for
instance when the drops are embedded in another liquid. Here we cannot discuss all
of these measuring techniques in the detail they deserve. Instead we want to con-
clude this section by briefly describing two selected methods in addition to the above
pendant and sessile drop methods. The reason for including the first method is its
frequent use, which is comparable to the pendant and sessile drop methods, and the
main reason for including the second method is the illustration of a problem. The first
method is the Wilhelmy plate method which can be employed to determine the
surface tension of a liquid, the interface tension between two liquids (if air in the
discussion below is replaced by a second liquid), and the contact angle between a
liquid and a solid. What is measured here is the force F acting on a thin smooth plate
touching or partially submerged in a liquid as shown in Fig. 3.34. This force is

Fig. 3.34 Illustration of the force

Wilhelmy plate method plate

-«— Wwetted length

interface



3.3 Applications Involving Chemical and Mechanical Equilibrium 147

F=yLcosh—VAcg. (3.189)

Here L is the perimeter of the plate, i.e. the length of the entire plate-liquid
contact line, V is the volume of the displaced liquid, Ac is the density difference
between liquid and air, and g is the acceleration of gravity. Note that the second
term is the buoyancy of the submerged portion of the plate.

Commonly a platinum plate is used if the surface tension of an unknown liquid
is the quantity of interest. Platinum possesses a high surface free energy which
results in complete or total wetting, i.e. # = 0. Another common procedural step of
the Wilhelmy method is a slow submersion followed by the likewise slow retraction
of the plate. The corresponding dynamic contact angles, 0, (advancing 0) and 0,
(receding 6) are different and their difference is called contact angle hysteresis.

But the non-uniqueness of the contact angle 6 in Young’s equation is not limited
to dynamic measurements. It is observed in static situations due to the non-ideality
of the surfaces involved. Consider for example a liquid drop trapped inside a
narrow glass capillary. Now turn the capillary, which is open on both ends, so that
the force of gravity acting on the liquid is parallel to the capillary. (Usually) the
drop remains stuck inside the capillary forming an upper and a lower meniscus
possessing different contact angles 0,,, and Opoy0m. Generalizing our previous for-
mula for the height 4 of a liquid column inside a capillary, i.e Eq. (2.136), to this
case, we find

o
E/ (c08 Oyop — €08 Opouom) = c g h. (3.190)

Here h is the length of the liquid column trapped inside the capillary, from
which it would escape if cos 0., — cos Oponom = 0 However, usually this is not the
case and it takes some extra work, e.g. blowing into the capillary, to remove the
trapped liquid. More specifically, for the liquid column to remain motionless
(equilibrium), 0, > 0, and Opyyem <0,. Here 0, and 0O,are the limiting contact
angles below or beyond which a solid-liquid contact line, or in this case the liquid
column, begins to recede or advance spontaneously. Roughly, on a “good” surface
the hysteresis 8, — 0, is small (<5°). On rough or dirty surfaces it can be much
larger. The experimentally observed advancing contact angle is usually considered
to be closest to the contact angle 0 in the Young equation.

A substrate may not possess a “smooth” surface but may be a powder or
granulate instead. An important example are fillers consisting of nanoparticles
(<100 nm in diameter), usually carbon black or silica, which are used for rubber
reinforcement in the tire industry. The dispersion of the particles within the polymer
matrix is governed by the attendant interfacial free energies, which means that it is
of significant importance to reliably measure surface tensions of powders or
granulates. One can try to prepare thin layers of these particles on otherwise smooth
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substrates (e.g. adhesive tape) and measure contact angles with for instance
Wilhelmy’s method. But this will produce a pronounced contact angle hysteresis
and results are hardly reproducible. A method especially designed for porous
substrates was developed by E. W. Washburn (1921). Here the rate of penetration
of a test liquid into a compressed powder cake is monitored, i.e. the depth of the
liquid front / as a function of time 7 is recorded. The contact angle 0 then follows via

rty; cos0

ZZ
2n

(3.191)

The quantity # is the liquid’s viscosity and r represents the pore radius. In the
static limit of this experiment the wetting liquid penetrates upward vertically
through the powder cake until the capillary pressure balances the liquid’s weight.
Essentially the theoretical description is again Eq. (2.136) (capillary rise example),
where in this case r once again represents the pore radius. Off course, the latter is
not very well defined and therefore usually replaced by an effective capillary radius
ro defined in terms of the volume fraction of solid ¢, the density of the solid
material ¢ and the specific surface area per gram of solid A:

_21-¢)
=g (3.192)

For more details of this, the Wilhelmy and others methods the reader is referred
to Yuan and Lee (2013). The theory of surface and interface tension is covered in de
Gennes et al. (2004).

Remark 1 The temperature dependence of the surface tension, which we do not
discuss here, nevertheless is of great technical importance. Since in most applica-
tions a linear approximation is sufficiently accurate, many reports of measured data
do include the gradient dy/dT in the range of relevant temperatures 7. At the
gas-liquid critical point of a substance its surface tension y vanishes. For temper-
atures T not too different from the critical temperature 7, one can show that the
scaling relationy oc (1 — T/T,)" is satisfied, where u is a critical exponent. The
original value p = 1 (EStvos' law) was modified empirically to 4 = 11/9 by E.
A. Guggenheim (1945) and finally calculated on the basis of the hyperscaling
relation yt = (d — 1)v, where d is the space dimension and v is the critical exponent
of the temperature scaling of the order parameter fluctuation correlation length
(J. S Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University
Press, Oxford, 1989)). In three dimensions v /= 0.63 and therefore u ~ 1.26.

Remark 2 nA simple form describing the dependence of the surface tension of
polymer liquids on molecular weight M is y =y +cM . Here y and c are
constants. The exponent x usually is close to 2/3 for low molecular weights but
crosses over to 1 at high molecular weights (Thompson et al. 2008).
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4.1 Van Der Waals Theory

4.1.1 The Van Der Waals Equation of State

The van der Waals' theory assumes a molecular structure of matter, where matter
means gases or liquids. The interaction between molecules requires modification of
the ideal gas law:

P V  =nRT,
—~—

P =R (1)’ (4.1)

Molecules, or atoms in the case of noble gases, at close proximity tend to repel.
The attending volume reduction is —nb, where b is a parameter accounting for the
exclusion of (molar) volume that a particle imposes on the other particles in V. At
large distances particles attract, which in turn reduces the pressure. The particular
form of this pressure correction, i.e. a(n/ V)Z, may be motivated as follows. The
number of particle pairs in a system consisting of N particles is N(N —1)/2
~ N?/2. Expressed in moles this leads to the factor n?. The attraction is limited to
“not too large” particle-to-particle separation. We assume that two particles feel
attracted if they are in the same volume element AV. The probability that two
particular particles are found within AV simultaneously is proportional to

(AV/ V)z. Assuming this to be true for all possible pairs leads to an overall number

! Johannes Diderik van der Waals, Nobel prize in physics for his work on the phase behavior of

éases and liquids, 1910.
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of attracted molecules proportional to (n/ V)z. The resulting Eq. (4.1) is the van der
Waals equation of state for gases and liquids. The (positive) parameters a and b are
characteristic for the specific material. The van der Waals equation of state is by no
means accurate, but its combination of simplicity and utility is outstanding.

The parameters a and b may be estimated by measuring the pressure as function
of temperature at low densities. The result may then be approximated using the
following low density expansion of Eq. (4.1):

p= RTiBi(T;a,b) (ﬁ)i, (4.2)

- %
where
B\(T;a,b) =1 (4.3)
a
By(Tya,0) = b~ o (4.4)
B3(T;a,b) = b*
(4.5)

are so called virial coefficients. In practice one determines Bgex” )(T) by fitting low

order polynomials to experimental pressure isotherms at low densities. The
resulting Bgex” ) (T) is then plotted versus temperature. Now a and b may be obtained
by fitting Eq. (4.4) to these data points.

If we introduce the following reduced quantities, p, ¢, and v, via

P=Pyp (4.6)
T=T.u (4.7)
V=V, (4.8)
where
1 a
P.= 752 (4.9)
RT, = 59 (4.10)

T 27b
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V. = 3nb, (4.11)
we may rewrite the van der Waals Eq. (4.1) into

8t 3
Jv—1 v’
This is the so called universal van der Waals equation. It is universal in the sense

that it does no longer depend on the material parameters ¢ and b. Notice that the
ideal gas law in these units is

p= (4.12)

8¢
Pid.gas = 5 (413)

4.1.2 Gas-Liquid Phase Transition

The upper portion of Fig. 4.1 shows plots of the universal van der Waals equation
for three different values of ¢ (solid lines). Of course Eq. (4.12) always deviates
from the ideal gas law at low v. In fact we did not plot the pressure for v-values
below the singularity at v = 1/3, because there the molecules overlap. But we also
notice that the universal van der Waals equation exhibits strange behavior if < 1.0.
There is a v-range in which the pressure rises even though the volume increases.
Here we find an isothermal compressibility k7 <O—in clear violation of the
mechanical stability condition in (3.16)! Had we plotted Eq. (4.12) for even smaller
t-values, we would have obtained negative pressures in addition. All in all, for
certain v and ¢, the van der Waals equation does describe states which cannot be
equilibrium states. It turns out however that we can fix this problem, and at the
same time we may describe a new phenomenon—the phase transformation between
gas and liquid.

To understand how the model may be fixed we look at the free energy obtained
via integration of the pressure

F(V)=F, — /VdVP (4.14)

o

(cf. Eq. (2.109). The bottom part of Fig. 4.1 shows the result obtained using the
universal van der Waals equation (with F,, = 3) for the same three temperatures as
above. The t = 0.9-curve, which violates mechanical stability according to the
attendant pressure isotherm, is sketched in somewhat exaggerated fashion in Fig. 4.2.

We notice that the system represented by the filled black circle may lower its free
energy by decomposing into regions in which the free energy is f; or f,. In between
the free energy is
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Fig. 4.1 Van der Waals
pressure and free energy
versus volume at three
different temperatures 2y
1L
0
1L
_2 L

Fig. 4.2 Reduction of the
van der Waals free energy via
phase separation below t = 1
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f=fa+f(l—x) with x=— ¢

— (4.15)

Notice that this is the lowest free energy the system can achieve via decom-
position into regions with high density, denoted v;, and regions with low density,
denoted v,. The respective volume fractions of the two different regions are
assigned by the parameter x (note: v = xv; + (1 — x)v,) according to the value of v.
In other words, for volumes v; <v <v, the homogeneous system is unstable relative
to the decomposed or inhomogeneous system.

Imagine we move along an isotherm 7 <1 starting from a large volume v > v,.
We are in a homogeneous so called gas phase. Upon decreasing v we are entering
the range v, > v > v;. Here, depending on the value of v, we observe a “mixture” of
regions having a homogeneous density n/v, or n/v;. As we approach v, the volume
fraction of the latter regions increases to unity. If v;>v we are again inside a
homogeneous system—the liquid phase. This augmented van der Waals theory
therefore predicts a phase change from gas to liquid and vice versa.

Notice also that for vy >v >y

/__if :_f;;_fl

= = constant
oy Ve — W

(the straight line in Fig. 4.2 is the common tangent to f at v; and v,) and

fe—fi=pvi—pvy or fy+pve=1fi+pv,
N—— N——

=njty =nfy

which means that mechanical and chemical stability are satisfied.
In turn we may calculate v; and v, via the conditions p(z,v;) = p(t,v,) and
u(t,v;) = pu(t,vg) based on the universal van der Waals equation itself, i.e.

p(t,vi) = p(t,vg) (4.16)
and

vi Ve 4.17
_/ dvp(t,v) +p(t7 V[)V[ = _/ dvp(ta V) +p(l,Vg)Vg ( )

using nu = f + pv. The numerically obtained values v;(f) and v,(f) are shown as a
dashed line, the binodal line, in the upper part of Fig. 4.1. The area beneath the
binodal line is the gas-liquid coexistence region. Notice that no solutions exist if
t > 1, i.e. no gas-liquid phase transition is encountered above ¢ = 1. In addition to
the binodal line there is a dotted line, the spinodal line, which indicates the (me-
chanical) stability limit. This means that the isothermal compressibility, xr, is
negative below this line.
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Fig. 4.3 Pressure versus P(v)
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We remark that, among other methods, the simultaneous numerical solution of
Egs. (4.16) and (4.17) may be programmed as “graphical” search for the inter-
section of pressure and chemical potential in a plot of u(v) versus p(v). An example
is shown in Fig. 4.3 for t = 0.9.

The largest #-value for which a solution is obtained is t = 1. Here one finds
v; = vg. The corresponding values of the unreduced pressure, temperature, and
volume are P., T,, and V, given by the Egs. (4.6)—(4.8). We can find this so called
critical point directly by simultaneous solution of P. = P(T¢, V,), dP/dV|; ,, =0,
and dzP/dV2|T{_<VV =0 (the second and third equations are due to the constant
pressure in the coexistence region).

We may rewrite Eq. (4.17) using p'(r) = p(t,vi) = p(t,v,) as

/vg dvp(t,v) —p'(t)(vg — v;) = 0. (4.18)

The left side of this equation is the sum of the two shaded areas, one positive and
one negative, in the upper graph in Fig. 4.1. The equation states that the two areas
between the van der Waals pressure p(z,v), and the constant pressure, p’(¢), which
replaces it between v, and v;, are equal. Therefore v, and v; may also be found
graphically via this equal area or Maxwell construction . We remark that between v,
and v; the van der Waals pressure isotherms are said to exhibit a van der Waals loop.

Figure 4.4 shows the possibly simplest of all phase diagrams in the #-v- and in
the #-p-plane. The solid line in the upper diagram is the same as the dashed line, i.e.
the phase coexistence curve, in Fig. 4.1. The dotted line is the spinodal. The lower
graph shows the phase boundary between gas and liquid in the pressure-temperature
plane. Notice that here no coexistence region appears because the pressure is
constant throughout this region (at constant #). The crosses are vapor pressure data
for water taken from HCP.

The next figure, Fig. 4.5, shows three isobars above, at, and below the critical
pressure.
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Fig. 4.4 Phase diagrams in
the t-v- and in the t-p-plane

Fig. 4.5 Isobars in the
vicinity of the critical pressure
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Fig. 4.6 Van der Waals
chemical potential along three
isobars
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Figure 4.6 shows the van der Waals chemical potential along three isobars close
to the critical point (top) and over an expanded temperature range (bottom), i.e. we
compute p along three horizontal lines in the lower panel of Fig. 4.4 just below, at,
and just above the critical pressure. For p = 0.96 we cut across the gas-liquid phase
transition. Notice that the dashed lines indicate the continuation of the liquid (low f)
and gas (high 7) chemical potentials into their respective metastable region, i.e. the
region between spinodal and binodal line. This justifies our sketches of the
chemical potential in Fig. 3.22 and in principle also in Fig. 3.23. At p =1 the
chemical potential still exhibits a kink, whereas above its slope changes smoothly.

The general quality of the van der Waals equation is nicely demonstrated in
Fig. 4.7.% The figure shows coexistence data for seven different substances plotted
in units of their critical parameters. The data, in almost all cases, indeed fall onto a
universal curve. This behavior is called law of corresponding states. The universal
van der Waals equation certainly is not an exact description, but considering its
simplicity the agreement with the experimental data is quite remarkable!

2The data shown here are taken from the book by Stanley (1971); the original source is
Guggenheim (1945).
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Fig. 4.7 Law of T/T.
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We briefly return to the second virial coefficient, B,(T;a,b), in Eq. (4.4).
Figure 4.8 illustrates the comparison between the van der Waals prediction (solid
line), i.e.

I’lB2_1

27
V. 3 (1 B 5)’ (4.19)

and experimental data from HTTD (Appendix C). The agreement with the exper-
imental data is qualitatively correct. We note however, that the form of B; in
Eq. (4.5) is an oversimplification. The third virial coefficient, B3, is not independent
of temperature as this equation suggests. Notice that B,(T') = 0 defines the so called
Boyle temperature, Tg,p.. According to the van der Waals theory

27, (420

TB()yle = 3
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Another quantity of interest is the compressibility factor at criticality, for which
the van der Waals theory predicts that it is a simple universal number:

PV, 3
el 20375, 421
R = 037 (4.21)

In the cases of argon, methane, and oxygen the experimental values are close to
0.29.

4.1.3 Other Results of the Van Der Waals Theory

The gas-liquid phase behavior described by the van der Waals theory is considered
“simple”. In this sense it is a reference distinguishing “simple” from “complex”. We
emphasize that this refers to the qualitative description rather than to the quanti-
tative prediction of fluid properties. Other phenomenological equations of state may
be better in this respect, but it is the physical insight which here is important to us.
Because of this we compute a number of other thermophysical quantities in terms of
t, p, and/or v.

Isobaric Thermal Expansion Coefficient

Figure 4.9 shows the temperature dependence of the isobaric thermal expansion
coefficient, «,, below, at, and above the critical pressure. The dashed line is the
ideal gas result. Below the critical pressure a jump occurs when the gas-liquid
saturation line (cf. Fig. 4.4; right panel) is crossed. At the critical point we observe a
divergence. Above the critical point a maximum marks the smooth “continuation”
of the gas-liquid saturation line, which sometimes is called Widom line.

Fig. 4.9 Temperature
dependence of the isobaric
thermal expansion coefficient
for different pressures
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Fig. 4.10 Volume Kr
dependence of the isothermal 10
compressibility in the vicinity
of the critical temperature 8
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Isothermal Compressibility

Figure 4.10 shows the volume dependence of the isothermal compressibility, xr,
below, at, and above the critical temperature. The dashed lines are the continuation
of kr into the metastable region. Notice that x7 diverges when dp/0v|; = 0. This
condition defines the stability limit, k7 > 0, i.e. inside the gap between the dashed
lines the van der Waals equation gives negative xr. Notice that xr also diverges at
the critical temperature. Above the critical temperature x7 exhibits a maximum near
the critical volume, which diminishes as the temperature increases. In general the
compressibility increases as v increases—the gas is less dense and easier to
compress.

Isochoric Heat Capacity

Having discussed op and x7 the next obvious function to look at is the isochoric
heat capacity, Cy. It turns out that within the van der Waals theory all we obtain is

o™ =™ (1), (4.22)

i.e. C}V is a function of temperature only.
We show this via

oor | _or
OT oV irly — ovor lvir”

_op =_05
ar —Tov

v T
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Therefore

PP 0 0S o 0S 2.158) O Cy 1 0Cy
W‘v:ﬁa_v‘r‘v:(?—Vﬁ‘v‘T - WT‘T:?B—V‘T

This proves Eq. (4.22), because according to the van der Waals equation
d9*P/OT?|,, = 0.

Remark The above equation, i.e.

%‘ _ @‘ (4.23)
ov Ir orzly’
may be integrated to yield
OBy(T) _,By(T)] n
Cyv — Cyigeas = —nR|2T T -, 4.24
v V ideal n [ T + arz | v (4.24)

which is a low density approximation to Cy. Of course this correction vanishes if
the second virial coefficient, B,(T), of the van der Waals theory (cf. Eq. (4.4)) is
used.

Inversion Temperature

In Sect. 2.2 we had discussed the Joule-Thomson coefficient. Based on the uni-
versal van der Waals Eq. (4.12) we want to calculate the inversion line in the #-p-
plane. Eq. (2.106) is inconvenient, because we have to express v in terms of 7 and p.
However, using Eq. (A.2) we may write

p
8\/‘ O Op |,
orlp Op 1t Ot Iy |
v .
The inversion line now is the solution of
dp| /0p
- /e
ot vl Ov t+v

which we may find analytically:

p=12(vi— \/3/4)(\/27/4 — V7). (4.25)

The inversion temperatures at p = 0 therefore are f,;, = 3/4 and f,, = 27/4.
Equation (4.25) is shown in Fig. 4.11. The curve encloses the area in the #-p-plane,
where the Joule-Thomson coefficient, u;r, is positive (cooling). Outside this area
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Fig. 4.12 Different paths approaching the gas-liquid critical point

W;r is negative corresponding to heating. Experimental data for methane, oxygen,
and argon from Fig. 4.12 in Hendricks et al. (1972) Joule-Thomson inversion
curves and related coefficients for several simple fluids NASA Technical Note
D-6807 are included for comparison. Qualitatively the van der Waals predictions
are correct. But the quantitative quality is quite poor for #-p-conditions far from the
critical point (the gas-liquid saturation line (cf. Fig. 4.4; right panel) terminating in
the critical point (circle) is included), which we use to tie our theory to reality.

Itis interesting to work out dv/0t|, based on the virial expansion (4.2), because
this allows a better understanding of the Joule-Thomson effect on the basis of
molecular interaction. To leading order we find

v v 0(by/1)
- AT 4.26
otly ¢ t ot ’ ( )

where b, = nB,(T)/V,.. Consequently the Joule-Thomson coefficient in this
approximation is
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W = X—P <r2 %). (4.27)

This equation is general, i.e. we have not yet used the van der Waals equation of
state. If we do this, i.e. we insert Eqgs. (4.4), the result is
_ 1/27
VA Cruyr = 3 (Z - 1). (4.28)
We recognize that the equation describes the Joule-Thomson coefficient at P = 0

(or small P) near the upper inversion temperature. In particular we verify that
wyr > 0 for t <t,, and p;; <0 for ¢ > 1,4.

Van Der Waals Critical Exponents
Close to the gas-liquid critical point one can show that the quantities +dp, +dv, and
+0t, which are small deviations from the critical point in terms of the variables p, v,
and ¢, are simply related to each other as well as to thermodynamic functions like
the isobaric thermal expansion coefficient, a,, and the isothermal compressibility, &,
(as well as all others!).3

Again we focus on the universal van der Waals equation, i.e. Eq. (4.12). Along
the critical isotherm, path (a) in Fig. 4.12, we set p=1+Jdp and v =1 — dv.
Inserting this into (4.12) we obtain

op =— %5\13 +0(vY).

Ignoring constant factors and additional terms, like the corrections to the leading
behavior, we write instead

dp~ £ where +:v=1FJv. (4.29)

Approaching the critical point from above, t = 1 + ¢, along the critical isochor,
v =1, i.e. path (b) in Fig. 4.12, we find

Op ~ ot. (4.30)
Another special line is the coexistence curve, shown as the dashed line in

Fig. 4.1. On the sketches in Fig. 4.12 the path along the coexistence curve is labeled
(c). We insert t = 1 — 6t and v = 1 + v into the universal van der Waals equation

3 The small quantities dp, dv, and dr are all positive.
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and expand the result in powers of dv. Finally we assume dv = dv,. = c.6t%.* Note
that or and Jv are positive. The result is

3
pe=1 —45@58 +orf L6c ot P4

Here . .. stands for higher order terms O(57*) and O(672F), and + and — stand
for the gas and the liquid side of the coexistence curve respectively. The stability
condition (4.16) requires p_ = p . Setting ¢, = —c_ fulfills this equality but does
not yield the desired result because v_ = v . The only other solution requires
3=1+4+p and :F%Ci 4 6¢+ = 0. Consequently we obtain

1
[325 and cy =2, (4.31)
i.e. the leading relation between dv and Jt along the coexistence curve is

o~ o1'/2. (4.32)

We may use this to work out the dependence of the isothermal compressibility,
K, = —(1/v)0v/dp|,, near the critical point and along the coexistence curve. Again
we insert 1 = 1 — 0t and v = 1 & Jv into the universal van der Waals equation and
expand the result in powers of ov. We then work out the derivative dp/0v|, and
insert the above result (4.32). This yields
Kt~ ot (4.33)

t

—_%
p_ ot

obtain the Jt-dependence of the isobaric expansion coefficient, o, = (1/v)v/0t|,,

0
/%

. . . 61/
Using the general thermodynamic relation 47 ,

(cf. Eq. (A.3)) we

near the critical temperature and also along the coexistence curve. Because dp/ 8t’v
to leading order contributes a constant only, we obtain, as above for «;,

o, ~ ot ! (4.34)

We return briefly to the critical isochore, v = 1, and compute the d¢-dependence
of k; !, when we approach the critical point via this path. Working out dp/dv|, and
setting v = 1 as well as t = 1 + J¢ yields
K, '~ Ot (4.35)

t

*This is the leading term in a power series expansion of v in dz. Notice that the coexistence
curve is not symmetric with respect to reflection across the critical isochore—except very close
to the critical point (cf. below).
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Table 4.1 Selected critical exponents and their vdW-values

Exponent Definition Conditions vdW-value
o Cy ~ 5T V=V, (T<T,)

o Cy ~8T* V=V.(T>T,) 0

B pr— pg~o0TP coex curve 1

Y Kyl ~ 0T coex curve (T <T,) 1

y wp L~ ST V=V.(T>T,) 1

9 5P~ £ (p = py) T:TC<+:’0>p") 3

—P<pP.

as before. Only the prefactors (called scaling amplitudes) are different, i.e. x, ! ~
126t on the path along the coexistence curve and k' &~ 6t along the isochore.
Again we find the relation (4.34) for the same reason as before, i.e. dp/ 8t|v to
leading order contributes a constant only.

The reader may want to work out the divergences of o, in Fig. 4.9 and x; in
Fig. 4.10 to leading order in J¢ and v, respectively. The result is o, ~ 5123 along
the critical isobar and x; ~ §v~2 along the critical isotherm.

The exponents in the above power laws are called critical exponents. Table 4.1
compiles a selected number of them together with their definition, thermodynamic
conditions, and van der Waals values. Here p; — p, is the density difference across
the coexistence curve.” This quantity is called order parameter. Notice that by
construction the order parameter vanishes above 7. In addition, 6T = |T — T.| and
OP = |P — P,|. Notice also that we have not yet talked about the heat capacity
exponent o..° The prime indicates the same critical exponent below T,. The van der
Waals theory yields the same values for the two exponents listed here, i.e. o = of
and y = 7. But the van der Waals values are not correct! Even though the correct
exponent values turn out to be nevertheless the same below and above T, we again
adhere to the (safe) standard notation, which distinguishes the two conditions. op
does not appear in this list, because, as we have seen, its exponents are also y and 7’
at the indicated conditions.

5> What is the relation between p; — pg and £6v? Setting p; = p. +dp, and p, = p. +p, and
using [6p/p| = |6v/v| yields p, — p, oc Gv_ + v .

S The present critical exponent notation is standard. We want to adhere to it, even though certain
letters are used for other quantities also.
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4.2 Beyond Van Der Waals Theory

Thermodynamic Scaling

The preceding discussion of van der Waals critical exponents has highlighted the
power law-relations connecting thermodynamic functions close to the gas-liquid
critical point. This led to the idea to express the latter as generalized homogeneous
functions.” That is if f = f (x,y) is a generalized homogeneous function then

f(x7 y) = j'_lf( “pxa /“qu), (436)

where p and g are parameters. This is best explained via a simple example. We
choose

A
f(x7y) :; +By37

where A and B are constants. Applying the right side of Eq. (4.36) yields

o A A
I, 2y) = i +BAY 1y3”_71/i"’_1/3; +BY = f(x,y).

This also works for f(x,y) = Ax~2y>. However it does not work for

+ By?,

f(x,y)=1+x2

because

A
i, 20y) = BT s By

/{+/~L2p+1x2

Therefore we do not expect that this idea applies to thermodynamic functions in
general, except close to the critical point, where they may be expressed in terms of
powers of 0T and OP.

But what can we learn from Eq. (4.36)? We apply this equation to the free
energy, i.e.

Foo(01,0v) = A~ o (AP 51, 295v). (4.37)

7 See Widom (1965).
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The index oo is a reminder that we stay close to the critical point and we
consider the leading part of the free energy in the sense discussed above. The
exponent p should not be confused with the reduced pressure used in the universal

van der Waals equation. With the particular choices (a) A= dv~'/¢ and
(b) A = 6~ '/7 we transform Eq. (4.37) into

(@) :  foo(O1,0v) = WVIf (Sv7P/951,1)

(4.38)
(b) :  foolO,0v) = St'/Pf (1,007 UP6v).
We want to use this to work out Cy = —T&F/IT?|, and r;'!=—V5?
F/OV?|,, ie.
using (a): Cy = ov'/4=2/aCy, (svrl151,1
g (a): Cy v( ) (4.39)

using (b): k' = 5t1/”*2’1/”f<T(1, 5t*‘1/”5v).

Along the coexistence curve we had defined the exponent f§ via dv ~ 5t*. We use
this to eliminate ov from the Egs. (4.39). Together with Cy ~ dt~* and k7 ~ dt~7 we
obtain the following equations relating the exponents:

1 1
_a:ﬁ(__zl_?) _y:__+2g, p==. (4.40)
q q p p

SEES

The third equation ensures that the scaling functions Cy and &r are “well
behaved” at the critical point, i.e. dv?/45¢ approaches a constant at the critical
point. We may eliminate p and ¢ from these equations, which yields the critical
exponent relation

a2 +y=2. (4.41)

The van der Waals values from Table 4.1 obviously satisfies this relation.
Conversely we can use this relation to justify o = 0!

Figure 4.13 shows Cy measured for sulfurhexafluoride (SF¢) along the critical
isochore copied with permission from Haupt and Straub (1999) (SFs: T, = 318.7 K,
P, = 37.6 bar, V. = 200 cm? /mol).8 The value of the critical exponent o deter-
mined from these data is o = 0.1105 2%’. The currently accepted theoretical value
is & = 0.110 £ 0.003 (Sengers and Shanks 2009). For f§ and 7 the accepted theo-
retical values are ff = 0.326 £0.002 and y = 1.239 £0.002 in agreement with
experiments and with the exponent relation (4.41). Note that these exponents do not
depend on the molecular details of the fluid systems. Theoretical arguments show
that the critical exponent values depend on space dimension, (order parameter)

8 On the critical isochore we have f.. (9, v = 0) = 5'/7£,.(1,0) and therefore Cy ~ 6¢'/P=2 ~
ot~*. That is the exponent is the same as on the coexistence curve.
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symmetry, and range of interaction (“short” versus “long”) but not on the details of
molecular interaction. This allows to define so called universality classes of fluids (or
near critical physical systems in general) with identical exponent values.’

It is easy to derive a critical exponent relation involving the exponent J.
Applying P = —9F /0V|; to (b) in (4.38) yields

P = 5t'/P=aPP(1, 6P dv). (4.42)
Again with dv ~ 5t along the coexistence curve we find f6 = 1/p — q/p or
y=p(0—1). (4.43)

And again this relation is fulfilled by the van der Waals exponent values in
Table 4.1. It is worth emphasizing that exponent relations like (4.41) and (4.43) and
others mainly serve to unify the picture, i.e. the number of independent critical
exponents is greatly reduced.

Already we have mentioned that the van der Waals exponents are incorrect. This
incorrectness is not “just” due to the modest quantitative predictive power of the
van der Waals approach. Here the latter misses the underlying physical picture
completely.

Every thermodynamic quantity fluctuates around an average value. Usually the
fluctuations can be ignored entirely. This is what the van der Waals model does too.
However, close to the critical point fluctuations become increasingly important and
dominate over the average values.'” There are many models which in this respect are

91t is a hypothesis that all fluids belong to one and the same universality class. A discussion of this
hypothesis may be found in the above article by Sengers and Shanks.
19 More precisely what happens is that the local fluctuations influence each other over large

distances. These distances are measured in terms of the fluctuation correlation length which
diverges at the critical point.
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like the van der Waals model (Kadanoff 2009). When these models describe critical
points, they all yield the same critical exponents—the so called mean fieldcritical
exponents."’ This is striking, because the models look quite different indeed.
Nevertheless, near their respective critical points they all posses the same “sym-
metry”. Only after a method, the so called renormalization group, was invented how
to properly deal with the dominating fluctuations in the critical region, was it pos-
sible to actually calculate the correct values for the critical exponents—and they still
obey the above relations together with others derived via thermodynamic scaling.'”
This is because of the great generality of the thermodynamic laws and, in addition,
the fact that the power law behavior of thermodynamic functions near criticality
turns out to be an integral part of the new theory as well.

4.2.1 The Clapeyron Equation

Along the gas-liquid transition line in Fig. 4.14 we always have at “1” and “2”
(1) and  py(2) = p,(2)  or  (2) — (1) = 1e(2) — (1),
If “1” and “2” are infinitesimally close we may write
dwy = —si/dT +vidP = —s5,dT +v,dP = du,. (4.44)
Here lower case letters indicate molar quantities. Consequently we find

dpP Sg — Si
dT |coex o Vg — V[’ (445)

where dP/dT is the slope of the gas-liquid transition line in Fig. 4.14. This equation
is more general of course, because it applies not only to the transition from gas to
liquid and vice versa but to the transition between any two phases we choose to call
I and II. We remark that a transition with a non-zero latent heat, i.e. TAs # 0, we
call a first order phase transition.'* Thus we have

dar _Su— s (2.119),(2.177)1}’”__ hi (4.46)

dT lcoex Vi — vy = T Vi — vy ’

"'In models for magnetic systems JP is replaced by the corresponding magnetic field variable
and Jv is replaced by the magnetization. The compressibility is therefore replaced by the
magnetic susceptibility.

12 A nice reference including historical developments is Fisher (1998).

'3 Transitions without such discontinuity, e.g. at the gas-liquid critical point, are called continuous
or (generally) second order.
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Fig. 4.14 Thermodynamic P A
paths on either side of the
saturation line

—

This is the Clapeyron equation.

Example—Enthalpy of Vaporization for Water Here we calculate the
enthalpy of vaporization, A,,,h, for water from the saturation pressure data
shown in Fig. 4.4. Using Eq. (4.46) we may write

dpP 1 Avaph 4.47)
dT |coex - T Veas ’ ( ’

Compared to the molar volume of the gas we may neglect the liquid
volume. If in addition v, is expressed via the ideal gas law Eq. (4.47)
becomes

AyoyhdT
dlnP ~ 22— (4.48)
R T?
or, after integration,
P Avph (1 1
ey =222 ([ = = =), (4.49)
P, R T T,

Using the values P = 4.246 kPa at T = 303.15 K and P = 0.6113 kPa at
T =273.15K from the aforementioned figure, we obtain A,,h =
44.5 kJ/mol in very good accord with A,,,h = 45.05 kJ/mol at T = 273.15 K
or Ay,yh = 44.0 kl/mol at T = 298.15 K taken from HCP.

One important application of the Clapeyron equation is the following. Whereas
the van der Waals theory only describes the transition between gas and liquid, we
know that already a one component system may exhibit other phases—Ilike the solid
state. A sketch of the situation is shown in Fig. 4.15. There are transition lines (solid
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lines) separating phases I and II as well as II and III. The two lines may come
together at (?) to form what is called a triple point.'"* How would this look like, i.e.
how would we draw the line separating phases I and III? Can the dashed lines be
correct?

According to Eq. (4.46) we have at the triple point

Ahy_.
dP Ahpp  Ahyop+Ahgp  Ahpgg (1 - ﬁ)

[ = = ,
dT Avieg  Avpmm+Avi—r Aviem \ 1 — ﬁ

The second equality follows via

Ahp_pp+ Ay + Ay = 0
Avisg + Avir + Avyp—p = 0,

corresponding to a path enclosing the triple point in infinitesimal proximity (Both
functions are state functions!). Because, according to our assumption, the slopes of
the coexistence lines I-1I and I-1II are identical, we must require (1 —...)/(1 —
...) =1 and thus

Ahp—m  Ahy—m
Avi_m Avi—mr

This means, according to Eq. (4.46), that the slopes of the two solid lines in
Fig. 4.15 should coincide close to the triple point. This is not a satisfactory result.
We conclude that the slopes of all three lines must be different near the triple
point.'> This leaves us with the two alternatives depicted in Fig. 4.16. In alternative
(a) the broken lines correspond to the continuation of the coexistence lines between
phases I and II and phases I and III. In particular the shaded area is a region in
which phase I is unstable with respect to II. On the other hand in the same area
phase II is less stable than III. According to the solid lines, however, phase I is the
most stable, which clearly is inconsistent. Thus we discard alternative (a).
Alternative (b) does not suffer from this problem and is the correct one. We con-
clude that the continuation of the coexistence line between any two of the phases
must lie inside the third phase.

With this information we may now sketch out the phase diagram of a simple one
component system shown in Fig. 4.17. There are three projections of course. The T-
P-projection is what we just have talked about. Here G means gas, F means liquid
and K means solid. According to the van der Waals theory the gas-liquid coexis-
tence line should terminate in a critical point (C). We do not posses any knowledge

14 According to the phase rule this is the most complicated case in a one-component system.

15 Note that this conclusion based on the Clapeyron equation does not hold in cases when there are
transitions involved without discontinuities Ah or Av.
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Fig. 4.15 Phase coexistence lines in the T-P-plane

(a) (b)
P A P A

Fig. 4.16 Alternative phase diagrams near a triple point

of whether or not the liquid-solid line terminates similarly.'® All three lines meet in
the triple point. The remaining projections contain areas of phase coexistence due to
the volume discontinuity at the transitions.

It is worth noting that even a one-component system exhibits a much more
complicated phase diagram, i.e. here we always concentrate on partial phase dia-
grams. Fig. 4.18 shows an extended but still partial phase diagram for water (data
sources: lower graph—HCP; upper graph—Martin Chaplin (http://www.lsbu.ac.uk/
water/phase.html). Even though things already get complicated, the rules we have
established thus far for phase diagrams are always satisfied. The special

16 However, gas and liquid differ in no essential aspect of order or symmetry. This clearly sets
them apart from the crystal. We can choose a path in the 7-P-plane leading us from the gas to the
liquid phase without crossing a phase boundary, i.e. very smoothly. Based on this concept we
would not expect to find a liquid-solid critical point.


http://www.lsbu.ac.uk/water/phase.html
http://www.lsbu.ac.uk/water/phase.html
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A.B

e A K+G

Fig. 4.17 Phase diagram of a simple one-component system

temperatures are the freezing temperature at 1 bar, T}, the boiling temperature at 1
bar, T}, the critical temperature, 7, (together with the critical pressure, P.), as well
as the triple point temperature, 7, (together with the triple point pressure, P;).
Roman numerals in the upper graph distinguish different high pressure ice phases.

Example—Moist Air Parcel Lapse Rate Here we use the Clapeyron
equation to generalize our calculation of the temperature profile of the tro-
posphere in Sect. 2.2 to the case when the air parcel contains water vapor.
Let's briefly recap the adiabatic expansion of a dry air parcel. According to
energy conservation, i.e. the first law of thermodynamics, we have

dE = 5q+ 6w = —PdV. (4.50)

Notice that 5g = 0, i.e. there is no net exchange of heat between the air parcel
and its environment, and the (reversible) volume work is given by dw = —PdV.
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Fig. 4.18 Partial phase
diagram for water

Fig. 4.19 Droplet growth
through condensation
according to Eq. (4.82). Solid
line: full equation; dashed
line: the growth when [ is set
to one.
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The internal energy E = E(T, V) is a function of temperature, 7, and volume,
V. In this context, however, V is inconvenient and we decide to use the
enthalpy, H = H(T, P), where P, the pressure, is a more natural variable. Hence

dH = d(E+ PV) = dE + PdV + VdP = VdP. (4.51)
In addition, since H = H(T, P),

H
a = CpaT+ 22| ap. (4.52)
OP It

Because in the following we shall exclusively work with ideal gases, i.e.
the ideal gas law PV = nRT applies, we have 0H/OP|; = 0. Equating the
right hand sides of Eqs. (4.51) and (4.52) yields

a _Cr. (4.53)
ar v

If the air parcel is a cube of height dh we measure a pressure difference,

dP, from bottom to top, which is due to the weight of the air parcel itself, i.e.

dP = —cgdh. (4.54)

Here ¢ = M/V = MP/(nRT) is the mass density of the air parcel, where
M is the mass, V the volume, and n the number of moles of gas in the parcel.
The quantity g is the acceleration of gravity. The combination of Egs. (4.53)
and (4.54) yields the so called dry lapse rate

dT o Mimol8
dh B cp ’

(4.55)

where m,,,,; and cp are the molar mass and the molar isobaric heat capacity of
the air parcel, respectively.

Let’s make a quick estimate. Air mostly contains nitrogen and oxygen.
Both are diatomic molecules possessing 3 translational degrees of freedom
plus 2 rotational degrees of freedom. At the temperatures of interest here,
these five degrees of freedom contribute 2.5 nR, where R is the gas constant,
to the heat capacity. Thus cp = (2.5+ 1)R ~ 29 J/K. Notice that vibrations
are frozen out. The molar mass of (dry air) is m,,,; = 0.21 - 324 0.78 - 28 ~
0.029 kg. This means that the dry lapse rate is roughly

dr
~ —1 4.56
h 0 K/km, ( )
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Thus far we have not paid much attention to the moisture content of the air
parcel. The mass of 1 m? of air at sea level is roughly 1 kg. At T = 20°C and
40% humidity this much air contains about 7 g of water. Even though the
specific heat capacity of water is about twice that of the above mixture of
nitrogen and oxygen, the overall effect on the lapse rate is negligible.

Surprisingly, this becomes different the moment when the rising air parcel
crosses the saturation line of water, i.e. the water partial pressure in the air,
Py,0(T), becomes equal to the saturation pressure at this temperature.
Fig. 3.6 hows two dashed lines corresponding to adiabatic curves of air at two
different humidities. We now want to know what happens to moist air
expanding adiabatically, when the water vapor in the air crosses its saturation
line—where of course it must condense. The equation that changes is
Eq. (4.51), which now contains a second contribution, i.e.

dH = VdP — A,qph dng,o. (4.57)

The additional contribution is the enthalpy of condensation, which is the
negative of the enthalpy of vaporization, A,q,h, per mol multiplied by the
differential molar amount of condensed water, dny,o. Our task is to work out
the differential

87’1[-120 (9}11-120
T
ar T ap

dng,o = TdP. (4.58)

We note that we can express the amount of water vapor in the parcel via

nH20<T; P) = npy%m (459)

?

where n is the total number of moles of gas (in the parcel). Note again, Pg,0
is the water vapor partial pressure. Thus

P vl
dnpo = © Hzo‘ dT + nPu,o(T) / ( dp
P or (4.60)
:ﬁap”zoj dT—nHZOdP
P OT Ip

The derivative OPp,o(T)/0T|p is tricky. What is happening here? Well,
the water vapor cannot exist across from the saturation line. On that side only
liquid water is stable. If the water vapor wants to rise, it must do it following
the saturation line. So instead of OPp,o(T)/0T|, we work out
OPp,0(T)/OT|,,,,- Since the total pressure does hardly change anyway, we
do not expect trouble. Using the Clapeyron equation means
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Prmo| 1 Agh

=— , 4.61
OT  lcoex T AVH20 ( )
where Avy,o = RT/Pp,o. We therefore obtain
ny. OAvaph nH,0
dnpo = — gz —dT — —5=dP. (4.62)
Inserting this result into Eq. (4.57) yields
nHZOAvaphz nHzOAvaph
dH = VdP — dT dP = CpdT 4.63
v RT? TP < (4.63)
and thus
C "HZO(Tap)Avaphz
b _Crt — &p (4.64)

dr Vi nHz()(T})P)Amph :

Before we take the last step, which is to express dP in terms of dh, we
want to pause and discuss this expression. Note that if there is no water at all,
i.e. ng,0 = 0 then the result coincides with Eq. (4.53). In this case the slope is
that of the dry adiabatic curve. If on the other hand the water moisture
completely dominates, which corresponds to neglecting Cp as well as V, then
the slope is the slope in the Clapeyron equation, i.e. the slope of the saturation
line. The slope of the moist adiabatic curve, beyond the saturation line, as
given by Eq. (4.64), is in between the two. How can we understand this based
on a physical picture?

In the ideal gas a water molecule has the average energy, e,, which is the
kinetic energy, k,, determined by its temperature. When the water molecules
are in the liquid state then they have the average energy e; = k; — e. Here
—e<0 is their potential energy. As long as the water molecules have not
traded energy with other parts of the system e, = ¢; and the kinetic energy in
the liquid state therefore is k; = k, + €. This means that at this moment, the
water is effectively hotter than the surrounding gas. How big is €? In ice each
water molecule participates in four hydrogen bonds. In the liquid state this
number is reduced - which we ignore here. Thus, the potential energy per
water molecule is 4 x(1/2) hydrogen bonds ~ 2x25 kJ/mol (incidentally this
is quite close to the enthalpy of vaporization of water). The liquid water drops
formed at the saturation line now must equilibrate with the remaining gas—
mostly N, and O,. If we assume that 5 g of water transfer their extra energy to

1000 g of dry air, then this leads to a temperature increase AT in the air given
by
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S¢g 1000g
—50kJ/mol = ———= 3.5R AT.
18g mo 29g =~ (4.65)

=cp

The result is AT = 14 K. This is crude. Nevertheless, it illustrates the point
that the droplets formed at the saturation line contain sufficient excess energy,
which originates from the (negative) cohesion energy between the molecules
—even though the total mass of the droplets is a lot less than the total mass of
the other gas components.

In addition there is the effect that upon reaching the saturation line the
water vapor must be compressed in the first place. The attendant work, i.e.
Pr,0AV, must be done by the other gas components. This in turn means that
they must do double-duty. The gas continues to invest work into its adiabatic
expansion but to a lesser extend, because at the same time it also invests work
into the compression of the water vapor. The overall effect, however, is small
compared to the aforementioned one. If 5 g water vapor is compressed at a
partial pressure Pg,o = 0.01 bar (cf. Fig. 3.6) across the saturation line the
attendant work is (5/18)RT = 0.6 kJ/mol. The above cohesion energy on the
other hand is (5/18)50 kJ/mol =~ 14 kJ/mol. It is worth noting that the
condensation of water vapor does not occur at one particular height. As the air
becomes dryer due to condensation, the condensation shifts down the satu-
ration line (cf. Fig. 3.6).

We obtain the lapse rate of moist air beyond the saturation line combining
Eqgs. (4.64) and (4.54), i.e.
dT o Mol 8 1 +xH20 A]?”;‘h

= 7 (4.66)

cp

Here xp,0 = np,o/n is the mole fraction water in the air parcel.

Let's estimate the difference between the dry lapse rate as described by
Eq. (4.55) and the lapse rate described by Eq. (4.66). The difference is the
additional factor in Eq. (4.66). Because this factor does depend on thermo-
dynamic conditions, we decide to do our calculation for 7 ~ 5 to 10 °C (cf.
Fig. 3.6). The attendant enthalpy of vaporization is roughly 45 kJ/mol and
thus A,,,h/(RT) =~ 19. In addition ¢p/R ~ 3.5. For 10 g of water per 1 kg of
air we have xg,o ~ 0.016. This yields

dT dT
—~ 05— 4.67
dh dh lary’ ( )
the lapse rate upon crossing of the saturation line, which means just above
the cloud base, reduced by roughly a factor of two. If the water content is
reduced to 1 g per 1 kg of air the factor 0.5 is replaced by 0.9.
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Example—Droplet Growth In this example, in which the Clapeyron
equation again plays a central role, we resume our discussion of droplet
formation and stability which started in Chap. 3. In the following we discuss
the growth dynamics of droplets via condensation and collision.

Let’s begin with condensation. We assume that our droplet of radius a(z)
grows at the center of a coordinate system embedded in a uniform,
time-independent vapor phase. The rate at which the mass m(r) inside an
sphere of radius r > a changes is given by the continuity equation

dm(r) _ D=
= /A(r) dA - j(r). (4.68)

The right hand side is an integral over the flux of molecules j(r) through a
spherical surface A(r) = 4mr?. Note that dA = ,dA, where &, is a radial unit
vector. Note also that the left hand side is not really a function of r, because
the droplet is embedded inside a uniform, time-independent vapor phase,
which means that the mass change occurs on the surface (r = a) of the droplet
only. Hence

dm(a)
dt

= —4nr?e,j(r). (4.69)

Now we express the flux j(r), using Fick's law, j(r) = —DVc(r), in terms of
a hypothetical vapor mass density gradient Ve(r) = &,0,¢(r), i.c.
p de(r)

dm(a)
= 41D . 4.70
dr T (4.70)

Here D is the (constant) diffusion constant in the vapor phase surrounding
the droplet. The differential equation (4.70) can be solved via separation of
variables, i.e.

dm(a) [*°dr eles)

d(t )/u r—2=4n1)/c(a) de 4.71)
dm(a)

e 4nDa(c(c0) — c(a)). (4.72)

We finalize this expression by substituting m(a) = c4na®/3 and
c(00) = ¢(®), the bulk vapor phase density, which yields
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(& _
Zd = 2Dc e

7 — (4.73)

Assuming that the mass density at 7 = a does not change with time we see
that @*(t) = a*(0) + bt, where b is a constant. But note that at this point we
do not know c(a).

There is another quantity whose transport must be considered. Net
adsorption of molecules from the gas phase onto the droplet's surface
increases the local temperature due to a negative heat of vaporization —A, /.
This causes a heat flux into the surrounding gas phase. In analogy to
Eq. (4.68) we now have

d L
—Avgph dm(a) _ / d& Fo(r). (4.74)
b A()

The index Q indicates that jp is a heat current. We follow the same path as
before. Replacing Fick's law by Fourier's law, jo(r) = —INT(r), where 1 is
the thermal conductivity of the bulk vapor, we obtain

dm(a)

—Ayph
P dt

= 4nla(T(o0) — T(a)). (4.75)

Here we do not know T'(a). However, despite this lack of information, it is
possible to obtain an approximate analytic equation for a(z). We can use the
Clapeyron equation in the form of Eq. (4.48), i.e.

AvgphdT
RT T’

dinP~dn(cT) ~ (4.76)

where ¢ is the gas mass density (note that here we can replace the number
density by the mass density), or

de  (Avph dT
—Cz< P —1>— (4.77)
¢ RT T
or
- Ayph T
@ clz( ap _1> 2L (4.78)
C1 RT1 T1

It is important to keep in mind that dc = ¢, —c¢; and dT =T, — T are
small differences along the saturation line. By replacing 7; with 7(co) and 7
with 7'(a), and using (4.75), Eq. (4.78) becomes
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cs(a) — ¢5(00)
cs(00)

Aygph dm)d

~(1—1) riaT(o) (4.79)

where [ = A,,h/(RT(c0. cs(00) is the saturation vapor density at T(oo).
Likewise, cs(a) is the saturation vapor density at (). In order to make use
of Eq. (4.72) we expand c(c0) — c(a), i.e.

c(00) — ¢(a) = c(00) — ¢5(00) + ¢5(0) — ¢(a)

= ¢5(00) ((s 1) M) 7 (4.80)

¢s(00)

where S = ¢(00)/cs(00). The only difference between the left hand side of
Eq. (4.79) and the second term in the brackets on the right hand side of
Eq. (4.80) is ¢s(a) in the former versus c¢(a) in the latter. Both densities are at
the same temperature, however, and we shall assume that their difference is
much smaller than the difference of either one to c¢;(co0). Hence we may
combine Eqs. (4.72), (4.79) and (4.80) into

d , _ 2(S—1)

i~ .
0 Avgph e (4.81)
a Dccf) +(=1) 7T®

Note that ¢(o0) and ¢;(00) = cgg) are also densities at the same temperature
T(c0) = T® and thus § = P(c0)/P,(c0) = ¢. Integration of (4.81) yields

2(S 1)

f.
O Augphc® (4.82)
D +(1 -1

a(t) =~ a®(0) +

An example is shown in Fig. 4.19, the numerical values of the various
quantities are a(0) = 0.1 pm, S = 1.01, A,,,h = 45 kJ/mol, T®) =273 K,

¢ =5.55-10* mol/m?, ¢ = 0.27 mol/m?, D = 0.24 cm?/s for H, 0 in air,
and A = A4, = 0.024 W/(mK). The dashed curve illustrates the difference
when the latent heat term in the denominator vanishes (I = 1).

In this derivation we have omitted the curvature and concentration cor-
rections discussed in the previous part of this example, i.e. the dependence of
the saturation pressure above of the droplet on its size and on the concen-
tration of a possible solute.

Another point worth noting is the narrowing of the droplet size distribution
as time increases. To see this we subtract a;(r)* from ay(r)*, where the
subscripts 1 and 2 here refer to two separate droplets. We obtain



4.2 Beyond Van Der Waals Theory 181

a;(1) = aj(r) = a3(0) = af(0) or (ax(r) — ai(r)))a(r) = (a3(0) - a;(0)) /2,

where a(z) = (ax(t) + a1 (7)) /2. The right hand side does not depend on ¢ and
therefore the left hand side should not depend on 7 either. Since a(z) is
growing, we conclude that the difference a,(7) — a;(¢) becomes smaller and
eventually tends to zero, i.e. the above growth mechanism leads to a
monodisperse droplet size distribution for long times.

Growth by condensation is too slow to eventually lead to raindrops in the
range of several millimeters. But like all masses droplets fall in the gravita-
tional field. Under ideal conditions and when the droplets are not too large the
only force which they experience is Stoke's frictional force fs = 6mnav, where
n is the surrounding air’s viscosity and v is the droplets velocity. The droplet's
acceleration is given by

- x(1). (4.84)

Here x(¢) is the distance a droplet has fallen during the time z, M is the mass
of the droplet, g is the gravitational acceleration, and Mg is the droplet's
buoyancy. Since M), the mass of the air displaced by the droplet, is small
compared to M, we neglect this force and the velocity of the droplet becomes

V(1) = Ve (1 . e-'/f), (4.85)

where v., = g7 is the terminal velocity and 1 = M /(67mna). For example: let
a=5 pm and n =1, = 18.6 uPa at 300 K. Using cp,o = 1 g/em® we
obtain T ~ 0.03 s and vo, =~ 0.3 cm/s. If @ = 50 um instead, we find 7 = 3 s
and vy ~ 29 cm/s). For still larger a our formula for v, overestimate the
actual terminal velocity (fs should be replaced by a drag force proportional to
(a v)z), e.g. droplets with @ = 500 (2500) pm possess an actual terminal
velocity of about 400 (910) cm/s.

A falling droplet may “collect” other droplets in its path and thereby
accumulate mass according to

d
7’;’1 ~ 4% ECmoistVoo, (4.86)

increasing its radius by

da Ecmoist
— N —— V. 4.87
dt 4CH20 v ( )
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The idea is that during a short time dr the falling droplet collects a fraction
E of the moisture, in the form of smaller droplets, in a cylindrical column of
radius a and length vdt. This length of course is rough, because we have
replaced the velocity of the collector droplet relative to the velocities of the
collected droplets simply by v... The quantity E is the collection efficiency.
Some of the droplets in the path of the collector just get pushed aside and
around the falling collector and some just fall apart in the collision, etc.
However, we want to conclude our discussion of clouds and droplets at this
point and refer the interested reader to Salby (2012) for an in-depth
discussion.

Example—Superconductor Thermodynamics Figure 4.20 shows a phase
diagram in the T — H-plane, i.e. in this system the magnetic H-field assumes
the role of P. The two phases are named s and n. We easily can work out a
version of the Clapeyron equation in this case. Our starting point is
Eq. (4.44), i.e.

V v
—s,dT ——B, -dH = —s,dT ——B,, - dH. 4.88
& Y > 4r ( )

Here we have used the mapping from (P, —V) to (H, vB/(4x described on
p- 26 in the context of the discussion of Eq. (1.51). Notice that now v is a
constant molar volume of the material to which the phase diagram in
Fig. 4.19 applies. Analogous to (4.45) we find in the present case

v dH
_ Rt = 5. — S,. 4.89
4r (Bn BS) dT lcoex e 2 ( )

Our phase diagram is meant to apply to a type I superconductor. The
letters s and n label the superconducting and the normal conducting phases,
respectively. In the s-region we have therefore B; = 0. If in addition we use
the linear relation B, = u,.H, where pu, is the magnetic permeability, then
Eq. (4.89) becomes

v dH?

oy — ¢ — 4.90
87 i dT lcoex 5 Sn- ( )

Based on this equation and some additional information we may work out
the coexistence line. The additional information consists of the empirical
approximations to the molar heat capacities in superconducting and normal
conducting phases at low temperatures, i.e. ¢, = aT> and ¢, = bT> + 7T (an
example may be found in Chap. 33 of Ashcroft and Mermin (1976). The
quantities a, b, and y are constants, which may by obtained via suitable
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Fig. 4.20 A phase diagram in H
the T-H-plane

«H=H_(T)

n

experimental data. By simply integrating the thermodynamic relation ¢ =
Tds/OT|y from zero temperature to 7 we obtain s,(T) = s5(0) + (a/3)T?
and s,(T) = 5,(0) + (b/3)T* + yT (It may be puzzling that c, is used below
T.. Here the normal phase can be produced by a weak magnetic field
destroying the superconducting state with little effect on the heat capacity.). If
we invoke what is called the third law of thermodynamics, i.e. s(0) =0,
which we discuss in Chap. 5, we can integrate Eq. (4.90). The result, after
some algebra, is

T2
A1) =10 (1-T5) (@91)
where
2 3
H.(0) = /=T, and Te=y/—L. (4.92)
VUL, a—b

Notice that the latent heat, TAs, vanishes in the two end-points of the
transition line. Even though thermodynamics by itself does not explain
superconductivity, it does allow additional predictions provided that certain
input is available. However, if this input does consist of approximations then
the additional predictions will be approximate as well.

Phase Separation in the RPM

Arguably the most important insight provided by van der Waals theory is the role of
intermolecular interaction on gas-liquid phase separation. The latter requires
short-ranged repulsion as well as attraction. Here we discuss an overall neutral
system consisting of charges + g and —q possessing hard core excluded volume.



184 4 Simple Phase Diagrams

This model system is termed the restricted primitive model (RPM). Corresponding
experimental systems are molten salts (Weiss 2010; Pitzer 1990). Does such a
system posses a critical point analogous to the gas-liquid critical point in the van der
Waals theory? A priori there is no easy answer, because there is no obvious net
attractive interaction as in the latter theory.'’

The free enthalpy of our model system is

G=nyp, +n_p_. (4.93)

The indices refer to the two charge types. We approximate the chemical
potentials via

iNA lNAq2 1
V. 2 Ap 1+b/ip’

je Aty +RTIn" (4.94)

The first term describes contributions to the chemical potentials not dependent
on ion concentration. The concentration dependence here enters through an ideal
gas term, the second term in Eq. (4.94), and via the interaction between the ions in
the framework of the Debye-Hiickel theory when the ions posses the radius b (cf.
Eq. (3.135)), the third term in Eq. (4.94). Does this yield a critical point? We insert
Eq. (4.94) into (4.93) and the result into Eq. (2.195). The dotted line in the left panel
in Fig. 4.4 is the spinodal line obtained in the van der Waals theory. On the spinodal
line the compressibility diverges and thus OG/OV |1, n,..= 0 (cf. Eq. (2.195)).

Straightforward differentiation of our present G, using Ap o V'/2, leads to

! T =1 4.95
employing this condition. Here T* = bRT /(Nag*) and x = b//p. If we insert x =
1 4 ox into (4.95), we obtain to leading order in the small quantity dx

1 —ox* = 167", (4.96)

We recognize that there are always two solutions x = 1 + dx with the same T*.
The two solutions coincide if x = x, = 1 corresponding to 7% = T = 1/16. The
conclusion is that the RPM possesses a gas-liquid spinodal curve, here worked out
in the vicinity of the critical point at

1 Nag? 1
= d p.=2c—— .
16 Rb "¢ PeT T g

(4.97)

'7 One may argue that the immediate neighborhood of + ¢ on average contains an excess of —g
and that this leads to the net attraction. But this is a truly complicated system and such argu-
ments should always be backed up by calculation.
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Note that presently g*> = 2, and p is the total ion number concentration. Notice
also that the replacement ¢*> — ¢*/(4ne,¢,) yields T, in Sl-units.
The pressure follows via integration of

oP 1 0G
el i 4.98
OViran VOVIrts ( )
ie.
P ? (In[1 12

PV Nag (Il 124 (4.99)

(ny +n_)RT RTb X2 2x1+x

The resulting critical compressibility factor is

P _ 16In2 — 11 ~ 0.09035 4.100
O RT, ~ 0. . (4.100)

The above references list experimental critical parameters. In particular we may
compare the compressibility factor (4.100), because it is a pure number. It turns out
that the above model does not make quantitative predictions—except in selected
cases. But for us it provides a valuable exercise. In fact the model is not wrong—it
is incomplete. It turns out that association of ions into aggregates is the most
important ingredient for a more accurate description of phase separation in molten
salts and related ionic systems. A detailed account of this can be found in Levin and
Fisher (1996).

Electric Field Induced Critical Point Shift

The following discussion of the electric field induced shift of the critical temperature,
density, and pressure is not so much motivated by its practical importance but rather by
the rich content of conceptual and technical aspects making this a valuable exercise.

In the preceding section we have used Eq. (2.195), i.e. the divergence of the
compressibility, to locate the critical point. Here we consider an ordinary dielectric
liquid (dielectric constant ¢,) in an electric field E, where E is the (macroscopic)
average electrical field in the liquid. We also may want to apply Eq. (2.195) to
deduce the electric field effect on the location of the critical point. We must know,
however, whether to work out the partial derivative at constant constant D or at
constant E. We can find the answer via the following inequality

Pf Pf Pr\’
ama,f(aaa,)) >0. (4101

Here f = f(T, p, D) is the free energy density, depending on (constant) tem-
perature, T, particle density, p, and the magnitude of the displacement field, D
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(appropriate in an isotropic medium).'® Inequality (4.101) expresses the require-
ment that f is convex in terms of p and D. A sign change signals a “dent” in f
causing phase separation (cf. the 1D situation depicted in Fig. 4.2). Thus, the
replacement of > 0 by = 0 in (4.101) yields the critical point, i.e

L o r
4n \ODlrpdpltp ODlrp Oplrp o
" »op N (4.102)
w_ge| o
= T.p[)p T.E

Making use of Eq. (A.1) we obtain the desired result valid at the critical point,
)
ie.
o
dp

=0 (4.103)

T..E

We apply this formula to the free energy density
1
f=fo+—E-D. (4.104)
4r

Here f, is the part of the free energy density which does not depend on the field
explicitly. The attendant chemical potential is

1
— ity + o ED| . 4.105
m=tot 1o, Bl ( )
Differentiation at constant E and using D = ¢,(p)E yields
ou _ Oy, L 1 00 ‘ ‘
dplre  Oplr 4mndpop T.DITE (4.106)
8#0 1 2 828"([)) .
- ——E ‘ .
dp It 8z 0p?® I1E
We can express du, in terms of d7 and dP as usual
S 1
dy, = —~dT + —dP (4.107)
p p

'8 On p. 67 we had found F = F(T, D). The density (volume) dependence was ignored, because
it did not play a significant role in the example. In addition we use D = ¢,E, and thus D and E
are along the same direction. Moreover we can use the magnitudes instead of D and E.

' 0On p. 25 we had discussed situations in which one can obtain new thermodynamic relations via

replacement of P through, for instance, the electric field strength, E. In the present case we could
have applied this to the chemical stability condition in (3.16) to immediately obtain Eq. (4.103).
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and thus

I,
dp

_1or)
T pOplrE=0

(4.108)

We put everything together by combining Eqs. (4.103), (4.106), and (4.108), i.e.

0 L9P(p)

1 e (p.)
pe Op

T.E=0 87 0p?

(4.109)

T.E

Note that we first take the derivatives with respect to p under the indicated
constraints and subsequently evaluate the result at p.. Notice also that the first term
does not vanish even though we have learned that 0= 0P/0V|, =
—(p/V)OP/0pl;. in the context of van der Waals theory. This is because the
critical point we study now is for a certain field strength E # 0. However, we may
expand the first term as follows

1 OP(T.,+6T,p.,+0p)
LE-0 Peo+0p ap ‘E:O
Nlo_ﬂg@ﬂhﬁﬁ
Peo Peo dp E=0
\___.ZOF.___J
PP(Teo,p,,)
E=0 P T op

1 9P(p.)
pe Op

6 I 1(‘07 c,0 (
( S p,, )

0p?

=0

1 PP(Teo, pe)
" pe, OTOp

o)

oT.
E=0

The index c, o indicates that this quantity is taken at the critical point of the same
system in absence of the electric field (T. = T, + 6T; p. = p.,+ 6p). The first
two terms in the square brackets are zero, because they are evaluated for vanishing
field strength at the attendant critical point. Analogously we have

1 Plp)

N 1 E2 828r(Tc,07 pc,u)
8 dp?

T.E 81 0p?

(4.111)

E=0

Notice that E also is a small quantity, so that the right side is the leading term of
the expansion. Combination the last two equations yields

1 Per(Teos Pe)
OT ~ ——p, JE* — 25
pL,o 8p2

PP(Teo,p00)
~ R 4.112
87 E:O/ ( )

0T dp

E=0
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This is the leading contribution to the field induced temperature shift for small
field strength. In order to obtain dp to the same order we must work from
*1/0p?*|; g = 0. The result is

1 BZP(TC‘,,?pL_VU) _ BSP(TL:UA,pz-,o)
5p ~ [K(sr) i p} 9% g0 9% lp-osp (4.113)
p= PP(Toorpey) ’ '
op? E=0
B3¢ (Tey,p. 26, (T, o . I .
where K (g,) = Ferl “Z'p"”> e (‘ - Peo) . The shift of the critical pressure is
9p E=0 9 E=

simply

ap(Tc.o ) pc,o)

4.114
57 oST. ( )

E=0

OP =~

Notice that the shifts all are quadratic in the field strength.?’

4.3 Low Molecular Weight Mixtures

4.3.1 A Simple Phenomenological Model for Liquid-Liquid
Coexistence

The van der Waals approach is applicable to gas-liquid phase separation in a
one-component system. Another type of phase separation is observed in binary
mixtures. Depending on thermodynamic conditions the components may be mis-
cible or not. A simple model describing this is based on the following molar free
enthalpy approximation

g= X)gA —l—xg)gg —|—x£f) In xX> +xg) In x)(_,;l> + Xxg)x?. (4.115)

Here g4 = 13 (I)/RT and gg = uj(1)/RT are the reduced molar free enthalpies
of two pure liquid components A and B. Mixing A and B gives rise to the mixing

free enthalpy described by the In-terms. Note that the mole fractions are xX) and

20 We remark that the pressure derivatives can be estimated using the van der Waals equation of
state (0*P/OTdp|, = 6Z., PP/OTOp?|, = 6Z./p.; O*PJ0p?|. = 9Z./p,, where Z, =3/8 is
the critical compressibility factor. A sufficiently accurate estimate of the dielectric constant
derivatives is more difficult. Considering a permanent point dipole, u, in a spherical cavity inside
a continuous dielectric medium characterized by a dielectric constant, ¢,, Onsager (L. Onsager
Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486 (1936); Nobel prize in
chemistry for his work on irreversible thermodynamics, 1968) has derived the following simple
approximation (&, — 1)(2¢, + 1) /e, = 4nu?Nsp/(RT), which may in principle be used for this
purpose. We leave this to the interested reader.
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Fig. 4.21 Schematic of the x,-dependence of g for different y-values. The curves shown here are
for y = 1 (upper left), y = 2 (upper right), and y = 3 (lower left) using g4 = 1.5 and gg = 1.0.
Lower right: T-x,-phase diagram of our model of a binary mixture, where we assume that 7 = 1/y

x(l) =1- xff). We had obtained this contribution earlier, cf. Eq. (3.30), for mixtures

of ideal gases. Here we consider liquids. Nevertheless we still assume ideal
behavior. The last term is new. It introduces an additional interaction free enthalpy
proportional to the two mole fractions. The quantity y is a parameter in this theory.

Figure 4.21 shows g for different values of the y-parameter. If y is less than a

critical value then g is a convex function of xg) (or xg)). This situation is analogous
to the free energy in the van der Waals theory for temperatures above the critical
temperature. If y = y. then the curvature of g at xfp = 1/2 becomes zero. For still
larger values of y a “bump” develops - again analogous to the free energy in the van
der Waals theory for temperatures less than the critical temperature. Driven by the
second law the system now lowers its free enthalpy by separating into two types of

regions, which over time will coagulate into two large domains, one depleted of A
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and one enriched with A. The resulting phase diagram is shown in the lower right
panel in Fig. 4.21. The binodal line is obtained via a common tangent construction
applied to the free enthalpy (cf. the lower left panel) akin to the common tangent
construction used in the van der Waals case. The common tangent is the lowest
possible free enthalpy in between x4 yoor and x4 yicp. For a given x, in this range the
quantity (x4 — Xa poor)/ (X4,sich — Xapoor) is the fraction of A in the A, rich-phase
relative to the total amount of A in the system. The second special line is the
spinodal line. It marks the stability limit

&g

T.P

(cf. the third stability condition in (3.16)). Both lines meet at the critical point where

&g

ol —po
o , (4.117)

TP

because at the critical point the curvature obviously changes sign.

Note that temperature here enters via the assumed proportionality y o< 1/7. This
assumption accounts for the observation that phase separation usually occurs upon
lowering temperature. Nevertheless this is purely empirical and more complex
descriptions of y can be found.

Figure 4.22 shows experimental liquid-liquid equilibria data for the binary
mixtures water/phenol (solid squares) and methanol/hexane (solid circles).?! Here
x1 is the mole fraction of water and methanol, respectively. Notice that while both
systems show the basic behavior predicted by our theory, only the second system
also exhibits the symmetry around x = 0.5. Nevertheless, the solid lines are “the-
oretical” results, which where obtained using

co+c1x

T e (4.118)

Here cy, ¢y, and ¢, are constants, which are adjusted so that the theory matches
the data points. In particular the c|-term breaks the symmetry around x = 0.5.
While it is quite common to introduce such expressions for y, it is not easy to
provide reasonable physical explanations of the individual terms. In addition, the
“best fit” usually does not correspond to a unique set of values for ¢y, c;, and ¢,. We
return to this in the context of polymer mixtures.

2! Data from HTTD.
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Fig. 4.22 Liquid-liquid T[K]
equilibria data for the binary

mixtures water/phenol (solid 340 ¢
squares) and methanol/hexane
(solid circles) 330 |
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4.3.2 Gas-Liquid Coexistence in a Binary System

Can this type of phase separation be used to physically separate components A and
B? In principle yes—but not entirely and usually not as a practical means. Let us
look at the binary mixture from another angle. The above model did not include
possible distribution of components A and B in phases corresponding to different
states of matter, e.g. gas, liquid or solid. Here we want to study a situation when gas
and liquid coexist containing both A and B. This is depicted in Fig. 4.23—which we

encountered before (cf. Fig. 3.7).

In equilibrium we have ,uff> = /Jﬁ\l) and ,ugf) = ,ug? (cf. Eq. (3.38)). Thus we may

also write d,ugg) = d,uX) and d,u,gg) = d,ug). Concentrating on component A and

using Eqs. (3.27) and (3.45) we have

0 1

Fig. 4.23 Gas-liquid coexistence in a binary system
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d(f (1, P;) + RTnx®) = d(i (T, P;) + RTInx)) (4.119)

i.e. from the start we assume that both the gas as well as the liquid are ideal. This
may be reshuffled to yield

()
du)(T,P;) — ) (T, P;) = RTdIn . (4.120)
Xa

Note that we work at constant temperature.

Combination of the Gibbs-Duhem Eq. (2.180) at constant temperature with
Eq. (2.182) yields

O _v._a_V
oP T_ '_8}1,-

. 4.121
T,Pnj(#i) ( )

Here d,u/(‘g) (T,P;) and d ,uff) (T, P;) refer to the pure component A, i.e. v} is the
molar volume of A in the gaseous and liquid states, respectively. In particular we
may neglect v:m

in comparison to v;;(g). Therefore Eq. (4.120) becomes

(0
v:;(g)dP ~ RTd lnxi.

(4.122)
xff)

Integration, after insertion of the ideal gas law, i.e. vj‘(g) = RT/P, yields

)

P

L (4.123)
Py xle)

where the reference state is pure A and xX>/ (&) —

X, 1. Of course A and B may be
interchanged and thus
U]
P
S~ % (4.124)
B Xg
Because for ideal gases Pxif’ = P, and Px\f’

5 = Pp, where P, and Py are partial
pressures, Eqgs. (4.123) and (4.124) become

Py ! Pg 1
7 x and P~ Xy (4.125)
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In addition we may use Dalton’s law, P = P4 + Pp, which allows to express P
entirely through xgl} p OF xﬁ‘g/)B (Salby 2012). The first relation is

ngl)(P _p )—i—P . (4.126)

0

!
where we use x, +xY

= 1. Next we replace xX) with xﬁ\g) via Eq. (4.123) obtaining

Py

P = . (4.127)
1 (1—Py/Py)x

Equations (4.126) and (4.127) both are shown in the right panel of Fig. 4.23. The
straight line is Eq. (4.126), whereas the curved line is Eq. (4.127). Their meaning is
as follows. The dashed vertical line corresponds to a fixed x4. Above its intersection
with Eq. (4.126) we are in the liquid state of the mixture. Below its intersection with

Eq. (4.127) the mixture is a homogeneous gas. In between however liquid and gas

do coexist, and the mole fractions xﬁ{) and x[(‘g) are given by the intersections of the

horizontal dashed lines (depending on P) with Egs. (4.126) and (4.127).
There is a simple law connecting the total amount of liquid, n(/), and the total

amount of gas, n(g), with xa, x(l), and xff")

(i) nxa :n(l)xfp—i—n( )xff), where xA =na(l)/n(l) and xA —nA( )/n(g), and

(ii) nxs = n(l)xs +n(g)xa. Combining (i) and (ii) yields the lever rule:

—the lever rule. Note that

(g) —xs n(l)

—. (4.128)
XA — xX) ”(g)

Notice that x4 is indeed bracketed by x/(f) and x/(f) as we had assumed.

Experimental isothermal gas-liquid equilibria are shown in Fig. 4.24. The left panel
shows the system 1-chlorbutane/toluene at 7 = 298.16K. This system is well descri-
bed by the above Eqgs. (4.126) and (4.127) shown as solid lines. But there are other
systems, like water/ethanol at T = 323.15K shown on the right, which are not as ideal.

One may wonder about the difference between our two treatments of binary
mixtures. The first one basically is a model composed of the ideal free enthalpy of
mixing supplemented by a temperature dependent phenomenological “interaction”
free enthalpy. Here the mixture may phase separate into regions of different com-
ponent concentration depending on 7. The second approach assumes a (first order)
transition between different states of matter and describes the distribution of
components A and B between phases corresponding to those different states (gas/
liquid etc.) in terms of pressure. Aside from the assumed coexistence of phases
ideality is used throughout. In reality a combination of both approaches may be
necessary. However, it is worth noting in this context that a complete theory for the
full phase diagram of a real system (or material) does not exist.
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Fig. 4.24 Left 1-chlorbutane/toluane; right water/ethanol

4.3.3 Solid-Liquid Coexistence in a Binary System

Solubility

Based on the simple model expressed in Eq. (4.115) we want to study the situation
depicted in Fig. 4.25. The figure shows a solution of B in A and a pile of solid B on
the bottom. This can happen for instance if we try to dissolve too much sugar or salt
in water. The following is a rough calculation of the maximum mole fraction,
xg(T), which we can dissolve at a given temperature, 7.

Neglecting the y-parameter in Eq. (4.115) we may write for the chemical
potential of B in A:

up(l) = up(l) + RT Inxp. (4.129)

If pj(s) is the chemical potential of the pure solid B, then we have at coexistence
5(s) = ng(l). ie.

up(s) = wp(l) + RT Inxp. (4.130)

This can be rewritten into

Fig. 4.25 A solution of B in
A including solid B at the

bottom
solution

A+B
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Aw(T) | A (T,)

Inxg = —
s RT RT,

(4.131)

where Ap*(T) = py(l) — wj(s). Notice that T, is the equilibrium melting tem-
perature of pure B and thus Ap*(T,,) = 0. Why have we added this term? To see
this we write Ay = Ah — TAs, where Ah and As are molar enthalpy and entropy
changes. Assuming (!) that Ah*(T) = Ah*(T,y) = Apengh and As*(T) = As*(T,,),
i.e. these quantities depend only weakly on T, we immediately find

Amelt Bh 1 1
I s Dmersh (1 1y 4.132
N R \T T, (4.132)

The added term has essentially eliminated the entropy and all we need to know is
the transition enthalpy (here the melting enthalpy) of pure B as well as its melting
temperature.

Notice that the index B in Eq. (4.132) can be replaced by an index i, where
i = A, B. This means that the roles of A and B may be interchanged. Fig. 4.26 shows
what we get for a mixture of tin (Sn) and lead (Pb). For tin we have A,y snh = 7.17
kJ/mol and T,, = 231.9°C (HCP). In the case of lead A,,.;rpph = 4.79 kJ/mol and
T,, = 327.5°C. Using xp, = 1 — x5, we can combine both graphs of T versus xg,
and T versus xp, according to Eq. (4.132) into one plot. They intersect at xg, =
0.485 and 7, = 81.6 °C. Below the intersection both lines are continued as dashed
lines. Above T, and between the solid lines the mixture is a homogeneous liquid.
The solid lines are the solubility limit of Sn in Pb or, above x5, = 0.485, Pb in Sn.
T,, the eutectic temperature , is the lowest temperature at which a mixture of Sn and
Pb can exist as a homogeneous liquid. The intersection of the lines marks the so
called eutectic point.

Predictions of this simple approach, even though they are helpful for our
understanding, are neither quantitative nor complete. The true eutectic point of the

350

300
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250 |

200 F

T [°C]

150 |
100 F
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Fig. 4.26 Approximate solubility limits of tin and lead in a binary system
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Fig. 4.27 The real phase diagram of the tin/lead-system

Sn/Pb-system is at xs, = 0.73 and T, = 183 °C. The real phase diagram of this
system (at P = 1bar) is shown in Fig. 4.27 (based on data in HCP). As in Fig. 4.26
there is a homogeneous liquid mixture with an eutectic point shown as black dot.
The regions marked o and f correspond to homogeneous solid phases rich in Pb
and Sn, respectively. The remaining regions are phase coexistence regions.

4.3.4 Ternary Systems

Figure 4.28 explains how to read triangular composition phase diagrams of ternary
systems. A ternary system contains the there components A, B, and C. By definition
the side lengths of the equilateral triangle ABC are equal to one. At the point labeled
0 the system has the composition x4, xg, and x¢. The position of Q within the
triangle is described via the dashed lines possessing the respective lengths x4, xp,

Fig. 4.28 Triangular C
composition phase diagram of
ternary systems
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Fig. 4.29 Experimental Cr
example of a ternary phase )
diagram
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and x¢. The dashed line x4 is parallel to AB, xp is parallel to BC, and x¢ is parallel
to AC. This definition satisfies the necessary condition x4 +xg +xc = 1. The
validity of x4 +x5+xc =1 is verified easily using the division of the original
triangle into a lattice of smaller equilateral triangles. There is no loss of generality
due to this meshing, because the coarse mesh in our example can be replaced by
one which is arbitrarily fine.

An experimental example is depicted in Fig. 4.29 showing the iron-chromium-
nickel ternary phase diagram at 900°C (adapted from HCP (Fig. 23 of
Sect. 12 p. 199, 89th edition)).

Exercise: Determine from Fig. 4.29 the composition of 18-8 stainless steel (open
circle).

4.4 Phase Equilibria in Macromolecular Systems

4.4.1 A Lattice Model for Binary Polymer Mixtures

We return to the study of binary mixtures assuming that the two components are
linear polymers. A simple but instructive approximation of a linear polymer is a
path on a lattice as depicted in Fig. 4.30. Here the lattice is a square lattice and
every lattice cell contains one polymer segment. Segments belonging to the same
polymer are connected by a solid line. The solid and hollow circles indicate two
chemically different types of segments. In the following we consider v; polymers of
type i with length (or mass) m; (i = 1,2). This means that all polymers of type i
posses the same length, i.e. they are monodisperse. In reality (technical) polymers
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Fig. 4.30 Binary mixture of
linear polymers represented
by paths on a lattice
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are polydisperse, i.e. they do have a distribution of lengths. Here we avoid this
complication. In addition we assume that each of the m; segments is one monomer
of the real polymer for conceptual simplicity. There are N = N| + N, monomers
total (N; = m;v;) and N is equal to the number of lattice cells. This means that the
lattice is fully occupied.

Having specified our model we want to estimate the number of distinct polymer
configurations on the lattice:

(1)

(ii)

We proceed by severing all bonds connecting the monomers in each polymer
chain. The individual monomers, which we consider distinguishable at this
point, are then placed on a new empty but otherwise identical lattice. There
are N! ways to accomplish this.

Now we ask: What is the probability that in one such configuration all
monomers do have the same neighbors they had before in the polymer? We
first approximate the probability that a particular monomer is placed in a cell
next to its polymer-neighbor monomer via

. my—1 o my—1
g1 or (=1}
N N
Here g is the coordination number of the lattice. This is the number of
neighbors each cell has. On a square lattice ¢ = 4; on a simple cubic lattice
g = 6. This means that if we have a polymer partially laid out on the lattice

and we put the next monomer, of which we know that it is the neighbor in the
polymer, down on the lattice blindfolded, then there are g — 1 “good” cells
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compared to N cells total. Of course we neglect occupancy of the cells by
previous monomers—a truly crude approximation. Nevertheless we
approximate the above probability as

q-— 1 (my—1)v; q-— 1 (my—1)v,
N N '

(iii) This number we multiply with N!, the total number of configurations. But we
also must divide by the product v;!v,!, because two polymers of the same
type are indistinguishable. All in all we find that the number of distin-
guishable ways to accommodate the polymers on the lattice, €, may be
approximated via

U/ N meDv N (e
o~ M (a1 q-1 , (4.133)
V1!V2! N N

We can now work out the entropy, which is the configuration entropy, via

S=N;'RInQ. (4.134)

The justification for this clearly important formula will be given in the next
chapter. Here we merely consider its consequences. Using the Stirling formula, i.e.

InN!~NInN —N+ Inv2rnN =~ NInN — N (if) Nis large, (4.135)

we obtain
S 1 1 -1
AT T S N [T R PSS R R P E Sl S PR BT
nRkR my my my Ny m my e

where n = N/N4 and ¢; = N;/N.
Before we discuss this, we compute the entropy of mixing given by

AS
m =—viIn¢; — v21In ¢,. (4.137)

This is the entropy change if we combine two lattices of size N; and N,, each
filled with the respective polymers of type 1 and 2, into one lattice of size
N = N;+ Ny, i.e.

AS=S—8, -5, (4.138)
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where S; = NA’IRln Q; and

X - (mi—1)v;
0~ (‘IN. 1) . (4.139)

Using again v; = N;/m; and ¢; = N;/N Eq. (4.137) becomes

gz —ﬁln(ﬁl —ﬁlnqﬁz. (4.140)
nR my my

Notice that this equation is quite similar to the free enthalpy of mixing for a
K = 2-component ideal gas (3.30) (in the case of a fully occupied lattice we have
¢; = x;). Only the factors 1/m; are new.

Equations (4.136) and (4.140) are the backbone of a method describing ther-
modynamic properties of macromolecular systems akin to the van der Waals
approach to low molecular weight systems . The lattice approach outlined here was
pioneered independently by Staverman and van Santen (A. J. Stavermann, J. H. van
Santen, Rec. Trav. Chim. 60, 76 (1941)), Huggins (M. L. Huggins, J. Chem. Phys.
9,440 (1941); Ann. NY Acad. Sci. 43, 1 (1942)) and Flory (Paul John Flory, Nobel
prize in chemistry for his work on the physical chemistry of macromolecules, 1974)
(P. J. Flory, J. Chem. Phys. 9, 660 (1941); 10, 51 (1942)) (cf. R. Koningsveld,
L. A. Kleintjens Fluid phase equilibria. Acta Polymerica 39, 341 (1988)).

A Digression—One-Component Gas-Liquid Phase Behavior

Equations (4.136) and (4.140) can be applied to a number of interesting situations.
We introduce the replacements ¢, = ¢, m; = m, and ¢, = 1 — ¢. In addition we
assume mp = 1. This corresponds to polymers in a solvent, where the index 2
indicates the solvent. The resulting configuration entropy is

M:_%m%—(1—¢)ln(1—¢)+¢<1—%)lnqe1. (4.141)

nRkR

If we replace the solvent cells by empty cells, we describe the same type of physical
situation described by the van der Waals equation. Here the total volume is
V = bN, where b, the cell size, also is the monomer size. We may obtain the
attendant configurational pressure via

0 RT
Pcanf = T Ay (_TScmy")‘T = m

5 {—q&(l - %) —In(1 - q&)} (4.142)
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Analogous to the van der Waals approach we must add a term accounting for
attractive interaction between the monomers. Our choice, in analogy to the van der
Waals equation of state, is

NAbP . NAchonf INAGD
RT =~ RT 2 RT

P (4.143)

Here ¢, > 0 is a parameter.

The closeness of this and the van der Waals equation of state becomes even more
clear if we compute the gas-liquid critical parameters via g—{; |7 = % lr=0. We
find

Nye, m
T, =—2—— (4.144)
R (/m+1)
¢ _ 4.145
< ym+1 (4.145)
1 i
bp, 3= v+ V(7)) (4.146)
“ (Vi t 1)’
In the limit m = 1 we therefore have
RT, 1 1 bP, 2In2 -1
= oy =n Le_ M7 (4.147)
Nye, 4 2 € 8

Comparison with Egs. (4.9) to (4.11) yields Ne, = (32/27)(ayaw /bvaw) and
Nab = (3/2)b,qw.”> We may work out the relation between critical and Boyle
temperature,

TBoyle = 4TC7 (4148)
or the critical compressibility factor

NyP,.
RT.p,

—2In2—1~0.39. (4.149)

Both values are very close to the same quantities in the van der Waals theory (cf.
Egs. (4.20) and (4.21)).

But we are not interested in a competition with the van der Waals equation. We
therefore look at the opposite limit, i.e. very long polymer chains, which is not

22 These relations are not unique. Here we have used 7, and ¢,. Instead we can use 7, and P, or
¢, and P.. The resulting differences are small.
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Fig. 4.31 Critical NpPc/RT.pc)
compressibility factor for 030 [
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described by the van der Waals equation. In the limit m — oo we have to leading
order
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The corresponding leading behavior of the critical compressibility factor is

NP, 1
oo ~3m (4.151)

Here p, is the number density of the monomer units—not the polymers! Notice
that the critical compressibility factor is not a constant independent of the type of
molecule as before. Figure 4.31 shows the critical compressibility factor for
n-alkanes (1 <n<18). The symbols are data from E. D. Nikitin The critical
properties of thermally unstable substances: measurement methods, some results
and correlations. High Temperature 36, 305 (1998). The mass density was con-
verted to the monomer number density using CH, as the monomer unit. This also
implies m = n. The lines are fits to the data using the full expressions, i.e. Egs.
(4.144)—(4.146), (solid line) and the limiting law, Eq. (4.151), (dashed line). The
only fit parameter is a multiplicative constant, i.e. instead of 1/(3m) we use 0.24/m
to match the data for large m.

Notice also that expressing pressure, temperature, and volume or density in terms
of their critical values eliminates the material parameters b and ¢,, but it does not
eliminate m. This means that the resulting equation of state is not universal in the
sense that it is different for molecules with different length, i.e. different m. Therefore
the law of corresponding states is not obeyed by molecules with different m.

Polymer Mixtures

In Sect. 4.3.1 we had discussed liquid-liquid binodal curves for low molecular
weight binary fluid mixtures. Figure 4.32 shows analogous binodal data points for a
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Fig. 4.32 Binodal data points T [K]
and theoretical fits for three
binary polymer mixtures
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macromolecular fluid mixture determined by observation of the cloud points. The
term “cloud point” refers to the turbidity observed upon passing from the homo-
geneous mixture into the coexistence region, where droplet formation increases the
scattering of light. In our theoretical description we assume a fully occupied lattice.

Figure 4.32 shows polystyrene-polybutadiene mixture cloud point data taken
from Fig. 4.3 in Roe (1980); PS2-PBD2 (solid circles); PS3-PBD2 (open squares),
and PS5-PBD26 (open triangles); mpsy = 2220, mpgz = 3500, mpgs = 5200,
mpgpa = 2350, mpppas = 25000. Note that ¢, refers to PS. The solid lines are the
results of a calculation analogous to the one which produced the solid lines in
Fig. 4.22, i.e. we determine the binodal line by the common tangent construction
applied to the mixing free enthalpy?”

AG ¢, 1—¢,
nRT my néy+ my n

(I=¢1)+2hi(1 = ¢y). (4.152)

Again we use Eq. (4.118) to describe y. Notice that the y-term in the literature
sometime is denoted as an enthalpic contribution. This is not necessarily true, because
for instance 0G/JT|p, = —S, and if y depends on temperature, as it usually does, then
the y-term contributes to the entropy as well. We had already pointed out that the
physical interpretation of the y-term is not straightforward. Here significant insight is
needed into the microscopic interaction of polymer systems. A good starting point for
the interested reader is the following paper by R. Koningsveld (R. Koningsveld, L.
A. Kleintjens Fluid phase equilibria. Acta Polymerica 39, 341 (1988)).

Polymers in Solution

We briefly want to discuss Eq. (4.152) when m, = 1, i.e.

AG ¢

W—Elnqb—k(l—¢)1n(1—¢)+x¢(1—¢), (4.153)

21t does not matter whether we apply the common tangent construction to the mixing free
enthalpy or to the full free enthalpy.
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where ¢; = ¢. This situation describes a polymer-solvent-system. The phase
behavior of this system is in principle described by Fig. 4.21 (bottom-right panel),
except of course without the symmetry around x4 = 0.5, i.e. ¢; = 0.5, unless
my = 1. Setting the coefficient c; = 0 in Eq. (4.118) we easily work out the critical
temperature and the critical packing fraction, i.e.

c 1 1 1 1

“o__ -4 d -
o2 et m o, @ =

according to Shultz and Flory (Shultz abd Flory 1952).>* These critical parameters
follow via simultaneous solution of

(4.154)

? o
¢ ¢
(cf. Egs. (4.116) and (4.117)). The critical solution temperature, 7., measured for

different m may be fitted via (4.154), i.e. T(.’1 versus m~ /2 + (2m)71, to determine
co and ¢, experimentally (for this particular mixture).

Osmotic Pressure in Polymer Solutions
Equation (4.153) may be used to calculate the osmotic pressure of polymers in

solution. Again we employ the Gibbs-Duhem equation at constant temperature
(3.136):

Vi v " v, 9°AG
VII, = du, (V,) =L = / dv, -+ ) 4.156
1 /0 Ml(V1)NA A VINA 8V% ( )

Notice that dy; (v1) is due to altering the relative polymer content of the solution,

which solely affects the mixing contribution of the free enthalpy. After some work,
using n = N/Na, N = myv| +mavy, and ¢;/m; = v;/(nN,), we find

=Tl s, s

where n; is the mole fraction solvent. It is instructive to expand the right side for
small polymer concentration, i.e.

24 Notice that T, and p, do agree with the same critical parameters in the case of the previously
discussed gas-liquid critical point, cf. Eqs. (4.144) and (4.145), if ¢, = Nac,/(2R) and ¢; = 0.
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RT RT 1 (1

where we also have used m > 1. We do not want to discuss Egs. (4.157) and
(4.158) in much detail. It turns out that the lattice approach has a number of
shortcomings. An insightful discussion of osmotic pressure in polymer solutions,
including the present result, can be found in P.-G. de Gennes (1988) Scaling
Concepts in Polymer Physics. Cornell University Press.

However, it is worth to compare Eq. (4.157) to the equation of state (4.143),
obtained via the same combinatorial lattice approach applied to a fluid of small
molecules. We recognize that both equations posses the same functional depen-
dence on ¢ and ¢,. In Sect. 4.1.1 we had discussed the virial expansion of the van
der Waals equation of state. The same expansion may be carried out in the case of
the lattice equation of state (4.143). Analogously we may expand the osmotic
pressure in powers of the solute concentration. Such an expansion, Eq. (4.158)
shows the first two terms in the case of the lattice model discussed here, can be used
to describe the deviations between van’t Hoff’s law and experimental data as in
Fig. 3.10.

Somebody may object to this pointing out that the leading correction to van’t
Hoff’s law in the case of electrolyte solutions is proportional to ¢*/? (cf. Eq. (3.143)),
where c is the electrolyte concentration, rather than to ¢%. However, expansions like
(4.2) or (4.158) are based on assuming short-ranged microscopic interactions. In
Statistical Mechanics it is shown how the configuration integral in the partition
function (partition functions are introduced in Chap. 5) can be expanded in particle
clusters consisting of one, two, three, . . . particles at a time—corresponding to integer
powers of the density. A particle may be a nobel gas atom or a molecule. The
one-particle term results in the ideal gas law. The two-particle term results in its
leading correction as described by the second virial coefficient—etc. This cluster or
virial expansion is sensible only if the inter-particle interactions are short-ranged.
Coulomb interactions, on the other hand, are long-ranged.”> Even at low concen-
trations a particle (ion) interacts with numerous other particles—despite the screening
which beyond some distance shrouds the presence of the particle at the origin.

2 What is the meaning of short versus long? If two particles at a separation r interact with a
potential 7", then the average potential energy per particle due to this interaction is e o<
(p/2) [° drr='=" (cf. p. 78). Here p is the particle number density, a is the distance of closest
approach (particle diameter), and d is the space dimension. The integral is finite only for n > d.
Here long-ranged means that this condition is not satisfied. Of course this does not mean that e is
infinite if n < d—it is not. It just means that the microscopic interaction must be dealt with more
carefully. In particular it means that cluster expansions of the above type are not possible.



Chapter 5 ®
Microscopic Interactions ki

5.1 The Canonical Ensemble

It is of course desirable to combine thermodynamics with our knowledge of the
structure of matter. In particular we want to calculate Thermodynamic quantities on
the basis of microscopic interactions between atoms and molecules or even sub-
atomic particles.

We assume a large completely isolated system containing a by comparison
extremely small subsystem. This subsystem is allowed to exchange heat with its
surroundings and we have

E=E,,+E,. (5.1)

Here E is the total internal energy of the isolated system, whereas E, is one
particular value which the internal energy of the subsystem may assume. The
difference between these internal energies is E,,,, i.e. the internal energy of the
subsystem’s environment.

For the moment let us assume that the isolated system, with the subsystem
currently removed, contains a gas of particles. If we take a photograph of this gas
every once in a while, we observe that the particles move even though E remains
constant. If we own a special camera, allowing to record the instantaneous velocity
of every gas particle in addition to its position, then each snapshot fully characterizes
the gas in the instant the picture is taken. We call this a microstate of the gas. This is a
very mechanical point of view, and we know that classical mechanics has its limi-
tations. For instance it is not really possible to determine both the position and the
velocity, or rather the momentum, of a gas particle with arbitrary precision according
the uncertainty principle of quantum mechanics. We nevertheless assume that the
concept of microstates remains valid in the sense that there are many somehow
different realizations of our system belonging to the same energy E. This is the key
premisses of what follows, i.e. every energy value a system assumes can be realized
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by a vast number of microstates. We call this number Q(E). We can apply this
microstate-idea also to the above subsystem. In this sense different v-values mean
different microstates, i.e. E, is the internal energy of the subsystem in microstate v.

Having said this we may now continue by studying Q(E,,,) = Q(E — E,), the
number of microstates of the environment all possessing the same energy E — E,.
Progress requires two additional and important assumptions: (i) all microstates are
equally probable; (ii) the probability that our subsystem has the energy E,, p,, is
proportional to the number of microstates available to the environment under this
constraint, i.e.

pv x Q(E — E,). (5.2)

The first assumption, known as the postulate of equal a priori probabilities,
sounds quite reasonable, because there is nothing we can think of which favors one
particular microstate over another if both have the same energy. The second
assumptions corresponds to a principle of least constraint, i.e. a subsystem
microstate v is more likely than another if the by comparison huge environment
suffers a smaller reduction of its available microstates.

A useful expression for p, can be derived by expanding Q(E — E,) or rather
InQ(E — E,) in a Taylor series around E, i.e.

dInQ(E)
MQ(E — E) = nQ(E) - = 22| Bt 5.3
NQ(E - E) = nQ(E) - 2| Bt (53)
Using the definition
dInQ(E)
=7 54
b dE ‘E 54)

and neglecting higher order terms, which we shall justify below, we may write
pv x Q(E) exp[—pE,]. (5.5)

By introducing another quantity, the so called canonical partition function

‘QnVT = Zv CXp[—ﬁEvH, (56)

we may use 1 = " p, to finally express p, as

_ exp[—BE,]
=
QnVT

In order to understand how this relates to thermodynamics we calculate the
average energy of the subsystem

(5.7)
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) CYEp 0
<E> - Z:Evpv = vav = 8(—ﬂ) anNVT' (58)

For this to be consistent with thermodynamics we must require (cf. Eq. 2.116)

0 OF 0 F

Comparing the left side with the last expression on the right we conclude f
T-!' and

[F = —p""InQur} (5.10)

The proportionality constant between  and T~! is the gas constant R, i.e.

f=— (5.11)

B=— (5.12)

if we use the number of particles (N), i.e. atoms, molecules, etc. instead. Eq. (5.10)
is an important result. It allows to obtain the free energy, F, from the partition
function Q,yr. Qnyr may be computed if the possible energy values, E,, of our
closed subsystem are known.

Example—A Model Magnet Imagine a system consisting of just one
magnetic moment variable s. The possible values of s are s, = +1(up/down).
We also assume that E, = —J(s)s,, where J > 0 is a coupling constant and
(s) is the thermal average value of s. Somebody may object that thus far we
have assumed macroscopic subsystems, but here the subsystem contains one
magnetic moment only. However, what we really do is to assume that there
are many s, which do not interact with other s individually but rather with the
normalized average magnetization (s). This is called a mean field
approximation.
The effective one-magnetic moment-partition function simply is

Q(iﬁ)eﬁm> +e P = 2 cosh(BJ(s)) (5.13)

and the average magnetization per moment can be computed via
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(s) = zvjsvpv = % = tanh(BJ(s)). (5.14)

This implicit equation for (s) has one solution, i.e. (s) = 0, when fJ<1.
But for fJ > 1 it has two additional solutions, (s) = %(s), # 0 (cf. Fig. 5.1).
In this case we must find the stable solution for which the free energy is
lowest. The free energy is given by

F(6.10 —%lncosh(ﬁ.](s)). (5.15)

We see that the solution (s) = 0 is unstable in comparison to the other two
solutions (s) = £(s),. Because F(—(s),) = F({s),), both solutions are
equally stable. If the system is cooled from 7T > T. = J/kg to T = T, and
below, it must “decide” whether to follow the positive (up magnetization) or
negative (down magnetization) (cf. the right panel in Fig. 5.1). This decision
is made by thermal fluctuations and is called spontaneous symmetry breaking.

It is important to note that Eq. (5.4) together with Eqgs. (5.12) and (1.51) yields

S(E) = ks Q(E)]. (5.16)

This relates the entropy, S, of an isolated system with energy E to its number of
microstates, Q(E). In Sect. 5.4 we had used (5.16) to construct the entropy in
macromolecular systems treating the macromolecules as linear paths on a lattice.

Example—Order-to-Disorder Transition in 1D and 2D An example illus-
trating nicely the significance of Eq. (5.16) is depicted in Figs. 5.2 and 5.3. The
upper portion of Fig. 5.2 shows a one-dimensional chain of arrows (or magnetic
moments—we recognize the relation to the previous example) all pointing

(a)  tanh(BJ(m)).(m) (b)

1.5 <m>1)
1.0 - 1.0
05 oL, 05 j
m
{m) 00 02 04 06 08 Yo 1.2 1.4

-0.5
Fig. 5.1 Magnetization and its temperature dependence

T/T.

-1.0

-1.5
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Fig. 5.2 Introducing a
domain wall into a perfectly
ordered chain of arrows

Fig. 5.3 A domain wall in
the two-dimensional case
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up. This system is fully ordered. The lower portion shows the same row after
introduction of a domain wall, which means that all arrows to the left of the
domain wall are upside down. We define an internal energy of this system via

N—1
E=-J) sisix1 (5.17)
i=1

(no mean field approximation in this case). Here J is a positive (coupling)
constant and s; = £1 (s; = 1 for up-arrows and s; = —1 for down arrows).
Notice that this internal energy is invariant under simultaneous inversion of
all N arrows. Thus there are two equivalent types of complete orientational
ordering—all arrows up and all arrows down. The internal energy difference
between the bottom and the top row is

AE = Epotiom — Erop = 2J. (5.18)

What, however, is the corresponding change in entropy, AS? The only
distinguishing feature between chains with one domain wall is the position of
the domain wall along the chain. In the present case there are N — 1 different
positions (disregarding left-right symmetry). If we identify the number of
different positions with the number of microstates of this system (note that
shifting the domain wall position does not alter the chain’s energy) we find

AS = kgIn N (5.19)

(weuse N — 1 — N in the limit of N — o0). Therefore the change of the free
energy at constant temperature due to insertion of one domain wall is
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AF = AE — TAS = 2J — kgT InN. (5.20)

In the thermodynamics limit, i.e. N — oo, we always find AF | <0 for
T > 0. However according to (2.130) such change occurs spontaneously.
And since this remains true for the insertion of a second, third, and every
following domain wall the orientational ordering is completely destroyed, i.e.
the disordered state with Zf\’: 1 Si = 0 is the thermodynamically stable one!

But what happens if we repeat this “experiment” in two-dimensions?
Fig. 5.3 shows a two-dimensional lattice of arrows containing two domain
walls meandering through the system. We proceed as in the one-dimensional
case and compute first the change of the internal energy due to a domain wall
consisting of n pairs of arrows, i.e.

AE = Eyithdw — Ewithoutdw = 2Jn. (521)
The attendant entropy change is
AS = kgInp". (5.22)

Here p is the number of possible orientations of each of the n domain wall
segments relative to its predecessor. In our figure this means left turn, right
turn, and no turn, i.e. p = 3. But this is an overestimate as illustrated in
Fig. 5.4. It shows that two domain walls cannot meet. This means that
occasionally p is reduced to two orientations or, in rare cases, to just one.
Thus the free energy change is

AF = (2J — kzTInp)n. (5.23)

Clearly, the sign of AF does depend not on n but on the term in brackets. It
will change at a distinct or critical temperature7,, i.e.

kT, 2 (182 ifp=3
L :—%{ P (5.24)

J Inp 289 ifp=2

For temperatures above 7. the sign of AF is negative. Domain walls are
created spontaneously by the system destroying any orientational order of the
arrows. Below T, the opposite is true, i.e. domain walls are not stable and

Fig. 5.4 Two domain walls + + + * +
cannot meet

H
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orientational order is the consequence. An exact calculation of this model
system, it is called the Ising model, can be done, and the result is that in 2D a
finite 7, does exist (Kramers and Wannier 1941; Onsager 1944)—However,
it was Rudolf Peierls who first showed that the two-dimensional Ising model
has an order-to-disorder transition (Peierls 1936). The exact value, i.e.
kgT./J = 2.269. . ., is in fact bracketed by our above estimates for p = 3 and
p=2!

We conclude that whereas in one dimension no transition is possible the
situation is completely different in two (and higher) dimensions. But notice
that we could have extended the range of interaction in one dimension to
include all arrows. Doing this it is possible to have AE = O(N) and thus we
see that our conclusion does rest on the assumption of a finite interaction
range! In fact, the previous example shows this. The mean field approxi-
mation implies an infinite interaction range, and because the dimensionality
of the system does not enter, it would lead us to conclude that the 1D chain
always undergoes a transition at 7. = J /kg.

Remark 1In the case J~r~'7% where r is the distance separating interacting

arrows, there exists a critical point in the 1D Ising model for ¢ <1 but it is absent
for ¢ > 1 (Dyson 1969).

Example—Scaled Particle Theory This is another example in which
Eq. (5.16) plays a significant role. Figure 5.5 depicts particles in a gas. Here
we assume that the particles are hard spheres. But other compact hard particle
shapes are possible too. The figure shows two types of particles—Ilarge (grey)
ones and one small (black) one. The large particles are spheres with radius R.
The small particle is a sphere with radius AR. In the figure the scaling
parameter 4 < 1. The idea of scaled particle theory (developed in the late
1950s by H. Reiss, H. L. Frisch, and J. L. Lebowitz) is simple: (i) work out
the chemical potential of the scaled particle in the two limits 4 < 1 and

Fig. 5.5 Hard sphere
particles including a scaled
particle
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A>> 1; (ii) by interpolation between the two limits derive an approximate
chemical potential for A = 1; (iii) use this chemical potential to find an
approximate equation of state for the gas. As it turns out, this approach yields
a pretty good equation of state—even for a dense gas of hard particles.

We start with step (i). The chemical potential of the scaled particle is

:u’sp = :usp,id + :usp,ex' (525)

The two indices, id and ex, denote the ideal and excess part of the
chemical potential, respectively. Here the ideal part corresponds to the a
situation when all ordinary particles are absent. If Qg is the number of
(micro)states available to the scaled particle, we may, if 4 < 1, write

Q V — v, (AN
Q= Qupia 2 ~ Qg ——
sp sp,id Qspﬂ'd p,id %

= Qg ia(l —ve(A)p). (5.26)

Notice that Q,,/Qy, ;s is identified with the ratio of the volume available to
the center of the scaled particle divided by the total volume of the system, V.
The quantity v.(4) is the volume excluded to the scaled particle’s center by
the presence of one ordinary particle—indicated by the dashed circle in
Fig. 5.5. Thus, in the case of spheres, v,(1) = 4nR>(1+ 1)’ /3. If we disre-
gard the overlap between excluded volumes defined in this fashion, then the
excluded volume v, (A) multiplied with the number of ordinary particles, N, is
the total available volume (p = N/V). Notice also that the approximation
becomes exact in the limit A — 0. Using Eq. (5.16) we may write

gy = Hypia — RTIn[1 — v, (4)p] (Ak1) (5.27)

for very small 4. Due to the hard particle assumption there is no enthalpic
contribution to the free enthalpy of the scaled particle. Now we consider the
opposite limit, i.e. 4 > 1. This means that the scaled particle is inflated like a
ballon against the constant pressure, P, exerted by the ordinary particles.
Insertion of the scaled particle into the system therefore requires the (re-

versible) work Pv,, (1), where v,,(4) = 4nR>2% /3. Thus in this limit
tep = pia + Pvsp(4) (A>1). (5.28)
Step (ii) is the interpolation between the two limits via
Hpex(A) = Co+C1A+ 222 + Py, (2). (5.29)

The coefficients ¢; are obtained by expanding v,(1) at A =0 to second
order in 4. We find
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3y 1 6v 92
= —1In[l — — = — ], (5.30
. al =] R @ 2<l—v+(l—v)2> (3-30)

where v is the so called volume fractionv = bp, and b is the ordinary particle
volume.

The final step, step (iii), consists in setting 4 = 1. The scaled particle now
is an ordinary particle too and its chemical potential, u, also is that of an
ordinary particle. The ideal part of the chemical potential is given by
Eq. (5.66), an equation yet to be derived, plus the excess part given by
Eq. (5.29), where 4 = 1. We obtain the pressure in our hard sphere gas via
integration of the Gibbs-Duhem equation, i.e.

O(P/RT) _ O(p/RT) (5.31)
Op It Op I ’
Straightforward integration yields the desired equation of state:
P 1+v+1?
R—Y"/) —_— W . (5.32)

How can we test this result? Surely, small molecules are not hard spheres.
However, in Fig. 3.10 we had discussed osmotic pressure data obtained from
hemoglobin in aqueous solution. Hemoglobin is rather large and roughly
spherical. In addition, we had argued on page 205 that the osmotic pressure
can be approximated by equations like Eq. (5.32), i.e. the right side of this
equation multiplies the van’t Hoff equation, and the result should yield an
improved osmotic pressure. This is indeed the case. The solid line in Fig. 3.10
is obtained in this fashion by adjusting the hemoglobin volume b = by;.
A good fit to the experimental data requires a hemoglobin diameter of ~ 5.5
nm—in good accord with its linear dimension obtained via more detailed
considerations.

Remark Scaled particle theory is a clever way to obtain an approximate equation
of state for a non-ideal gas of hard bodies, for which we can work out the excluded
volume, i.e. the equivalent of the dashed line in Fig. 5.5. But because it is an
excluded volume theory, i.e. there is no attractive interaction as in the van der
Waals theory, it cannot describe a gas-liquid phase transition. It is limited to sit-
uations when the phenomenon of interest is governed by excluded volume inter-
action. This is not the case for gases of small molecules. Perhaps the best example
are lyotropic liquid crystalline systems (e.g., Odijk 1986). These are solutions
containing large molecules or molecular aggregates. The excluded volume
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interaction here can lead to the spontaneous formation of anisotropic phases. In the
simplest case the orientation of rod-like large molecules or large molecular
aggregates, which at low solute concentration is isotropic, spontaneously becomes
nematic, i.e. the “rods” on average align along a certain direction in space (called
the director), when the concentration is increased (e.g., Herzfeld 1996).

Example—Rubber Elasticity and Thermal Contraction According to
experience most materials expand when their temperature increases, i.e. their
thermal expansion coefficient, op, (cf. Eq. (2.5)), is positive. However, take a
rubber band fixed at one end and stretched by a weight attached to its other
end. Upon heating of the rubber band, using a heat gun or a hair dryer capable
of producing sufficient heat, a significant contraction is observed. Why does
this happen? Once again Eq. (5.16) helps to find the answer. First however we
must tie the entropy to the thermal contraction just described.

Equation (1.4) describes the work done by the elastic forces inside an
elastic body. The attendant free energy is F = fv dVf, where the integration
is over the volume of the rubber band, and the differential free energy density
is

df = —s dT—i—O"xﬁ du“/;. (5.33)

Here —s = 0f/OT|,,, and 0up = Of /Ousp|y. 04 and uyp are the compo-

nents of the stress and the strain tensors, respectively. Note that we use the
summation convention. It is useful to introduce the free enthalpy density

8 =1 — Oupltsp, (5.34)
ie.
dg = df — d(o,puyp) = —sdT + 0,5 duyp — d(o,puep) = —sdT — uyp doyg.
Taking the derivative of s = —dg/ aT|m with respect to g, z being the
direction parallel to the rubber band, we obtain

Os 0 Og

do,lr 0o, 0T

_ Oug

T 0T

= Ug,1D- (535)

Oup (7]

Note that u,, = 0L/L,, where JL is the elongation of the rubber band and
L, is its unstrained length, i.e. 6uzz/8T\M = L’laL/6T|M = 0, 1p is the
one-dimensional analog of Eq. (2.5).

At this point we need an expression for the entropy, S, of the rubber band.
Figure 5.6 shows a cartoon of a linear polymer molecule of which rubber is
made of. As before in the context of phase equilibria in macromolecular
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Fig. 5.6 A polymer chain on
a lattice

systems we model the polymer as a random path on a cubic lattice. We ask
the question: What is the probability p(R) that the two ends, labeled o and w,
do have the separation R? The answer is p(R) = Q(R)/ >z Q(R). Here Q(R)
is the number of different paths of length n originating from the same lattice
point and ending a distance R from the origin. The denominator consequently
is the sum over all possible paths of length n originating from the same lattice
point. Using Eq. (5.16) we have

S(R) — S = ks Inp(R), (5.36)

where S(R) = kzInQ(R) and S = kzIn >, Q(R). The end-to-end vector R is
given by

=

n n n
R= Z(xiyyivzi) = (in, Zyi, ZZi), (5.37)
=1 =1 =

=l

where x;, y;, and z; are random variables. Each of these may assume the
values {—a,0,0,0,0,a} with equal likelihood. Here a is the lattice spacing
and the six values correspond to the six possible orientations of the
step-arrows (in Fig. 5.6) along the main axes of the cubic lattice. We obtain
p(R) via an important mathematical theorem—the central limit theorem. This
theorem states that if s; are random variables with the average p, and the
mean square fluctuation af then the new random variable,

s, = 2=l s (5.38)
a5/

possesses the probability density,
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£(5,) = J%exp[—si/z] , (5.39)

in the limit of infinite n. However, this remains a very good approximation
even if 7 is not very large (The reader may confirm this by generating Ss from
random numbers s; € (0, 1) (i.e. g, = 1/2 and ¢, = 1/1/12). Construction of
a distribution histogram based on 10*Ss-values generated in this fashion
closely approximates a Gaussian distribution with zero mean and standard
deviation equal to unity.). Based on the central limit theorem we immediately
conclude

XY Z) (3 3 R
p(R) ~ (na?/3)*? B <2nna2> cxP [_5@] ’ (5.40)

where p, = p, = i, =0, 0} = 0} = o = a*/3, and 4n [* dRR’p(R) = 1.

Using this expression in Eq. (5.36) we obtain

3kpR?

-2 (5.41)

S(R) — S(0) =

At this point we know how the conformation entropy of a polymer chain,
containing n links, changes when its end-to-end distance R is changed. Even
though our model is a rough coarse-grained model of a real polymer, it is still
a model of a single polymer chain and not yet a continuum model of the
rubber band.

Real rubber is a complex material. It consists largely of linear polymer
chains, but the chains are cross-linked. These cross-links can be chemical
bonds (e.g. sulfur bridges formed during a process called vulcanization)
between different polymer chains (or even within the same chain). They may
also be physical entanglements. We may view the points labeled o and @ in
Fig. 5.6 as the positions of two such cross-links. Thus, when we stretch
rubber, we really stretch a complex flexible network called elastomer. We
have also ignored that the polymer chains are real molecules interacting via
specific microscopic interactions. Even though rubber deforms easily, its
compressibility is that of a liquid, i.e. its volume hardly changes under
deformation.

A cartoon of a rubber volume element is depicted in Fig. 5.7a. Overall the
rubber band is a network of v cross-linked chain segments. Every segment
contains n links, whose individual S(R;) i = 1, .. .,v) are given by Eq. (5.41).
If a macroscopic volume element inside the rubber band, possessing the edge
lengths L,, L,, and L, is deformed, its new edge lengths are L; = ALy,
L; = ALy, and L, = J.L,. We assume that the segment end-to-end vectors
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(b)

(a) Y

Fig. 5.7 A rubber volume element containing cross-linked chain segments in the relaxed (a) and

in the deformed (b) state. Cross-links are indicated by the dots.

contained in this volume element will change their components analogously.
Hence
L, _ L,
Riﬂ R;oc 7

(5.42)

which is an affine deformation (cf. Fig. 5.7b). Rubber has a very small
compressibility and consequently we also assume that V' =L LIL =
L.L,L, = V. If we stretch the rubber band by a factor A, = / in z-direction,
ie. L, = AL, volume conservation, ie. A, A 4. =1, implies A, =/,
=172

With this we are able to calculate the total elastic entropy change AS,;
during stretching of the rubber band in terms of the entropy changes expe-
rienced by the individual network segments. According to Eq. (5.41) we have

AS, = i(S(R;) — S(R)) = 3k (R;2 — R?). (5.43)

)
= 2na”

Replacing R” by R = /7'R?, + /7'R2, + /°R2, yields

3kp < 1 5 1 2 2 5
ASy=—— —— DR, +(=— 1R, +(A°— DR;_|. g
)3 ((i R+ (= DR, + (P = DR ). (5.44)
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Because the number of segments, v, is a very large number, we can write
IS R?, = (R;). Here (R3) is the ensemble average of the square of the o-
component of the end-to-end separation of the segments. Since <R§> refers to
the relaxed state, all components behave equally and thus
(R%) = (R*)/3 = na®/3. The last equality follows directly from p(R). Hence

2
As, = —fBv (— Ty 3). (5.45)

It is important to note that AS,; does not comprise the entire entropy of the
polymer chains forming the network. However, in the following we assume
that it is the most important part of this entropy and neglect the rest. In
particular we compute o, via

of 1 0AS, kgTv 1
_ POt S S 5.46
7% Buglr . IVAG—1) Vv 2 (5.46)
We can now compute o, 1p with the help of Eq. (5.39), i.e.
Os Os| (8o \ "
= | =—| (== . A7
Y10 = Dot o T( o T) (5.47)
Again s ~ AS,;/V and we find for o 1p
122 =1)
= 5.48
Og, 1D T /13 ) ( )

Let us discuss this. Note first the 1/7-dependence of o 1p. This is the same
temperature dependence we had obtained for the thermal expansion coeffi-
cient of the ideal gas, which is not too surprising because here we also neglect
all direct interactions. The first important step along the way to Eq. (5.48) is
Eq. (5.41). It tells us that the entropy of a polymer chain is reduced when it is
stretched. This is because increasing the end-to-end distance reduces the
number of possible paths the chain can assume. In principle this the reason
why o, 1p is negative, i.e. increasing the temperature causes contraction of the
rubber band. However, if one tries to carry out the experiment mentioned in
the beginning, one may be surprised to find that the rubber band behaves
conventionally and expands with increasing temperature. Just like any simple
liquid, the thermal expansion coefficient of relaxed rubber is positive (due to
anharmonicity of the microscopic interactions between the monomers in the
polymer chain). But notice that «, ;p according to Eq. (5.48) increases if 4 is
increased (e.g. for T = 350 K and 1% strain, i.e. A = 1.01, we find o, 1p =~
—3.107? Kil; at the same T but for 30% strain, i.e. A = 1.3, a5 1p = —1073
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K !; typical for most liquids is apip = 3apip ~ 1073 K™!). With increasing
strain one observes what is called thermoelastic inversion (cf. Strobl 1997).
This means that the ordinary thermal expansion is overtaken by a contraction
in response to the reduction of the chains conformation entropy as we have
just discussed.

Remark 1 Expanding the right hand side of Eq. (5.46) to first order in the
strain, i.e. in 4 — 1, yields

N SkBTV

o~ (A= 1), (5.49)

Essentially this is Hook’s law and the factor multiplying 4 — 1 is the
elastic modulus of the rubber. Note that the latter is proportional to temper-
ature and to the density of segments or, equivalently, to the cross-link density.
The more cross-links there are the stiffer the rubber becomes. It is worth
noting that the right hand side of Eq. (5.46) is a good description of reality at
small A but fails when 4 becomes large, mainly because of the finite exten-
sibility of a polymer chain. The meaning of “small versus “large and an in
depth discussion of other points beyond the scope of this (idealized) example
can be found in Rubinstein and Colby (2003).

Remark 2 The formulas (5.43) to (5.45) for AS, are not correct under
conditions when the volume is not constant. An example is the swelling of a
polymer network by a solvent. The swelling caused by the establishment of
chemical equilibrium of solvent inside and outside the polymer network
stretches the chain segments uniformly and reduces their conformational
entropy—which physically is the same effect as before. In this case however
V' %V and A, = A, = A, = 1. In general (5.45) is replaced by

k 2 k
A= =22 (B+ 22+ 22 = 3) + (A o). (5.50)

For A, =/, = A= 2 and A, = A the In-term vanishes and we obtain
(5.45). But if V' # V the In-term does not vanish and must be included. This
term has two sources. The first one is the normalization of (5.40). If we want
to compare entropies in the relaxed and the deformed state, we must do this in
the same coordinate system. This means that there is a Jacobian, connecting
the unprimed with the primed system, giving rise to a term kgvIn(A,A,4;).
Source number two yields an extra term —kgvIn(4.4,4,)/2, which is an extra

entropy change kg In[(6V/V’)"?/(8V/V)"/?] (and again an application of
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Eq. (5.16)). Here 0V is the volume occupied by a cross-link, i.e. 6V/V and
0V /V' are the respective probabilities to find the cross-link in a particular 6V
in the undeformed and in the deformed system. Since the system contains v
chain segments, this implies that it contains v/2 cross-links (look again at
Fig. 5.7 and think about this!). Assuming independent cross-links, the total

probability for finding the cross-links in their oV-cells is (0V/ V)"/ * and

(ov/v! )V/ 2, respectively. This term, originally due to P. Flory, of course is an
approximation ignoring all correlations.

Remark 3 We can use Eq. (5.46) to measure the density of chain segments
or cross-links in a piece of rubber. First we adjusting A to a value which is
sufficiently large so that the ordinary thermal expansion is small compared to
the expected contraction. For this A-value (and perhaps additional ones) we
measure g, in a range of temperatures. The slope of a line through these data
points, divided by kgT(1— 172), yields v/V. However, there is another
method for measuring v/V, which is used frequently in industry laboratories.
Since we have all the necessary ingredients available, it is worth to briefly
talk about this method as well.

Equation (4.153) describes the mixing free enthalpy of a polymer-solvent
system on a lattice, where ¢ is the volume fraction polymer. If we express the
solvent volume fraction 1 — ¢ via 1 — ¢p = N;/N, where N; is the number of
solvent cells and N is the total number of cells, the result is

A
—G:vln¢+Nsln(1 — @) + xoN;. (5.51)
kgT

The quantity v is the number of polymer chains.
In a simple approximate theory of polymer network swelling due to Flory

and Rehner (1943) the translational entropy term vln ¢ is replaced by the

elastic entropy contribution % (/12 —1A—1In A) when the network undergoes

uniform swelling, i.e. A, = A, = A, = 4. Minimizing this new AG with
respect to Ny, i.e. 0 = O(AG/(kgT))/ONs, which means equating the solvent
chemical potentials inside and outside the network, yields the Flory-Rehner
equation in its standard form:
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ve __In(1—¢)+¢+y4’
Pp— == a

mip "7 — /2

The quantity pp is the mass density of the (dry) polymer, v, is the molecular
volume of the solvent, and mp is the (average) mass of a network segment.
Note that 2> = Viwotien /Vp =1/¢ = (Vp+ Nyvy)/Vp, where Vgyouen is the
equilibrium volume of the swollen network (or gel) and Vp is the dry polymer
volume. Note also that 9¢/ON, = —$*v,/V,, (caveat: It is incorrect to use the
above formula ¢ = 1 — N;/N, assuming N = const, for the derivative of ¢
with respect to N;. This means that the volume is kept constant—which is not
the case.), d1/ON; = v,/ (3Vpi?), as well as ppys=v5v. In the original
paper, cf. Eq. (11) in Flory and Rehner (1943), the —¢/2-term in the
denominator of Eq. (5.52), which results from the — In A-term in the elastic
entropy, is not included. This persisted for some time (e.g. Eq. (5.9) in
Treloar (1973), but finally “converged” to the above form. However, the
significance of the —¢/2-term is somewhat questionable. The factor 1/2
resulted from a rather approximate entropy contribution of the network nodes
and, in addition, is based on the assumption of a regular 4-fold coordinated

(5.52)

network. In addition, in many cases of practical importance d)l/ 3 dominates
over ¢/2 and the latter can be neglected. Nevertheless, Eq. (5.52) ties the
quantity v to the swollen volume of a polymer network. Therefore it provides
another means for the determination of the cross-link density.

5.1.1 Entropy and Information

This is a good place to briefly talk about entropy and information. Figure 5.8 shows
a chessboard with a single pawn on ¢2. Imagine somebody who wants to find the
pawn’s position without looking at the board—just by asking another person, who
can look at the board, questions requiring “yes” or “no” as answer. The questioner
might proceed as follows: Q1—is the pawn somewhere on files A through D? A1—
yes; Q2—is the pawn somewhere on rows 1 through 4? A2—yes; Q3—is the pawn
on files A or B? A3—no; ...The numbered dashed lines on the right board illustrate
how via bisection the location of the pawn is found after six questions. This is
because there are 64 squares on the board and 64 = 2. If we identify the number of
possible squares with the quantity Q in Eq. (5.16), then we may define an entropy
for the pawn/chessboard system via
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S =log, 64 = 6. (5.53)

This entropy is the number of yes/no-questions we need to ask in order to acquire
total knowledge about the system. Or we may say: S is a measure for our lack of
information—the more questions we must ask the bigger is our information deficit.
The entropy in Eq. (5.19) of our first example had the same quality. The number
N denotes the possible positions of the domain wall—quite analogous to the 64
squares on the above board. In the second example the quantity g, is a measure for
the number of possible positions of the scaled particle in the system. Again the
analogy is obvious. Finally in the third example Q(R) is the number of different
possible paths of total length R. Thus, in all examples € is the number of quali-
tatively identical alternatives. The more of these alternatives there are, the greater
the associated entropy becomes, i.e. the greater is the lack of information regarding
one particular alternative. Often it is said that the increase of entropy signals
increasing “disorder”. What is meant by disorder is the lack of information.

5.1.2 E and the Hamilton Operator H

At this point we return to our main subject and talk about the calculation of the E,
in quantum mechanics. It appears reasonable to identify the E, with the eigenvalues
of the subsystem Hamilton operator H fulfilling the stationary Schrdédinger’s
equation

Hlv> =E,|v>. (5.54)

Here |v > is the appropriate eigenket. Therefore Eq. (5.6) may be expressed via
the |v>:

Ownvr = ZCXP[_ﬁEv]

5.55
= Z <v|exp[—fpH]|v > = Tr(exp[—fH]). (3-53)

Tr is the trace of the quantum mechanical operator exp|—ffH]. In particular

*a“—}Zv <v|exp[—BH]|[v > _ Tr(He M)

S <vepfHV > Tre ) — “H> (5.56)

(E) =

where <H > is the quantum mechanical expectation value of H. Even though the
subsystem is in thermal contact with its environment, the calculation of the partition
function requires knowledge of the quantum states of the subsystem only.
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5.1.3 The Ideal Gas Revisited

The quantum mechanical result for E, in the case of a particle confined to a
one-dimensional box with volume (or length) L is!

K2k2
E — V

- 5.57
¥ 2m ( )

Here i = h/(2n) is Planck’s constant divided by 27 and m is the mass of the
particle. We also have v = (L/n)k, (v =1,2,...). Because L/= is a large number,
we replace the sum over v in the partition function by an integration over k as
follows

e8] L oo
=— / dk. (5.58)
y=1 TJo
The partition function becomes

0

0 272
;exp[—ﬁEv] = %/ dk exp [_'BZZ] = ALT , (5.59)

Ap = ,/2”22[3 (5.60)

is called the thermal wavelength. Inserting the result (5.59) into the free energy
Eq. (5.10) we obtain for the pressure, P = —8F/6‘L|T,

where

PL=p"". (5.61)

This is exactly what we expect for a single particle in a one-dimensional box.
But what about many particles in a three-dimensional volume? We may extend
Eq. (5.59) to the three dimensions via

! Thus far E, corresponded to the energy of a system. And systems do contain large number of
particles. Now there is only one! We assume that there is so little interaction that each particle in
a large system may be studied individually. But we also require that there is just sufficient
interaction between this particle an its surroundings for it to reach thermal equilibrium. The idea
is that one can collect instantaneous but uncorrelated (!) copies of this one particle, which, after
one has obtained very many copies, are combined into one system and that this system is a
system at equilibrium in the thermodynamic sense.
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- ((ZZ)3 / dkexp [—ﬁ%} )N (5.62)

3N is justified easily, because for a particle in a three-dimensional box we have
from quantum mechanics k* = k? + k2 + k> and for each k-component i we have
v; = (L/n)k,, (note: V = L*) with v; = 1,2,.... The factor N!~! results from the
proper normalization of the N-particle state |[v > to be used in Eq. (5.55) instead of
the single particle state. However, there is alternative classical motivation for this
factor in the context of the so called Gibbs paradox. But let us first proceed with the
three dimensional ideal gas. Inserting the partition function (5.62) into the free

energy Eq. (5.10) immediately yields for the pressure, P = —9F /0V |,
PV = NkgT, (5.63)

i.e. the ideal gas law. Using Eq. (5.8) we obtain for the internal energy of the ideal
gas

(E) = %NkBT (5.64)

and for the heat capacity at constant volume

3
Cy =3 Nky (5.65)

(cf. the footnote on page 56). Another quantity of interest is the chemical potential,
which here follows most conveniently via Nu = F + PV, i.e.

1= kgTIn pA3, (5.66)
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where p = N/V is the number density and we have used the Stirling approximation

(4.135) (here: InN! = NInN — N). Via F = Nu— PV = E — TS and again using
the Stirling approximation we quickly obtain the entropy

S = NkB In

&2
. (5.67)
pA7

This equation is the Sackur-Tetrode equation (2.32).

5.1.4 Gibbs Paradox

Let us discuss the following experiment. We consider two identical boxes. Their
respective volumes are V = L and they share one common wall which is a
movable partition. Assuming we can move the partition in and out without doing
work, i.e. the partition slides easily back and forth, we find that the entropy of the
combined system is equal to the sum of the entropies of the individual systems.
Thus we have

AS = S(2N,2V) —28(N,V) =0. (5.68)

Computing the entropy via S = —9F /JT|,, we find
AS/kp = —In(2N)!+2NIn2+21InN! (5.69)
For small N we easily find that AS # 0. So what is wrong? First we note that in a

macroscopic system N is large, i.e. N ~ 10%.2 Computing AS for large N requires
that we use the Stirling approximation (4.135). The result is

AS/ky = %ln(nN). (5.70)

Again we obtain AS # 0° but the point to notice is that the ratio AS/S tends to
zero as N grows, i.e.

S N —

2 The assumption of large N already entered our formalism via the truncated expansion (5.3).
*We use the Stirling approximation including v/27N. Otherwise the result is AS = 0.
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In this limit we therefore obtain the desired result. Without the extra factor N!~!,
which we introduced into the partition function, the result would have been different
even for large N, i.e. AS/S~1/(In [V/Aﬂ) The convergence is so slow (V ~ N)
that the missing factor is noticeable on the macroscopic scale. This is called the
Gibbs paradox. Therefore we could have guessed this factor on purely classical
grounds. Notice that N! is the number of indistinguishable permutations in the case
of N identical objects. The factor N!~! thus accounts for the fact that our particles
can exchange places with each other without loss of information.

5.1.5 Ideal Gas Mixture

From the preceeding discussion we conclude that the partition function of an ideal
gas mixture is

owr =[] 2 :HLLM (5.72)
NVT : NVT j N \Ar, )

J

where N = ZJNJ is the total particle number. Notice that the thermal wavelength
depends on a particle’s mass and thus on j. The partial pressure of component i is

OF;

Pi=-
oV It

with F, = —kgTInQ; (573)
i.e. we recover Dalton’s law because obviously P = ), P;. Another short calcu-

lation yields the chemical potential of an individual component

_ OF;
~ ON; T'\Njzi

1 = kgTn p; A3, (5.74)

where p; = N;/V. This chemical potential we had assumed in the context of the
Saha equation on page 130.
5.1.6 Energy Fluctuations

We want to compute the mean square energy fluctuation based on Eq. (5.7). Thus
we write
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((6E)*) = ((E — (E))*) = (E*) — (E)’
~Srsi- (o)

2
_ 1 O Onvr 1 (0Qnvr
Onvr 8[32 NV Qlvr op NV
_ P InQyyr
B> yy
i.e.
9(E)
OE)) = -4 5.75
(@87 =5 (5.75)
and therefore
(0E®) = kgT*Cy. (5.76)

Note that in large systems such fluctuations are relatively small. We see this if

we study the ratio (<5E2))1/2/<E>. Using Eq. (5.76) together with (E) oc NkgT we
find

(5.77)

For macroscopic systems with N ~ N, the relative energy fluctuations are
vanishingly small.

5.1.7 The Likelihood of Energy Fluctuations

At the beginning of this chapter we considered an isolated system. When this
system has the energy E then there are Q(E) different microstates with this energy.
If the system is not isolated but coupled to an external heat bath with temperature 7
then it becomes a subsystem within this heat bath. The probability for the system to
have the energy E is then determined by two factors, Q(E) and, as we have just
seen, exp[—fE]. Thus we have

p(E) x Q(E) exp[—pE]. (5.78)
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Note that p(E) is different from p(E,) even if E = E,. This is because p(E,) is
the probability of the subsystem being in microstate v, whereas p(E) is the prob-
ability of measuring the internal E in the subsystem.

Without much knowledge about Q(E) we still may infer an important piece of
information regarding the general shape of p(E). Again we start by expanding
In[Q(E) exp[—pE]] around (E). The result is

dE
1 d (dIn]Q(E)]
Ed_E( dE

In[Q(E)e PE] = n Q((E)) + (i In Q(E)) OE
E=(E)
+ ) OE* — B(E) — BSE+ ...
E=(E)

Using Eq. (5.16) together with Eq. (1.52) yields

2
In[Q(E)e PE] = mQ((E)) — B(E) — %k:%cv +... (5.79)
and thus
2
pE) = p(E)exp| -5 e | (5:50)

Again we find (8E?) = kgT?Cy—as we should. Just how unlikely deviations
from the average energy are, meaning that p(E) is sharply peaked around (E),
becomes clear if we put in some numbers. We consider 10~ moles of a gas. With
O0E = 107%(E) and (E) ~ NkgT as well as Cy ~ kgN we find

L~ exp[—10"°N] = exp[—10'%0.001N, | ~ exp[—10°].

5.1.8 Harmonic Oscillators and Simple Rotors

There are two simple models, we may envision them as two different types of
“particles”, which we should discuss, because they frequently enter into the
description of more complex systems. Our discussion will be analogous to the
treatment of the ideal gas in Sect. 5.1.3.

The first model is the one-dimensional harmonic quantum oscillator, which, as
we already know from introductory quantum theory, has the energy eigenvalues



5.1 The Canonical Ensemble 231

1

Ev:hw<v+ 5), (5.81)
where o is the oscillator’s frequency and v = 0, 1,2, .. .. It is not difficult to obtain

the partition function

00 —phw/2 1
1D—osc €
g — EV g f— s .

0 ; exp[—fE\| = T 2 sinh 2 (5.82)

where we use the geometric series Y00, ¢" = (1 —¢q)~' (g<1). Straightforward
differentiation first yields the average internal energy,

0 hw Phw
E\=_—" 1 1D—osc = coth—= .
(E) 8(—/3)HQ 5 coth——, (5.83)
and subsequently the heat capacity of the oscillator
1 ) Ty . Tup)’
—Cy=——(E) = h 5.84
0 " parf <2T e ZT) ’ (5-84)
where
h
T,y = 2 (5.85)
kg

is a characteristic temperature. To better understand the meaning of 7,;, we should
try to work out the classical partition function for the oscillator.

Looking back at Eq. (5.62) we notice that the argument of the exponential
function is the kinetic energy. Taking this one step further we replace the kinetic
energy with the Hamilton function . If in addition we express momentum via
p = hk and the box size via [dx we may write for the 1D harmonic oscillator

_ e dp o0
1D—osc __ ar B
a0 /,OO 2mh /,Oo dxexp[—p(H(p,x))]; (5.86)
where
Pt 1
Hp,x) =5 + Emw2x2. (5.87)

Here m is the oscillator’s mass, p its momentum, and x its displacement from
equilibrium. An easy integration yields
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1
1D—0Osc __
0™ = gay (5.88)

Example—van der Waals Equation Before we proceed with the discussion
of Eq. (5.88) we want to briefly consider a different potential. The classical
particle is confined to a one-dimensional box of length L,, inside of which the
potential energy is U/ = —ap. Here ap > is a constant. Notice that the total
extend of the box is L; but we subtract a length b, because the particle itself
posses this size and therefore its center can only access a smaller “volume”
Ly — b. The partition function therefore is

1 o0 (L17b>/2 Ll _ b
o(1 :—/ dp/ dxe P = P (5.89)
W) 2nh ) o J(ti-b)2 Ar

Let us also assume that we have N such particles in independent boxes.
Their partition function is

o) = 0(1)" = GL/‘\_TM’) b (5.90)

where L = NL;. At this point we set the quantity p equal to 1/L; = N/L. If
we calculate the pressure analogous to Eq. (5.61) the result is

T 2
P= Nks —a N : (5.91)
L — Nb L

This generalization of Eq. (5.61) is a one-dimensional version of the van
der Waals Eq. (4.1). The necessary ingredients are (i) each particle reduces
the available “volume” by b; (ii) each particle has a negative potential energy
contributed by all other particles according to their mean density p (cf.
footnote 25 in Chap. 4). There is no factor N!~! in Q(N). This is because
every particle is in its own cell. In principle the cells are distinguishable (even
though this is not an essential ingredient). This type of approach is known as
cell theory (Hirschfelder 1954).

Now we continue with Eq. (5.88). The classical thermal energy of the oscillator
therefore is (E) = kT and the attendant heat capacity Cy = kg. Figure 5.9 shows
the comparison of this value to the quantum result plotted versus the reduced
temperature 7/T,;. Above T,; the oscillator is well described by the classical
result, whereas below T,;, the quantum behavior dominates. Had we included only
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Fig. 5.8 A single pawn on a chessboard

the ground state in the quantum partition function the result would have been
Cy = 0. This means that (not too far) below T,;;, the oscillator is “frozen”.

The oscillator model is useful in the context of molecules. Classically the atoms
in molecules vibrate according to collective or normal modes. Normal mode
analysis shows that the Hamilton function of a molecule containing N atoms may
be transformed into

A[f
H="H,+ Y (AP} +BX}), (5.92)

i=1

where X; are normal mode coordinates and P; are the conjugate momenta. A; and B;
are coefficients. The term H, describes the molecule at (vibrational) rest. Equation
(5.92) is a simplification which holds only for sufficiently small amplitudes, i. e. for
small deformations relative to the equilibrium molecular “shape”. The number of
vibrational modes, Ny, generally is equal to 3N — 6. The —6 is due to the three
translational and three rotational degrees of freedom which must be subtracted. In
the case of linear molecules there is one less rotation and Ny = 3N — 5. In this sense
molecules may be considered as collection of Ny independent one-dimensional
oscillators with normal mode frequencies w;. The vibrational partition function of a
molecule therefore is (approximately) given by

Ny
0" — H 0'P=0%(¢n,). (5.93)
i=1

We may let the number of atoms become arbitrarily large and conclude that
Eq. (5.93) remains valid for solids as well. The difference is that the normal mode
frequencies of small molecules usually are quite high so that T ~ 10° K. At room
temperature this means that small molecules are frozen in their vibrational ground
states. In solids this is not the case. The example at the end of this section illustrates
this distinction.
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We just mentioned molecular rotation. Is there a rotational partition function? If
yes—how does it look like? From classical mechanics we know that the Hamilton
function of a rigid body freely rotating in space is given by

3 L2
H = ;21{ (5.94)

Here i denote the axes of a coordinate system attached to the body in which the
moment of inertia tensor is diagonal. These diagonal elements are Z; and L? are the
attendant angular momentum components squared. Quantum mechanically we have

[

3
5. g2
H= ;215’ (5.95)

where the underlined quantities are operators. Table 5.1 summarizes the simple
cases:
The rotational partition function therefore is

o= Z g1exp[—PEi ). (5.96)
1=0

Analogous to the above characteristic temperature of vibration it is now sensible
to define a characteristic temperature of rotation via

2
rot __ h

= . 5.97
2kpT ( )

A rough estimate using the atomic mass unit (Appendix A) times 1 A for the
moment of inertia reveals that 7" ~ 10 K. This is small compared to room tem-
perature—and in most cases it means that we can use the classical rotation partition
function. Momentarily however we proceed working out Eq. (5.96). The simplest
approach is the straightforward summation over a limited number of [-values. The
resulting heat capacity, Cy /kg = T9*/OT*T In Q"' is shown in Figs. 5.10 and 5.11.
Figure 5.10 shows both the heat capacities for the linear and the spherical rotor. The

Table 5.1 Energy eigenvalues and attendant degeneracies for different rotors

Rotor type Description Energy eigenvalues Ej, /(%) Degeneracy g;
Linear I=1,=1,,I3=0 (1+1) 2141
Spherical I=1,=1,=1Iz (1+1) (21+1)2
Symmetric I=1,=1,;13#0 l(l+1)+(%— 1m? k(214 1)
[=0,1,2,... k= 1(m=0)
m=—-l,—1+1,...,1—1,1 Kk =2(m#0)
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former approaches 1 and later 3/2 at high temperatures. Note that the dashed lines
shows corresponding results if only the terms / = 0,1 are taken into account,
whereas the solid lines are the numerically exact results. Figure 5.11 compares the
heat capacity of a prolate symmetric rotor (Z/Z3 — 1 = 2; broad maximum) to the
one of an oblate symmetric rotor (Z/Z3 — 1 = —1/2; narrow maximum).

We often encounter experimental situations when 77 is low compared to the
relevant T. It therefore is useful to also work out the classical partition function,
Q. We find Q1 via generalization of Eq. (5.86), i.e.

cl
01— [ [ Gehtepl-prtip). ) (5.98)

Here {g} is a set of coordinates and {p, = 0L({¢},{q})/04} are their conju-
gate momenta. £ is the Langrangian of the system. In the case of a system of N
point particles the factor 1/a is equal to 1/N! as we have seen. If we consider one
molecule only, then ¢ is a symmetry number, i.e. the number of rotations mapping
the molecule onto itself. In the case of the water molecules in the next example
o = 2. This accounts for the 2-fold rotational symmetry with respect to the sym-
metry axis of the molecule. If we describe the rotation of a small molecule like
water the proper set of coordinates, {q}, are the Euler angles, i.e. 0 < ¢ <2,
0<60<m, and 0 <y <2m. The difficult part is to work out the equations between
the conjugate momenta and the angular velocities w;, where the index refers to the
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same axes as the index i in Eq. (5.94), because the Langrangian is
L= Z, 1 3Z;w}. These equations usually are discussed in lectures on classical
mechanics of rigid bodies. They are: p, =Z w;sin0siny +Irw,sin0
cosyy +Zzwzcosl, pg =T wcosy—Lrwysiny, and py = Z3ws. Rather than
calculating the Hamiltonian and integrating over the momenta it is easier to change
to the angular velocities via dp,dpedpy =| J | doidwidw; (e.g. Pauli 1972). The
determinant J is given by J =7,7,7Z3sinf. Because we now can use the
Lagrangian instead of the Hamiltonian in the exponential in (5.98), the integrations
become independent and we obtain

rot _ V't 27,
cl P -4 ﬁh2

(5.99)

as final result for the classical rotation partition function. Via (E) = 9/9(—f)InQ
we find (E) =3ksT and thus Cy = 2kg. Note that this agrees with the high tem-
perature limit of the spherical and symmetric rotors in Figs. 5.10 and 5.11. The
classical partition function for the linear rotor is*

o = H ﬁh2 (5.100)

Of course we have 7| = 7,. Now we obtain (E) = kzT and thus Cy = kp -
again in agreement with the quantum result at high temperatures.” The following is
a nice example combining all of the above in one problem.

Example—Vapor Pressure of Ice Van der Waals’ theory allows to
approximate the vapor-liquid phase coexistence of a pure substance in the
T-P-plane. Here we want to approximately determine the coexistence line
between vapor and solid (sublimation line)—for water. We model water as a
rigid molecule, because its three vibrational modes correspond to character-
istic temperatures, Ty;; = hw;/kg, of roughly 5400, 5300, and 2300 K. The
temperatures of interest in this example are between 160-270 K. Thus
molecular vibrations may be neglected (in the sense discussed above). We
proceed as follows: In part (a) the water chemical potential in the (ideal) gas
phase is estimated. In part (b) the same is done for frozen water. Finally in
part (c) we use the equality of the chemical potentials to relate the gas
pressure to the temperature at coexistence.

“In this case the angle i does not enter and the above equations relating the momenta to the
angular velocities reduce to p, = T, sin0 and py = T w;.

5 Of course, all this is expected because of the equipartition theorem of statistical mechanics stating
that every term in the sum in Eq. (5.92) contributes kz/2 to the heat capacity.
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(a) The gas phase chemical potential is "y = uif'ty + . Wiy is
given by Eq. (5.66), which may be rewritten as

T[r(ll’lS P
+In—. (5.101)

o

frans _ 1
H,O — ?

. : \5/2
Here P, = lbar is an arbitrary reference pressure, (Tf,"””)/ =

3/2
2’ )P e T 2 0.76 K, and mp, o is the molecular weight of water.
miyoks) kg’ >

Higio 1s calculated via the classical molecular partition function Q77" given by
Eq. (5.99). It is convenient to express Q7" in terms of the charactenstlc
temperatures, i.e. Q= ., (T/T{”’)I/Z, where T/ = (4/m)" PR/
(2kpZ;). Here Z; are the moments of inertia with respect to the principal axes
of rotation obtained via diagonalization of the moment of inertia tensor. The
components of the latter are 7,3 = 22:1 mk(rzéxﬁ — Xy kXg ). Using an OH
bond length of 1 A and a HOH angle of 109.5° one obtains T) ~ 44 K,
T, =20 K, and 75 = 14 K. These temperatures are low compared to the
above temperature range of interest justifying the use of the classical partition
function. Our final result is

3 Trot

rot
HZO E In

(b) The chemical potential of water molecules in ice is estimated via
Wit o = o+ . Here B2 = —9In Q" JON |1,y and Q" = [, QP
The summation is over the 3N — 6 =~ 3N normal modes of the crystal, where
in the present case N is the number of rigid water molecules. Q].'D“’S" is the
quantum mechanical partition function of a one-dimensional harmonic
oscillator with frequency w; given in Eq. (5.82). In contrast to the normal
modes of the individual water molecule these frequencies are low. Because N

(5.102)

is large, i.e. there are many normal modes with wave vectors k, we write

3N

Vv kp
3N = =3— _4x dki?. 5.103
> =3 / (5.103)

J=1

This is quite analogous to the above conversion of the summation into an
integration for a particle in a 3D box. Two things a different nevertheless. The
integration is cut off at kp, because of the finite number of modes. And there
is an extra factor 3 accounting for the three possible types of vibrational
polarization—2 x transversal and 1 x longitudinal. A simple relation tying
the k-values to oscillator frequencies w; — w(k) is @ = vsk, where vy is the
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average velocity of sound in the crystal, i.e. 3/v} = 1/v],, +1/v] , +1/v},
(here: vy ~ 3300 m/s). The details of this approximation may be found in
textbooks on solid state physics in the context of the Debye model of the low
temperature heat capacity in insulators. Putting everything together we find

s 3V [ 2\ ™
—-InQ" = 37 <ﬂhv> /0 dxx* In[2 sinh x], (5.104)
where xp = (Bhv,/2)(6m*N/V) /3. Taking the derivative with respect to N at
constant 7', V yields

. i
Bt = 31n [2 sinh%] (5.105)

ice

with TV = (hv,/(2k))(67°N/V)'? ~ 158K. Note that N/VaN, /18cm® is

iwce

the number density of water in ice.
(c) Chemical equilibrium, i.e. uj"5" = pis¢,, yields the following relation

between vapor pressure, P(T), and temperature, T,

P T 5/2 3 T 1/2 Tvib
=8| 11 sinh? | e ) e~/ (5.106)
Py i T r

=

where fiu, = —e/T. Figure 5.12 shows a comparison of this formula to
experimental vapor pressure data (crosses) from HCP. Here ¢ = 6500 K, which
corresponds to about 54 kJ/mol. This is a meaningful number, because each
water molecule participates in 4 hydrogen bonds stabilizing the tetrahedral
crystal (ice I). The cohesive energy per water molecule therefore corresponds
to two hydrogen bonds. Our value of 27 kJ/mol is in quite reasonable agree-
ment with energies for HO..H hydrogen bonds obtained by other methods.

Fig. 5.11 Heat capacities of Cy
the prolate and the oblate E
symmetric rotor versus
reduced temperature 25t
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Remark 1—low temperature heat capacity of insulators The integral in
Eq. (5.104) may be rewritten as

4

/ do(In[2 sinhx] — x +x) = % + / dxx*(In[2 sinh x] — x)
0 0

~—0.270581(xp—00)

allowing to work out the limit of large xp or low temperatures. Thus the vibrational
free energy in this limit is given by, F vib 05 ¢, + ¢, T*, where ¢, and ¢; are inde-
pendent of temperature. Consequently the contribution of F"” to the heat capacity,
Cy = —TO*F/OT? |y y, of the crystal is oc T2 as T — 0. This is a famous result
describing correctly the temperature dependence of the heat capacity of insulators at
low temperatures due to quantized vibrational crystal excitations (Debye’s T3-law).

Remark 2—black body radiation Equation (5.104) may be applied to yet another
important problem—the one that initiated quantum theory—black body radiation.
In classical electrodynamics one can show that the energy of an electromagnetic
field may be written as

1 2 2 2
E=> 5 (Pz,a to qza)- (5.107)
ko

Here the “momenta”, p; ,, and “coordinates”, g; ,, are suitable combinations of

Fourier coefficients in a Fourier decomposition of the vector potential (e.g.,
Hentschke 2009). In this fashion the electromagnetic field energy of a certain
volume is a collection of ) _; independent one-dimensional harmonic oscillators.

Here k denotes the possible modes and o denotes their polarizations. This sum is
infinite and since every term contributes on average %kBT to the energy (equipar-
tition theorem) the result is infinite! A solution to the divergency problem was
suggested by Max Planck in 1900. His solution amounts to treating the oscillators
as quantum oscillators—just as in the case of Eq. (5.104). Nevertheless some
modifications are necessary: (i) 3 V must be replaced by 2 V, because there are two
polarization directions only; (ii) v, is replaced by the speed of light c; (iii) xp is
replaced by oo; (iv) the zero point energy must be subtracted, because it is not part
of the radiation field, i.e. (2sinhx)”"' is replaced by (2sinhx) ' exp[x]. The
resulting black body radiation version of Eq. (5.104) becomes

2V 2\ [
_ vib _ =7 [ = 2 — e 2. 5.108
InQ 53 (ﬁhc) /0 dxx* In[1 — e ( )
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Fig. 5.12 Theoretical and
experimental vapor pressure
of ice

180 200 220 240 260

Via partial integration we rewrite the integral into its more common form

o0 2 [ X 2 /m\4
d 21 1 - -2 = — = d _ —— | = .
/0 o Infl = ] 3/0 Y 1 45 (2)

The thermal energy density of the black body radiation is now finite, i.e.

<E> 1 a vib __ TC_Z (kBT)4

vV ova e T pe

(5.109)

Notice that we have derived the temperature dependence before based on purely
thermodynamic considerations (cf. Eq. 2.39). But this time we also obtain the
coefficient.

A spectacular experiment was performed in 1989 measuring the cosmic back-
ground radiation spectrum to high precision (Mather et al. 1990). The expected
frequency dependence, intensity per frequency interval dw, should follow
[w3 /(exp[Blicw] — 1)] or, if converted to wavelength, i.e. intensity per wavelength
interval dJ, [ /(exp[fhc/ ] — 1)]. The cosmic background radiation spectrum is
found to be in complete agreement with Planck’s prediction. This is shown in
Fig. 5.13 comparing the measured data to the theory at a background radiation
temperature of 2.725 K.

5.2 Generalized Ensembles

Once again we return to the isolated system divided into subsystems which we had
introduced at the beginning of previous section. In addition to energy, E, we now
allow the exchange of another extensive quantity, X, between the subsystems, i.e. E
and X both fluctuate around their equilibrium values. X may be any of the variable
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quantities (d...) on the right side in Eq. (1.51). As in the case of the canonical
ensemble we write

pyx QE—-E, X —X,). (5.110)
The probability p, again is proportional to the number of environmental
microstates compatible with the values of E, and X,. We expand (cf. Eq. 5.2)

around E and X, i.e.

py < exp[lnQ(E — E,, X — X,)]

0InQ(E, X 0lnQ(E, X
:exp{an(E,X) —E‘,M —X‘,M }
OE ¥ 10).4 £
=p =¢
Remark Higher oder terms may be neglected®) and thus
_ exp[fﬂEv - éXv} (5111)
with
== Zexp[—ﬁEv — fXV] (5112)
v

The thermodynamic quantities £ and X are the averages

In=

(E) = Z:vav = % (5.113)

&Yy

and

6 . .
Consider for instance:

1

-1
_E? _
2 v

& ) 1 <dE> 1 N1
—InQ(E ——E‘2 — — __EZ. (k T2C5)3t> )
<dE“Z (E) g 2 "\dB)g K Bl Y
We have however
~1
E‘2, (kBT2C€yst) x [)’E‘,N/Ns'm.

Therefore this term is negligible compared to the leading one .
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Jdln=
LEDWESS

. (5.114)
pY

Here Y represents all non-fluctuating (extensive) variables. Thus we also have
dInE = —(E)dp — (X)d¢. (5.115)

In order to tie all this to thermodynamics we momentarily consider the quantity

% =- zv:pv Inp,
(5104 — N "p,[~InE - BE, — &X,] (5.116)
= 1nE+/3<}5> + &(X).
The differential d(¢/kg) is
d(¢/ks) = —(E)dp — (X)dS+ Pd(E) + (E)df + d(X) + (X)d¢,  (5.117)
and therefore

do = ksBd(E) + kn&d (X). (5.118)

The comparison with Eq. (1.51) now suggests that ¢ is the entropy, i.e.
S =—kg valnpv. (5.119)

Equation (5.119) is called the Gibbs entropy equation.

Question: Is this equation consistent with our previous expression of the entropy
in terms of the number of microstates (cf. Eq. 5.16)? The answer is yes. In the
previous case of an isolated system the index v runs over the individual microstates
and p, = 1/Q(E). Inserting this into Eq. (5.119) yields S =kz)  p,InQ(E)
= kB In Q(E) va" = kB In Q(E)

5.2.1 Fluctuation of X

As in the case of E in Sect. 5.1.6 we are interested in the mean square fluctuation of

X. However this time we derive a general and quite useful formula relating ((6X)?)
to the mean of X. We write
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((6X)%) = (X — (x))) = (X*) = (X)°
= ZXEPV - ZXva’pvpV'

. )
a(—é)zln“ sy 0= )<X> By
And thus
0 _m| = qexn. (5.120)
a5 ™M, |

Example—Dielectric Constant and Polarization Fluctuation We apply
this formula to polarization fluctuations in an isotropic dielectric medium.
Based on Eq. (1.21) we write

1 Lo 1.
5S—...—?/VdVE-éP—...—TEﬁp. (5.121)

Here p = || - dVP is the dipole moment of the material inside the volume V
and P is the attendant polarization. We also assume that the average
(macroscopic) electric field, E, in the dielectric is constant throughout V.
Setting X = p, we find ¢ = kz'0S/dp, = —BE,. Here the index o denotes
vector components. Now we use Eq. (5.120), i.e.

0 Opy,

— _ 2
seg ™) = 5pey = ) (5.122)

At this point we make use of the equation, P= 41—n (&r — I)E", where ¢, is
the dielectric constant of the medium to obtain

Anf .,
_ ) 5.123
e =1+ 3 (op?) ( )

Note that (5p?) = 3(dp,>) in an isotropic system. Equation (5.123) relates
the dielectric constant to the equilibrium fluctuations of the dipole moment
taken over the volume V.

Notice the following wuseful extension of the above. Consider
(E) = Eye PE=X /N~ o= PE=cXs Partial differentiation yields
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0
=5 &

= (EX) — (E)(X). (5.124)
B.Y

Using Egs. (5.120) and (A.2) we obtain

0

(EX) — (E)(X)
ax) (E)

o oX) (3:125)

An example application of this equation is discussed in the next section.

5.3 Grand-Canonical Ensemble

We consider the special choice X = N. In this case we speak of the grand-canonical
£(1.51

ensemble. With &= ) Pu follows
—p(E, — uN,
1 SXPLBE, = . 5126
QuVT
and
Quvr = ) exp[—B(E, — uN,)]. (5.127)

This is the grand-canonical partition function.

5.3.1 Pressure

Insertion of Eq. (5.126) into the Gibbs entropy equation yields
IS = _ﬁil va( —In Q,UVT - ﬁEv +ﬁ,UNv)

=B ' InQur + (E) — u(N) .
=

With G=H — TS or TS = E + PV — G follows

PV =p""nQur. (5.128)
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5.3.2 Fluctuating Particle Number and Energy

In the case of the particle number Eq. (5.120) yields

(6N)) = o775

: (5.129)
BV

This equation may be transformed using various thermodynamic equations. First
we apply the Gibbs-Duhem Eq. (2.168), i.e. du = (V/(N))dP|, to obtain

(B
9(N)

vV oP

v (NI (5.130)

ﬁ:V.

Here (N) is identical to the thermodynamic particle number N. Using Egs. (A.2)
and (2.6) we find

JV 0P|V OP| OV
(N)ON) 5y = (N) OV |5 nyON) 4 p
_ ﬁ \% 8P‘ L(zﬁ) 1 theal’
(NYOV g (N) = (N) xr

where k% = BV /(N) (cf. Eq. 2.9). Combination of this result with Eqs. (5.129)
T q q

and (5.130) yields
V (GVY) d l (5.131)
lL(l /

In a normal situation, i.e. \/k7 /K4 is finite, we see immediately that the right
side vanishes as (N) approaches infinity. In the case of ((3E2))"/?/(E) Eq. (5.75)
remains valid. As before in the canonical ensemble we find again that in the
thermodynamic limit the micro-canonical ensemble, i.e. E and N are constants, is
approached.

Example—Isosteric Heat of Adsorption for Methane on Graphite One
typical application of the (classical) grand-canonical ensemble is equilibrium
adsorption. Reconsider our discussion of the isosteric heat of adsorption, g,
on page 106. Using Eq. (5.125) together with X = N we may derive a for-
mula for g, useful for concrete calculations.
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In order to combine the definition of g, in Eq. (3.62) with Eq. (5.125) we
use Eq. (Al) to rewrite the second term in (3.62), i.e.

ou| _ou| | ow ov
dTlp 9T lv = 9Vir aT lp’
—— ——

~ (5.132)
o
ON
T.V
Using F = E — TS and p = OF /ON |7y we have
OE ou
=— T— 5.133
K 8N)T,V+ OT lvn’ ( )
and g, becomes
OE; OE}, oP, ‘
] ) il . 5.134
st ON; IV, l ON,, ‘T,Vb + b(’?Nb T,vbap ( )
At this point we may employ Eq. (5.125) with X = N to obtain
U;N;) — (Us) (N UpNp) — (Up) (N, OP
%:7< sNs) <2‘>< 5)  (UbNb) <2b>< b>+TV;,—b ”
((0Ns)") ((0Ny)") ONp 7.V,
(5.135)

Here we have used Ejneric X N so that only the potential energies of the
respective systems, U; and U, remain, whereas the kinetic energies, Exineric,
drop out.

If the bulk gas is ideal, i.e. U, = 0, this equation simplifies to

<USNS> — <Us> <Ns>
((oN:)*)

s = — +RT. (5.136)

Notice that an ideal bulk gas does not imply ideality in the interface.
Equation (5.136) as well as the previous one are useful for calculating g
from computer simulations. This is because the necessary averages are fairly
easy to calculate.

Figure 5.14 shows an example (A computer program which may be
modified to generate the necessary data is included in the appendix. The
theoretical background needed to understand the program is discussed in
Chap. 6). The box contains molecules (black dots) interacting with a solid
surface (the bottom face of the box). We may imagine that this picture shows
a snapshot taken of a gas interacting with an adsorbing surface—notice that
the number density is highest near the bottom! If we define the long axis of
the box as being the z-direction, we may sort the particles into a histogram
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Flg. 5.13 Cosmic rel.intensity
background radiation 121
intensity and Planck’s
prediction versus wavelength 10t
8 .
6 .
4 .
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‘ ‘ , A [mm]

1.0 15 20 30 50 7.0 10.0

according to their height above the surface. Subsequently we average over
histograms for many such snapshots and obtain Fig. 3.11.

The box does not show a real gas but rather the simulation of a gas. The
molecules interact pairwise via a so-called Lennard—Jones (LJ) potential, i.e.,

& 12 & 6
/) y

Here r;; is the distance between molecules i and j. For r,-j<21/ %6 the inter-
action is repulsive; for r; > 2!/%¢ it is attractive. Whereas the r—®-term may
be justified based on quantum perturbation theory, the ' term is just an ad
hoc approximation of repulsive interactions preventing the molecules from
simultaneously occupying the same space (cf. the b-parameter in the van der
Waals equation). Because a computer can handle only a finite system, we use
periodic boundary conditions parallel to the bottom face of the box (the
surface), i.e. a molecule leaving the box through one of the side walls
re-enters the box through the adjacent side. The top here is merely a reflective
wall (We do not use reflective side walls, because reflective walls induce
pronounced effects on the structure. Periodic boundaries are better in this
respect, but since top and bottom of the box are not equivalent we cannot use
them in this case.). The interaction between gas molecules and the surface are
constructed similarly. In some simple cases we may use the above LJ
potential to also describe the interaction between a gas molecule and an atom
in the surface! Because the parameters € and ¢ are characteristic for the two
interacting species, we do have two sets of them: (¢g,0,) and (€;,05)—the
indices distinguish gas and surface interactions. If our box contains N gas
molecules their total potential energy can be written as
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& PN N N
UZE Z uy i+ 2mnge (o)) Z 5<Z,> (Zl> . (5.138)

i=1,j=1 i=1

Here the first term is a sum over all distinct pairs of gas molecules. The
second term is a sum over the individual interactions of the gas molecules
with the surface depending on their distance, z;, from the latter. This
expression includes the interaction with the topmost atom layer in the surface
only. In addition there is just one type of atom in this surface. Another
simplification is that the surface atoms are “smeared out” continuously inside
the layer. The quantity n, is the number density of surface atoms per area in
the layer. The neglect of atoms below this first layer may be partially com-
pensated by scaling the interaction parameters, which is indicated by the
primes. All in all this is a simple and yet quite accurate surface potential for
the system we have in mind—the adsorption equilibrium of methane on the
graphite basal plane. The parameter values we use here are €,/R = 148.7 K/
mol, 6, =3.79 A, ny = 0.382 A2, €, /R = 72.2 K/mol, ¢, = 3.92 A (taken
from Aydt and Hentschke 1997). We will discuss computer simulation
algorithms, especially the algorithm used in this example, in the next chapter.
At this point we merely state that the following result is computed via
grand-canonical Metropolis Monte Carlo using Eq. (5.135) as well as
Eq. (5.136) for comparison.

Figure 5.15 shows isosteric heats of adsorption vs. pressure. Open symbols
are based on Eq. (5.135); closed symbols are based on the approximation

Fig. 5.14 Computer

simulation snapshot of gas ()
particles near an adsorbing
surface ®
o0
e O o
® o
® : ® [
Y (
° ® o0
b ([ J
oo os™s
([ (]
°® o
L)
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(5.136). The lines are quadratic fits. In the limit of vanishing coverage, which
here means P — 0, we obtain q§f> ~ 11.5 kJ/mol at a temperature close to
40°C in both cases. This is somewhat below the experimental values in the
literature (e.g., qgf) ~ 14.6 kJ/mol in Specovious and Findenegg 1978). There
are a number of possible reasons. While we consider a perfectly smooth
surface, the experimental systems are much less perfect and surface defects
(like steps or corners), other adsorbates etc. may lead to an increase of qgf).
On the theoretical side we must be critical with respect to the parameters as
well as finite size effects due to the smallness of the system. Nevertheless, we
learn that the isosteric heat of adsorption yields useful information on the

microscopic gas-surface interaction.

5.3.3 Bosons and Fermions

The indistinguishability of elementary particles (such as photons or electrons) is an
important concept suggesting the division of all known elementary particles into
two classes: Bosons and Fermions. Indistinguishable means that the Hamiltonian
operator commutes with another operator that interchanges two particles in a sys-
tem. This leads to the conclusion that elementary particles in nature may simulta-
neously occupy the same quantum state in arbitrary number or just once. The
former are Bosons and the latter are Fermions. Here we may introduce this dis-
tinction via the so called occupation number, n;, of the one-particle quantum state i.
Thus we may write

0,1,2,... Bosons
n; = { (5.139)

0,1 Fermions

Consequently if we consider a system in state v, we may express the attendant
total particle number, N,, via

Ne=>n (5.140)
and the attendant total energy, E,, via

E, =) en;, (5.141)

i
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where ¢; is the energy of the one-particle quantum state i. In particular different v
correspond to different sets of occupation numbers (for example: {n;,na,n3,...} =
{0,1,1,0,...} or {1,1,1,0,...}). This means that Eq. (5.127) becomes

Quvr = Z exp [—ﬁ Z(Ei - ﬂ)”i] : (5.142)

N1 e e

We want to combine this equation with the Egs. (5.140) and (5.141) to work out
its specific form for Bosons and Fermions. Notice that we may reshuffle the sums as
follows’

Z exp| ﬁz = Z Hexp

ny,ng,...\Ri,... ny,ng,.
= Z e My et H Z exp| -
ny i
In the case of Bosons we find

= H iexp[—ﬁ(ﬁi — wni

i =0 (5.143)
=TT~ expl=fter— )",

whereas in the case of Fermions

HZGXP — wni]

i n= (5.144)
:H1+exp— (e = W))-

In both cases we may compute the average occupation number via

Qe > miexp[—B(E, — uN,)] = m(n Qﬁ’; V)T (5.145)
v J
This means for Bosons
(n)® = (exp[B(g — )] 1) (5.146)

Tvia Y " = (1 —¢q) " for g<1.
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and for Fermions

(m)") = (exp[B(e — m)] +1)". (5.147)

Equation (5.146) imposes the condition u<e¢ey, where ¢ is the one-particle
ground state energy, because otherwise unphysical negative occupation is possible.
No such restriction applies in the case of Fermions.

Particles in nature posses a property called spin. According to Pauli’s famous
Spin-Statistics-Theorem all particles possessing integer spin values (e.g. photons
whose spin is one) are Bosons, whereas particles possessing half-integer spin values
(e.g. the electron has spin one half) are Fermions.®

5.3.4 High Temperature Limit

With increasing temperature the particles may access higher and higher energies. At
not too high densities this implies that there are more one particle energy states
partially occupied than there are particles. Consequently the average occupation
number, (n;), is small, i.e.

exp[ﬂ(ej — ,u)] >1.

For both Bosons and Fermions we therefore have

(nj) ~ exp|—B( — )] (5.148)

Insertion of this approximation into

(N) = ) (5.149)

yields the useful relation

% o< exp[—fe] . (5.150)

This is the probability for a particle to be in the state j — independent of the
particle’s type.

8 Wolfgang Pauli, Nobel prize in physics for his discovery of the exclusion principle, 1945.
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5.3.5 Two Special Cases—exk’ and exk

The energy values of a free particle are ¢ = /i*k?/(2m). This is the 3D version of
Eq. (5.57) (omitting the index v). In addition the 3D version of Eq. (5.58) is

Zoc/d3ko</0wdeD(e). (5.151)

The quantity D(¢) is the density of energy states, and because of d°k oc dkk* we
find D(€) o< €'/2. The second case we study here is ¢ o< k. For instance in the case of

photons € = hiw and w = ck, where c is the velocity of light and & is the magnitude

of the wave vector. Eq. (5.151) still remains valid except now of course D(e) o €.

Thus all in all we consider the following cases

ek’ with D(e) ox €'/?
eock with D(e) o €.

First we compute the average energy of a systems of bosons in these two cases

© d 3/2 3C (X
C/ % =—— dee'?In[1 —ze %] (e x k?)
o ek —1 2B Jo
(E) = R (5.152)
o [T 30 T e — et k
0 Zfleﬁe_l__ ﬁ 0 €€ Il[ —<e ] (60( )a

where z = exp[fu] and C,C’ are constants. Note that we have used partial inte-
gration, i.e.

*  dee* 1o x [
— = | €[l -z 77/ dee 'In[1 — ze Fq.
/ o el =z - (o

Z_leﬁf—l 0
~————
=0

Comparing the right sides in Eq. (5.152) to the pressure, i.e.
BVPE) = — 3" In[1 — zexp[—fe]], we find

(E) = %P (€ o k?)
(5.153)

<= <=

(E)=3P  (exKk).

Even though we have obtained this result in the case of Bosons an analogous
calculation for Fermions yields identical formulas. Notice that these results confirm
our previous findings for the energy density expressed in Eqs. (2.27) and (2.35).
Notice also that in order for Eq. (5.152) (e x k-case) to yield agreement with the
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black body radiation energy density (cf. Remark 2 on page 239) we must require
z=1 or u = 0 for photons.

It is interesting to similarly relate the density, N/V, and the pressure, P.
Unfortunately the result is not obtained simply via partial integration. We need to
solve the integrals explicitly, i.e.

C [* _dec' _ CIB/2Y (&) (e 2
NV ST Y b’” i (o )2 o (5.154)
\% o C [ d6€2 [3 i n+1 ( N k) ) :
— —_— €
V /)y zlefex 1 V ﬁ3 —~(n+1)°
and
2CH [* dec? L CTB/2 2)" !
=" = k2
3V Jo —1ppe T 1 V % Z 5/2 €x )
pP = e - n+1 (5.155)
c'p deé’ C I3 Z (e x k)
— —_— —— €
3V 0o < eﬁ(:Fl V ﬁ o O
Here we have used (1 — zexp[—fe]) ™' = 30 (zexp[—f¢])" and
o Ix+1]
dee exp|—fe(n+1)| = ———— 5.156

(Note: I'lx+ 1] =xI'[x], where I'lx] is the Gamma-function (Abramowitz and
Stegun 1972). Attention must be paid to the radius of convergence of the above
sums, i.e. in cases when z > 1 (Fermions) the integrals must be evaluated by other
means.

Both N/V and P are power series in z. However, we may conversely assume that
z can be written as a power series of for instance p=N/V, ie.
z=1z(p) = ap+aip+axp®+.... By inserting this into our above expansion of
p(z) we eliminate z from this equation and we may work out the coefficients a; by
equating coefficients multiplying the same power of p. If we now insert the power
series of z(p) with the known coefficients «; into the expansion of P = P(z) we
obtain a power series P = P(p).

Figure 5.16 shows the results (for the case e ox k?). The stars indicate reduced
quantities defined via

Cr[3/2 cri3/2)
p= é3//2]p P= ’£5//2]P
ory,, orl,

Vg p VRt



254 5 Microscopic Interactions

Fig. 5.15 Isosteric heat of q,, [kJ/mol]
adsorption of methane on
graphite
Fig. 5.16 Reduced pressure P
versus reduced density for
particles obeying Fermi-Dirac 25¢F 7
statistics, Bose-Einstein 20k /
statistics, or the ideal gas law
15F S A
1O} /s
05t SF

Of the two solid lines the lower one is for Bosons and the upper one for
Fermions. The dashed line is the ideal gas law, i.e. P = f$p. We note that in the case
of Bosons we find a quantum statistical attraction leading to a lower pressure than in
the ideal gas, whereas in the case of Fermions there is a quantum statistical
repulsion leading to a higher pressure than in the ideal gas. The open circle indi-
cates the Boson pressure for z = 1. At higher densities the pressure remains con-
stant as shown by the dotted line.

To understand what is happening here we look at Fig. 5.17 showing z as function
of reduced density, p*. The upper line is for Fermions and the lower one for
Bosons. In case of the former nothing special happens as z approaches or exceeds
unity. In the Boson case the reduced density, p*, approaches a finite value,
p* = ([3/2] = 2.61238,° again indicated by a circle. This circle corresponds to the
circle in the previous figure. Because we may increase p* beyond the value marked
by the circle we may ask what the corresponding z-values are. Clearly, z<1 as
pointed out above. But decreasing z means 9z/0p* = fz0u/0p* <0 or Ou/0p* <0,
which is thermodynamically unstable. Thus z must remain equal to unity as indi-
cated by the dotted line.

9

{[s] = >_2, k~* is the Riemann Zeta-function (Abramowitz and Stegun 1972).
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But why does our current approach not show the divergence of p*(z) in the limit
z=1 — or in other words: where do the particles go? There is a mathematical
problem here, which we have overlooked thus far. Notice that in the Boson case

N © deell? V7l[3/2]
— X z=1
Voo il —1= 280

(note: C,C’" x V). (5.157)
The integral obviously is finite. On the other hand, the average Boson occupa-
tion number of the energy level ey = 0 in the case z = 1 is infinity according to the
original Eq. (5.146)'°! Thus our conversion of the summation into an integration
fails utterly—at least when z = 1.
A simple example may illustrate this point. Consider the following sums

< 1 = 1
So(m, k) = and S;(m,k) =
e I P N

o~

compared to the integral

" dn
I(m,k):/o = 2Vr = VR)

Putting in some numbers we obtain

I(m,k) Si(m,k) So(m,k)
m=1 k=107 194 1.0 32.6
m=100 k=107 19.9 18.6 50.2
m=100 k=107 20.0 18.6 335

We observe that summation and integration are in rather good agreement for
large m independent of k. Including the n = 0-Term in the sum, especially in the
limit of small k, spoils the agreement however. Therefore we may write
So(m, k) = Sy (m, k) +k 12 = I(m, k) + k~1/2.

Note that in the above example k& — O corresponds to z — 1 and the n = O-term
corresponds to the ground state contribution (¢p = 0) in Eq. (5.146). Here we may
write

19 Somebody may object that €y = 0 is not really possible due to the zero-point energy. But note
that for a particle trapped in a cubic box one finds feg ~ (Ar/L)?. Here V = L3 is the box
volume. The thermal wavelength, Ar, is on the order of A, so that for every macroscopic L we
find that fey is vanishingly small. This also is the reason why we consider the limit z = 1 rather
than exp[feg].
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_cvRBal 1 s
CVop2 Vi—z

(5.158)

We use the =—sign rather than =, because in this case the number of terms in the
sum are so large. Now we see that in the limit z = 1 there is a condensation of
particles into single particle states ey = 0. This phenomenon is called Bose
condensation'"!

Equation (5.158) also explains the pressure plateau (dotted line in Fig. 5.16).
Assuming that p* is large and fixed we conclude that V ~ (1 —z)”'. If we now
consider the ground state contribution to the pressure given by fP|, = —V~'In[l —
z] we immediately obtain SP|,~V~'InV — 0 for V — oo at constant density.
This means that P|, does not contribute to the pressure, which therefore remains
constant. The same is true for the energy density, as one can easily find out by
considering the limit ; — 0 of €;(n;).

Before leaving this subject, we want to also calculate the transition enthalpy
predicted by our model. We estimate the pressure corresponding to the circle in
Fig. 5.16 via Eq. (5.155) setting z =1, i.e.

P= @C C[ﬁssf] . (5.159)

Taking the derivative with respect to 7 we obtain

dp _ 5yaC{[5/2]
dar — "t av i

= (5.160)

Notice that this derivative is along the coexistence line in the T-P-plane.
Therefore we can apply the Clapeyron equation, i.e.

dpP 1 Ah

— =——. 5.161

dT lcoex TAp71 ( )
Here Ah is the transition enthalpy per Boson, and Ap~! ~ p~! is the corre-

sponding inverse density difference between the inverse density given by the first
term in Eq. (5.158) and the corresponding inverse ground state density. The latter

"' The superfluid behavior exhibited by the helium isotope *He below 2.1768 K, the so-called
lambda point, is a manifestation of Bose condensation. The mass density at this temperature is

about 145 kg/m’. If we insert this number into Eq. (5.158) using C = (gV/(47%)) (2mp./i*)*/%,
where g = 2s+1 and s is the boson’s spin (in this case s = 0), we obtain a transition tem-
perature of about 3.1 K, which, despite the ideality assumption, is rather close to the above value
(an in depth discussion is given in Feynman (1972) ; Nobel prize in physics for his contributions
to quantum electrodynamics, 1965). Notice that we have neglected the second term in
Eq. (5.158), because for fixed z just slightly less than 1 the factor 1/V dominates and this term is
vanishingly small.
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density is much larger and its inverse is therefore neglected. Thus A# is the (va-
porization) enthalpy difference going from the condensed phase to the ideal gas.
After some algebra we find'?

_5{5/2]

-~ 2([3/2]

kpT =~ 1.28kpT. (5.162)

5.4 The Third Law of Thermodynamics

This law, which does not introduce new functions of state, is about entropy in the
limit of vanishing temperature. Its most common form is the Nernst heat theorem'”:

lim AS = 0. (5.163)

This means that all entropy changes are zero at absolute zero. In a generalization
due to Planck the A is omitted and thus

lim § = 0. (5.164)
This follows from (5.163) if the constant entropy at 7 = 0 implied by the Nernst
heat theorem is universal and finite and thus may be set to zero.
Equation (5.163) implies that partial derivatives of S like S/0V/|, vanish in the
limit of vanishing temperature, i.e.

oS
lim =5 | =0, 5.165
TIE})({?V T ( )
Because of 9°F/0VIT|,|, = 0*F/0TdV|,|,, the above equation implies
oP
m 2P —o. 5.166
%1—% oT lv 0 ( )

If we apply this to the classical ideal gas, i.e. PV = NkgT, we find that this gas
does not obey the Nernst heat theorem. Photons on the other hand fulfill S oc 7 (cf.
Eq. 2.41) or P x T* (cf. Eq. (2.38)) and satisfy Eq. (5.164) as well as Eq. (5.166).

Figure 5.16 shows that the classical ideal gas law at finite densities is not
followed by either Fermions or Bosons in the limit of low temperatures. Only in the

21 the case of *He, i.e. using T = 3.2 K, we obtain AH ~ 34J /mol. This is about three times
less than the experimental value.

13 Walther Hermann Nernst, Nobel prize in chemistry for his contributions to thermodynamics,
1920.
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high temperature limit, i.e. the origin of the graph, both quantum laws merge with
the ideal gas law. We therefore want to study the above derivative for the quantum
laws in Fig. 5.16. In the case of Fermions, the leading dependence of the pressure
on temperature is

2
erp+ % (ksT)>. (5.167)

~
~

d+2

Here d is the space dimension, p is the number density, and ep, the Fermi
energy, is the energy of the highest occupied level at zero temperature. We omit the
calculation of this formula, which may be found in the context of the Fermi gas
model of electrons in solids in most solid state textbooks. Obviously the pressure
this time satisfies Eq. (5.166). But what about the Bosons? The answer is contained
in Fig. 5.16. At finite density P oc T°/? and thus OP/OT|, — O for T — 0. Again
Nernst’s theorem is satisfied. Let us therefore look at the relation between the
Nernst theorem and quantum theory.

We start from the partition function

0= ng exp[—BE,]. (5.168)

Here all E; are distinct and discrete (E, <E; <Ej; - --). The degeneracy of each
level s is g,. Factorizing the ground state we obtain

Q = g, exp[—PE,] (1 + %exp[fﬁ(El —E,)+ - ) (5.169)

As the temperature approaches zero we can satisfy S(E; — E,) < 1 and it
becomes sufficient to retain the first two terms in the above sum. Using § =
O(kgT In Q)/0T|,, we obtain

S/ks ~ Ingy + (1+ B(Ey — E»)?exp[—ﬁwl ~E,)]. (5.170)

o

Letting 7 — 0, we get
S/kg =1Ing,. (5.171)

Therefore S = 0 requires that the ground state is not degenerate and sufficiently
separated from the next state. However, notice that the degeneracy of this state may
already be large. To see this we imagine N independent harmonic oscillators. The
state o corresponds to all oscillators in their ground state. The next state corresponds
to one oscillator in its first excited state whereas all others are still in the ground
state. There are N distinct ways to accomplish this. Again the next state corresponds
to one oscillator in its second excited state and a second one in its first excited state.
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Fig. 5.17 Fugacity versus
reduced density for particles
obeying Fermi-Dirac statistics
and particles obeying
Bose-Einstein statistics

Fig. 5.18 Entropy per spin,
S/n of a periodic 1D Ising
chain with 10 spins (J/ =1,
B = 10%) versus
temperature, T (here: kg = 1)
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This “pair of excited oscillators” may be realized in N(N — 1)/2 different ways.

And so on.

Figure 5.18 shows an illustrative example of a model system—the 1D Ising
chain (cf. the example on page 210). Without an external field the ground state is
degenerate and S/n >0 (here n =10 and S/n — (In2)/10—dashed line) for
T — 0. But an external field, B, coupling to the spins (here via an additional term
—BY"! | s; in the energy (Eq. 5.17)) no matter how small, breaks the symmetry and
“eventually” S/n — 0 for T — 0. In reality such symmetry-breaking fields should

always be present.



Chapter 6 M)
Thermodynamics and Molecular gt
Simulation

In the previous chapter we have learned that analytic calculations on the basis of
microscopic interactions can become very difficult or even impossible. In such
cases computer simulations are helpful. And even though thermodynamics is not
the theory of many particle systems based on microscopic interactions, Statistical
Mechanics is this theory, it possesses noteworthy ties to computer simulation. In the
following we want to discuss some of them.

There are two main methods in this field. One is Molecular Dynamics and the
other is Monte Carlo. Additional simulation methods are either closely related to
one or the other aforementioned methods or they apply on spatial scales far beyond
the molecular scale. Molecular Dynamics techniques model a small amount of
material (system sizes usually are on the nm-scale) based on the actual equations of
motion of the atoms or molecules in this system. Usually this is done on the basis of
mechanical inter- and intra-particle potential functions. In certain cases however
quantum mechanics in needed. Monte Carlo differs from Molecular Dynamics in
that its systems do not follow their physical dynamics. Monte Carlo estimates
thermodynamic quantities via intelligent statistical sampling of (micro)states.
Capabilities and applications of both methods overlap widely. But they both also
have distinct advantages depending on the problem at hand. Here we concentrate on
Monte Carlo—which is the “more thermodynamic” method of the two.

6.1 Metropolis Sampling

Consider a gas at constant density and constant temperature. Suppose we are
interested in the internal energy, E, of the gas. In principle we can try to evaluate
Eq. (5.8). Instead of doing this by an analytic method, we use a “device” which
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supplies us with a sample of E,-values distributed according to p, as defined in
Eq. (5.7). Our estimate for E would then be E, where the bar indicates the average
over our sample. In the limit of an infinite sample we have E = (E) = E. But how
would such a “device” look like?

We consider a simple example. Rather than using an infinite set of E,-values from
which we generate our sample, we just work with four values. They are not called
energy—we just call them 1, 2, 3, and 4. A possible sample might look like this:

234334412223. .. (6.1)

But what is the underlying probability distribution, p,, in this example? For the
moment we decide to invent a distribution, i.e. we require that the even digits, 2 and
4, are twice as probable as the odd ones, 1 and 3.!

A computer algorithm generating a series of digits possessing this distribution is
the following:

(i) choose a new digit, dye,, from the set {1,2,3,4} at random
(i) IF

THEN d,,,,, becomes the next digit in the series
ELSE d,;; becomes the next digit in the series
(iii) if the series contains less than M digits continue with (i)

Here old refers to the last already existing digit in the series. The next digit is
new. Step (i) should be clear. But step (ii) requires explanation. The function
min[a,b| returns the smaller of the two arguments a and b. The quantity p(d)
denotes the probability of occurrence of digit d in the series, i.e. p(1)/p(2) = 1/2,
p(1)/p(3) =1, p(1)/p(4) = 1/2, .... The quantity ¢ is a random number between
0 and 1. The condition (6.2) is the Metropolis criterion.

We can check this algorithm in two ways—we can implement it and count the
occurrence of the individual digits in the series—we can study the attendant transfer
matrix, 7, whose elements n; = m;_; are the probabilities that digit i is followed by
digit j. At this point it is most instructive to do the latter.

! Every other conceivable distribution can replace this choice if desired.
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The transfer matrix is

j—
1 1 1 1
1112 2 1/2 1 )
n=- li
4 1 1 1 1
/2 1 1/2 2

The factor 1/4 is the statistical weight of any new digit according to step (i). The
matrix elements on the other hand are the statistical weights of attempted transitions
generated by the Metropolis criterion in step (ii). In particular the first row elements
are the step (ii)-statistical weights for transitions from the old digit i = 1 to any new
digit j. In this case the Metropolis criterion (6.2) is always fulfilled independent of
the new digit that follows. The second row corresponds to the case when the old
digit i = 2. The first element, i.e. 1/2, is the statistical weight due (6.2) for the
transition from 2 to 1, which is rejected half of the time. The same applies to the
third entry, i.e. the transition from 2 to 3. The fourth element describes the transition
from 2 to 4, which is always accepted. The entry 2 in this row is more difficult to
understand. This is because the transition from 2 to 2 has three contributions, i.e.
2 =1+ 1/2+1/2. The criterion is always fulfilled when 2 is followed by 2, which
contributes the one. In addition there is a 1,/2 from the rejection of transitions from
2 to 1. In this case the old digit 2 also will be the accepted new digit. The same
applies when the criterion rejects transitions from 2 to 3. In this case the old digit 2
again will be the new digit. All in all the result from step (ii) is two. This discussion
of the first and the second row may be carried over to explain rows three and four.

At this point we are able to answer to the following question: What is the
probability that if the first digit in the series is i the 3rd digit will be j? The answer is
obtained via simple matrix multiplication:

4

E T Ty = 171 + TipToj + T3 735 + T 4Taj, (6.3)
k=1
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i.e. the total transition probability is the sum over all independent possibilities (or
paths) to get from i to j. This easily is generalized to longer paths extending over n
digits

Tk Tk T, - T j -
D T T (6.4)
Aobed n— Ifactors

Provided n is sufficiently large the result should be 2/6 if j is even and 1/6 if j is
odd. Notice that the denominator 6 is due to the overall normalization, i.e.
2-2/6+4+2-1/6 = 1. For n = 3 the explicit numerical result is

0.1875 03125 0.1875 0.3125
0.15625 0.375 0.15625 0.3125

(6.5)
0.1875 03125 0.1875 0.3125
0.15625 0.3125 0.15625 0.375
But already for n = 5 we obtain
0.167969 0.332031 0.167969 0.332031
0.166016 0.335938 0.166016 0.332031 (6.6)

0.167969 0.332031 0.167969 0.332031
0.166016 0.332031 0.166016 0.335938

This shows that our algorithm indeed produces the target distribution of digits in
the series. The closeness of the numbers in the same column, which means the same
final digit j, in the last matrix also shows that the probability of j is almost inde-
pendent of the first digit i after only five steps.
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Example : Metropolis MC. The following is a Mathematica program which
estimates

(x?) = /Z dxa? eXp[fxz]//j:o dxexp[—2®] = 0.5 .

Here p o exp[—2] and {1,2,3,4} is now replaced by = € (—00,00). We seek
z2 = (1/M) Zf\il 22| pamc- |marc means that the x; are weighted according to
p via Metropolis MC.

"Metropolis Monte Carlo";
"total number of MC steps"; M = 100000;
"acceptance counter";ac = 0;
"initial x";xold = 1;
"maximum step size";dx = 1;
"results storage"; x2array = {};sx2 = 0;
Dol
xnew = xold + éxRandom[Real, {—1,1}];
IfMin[1, Exp[—(xnew”2 — x0ld"2)]]>=Randoml[],
{sx2+=xnew”\2, xold = xnew, ac+=1},
{sx2+=xo0ld"2}];
x2array = Append[x2array, sx2/i,
{i,1, M}];

"output:";
pl = ListPlot[x2array, Joined — True,
AxesLabel — {"MC step", " (z2)cave"} ,
PlotRange — {0.4, 0.6}, PlotStyle — {Black}];
p2 = ListPlot[{{0,0.5}, {M, 0.5}}, Joined — True,
PlotStyle — {Dashed, Black}];
Show|[pl1, p2]
Nlac/M]
(X" Yeave

0.60

——

0.55||

0.50

0.45

MC step
0 20000 40000 60000 80000 100000

0.72954
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A few remarks: Step (i) of the MC algorithm is xnew=xold + Jx
Random[Real, {—1, 1}]. We define a maximum step size, dx, and generate the new
x near the old x. It is important that this step does not introduce a bias, i.e. all
possible x-values do have equal probability in step (i). It does not matter that it may
take many steps to reach a certain x-value. Notice that in contrast to our initial
example, with merely 4 digits to choose from, x can be any real number. In this case
it is important to build the new x from the old one in order to play out the particular
advantage of the Metropolis criterion. It preferentially samples the important x-
values, i.e. the x-values with high probability. Random “jumping around” between
—oo and oo would not be efficient. The above graph shows the cumulative average,
i.e. at every MC-step the current average of x> computed from the thus far accu-
mulated x-values. The final result obviously is close to the exact solution (dashed
line). The shown example yields x2 = 0.498. However, the question is—what is the
error? This is a computer experiment and as for real experimental data we may
compute the standard error of the mean via o,/ VM'. Here o, is the standard
deviation of the xf-values and M’ is the number of independent values (M’ < M!).
We can estimate M’ via the autocorrelation function of the data. But this is
described in every good text on computer simulation methods (e.g., Frenkel and
Smit 1996). Here we want to concentrate on our main goal—the ties between
molecular simulation and thermodynamics.

6.2 Sampling Different Ensembles

In Chap. 5 we discuss the probabilities of state v given by

py x exp[—S,/kg], (6.7)
where
1 P u
Sy ==E,+ =V, —=N,.... 6.8
T + T T (68)

In the following we are interested in the classical approximation of p,,, which means
p x gexp[—pH — PPV + fuN.. ]. (6.9)
Here H is the Hamilton function of the system and f§ = (kBT)fl. The factor g

arises from the “translation” of ), to a corresponding integration over classical
phase space, i.e.
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N
1 / 3N 3N 1 <V> / 3N
~— [ dNpdNr — — | [ @ (6.10)
Z NN NT\AS

This formula applies to particles completely characterizable through their posi-
tion in space 7 = V'/35, where 5 is a relative coordinate independent of the size of
the (cubic) volume, and their translational momentum p. We can separate a factor
exp[—pK] from exp[—fH], where K is the kinetic energy of the system of particles,
and the arrow indicates what we get after integrating out the momenta. Thus in the
present case we may write

N
p({5},V,N) x % <A_V3> exp[—pU — PPV + BuN.. ). (6.11)
T\ A7

Here U is the potential energy of the system. All in all this probability describes
classical systems with variable volume, and particle number.

How do we apply this? First we must decide which ensemble to use. Is it
sufficient to just translate the particles at constant temperature, volume and particle
number? This would be the canonical ensemble. Or do we model an open system
with variable particle number at constant chemical potential, volume, and tem-
perature? This would be the grand-canonical ensemble. Remember our discussion
of the isosteric heat of adsorption for methane on graphite in Sect. 5.3.2. In this
example methane is well represented as a point particle. Here step (i) of a MC
procedure consists in a random change of ({5}, V,N). We can select a methane
molecule at random and move it a random distance in a random direction. Volume
and particle number would be constant. But we can also decide to just change the
particle number. We must decide whether to insert or remove a particle from the
system. The following algorithm, used to generate the simulation results in the
aforementioned example, alternates between these two MC “moves”. The volume is
kept constant all the time. Insertion and removal of particles makes additional
translation of existent particles obsolete in this case.”

1. randomly select a position at which to insert a new particle into the gas
2. evaluate the condition

. — new old aVv
m1n<1,exp {—T I(L{[(\,H) —Z/li(v )> + lnN—-i-J) > ¢

2 This works and is simple, but not necessarily efficient. It bypasses the importance sampling
capability of the Metropolis MC mentioned above.
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3. TRUE: Insert the particle and append the new configuration to the configuration
list;
FALSE: Do not insert the particle and append the old configuration to the
configuration list.

4. select an already existing gas particle at random

5. evaluate the condition

ne 0 N
min(l, exp [—Tl (Z/{;\,:f) — Z/l,(\,ld)> + ln—V]> >E..
a

6. TRUE: Remove the selected particle and append the new configuration to the
configuration list;
FALSE: Do not remove the selected particle and append the old configuration to
the configuration list.

Here &; and &, are random numbers on [0, 1]. The quantity a is a = A, exp[T 4.
Notice that the second argument in min(1,...) is just the ratio ppen/poa (With
kg = 1). We emphasize that we do not have to know the proportionality constant in
(6.11)! This would mean that we have to compute the full partition function, which
in general is impossible. After having compiled a large number of configurations
generated according to this algorithm the desired averages may be calculated.
However, because MC does not yield information on the molecular dynamics, it is
limited to configurational averages, i.e. the quantities of interest depend exclusively
on coordinates and not on momenta.

For the sake of completeness we want to write down the equivalent to relation
(6.11) for the case of small rigid molecules (e.g. water):

p({s},{¢,0,y},V,N)
(6.12)

N
1 VQrot ]
N < A3;l ) Y, sin 0; exp[—pU — BPV + BuN. . .].

In this case the molecular orientation in space must be included. We have
discussed molecular rotation in the context of Eq. (5.98). Here {¢,0,y/} are the
Euler angles of the molecules. The factors sin 0; arise from the Jacobian J (dis-
cussed in Sect. 5.1.8) when we integrate over the momenta conjugate to the Euler
angles. In the case of a MC reorientation of a single randomly chosen molecule the
attendant probability ratio becomes

pnew Sin eneW
= - c
Dold SN0y

Xp[_ﬁ(unew - uold)y (613)

In the case of molecule insertion or removal we can omit the factor
$in O,/ sin O,y assuming 0,0, = O
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6.3 Selected Applications

The applicability of molecular simulation to microscopic phenomena is subject to
numerous constrains. This is not the place to describe these constraints and the
strategies used to extend the limits of simulation methods. The following examples
are for gases and liquids with simple, which mostly means short-ranged, radially
symmetric interactions between particles.

6.3.1 Simple Thermodynamic Bulk Functions

It is useful to express the quantities V, Ay, T, U, ... in (6.11), as well as in every
possible Metropolis probability ratio, in a new set of units, i.e. energies are in units
of € and lengths are in units of ¢. Table 6.1 compiles the explicit conversion
between the new dimensionless quantities X* and the original physical quantities.
The quantities X* are said to be in Lennard-Jones (LJ) units, because € and ¢
usually are identical to the same quantities in the LJ potential in Eq. (5.137). For
small, non-polar molecules and not too high densities this potential usually is a
good approximation. This means that we can carry out simulations of gases and (to
some extend) liquids of noble gas atoms and small, non-polar molecules using the
LJ potential with ¢ = ¢ = 1. Subsequently we convert the results from LJ units to
SI units. If we do this using atom or molecule specific values for € and o, we obtain
results specific for the system of interest (e.g. methane or argon). But how do we get
Emethane AN Cpethane OT €argon ANd Gyre0n? One possibility is to look up the values of
these system’s critical parameters 7., p., and P.. Assuming that we also have
simulation results for the critical point of our LJ system (the one with ¢ = g = 1),
ie. T?, pl, and P}, we can use the conversion formulas in the table, e.g. €emane =

kgTe memane/ T and Gpemane = (p%/ pc_’methane)l/ 7. We notice immediately that this is
not unique. We have three critical parameters and only two model parameters.
Alternatively we could have used p. and P, or T. and P, to obtain € and o.
However, provided that LJ interactions do describe the interactions in the physical
system reasonably well, we shall find that the differences are small.®> As soon as we
have decided which values to use for € and o, we can begin to convert other
quantities of interest from their LJ values provided by the simulation to the
SI-values comparable to experimental data. Or we can convert experimental data to
LJ units.

3 Probably you have noticed the similarity to our discussion of the universal van der Waals
equation (4.12), where we also use the gas-liquid critical point expressed via the parameters a and
b to map the results of the universal theory onto specific systems. There as well as here we can
also use experimental data for the second virial coefficient to fit @ and b or € and ¢. These values
again will differ to some extend from the ones obtained via the critical parameters.
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Table 6.1 Lennard-Jones Quantity LJ-quantity Conversion
units
T T T = T [kg
% v* V=gV*
p ,0* p= p* / 0.3
P P* P=¢eP/d>
© w p=ex
Fig. 6.1 Simulation results, 0.5 I I ! ! !
showing the temperature
dependence of selected 0.4 J
thermodynamic quantities,
compared to experimental 03 ]
data .
p )
0.2 ~
0.1 oo T
0 1 1 1 1 1
2 2.5 3 3.5 4 4.5
T *
g 10 ] 14
N

The top panel in Fig. 6.1 shows simulations results* (dotted circles) for the
number density, p*, versus temperature, T*, for methane. Here €,emane /kp = 141.2
K and 6,emume = 3.688 A. The experimental results (plusses), converted to LJ units,
are from the HCP. The experimental pressure is 10 MPa or 0.257 in LJ units. This
pressure is roughly a factor of two above the critical pressure. The solid line is a fit

* These particular quantities were calculated for system of 108 particles using the Molecular
Dynamics technique (R. Hentschke, E. M. Aydt, B. Fodi, E. Stockelmann Molekulares
Modellieren mit Kraftfeldern., http://constanze.materials.uni-wuppertal.de), but Metropolis Monte

Carlo could have used instead.
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to the experimental data for the sake of easier comparability but without particular
physical significance. Analogous curves obtain from the van der Waals equation are
shown in Fig. 4.5. The above graph corresponds to the high temperature portion of
the highest pressure isobar in Fig. 4.5. Notice that the critical temperature, which in
case of the universal van der Waals equation is 1, is slightly above 1.3 in the case of
the LJ system. The bottom panel in Fig. 6.1 shows the temperature dependence of
the enthalpy per atom (dotted circles) and the isobaric heat capacity per particle
(solid circles) for argon. Plusses and crosses are experimental results taken from
HTTD. Again the pressure is 10 MPa, but this time ¢ and ¢ are different, i.e.
€argon/kp = 111.8 K and 04400 = 3.369 A, and thus this pressure is 0.248 in LJ
units. The dotted lines are the respective quantities calculated assuming an ideal
gas. We note that the ideal gas behavior is approached on the high temperature side.
The simulation yields the enthalpy and the heat capacity, Cp = OH/JT|p, is
obtained via simple numerical differentiation of the enthalpy data without prior
smoothing. This relatively crude procedure is responsible for the larger deviations
from the experimental results (plusses) in the vicinity of the peak. The peak in the
heat capacity marks the Widom line, i.e. the smooth continuation of the gas-liquid
saturation line (cf. the right panel in Fig. 4.4) above the critical point.

6.3.2 Phase Equilibria

We consider phase coexistence in a one-component system—for instance between
gas (g) and liquid (I). We envision two coupled subsystems—one on either side of
the saturation line. Each of the subsystems is represented by a simulation box
containing N, and N; particles, respectively. By exchanging particles between the
boxes and by varying their volumes, V, and V;, we attempt to generate the proper
thermodynamic states for both gas and liquid at coexistence. Our result will be two
densities, p,(T) and p,(T), at coexistence as functions of temperature.

The thermodynamic variables in the respective subsystem (simulation boxes) are
Ty, Ty, Py, P1, N,, and N;. Phase equilibrium requires T, = T;(= T), P, = P;(= P),
and  p, = (=p). In addition we require Ng+N; = constant and
Ve + Vi = constant. This ensures that only one free variable remains in accordance
with the phase rule, which will be temperature. The subsystem entropy changes
compatible with the above conditions are TAS, = AE, +PAV, — uAN, and
TAS; = AE;+ PAV; — uAN;. The resulting total entropy change is AS =
(1/T)(AE; + AE) + (P/T) (AVi+AVy) — u(AN, + AN;) = (1/T)(AE, + AE)).
From this we can read off the attendant phase space probability ratios, i.e.

pnew gnew
— = exp[— (AU, + AU,)], 6.14
Pold 8old p[ ﬁ( # l)] ( )
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WAARENAAY
—_ (s} 6.15

and AU = U,,,, — U,q. Notice that the phase space integration factorizes into a
product of integrations over the respective volumes. Notice also that the combi-
natorial factor N!~! becomes the product of two such factors (cf. Eq. 5.75 for the
ideal gas mixture).

A suitable MC algorithm may be one that cycles through the steps—translation
of a particle in the gas box, translation of a particle in the liquid box, volume
change, transfer of a particle from gas to liquid, transfer from liquid to gas. The
following are examples from which the missing cases can be worked out easily.

where

e Translation of particle i in the gas box 5,; — 5., + 05"

Drow — exp[—pAU, (53)], (6.16)
DPold
where AUy = Uy pew — Uy o1a-
e Volume change, i.e. V; = V, =V and V; — V; +6V:

Prew DARTAIAN
——=(1-=— 1+ — ) exp[—B(AUL(—6V) + AU (+6V))], (6.17)
Dold Ve Vi
again AUy = Ug pew — Ug oia and AU = U pery — Ui oia-
e Particle transfer from gas to liquid, i.e. N — Ny — 1 and N; — N; + 1:
Prew Ng Vl

o Nl;lvgexp[—MAug(Ng — 1)+ AU(N; + 1))]. (6.18)

Notice again that the selection of particle i for translation, or the selection of a
particle for transfer, or the volume change 6V must be completely random! The
only restriction is that the translation step size Js as well as the volume change 6V
usually are small compared to the system size in order to take advantage of the
importance sampling.”

There is one question though. How does the system decide which box contains
the gas and which the liquid? First we must prepare initial conditions within the
coexistence region, requiring some knowledge about its location and extend.
Clearly, we can “bias” one box to be the gas box and the other one to be the liquid
box by the initial distribution of particles from which we start. We shall find

5 What we just have described is known as Gibbs-Ensemble Monte Carlo originally invented by
Panagiotopoulos (1987).
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however that the particle number in the boxes fluctuates, particularly when we
approach the critical temperature, 7., and the identity of the boxes may switch. In
fact, on approaching T, the growing critical fluctuations render the distinction of
gas and liquid meaningless in accordance with true physical systems. Figure 6.2
shows an example. The temperature in the top panel is below T, and the densities in
the boxes, initially kept at 0.3 by not allowing particles to transfer, subsequently
develop into gas and liquid. The bottom panel shows the densities above the critical
temperature (notice the change of scale of the p*-axis). There is no distinction
between the simulation boxes.

We note that the density fluctuations are quite large. This is due to the small size
of these systems containing on the order of 100 particles. Close to the critical point
there are critical density fluctuations on all length scales giving rise to critical
opalescence (e.g. Stanley 1971). Even though this is a different matter, which we do
not discuss here, it still is worth presenting a real experimental example of critical
opalescence conducted by the author. The bottom inset in Fig. 6.3 shows a cylin-
drical pressure chamber with windows on opposite sides containing sul-
furhexafluoride (SFg) (cf. p. 166). We can see the meniscus of the liquid. Heating of
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Fig. 6.3 Critical opalescence experiment

the chamber causes the SFg to pass through its critical point along the critical
isochore. The critical temperature of SFg is T, = 318.7 K or 45.5°C. In the
experimental setup the chamber is mounted so that the meniscus of the liquid is
perpendicular to the gravitational field.® The flashlight mounted at the bottom
illuminates the interior of the chamber and a corresponding bright spot of light can
be seen on the white cardboard in the background. The instrument beneath the
cardboard shows the chamber’s temperature. The series of photographs on the left
illustrates what happens when the temperature passes through T,.. At temperatures
above and below T, the light can pass through the chamber and the spot on the

© The effect is concentrated near the interface or, because above T, the interface vanishes, where
the interface develops upon cooling. The rotation of the pressure chamber used here ensures
greater homogeneity.
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cardboard is rather bright. But very close and right at T, a pronounced decrease in
the brightness is observed due to critical scattering.

Figure 6.4 shows a plot of the gas and liquid densities from the simulation
(circles). The solid line is a power law fit’ yielding T: =~ 1.32 and p; =~ 0.3.8

We conclude our example with a remark. The simulation boxes posses no
physical connection, i.e. there is no continuous migration of molecules from one
region in space to another as in a real experiment. All that matters is that thermal,
mechanical, and chemical equilibrium is attained. Since the chemical potential is a
state function, it is not important which path we choose for this purpose. This
implies that unphysical but highly efficient Monte Carlo moves become possible! In
the present case this is the instantaneous transfer of particles between boxes.

6.3.3 Osmotic Equilibria

Another example allowing us to practice the above approach is the following.
A semi-permeable membrane divides a system into two compartments or subsys-
tems—again represented by respective simulation boxes situated on opposite sides
of the membrane. Subsystem i (= 1,2) contains N;; solvent molecules and Nj;
solute molecules, respectively. In particular we require Ny = 0, due to the mem-
brane. The thermodynamic states of the two subsystems are defined through the
eight quantities 71, T», P, P+1II, N;;, and N,;. At equilibrium we have the five
conditions (T =)T; = T», equality of the solvent chemical potentials, i.e.
(b =)ty = o, as  well as  Npj+ Ny =N, = constant, N;; =0, and

"We use Plig = Peas = Aot — AP+ A and Piig + Phas = 205 +Dot' ™ with 1 =T} —T*
(Ley-Koo and Green 1981). The (3D Ising) critical exponent values are f§ = 0.326, o = 0.11,
and A = 0.52 (cf. our discussion of critical exponents and scaling beginning on p. 162).

8 These results were obtained during a student laboratory on computer simulation techniques—my
thanks to S. Reinecke and S. Mathys for Fig. 6.2 and to A. Obertacke and M. Gétze for the data in
Fig. 6.4. The MC program was written by R. Kumar.
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N; = constant. The resulting 8 — 5 = 3 degrees of freedom (phase rule!) are 7, P,
and II. Furthermore we have TAS, = AE, + PAV, — AN, and TAS, = AE, +
(P+1I1)AV, — ;AN; >, where the E; are the internal energies. The total entropy
change in the system therefore is AS = (1/T)(AE,+AE;)+ (P/T)
(AVy + AV,) + (II/T)AV,. The complete phase space density entering into our
Metropolis criteria thus becomes
N Vf’u Vé‘]z.z + N2

A;ZXIA;ZX“ZNM !Nl_g !Ns,2! (6 19)

exp[—B(Uy + Uz + PV + (P+T1)Vy + Ny + N5 )]

p

Our Monte Carlo algorithm consists of the following moves: molecule translation,
volume change, and solvent transfer. The probability ratios entering into the
Metropolis criterion are:

e for translation of a molecule in compartment i

Drev _ expl—pauty), (6.20)
Pold

where Aul = ui,new - ui,old’
e for a volume change of compartment i,

Prnew Vinew Niji+ N
Pt \Viau expl—h(ALli+ (P 0aIDAV) (6.21)

where AV; = V; ey — Vioig and 0 = 1 if i = 2 or zero otherwise, and
e for a molecule transfer from compartment 1 to compartment 2.

Prew _ V2Nl,1
Poia VilNi2+1)

exp|— (AU, + AlU»)], (6.22)

where AL[l = Z/Il (Nl,l — 1) — Z/{l (Nm) and AUQ = Z/[z(ng + 1) — Z/[Q(szz).

Exchanging the compartment index yields the probability ratio governing the
opposite transfer.

The following numerical data’ were obtained with the LI particle-particle
interaction potentialu(r) = 4(r~'2 — =) (cf. Eq. (5.137)). In this somewhat arti-
ficial model calculation all interactions are taken as identical. Figure 6.5 shows the
osmotic pressure, II, vs. solute mole fraction, x,>. The units are LJ units.
Comparison of the above algorithm (up-triangles: 7% =1.15, P* =0.2;
down-triangles: 7% = 1.5, p as for the open circles) to data from the literature

° From Schreiber and Hentschke (2011).
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(Panagiotopoulos et al. 1988): (open squares: T* = 1.15, P* = 0.077); Murad et al.
(1995): (open circles: T* = 1.5, 0.41 > P* > 0.26 from low to high x,). The
simulation data sets do agree closely even though the corresponding pressure, P,
varies considerably. This is expected when the temperatures are low and the sys-
tems are rather dense. Notice that this example obeys van’t Hoff’s law (solid
circles) over a wide concentration range. There is some scatter here because the
solute concentration is determined from the simulation.

6.3.4 Chemical Potential

The chemical potential played an important role in the two preceding examples. But
it did not enter explicitly into the calculations. How then can we obtain the chemical
potential via computer simulation? Let us assume that we already have a value for
the chemical potential, u(7,, P, ), in a one-component system. This particular phase
point is indicated by the circle in Fig. 6.6. We may reach every other state point via
a succession of steps along the directions indicated by the arrows. A path along
which the temperature is constant may be followed by integrating Eq. (2.124), i.e.

1 P
W(T0P) = (T P+ [ PV, P) (623)
P,

0

Fig. 6.6 Simulation of the PA
chemical potential on the
basis of one known value

P=const

T=const

=A 4
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where V/N is the volume per molecule. Based on either Eq. (6.11) or (6.12),
depending on the complexity of the molecule of interest, we may construct a
suitable Metropolis criterion (MC moves would include translation, rotation (in the
case of (6.12) only), and volume change). We obtain a series of values for v(P)
along the chosen path, which then can be used to numerically solve the integral
(e.g. via a suitable interpolating function which is easy to integrate). An analogous
procedure works for the P = const-direction in Fig. 6.6—this time however we use
the Gibbs-Helmholtz equation (3.145), i.e.

T.P, T,.P) 1 (T H(T P,
WT.P) _ p(ToPy) 1 [T H(T\P))

. it A = (6.24)

Here H(T)/V is the enthalpy per molecule.

Figure 6.7 shows the chemical potential obtained for the so called TIP4P/2005
(Transferable Intermolecular Potential 4 Point) water model via thermodynamic
integration at P = 1 bar (solid line) (Guse 2011). The crosses are corresponding
experimental chemical potentials calculated as follows.

In Fig. 4.4, we had included the experimental saturation pressure, Py, (T), along
the gas-liquid saturation line for water. In the temperature range of interest here we
may consider water vapor as being ideal. The ideal water chemical potential was
calculated before in the second example in Sect. 5.1.8 (vapor pressure of ice), i.e.
,quoﬁgm(T, Pyy) ~ y}_’,‘;’g(T, Psar) + y;;’;O(T, Py.;). Along the saturation line we have
Ki,0.6as = H,0.5iq0 the gas phase chemical potential is the same as the liquid phase
chemical potential. The example on page 94 (relative humidity) has taught us that
the chemical potential difference between a state point on the saturation line and the
state point at the same temperature in the liquid at 1 bar is almost negligible. Thus
we have 0 (T, 10ar) & ly, 0 005 (T, Psar) to very good approximation. The
crosses in Fig. 6.7 show iy, ¢ ;,(T, 1 bar) computed in this fashion using the ideal

trans rot

gas expressions for pp5 and wy’, provided in our above calculation of the vapor
pressure of ice (cf. Eqs. (5.101) and (5.102); note that the molecular vibrations may

Fig. 6f7 Water chemical U0 [kI/mol]
potential versus temperature _50
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still be neglected despite the somewhat higher temperatures in the current case. The
computer model for water also assumes rigid molecules.).

At this point we may ask whether there are direct methods for computing u(7', P)
avoiding lengthy paths? Yes, there are such methods. Because this is not a textbook
on computer simulation methods, the reader is referred to the appropriate texts (e.g.
Frenkel and Smit 1996 or Allen and Tildesley 1990). However, even without
discussing these methods, we may suspect a certain difficulty. Measuring the
chemical potential involves insertion of a molecule into a system. In dense systems
it frequently happens that the new molecule is placed directly “on top of” an
existing molecule. The attendant Metropolis MC ratio then is exceedingly small and
the computer time needed to obtain sufficient successful insertions may be pro-
hibitively large. Liquid water in the above example is such a system.
Thermodynamic integration does not suffer from this problem and therefore may be
preferable.'” Two more questions remain. How must we proceed if more than one
component is present? And what do we do when our path crosses a phase
boundary?

Equations (6.23) and (6.23) for more than one component are

1 P
wi(To, P) = pi(T,, Py) + —/ dPvi(T,,P") (6.25)
NA P,
and
(T, P A(T,, P, I (T, P
(T, Po) :Nz( 0 0)__/ dT'hl( ’2 0)‘ (6.26)
T T, Na Jr, T

Here i denotes the component. The quantities v; and h; are the partial molar
volume and enthalpy of component i, respectively. Equation (6.25) follows via
differentiation of the free enthalpy in Eq. (2.124) with respect to n;. Equation (6.26)
follows directly via integration of (3.146). In principle the partial quantities may be
determined for a set of given conditions, i.e. T, P, Rj(£i), by simulating systems with
different content of i, above and below the target mole fraction n;. The derivatives
may then be estimated via v; = 9V /0n; = AV /An; and h; = OH /0On; ~ AH /An;.
Whether this additional effort is necessary again is a matter of experience.

The chemical potential is continuous at a phase boundary. But quantities like V
and H are discontinuous (except at the critical point). The main practical problem
upon crossing a phase boundary is equilibration of the respective phases. Usually it
is a good idea to cycle through a path in both direction to check for hysteresis
effects, e.g. supercooling (the liquid/gas is metastable inside the solid/liquid phase)
or superheating (the liquid/gas is metastable inside the solid/liquid phase).

1910 praxis choosing the method largely depends on the experience of the person doing the
calculation.
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Notice in this context that integration of the Clapeyron equation (4.46) can be
used to trace out phase boundaries. For example, having obtained the location of the
gas-liquid transition via the above method at a certain 7 and P, we may use the
differences between enthalpy and density in the two boxes to obtain the slope of the
saturation line, dP/dT, at this state point. With this information we can obtain an
new state point, Ty . | and Py 1, in the direction of the slope. This state point in turn
may be used to find new values for the enthalpy and density in the two simulation
volumes, which now do not trade molecules any more. This procedure is called
Kofke integration in the literature on molecular simulation.



Chapter 7 )
Non-equilibrium Thermodynamics sk

In the preceding chapters with few exceptions we have studied systems at equi-
librium. This means that the systems do not change or evolve over time. In
Sect. 5.1.7 we have studied the likelihood of energy fluctuations. We found them to
be exceedingly small in macroscopic systems. And yet our world is full of com-
plexity and attendant order. Particularly “systems which do not change over time”
are not what we observe. Here is a quote from Feynman (2003): “How then does
thermodynamics work, if its postulates are misleading? The trick is that we always
arrange things so that we do not experiments on things as we find them, but only
after we have thrown out precisely all those situations which lead to undesirable
orderings.” Non-equilibrium thermodynamics is the part of thermodynamics where
the undesirable orderings are not thrown out.

The usefulness of the fundamental laws and their consequences, as we have
applied them, do require sufficiently distinct rates. Figure 7.1 shows the so-called
H-function obtained from a Molecular Dynamics computer simulation of 108 LJ
particles in an insulated, periodic box. The number density is p* = 0.05. At time
r* =0 the' simulation is started with the particles located on an fcc lattice.
A random initial velocity is assigned to each particle based on a uniform distri-
bution. Subsequently the function

H(t) = / dvf (V1) Inf (¥, 1) (7.1)

is obtained from the velocity distribution function f (¥, ¢). If we describe H(¢) by a
simple smooth function, it monotonously decreases—aside from short-lived fluc-
tuations. In this particular example the characteristic time for the overall decrease is

! Here * means that time is in units of /ma? /e, where m is the particle mass and ¢ and ¢ are the
parameters in the LJ-potential
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about 2 time units. The “lifetime” of the fluctuations is comparable. In a real gas the
above times are a few ps, i.e. a few 10712 s. This may vary depending on density,
initial velocities or microscopic interactions. But for ordinary gases or liquids these
so-called relaxation times are very short compared to measurements of thermody-
namic quantities. Temperature changes in the laboratory, deterioration of rubber
gaskets, corrosion of the apparatus, etc., which eventually do affect our “experi-
mental equilibrium”, happen much more slowly.

Remark Ludwig Boltzmann® showed, based in particular on the assumption of
molecular chaos (no correlations), that in the above sense

dH (1)
dt

<0. (7.2)

It turns out that —H (¢) is essentially the entropy. This inequality, his famous H-
theorem, opened the door to an understanding of the macroscopic world on the
basis of molecular dynamics (Huang 1963).

We begin our discussion of non-equilibrium phenomena by exploiting the
apparent similarity between the decay of spontaneous fluctuations and transport.

7.1 Linear Irreversible Transport

There are a number of well known equations describing irreversible transport
processes. For instance Ohm’s law

an = ;Gq#ﬁEﬂ. (73)

Here J,; is the charge current component o and Ep is the ff-component of the
electric field. The quantities o, are the components of the conductivity tensor.
Then there is Fourier’s law of thermal conductivity

, OT
Joou = _;A“[}GT,;' (7.4)

Here Jj , is the local heat flux density component o due to the f-component of a
temperature gradient. A,z are the components of the thermal conductivity tensor.
Another example is Fick’s law

2Ludwig Boltzmann, austrian physicist, *Wien 20.2.1844, tDuino 5.9.1906; fundamental con-
tributions to Statistical Mechanics. His tombstone bears the inscription § = klog W (cf. Eq. 6.16).
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aCi

= (7.5)

Jej = —D;

where D; is the diffusion coefficient of the diffusing component i and ¢; is the
concentration of i. The above transport flows are coupled. Two examples in the
linear regime are

- E -1
Jy=Ag=— AV~ 7.6
q 49T qQ T (7.6)
and
-1 E
Jr = _AQQVT +AQq?. (7 7)
More generally we may write
AJi = LiAX;. (7.8)
J

Here the quantities AX; are called generalized forces.® The prefix A reminds us
that we stay close to the equilibrium state. At thermodynamic equilibrium, we have
simultaneously for all irreversible processes AJ; = 0 and AX; = 0. In the following
we shall study the above linear relations and their coefficients in more detail.

Example—Insulation An important number for the quality of insulation
material is its A-value, i.e. the thermal conductivity. The unit of 1 is W/(mK).
Table 7.1 lists some typical numbers (see also HCP). Notice that the thermal
conductivity does depend on temperature and possibly pressure. The numbers
given here correspond to “usual” ambient conditions.

Suppose the A-value of an insulation material is 0.04 (This is rather typical
for glass or mineral wools as well as for foams, because of their high air
content.). How thick must the insulation layer be in order to maintain a
temperature of 20°C in a garden shed, using a 500 W electric heater, when the
outside temperature is 0 °C? We assume that the garden shed is a rectangular
3.5 by 4.0 by 2.2 m box and we neglect doors as well as windows. Thus the
total area to be insulated is A = 61 m?. The heat transport per unit time
through the insulation, whose thickness is d, is

do A
— = J—AT. 7.9
dt d (79)

3 For the sake of simplicity we treat the L;; as scalar quantities.
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Table 7.1 Thermal Material ) [W/(mK)]
conductivity coefficients for
. Vacuum 0

selected materials
Dry air 0.03
Wood 0.1...0.2
Snow 0.2
Water 0.6
Solid brick 0.5
Glass 1
Copper 400

With dQ/dt = 500 W the result is d =~ 10 cm. The neglect of the timber
siding and plaster is not serious. Their contribution to the walls thickness is
comparatively minor and their A-values are significantly higher than 0.04.
This is not true for windows and doors. The main weakness of these con-
struction elements is that they locally reduce the wall’s thickness and strongly
affect the thermal insulation of a building. For windows and doors, and for
multilayered walls as well, 4 usually is replaced by the more suitable U-value
given by 1/d or by its inverse called thermal resistance.

7.1.1 Fluctuations Revisited

One approach to a deeper understanding of transport phenomena and in particular
of the relations (7.8) exploits the analogy to fluctuations. The decay of a fluctuation
involves irreversible transport. Notice that there is not much difference between the
initial decrease of the H-function in Fig. 7.1 and the decay of a subsequent fluc-
tuation. Thus we briefly recapitulate our previous discussion of small fluctuations in
Sect. 5.1.

An isolated system possessing the internal energy E is divided into open sub-
systems. Its thermodynamic state is characterized by the thermodynamic quantities
xj(j =1,2,...,n). Examples for the x; are the temperature or the mass density in
one of the subsystems. The fluctuations of the x; relative to their average values are
Ax;. The probability for a particular distribution of fluctuations throughout the
collection of subsystems is*

* An explicit example in the case of energy fluctuations was worked out in Sect. 5.1.7.
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p({Ax}) = exp[(AS({Ax})/ks}) ], (7.10)
where
AS({Ax}) = Zg//Ax Axy (7.11)
and
2
8j = —MS(E,)C],...,X") X‘;“)_’X;/”). (712)
The xJ@ are the equilibrium values.
In the following
OAS
Z 8 Ay (7.13)
are generalized forces and we shall need correlation functions (Ax;AX;), i.e

J d{Ax} exp[(AS({Ax}) /ks})]
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Using partial integration the numerator may be expressed as

0
AX, A8k AS/kp
/d{Ax}Ax_,AX,e = kB/d{Ax} —anj, (Ax_,e )

=0
OAx;
- kB / d{AX} aTAxJ/ eAS/kB.
2

:(3]:,-/

The first integral vanishes, because the probability of infinite fluctuations van-
ishes, and we obtain

(AxAXy) = —kpojy (7.15)

Remark We may use this result to derive other useful correlation functions.
Inserting (7.13) into (7.15) yields

> gl AxAx;) = kgdy.
k

This shows that

(AxAx) = ks(g "), (7.16)

(g™ ;7 are the elements of the inverse of the (symmetric) matrix g.

Also of interest is the combination of this equation with (7.11) which yields
—kB “ -1 m
(AS) =—=> gir(87")y = k5 - (7.17)
i

This result is analogous to the equipartition formula for the average thermal
energy of a system with m degrees of freedom, whose Hamilton function is
quadratic in the attendant momenta and coordinates (cf. Eq. 5.92). Equation (7.17)
shows that the average entropy fluctuation in a system containing m fluctuating
quantities is contributed in increments of —kg/2 by each of these quantities.
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7.1.2 Onsager’s Reciprocity Relations

Let us assume that there are currents defined via

dAx;

— (7.18)

AJ; =

and that these currents are linearly coupled through Eq. (7.8) to the generalized
forces defined above. One can then show that the coefficients obey Onsager’s
reciprocity relations (Onsager 1931):

Ly = Ly} (7.19)
If an external magnetic field Bis applied and the system of interest rotates with a
constant angular velocity @, then the coefficients L; do depend on these quantities
and one finds

Ly (B, ®) = Ly;(—B, —&). (7.20)

We show the validity of the reciprocity relations by going backwards starting
from Eq. (7.19). Using (7.15) we have

;ijmfok) = ;LMijAXw (7.21)

or, using (7.8),
(AxyAT) = (AxATy). (7.22)
Substituting (7.18) yields

aby, By
a’' 7 ar

(Axy (7.23)

The time derivative is now expressed in terms of an explicit (infinitesimal) time
difference, i.e.

Agi40) = Ayle), _ 0 AlD) Ay ()

T T

(Ax; (1) ) (7.24)

which easily is reduced to

(Axy (1) A (1 + 7)) = (A1) Axy (1 + 7). (7.25)
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For this equation to be valid we must first shift the time origin on the right side
(t—t—1)

(A (1) Ax; (1 + 7)) = (Ax;(t — ©)Ax; (1)) (7.26)

In order for the resulting equation and therefore (7.19) to hold we must require
microreversibility, i.e. the inversion T — —t does not affect the result of the
ensemble averaging. But here we rely on the time reversibility of the microscopic
equations of motion (at least for short times). This also is the reason for the
requirements expressed in (7.20). In order for the time reversibility to hold, the
Lorentz force, which is proportional to d7/dt x E must be invariant as well as the
Coriolis force, proportional to d7/dt x @, in the case of a rotating system.
Therefore the magnetic field, B, and the angular velocity, @, appear with reversed
signs on the right side of Eq. (7.20).

Remark Based on Eq. (7.11) the entropy production’ is given by

dAS  1d dAx;
R e e A DU L N ()
i 7

Thus according to Egs. (7.13) and (7.18)

dAS
= Z AX;AJ;. (7.28)
J

The entropy production is a bilinear function of the generalized forces and the
currents. This is useful if we want to identify the correct form of the transport
coefficients L;y as we shall see in the following. Another point worth mentioning is
illustrated in Fig. 7.2. A fluctuation will drive the entropy away from its equilibrium
value. This means that

AS<0. (7.29)

Stability then requires that the entropy production is positive:

dAS
>

— . 7.30
dt 20 ( )

S We discuss entropy production in more detail in the next section.
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Fig. 7.2 Entropy change in S A
response to a fluctuation

AS

Example—Currents and Generalized Forces Here we want to learn how to
obtain specific relations according to Eq. (7.8) using Eq. (7.28). Our starting
point is the first line in the expression (3.13) for AS. In this example we
assume that all AV, are zero. Instead we include charge fluctuations Ag.
Thus we have

1 9%, %8, o , 028, |o
== AE,? Ag> == An,
2 z‘,: ( 6E OE,? v,y * 1 aqu Eyny + 8 on,? Ey.qy
%S %S o
2AE,Aq, L 2AE,Any —— 7.31
+ < aEvaqV qviity | Ey iy + " aE‘Vanv vy VEy\qy ( )
2 o
2Aq,A ).
AT, 8q\,8nv Eyny | Ey gy
Differentiating with respect to time this becomes
dAS O0AS, dAE 0AS, dAq, OAS, dAn,
Z ( + + )
0qy dt on, dt
~—— ~——
*A(I/T) =A(=¢/T) =A(—/T)
The following definitions of the currents
dAE dA dA
Ay = A, =21 py, =20 (7.32)

dr 7 dr dt
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determine, according to Eq. (7.28), the generalized forces:

AXy = A(%) - —%AT (7.33)
w=a(9) -
AX, = A(— %) (7.35)

Now we can write down the linear relations between the currents and the
generalized forces in which the coefficients satisfy the reciprocity relations

(7.19):
AJg = LggA G) +Lp,A (- %) +LE,,A(—%) (7.36)
A, = LA (%) +LygA (— %) A= (7.37)
1
AJ, = LypA <?> + LA <— ?) +L,mA(— %) (7.38)

Remark The generalized force AX,, for example, depends on a temperature dif-
ference and/or a chemical potential difference. If it is more convenient we can at this
point express AX,, in terms of a temperature and a pressure difference. Once again
we make use of du = —sdT + p~'dP, where s is the molar entropy and p is the
density, i.e.

Ay I pp—Ear =L (Car+ Lap) - £
AX, = A(%) = = A TZAT—T< sAT+pAP) AT (1.39)

Using h = Ts + p this becomes

h 1
AX, = AT — p—TAP. (7.40)
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Fig. 7.3 Thermomolecular
pressure effect

Example—Thermomolecular Pressure Effect A closed system consists of
two compartments joined by an aperture allowing the exchange of energy and
matter (cf. Fig. 7.3). The two compartments are kept at slightly different
temperatures. This situation can be described by the Egs. (7.36) and (7.38)
with A¢ = ¢ = 0. With the help of Egs. (7.33) and (7.40) we obtain

1 h 1
AJg = —Lgg — AT + Lg, | AT — —AP 7.41
E EE T + L, <T2 oT ) (7.41)

1 h 1
AJy = —Lig— AT ——AP). :
Jn = —~Lup 75 AT + Ly (T2 AT - P) (7.42)

Assuming for the moment that the temperatures in the compartments are
equal, i.e. AT =0, we deduce

Mg _ Len (5 19 Lok

B : 7.43
AJn Lnn = Lnn ( )

The second equality is based on the validity of Onsager relations for the
transport coefficients Lg, and L,g.

Now we return to the situation when AT # 0. Because the system is
closed, we expect AJ, =0 after some time. Inserting this into (7.42) the
equation yields

AP o P AJE
=T (h — AJﬂ). (7.44)

If the compartments contain dilute gas, we may obtain AJg/AJ, from
kinetic gas theory as applied in “kinetic pressure” on p. 32:

/ AzA V51l | %
AJ dN3 2L 12— my-
Ag_ [N 2PN, =2RT. (7.45)
AJn f dN AZA"F Zm

In addition & = (5/2)RT and thus

AP 1P

ar_1- (7.46)
AT 2T
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Fig. 7.4 Seebeck effect

or, via dP/P = dInP and dT/T = dInT,

P _ <ﬂ> " (7.47)

P, \T»

Example—Seebeck and Peltier Effect The Seebeck effect utilizes a tem-
perature difference to generate a potential gradient as illustrated in Fig. 7.4.
Two pieces of distinct metals, A and B (i.e. Cu/Al or Fe/Ni), are joined at 1
and 2. The junctions are exposed to different temperatures and this in turn
gives rise to a (small) voltage drop, A¢, at 3. The Seebeck coefficient

Ao
S 7.48
S AT ( )

is a material parameter.

Another experiment goes like this. Initially AT = 0 and a current, /, flows
through the same metal loop. The result is a heat current AJg such that 7, and
T begin to differ. This is the Peltier effect. The quantity

My = - (7.49)
AT—0

is called Peltier coefficient.
We can connect the two coefficients using the first two terms in Eqgs. (7.36)
and (7.37):

AT A

AJg = —Lgg T2 - LEq Td) (750)
AT A

Ay = ~Log oy = Lyg =+ (7.51)
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In the case of the Seebeck effect we have AJ, = 0 and therefore

1L,
Sap=—=——. ;
AB TL, (7.52)

In the case of the Peltier effect AT = 0 and thus

AJe _ Leg

it (7.53)

With AJ, = I and using the Onsager relation, i.e. Ly, = L,g, we obtain the
non-trivial result

—TSAB = Ilyp. (754)

7.2 Entropy Production

7.2.1 Entropy Production—Fluctuation Approach

Due to the local nature of the fluctuation approach, we did not pay much attention
to the origin of the currents. We want to be more precise in this respect. Therefore
we separate the total entropy change, dS, into two distinctly different contributions,
ie.

dS = diS+d.S (7.55)

(cf. Fig. 7.5). The quantity 4;S is the entropy change inside our system of interest
due to processes inside the system. The quantity d,S describes flow of entropy due
to the interaction of the system with the outside. Notice that the entropy change d;S
is never negative:

d;S =0 for reversible processes

d;S > 0 for irreversible processes.

Fig. 7.5 Contributions to the ds
total entropy change
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While d;S can never be negative, d,.S does not have a definite sign and can be
positive or negative.

As an example consider a closed system at constant temperature. For a reversible
process we have learned that

as =24 (7.56)
T
Now we have
0
ds =", (7.57)
T

the entropy change is the heat flow across the system boundary divided by tem-
perature. Without irreversible processes inside the system we can also write

ds = ng:(s_;], (7.58)

Including irreversible processes inside the system this becomes

Td;S = TdS — 6q(\VTdS — dE — PdV > 0. (7.59)

We can combine (7.28) with (7.30) obtaining

d;AS

=2 AXiAT;>0. (7.60)
J

Below we shall show that this relation remains valid outside the linear regime.

Here we briefly mention a consequence of this for the Onsager coefficients.
Inserting (7.8) into (7.60) yields

d;AS Z
iJ

This means that the matrix of the coefficients L;; is positive (semi-) definite, i.e.
the eigenvalues of this matrix are all larger or equal to zero. If we apply this to the
case when two currents are coupled linearly to two generalized forces, this con-
ditions implies (as one can easily work out):

Li;>0 Lp>0 L3,>Ljly (7.62)

(note that L, = Lyy).
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7.2.2 Theorem of Minimal Entropy Production

At this point it is useful to introduce the concept of steady states. Consider the
example on p. 291—a system divided into two subsystems. The subsystems can
exchange matter via for instance a membrane, capillary, or aperture (see Fig. 7.3).
Additionally the two subsystems are kept at different temperatures. Thus there are
two forces, AXg and AX,,, due to the different temperatures and chemical potentials.
Over time the system will reach a state in which the flow of matter vanishes, i.e.
AJ, = 0, whereas the transport of energy between the two subsystems continues.
Likewise a non-zero production of entropy continues also. The state variables
eventually become time independent. This non-equilibrium state is called steady
state. This type of state is different from the equilibrium state of entropy continues
also. The state variables eventually become time independent. This non-equilibrium
state is called steady state. This type of state is different from the equilibrium state
in which all forces, currents, and the entropy production vanish. Another example is
a series of coupled chemical reactions. The start compounds are continuously
supplied at a constant rate and the final products are removed likewise at a constant
rate. A steady state is reached if the concentrations of all other intermediate com-
pounds are constant. We can see that steady states require systems open to some
type of transport.

For a steady state close to equilibrium the entropy production is at a minimum
compatible with the imposed constraints. What does this mean? A steady state is
characterized by constant generalized forces AX;(j=1,...,n) and by
non-vanishing currents AJ; for some j =1,...,m and vanishing currents for the
remaining j = m+ 1, ..., n. If we take the derivative of d;AS/dt with respect to the
generalized force AX; we obtain

0 dAS 0
GBS (728),(7.5) 3 Ly AXAX; 7192§ LijAX; = 2AJ,
ONX, dr = OAX, e TEY v “

For those k for which AJ;, = 0 we therefore find

This is the theorem of minimal entropy production (Prigogine 1947, Desoer®).
With respect to the variation of AX; the entropy production is at a minimum. We
can see that this is indeed a minimum by reducing the forces AX;(k =1,...,m) to
zero, i.e. we approach the equilibrium state where d;AS/dt =0. We can now
reverse direction and conclude by reason of continuity that the entropy production
in the steady state indeed is at a minimum compatible with the imposed constraints.

6Ilya Prigogine, Nobel Prize in chemistry for his contributions to non-equilibrium thermody-
namics, 1977.
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Example—Steady State and Minimal Entropy Production We consider
the monomolecular reaction

A=X=8B (7.64)

in a system with constant volume V. There is a constant flow of A into the
system and a constant flow of B exiting the system. The entire process is in a
steady state. What does the theorem of minimal entropy production tell us,
when the process is perturbed by small fluctuations in the mass variables? We
begin by writing down the rate equations for the individual reactions (We
assume a certain familiarity with reaction kinetics on the level of Atkins
(1986):

d dEW
A=X - —;l;‘<3=70) it = kll’lA — k,lnx
di
% = klnA — k,lnx — kzl’lx —l—k,an
d dE®
X=8B %(320)% = kznx — kfan.

The k__ are rate constants, where the number refers to the reaction and the
sign indicates the forward and reverse reactions, respectively. We assume that
there is a small deviation from the steady state, i.e.

na =0+ Ang ny =0+ Any  np = n + Ang. (7.65)

The index (o) indicates steady state values. Insertion into the above rate
equations yields

k k_
—L ”,(40) 2 ng)). (7.66)
k_y 2

o)

The time dependence of the deviations from the steady state is

dAny  dAED

A=X :klAi’lA —kflAI’lX

dt dt
dA
d;lX = kiAny — (k-1 +ka)Anx +k_2Ang (7.67)
dAng  dAE®
X = "B = f = sznX = k_zAnB.

dt dt
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The temperature is assumed to be constant everywhere, and the entropy
production due to the decay of the fluctuation is contributed by products
AJ,AX, exclusively:

diAS - dAny % _ dAny % B dAng %
d ~  dt T dt T i T '

(7.68)

We emphasize that this is the entropy production due to the decay of a
small fluctuation. The entropy production associated with the steady state
reaction as such is discussed below in a separate example. The chemical
potential fluctuations Ay; (i = A, X, B) are

(7.69)

Aps = RTAT™ = RT <Ani w)
n

n((’) a n(”)
where n = ny +nx +ng and n) = nl(qo) —|—n§(0) —|—ng’). We insert this into
Eq. (7.68) and subsequently set the derivative with respect to Any equal to
€10, i.e. dany, (d;AS/dt) = 0. Even though —Auy /T is the generalized force,
we may differentiate with respect to Any instead, because of the linear
relationship between the two. After some algebra we obtain

_ kiAnyg +k_,Ang

An
X k_i + ko

(7.70)

Notice that this result of the theorem of minimal entropy production is the
same as what we obtain if we work from Eq. (7.67) requiring dAny /dt = 0.

7.2.3 A Differential Relation in the Linear Regime

We consider the differential

d:AS
dW_JZ(AXJ-dAJJ- + AJdAX; ). 1)
d;AS

=d,% =
=d;~g =dx—g

Using Eq. (7.8) together with the reciprocity relation (7.19) it follows that

dAS diAS

d d
Xar ar

(7.72)
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and

d;AS 1 d;AS
U it 7.73
dx dt 2d dt ( )

Remark There exists a general relation, the so called evolution criterion,7 valid
also beyond the linear regime, dx % <0. If we apply this to (7.73) we conclude that

2
dﬁs <o. (7.74)

In accord with the theorem of minimal entropy production we see that the

entropy production (following a perturbation) continuously decreases reaching a
minimum in the steady state.

7.2.4 Entropy Production—Balance Equation Approach

Here we follow Glansdorff and Prigogine (1971). Our goal is the calculation of
entropy production beyond the linear regime.

7.2.5 General Form of a Balance Equation

We wish to follow the time evolution of the scalar quantity

1) = /V pllldv. (7.75)

V is a certain volume at rest, and p[I] is the local density of I inside this volume.
The change of I per unit of time is given by

-

9 3
1) = /V oll]dV + /d Jind (7.76)

The first term is a source term corresponding to the production or elimination of
I inside V. The second term describes the change of I due to flow across the surface

of V, i.e. f[I] is a current density and dA: pointing towards the inside of V, is a

7 Which we discuss in more detail below.
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surface element. Using Green’s theorem we may also write the balance equation in
differential form

9 plt) = o) - .l (2.77)

The minus sign results from the orientation of the area element. Because it is
useful, we have introduced the shorthand notation V -j[I] = Z;Zl djy
/dxy = Oyjy[I). If I is a conserved quantity, then ¢[I] = 0 and (7.77) is the usual
continuity equation.

In particular we may write

%: /V olSldv, (7.78)

where o[S] is the entropy production per unit time and volume, and

d,S
= o |S]dA,. .
o= | s (7.79)

Because the macroscopic integration volume (system volume) in Eq. (7.78) is
arbitrary, we conclude that

alS] > 0. (7.80)
Our goal is it to derive o[S] expressed in terms of generalized forces and

attendant currents, without necessarily being close to equilibrium. Before we can do
this, however, we must go through a list of ingredients.

7.2.6 A Useful Formula

First we derive a useful formula. The total derivative of the function ¢(7,¢) with
respect to time is

d 0 o
G000 = (51 0.0, ) o170, 781
where V = d7(t) /dt. Multiplication with the density of I, p[I](7,t), yields
d 0 0
— ———

=0
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where a “zero” in the form of the continuity equation has been added—provided
that o[I] = O for this 1. Using 0,(apy) = (ps0y)a + a(0,py) the equation assumes
its final form

)5 6 = 5 (6l116) + 0l (7.83)

7.2.7 Mass Balance

In the case of mass we can write down the source term quite easily (cf. Eq. 3.70):

1=y d_él 7.84
olm] = vim; o ( )

Here m; is the molar mass of component i in a reaction and d & /dt is the reaction
rate in moles per unit time and unit volume (indicated by the prime). By convention
v; <0 for reactants and v; > 0 for products. If there are several coupled reactions
taking place, then the attendant generalization is

o od /(r)
o) = 3 m T (7.85)

where d¢'"”) /dt is the reaction rate in the r-th reaction. The mass current associated
with component i is

-

Jlm] = plmiv; = plm)(A; + ). (7.86)

Here &i =V; — V is the velocity of component i relative to the center of mass
velocity v =Y, p[m;]vi/ >, plm;] taken over all components. The resulting mass
balance equation is

9 : df/(r)
5p[m,<] = Z vE 'm i L[] (Ai g 4 vy). (7.87)
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7.2.8 Internal Energy Balance

Due to conservation of the overall energy we have
o[E]+g]K] +¢[U] = 0, (7.88)

where o[E] is the internal energy source per unit volume in V, ¢[K] is the
macroscopic kinetic energy source of the same unit volume, and ¢[U] is the
potential energy source due to external forces. We obtain ¢[K] via the equation of
motion for the mass density p[m] in a continuous medium:

)% = g, — Oy, (1.89)

Here g, is the respective component of an external force (per unit mass) acting
on the volume element. The second term on the right is the same force density
component due to internal forces, where the stress tensor introduced in Eq. (1.3) is
replaced by its negative—the pressure tensor. Multiplication with v, (including
summation over o) and application of Eq. (7.83) yields

01 1
55 [m]VZ = p[m]vocgoc +po</f8/z’vx _8oc (E p[m]vzva + Vﬁpﬁa) . (790)
=0[K]
An analogous equation for the potential energy follows via dU = —dr,g,, i.e.

the force g is the negative gradient of U, and dU /dt = —v,g,. Multiplication of this
equation by p[m] and subsequent application of (7.83) yields

%p[m}U = *P[m]vocgac 78a(p[m]v‘1U)' (791)
=a|U]

If there is more than one component we can write for the source of component i:
olU] = — Z plmilvisgis- (7.92)
i

The flow of internal energy is

JulE] = plE, + T, (7.93)
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The first term on the right is convection, whereas the second is heat flow.

Combination of these results yields the following balance equation for the internal
energy

0

ap[E] = Z p[mi]Aiagi,az _pxﬁaﬂvo: - aot (p[E]Voz +JQ,0(>~ (794)

7.2.9 Affinity

One more ingredient is the affinity. We consider a process consisting of » coupled
chemical reactions. It is then useful to rewrite Sk | w:dn; as follows

S e = 3 e =~ AU
i i j r r
(the index j indicates the components in a particular reaction), where

r) __ (r)
A == " (7.96)
J

defines the affinity. Notice that a non-vanishing affinity means that the system is not
at equilibrium.

7.2.10 Entropy Balance Equation

The last ingredient is the assumption of local equilibrium even if the system as a
whole is not at equilibrium. We can always express the extensive quantities in the
form of local densities. Examples are

m:/vp[m]dV (7.97)

£~ [ plmleav (ple] = pinle (7.98)

G:/Vp[m]z%uidV (7.99)
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S = / plm]sdVv. (7.100)
1%
Notice that
o omi (7.101)
om

is a mass fraction (3_; N; = 1) and
plm;] = p[m|N;. (7.102)

Local equilibrium means that the entropy per unit mass inside a small volume
element, s, is the same function of the local macroscopic variables as in a situation
of global equilibrium. Consequently, the equations from equilibrium thermody-
namics remain applicable on the local scale.

Using the above local quantities we write (cf. Eq. 1.51)

ds _lde  Pd 1~ pdNi/m) 7103
di Tdt  Tdipm] “~T dr (7.103)

We multiply this equation with p[m]. Term by term application of Eq. (7.83),
together with the indicated previous results, yields

plm] % :% (p[m]s) + 0, (p[m]vys)
_‘D[m] de . i Pap 1
T E (7=94) ZI: p[mi]Ai.a T — T 8/31)3( — TanQ’“
P d 1 Py
— B — 6 o
TP Gl =T O
fa/mi dN; (7.87),(7.95),(7.99) A gg") 1/ mi
- Vi (7.87),(7.95),(7. A+’ 5 1AL,
zi: r = 2,: T dt +§i: T OdplmilAiz)

In collecting the right sides together according to (7.103) we also make use of

1 Jou 1

7 Uud Qo = Uy . - ocaot =

7 Joa =0 ( T ) T (T)
and

Z fi/m Oy (p[milAi ) = 0O, pr[mimi.a - Zp[mi]Ai,aaa s/ m .
— T — T - T
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Ta(})l(; 7.2 C(lilrrents, forlfes, Current J Force X Transport
and the attendant type o
transport P plmilA;, 8in/T — Oy(u;/m;T) Matter
Pop — Poup —0gvy /T Momentum
Jou 0,T! Heat
aé" Jdr AT Chemical reaction
Because
. 0 ds
o1S) = Dufa 5107010 plls T Splm) T~ O, (plmlvis),  (7:104)

we can collect the appropriate terms from the above non-numbered equations, i.e.

ols) =3 plmi (gT _o, M/Tm>

Daus — Pdys 1 e A (7103
— faﬁ\@ +JQ.aay, <?> + Z dt T
and
. Jo, M/
juls) =722 - Z/Tp[mi]A,,a + plm]vas. (7.106)
We notice that the entropy production has the bilinear form,
la[S] = >, JX; > 0}, (7.107)

encountered before using the fluctuation approach (cf. Eq. 7.28). Table 7.2 lists
currents, forces, and the type of transport (cf. Eqs. 7.32-7.35).

Notice that Eq. (7.107) also holds beyond the linear regime, provided that the
local entropy assumptions is valid. Notice also that it is possible to use different sets
of generalized currents, ij, and generalized forces, Xj’ However, this should not
change the entropy production (for details see again §3 in Glansdorff and Prigogine
1971)).

Example—Steady State Entropy Production in a Mono Molecular
Reaction We return to our previous example of entropy production in a
chemical system undergoing the monomolecular reaction

A=X=B. (7.108)
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Fig. 7.6 A monomolecular
steady state reaction

Figure 7.6 shows a cartoon of the system. A is supplied to the system,
whereas B is leaving the system. In this example we calculate the steady state
entropy production itself—not just the entropy production due to the decay of
a fluctuation deviation from the steady state.

First we want to compute the internal entropy production d;S/dt using Egs.
(7.78) and (7.105). There are no external forces, the interior of the system is
homogeneous in the concentrations as well as temperature, and viscosity
effects (off diagonal elements of the pressure tensor) are negligible. This
means that only the last two terms in Eq. (7.105) must be included in the
calculation. We begin with the activities for the two reactions:

aéV  _dng)V
A=Xx A=y, - ngl),“x dr % Zt/
dé®  _dng/V
X=B A®=—Puy—vppy da vg' Zt/ '
Thus
diS 1 1 1) — dnA/V
L dV = ( O =) —= ( 1
B [ otsav = [ (d0:0.(3) = la + i) 24
1 2) _ d}’lB/V
—f(";)"glﬂx+#3)7)dv~

with  v=-1, W= =1, =1 dung/V)/dt=
—d(na/V)/dt > 0 this becomes

E e (7.109)
dt T dt T dt

The heat flow term has vanished because (by definition) there is no tem-
perature gradient in V.

Now we compute the flow of entropy due to the interaction of the system
with the outside using Egs. (7.79) and (7.106), i.e.
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d.S . Joo  Ma Up
= «|S1dA, = ( == - = O()dA.
dt /avj 5] /8V T r pAmalvas r plmslvs, !

Here we have assumed that there is no center of mass motion and no
motion of X across the surface of V. Now we use (p[mal/ma)va.dA, =
ona/(Ads)(0s/6t)dA = (—dna/dt)dA/A and (p[mg]/mg)vdA, = —Ong/
(A0s)(0s/0t)dA = —(dng/dt)dAJA. The quantities Ong/(Ads) and
ong/(Ads) are the molar amounts of A and B in a thin surface shell divided by
the volume of this shell. Our final result is

S _ padna | s dng

= . (7.110)
dt T dt T dt

Once again does the assumed uniformity conditions permit no net heat
flow across the boundary of the volume and we find
dS 4
a  ar’

(7.111)

which means dS/dt = d;S/dt+d,S/dt = 0. This is correct, because under
steady state conditions there is no overall entropy change inside the system.
But notice that still d;S/dt > 0 and therefore d,S/dr <0. The positive entropy
production of the non equilibrium state inside the system is maintained by a
flow of negative entropy into the system.

7.2.11 Evolution Criterion

Using the balance equation approach in conjunction with the local equilibrium
assumption its is possible to show

dx d;S dX;
—— = J—Ldv <0
dt dt /sz: J dt =Y (7112)

where = applies in the steady state (Chapter 9 in Glansdorff and Prigogine (1971))
This is the evolution criterion mentioned earlier (cf. 7.74). The evolution criterion is
the most general relation of non-equilibrium thermodynamics. Therefore it is
tempting to define the kinetic potential
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d;S
d® = Tdy——. 7.113
o (7.113)

However, while it is possible to find a suitable integrating factor in some cases,
d® in general is not an exact differential.

7.3 Complexity in Chemical Reactions

This section discusses entropy production in a specific context. Owing to the
complexity of the matter we shall focus on processes describable entirely in terms
of the last line in Table 7.2. This certainly is crude, because chemical reactions
always involve other types of currents and forces as well.

Consider the reaction

X+Y=C+D. (7.114)

Momentarily we are interested in the process far from equilibrium and we
neglect the reverse reaction. Suppose that the reaction rate is given by

dé
d—;zklnxny, (7115)

where k; is a rate constant. For the affinity we have

A = RTIn X"

+ const. (7.116)
nchp

A fluctuation of the amount of X thus gives rise to the entropy production

d,'S ny 2
—x— (A 0 7.117
i (A’ > (7.117)

—in accord with thermodynamic stability. However, if instead we repeat this cal-
culation for the autocatalytic reaction

X+7Y = 2X, (7.118)

using again (7.115), the entropy production becomes
2 & —— (Any)? <0. (7.119)

It looks as if in this case there is the danger of an unstable process. We shall see
that things return to normal, i.e. stability, when we analyze this more carefully.
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However, what is important to remember is that autocatalytic reactions are special
and, as it turns out, are a key ingredient to the explanation of the creation of order
not possible in systems remaining close to equilibrium.®

7.3.1 Bray Reaction

The following system of coupled reactions,” which has a realistic origin (Ebeling
and Feistel 1986), here serves to illustrate a number of important aspects of
non-linearity and autocatalysis. Most important, perhaps, is the possibility of
bifurcation providing systems with the choice between different steady states. This
in principle offers the possibility for competing alternative pathways along which
chemical systems can evolve and (sometimes) compete along the way.

Our reaction schema is this:

X+Y=2X

2X4+Y =3X
X=F (7.120)
B—Y
F — B.

The time dependence of the respective mole fractions'® shall be the following

2 2 3
—nx = kinxny — k_nx” + kanx“ny — k_ony” — kany +k_snp

dt
i — _ 2 2 3
p ny = —kinxny +k_iny kony“ny +k_onyx” + kang
! (7.121)
EHF = k3nX — k,3l/lF — k5nF
4y = kanp +k
dtnB = 4Np SHE.

Just as a reminder: (i) the k’s are rate constants; (ii) negative indices indicate
reverse reactions; (iii) a term like nyny assumes that ny reacts with ny in a
two-molecule collision; (iv) in general, the powers indicate the number of

8 A particular importance of autocatalytic reactions is their key role in models of prebiotic evo-
lution—an idea that was developed quite a long time ago (Allen 1957). We return to this aspect in
the next section.

° This is an early representative of the coupled reactions schemes discussed in the context of
chemical oscillations. Perhaps the most famous experimental representative is the
Belousov-Zhabotinsky reaction.

1
0 We assume constant volume.
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molecules of this type involved in the respective reaction; (vi) minus signs mean
that this reaction reduces the mole fraction on the left side of the equation.

Example—Simple Reaction Kinetics We solve the following special case of
(7.121): ny = ny(0) = const, B = const, ky = k_» = k_3 = 0. Insertion into
(7.121) yields

d

Enx = (kﬂ’ly(()) — k3)}’lX — k,1HX2

i d (7.122)

a't T T a™

Integration of the first equation yields the solution
nx(f) = (kiny (0) — k3)nx (0)
k,lnx(O) = [k,ﬂ’lx(O) = klny(O) aF k3} CXp[(—kll’ly(O) = k3)l]

(7.123)

Depending on whether ny(0) <ny ¢ = k3/ky or ny(0) > ny . there are
two steady state solutions nx(co) =0 or ny(co) = (kiny(0) — k3)/k—_; if
nx(0) > 0 If nx(0) = 0 the only solution is nx(z) = 0 (cf. Fig. 7.7). The
existence of the two steady state solutions actually follows immediately by
setting the right side of Eq. (7.122) equal to zero. However, the system’s
choice which of the two solutions it prefers, i.e. the stable solution, depends
on the parameter ny(0)/ny cir.

Fig. 7.7 Two solutions of ny(t)
Eq. (7.122) 0.10

0.08

0.06 -

0.04

0.02 +

0 100 200 300 400 500
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Example—Entropy Production We briefly reconsider the potential stability
problem expressed in (7.119), i.e. we study the first line in the reaction
scheme (7.120) by itself (cf. 7.118) with ny = ny(0) = const. The reaction
rate is given by

di(1)

= kinx()ny (0) — koin (1) (7.124)

In comparison to (7.115) we now include the reverse reaction. The activity
is
nx (t)ny(0)
n (1)
The entropy production due to a small fluctuation Any = Anx(t) is given
by

A(t) =RTIn + const. (7.125)

d;AS  dAZAA Any
& @t T e (1) (kiny(0)Any — 2k_1nx(t)Any)
©) (7.126)
ny 5
( e nx<r>> X

Using ny(z) =~ ny(oco) and subsequent insertion of the (non-zero) steady
state solution d¢/dt = 0, i.e. nx(c0) = (k; /k_1)ny(0) yields

diA
Y Rk;An% > 0. (7.127)

We may include a check of the evolution criterion (7.112) for the present
reaction, 1.e.
dyd;iS  1dé(r)dA

=2 (7.128)
dt dt T dt dt

We assume uniformity throughout the volume and thus omit the integra-
tion. The result is

dy d;S 1 dl’lx(l) 2
2 —_R <0. 7.129
dt dr nx (1) ( dt 0 ( )
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7.3.2 Logistic Map

Here we return to the above example simple reaction kinetics, because we want to
discuss the “stability issue” from another angle introducing the logistic-map:

X1 = drxe(1 — xp). (7.130)

If we identify the index k=0,1,2,... with time ¢ ie. x(k+1)-—
x(k) ~ dnx(t) /dt (reasonable as long as x(k + 1) ~ x(k)), we can express (7.122) by
(7.130) if in addition 4r = kiny(0) — ks + 1 = k_;.

The mapping (7.130) may be iterated graphically as shown in Fig. 7.8 (left:
r = 0.1; right: r = 0.6). Starting from x, = 0.1 (open circles) the value of x; is
calculated (first arrow); the subsequent horizontal arrow is to (x,x;); the following
vertical arrow yields x,; and so on. For » = 0.1 the mapping converges towards
Xo = 0, while for = 0.6 it converges on x,, = 0.583333. The two so called fixed
points are indicated by the solid circles. Apparently x = O ceases to be a stable fixed
point when the slope of 4rx(1 — x) at the origin is greater than one, which happens
when r > r.; = 1/4. Notice that r.; corresponds to ny ;! Figure 7.9 is a sketch
illustrating the similarity between (7.122) and (7.130).

But there is more to discover here. Increasing the parameter r to 0.8 leads to the
graph shown in Fig. 7.10. The final result is not one stable fixed point. The iteration
yields a stable 2-cycle, i.e. asymptotically the mapping alternates between the two

0.10; , 0.6

0.08 | / 0.5¢
X 4 4rx(1-x)
0.061 , 04¢

03¢}
02}
01t/}”

s D s . 00 D . . s ‘ ‘
0.05 0.10 0.15 0.20 0.2 0.4 0.6 0.8 1.0

Fig. 7.8 Iterations of the logistic map

Fig. 7.9 A sketch illustrating Xoos I’lx(OO)
the similarity between (7.122)
and (7.130)

I'/rcrita ny/ny,crit
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Fig. 7.11 A closer analysis of Fig. 7.10

solid circles. The reason why this happens is illustrated in the Fig. 7.11. The solid
line is the square11 of (7.130), i.e.

X2 = dr(dr 1 — xe]) (1 — drag[1 — x¢]). (7.131)

The right side again is symmetric around 1/2, but now there is a local minimum
also at 1/2. The left panel is obtained for this new mapping if r = 0.7, whereas the
right panel is obtained when r = 0.8. Again it is the change of slope relative to the
dotted line which makes the difference. This time however it is the slope at 1/2 and
not at the origin.

A particular interesting aspect of the right panel is that a “perturbation” of a
“system” at the right attractive point (old steady state), i.e. a perturbative shift of x,
to a value below the central intercept with the dashed line, will cause the “system”
to approach the lower fixed point (new steady state) rather than returning to its
original fixed point. Analogously an opposite perturbation across the central

"'We use the square because each particular fixed point is visited every second iteration.
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Fig. 7.12 Asymptotic x-values and stability analysis of the logistic map versus r

intercept will cause a transition to the upper fixed point. This of course is the reason
why the stable 2-cycle emerges. Every iteration throws us to the opposite side of the
intersection of the dotted with the solid line. On its respective side the governing
fixed point attracts and continues to do so until the iteration produces the two fixed
point values only.

Note in this context that the “transition” in Fig. 7.9 is similar to what happens
upon cooling of a ferro-magnetic material below the Curie temperature 7., i.e.
increasing r means cooling. Above T, there is only one stable state with zero
magnetization. Below 7, the magnet is offered two stable states, whereas the
zero-magnetization state becomes unstable. Fluctuations near 7, decide which
magnetization direction is chosen. This is called spontaneous symmetry breaking
(cf. the first example in Sect. 5.1 (model magnet)).

Finally, Fig. 7.12 is a demonstration of how complex the seemingly simple
mapping (7.130) really is. The right graph shows the asymptotic x-values (and
cycles) over a wide r-range. Notice that r,; is outside the displayed range. Close to
0.75 occurs the bifurcation we have discussed. The bifurcation continues to repeat
itself along the new branches until this becomes difficult to resolve. We do not want
to discuss this graph further'? and refer the interested reader to the original work by
Feigenbaum (1983) or to Kadanoff (1993)," and particularly to the basic text by
Gould and Tobochnik (1996). We also postpone the discussion of the right panel in
Fig. 7.12 to p. 316 after the discussion of linear stability analysis.

What one should bear in mind, however, is that higher order non-linearity in
chemical reactions, just as in the simplified example of the logistic map, may lead to
bifurcations distinguishing chemical pathways involving different steady states.

'2 Not visible at this resolution are the self-similar copies of the original graph inside the “white
gaps”.

'3 Notice that this is the intercept of two lines of research. One objective is the understanding of the
transition from order to chaos, whereas another group of researchers, Prigogine et al., peruse the
opposite direction.
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Fig. 7.13 Oscillating 1.0
chemical reaction ny (1)
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7.3.3 Chemical Clocks

Let us select another special variant of the above Bray reaction. We choose
B = const., k_y = k_» = k_3 = 0. The system of rate equations (7.121) with this
choice becomes

d

El’lx = klnxny +k21’lx2ny — k3nx

d

Eny = 7k1nxny — kznxzny +k4}’lB (7132)
d

anp = k3l’lx — k4n3.

Figure 7.13 shows a portion of the time evolution of ny(r) and n, (). We do not
include ng(t), because it is not affecting the coupling between nx (f) and ny(¢). The
initial values are close to the steady state solutions ny(oo) = kunp/k; and
ny(oco) = kg/(kllq + kokang). Here k4 =05, kp =1, k3 =09, k4 =1, and
ng = 0.3. Thus nx(0) ~ 0.333 and ny(0) ~ 1.0125. This variant of the Bray
reaction yields chemical oscillations.

The science of chemical oscillation is a wide field. The oscillations may be
oscillations in time, as in our example, or spatial oscillations."* The description of
real oscillation phenomena also requires to include diffusive or convective flows.
A rather detailed discussion of oscillation phenomena in the context of
non-equilibrium thermodynamics is given in Nicolis and Progogine (1977).

4 Molecular pattern formation due to gradient induced gene transcription is part of the early
(Drosophila) embryo development (Niisslein-Volhard 2006).
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7.3.4 Linear Stability Analysis

We can solve the coupled system of the Bray reaction or similar coupled first-order
differential equations on a computer quite easily. However, the answer is likely to
be confusing, because we obtain a variation of distinct looking results depending on
the rate constants or other conditions we impose on the system—why for instance
do we choose k; =0.5, k, =1, k3 =0.9, ky, = 1, and ng = 0.3 in the above
example?

A simple tool allowing a classification of our numerical solutions is the fol-
lowing. We consider a system of n coupled reactions described via

d
Eni:T,-(nl,...,n,,). (7.133)
Notice that T;(ni,...,n,) is an in general non-linear function of the n;.
A particular steady state solution of (7.133) is denoted (n(lo), .. .,n,@),15 ie.
0="T,(n\”,... 1) (7.134)

We now insert n; = ”50) + oOn; into (7.133) and expand the right side around the

steady state solution (n\”, ..., n") to linear order in the perturbations dn;:
d z 6T, o
Or in matrix form:
d . -
—on = Adn (7.136)

dt

with A = OT;/0n;|°. Suppose the transformation SAS~! diagonalizes A and
therefore (7.136) becomes

d n
o= > didyon,. (7.137)
J=1

Here 6; = 1 if i = and zero otherwise and d7' = So7i. The now decoupled
linear system (7.137) has the solution

oni(t) ~ exp|Ai]. (7.138)

'> There may be more than one steady state.
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Fig. 7.14 Stability analysis ny (1)
pertaining to the system in 11
Fig. 7.13
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We see that the steady state solution (ngo), . .,n,so)) is completely stable (un-

stable) with respect to the small perturbations if all eigenvalues 4; of A are real and
negative (positive).

In the case of Fig. 7.13 the two eigenvalues are 4; = 0.0411 — ; 0.49831 and
4> = 0.0308333 — § 0.37373. Both eigenvalues posses positive real parts, i.e. the
steady state close to which the trajectory is started is not stable. The imaginary parts
give rise to the oscillatory behavior. Figure 7.14 illustrates how the solution spirals
away from its starting point. We can use this type of analysis to find other types of
trajectories depending on our choice of parameter values.

A similar type of analysis also explains the right panel in Fig. 7.12. Let us start
the iteration of the logistic map from two x-values separated by the small distance
|0xp|.  What happens to this distance after i iterations? Using
dxy +1/dx, = 4r(1 — 2x,), we can work out the answer as follows:

|0x;| = [4r(1 — 2x;-1)|[0xi—1]
= |4r(1 — 2)(,',1)”47’(1 — 2x,-,2)||5x,<,2|

i—1

= [ 14r(1 = 2x)l16x0|

n=0

Assuming |0x;| = |oxg| exp[(i — 1)A] for large i, we may compute A via
2 =1im; .o i " In 3204 |4r(1 — 2x,)|. Figure 7.12 shows 4 = A(r). Negative val-
ues mean that the iteration approaches a stable fix point or limit cycle. Positive
values mean that a small perturbation grows exponentially. We notice that the
bifurcations are associated with A = 0. 1 is called Lyapunov-exponent.
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7.4 Remarks on Evolution

If we think about evolution, what we usually have in mind are animal and plant
populations adapting to changing environmental condition. The principle is
seemingly easy to understand. Reproduction produces a new generation of indi-
viduals, who either by combination of their parents genetic information or by
mutation develop an advantage over other individuals of their generation. This
advantage acts as advantage due to changing environmental conditions and leads to
an enhanced reproduction, perhaps because of a better chance for survival.'®

Because evolution is the cause for the complexity thermodynamics is seemingly
opposing (cf. the Feynman quote in the introduction to this chapter), it is interesting
to trace evolution back to the beginnings of live itself and beyond. But the further
one proceeds into the past, the more difficult it becomes to find the traces.
Nevertheless, the question arises at what stage in our planet’s development did
evolution start? Even before “life” came into existence, there must have been a
chemical evolution and chemical reactions can be described by thermodynamics.

Researchers have attempted to recreate the early chemical steps towards the
development of life on the young earth in their laboratories, starting with the
experiments of Stanley Miller and Harold Urey in 1953 extending ideas of A.
L. Oparin and J. B. S. Haldane (Oparin 1964; Haldane 1990). The earth is an open
system, and we have seen that there is an enormous flow of energy into this system
primarily from the sun (Ebeling and Feistel 1986). Life and its development is
possible in a thin shell on the surface of the earth. There also is heat and matter
flowing into this shell from below. In addition the earth is hit by cosmic radiation
and matter. Thus there is sufficient negative entropy production to allow ordering
without causing a conflict with the second law. But the question still remains: at
what point did “evolution” begin to drive things towards the development of
“unlikely order?” Or is there the need for additional laws of nature—like an evo-
lution law? This does not appear to be the case, even though it is probably fair to
say that the very early evolution is still a matter of intense research at this time (e.g.,
Nowak and Ohtsuki 2008).

One may speculate that prebiotic evolution corresponds essentially to a sequence
of instabilities bringing about increasing complexity (Nicolis and Progogine 1977).
Significant insight along this line is due to M. Eigen'’ and coworkers (Eigen and
Winkler 1993; Eigen 1996; Eigen et al. 1981; Eigen 1993). Eigen and coworkers
have studied the autocatalytic synthesis or replication of RNA strands in a test tube.
Their experiments were guided by the idea that the primeval broth constituted a
suitable medium for Darwin’s evolution acting on self-replicating molecular

16 The principle may even be applied to the optimization of technical systems or material prop-
erties. So called genetic algorithms consist of a set of operators simulating reproduction, combi-
nation, and mutation applied to linear parameter sets defining the technical system (e.g. Goldberg
1989).

'7 Eigen 1967; he is perhaps better known for his work on prebiotic evolution.
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species, i.e. RNA strands representing different nucleotide sequences. Strands with
different sequences compete for the supply of monomers. Two key ingredients of
the concept they develop for the RNA evolution are the quasispecies and the
hypercycle. The former is the long-time result of the coupled reactions

d}’li —
o = (ki = k)ni + > k. (7.139)
J#)

Here n; is the amount of sequences of type i. k; is the rate corresponding to a
perfect replication of i. k; (i #j) is the rate corresponding to a replication of j
leading to the sequence i via sequence errors during replications. The quantity & is a
mean excess productivity. The excess productivity of i is the difference between the
rate of formation and the rate of decomposition of sequence i. This is adding the
element of selective competition, because an increase of the mean excess produc-
tivity exerts a selective pressure on the individual sequence types.'® The steady
state solution consists of a core sequence m in constant competition with its own
mutations. This distribution of sequences is called quasispecies.

However, the amount of information which can be stored by a quasispecies is
limited. The longer the sequences becomes, the larger becomes the number of
sequence errors during replication. Mathematically this summarized in the fol-
lowing criterion:

'Y= 1. (7.140)

In this relation g; is the (average) probability that a particular monomer in the
replicated sequence is the correct one. The probability of a perfect replication of a
sequence of length N; therefore is Z]ﬁv". This number by itself is less than unity and
therefore there must be another factor, );, outweighing replication errors. ); is a
measure for the competitive advantage of sequence i. According to (7.140) the
maximum possible length of a sequence satisfying this criterion is

1 .
Ni.max ~ ny,l
' 1 —g

(7.141)

(using Ing; = 1 — g; or g; = 1). This leads to the above conclusion that a quasis-
pecies by itself can maintain only a very limited amount of information."® This
information problem is improved via the hypercycle concept.

'8 The principle is analogous to a high jump competition. If a jumper clears the bar, the others must
also clear this height in order to remain in the competition.
' The logarithm in the numerator does ensure that the latter will not be large. In addition,

replication without additional mechanisms enhancing its precision limits the approach of 1 — g;
towards zero.
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Fig. 7.15 Hypothetical quasi-
dynamic flow in a species 3
three-quasispecies-hypercycle

quasi- quasi-
species 1 species 2

A hypercycle describes the autocatalytic coupling of a number of quasispecies.
The requirements for the formation of a hypercycle are: (i) every quasispecies by
itself must be stable; (ii) the quasispecies must tolerate each other; (iii) there must
be however some kind of feed-back coupling between the sequences. Figure 7.15 is
an illustration of a hypothetical dynamic flow due to condition (iii) in a
three-quasispecies-hypercycle towards a fixed point (this triangular diagram is
analogous to the ternary phase diagram in Fig. 4.28). The types of flows possible
are similar to the dynamical flows discussed in the context of linear stability
analysis. The type of coupling between the quasispecies populations is circular. One
type of macromolecule catalyses the next and so forth leading to a closed loop—a
hypercycle. Notice that autocatalysis enters as one necessary ingredient! In prin-
ciple there are different types of circular couplings giving rise to competing
hypercycles. Eigen and coworkers as well as others have analyzed the dynamics of
hypercycles extensively on the basis of computer experiments combined with
experimental observations on model systems. But the hypercycle is a qualitative
concept and does not make concrete predictions. The hypercycle model also has
been criticized because of stability problems (e.g., Dyson 1985). In his book Dyson
constructs his own model of prebiotic evolution. His is a theoretical model based on
polypeptides—an alternative to the polynucleotide based chemical evolution. It is
not possible to discuss details here. However, it is interesting to mention that the
main feature of the model is the possibility for switching between steady states
(spontaneous symmetry breaking) akin to the mechanism depicted in Fig. 7.11.

Example—Hypercycle Game This example illustrates the idea of the
hypercycle in the form a game or algorithm (taken from Eigen and Winkler
(1993)). In this algorithm the reacting four quasispecies are represented by
tiles of identical color. The quasi species are linked via the following circular
sequential ordering of tile colors: blue — green — orange — red — blue.
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Algorithm: (i) randomly distribute tiles of the four different colors on a periodic
lattice; (ii) pick one tile at random (its color is “c”); (iii) if this tile has a common
edge with at least one other tile of the preceding color in the sequence, then turn the
color of another randomly chosen tile into “c”; (iii) goto (ii).

Figure 7.16 shows two 40 x 40 lattices (left: initial random distribution; right:
particular distribution after 2 - 10° iteration steps of 2-10° total). The label
“changes” stands for the number of actual tile replacements. Notice that the above
algorithm produces pronounced oscillations. Notice also the pairing of next-nearest
neighbors in the color sequence, e.g. when there is much blue there also is little
orange. Clearly, this is just a game, but it provides a feeling for the type of auto-
catalytic coupling we have been talking about and its consequences. It is worth
noting that other sets of local rules can be invented giving rise to spatial structuring
(cf. cellular automata).

800 |
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Fig. 7.16 Results of the hypercycle game
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Experimental information on the early evolution and the beginning of live is
extremely difficult to obtain; only the arrival of microbial genomics has allowed to
reliably retrace subsequent developments. The earth was formed about 4.5 - 10°
years ago. The earliest traces of primitive cells occurred possibly as early as 3.5 - 10°
years ago (Schopf 2006). Nevertheless, this leaves several hundred million years for
the actual chemical evolution. The evolution of cells (Woese 2002), however, has
taken the major portion of the remaining time. The step from microorganisms
(bacteria) to higher live forms occurred much later—less than 1-10° years ago.
Even tough the very early steps towards cellular live are still in the dark, it is very
likely that autocatalytic reactions in conjunction with steady state bifurcations, of
which we have described the principles, did play a key role in the formation and
maintenance of dissipative structures of increasing complexity.””

“Evolution is comparable to a soap box race. Entropy is the hill. Without the hill
there is no race and thus no distinction between good or badly designed cars.
Thermodynamics on the other hand describes the rules of the race.”

A Final Remark—Mortality Due to Accumulation of Irreversible Defects In this
final remark we briefly introduce the concept of percolation. There exists an
interesting connection between homogeneity, criticality, scaling exponents, and
non-linear mappings (logistic-map), all items we have talked about, and percola-
tion. The connection is self-similarity or scale-invarianceAn Introduction to
Computer Simulation Methods. Addison-Wesley. Here we use percolation as a
model for a particular interaction between irreversible defects leading to the death
of an organism.

We assume a population of organisms. Each organism is represented by a lattice
of L x L tiles. Initially all tiles are white. Every organism may acquire irreversible
defects, indicated by changing the color of a tile from white to black. An organism
dies if the irreversible defects connect in a certain way, i.e. if they form a perco-
lating cluster. Two adjacent tiles belong to the same cluster only if they have one
common edge. Figure 7.17 shows an organism with 25 irreversible defects and 4
clusters. A cluster is a percolating cluster if it has at least one tile on the bottom and
one tile on the top row of the lattice.

The attendant algorithm consists of the following steps: (i) generate a large
number of blank lattices of size L x L; (ii) with probability p every tile in every
organism is changed from white to black; (iii) determine the number of surviving
organisms, i.e. the number of lattices without percolating cluster(s); (iv) increase p
and goto (i).

This is related to real live expectancy data as follows. We assume a constant
average defect rate of n irreversible defects per year. Then z = ny is the average

20 Equilibrium structures—are formed and maintained through reversible transformations implying
no appreciable deviations from equilibrium; dissipative structures—are formed and maintained
through the effect of exchange of energy and matter in non-equilibrium conditions.
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organism

Fig. 7.17 Lattice representation of an organism

number of defects per organism after y years. We convert this into the above
probability p via

_pre
-

(7.142)

The quantities n and L are parameters. Figure 7.18 shows a fit to experimental
data showing the current survival probability in Germany (solid line; source: http://

survival probability

Fig. 7.18 Survival probability of the lattice organism and experimental data


http://www.uni-giessen.de/gi38/nublica/pharma/homepage.html
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www.uni-giessen.de/gi38/nublica/pharma/homepage.html) using n = 4.5, i.e. 1 de-
fect every three months, and L = 25. Notice that the two initial “dips” of the solid
line are due to early infant mortality as well as juvenile deaths due to traffic
accidents—causes of death unrelated to irreversible defects. Notice also that
increasing the size of the lattice increases the steepness of the drop of the survival
probability.”' The inflection point on the other hand is determined by L?/n. The
scatter of the model’s results (open circles) is due to the relatively small population
size of 200 organisms generated per p-value.

21 On an infinite lattice the result will be a step function dropping to zero at p. = 0.5927.
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Appendix A
The Mathematics of Thermodynamics

A.1 Exact Differential and Integrating Factor

Consider a function of two independent variables

f=f(xy)
The expression

19) 19)
) =5 | ave

d
8yy

X

is called the differential of f(x,y). Notice that the generalization to more than two
variables is obvious. However, for most of our manipulations and transformations
of thermodynamic relations this is the relevant case.

Now consider the expression

dg(x,y) = pdx + qdy.
Provided that

9
Qy

_Oq

x B Ox y
holds, then dg(x,y) is an exact differential. An example of an exact differential is

dg(x,y) = (3x2 +ycosx)dx + (sinx — 4y3)dy,
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because

_9 3
—a(s1nx—4y)’y.

X

2 3x%2 4+ ycosx
Jy

=COS X =COS X

An example of a differential which is not exact is
dg(x,y) = (3xy2 +2y)dx + (2x2y +x)dy,

because

9 2 9 2
a—y(Sxy +2y)’x #a + (2x y—&-x)‘y.

=6xy +2 =4xy+1
However, in this case we can multiply dg(x,y) by x, i.e.

dh(x,y) = xdg(x,y)
= (3x%y* +2yx)dx + (2X°y + 2% dy.

Obviously dh(x,y) again is an exact differential:

0 0
5‘_y (3x2y2 + 2xy) ’x = e (2x3y +x2)

=6x2y + 2x =6x2y + 2x

y

Because of this the factor x is called integrating factor.
Notice that the above df(x,y) is an exact differential, because the partial
derivatives may be exchanged, i.e.

oo
Ox Jy

_oof
vy Oyox

X X

y
assuming continuity of the derivatives.

The special importance of exact differentials in thermodynamics is rooted in the
following mathematical theorem: Let

dA(x,y) = Pdx+ Qdy,

where P, Q, OP/dy, and Q/0x are single-valued and continuous in a simply- (or
multiply-)connected region R bounded by a simple (or more) closed curve(s) C.
Then
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% dA = / dxdy _oP
8x y Ix
This statement is called Green’s theorem in the plane. A proof may be found in

Spiegel (1971). We conclude immediately that if dA(x,y) is an exact differential,
and therefore

=5

%dA:O.
c

This means that if we divide a closed path C in the x-y-plane into two sections,
ie.

.)&

we have

C= (X1,y1)pﬂ11(x27y2)pat_)h My, y1),

we find

2 1
/ dA + / dA=0
J 1.pathl 2 pathll

or

2 2
/ dA = / dA.
1,pathl 1,pathll

Therefore the value of A(x,,y,) does not depend on the path along which (x2, y,)
is reached. Every function A(x, y) possessing this property is called a state function.
Thus, if dA(x,y) is an exact differential then A(x,y) is a state function and vice
versa.

Example—Perpetual Motion Machine The physical significance of this is
best explained using the internal energy E. Consider for simplicity a closed
system containing a gas. We know from experience that the state of the gas is
described completely if we know its temperature, 7', and its volume, V. We
want to study the change of E along a closed path C in the T-V-plane. Let us
assume we find that
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Eg

Fig. A.1 Hypothetical internal energy gain along a closed path in the T-V-plane

j{dE:AE;éO.

@

If AE >0 we may generate an arbitrary amount of energy simply by
repeating the cyclic path in the 7-V-plane (this situation is depicted in
Fig. A.1). If AE<0 we reverse direction and again generate energy.
A machine constructed on this principle is called a perpetual motion machine.
However, no such device has been build thus far.

Example—dq Is Not an Exact Differential Let us study another instructive
example. We consider a process involving volume change like the one we
have discussed before (see p. 1). We want to show that

dq = dE + PdV

is not an exact differential. Using E = E(T,V) we obtain
OE OE
dg=""2| dT+ (52| +P)av.
1= a1y * <8V T+ )

Exact differential would mean that

worhly~ar (awh+2)l

(¥) 0 9E
= 9ToV

ol
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Here (*) holds, because dE is an exact differential (cf. above). Therefore
we must have

opP

arlv —

This equation obviously cannot be correct, and therefore g is no state
function.

Remark Because we have seen that S is a state function, we conclude that
according to Eq. (1.47) 1/T is an integrating factor.

A.2 Three Useful Differential Relations

In the following we derive three useful differential relations. Consider A = A(x, y)
and z = z(x,y). The differential of A is

0A 0A
ar =221 a —‘d,
ox ly ot Oy Y
and therefore
OA|  OA| Ox +8A @
Ox 1z oOxly oxl; Oy lxOx Iz
=1
or
0A| 0A Qx‘ +8A @
6Zy_8)€y82y ayvay.
——
=0
Thus we find
; ; A o
=% *+5| 5 (A1)
z y X 4
and
Bl =% & (A.2)
y y=ly
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The third relation follows if we use z = A in Eq. (A.1), i.e.

0 x| &)
oxlz — oxly  Oylxoxl
~——
=0
and therefore
x| _ _ Ox| Oz
o |, —a—zya—; 2 (A.3)
where we have used
os 1
Oxly o«
0z y
and
oy _ 1
Ox 2 N Ox
3y Zz
A.3 Legendre Transformation
Consider
df = udx+ vdy
where
of
= — . A4
=k (A.4)
We define a new function g via
g=rf—wy. (A.5)

Notice that g, computed for a certain y-value, is the intercept of the tangent of f
at this y-value with the f-axis (f(...,y) =f'(...,y)y+ b, where b is the intercept).
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Next we compute dg, i.e.
dg = df —d(vy) = udx+ vdy — vdy — ydv.
Therefore
dg = udx — ydv.
This tells us that g is a function of x and v, i.e. g = g(x, v). The function g(x, v) is

called the Legendre transform of f(x,y). It replaces the dependence on y by a
dependence on v. The key to this replacement is the validity of v = 9f /0y |;.

Example—f = p(x> +y?) We consider the example

f(xy) =p(@+y%), (A.6)
where p is a parameter. We find
)
V= a—g = 2py and thus y= % (A7)

Inserting this into Eq. (A.5) yields
g( V) = — —l v2 ( 8)
X, px2 el A.

We can use this to illustrate an important point. Assume that the parameter
p is changed, i.e. Ppeyw = Poia — Op. If dp > 0 this means that

o (x,y)|,, <0, (A.9)

where of = f(x, ¥; Pnew) — f (X, ¥; Poia). What happens to g(x, v)? The answer
is

1 1
dgl =(p—-op)x* ————V* —px*+ —V?
b =000 = ) W
1 op 1
~ —0 xz——<1+—)v2—|——v2 A.10
- ) ™ (A.10)

1 2
= —<X2+ Ev )5p<0.
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This means that the decrease of f(x, y; p) at constant x and y is carried over
to the Legendre transform g(x, v) at constant x and v. Even though this is not a
general proof, we can see easily from Eq. (A.5) in conjunction with (A.4) that
a (local) shift of f at certain fixed variables x and y produces a corresponding
shift of g at the attendant fixed values of x and v. This is very useful—as we
shall see.



Appendix B
Grand-Canonical Monte Carlo: Methane
on Graphite

"GCMC: adsorption of methane on graphite";

"units = Lennard-Jones units";

"temperature"; T = 1.53; Print ["T =", T1;

"target bulk density"; p bulk = 0.05; Print ["p bulk =", p bulk];
"2nd virial coefficient";

B2 = Nintegrate [-2 Pi (Exp [—(4(1/s"12 — 1/5"6))/T] — 1)s"2,
{s, 0, Infinity }];

"bulk pressure"; P = Tp bulk (14 p bulk B2); Print ["P =", PJ;
"excess chemical potential"; pex = 2T p bulk B2; Print ["uex =", uex];
"simulation box size (LxLxLz)"; L = 6;Lz = 2L;V = L"2 Lz;

a = N[Vpbulk Exp [pex/T]];

"cutoff radius"; rcut = 3.0;

"particle coordinates";

TLIST = Table [{Random [Real, {1, L}], Random [Real, {1, L}],
Random [Real, {1,Lz}]}, {i, 1,2}];

n = Length [TLIST];

"MC step counter"; mcsteps = 0;

"steps per MC-cycle"; maxmcsteps = 1000;

"cycle counter"; cycles = 0;

"total number of cycles"; maxcycles = 4000;

“initial values in density histogram"; nint = 100; p = Table [0, {7, 0, nint}];
counter = 0;

While [cycles < maxcycles, cycles ++;

While [mcsteps < maxmesteps cycles,

"particle insertion";

"1. random position";

x = {Random [Real, L], Random [Real, L], Random [Real, Lz]};

"2. energy change";

Au = 0;

Do [y = Extract [TLIST, i] — x;
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= SO0 - LRowd /21 2+ D)~ LRownd /2 +
y 5

If [r <rcut, Au += 4(r"(—12) — r*(—6)), {}], {i, 1, n}];

Ausurf = 17.908(0.4(1.034/X[[3]])A10 — (1.034/)6[[3]])A4);

"3. Metropolis";

If [Min [1, Check { < Exp [—(Au+ Ausurf) /T], 0} } > Random [ ],

{TLIST = Append [TLIST, x]; n++}, {}];

mcsteps ++;

"particle removal";

"1. random selection";

p = Random [Integer, {1, n};

"2. energy change";

Au = 0;

Do [y = Extract [TLIST, i] — Extract [TLIST, p|;

r = Squt [(¥[[1]] — L Round [y{[1]}/£))"2 + (+[[2]] - L Round [y[2]]/L})"2 +
V{3012

If [r > 0&& r<reut, Au += 4(r"(—12) — r(=6)), {}], {i, 1, n}];

Ausurf =

17.908(0.4(1.034 /Extract [TLIST, p][[3]])" 10—

(1.034 /Extract [TLIST, p][[3]])"4);

"3. Metropolis"; If [Min [1, Check [2 Exp [(Au+ Ausurf)/T],0]] >Random ],
{TLIST = Delete [TLIST, pl; n — —}, {}1;

mcsteps ++];

"generate density profile normal to surface";

If [cycles > 5,

{Do [p [[Round [Extract [TLIST, {|[[3]]/(Lz/nint)]]]++, {i, 1, Length [TLIST]}];
counter ++; "optional output: histogram";

If [False, {ListPlot [p/(counter V /Length [p])]}, { }];

Print ["cycle", cycles, "of", maxcycles|}, {}]; "optional output: box";

If [False, {pts = Table [Point [Extract [TLIST, {]], {i, 1, Length [TLIST]}];
Show [Graphics3D [{PointSize [0.05], pts}]}, {}]];

"complete density profile";

hist = {}; Do [hist = Append [hist, {iLz/Length [p], p[[i]]

/(counter V/(nint + 1))}],

{i, 1, Length [p]}]; ListPlot [hist, Joined — True, AxesLabel — {"z[LI]",
"p LI},

PlotRange — {0, 1}, PlotStyle — Black]

"box";

If [True, {pts = Table [Point [Extract [TLIST, i]], {7, 1, Length [TLIST]}];
Show [Graphics3D [{PointSize [0.05], pts}]]}]
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Remark 1 bulk refers to the region far from the surface, where the system is
homogeneous.

Remark 2 The program assumes that the bulk gas density is low. In particular it
uses U, = 2B, (T)P, where B,(T) is the second virial coefficient and P is the (bulk)
gas pressure. This is obtain by integrating /0P |r = 1/p(P). p(P) is obtained by
inserting the expansion p = c¢;P+c,P*+... into the virial expansion of the
pressure, P =Tp(l1+Byp+...) and comparing coefficients (c; =T"!;
¢y = —T72B,, ...). Integration and subsequent subtraction of the ideal gas chemical
potential yields p,, = p — piy = 2B,P +. ... The integral formula for the second
virial coefficient can be found in every textbook on Statistical Mechanics.

Remark 3 The quantity r = Sqrt[(y[[1]] — LRound[y[[1]]/L])"2 + (y[[2]]-L
Round[y[[2]]/L])"2 + y[[3]]"2] is the minimum image distance between the particle
x to be inserted or removed and another particle i in the system. The minimum
image distance is the smallest distance within the set of all distances between x and i
as well as i’s periodic images (parallel to the surface). Subsequently the interactions
are calculated only if r <r,,—a suitable cutoff. In the present program all inter-
actions of x with other particles or image particles are neglected if r > 7. ¥y must
be large enough to justify the neglect of interactions. Simultaneously it must be
small enough to avoid inclusion of interactions from one and the same particle more
than once via its periodic images. Notice that the minimum image construction
allows the actual particles to be anywhere in space—even outside the simulation
box (cf. Frenkel and Smit 1996; Allen and Tildesley 1990).



Appendix C
Constants, Units, Tables

Ny 6.02214. .. - 10 mol™! Avogadro’s number
R 8.31447... JK 'mol~! Gas constant
hN, 3.99031...- 1071 Jsmol ! h: Planck’s constant (& = h/(2m))
MamulNa 1073 kg Mamu = 75m('2C): Atomic mass constant
F = eNy 9.64853...- 10* Cmol™! Faraday constant = eN,; e: elementary charge
£ 8.85418...- 10712 Fm™! Electric constant
Ly 1.25663...-107% NA~2 Magnetic constant
¢ 2.99792...-10°ms™! Vacuum speed of light (c = (¢,11,) /%)
g 9.80665 ms™2 Standard gravitational acceleration
G 6.673...- 1071 m3kg~'s2 Gravitational constant
1 bar 10° Pa 1Pa=1Nm>
1 atm 101,325 Pa
1 psi 703.0696 kgm 2
1 cmHg 1333.224 Pa
1 Torr 133.322 Pa
1 cal 4.1858 ]
lev 1.60217...-10717]
1.16045...- 10K
1 kWh 3.6-1007
0°C 273.15 K
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Useful Tables:

HCP: Lide (2005)
HTTD: Lide and Kehiaian (1994)

Conversion Between Gaussian and SI-Units:

Quantity Gaussian SI

Speed of light c (ye0) 2
Electric field E ame,E
Displacement D \/4n/e,D
Charge q q/\/A4ne,
Magnetic induction B V/4n/u,B
Magnetic field H VAT H
Magnetization M Vi, (4n)M
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