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Preface

Many of us associate thermodynamics with blotchy photographs of men in
old-fashioned garments posing in front of ponderous steam engines. In fact, ther-
modynamics was developed mainly as a framework for understanding the relation
between heat and work and how to convert heat into mechanical work efficiently.
Nevertheless, the premises or laws from which thermodynamics is developed are so
general that they provide insight far beyond steam engine engineering. Today, new
sources of useful energy, energy storage, transport, and conversion, requiring
development of novel technology, are of increasing importance. This development
strongly affects many key industries. Thus, it seems that thermodynamics will have
to be given more prominence particularly in the physics curriculum—something
that is attempted in this book.

Pure thermodynamics is developed, without special reference to the atomic or
molecular structure of matter, on the basis of bulk quantities like internal energy,
heat, and different types of work, temperature, and entropy. The understanding
of the latter two is directly rooted in the laws of thermodynamics—in particular the
second law. They relate the above quantities and others derived from them. New
quantities are defined in terms of differential relations describing material properties
like heat capacity, thermal expansion, compressibility, or different types of con-
ductance. The final result is a consistent set of equations and inequalities. Progress
beyond this point requires additional information. This information usually consists
in empirical findings like the ideal gas law or its improvements, most notably the
van der Waals theory, the laws of Henry, Raoult, and others. Its ultimate power,
power in the sense that it explains macroscopic phenomena through microscopic
theory, thermodynamics attains as part of Statistical Mechanics or more generally
Many-body Theory.

The structure of this text is kept simple in order to make the succession of steps
as transparent as possible. Chap. 1 (Two Fundamental Laws of Nature) explains
how the first and the second law of thermodynamics can be cast into a useful
mathematical form. It also explains different types of work as well as concepts like
temperature and entropy. The final result is the differential entropy change
expressed through differential changes in internal energy and the various types of
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work. This is a fundamental relation throughout equilibrium as well as
non-equilibrium thermodynamics. Chap. 2 (Thermodynamic Functions), aside from
introducing most of the functions used in thermodynamics, in particular internal
energy, enthalpy, Helmholtz, and Gibbs free energy, contains examples allowing to
practice the development and application of numerous differential relations between
thermodynamic functions. The discussion includes important concepts like the
relation of the aforementioned free energies to the second law, extensiveness, and
intensiveness as well as homogeneity. In Chap. 3 (Equilibrium and Stability) the
maximum entropy principle is explored systematically. The phase concept is
developed together with a framework for the description of stability of phases and
phase transitions. The chemical potential is highlighted as a central quantity and its
usefulness is demonstrated with a number of applications. Chap. 4 (Simple Phase
Diagrams) focuses on the calculation of simple phase diagrams based on the
concept of interacting molecules. Here the description is still phenomenological.
Equations, rules, and principles developed thus far are combined with van der
Waals’ picture of molecular interaction. As a result, a qualitative theory for simple
gases and liquids emerges. This is extended to gas and liquid mixtures as well as to
macromolecular solutions, melts, and mixtures based on ideas due to Flory and
others. The subsequent chapter (Microscopic Interactions) explains how the exact
theory of microscopic interactions can be combined with thermodynamics. The
development is based on Gibbs’ ensemble picture. Different ensembles are intro-
duced and their specific uses are discussed. However, it also becomes clear that
exactness usually is not a realistic goal due to the enormous complexity. In Chap. 6
(Thermodynamics and Molecular Simulation) it is shown how necessary and crude
approximations sometimes can be avoided with the help of computers. Computer
algorithms may even allow tackling problems eluding analytical approaches. This
chapter is therefore devoted to an introduction of the Metropolis Monte Carlo
method and its application in different ensembles. Thus far, the focus has been
equilibrium thermodynamics. The last chapter (Non-equilibrium Thermodynamics)
introduces concepts in non-equilibrium thermodynamics. The starting point is linear
irreversible transport described in terms of small fluctuations close to the equilib-
rium state. Onsager’s reciprocity relations are obtained and their significance is
illustrated in various examples. Entropy production far from equilibrium is dis-
cussed based on the balance equation approach and the concept of local equilib-
rium. The formation of dissipative structures is discussed focusing on chemical
reactions. This chapter also includes a brief discussion of evolution in relation to
non-equilibrium thermodynamics. There are several appendices. Appendix A:
Thermodynamics does not require much math. Most of the necessary machinery is
compiled in this short appendix. The reason that thermodynamics is often perceived
difficult is not because of its difficult mathematics. It is because of the physical
understanding and meticulous care required when mathematical operations are
carried out under constraints imposed by process conditions. Appendix B: The
appendix contains a listing of a Grand-Canonical Monte Carlo algorithm in
Mathematica. The interested reader may use this program to re-create results pre-
sented in the text in the context of equilibrium adsorption. Appendix C: This
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appendix compiles constants, units, and references to useful tables. Appendix D:
References are included in the text and as a separate list in this appendix. Of course,
there are other texts on Thermodynamics or Statistical Thermodynamics, which are
nice and valuable sources of information—even if or because some of them have
been around for a long time. A selected list is contained in a footnote on page 18.
Another listing can be found in the preface to Hill (1986).

The first edition of Thermodynamics is structured according to concepts,
allowing a compact but nonetheless comprehensive presentation. This I wanted to
preserve. However, since the book’s first appearance in 2014, various applications
of thermodynamics, not or not sufficiently mentioned in the first edition, from a
number of modern fields in physics and materials science have caught my attention.
In this second edition, I have added those which I consider the most important and
most fitting. A stylistic device I have used for this purpose, which was introduced in
the first edition, is the “example box”. Most of the examples are intended to apply
and practice the application of thermodynamic concepts introduced up to this point.
The second edition contains a number of more elaborate examples which them-
selves are self-contained subjects founded nevertheless on thermodynamic
concepts.

Experiments carried out during the past three decades have considerably
advanced our understanding of the universe. Thermodynamics is indispensable for
the interpretation of these experiments. Instead of the two mere remarks in
Section 2 in the first edition, the new edition now contains an extensive example
discussing the expanding universe as well as its thermal history and future based on
the components of the cosmic energy density and their equations of state. This
complements the previous description of the temperature of black holes and the
temperature at recombination in the context of the Saha equation. Another field
shifting more and more into our focus is atmospheric physics. The first edition
features short examples addressing the (dry air) temperature profile of the tropo-
sphere and the cloud base. In the second edition this is extended significantly
adding discussions of the Earth’s equilibrium temperature, droplet growth inside
clouds, and the effect of moisture on the aforementioned temperature profile. These
examples are distributed throughout the text following the discussions of the
attendant thermodynamic concepts. A third field which is given more prominence
are modern multi-component materials. The morphological structure and thus the
performance of these materials is strongly influenced by the free energies of the
component’s internal interfaces. There are also the more “obvious” interfaces or
surfaces when we apply coatings to protect or to change the appearance of surfaces.
Unfortunately, the 1st edition lacks a thorough discussion of surface tension in
terms of theory and measurement. The new edition includes a rather broad expo-
sition of the underlying theoretical concepts like the Young-Laplace equation,
Young’s equation, or the OWRK-theory including applications and experimental
techniques. Another “materials topic”, already present in the first edition and now
enhanced in the new edition, is the application of thermodynamics to polymers. The
previous discussion of rubber elasticity has been completely rewritten and exten-
ded. Additionally, I have joined the discussion of conformation entropy of
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macromolecules in the context of rubber elasticity to the discussion of the free
enthalpy of macromolecules in the context of polymer melts and mixtures. The
result is the Flory-Rehner equation describing the swelling equilibrium of polymer
networks. It is also worth mentioning that a fair number of mistakes are now
corrected. Most of them were minor but some were not. In particular, Fig. 2.16
(capillary rise) and Fig. 3.20 (fraction of ionized hydrogen vs temperature) are
replaced by their revised versions. Finally, I want to express my gratitude to Dr. Jan
Plagge for his critical reading of the new material and to Alexander Weiss for
pointing out a number of mistakes in the first edition.

Wuppertal, Germany Reinhard Hentschke
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Chapter 1
Two Fundamental Laws of Nature

1.1 Types of Work

1.1.1 Mechanical Work

A gas confined to a cylinder absorbs a certain amount of heat, dq. The process is
depicted in Fig. 1.1. According to experimental experience this leads to an
expansion of the gas. The expanding gas moves a piston to increase its volume by
an amount dV ¼ Vb � Va. For simplicity we assume that the motion of the piston is
frictionless and that its mass is negligible compared to the mass, m, of the weight
pushing down on the piston. We do not yet have a clear understanding of what heat
is, but we consider it a form of energy which to some extend can be converted into
mechanical work, w.1 In our case this is the work needed to lift the mass, m, by a
height, ds, against the gravitational force m~g. From mechanics we know

dwdone by gas ¼
Z b

a
d~s �~f gas ¼ �

Z b

a
d~s � m~g

¼ Pex

Z Vb

Va

dV ¼ PexdV :

Here Pex ¼ mg=A is the external pressure exerted on the gas due to the force mg
acting on the cross-sectional area, A (dV ¼ Ads).

1 Originally it was thought that heat is a sort of fluid and heat transfer is transfer of this fluid. In
addition, it was assumed that the overall amount of this fluid is conserved. Today we understand
that heat is a form of dynamical energy due to the disordered motion of microscopic particles and
that heat can be changed into other forms of energy. This is what we need to know at this point.
The microscopic level will be addressed in Chap. 5.
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The process just described leads to a change in the total energy content of the
gas, dE. The gas receives a positive amount of heat, dq. However, during the
expansion it also does work and thereby reduces its total energy content, in the
following called internal energy, by �PexdV . The combined result is

dE ¼ dq� PexdV :

Notice that after the expansion has come to an end we have Pex ¼ P, where P is
the gas pressure inside the cylinder. In particular we know that P is a function of the
volume, V , occupied by the gas, i.e. P ¼ PðVÞ. In the following we assume that the
change in gas pressure during a small volume change dV is a second order effect
which can be neglected. Therefore for small volume changes we have

dE ¼ dq� PdV : ð1:1Þ

This is the first law of thermodynamics for this special process. It uses energy
conservation to distinguish the different contributions to the total change in internal
energy of a system (here the gas) during a thermodynamic process (here absorption
of heat plus volume expansion).

We just have introduced two important concepts frequently used in thermody-
namics—process and system. The latter requires the ability to define a boundary
between “inside” and “outside”. Both, the inside and the outside, may be considered
systems individually. Systems usually are distinguished according to their degree of
openness. Isolated system means that this system exchanges nothing with its
exterior. An open system on the other hand may exchange everything there is to
exchange, like heat or matter. A closed system holds back matter but allows heat
exchange, e.g. the above gas filled cylinder. Systems are sometimes divided into
subsystems. Subsystems, however, are still systems. After having defined or (better)
prepared a system we may observe what happens to it or we may actively do
something to it. This “what happens to it” or “doing something” means that the

m g

q

m g

s
a

b

Fig. 1.1 A gas confined to a
cylinder absorbs a certain
amount of heat, dq
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system undergoes a process (of change). A special type of system is the reservoir.
A reservoir usually is in thermal contact with our system of interest. Thermal
contact means that heat may be transferred between the reservoir and our system of
interest. However, the reservoir is so large that there is no measurable change in any
of its physical properties due to the exchange.

Now we proceed replacing the above gas by an elastic medium. Those readers
who are not sufficiently familiar with the theory of elastic bodies may skip ahead to
“Electric work” (p. 7).

Mechanical Work Involving Elastic Media

We consider an elastic body composed of volume elements dV depicted in Fig. 1.2.
The total force acting on the elastic body may be calculated according toZ

V
dVfa ð1:2Þ

for every component a (¼ 1, 2, 3 or x, y, z). Here~f is a force density, i.e. force per
volume. Assuming that the fa are purely elastic forces acting between the bound-
aries of the aforementioned volume elements inside V , i.e. excluding for instance
gravitational forces or other external fields acting on volume elements inside the
elastic body, we may define the internal stress tensor, r, via

fa ¼
X3
b¼1

@rab
@xb

� @rab
@xb

: ð1:3Þ

VdV

Fig. 1.2 Elastic body
composed of volume elements
dV
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Here we apply the summation convention, i.e. if the same index appears twice on
the same side of an equation then summation over this index is implicitly assumed
(unless explicitly stated otherwise). The relation between indices, force compo-
nents, and the faces of the cubic volume element is depicted in Fig. 1.3. Upper and
lower sketches illustrate the shear and the normal contribution to the force com-
ponent fa acting on the volume element in a-direction. Notice that fa can be written
as the sum over two shear stress and one normal stress contribution. The latter are
stress differences between adjacent faces of the cubic volume element. Note also
that the unit of rab is force per area.

We want to calculate the work dw done by the fa during attendant small dis-
placements dua, i.e.

dw ¼
Z

dVfadua ¼ð1:3Þ
Z

dV
@rab
@xb

dua:

The integral may be rewritten using Green’s theorem in space:

dw ¼
I

rabduadAb �
Z

dVrab
@dua
@xb

:

 x

 x

 V

shear force on -face / area

normal force on -face / area

Fig. 1.3 The relation
between indices, force
components, and the faces of
the cubic volume element

4 1 Two Fundamental Laws of Nature



We neglect the surface contribution2 and use the symmetry property of the stress
tensor3 to obtain

dw ¼ �
Z

dVrab
@dua
@xb

¼ � 1
2

Z
dVrabd

� @ua
@xb

þ @ub
@xa|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ffi2uab

�
:

The quantity uab is the strain tensor (here for small displacements). The final
result is

dw ¼ �
Z

dVrabduab: ð1:4Þ

We want to work this out in three simple cases. First we consider a homoge-
neous dilatation of a cubic volume V ¼ LxLyLz. We also assume that the shear
components of the stress tensor vanish, i.e. rab ¼ 0 for a 6¼ b. In such a system the
normal components of the stress tensor should all be the same, i.e.
r � rxx ¼ ryy ¼ rzz. We thus have

rabduab ¼ rxxduxx þ ryyduyy þ rzzduzz ¼ rðduxx þ duyy þ duzzÞ: ð1:5Þ

Homogeneous deformation means

@ua
@xa

¼ dLa
La

: ð1:6Þ

And because uaa ¼ @ua=@xa (no summation convention here) we obtain

rabduab ¼ r
dLx
Lx

þ dLy
Ly

þ dLz
Lz

� �
¼ r

dV
V

: ð1:7Þ

2 For a discussion see Landau et al. (1986).
3 To show the symmetry of the stress tensor, i.e. rab ¼ rba, we compute the torque exerted by the
fa in a particular volume element integrated over the entire body:

Z
dVðfaxb � fbxaÞ ¼

Z
dV

@rac
@xc

xb � @rbc
@xc

xa

� �

¼
Z

dV
@ðracxb � rbcxaÞ

@xc
�
Z

dVðracdbc � rbcdacÞ

¼
I

ðracxb � rbcxaÞdAc �
Z

dVðrab � rbaÞ:

The volume integral must vanish in order for the net torque to be entirely due to forces applied to
the surface of the body.
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Integration over the full volume then yields

dw ¼ �rdV ; ð1:8Þ

i.e. we recover the above gas case with P ¼ �r.
In a second example we consider the homogeneous dilatation of a thin elastic

sheet. The sheet’s volume is V ¼ Ah ¼ LxLyh, where the thickness, h, is small and
constant. Now we have

rabduab ¼ r
dLx
Lx

þ dLy
Ly

� �
¼ r

dA
A

ð1:9Þ

and therefore

dw ¼ �rhdA � �cdA: ð1:10Þ

The quantity c is the surface tension.
An obvious third example is the homogeneous dilatation of a thin elastic column

V ¼ h2Lz. Here h2 is the column cross sectional area and Lz is its length. This time
we have

rabduab ¼ r
dLz
Lz

� �
ð1:11Þ

and thus

dw ¼ �rAdLz � �TdLz; ð1:12Þ

where T is the tension.

Example—Expanding Gas We consider the special case of the first law
expressed in Eq. (1.1). If we include the surface tension contribution to the
internal energy of the expanding gas, then the resulting equation is

dE ¼ dq� PdV þ cdA: ð1:13Þ

We remark that the usual context in which one talks about surface tension refers to
interfaces. This may be the interface between two liquids or the surface of a liquid film
relative to air, e.g. a soap bubble. In the latter case there are actually two surfaces. In
such cases we define c ¼ fT=ð2lÞ, which reflects the presence of two surfaces.

Example—Fusing Bubbles An application of surface tension is depicted in
Fig. 1.4. The figure depicts two soap bubbles touching and fusing. We ask
whether the small bubble empties its gas content into the large one or vice

6 1 Two Fundamental Laws of Nature



versa. We may answer this question by considering the work done by one
isolated bubble during a small volume change:

dwdone by gas in bubble ¼ PexdV þ cdA:

Notice that the sign of the surface tension contribution has changed
compared to Eq. (1.10). This is because in Eq. (1.10) we compute the work
done by the membrane. But here the gas is doing work on the membrane,
which changes the sign of this work contribution. The same work, i.e.
dwdone by gas in bubble, can be written in terms of the pressure, P, inside the
bubble,

dwdone by gas in bubble ¼ PdV :

Combining the two equations and using dV ¼ 4pr2dr and dA ¼ 8prdr,
where r is the bubble radius, yields

P ¼ Pex þ 2c
r
:

We conclude that the gas inside the smaller bubble has the higher pressure
and therefore the smaller bubble empties itself into the larger bubble.

1.1.2 Electric Work

We now consider work involving electric and magnetic variables4;5 starting with an
example.

Fig. 1.4 An application of
surface tension

4 Here we use Gaussian units. The conversion to SI-units is tabulated in Appendix C.
5 Three early but very basic papers in this context are: Guggenheim (1936a, b); Koenig (1937).
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Example—Charge Transfer Across a Potential Drop A charge dq in an
electric field experiences the force ~F ¼ dq~E (Do not confuse this dq with the
previously introduced heat change!). Consequently the work done by the
charge-field system if the charge moves from point a to point b in space is

dwq ¼
Z b

a
d~s �~F ¼ �dq

Z b

a
d~s � ~r/: ð1:14Þ

Here / is the potential, i.e. ~E ¼ � ~r/, and thus

dwq ¼ �dq/ba; ð1:15Þ

where /ba ¼ /ðbÞ � /ðaÞ is the potential difference between b and a. The
corresponding internal energy of the charge-field system changes by

dEq ¼ �dwq ¼ dq/ba: ð1:16Þ

This equation may be restated for a charge current I ¼ dq=dt, where dt is a
certain time interval:

dEI ¼ I/badt: ð1:17Þ

In the presence of the resistance, R, the quantity dqJoule ¼ RI2dt is the
Joule heat generated by the current (James Prescott Joule, British physicist,
*Salford (near Manchester) 24.12.1818, †Sale (County Cheshire) 11.10.1889;
made important contributions to our understanding of heat in relation to
mechanical work (Joule heat) and internal energy (Joule-Thomson effect).).

Now we consider the following equations appropriate for continuous dielectric
media:

~r� ~H ¼ 1
c
@

@t
~Dþ 4p

c
~j ð1:18Þ

and

~r�~E ¼ � 1
c
@

@t
~B: ð1:19Þ
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The second equation simply follows by the usual spatial averaging procedure
applied to the corresponding vacuum Maxwell’s equation.6 Here ~Eð~rÞ is the average
electric field in a volume element at point~r. This volume element is large compared to
atomic dimensions. In the same sense ~D is the displacement field given by
~D ¼ ~Eþ 4p~P. ~P is the macroscopic polarization, i.e. the local electrical dipole
moment per volume. Analogously ~B ¼ ~Hþ 4p~M is the average magnetic field
(magnetic induction), and ~M is the macroscopic magnetization, i.e. the local magnetic
dipole moment per volume. The first equation is less obvious and requires a more
detailed discussion.

We consider a current density~je inside a medium due to an extra (“injected”)
charge density qe. The two quantities fulfill the continuity equation

@qe
@t

þ ~r �~je ¼ 0:

We also have

~r � ~D ¼ 4pqe:

Differentiation of this Maxwell equation with respect to time and inserting the
result into the previous equation yields

~r � @~D
@t

þ 4p~je

 !
¼ 0:

The expression in brackets is a vector, which may be expressed as the curl of

another vector c0~H
0
, i.e.

~r� ~H
0 ¼ 1

c0
@~D
@t

þ 4p
c0
~je:

Comparison of this with Ampere’s law in vacuum suggests indeed ~H
0 ¼ ~H and

c0 ¼ c. We thus arrive at Eq. (1.18). An in depths discussion can be found in
Lifshitz et al. (2004).

We proceed by multiplying Eq. (1.18) with c~E=ð4pÞ and Eq. (1.19) with
�c~H=ð4pÞ. Adding the two equations yields

c
4p

~E � ~r� ~H
� �

� c
4p

~H � ~r�~E
� �

¼ 1
4p

~E � @
~D
@t

þ 1
4p

~H � @
~B
@t

þ~j �~E:

6 James Clerk Maxwell, British physicist, *Edinburgh 13.6.1831, †Cambridge 5.11.1879; partic-
ularly known for his unified theory of electromagnetism (Maxwell equations).
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With the help of the vector identity ~r � ð~a�~bÞ ¼~b � ð ~r�~aÞ �~a � ð ~r�~bÞ this
is transformed into

c
4p

~r � ~H �~E
� � ¼ 1

4p
~E � @

~D
@t

þ 1
4p

~H � @
~B
@t

þ~j �~E:

Now we integrate both sides over the volume V and use Green’s theorem in
space (also called divergence theorem), i.e.

R
V dV

~r � ð~H �~EÞ ¼ RA d~A � ð~H �~EÞ,
where ~A is a surface element on the surface A of the volume oriented towards the
outside of V . If we choose the volume so that the fields vanish on its surface, thenR
A d

~A � ð~H �~EÞ ¼ 0 (The configuration of the system is fixed during all of this.).
Thus our final result is

Z
dV ~E � d

~D
4p

þ~H � d
~B
4p

þ~j �~Edt
 !

¼ 0: ð1:20Þ

The third term in Eq. (1.20) is the work done by the ~E-field during the time dt.
To see this we imagine a cylindrical volume element whose axis is parallel to~j
depicted in Fig. 1.5. Then dV ¼ Ads and dV~j ¼ ðq=dtÞd~s, where q is the charge
passing through the area A during the time dt. Thus dV~j �~Edt ¼ q~E � d~s, where q~E
is the force acting on the charge q doing work (cf. the above example).

We conclude that we may express the work done by the system,
dw ¼ R dV~j � ~E dt, by the other two terms in Eq. (1.20) describing the attendant
change of the electromagnetic energy content of the system. For a process during
which the system exchanges heat and is doing electrical work we now have

dE ¼ dqþ R
dV ~E � d~D4p þ~H � d~B4p
� �

: ð1:21Þ

The quantities ~E, ~D, ~B, and ~H are more difficult to deal with than fields in
vacuum. Nevertheless, for the moment we postpone a more detailed discussion and
return to Eq. (1.21) on p. 66.

j s

A
Fig. 1.5 A cylindrical
volume element whose axis is
parallel to~j
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1.1.3 Chemical Work

As a final example consider an open system—one we can add material to.
Generally, work must be done to increase the amount of material in a system. The
work done depends on the state of the system. If we add dn moles of material,7 we
write the work done on the system as

dwdone on system ¼ ldn: ð1:22Þ

The quantity l is called the chemical potential (per mole added). In a more
general situation a system may contain different species. We shall say that these are
different components i. Now the above equation becomes

dwdone on system ¼
X
i

lidni: ð1:23Þ

Here li is the chemical potential of component i. Thus for a process involving
exchange of heat as well as chemical work we have

dE ¼ dqþ P
i lidni: ð1:24Þ

1.1.4 The First Law

The first law is expressing conservation of energy. The specific terms appearing in
the first law do depend on the types of work occurring in the process of interest. The
following box contains a number of examples.

Example—Statements of the First Law for Different Processes

ðiÞ dE ¼ dq� PdV þ cdAþ
X
i

lidni

7 One mole (n ¼ 1) is an amount of substance of a system which contains as many elementary
units as there are atoms of carbon in 12 g of the pure nuclide carbon-12. The elementary unit
may be an atom, molecule, ion, electron, photon, or a specified group of such units.
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This describes a process during which heat is exchanged by the system and
its exterior. Mechanical work in the form of volume work and surface work is
done in addition. The composition of the system changes as well.

ðiiÞ dE ¼ dq�
Z

dV~j �~Edt

Here the process of interest involves heat exchange and electrical work.

ðiiiÞ dE ¼ dq� PdV þ
Z

dV
~E � d~Dþ~H � d~B

4p

This example is for a process during which heat is exchanged and both
volume and electrical work is done.

More generally the first law is expressed via

dE ¼ dq� dw: ð1:25Þ

However, there is an alternative sign convention used in some of the literature,
i.e.

dE ¼ dqþ dw: ð1:26Þ

The sign preceding dw depends on the meaning of the latter. In Eq. (1.25) dw
always is the work done by the system for which we write down the change in the
system’s internal energy, dE, during a process involving both heat transfer and
work. In Eq. (1.26) on the other hand dw is understood as work done on the system.
In the following we shall use the sign convention as expressed in Eq. (1.25)!

Another point worth mentioning is the usage of the symbols d, D, and d. d
denotes a small change (afterwards–before) during a process. D basically has the
same meaning, except that the change is not necessarily small. Even though d
indicates a small change just like d, it has an additional meaning—indicating exact
differentials. This is something we shall discuss in much detail latter in the text. But
for the benefit of those who compare the form of Eq. (1.25) to different texts, we
must add a provisional explanation.

In principle every process has a beginning and an end. Beginning and end, as we
shall learn, are defined in terms of specific values of certain variables (e.g. values of
P and V). These two sets of variable values can be connected by different processes
or paths in the space in which the variables “live”. If a quantity changes during a
process and this change only depends on the two endpoints of the path rather than
on the path as a whole, then the quantity possesses an exact differential and vice
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versa. In the case of mechanical work, for instance, we can imagine pushing a cart
from point A to point B. There may be two alternative routes—one involving a lot
of friction and a “smooth” one causing less friction. In the former case one may find
Eq. (1.25) stated as

dE ¼ dq� dw: ð1:27Þ

This form explicitly distinguishes between the exact differential dE and the
quantities dq and dw, which are not exact differentials. In the case of dw this is in
accord with our cart-pushing example, because the work does depend on the path we
choose. For the two other quantities we shall show their respective property latter in
this text (cf. p. 327ff), when we deal with the mathematics of exact differentials.

However, already at this point we remark that the expressions we have derived in
our examples for the various types of work will reappear with d instead of d. This is
because we focus on what we shall call reversible work. Friction, occurring in the
cart-pushing example or possibly in Fig. 1.1 when the gas moves the piston, is
neglected as well as other types of loss. The following is an example illustrating
what we mean by reversible vs. irreversible work.

Example—Reversible and Irreversible Work In an isotropic elastic body
the following equation holds (Landau et al. 1986):

rab ¼a 6¼b
2luab ¼ l

@ua
@xb

þ @ub
@xa

� �
: ð1:28Þ

On the right is the stress tensor and on the left the product of 2l with the
strain tensor (for small strain). The quantity l is the shear modulus (not to be
confused with the chemical potential). This equation is related to the two upper
sketches in Fig. 1.3. If in the depicted situation (shear force acting on b-face is
applied in a-direction) there is little or ideally no strain in b-direction (this is
like shearing a deck of cards), then the above equation may be written as

rl � rab ¼ l
@ua
@xb

� lul: ð1:29Þ

Real shear is accompanied by friction. Experience suggests that friction
often can be described by an equation akin to the above:

rg ¼ g _ug: ð1:30Þ

The quantity g is a friction coefficient and _ug is a strain rate. Figure 1.6,
showing a spring and a dashpot, is a pictorial representation of Eqs. (1.29)
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and (1.30). Figure 1.7 shows three simple combinations (a, b, c) of the two
elements depicted in Fig. 1.6. These combinations may be translated into
differential equations and serve as simple models for so called viscoelastic
behavior (Wrana 2009). Important viscoelastic materials are the tread com-
pounds in automobile tires. In the following we merely focus on sketch (a).
Its translation is

r � rl þ rg ¼ luþ g _u ðu � ul ¼ ugÞ: ð1:31Þ

We assume that the applied stress is r ¼ ro sinðxtþ dÞ, where x is a
frequency, t is time, and d is a phase. The attendant strain is u ¼ uo sinðxtÞ
(This is a simple mathematical description of an experimental procedure in
what is called dynamic mechanical analysis.). Inserting this into Eq. (1.31) we
find the relations

ro cos d ¼ luo � l0uo ð1:32Þ

µ

Fig. 1.6 Pictorial
representation of Eqs. (1.29)
and (1.30)

µ

µ

(a)

(b)

(c)

µ
1

µ
2

Fig. 1.7 Three simple
combinations (a, b, c) of the
two elements
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ro sin d ¼ gxuo � l00uo: ð1:33Þ

The two newly defined quantities l0 and l00 are called storage and loss
modulus, respectively. Their meaning becomes clear if we compute the work
done during one full shear cycle, i.e.

I
rdu ¼

Z 2p=x

0
r _udt ¼ pl00u2o: ð1:34Þ

Actually this is work per volume (cf. Eq. (1.4)). However, if we do the
same calculation just for the first quarter cycle (form zero to maximum shear
strain) the result is

Z p=ð2xÞ

0
r _udt ¼ 1

2
l0u2o þ

1
4
pl00u2o: ð1:35Þ

The first term is the reversible part of the work, which does not contribute
to the integral in the case of a full cycle. This term is analogous to the elastic
energy stored in a stretched/compressed spring. The second term as well as
the result in (1.34) cannot be recovered and is lost, i.e. producing heat.
Models like ours only convey a crude understanding of loss or dissipative
processes in viscoelastic materials. Considerable effort is spend by the R&D
departments of major tire makers to understand and control loss on a
molecular basis. In tire materials the moduli themselves strongly depend on
the shear amplitude. Understanding and controlling this effect, the Payne
effect, is one important ingredient for the improvement of tire materials, e.g.
optimizing rolling resistance (Vilgis et al. 2009).

1.2 The Postulates of Kelvin and Clausius

The first law does not address the limitations of heat conversion into work or heat
transfer between systems. The following two postulates based on experimental
experience do just this. They are the foundation of what is called the second law of
thermodynamics.8

8 Here we follow Fermi (1956). Dover (Enrico Fermi, Nobel prize in physics for his contributions
to nuclear physics, 1938).
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1.2.1 Postulate of Lord Kelvin (K)

A complete transformation of heat (extracted from a uniform source) into work is
impossible.9

1.2.2 Postulate of Clausius (C)

It is impossible to transfer heat from a body at a given temperature to a body at
higher temperature as the only result of a transformation.10

Remark At this point we use the “temperature” h to characterize a reservoir as
hotter or colder than another. The precise meaning of temperature is discussed in
the following section.

These two postulates are equivalent. A way to prove this is by assuming that the
first postulate is wrong. This is then shown to contradict the second postulate.
Subsequently the same reasoning is applied starting with the second postulate, i.e.
the assumption that the second postulate is wrong is shown to contradict the first.

First we assume (K) to be false. Figure 1.8 illustrates what happens. At the top is
a reservoir at a temperature h1 surrendering heat q to a device (circle) which
converts this exact amount of heat into work w. A process possible if (K) is false. At
the bottom this setup is extended by a friction device (f) converting the work w into
heat q, which is transferred to a second reservoir at h2ð[ h1Þ. Thus the only overall
result of the process is the transfer of heat from the colder to the hotter reservoir.
We therefore contradict (C).

Now we assume that (C) is false. The upper part of Fig. 1.9 shows heat q flowing
from the colder reservoir to the hotter reservoir—with no other effect. At the bottom
this setup is extended. The heat q is used to do work leaving the upper reservoir
unaltered. Clearly, this is in violation of (K). Therefore both postulates are
equivalent. They have important consequences, which we explore below.

9 Thomson, Sir (since 1866) William, Lord Kelvin of Largs, (since 1892), British physicist,
*Belfast 26.6.1824, †Netherhall (near Largs, North Ayrshire) 17.12.1907; one of the founders of
classical thermodynamics; among his achievements are the Kelvin temperature scale, the discovery
of the Joule-Thomson effect in 1853 with J. P. Joule and the thermoelectric Thomson effect in
1856, as well as the development of an atomic model with J. J. Thomson in 1898.
10 Rudolf Julius Emanuel Clausius, German physicist, *Köslin (now Koszalin) 2.1.1822, †Bonn
24.8.1888; one of the developers of the mechanical theory of heat; his achievements encompass
the formulation of the second law and the introduction of the “entropy” concept.
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1.3 Carnot’s Engine and Temperature

Consider a fluid undergoing a cyclic transformation shown in Fig. 1.10. The upper
graph shows the cycle in the P-V-plane, whereas the lower is a sketch illustrating
the working principle of a corresponding device. Here the amount of heat q2 is
transferred from a heat reservoir at temperature h2 (h2 [ h1) to the device. During

q
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q

w

1

q

2

f

Fig. 1.8 Assumption of
postulates: Kelvin

q
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q

q
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2

q q

w

q'

Fig. 1.9 Assumption of
postulates: Clausius
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the transfer (path from a to b in the P-V-diagram) the temperature in the device is
h2. This part of the process is an isothermal expansion. Then the device crosses via
adiabatic11 expansion to a second isotherm at temperature h1, the temperature of a

q
1

1

q2

w

2

P

V

2
1

q
2

q
1

a

b

c
d

q=0

q=0

C

Fig. 1.10 Fluid undergoing a
cyclic transformation

11 A transformation of a thermodynamic system is adiabatic if it is reversible and if the system is
thermally insulated. Definitions of an adiabatic process taken from the literature:

Pathria (1972): “Hence, for the constancy of S (Entropy) and N (number of particles), which
defines an adiabatic process, …”

Fermi (1956): “A transformation of a thermodynamic system is said to be adiabatic if it is
reversible and if the system is thermally insulated so that no heat can be exchanged between it and
its environment during the transformation.”

Pauli (1973): “Adiabatic: During the change of state, no addition or removal of heat takes
place; …”

Chandler (1987): “… the change DS is zero for a reversible adiabatic process, and otherwise
DS is positive for any natural irreversible adiabatic process.”

Guggenheim (1986): “When a system is surrounded by an insulating boundary the system is
said to be thermally insulated and any process taking place in the system is called adiabatic. The
name adiabatic appears to be due to Rankine (Maxwell, Theory of Heat, Longmans 1871).”

Kondepudi and Prigogine (1998): “In an adiabatic process the entropy remains constant.”
We note that for some authors “adiabatic” includes “reversibility” and for others, here Pauli,

Chandler, and Guggenheim, “reversibility” is a separate requirement, i.e. during an “adiabatic”
process no heat change takes place but the process is not necessarily reversible. (See also the
discussion of the “adiabatic principle” in Hill (1956).)
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second reservoir (path from b to c in the P-V-diagram).12 Now follows an
isothermal compression during which the device releases the amount of heat q1 into
the second reservoir (path from c to d in the P-V-diagram). The final part of the
cycle consists of the crossing back via adiabatic compression to the first isotherm
(path from d to a in the P-V-diagram). In addition to the heat transfer between
reservoirs the device has done the work w. Any device able to perform such a cyclic
transformation in both directions is called a Carnot engine.13;14

According to the first law, dE ¼ dq� dw, applied to the Carnot engine we have
DE ¼ 0 and thus w ¼ q2 � q1. Our Carnot engine has a thermal efficiency, gen-
erally defined by

g ¼ work done
heat absorbed

¼ w
q2

; ð1:36Þ

which is

g ¼ 1� q1
q2

: ð1:37Þ

Remark If the arrows in Fig. 1.10 are reversed the result is a heat pump, i.e. a
device which uses work to transfer heat from a colder reservoir to a hotter reservoir.
The efficiency of such a device is 1=g. Here the aim is to use as little work as
possible to transfer as much heat as possible.

Now we prove an interesting fact—the Carnot engine is the most efficient
device, operating between two temperatures, which can be constructed! This is
called Carnot’s theorem. To prove Carnot’s theorem we put the Carnot engine
(C) in series with an arbitrary competing device (X) as shown in Fig. 1.11.

First we note that if we operate both devices many cycles we can make their total
heat inputs added up over all cycles, q2 and q02, equal (i.e., q2 ¼ q02 with arbitrary
precision). After we have realized this we now reverse the Carnot engine (all arrows
on C are reversed). Again we operate the two engines for as many cycles as it takes
to fulfill q2 ¼ q02. This means that reservoir 2 is completely unaltered. But what are
the consequences of all this?

According to the first law we have

wtotal ¼1:law q2;total � q1;total ð1:38Þ

12 Do you understand why the slopes of the isotherms are less negative than the slopes of the
adiabatic curves? You find the answer on p. 48.
13 Nicolas Léonard Sadi Carnot, French physicist, *Paris 1.6.1796, †ibidem 24.8.1832; his cal-
culations of the thermal efficiency for steam engines prepared the grounds for the second law.
14 If you are interested in actual realizations of the Carnot engine and what they are used for visit
http://www.stirlingengine.com.
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where

q2;total ¼ �q2 þ q02 ¼ 0

q1;total ¼ �q1 þ q01:

Because the second reservoir is unaltered we must have

wtotal � 0: ð1:39Þ

wtotal [ 0 violates Kelvin’s postulate! However, this implies

q1;total � 0

) q01 � q1
) q01q2 � q1q

0
2

) q01
q02

� q1
q2

:

And therefore

gX ¼ 1� q01
q02

� 1� q1
q2

¼ gCarnot: ð1:40Þ

There is no device more efficient than Carnot’s engine. Question: Do you
understand what distinguishes the Carnot engine in this proof from its competitor?
It is the reversibility. If the competing device also is fully reversible we can redo the
proof with the two engines interchanged. We then find gCarnot � gX , and thus
gCarnot ¼ gX . We may immediately conclude the following corollary: All Carnot
engines operating between two given temperatures have the same efficiency.

This in turn allows to define a temperature scale using Carnot engines. The idea
is illustrated in Fig. 1.12. We imagine a sequence of Carnot engines all producing
the same amount of work w. Each machine uses the heat given off by the previous
engine as input. According to the first law
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Fig. 1.11 Proof of Carnot’s
theorem
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w ¼ qiþ 1 � qi: ð1:41Þ

We define the reservoir temperature hi via

hi ¼ xqi; ð1:42Þ

where x is a proportionality constant independent of i. Thus the previous equation
becomes

xw ¼ hiþ 1 � hi: ð1:43Þ

We may for instance choose xw = 1 K, i.e. the temperature difference between
reservoirs is 1 K. We remark that this definition of a temperature scale is inde-
pendent of the substance used. Furthermore the thermal efficiency of the Carnot
engine becomes

gCarnot ¼ 1� h1
h2

ð1:44Þ

(h2 [ h1). Notice that the efficiency can be increased by making h1 as low and h2 as
high as possible. Notice also that h1 ¼ 0 is not possible, because this violates the
second law. h1 can be arbitrarily close but not equal to zero. On p. 50 we compute
the thermal efficiency for the Carnot cycle in Fig. 1.10 using an ideal gas as
working medium. We shall see that for the ideal gas temperature T / h. Thus from
here on we use h ¼ T .

q
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w
C

q
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qi
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Fig. 1.12 Defining
temperature scale using
Carnot engines
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1.4 Entropy

Some of you may have heard about the thermodynamic time arrow. Gases escape
from open containers and heat flows from a hot body to its colder environment.
Never has spontaneous reversal of such processes been observed. We call these
irreversible processes. The world is always heading forward in time.
Mathematically this is expressed by Clausius’ theorem.

1.4.1 Theorem of Clausius

In any cyclic transformation throughout which the temperature is defined, the
following inequality holds

H dq
T � 0: ð1:45Þ

The integral extends over one cycle of the transformation. The equality holds if
the cyclic transformation is reversible.

Proof We make use of the assembly of Carnot engines and reservoirs shown in
Fig. 1.13. The device called system successively visits all reservoirs indicated by
the temperatures T1 to Tn. After it has visited reservoir Tn it is in the same state as in
the beginning.15 According to Eq. (1.42) we may write

qi;0 ¼ T0
Ti

qi:

Thus the total heat surrendered by the reservoir at T0 (T0 [ Ti and
i ¼ 1; 2; . . .; n) in one complete turn around of the system is

q0 ¼
Xn
i¼1

qi;0 ¼ T0
Xn
i¼1

qi
Ti
:

As before, when we compared the thermal efficiency of the Carnot engine to the
X-machine, we use the first law, i.e.

0 ¼ DE ¼
Xn
i¼1

qi;0|fflfflffl{zfflfflffl}
¼q0

�
Xn
i¼1

qi|fflffl{zfflffl}
¼0

�wtotal:

15 To achieve this not all Carnot engines operate in the same direction.
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Because wtotal � 0 if Kelvin’s postulate is correct, we must have q0 � 0 and
consequently

Xn
i¼1

qi
Ti

� 0:

Taking the limit n ! 1 and qi ! dq we haveI
dq
T

� 0:

If the cycle is reversed, then the signs of all qi change and we have

Xn
i¼1

� qi
Ti

� �
� 0:

Thus, for a reversible cycle the equal sign holds. This completes our proof.

1.4.2 Consequences of Clausius’ Theorem

(i) Note first that (1.45) implies that
R B
A

dq
T is independent of the path joining A and

B if the corresponding transformations are reversible. If I and II are two
distinct paths joining A and B we have
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Fig. 1.13 Use of the assembly of Carnot engines and reservoirs
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0 ¼
I

dq
T

¼
Z
I

dq
T

�
Z
II

dq
T

)
Z
I
� � � ¼

Z
II
� � � :

(ii) Next we define the entropy S as follows. Choose an arbitrary fixed state O as
reference state. The entropy S Að Þ of any state A is defined via

S Að Þ � R AO dq
T : ð1:46Þ

The path of integration may be any reversible path joining O and A. Thus the
value of the entropy depends on the reference state, i.e. it is determined up to
an additive constant. The difference in the entropy of two states A and B,
however, is completely defined:

S Bð Þ � S Að Þ ¼
Z B

A

dq
T
:

Therefore

dS ¼ dq
T

ð1:47Þ

for any infinitesimal reversible transformation.

1.4.3 Important Properties of the Entropy

(i) For an irreversible transformation from A to B:

Z B

A

dq
T

� S Bð Þ � S Að Þ: ð1:48Þ

Proof We construct a closed path consisting of the irreversible piece joining A and
B and a reversible piece returning to A. Thus

0�
I

dq
T

¼
Z
irreversible path from A to B

dq
T

�
Z
reversible path from A to B

dq
T
;

and therefore Z
irrev:

dq
T

� S Bð Þ � S Að Þ: ð1:49Þ
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(ii) The entropy of a thermally isolated system never decreases.

Proof Referring to the previous equation thermal isolation means dq ¼ 0. It fol-
lows that

0� S Bð Þ � S Að Þ or S Að Þ� S Bð Þ: ð1:50Þ

This is the manifestation of the thermodynamic arrow of time.
All of the above follows from the two equivalent postulates by Kelvin and

Clausius. They constitute the second law of thermodynamics. However, mathe-
matical formulations of the second law are the Clausius theorem or the last two
inequalities above.

(iii) Another important property of the entropy, as we have shown above, is its
sole dependence on the state in which the system is in. Like the internal
energy the entropy is a state function whereas q is not (cf. Remark 1 below!).
Combining the first law16 with Eq. (1.47) yields

dS ¼ 1
T dEþ P

T dV � 1
T
~H � d~m�Pi

li
T dni þ . . .; ð1:51Þ

where

@S
@E

			
V ;~m;n;...

¼ 1
T
; ð1:52Þ

@S
@V

			
E;~m;n;...

¼ 1
T
P; ð1:53Þ

@S
@~m

			
E;V ;n;...

¼ � 1
T
~H; ð1:54Þ

and

@S
@ni

			
E;V ;~m;nj6¼i...

¼ � 1
T
li:

ð1:55Þ

Equation (1.52) may be viewed as a thermodynamic definition of temperature.
Note also that here the ~H-field is assumed to be constant and d~m ¼ RV dVd~M. In the

analogous electric case ~H � d~m is replaced by ~E � d~p, where d~p ¼ RV dVd~P. If the

16 The type of work to be included of course depends on the problem at hand. The terms in the
following equation represent an example.
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field strengths and the moments are parallel, then we have ~H � d~m ¼ Hdm and
~E � d~p ¼ Edp.

Notice the correspondence between the pairs ðH;mÞ, ðE; pÞ and ðP;�VÞ. In
other words, we may convert thermodynamic relations derived for the variables
P;�V via replacement into relations for the variables H;m and E; p. Even more
general is the mapping ðP;�VÞ $ ð~E;V~D=ð4pÞÞ or ðP;�VÞ $ ð~H;V~B=ð4pÞÞ,
where we assume homogeneous fields throughout the (constant) volume V .

Equation (1.51), including modifications thereof according to the types of work
involved during the process of interest, is a very important result! For thermody-
namics it is what Newton’s equation of motion is in mechanics or the Schrödinger
equation in quantum mechanics—except that here there is no time dependence.17

Remark 1 Thus far we have avoided the special mathematics of thermodynamics,
e.g. what is a state function, what is its significance, and why is q not a state
function etc. At this point it is advisable to study Appendix A, which introduces the
mathematical concepts necessary to develop thermodynamics.

Remark 2 The discussion of state functions in Appendix A leads to the conclusion
that Eq. (1.51) holds irrespective of whether the differential changes are due to a
reversible or irreversible process!18

17 We return to this point in the chapter on non-equilibrium thermodynamics.
18 We shall clarify the meaning of this in the context of two related equations starting on p. 64.
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Chapter 2
Thermodynamic Functions

2.1 Internal Energy and Enthalpy

We consider the internal energy to be a function of temperature and volume, i.e.
E ¼ EðT ;VÞ. This is sensible, because if we imagine a certain amount of material at
a given temperature, T , occupying a volume, V , then this should be sufficient to fix
its internal energy. Thus we may write

dE ¼ @E
@T

���
V
dT þ @E

@V

���
T
dV : ð2:1Þ

The coefficient of dT is called isochoric heat capacity or heat capacity at constant
volume:

CV � @E
@T

���
V
: ð2:2Þ

It is useful to define another state function, the enthalpy H, via

H ¼ EþPV :

We find out on which variables H depends by computing its total differential:

dH ¼ dEþ d PVð Þ
¼ @E

@T

���
V
dT þ @E

@V

���
T
dV þPdV þVdP:

Replacing dV via

dV ¼ @V
@T

���
P
dT þ @V

@P

���
T
dP;
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V ¼ VðT ;PÞ, leads to
dH ¼ @E

@T

���
V
þ @E

@V

���
T

@V
@T

���
P
þP

@V
@T

���
P

� �
dT

þ @E
@V

���
T

@V
@P

���
T
þP

@V
@P

���
T
þV

� �
dP:

Application of Eq. (A.1) with A ¼ E yields

. . .ð ÞdT ¼ @E
@T

���
V
þP

@V
@T

���
P
þ @E

@T

���
P
� @E
@T

���
V

� �
dT

¼ @ðEþPVÞ
@T

���
P
dT:

Applying Eq. (A.2) again setting A ¼ E yields

. . .ð ÞdP ¼ @E
@P

���
T
þP

@V
@P

���
T
þV

� �
dP

¼ @ðEþPVÞ
@P

���
T
dP:

Thus we find

dH ¼ @H
@T

���
P
dT þ @H

@P

���
T
dP ð2:3Þ

and therefore

H ¼ HðT;PÞ:

Replacing the dependence on volume by a dependence on pressure is of great
practical importance. From a theoretical point of view working at fixed volume
usually is convenient. But experimenting with a closed apparatus, inside which a
process leads to the buildup of uncontrolled pressure, is likely to produce
uncomfortable feelings.

The coefficient of dT in Eq. (2.3),

CP � @H
@T

���
P
; ð2:4Þ

is the isobaric heat capacity, i.e. the heat capacity at constant pressure. Two other
useful quantities are
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aP � 1
V
@V
@T

���
P
; ð2:5Þ

the isobaric thermal expansion coefficient, and

jT � � 1
V
@V
@P

���
T
; ð2:6Þ

the isothermal compressibility. Selected compounds and values for CP, aP, and jT
are listed in Table 2.1. There is no need to discuss these quantities at this point. We
shall encounter many examples illustrating their meaning.

2.2 Simple Applications

2.2.1 Ideal Gas Law

Here we consider a number of simple examples involving gases. Most of the
following applications are based on assuming that the gases are ideal. This means
that pressure, P, volume, V , and temperature, T , are related via

PV ¼ nRT : ð2:7Þ

The quantity R is the gas constant

R ¼ 8:31447m3PaK�1mol�1: ð2:8Þ

Figure 2.1 shows PVmol=R, where P ¼ 105 Pa is the pressure and Vmol is the
molar volume of air, plotted versus temperature. The data are taken from HCP
(Appendix C). The mass density c in the reference is converted to Vmol via Vmol ¼
mmol=c using the molar mass mmol ¼ 0:029 kg. We note that air at these conditions
is indeed quite ideal. Notice also that the line, which is a linear least squares fit to

Table 2.1 Selected compounds and values for CP, aP, and jT

Compound CP [J/(g K)] aP ½10�4 K�1� jT ½10�5 MPa�1�
Air ð20 �C; 1 barÞ 1.007 36.7 106

n-pentane ð20 �C; 1 barÞ 2.3 16 247

Ethanol ð20 �C; 1 barÞ 2.43 11 117

Water ð20 �C; 1 barÞ 4.18 2.06 45.9

Water ð0 �C; 1 barÞ 4.22 �0.68 50.9

Ice Ih ð0 �C; 1 barÞ 2.11 1.59 13.0

Iron ð20 �C; 1 barÞ 0.45 0.35 0.6
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the data (crosses), intersects the axes at the origin. The temperature T ¼ 0 K
corresponds to T ¼ �273:15 �C.

Remark 1 For an ideal gas we easily work out

aP ¼ 1
T

and jT ¼ 1
P
: ð2:9Þ

Remark 2 Equation (2.7) is simple but nonetheless important, because it is used
frequently throughout this text as a first and often satisfactory approximation.

@E=@VjT ¼ 0 for an Ideal Gas

First we prove that

@E
@V

���
T
¼ 0 ð2:10Þ

for an ideal gas, because we shall rely on this equation a number of ties. Starting
from Eq. (1.51) we have

TdS ¼ dEþPdV ; ð2:11Þ

because all other variables like n etc. are constant. Immediately it follows that

T
@S
@V

���
T
¼ @E

@V

���
T
þP: ð2:12Þ

But this does not look like much progress. With some foresight we compute the
following differential

dðE � TSÞ ¼ dE � TdS� SdT

¼ �SdT � PdV :
ð2:13Þ
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Fig. 2.1 The ideal gas law
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Thus we find

@ðE � TSÞ
@T

���
V
¼ �S ð2:14Þ

and

@ðE � TSÞ
@V

���
T
¼ �P: ð2:15Þ

Consequently

@

@V
@ðE � TSÞ

@T

���
V

���
T
¼ � @S

@V

���
T

ð2:16Þ

as well as

@

@T
@ðE � TSÞ

@V

���
T

���
V
¼ � @P

@T

���
V
; ð2:17Þ

and therefore

@S
@V

���
T
¼ @P

@T

���
V
: ð2:18Þ

For an ideal gas this becomes

T
@S
@V

���
T
¼ P: ð2:19Þ

Inserting (2.19) into Eq. (2.12) completes the proof of the above statement.

Remark Integrating Eq. (2.19) using (2.7) we immediately obtain

SðT ;VÞ � SðT;VoÞ ¼ nR ln
V
Vo

: ð2:20Þ

This means that if an ideal gas is compressed (expanded) isothermally, i.e.
V\Vo (V [Vo), its entropy is decreased (increased).

Kinetic Pressure

Concrete thermodynamical calculations require concrete models. Here we consider
a gas of point particles with masses m, i.e. atoms or molecules without internal
structure or specific spatial extend and shape, confined to a volume V . The particles
posses a momentum distribution dN~p ¼ Nf ðj~pjÞd3p. N is the total particle number
and dN~p is the fraction of particles whose momenta occupy a momentum space
element d3p. The quantity f ðj~pjÞ is the attendant momentum probability density.
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Figure 2.2 shows a particle reflected by one of its containment’s walls. The sum
of very many (simultaneous) momentum transfers, Dpz, each contributing a force
fz ¼ Dpz=Dt, yields the pressure P ¼ F=A, where F is the total force and A is the
wall area.

• Kinetic pressure: First we want to show that

P ¼ 1
V

Z 0
dN~p ~p �~nð Þ ~v~p �~n

� �
; ð2:21Þ

where~p ¼ m~v~p is the momentum of a particle with velocity~v~p. The prime 0 is a
reminder that the angle h is between 0 and p=2 for particles impinging on the
wall.

We consider a single particle for which

fz ¼ Dpz
Dt

¼ 2mj~v~p �~nj
Dt

:

Here Dz is the thickness of a narrow layer adjacent to the wall in which the
momentum transfer occurs. This layer is ill defined, because we consider point
particles interacting with a completely smooth wall. Fortunately the final result does
not require to specify Dz assumed to be the same for all particles. We define the
collision time, i.e. the time a particle spends inside the layer, Dt, via v~p;z ¼ 2Dz=Dt,
i.e.

1
Dt

¼ j~v~p �~nj
2Dz

:

Combination of the two formulas yields

fz ¼ ð~p �~nÞð~v~p �~nÞ
Dz

: ð2:22Þ

n

z

z

Fig. 2.2 A particle reflected
from a wall
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In order to obtain the total force on the wall exerted by the gas we must sum or
integrate over all collisions, i.e.

F ¼
Z 0

dN~p
DzA
V|fflfflfflffl{zfflfflfflffl}

�

fz ð2:23Þ

*: number of particles inside the surface layer volume DzA possessing momenta~p in
d3p. Limiting h to values between zero and p=2 includes particles colliding with the
wall only. Thus we obtain Eq. (2.21).

• Ordinary particles: For an ideal gas1 we can deduce the important result

E ¼ 3
2
nRT : ð2:24Þ

Consequently the isochoric heat capacity of an ideal gas of point particles is
given by

CV ¼ 3
2
nR: ð2:25Þ

In order to show Eq. (2.24) we express the internal energy of the gas via

E ¼
Z 0

dN~p
~p2

2m
: ð2:26Þ

Notice that we continue to use the prime (consistent with the normalization of
our above probability density f ðj~pjÞ). It is now easy to deduce

P ¼ 2
3
E
V
: ð2:27Þ

This is because the h-integration in the case of E is

Z p=2

0
dh sin h ¼ �

Z p=2

0
d cos h ¼

Z 1

0
dx ¼ 1

1Whether or not our assumption of point particles already implies ideality is a matter of definition
of the inter particle interactions.
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and thus

E ¼ N
Z 2p

0
d/
Z 1

�1
dpp2

p2

2m
f ðpÞ: ð2:28Þ

In the case of P we have instead

Z p=2

0
cos2 h sin hdh ¼

Z 1

0
x2dx ¼ 1

3
;

and therefore

P ¼ N
3V

Z 2p

0
d/
Z 1

�1
dpp2

p2

m
f ðpÞ: ð2:29Þ

Comparison of Eqs. (2.28) and (2.29) immediately yields (2.27), which in
combination with the ideal gas law yields Eq. (2.24).

Finally we take another look at the entropy. We have

dS ¼ 1
T
dEþ P

T
dV ð2:30Þ

(cf. Eq. (1.51)). Using (2.24), i.e. dE ¼ ð3=2ÞnRdT , and once again (2.7) we find

dS ¼ nR d ln T3=2 þ d lnV
� 	

: ð2:31Þ

Integration yields the generalization of Eq. (2.20)

SðT ;VÞ � SðTo;VoÞ ¼ nR ln
T
To

� �3=2 V
Vo

" #
: ð2:32Þ

This is the ideal (point particle) gas entropy change as function of temperature
and volume.

• Photons: Now let us assume that the gas particles are photons obeying the
energy-momentum relation � ¼ cp. Inserting this relation into (2.21) and (2.26)
yields

P ¼ 1
V

Z 0
dN~ppc cos2 h ¼ 1

3V

Z 0
dN~ppc ð2:33Þ
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and

E ¼
Z 0

dN~ppc: ð2:34Þ

Notice that v~p is replaced by the velocity of light, c. Comparison of the two
equations produces

P ¼ 1
3
E
V
: ð2:35Þ

We can even relate the photon pressure to the gas temperature via

@E
@V

���
T
¼ T

@P
@T

���
V
� P ð2:36Þ

derived in the previous example. Because the classical energy, E, of the photon gas
is given by

E
V
¼ 1

V

Z
V
dV

~E2 þ~H2

8p
; ð2:37Þ

where the argument of the integral is the electromagnetic energy density, we
conclude that P does not depend on V and therefore

@E
@V

���
T
¼ 3P:

The resulting differential equation is

4
dT
T

¼ dP
P

or d ln T4 ¼ d lnP

and thus

P
Po

¼ T
To

� �4

ð2:38Þ

or

E
V
¼ crT

4; ð2:39Þ

where cr is a constant. This is Stefan’s law of the energy density dependence on
temperature in the case of black body radiation.
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This also is a good place to mention the entropy of the black body, i.e. a volume
containing (and possibly emitting) radiation in thermal equilibrium with some
reservoir.2 We start by inserting (2.39) into the thermodynamic definition of tem-
perature, Eq. (1.52), i.e.

@S
4crVT3@T

���
V ;n;...

¼ 1
T
: ð2:40Þ

Integration of this equation yields the entropy of the black body

S ¼ 4
3
E
T
; ð2:41Þ

which is proportional to T3. Notice that S ¼ 0 at T ¼ 0. However, there is more to
learn here. Subtracting the two differentials

TdS ¼ 4crVT3dT þ 4
3
crT

4dV and dE ¼ 4crVT3dT þ crT
4dV ð2:42Þ

yields

TdS� dE ¼ 1
3
crT

4dV ¼ð2:35ÞPdV : ð2:43Þ

Comparing this result to (1.51) we conclude that the chemical potential of the
photons vanishes, l ¼ 0. We shall return to this conclusion later in this book (on
page 253).

Figure 2.3 shows an experimental setup in the author’s office allowing to verify
Stefan’s law. The red cube in the center is an oven (black body) emitting radiation
through the aperture shown in the inset. The radiation energy is measured and con-
verted into volts shown on the instrument panel on the right. The attendant oven
temperature is shown by the instrument on the left. Figure 2.4 contains data taken by
the author upon heating (up-triangles) and subsequent cooling (down-triangles) of the
oven (To ¼ 25 �C). The solid line is a linear fit through the data points. Even though
there is some room for improvement the result is clearly in accord with Eq. (2.39).

It is interesting to calculate the energy a black body looses per unit time due to
radiation emanating from its surface. If dA is an area element on the black body’s
surface, a distant observer may look at dA from an angle h. Here h is the angle
between the surface normal of dA and the direction of the observer. Thus the

2 The term “black body” may be somewhat misleading, because a black body is not necessarily
black. In fact the radiation spectrum of our sun measured above the atmosphere is very closely a
black body spectrum. Here we merely deal with the temperature dependence of the total energy
density of a black body. The spectrum is calculated in Sect. 5.3.
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observer does not see the full dA but the projection dA cos h instead. Every volume
element on the surface contains the energy density E=V , and therefore emanates a
total flux density cE=V . Along a particular direction this is cE=ð4pVÞ. This means
that the energy per time passing through the area element projection in the direction
of the observer is cE=ð4pVÞdA cos h. Collecting together the energy per time
passing through dA towards all possible observer directions therefore yields

ddE
dt

¼ � cE
4pV

dA
Z 2p

0
du
Z p=2

0
dh sin h cos h ¼ � 1

4
cE
V

dA ð2:44Þ

Fig. 2.3 Experimental setup in the author’s office allowing to verify Stefan’s law
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Fig. 2.4 Data obtained with
the experimental setup
(including cooling of the
aperture plate) shown in the
previous figure
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or after integration over the full surface

dE
dt

¼ � 1
4
cE
V

A ¼ �rT4A: ð2:45Þ

The minus sign indicates that the energy of the black body diminishes. The
quantity r ¼ 5:67 � 10�8 Wm�2K�4 is Stefan’s constant, which we learn how to
calculate in Sect. 5.1 (cf. Eq. (5.109)).3

Example—Earth’s Equilibrium Temperature Let us consider the last
footnote from a different angle. The radiation energy emanating from the sun
per unit time intercepted by the Earth is

dEin

dt
¼ rT4

SASf : ð2:46Þ

Here the solar surface temperature is TS and AS ¼ 4pr2S is the Sun’s surface
area. The factor f is the solid angle covered by the earth divided by the total
solid angle, i.e. f ¼ pr2E=ð4pR2

SEÞ ¼ 1
4 ðrE=RSEÞ2. Since the earth has a certain

average surface temperature, which we call the equilibrium temperature TE,
we expect that the incoming flux dEin=dt is balanced by a corresponding
energy flux emanating from the Earth’s surface dEout=dt, i.e.

dEout

dt
¼ rT4

EAE; ð2:47Þ

where AE ¼ 4pr2E. Hence

dEin

dt
ð1� AÞ ¼ dEout

dt
: ð2:48Þ

The quantity A is called albedo (not to be confused with an area). It is a
measures for how much of the sun’s radiation is reflected from the irradiated
body into space. Earth’s albedo is � 0:3, of which roughly three quarters are
contributed by cloud. Solving Eq. (2.48) for TE yields

3 It is interesting to apply this formula to the sun. We use a solar surface temperature of 5780 K, a
sun radius of rS � 7:0 � 108 m, an earth radius of rE � 6:4 � 106 m, and the mean sun-to-earth
distance RSE � 1:5 � 1011 m. With these numbers we calculate a radiation energy annually
received by the earth’s surface of about 1:6 � 1015 MWh/y. At the time of this writing the entire
world’s electricity consumption is roughly 1:9 � 1010 MWh/y (based on data collected between
2002 and 2010). In other words—a quadratic surface of about 40 by 40 km positioned in space
near the earth would receive just this energy!
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TE ¼ TS
r2Sð1� AÞ
4R2

SE

� �1=4

: ð2:49Þ

Substituting the previous numbers for TS, rS and RSE we find TE � 254 K.
This is roughly 35 K less than the average surface temperature of about 288
K. We can apply (2.49) to other planets or moons as well if we use their
albedo and their distance from the sun. In the case of Earth’s moon, pos-
sessing an albedo of around 0:12, the equilibrium temperature is about 269 K
whereas its average surface temperature is roughly 255 K. This is a smaller
difference than in the case of Earth. We may suspect that Earth’s atmosphere
is responsible for most of the difference (Greenhouse effect), even though the
example of the moon suggests that there are other factors as well—like the
somewhat ill-defined concept of an average temperature. An extreme example
is Venus. It has an equilibrium temperature of approximately 260 K but a
surface temperature of 740 K.

Remark 1 In the late 1930s the famous physicist Paul A. Dirac4 speculated
that the large size of certain dimensionless numbers, constructed from com-
bination of fundamental constants, may indicate their monotonous variation
tied to the age of the universe. The concept of a changing, or rather expanding,
universe had been developed a decade before mainly by Alexander Friedmann,
Georges Lemaître, and Edwin Hubble—the former two studied solutions to
Einstein’s field equations of General Relativity and the latter measured the
redshift of galaxies depending on their distance. The suspected changes should
be slow, which would make them difficult to observe, since the “measure-
ments” have to cover several hundred million years.

In 1948 Edward Teller published a paper in which he derives the
dependence of TE, on the gravitation constant G. G affects not only RSE but
also TS and we do not want to present his derivation here (the interested
reader is referred to Teller (1948)). He showed that TE 	G2:25. Thus, if G had
been 10% smaller 300 million years ago this would have resulted in a 20%
higher TE compared to the present—sufficiently high to affect the develop-
ment of live on Earth as we know it. This, so his conclusion, can be viewed as
evidence against Dirac’s hypothesis.

4 Paul Adrien Maurice Dirac, British physicist, *Bristol 8.8.1902, †Tallahassee (Florida)
20.10.1984; numerous seminal contributions to the development of quantum theory (e.g. Dirac
equation); he shared the 1933 Nobel prize in physics with E. Schrödinger.
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Remark 2 We can combine Eqs. (2.41) and (2.48) to obtain

dSout=dt
dSin=dt

¼ ð1� AÞ TS
TE

: ð2:50Þ

This means that the long wavelength radiation emitted from the earth
carries much more entropy than the incoming short wavelength radiation
received from the sun, which, as we shall discuss in the last chapter, is of
great significance for the development of life on earth.

Example—The Expanding Universe and Its Temperature We want to
apply what we have learned to the relation between the size of the universe
and its temperature. This, however, requires one paragraph of cosmology
before we can start.

In the 1920s the aforementioned American astronomer Edwin Hubble5

carried out measurements which led him to conclude that far away galaxies
recede from us with a velocity proportional to their distance D, i.e.

v ¼ HD: ð2:51Þ

The proportionality constant H became the Hubble constant. Since Earth’s
location is not a special place in the universe, Hubble’s law (2.51) is valid for
any reference point. For simplicity’s sake let us assume that our universe is an
elastic band. On the band there are regularly spaced marks indicating
galaxies. The spacing between neighboring marks or galaxies is a. In the
following we shall call a the scale factor. If we sit on any one of the galaxies,
then the distance from us to the fourth galaxy on either side is 4a. More
generally, the distance from us to the xth galaxy is DðtÞ ¼ xaðtÞ. t is time and
aðtÞ means that the elastic band stretches or contracts with time. Note that x is
a mere number and therefore does not depend on time. In the real universe
this means that space itself expands or contracts. With v ¼ x _a, where the dot
indicates a time derivative, Hubble’s law becomes _aðtÞ ¼ HaðtÞ. However,
Hubble’s constant is not really a constant but instead

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pG
3

qðtÞ
r

; ð2:52Þ

5 Edwin Powell Hubble, American astronomer, *Marshfield, Missouri, United States 20.11.1889,
†San Marino, California, United States 28.9.1953.
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where G is the gravitation constant and qðtÞ is the energy density of the
universe. Hence

_aðtÞ
aðtÞ
� �2

¼ 8pG
3

qðtÞ: ð2:53Þ

This, apart from a term accounting for the “curvature of space” which is
not important here, is the first Friedmann equation. The first Friedmann
equation follows from General Relativity but there is also a simpler
Newtonian approach which yields (2.53) (see for instance Chap. 8 in
Hentschke and Hölbling 2020). In the following we consider three contri-
butions to qðtÞ called qrðtÞ, the radiation energy density, qmðtÞ, the mass
energy density (note that according to the Special Theory of Relativity every
mass can be converted into energy) and qvðtÞ, a mysterious vacuum energy
density (also called dark energy), i.e. qðtÞ ¼ qrðtÞþ qmðtÞþ qvðtÞ.

Now we return to thermodynamics, pursuing the dependence of the scale
factor of the universe a on time as well as its relation to the temperature T of
the universe. Note that a is not the size of the universe but nevertheless a
measure of its size. Our starting point is the first law in the form

dE ¼ �PdV : ð2:54Þ

The only contribution to the internal energy change of the universe is
volume work. Equation (2.54) expressed in terms of q and a become

dða3qÞ ¼ �Pda3: ð2:55Þ

At this point we need an equation of state, i.e. an equation relating the
pressure to the (energy) density. Inspired by Eqs. (2.27) and (2.35) we assume

P ¼ xq; ð2:56Þ

where x is unknown. Inserting this equation of state into Eq. (2.55) yields

d ln q ¼ �3ð1þxÞd ln a; ð2:57Þ

which has the solution

q ¼ const
a3ðxþ 1Þ : ð2:58Þ

In the following we discuss (2.58) for qm, qr and qv separately. This means
that the development of the universe can be described as succession of
epochs. In each epoch q is dominated by either one of the three densities. If q
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is for matter only, i.e. q ¼ qm, we expect qm / a�3 and thus xm ¼ 0. For
radiation, as represented by photons, we conclude from our previous
Eq. (2.35) that xr ¼ 1=3 and thus qr / a�4.

These conclusions are not trivial and we must discuss them. xm ¼ 0 in the
case q ¼ qm seemingly contradicts Eq. (2.27), according to which we would
have expected xm ¼ 2=3. However, there are great differences between Eqs.
(2.27) and (2.56) when q ¼ qm. First, the energy density E=V on the right
hand side of Eq. (2.27) only includes the classical kinetic energy of the matter
particles and not the much greater energy equivalent of their (rest) mass
included in qr. Second and even more importantly, Eq. (2.27) describes a gas
of particles possessing a certain temperature T and therefore a non-zero
pressure P. In the universe most mass is found in lumps, i.e. galaxies (in-
cluding black holes, …), which are cold in terms of their overall kinetic
energy (even if they contain many hot stars), since they merely move with the
expansion of the universe, and do not exert a pressure. Thus, xm ¼ 0 in this
case is not a contradiction. Nevertheless, we shall return to Pm ¼ 0 in the
universe versus P[ 0 in an ordinary gas in a separate example. Next is
qr / a�4 and the question how the extra factor a�1 arises in comparison to
qm / a�3? The radiation particles which make up qr move with the speed of
light c and have no rest mass. Each of them possesses an energy hc=k, where
h is Planck’s constant. Their energy density is the product of their number
density, which is proportional to a�3, and hc=k. Since hc is a constant,
qr / a�4 requires that the radiation’s wavelength k / a. And this is indeed
the case. While a photon travels towards us from a distant galaxy the scale
factor, as we shall see, grows, i.e. the longer the photon must travel to reach
us the longer its wavelength becomes. Or in other words, the more redshifted
the photon is the greater is the distance to the galaxy in which it originated.
This is what Hubble had exploited.

The last of the energy density contributions, and the most mysterious, is
the vacuum energy density qvðtÞ. Observation suggests that it is constant, i.e.
qvðtÞ ¼ qo. This means the vacuum energy does not thin out when space
expands. It leads to xv ¼ �1 and thus Pv ¼ �qo. Since qo is positive Pv is
negative. This and the other relations between pressure, energy density and
scale factor are compiled in the two upper rows in Table 2.2. The upper panel
of Fig. 2.5 depicts the a-dependence of the three energy density components.
In the early universe qr dominates. It is followed by qm since a�4 decreases

Table 2.2 Components of
the energy density

Matter Radiation Vacuum energy

q qm / a�3 qr / a�4 qv ¼ qo
p Pm ¼ 0 Pr ¼ qr=3 Pv ¼ �qo
a 	 t2=3 	 t1=2 	 exp½ ffiffiffiffiffiffi. . .

p t�
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faster than a�3. Finally both qr and qm decrease below qv ¼ qo. The calcu-
lation of the various crossover times, e.g. 5 � 104 y after BB (Big Bang),
requires additional tools which we cannot develop here (see for instance
Hentschke and Hölbling 2020).

The third row in Table 2.2 lists the time dependence of the scale factor in
the three epochs, i.e. matter dominates, radiation dominates and vacuum
energy dominates. The respective aðtÞ are obtained by inserting the first row
energy densities into Eq. (2.53). For instance, inserting qm yields
ð _a=aÞ2 / a�3. Using the ansatz aðtÞ / tq and equating the exponents of t on
both sides of the resulting equation yields q ¼ 2=3. For qr we find q ¼ 1=2
instead. In the case of qv the right hand side of Eq. (2.53) is a constant and we
find an exponential grows of a. Note that . . . in Table 2.2, which is pro-
portional to qo, is very small. Nevertheless, measurements have shown that
we are currently in this epoch. The lower panel in Fig. 2.5 shows a sketch of
the scale factor’s expansion during the three epochs.

Let us briefly address one obvious question. Just how much qm is there in
comparison to qr or qv in our current universe? Experimental evidence
indicates that Xm � 0:3, Xr � 9 � 10�5 and Xv � 0:7. Here Xi stands for the
respective fraction of i compared to the current total energy density qc;0 �
8 � 10�10 J m�3. In addition, Xm ¼ Xm;b þXm;DM , where Xm;b � 0:05 is the
baryonic matter, i.e. the matter of which we know what it consists of, and the
much larger rest consisting of dark matter.

One epoch, which we completely ignore here, was extremely short and
occurred right after the Big Bang. It is called inflation. It is thought that the
scale factor during this epoch grew very rapidly. We can understand this type
of rapid growth if we assume that the scale factor during inflation was also

ρ

a

∼ 5 · 104 y after BB

∼ 4 · 109 y ago

vacuum dominated
ρ0

ρr
ρm

a

t
∼ 4 · 105 y after BB
we cannot see past this

accelerated
expansion

we are here
∼ 14 · 109 y after BB

Fig. 2.5 Summary of the
three energy density
components
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growing as a	 exp½ ffiffiffiffiffiffi. . .
p t�, but that during inflation . . ., i.e. qo, was very

much larger than today.
But what about the temperature of the universe? Matter, as we have dis-

cussed, is cold. But the radiation energy density is tied to T via Stefan’s law
(2.39), i.e. qr / T4. Since qr / a�4 as well, we conclude

T / 1
a
: ð2:59Þ

We can use this relation to actually compute one of the numbers in the
lower panel in Fig. 2.5 i.e. 	 4 � 105 y after the Big Bang. Note that the
universe was matter dominated during most of its existence, i.e. a / t2=3.
Hence

T1
T2

¼ t2
t1

� �2=3

: ð2:60Þ

Today the universe is t1 � 14 � 109 y old and its temperature is T1 � 3 K.
When its age was t2 � 4 � 105 y Eq. (2.60) implies the universe therefore had
a temperature t2 � 3000 K. This is a special temperature, because it was low
enough for the protons and the electrons, which until then had been separate
components of an optically opaque plasma, to combine into hydrogen atoms.
From then on the universe was transparent. In an example in Chap. 3 we shall
estimate this temperature, which in turn means that we can estimate the time
at which this so called “recombination” took place (rather than assuming that
we already know T2 in order to be able to estimate t2).

Example—Pm ¼ 0 Versus the Ideal Gas Law PV ¼ NT [ 0 In the previ-
ous example we have motivated Pm ¼ 0 with the lumpy masses suspended in
space. But there was a time when the content of the universe could be
described as a fairly hot “soup” of non-relativistic massive particles in
equilibrium with photons (prior to or right around recombination). Shouldn’t
the particles under these conditions possess a pressure greater than zero—like
a gas at a certain density and temperature?

Let us approximate the internal energy of the universe by a sum of three
terms, i.e.

E ¼ Vqm;o þ
3
2
NkBT þ crVT

4: ð2:61Þ

The first term is the volume of the universe multiplying the energy density
contributed by the rest mass of the particles contained in it. The second term
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is the ideal gas contribution (2.24), where N is the number of the afore-
mentioned particles. The last term accounts for the radiation according to
Eq. (2.39). Note that vacuum energy is not included here.

According to the first law

dE ¼ d mc2 Nþ 3
2
NkBT þ crVT

4
� �

¼ �ðPm þPrÞdV : ð2:62Þ

Here m is the particle mass (for simplicity we consider one type of particle
only), mc2 is its energy equivalent, and Pm and Pr are the partial pressures of
the particles and the photons, respectively. Using PmV ¼ NkBT and Pr ¼
1
3 crT

4 as well as V / a3, we obtain after some algebra

d ln T ¼ �YðxÞd ln a where YðxÞ ¼ 1þ 3x=4
1þ 3x=8

: ð2:63Þ

Here x ¼ NkB
VcrT3 ¼ 1

3Pm=Pr. Currently we use Pm ¼ 0. Thus x ¼ 0 and

YðxÞ ¼ 1, which yields T / a�1—our previous result! But if Pm 
 Pr then
Yðx ! 1Þ ¼ 2 and consequently T / a�2.

Can Pm 
 Pr occur? Using N � Ncg, where Nc is the number of photons,
it is not difficult to see that

Pm

Pr
� g: ð2:64Þ

This result is independent of temperature. The quantity g is the baryon
(composite particles made from quarks) to photon ratio obtained from the
theory of nucleosynthesis in the early universe. According to this theory
g	 10�9 and we find that Pm ¼ 0 is indeed a very good approximation.

However, in order to convince ourselves that the universe is quite different
from our usual surroundings, we compute Pm=Pr inside an average office
(office pressure is 1 bar; office temperature is 293 K). Assuming the office is a
black body cavity, we can describe the cavity’s radiation pressure via Pr ¼
1
3 crT

4 � 1:9 � 10�6 Pa, where we have used that Stefan’s constant r ¼
ðc=4Þcr (cf. Eq. (2.45)). Therefore P � Pm or Pm=Pr � 5 � 1010, i.e.
goffice 	 1010.

Remark Our description of massive particles or radiation is somewhat loose.
A massive particle may be non-relativistic or relativistic depending on tem-
perature. In the ultra-relativistic case, i.e. mc2 is much less than the total
energy, their equation of state is the same as for radiation. qm, according to
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the current cosmological standard model, consists mostly of “dark matter”. It
is not known what dark matter is. What is known is that it must have certain
properties to not contradict certain observations. In particular the mass of dark
matter particles (if dark matter is due to particles) is not known—which, in
principle, could affect our above conclusions based on g. The universe
contains neutrinos, which in current models contribute significantly to qr. But
neutrinos are believed to possess mass and measurements are underway to
determine this mass. Thus, there are these and other open issues.

Remark—Black Hole Entropy In the early 1970s Hawking6 (1976; and references
therein) showed that a black hole of mass M should emit radiation possessing the
spectral distribution of black body radiation7 corresponding to the temperature

Tbh ¼ 1
8p

�hc3

kBGM
: ð2:65Þ

This formula, joining ideas and concepts from quantum theory and the theory of
general relativity, is engraved in a plaque in Westminster Abbey marking Stephen
Hawking’s burial site (cf. Fig. 2.6). Here kB is the so-called Boltzmann constant, G
is the gravitational constant, �h is Planck’s constant divided by 2p, and c is the speed
of light. The origin of this radiation is the separation of virtual particle pairs,
spontaneously created just outside the event horizon of the black hole due to
vacuum fluctuations, such that the partner with positive energy is traveling away
from the horizon and the other in turn vanishes behind the horizon. This negative
energy partner diminishes the energy of the black hole by an amount that is carried
away by the other. In this sense a black hole may “evaporate” over time. As already
mentioned, remarkably this radiation has the same distribution as the radiation of a
black body—despite its different nature!

According to Eq. (1.52) the black hole should posses entropy, which we can

calculate by integrating this equation (S ¼ R E0 dE0TðE0Þ�1 þ const):

Sbh ¼ 4p
kBGM2

�hc
: ð2:66Þ

We have used E ¼ Mc2 (dE ¼ c2dM) and assumed that const ¼ 0. Notice that
Eq. (1.52) holds if the other variables (V , . . .) are held fixed. In the case of the black
hole the corresponding quantities are its charge and angular momentum. The
entropy in Eq. (2.66) may be cast in a different form, i.e.

6 Stephen William Hawking, British theoretical physicist, *Oxford 8.1.1942, †Cambridge
14.3.2018.
7 This distribution is shown for one particular temperature in Fig. 5.13.
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Sbh ¼ kB
4

A

k2P
: ð2:67Þ

A ¼ 16pG2M2=c4 is the horizon area8 and k2P the square of the Planck length

kP ¼ ð�hG=c3Þ1=2 	 10�35 m. Equation (2.67) is the Bekenstein-Hawking entropy
formula. Bekenstein (1973) was the first to systematically explore that “a black hole
exhibits a remarkable tendency to increase its horizon surface area when under-
going any transformation” in analogy to the second law of thermodynamics (as
expressed via (1.50)). He concluded that a black hole should posses entropy pro-
portional to A. His reasoning, predating the discovery of black hole radiation, was
based on the connection between entropy and information or rather the lack of
information.9 The formula for Sbh, which he obtained, differs from (2.67) by a
numerical factor (he introduced k2P on dimensional grounds!).

Fig. 2.6 Hawking’s burial
site in Westminster Abbey,
London, UK

8 This formula may be obtained classically! The velocity necessary to escape from a mass M
starting at a distance R is vesc ¼ ð2GM=RbhÞ1=2. Substituting vesc ¼ c and solving for Rbh yields
A via A ¼ 4pR2

bh.
9 This connection is discussed in Sect. 5.1.1.
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We may estimate the time tvap (very roughly!) it should take for the black hole to
evaporate via

� dM
dt

	 � dE
dt

	 T4A	 1
M2 ; ð2:68Þ

i.e.

Z tvap

0
dt0 	

Z M

0
dM0M02: ð2:69Þ

Our final result is

tvap 	 G2M3

�hc4
; ð2:70Þ

where the factor G2=ð�hc4Þ follows from dimensional analysis. Table 2.3 compiles
some numbers forM equal to the mass of the sun, the earth, and two arbitrary masses
(one corresponding to the cosmic background temperature discussed in the context
of Fig. (5.13), and illustrates the extreme numbers (The age of the universe is
estimated at 5 � 1017 s!). This shows that the radiation is significant only for black
holes much smaller than those that are expected to form by the collapse of stars.
Black holes possessing smaller masses could have formed in the early universe, but
thus far no conclusive experimental evidence for black body radiation, especially for
the brief intense flash indicating a vanishing black hole, has been found. A detailed
discussion of the underlying theory is given in Susskind and Lindsay (2005).

Isotherms and Adiabatic Curves

Discussing the Carnot engine we had studied the thermodynamic cycle in the P-V-
plane depicted in Fig. 2.7. The two curves labeled T1 and T2 are called isotherms
(T ¼ constant). The two other curves are adiabatic curves (dq ¼ 0).

Starting from the ideal gas law, PV ¼ nRT , we may show that the sketch is
correct in so far as the isotherms are less steep than the adiabatic curves, i.e.

Table 2.3 Characteristic
quantities for black holes with
selected masses

M (kg) Rbh (m) Tbh (K) tvap (s)

Sun 2 � 1030 3 � 103 6 � 10�7 1070

Earth 6 � 1024 9 � 10�3 6 � 10�2 1054

4 � 1022 6 � 10�5 2:75 1047

7 � 1011 10�15 2 � 1011 1015

1 10�27 1023 10�20
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@P
@V

���
T
[

@P
@V

���
dq¼0

:

Notice that the combination of the first law, i.e. dE ¼ �PdV (if dq ¼ 0), with
Eq. (2.2) yields

�PdV ¼ CVdT : ð2:71Þ

From

dT ¼ @T
@V

���
P
dV þ @T

@P

���
V
dP

follows

dT ¼ P
nR

dV þ V
nR

dP:

This means

�PdV ¼ CV
P
nR

dV þ V
nR

dP

� �

or

� 1þ CV

nR

� �
dV
V

¼ CV

nR
dP
P

and therefore

d lnP
d lnV

���
dq¼0

¼ �1� nR
CV

: ð2:72Þ

P

V

T
2

T
1

q
2

q
1

a

b

c
d

q=0

q=0

Fig. 2.7 Carnot cycle
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Along an isotherm we have

dP
dV

���
T
¼ � nRT

V2 ¼ � P
V

and therefore

d lnP
d lnV

���
T
¼ �1: ð2:73Þ

Combination of (2.72) and (2.73) yields

d lnP
d lnV

���
T
[

d lnP
d lnV

���
dq¼0

or

dP
dV

���
T
[

dP
dV

���
dq¼0

:

Efficiency of Engines with Ideal Gas as Working Substance

We study three examples: (a) the Carnot engine or cycles, (b) the Otto cycle, and
(c) the Diesel cycle.

(a) Figures 1.10 and 2.7 both show the Carnot cycle. Assuming that the working
medium is an ideal gas we want to compute the thermal efficiency for this cycle.
We consider the work done by the gas along the different parts of the cycle:

a ! b : wa!b ¼
Z Vb

Va

PdV ¼dT¼0
nRT2 ln

Vb

Va

b ! c : wb!c ¼
Z Vc

Vb

PdV ¼dq¼0�CV

Z T1

T2

dT ¼ �CV ðT1 � T2Þ

c ! d : wc!d ¼
Z Vd

Vc

PdV ¼dT¼0
nRT1 ln

Vd

Vc

d ! a : wd!a ¼
Z Va

Vd

PdV ¼dq¼0�CV

Z T2

T1

dT ¼ �CVðT2 � T1Þ:

The total work done by the gas is

w ¼ wa!b þwb!c þwc!d þwd!a ¼ wa!b þwc!d : ð2:74Þ

Now we compute the heat input q2. Notice that for an ideal gas, as we just have
seen, DE ¼ DEðTÞ. The path from a to b is along an isotherm however and
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therefore 0 ¼ DEa!b ¼ q2 � wa!b, i.e. q2 ¼ wa!b. We thus obtain for the
thermal efficiency

g ¼ w
q2

¼ 1þ wc!d

wa!b
¼ 1� T1

T2

ln½Vc=Vd �
ln½Vb=Va� : ð2:75Þ

Integrating Eq. (2.71) for the ideal gas yields

V
V 0 ¼

T 0

T

� �CV=ðnRÞ
ð2:76Þ

along an adiabatic curve. We can use this to express Vd via Va and Vc via Vb.
The result is

g ¼ 1� T1
T2

ð2:77Þ

in accord with Eq. (1.44).
(b) Figure 2.8 shows the Otto cycle. The contributions from the different parts of

the cycle are

a ! b : qa!b ¼ 0 � wa!b ¼ CVðTb � TaÞ
b ! c : wb!c ¼ 0 qb!c ¼ CV ðTc � TbÞ
c ! d : qc!d ¼ 0 � wc!d ¼ CV ðTd � TcÞ
d ! a : wd!a ¼ 0 qd!a ¼ CV ðTa � TdÞ:

The thermal efficiency is

w
qb!c

¼ �CV ðTb � TaÞ � CV ðTd � TcÞ
CV ðTc � TbÞ ¼ 1� Td � Ta

Tc � Tb
:

P

V

q
b   c

q
d   a

a

b

c

dq=0
q=0

w
a   b

w
c    d

Fig. 2.8 Otto cycle
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Along the adiabatic curves we have

Ta
Tb

¼ Vb

Va

� �ðnRÞ=CV

and
Td
Tc

¼ Vc

Vd

� �ðnRÞ=CV

:

With Vb ¼ Vc and Va ¼ Vd follows

Ta
Tb

¼ Td
Tc

or Td ¼ TaTc
Tb

and therefore

g ¼ 1� Ta
Tb

: ð2:78Þ

(c) Figure 2.9 shows the Diesel cycle. This cycle is similar to the Otto cycle. The
difference is that the isochor, i.e. the line of constant volume from b to c, is
changed to an isobar, a line of constant pressure. The contributions from the
different parts of the cycle are in this case

a ! b : qa!b ¼ 0 � wa!b ¼ CVðTb � TaÞ
b ! c : wb!c ¼ PbðVc � VbÞ qb!c ¼ CVðTc � TbÞþwb!c

c ! d : qc!d ¼ 0 � wc!d ¼ CVðTd � TcÞ
d ! a : wd!a ¼ 0 qd!a ¼ CV ðTa � TdÞ:

Here the thermal efficiency is

w
qb!c

¼ �CVðTb � TaÞþPbðVc � VbÞ � CVðTd � TcÞ
CVðTc � TbÞþPbðVc � VbÞ :

P

V

q
d   a

a

b c
dq=0

q=0

w
a   b

w
b    cq

b   c wc    d

Fig. 2.9 Diesel cycle
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Using the ideal gas law together with Eq. (2.76) this may be rewritten as

g ¼ 1� Vb

Va

� �nR=CV 1
1þ nR=CV

ðVc=VbÞ1þ nR=CV � 1
Vc=Vb � 1

: ð2:79Þ

Notice that there is the following relation between the efficiencies of Otto and
Diesel cycles:

1� g ¼ Vb

Va

� �c�1

g ð2:80Þ

where

g ¼
1
c
xc�1
x�1 Diesel

1 Otto

�
ð2:81Þ

with x ¼ Vc=Vb and c ¼ 1þ nR=CV . One can show (exercise10) that gDiesel [ 1
for x[ 1 and c[ 1. This means that a reversible Otto cycle with an ideal gas as
working substance is more efficient than a reversible Diesel cycle at the same
compression ratio, Vb=Va. However, real Diesel engines can operate at greater
compression ratios and therefore greater efficiencies than Otto engines.

Remark In Fig. 1.11 we compare the Carnot engine to a competing X-engine.
A conclusion in the attendant discussion is that gCarnot ¼ gX if X is reversible. This
may inspire the idea to replace X with reversible Diesel and Otto engines. The result
is that both engines should have the same efficiency in contradiction to the above
calculation. Where is the mistake? If we apply Eq. (1.37), i.e. g ¼ 1� q1=q2, to our
two engines using q1 ¼ �qd!a and q2 ¼ qb!c, then we can indeed use the same
g ¼ 1� ð�qd!aÞ=qb!c in both cases. The respective results agree with the results

Sb

1

S

TT

a

2

3 1

2

a

3

b

I
II

Fig. 2.10 Two cycles in the
T-S-plane

10 Idea: (a) expansion in terms of x� 1 near x ¼ 1 shows that g[ 1 in this limit; (b) comparison
of x-derivatives of denominator and numerator of g.
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of (b) and (c). The difference is that the two cycles are not the same, leading to
different efficiencies for identical compression ratios.

Cycles in the T-S-Plane

Figure 2.10 shows two reversible cycles in the T-S-plane (scales are identical).
Which of the two has the greater thermal efficiency? The basic equation is

dE ¼ TdS� dw: ð2:82Þ

In both cases E ¼ EðT ; SÞ and Hcycle dE ¼ 0, because E is a state function. The
work done during one complete cycle is

w ¼
I
cycle

dw ¼
I
cycle

TdS ð2:83Þ

(clockwise). The heat absorbed is obtained by integration along the parts of the
cycle for which dS[ 0, i.e.

qin ¼
I
cycle;[

dw ¼
I
cycle;[

TdS: ð2:84Þ

Thus the two thermal efficiencies are

g ¼ w
qin

¼ area 1�2�3�1
area a-2�3�b-a

: ð2:85Þ

While the areas in the numerators are equal, the area a-2-3-b-a is larger for cycle
II and therefore

gI [ gII : ð2:86Þ

Temperature Profile of the Troposphere

At high altitude the air temperature may be much lower than the ground temper-
ature as some of us know from traveling on airplanes. How can we explain this?

We consider an air parcel rising in the atmosphere. According to the first law the
differential change of its internal energy is
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dE ¼ dq� PdV ¼ CVdT þ @E
@V

���
T
dV :

Assuming that the air is an ideal gas the last term on the right is zero as we have
just shown. We also assume that the bubble does not exchange heat and thus rises
adiabatically, i.e. dq ¼ 0. Again we simply have

�PdV ¼ CVdT : ð2:87Þ

We want the temperature, T , expressed in terms of the height, h, the air bubble
has risen. The quantity which we may connect easily to h is the pressure—as we
shall see. Therefore we use the ideal gas law to replace dV via

�PdV ¼ �nRdT þ nRTd lnP: ð2:88Þ
Combination of Eqs. (2.87) and (2.88) yields

zd ln T ¼ d lnP; ð2:89Þ

where z ¼ CV=ðnRÞþ 1.
In order to express P in terms of h we consider a column of air parallel to the

gravitational field of the earth as shown in Fig. 2.11. The pressure at the bottom of
the column element (solid cube), PðhÞ, is related to the pressure at its top,
Pðhþ dhÞ, via

PðhÞ ¼ Pðhþ dhÞþ dmairg
A

: ð2:90Þ

Here dmair is the mass of the air contained in the column element and g is the
gravitational acceleration. Via the expansion Pðhþ dhÞ � PðhÞþ ðdPðhÞ=dhÞdh we
find

h+δh

h

A

δ mair

Fig. 2.11 A column of air
parallel to the gravitational
field
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dPðhÞ ¼ �cgdh; ð2:91Þ

where c ¼ dmair=ðAdhÞ is the mass density in the column element. c of course
depends on h, the position of the element in the column. Assuming that the column
element contains n moles of air we write c ¼ nmmol=ðnRT=PÞ using the ideal gas
law. Here mmol � 0:21mO2 þ 0:78mN2 � 0:029 kg is the molar mass of air, where
mO2 � 0:032 kg and mN2 � 0:028 kg are the molar masses of oxygen and nitrogen.
Thus Eq. (2.91) turns into

d lnP ¼ � Todh
THo

; ð2:92Þ

with

Ho ¼ RTo
mmolg

; ð2:93Þ

i.e. Ho � 29:2To mK�1, where To is the air temperature at h ¼ 0. Usually Ho is
close to 8500 m.

Combination of Eq. (2.89) with Eq. (2.92) yields after integration

T ¼ T0 1� h
zHo

� �
: ð2:94Þ

According to this equation the temperature drops linearly with increasing alti-
tude. However, we need z before we can compute concrete numbers. We may look
up z in a table. In Ref. HCP we find CP ¼ 1:007 JK�1g�1 at T ¼ 300 K and
P ¼ 105 Pa. For an ideal gas CP ¼ CV þ nR (cf. p. 74) and therefore z � 3:5.11

Thus, according to Eq. (2.94) the temperature reaches absolute zero at around
3 � 104 m.

Before we compare this to the experimental data we want a corresponding
pressure profile PðhÞ, which is readily obtained by inserting Eq. (2.94) into
Eq. (2.92). We find

d lnP ¼ �z
dh

zHo � h
: ð2:95Þ

11 Some of you may already know that CV=ðnRÞ ¼ 3:5 ¼ 7=2 on the basis of the so called
equipartition theorem, because every degree of freedom contributes 1=2 to CV=ðnRÞ. Every O2-
and every N2-molecule, the majority of what air consists of, has three center of mass kinetic
degrees of freedom (3 � 1=2; cf. Eq. (2.25)). In addition both have two axes of rotation (2 � 1=2).
Finally they both are one-dimensional oscillators (2 � 1=2). A more detailed, i.e. quantum the-
oretical, calculation reveals that these two degrees of freedom do not contribute at the tem-
peratures considered here. Therefore CV=ðnRÞ ¼ 5=2 to good approximation and thus
CP=ðnRÞ � 7=2.
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If zHo 
 h we can neglect h in the denominator and the pressure profile
becomes

P ¼ P0 exp �h=Ho½ �; ð2:96Þ

where P0 is the pressure at h ¼ 0. Equation (2.96) is called barometric formula.
Integration of the full Eq. (2.95) yields

P ¼ P0 T=Toð Þz ð2:97Þ

instead.
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Fig. 2.12 Summary of results
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Figure 2.12 summarizes our results (solid lines—Eqs. (2.94) and (2.97); dashed
line—Eq. (2.96)) and compares them to data (crosses) taken from the literature
(here: “http://www.usatoday.com/weather/wstdatmo.htm”; “Source: Aerodynamics
for Naval Aviators”). Notice that the temperature data are not direct measurements
but rather data points computed from simple formulas describing the average
temperature profile at different heights. Our calculation applies to the troposphere,
i.e. to a maximum altitude of roughly 10,000 m. Beyond the troposphere other
processes determine the temperature of the atmosphere. We see that our result
somewhat underestimates the actual temperature. The middle graph shows the
pressure profile. We notice that the two theoretical models (2.96) (isothermal
case12) and (2.97) (adiabatic case) bracket the true pressure profile. The bottom
graph shows the compressibility factor, Z ¼ PV=ðnRTÞ, versus h. The data points
scatter because of scatter in the density values. Nevertheless the graph shows that
our assumption of ideal gas behavior is very reasonable.

Before moving on we want to estimate one interesting number—the total mass
of the earth’s atmosphere, Matm. Notice that the ground pressure is
Po ¼ Matmg=ð4pR2

EÞ, where RE � 6:37 � 106 m is the earth’s radius. With Po ¼ 1
bar the total mass of the atmosphere is Matm � 5:2 � 1018 kg.

Speed of Sound in Gases and Liquids

Figure 2.13 depicts a volume element in a medium. The medium can be a gas or a
liquid. The volume element experiences a pressure difference along the x-direction.
This means that the left face of the element experiences the pressure P while the
right face is under slightly higher pressure Pþ dP. Here P ¼ �P is a constant average
pressure in the medium, whereas dP ¼ dPð~r; tÞ depends on position and time.

In order to derive an expression for the speed of sound we work from the
continuity equation

@

@t
cð~r; tÞþ ~r ~uð~r; tÞcð~r; tÞð Þ ¼ 0: ð2:98Þ

P δ+ PP

A x̂u

r

Fig. 2.13 A volume element
experiencing a pressure
difference

12 With T ¼ To we can directly integrate Eq. (2.92) to obtain the barometric equation.
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Here cð~r; tÞ is the mass density inside the volume element. Again we assume
cð~r; tÞ ¼ �cþ dcð~r; tÞ. The pressure modulation causes a corresponding slight spatial
and temporal variation of the density relative to its average, �c. The quantity uð~r; tÞ is
the instantaneous velocity of the volume element due to the pressure gradient.
Using the approximation ~uð~r; tÞcð~r; tÞ �~uð~r; tÞ�c and taking another partial deriva-
tive with respect to time yields

@2

@t2
dcð~r; tÞþ ~r �c

@

@t
~uð~r; tÞ

� �
� 0: ð2:99Þ

The term in brackets is the average mass density times the acceleration of the
volume element, which can be expressed via the pressure gradient according to the
equation of motion �c@~uð~r; tÞ=@t ¼ �~rPð~r; tÞ. Therefore Eq. (2.99) becomes

@2

@t2
dcð~r; tÞ � ~r2dPð~r; tÞ � 0: ð2:100Þ

In a final step we express dPð~r; tÞ in terms of dcð~r; tÞ using the thermodynamic
definition of the adiabatic compressibility,

jS ¼ � 1
V
@V
@P

���
S
; ð2:101Þ

defined analogously to the isothermal compressibility in Eq. (2.6). Adiabatic in the
present context means that the density changes in the volume element are fast and
no heat is transferred during the fluctuation. On p. 66 we work out in detail the
relation between jS and jT . But for the moment we make use of �dV=V ¼ dc=c
and obtain dP � ð�cjSÞ�1dc. This immediately yields the (density) wave equation

@2

@t2
dcð~r; tÞ � 1

�cjS
~r2dcð~r; tÞ � 0: ð2:102Þ

The velocity of the waves, the sound waves, is

vs ¼ 1ffiffiffiffiffiffiffi
�cjS

p : ð2:103Þ

First we want to apply this formula to air and we ask: What is the speed of sound
in this medium? Air is an ideal gas for our purpose. When we work out jS in detail
(beginning on p. 66) we also show that in an ideal gas jS ¼ ðz� 1Þ=ðzPÞ. The
quantity z ¼ CV=ðnRÞþ 1 was introduced in the context of Eq. (2.89). As in the
previous example, the temperature profile of the troposphere, we use
CV=ðnRÞ ¼ 5=2. Thus in air
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vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
7RT
5mmol

r
; ð2:104Þ

where mmol � 0:029 kg is the air’s molar mass. At T ¼ �100 �C we calculate
vs ¼ 264 m/s, while for T ¼ 25 �C we find vs ¼ 346 m/s. Both numbers are in
excellent agreement with vs-values tabulated in HCP.

And what is the speed of sound in water? Here we need to know jS. Below we
shall show that jS ¼ jT � TVa2P=CP (cf. Eq. (2.165)). In Table 2.1 we find the
necessary values for water at for instance 20 �C. We also find that jS � jT in this
case, and we obtain vs ¼ 1481 m/s at this temperature—again in very good
agreement with the corresponding value in HCP.

Joule-Thomson Coefficient

The release of propane gas from its metal can causes significant cooling of the
latter. However, there may be situations when a gas leak causes heating and the
possible danger of explosion. The so called Joule-Thomson coefficient,

lJT ¼ @T
@P

���
H
; ð2:105Þ

is the quantity which tells us whether the temperature will increase or decrease in
such a process. Here lJT [ 0 means cooling (refrigerator) whereas lJT\0 means
heating.

The general process is depicted in Fig. 2.14. A gas initially is under pressure P1

and confined to a volume V1. In an adiabatic process (dq ¼ 0) the gas is pushed
through a throttle and expands into the volume V2, where the pressure is P2.
According to the first law the internal energy change is DE ¼ E2 � E1 ¼ Dw. The
net amount of work is Dw ¼ P1V1 � P2V2, because P1V1 is the work done to the
system and �P2V2 is the work done by the system. Overall we find E1 þP1V1 ¼
E1 þP1V1 and therefore DH ¼ 0. The process is said to be isenthalpic. This is why
the derivative in Eq. (2.105) is at constant enthalpy.

F
2

F
1

throttle

P
1
, V

1
P

2
, V

2

Fig. 2.14 A gas being
pushed through a throttle
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For concrete computations Eq. (2.105) may be transformed into

lJT ¼ 1
CP

T
@V
@T

���
P
� V

� �
ð2:106Þ

or

lJT ¼ TV
CP

aP � 1
T

� �
: ð2:107Þ

Let us find out how to get from Eqs. (2.105) to (2.106).
We start with

lJT ¼ @T
@P

���
H

¼ðA:3Þ � @T
@H

���
P

@H
@P

���
T

¼ � 1
CP

@H
@P

���
T
:

ð2:108Þ

The quantity @H=@PjT is similar to the quantity @E=@V jT calculated on p. 30,
i.e. the general approach is analogous. Via Eq. (2.11) it follows immediately that

TdS ¼ dH � VdP

and thus

T
@S
@P

���
T
¼ @H

@P

���
T
� V : ð2:109Þ

Similar to the derivation of @E=@V jT we now compute

dðH � TSÞ ¼ dH � TdS� SdT

¼ �SdT þVdP:
ð2:110Þ

Here we find

@ðH � TSÞ
@T

���
P
¼ �S ð2:111Þ

and

@ðH � TSÞ
@P

���
T
¼ V : ð2:112Þ

Using the interchangeability of partial derivatives, i.e.
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@

@P
@ðH � TSÞ

@T

���
P

���
T
¼ � @S

@P

���
T

ð2:113Þ

and

@

@T
@ðH � TSÞ

@P

���
T

���
P
¼ @V

@T

���
P
; ð2:114Þ

we finally obtain

@S
@P

���
T
¼ � @V

@T

���
P
: ð2:115Þ

Combination of this equation with Eqs. (2.108) and (2.109) completes the proof.
If we assume that V / Tk then the Joule-Thomson coefficient becomes

lJT / 1
CP

kTTk�1 � Tk
� � ¼ 1

CP
k � 1ð ÞTk:

Because CP [ 0 (we shall show this), we find that for the ideal gas lJT ¼ 0. If
the gas is not ideal we have lJT [ 0 for k[ 1, which means cooling, and lJT\0
for k\1, which means heating. We can now go ahead and measure k in order to
find out what will happen. Below we return to the Joule-Thomson coefficient in the
context of the van der Waals theory. The latter provides insight as to why a gas will
do one or the other.

2.3 Free Energy and Free Enthalpy

In the preceding section we found the two quantities E � TS (cf. Eq. (2.13)) and
H � TS (cf. Eq. (2.110)) to be rather useful. We therefore define the two new
functions called the free energy13

F ¼ E � TS ð2:116Þ

and the free enthalpy14

G ¼ H � TS: ð2:117Þ

13 Or also Helmholtz free energy; Hermann Ludwig Ferdinand von Helmholtz, German physiol-
ogist and physicist, *31.8.1821 Potsdam, Germany; †8.9.1894 Charlottenburg, Germany.
14 Or also Gibbs free energy; Josiah Willard Gibbs, American scientist, *11. 2.1839 New Haven,
Connecticut, †28.4.1903 New Haven, Connecticut; the founder of modern thermodynamics.
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Computing their total differentials we find

dF ¼ dE � dðTSÞ ¼ dE � SdT � TdS

¼ð1:51Þ �SdT � PdV þ ldnþ . . .
ð2:118Þ

and

dG ¼ dH � dðTSÞ ¼ dH � SdT � TdS

¼ð1:51Þ �SdT þVdPþ ldnþ . . .;
ð2:119Þ

where

@F
@T

���
V ;n;...

¼ �S; ð2:120Þ

@F
@V

���
T ;n;...

¼ �P; ð2:121Þ

@F
@n

���
T ;V ;...

¼ l; ð2:122Þ

and analogously

@G
@T

���
P;n;...

¼ �S; ð2:123Þ

@G
@P

���
T ;n;...

¼ V ; ð2:124Þ

@G
@n

���
T ;P;...

¼ l: ð2:125Þ

Obviously F ¼ FðT;V ; n; . . .Þ whereas G ¼ GðT;P; n; . . .Þ. The two are related
via

G ¼ FþPV ; ð2:126Þ

i.e. they are Legendre transforms of each other (G ¼ F � V@F=@V jT and
F ¼ G� P@G=@PjT ).
Remark 1 F is called a thermodynamic potential with respect to the variables T , V ,
n, . . .. The same is true for G with respect to T , P, n, . . .. In general we call a
thermodynamic quantity a thermodynamic potential if all other thermodynamic
quantities can be derived from partial derivatives with respect to its variables.
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Remark 2 By straightforward differentiation and knowing that S and E are state
functions it is easy to show that F and G are state functions also.

2.3.1 Relation to the Second Law

According to the first law we have

dE ¼ dq� dw: ð2:127Þ

Combination of this with Clausius’ statement of the second law (cf. Eq. (1.48))
yields

dE � TdS� � dw ð2:128Þ

or

dF jT þ dw� 0: ð2:129Þ

If dw stands for volume work only, then we may deduce

dF jT ;V � 0: ð2:130Þ

From this follows (cf. Sect. A.3) the attendant relation for the free enthalpy, i.e.

dG jT ;P � 0: ð2:131Þ

An illustration in the case of the free enthalpy is shown in Fig. 2.15. A system
initially may be prepared in a state corresponding to the solid circle. It lowers its
free enthalpy as much as possible, which brings it down to a point on the surface

T

G

P

dG|    <0
T,P

dG =-SdT + VdP

Fig. 2.15 An illustration of
the relation of G to the second
law
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shown in the sketch, where dG is given by Eq. (2.119). This surface represents the
states of lowest free enthalpy above the T-P-plane.

Of course there may be other types of work, not just volume work, involving
variables, X, other than V , which are controlled from outside the system (the
examples below explain what is meant here). In this case Eq. (2.130) and Fig. (2.13)
still apply if . . . jT ;V and . . . jT ;P are replaced by . . . jT ;V ;X and . . . jT ;P;X .

This book contains a number of applications of both (2.130), e.g. phase sepa-
ration in the context of van der Waals theory, and (2.131), e.g. chemical reactions.
Nevertheless, already at this point we want to look at three instructive examples.

Example—Capillary Rise Figure 2.16 shows a tube of radius R with one
end submerged in a liquid. In the figure the liquid has risen to a height h
against the pull of gravity. We want to calculate the equilibrium height of the
liquid in the tube.

This system comprises the liquid, the tube, and the earth. Ignoring all other
effects we use dF jT¼ ðdE � TdSÞ jT , and find that dF jT may be expressed
by the following types of work involved when h changes by the small amount
dh:

dF jT¼ cTLdA� cTAdAþ cghdV : ð2:132Þ

Here dA ¼ 2pRdh and dV ¼ pR2dh, i.e.

dF jT¼ 2pR cTL � cTAð Þþ pR2cgh
� 


dh: ð2:133Þ

The quantities cTL and cTA are the surface tensions of the tube-liquid and
tube-air interface, respectively (cf. Eq. (1.13)). The last term in (2.132) is the
negative of the work done by the system when raising the liquid volume dV
to the height h. Notice that c is the mass density of the liquid, and g is the
magnitude of the gravitational acceleration.

In the above equations h is a parameter not controlled from outside the
system. We are not doing work to the overall system nor do we extract work.
The equilibrium height may be affected from the outside only by altering the

h
TL

TAFig. 2.16 Capillary rise

2.3 Free Energy and Free Enthalpy 65



temperature, changing the surface tension or the liquid density. But here T is
held constant together with the overall volume of the system. Thus we may
apply Eq. (2.130) to the above free energy, i.e. we find the equilibrium value
of h by minimization of the above free energy with respect to h. This means
we simply set the term in square brackets equal to zero:

0 ¼ ðcTL � cTAÞ2pRþ cghpR2: ð2:134Þ

Solving for h yields the equilibrium height

h ¼ 2ðcTA � cTLÞ
cgR

: ð2:135Þ

Because h depends on the sign of cTA � cTL, it may be positive or negative.
The difference cTA � cTL can be expressed in terms of the liquid-air surface
tension c and the contact angle h (cf. Fig. 2.16) via the “force balance”
cTA � cTL ¼ c cos h. This is Young’s equation, which we shall discuss in
more detail in the next chapter. Hence

h ¼ 2c cos h
cgR

ð2:136Þ

(e.g. c ¼ 0:0728 N/m for water-air at 20 �C). A nice discussion of capillarity
and wetting phenomena can be found in de Gennes et al. (2004) (Pierre-Gilles
de Gennes, Nobel Prize in physics for his contributions to the theory of
polymers and liquid crystals, 1991).

Example—Dielectric Liquid in a Plate Capacitor The next, partially related
problem is illustrated in Fig. 2.17. A plate capacitor is in contact with a liquid
possessing again the mass density c and the dielectric constant er. If a con-
stant voltage, /, is applied to the capacitor, the liquid rises to a certain

h

Fig. 2.17 Dielectric liquid in
a plate capacitor
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equilibrium height between the capacitor plates. This is what we want to
calculate.

However, first we must discuss the relation of the free energy, F, to the
electric work expressed in Eq. (1.21) …to be continued…

We start from

dF ¼ dðE � TSÞ ¼ dE � SdT � TdS

¼ dE � SdT � dE �
Z

dV
~E � d~D
4p

þ . . .

 !

¼ �SdT þ
Z

dV
~E � d~D
4p

;

i.e.

dF ¼ �SdT þ
Z

dV
~E � d~D
4p

: ð2:137Þ

Momentarily we use only the electric field contribution from Eq. (1.21). The dots
in the second line indicate that there are other types of work in general, which here
either do not occur (e.g., chemical work) or can be neglected (e.g., volume change)
or will be added later (work against the gravitational field). Also notice that

~E
4p

¼ @f

@~D

���
T ;V ;...

; ð2:138Þ

where f is a free energy density.
Thus we find that in the present case we have F ¼ FðT ; ~DÞ. However, this is not

appropriate here—why? Notice that the scalar potential (voltage drop), / is related
to the (mean) electric field in the capacitor via

~E ¼ � ~r/: ð2:139Þ

The equation applies to both the filled and the empty part of the capacitor. This
means that if we hold the voltage on the capacitor plates constant, we also hold the
~E-field between the plates constant. If we want to minimize F ¼ FðT; ~D; hÞ with
respect to h, in order to compute the equilibrium height, we must do this keeping T
and ~D fixed. But ~D is not the same as~E, which is constant in the present setup. Thus
we need a new function ~F ¼ ~FðT ;~E; hÞ instead.
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We try the Legendre transformation

~F ¼ F �
Z

dV
~E � ~D
4p

ð2:140Þ

and obtain

d~F ¼ dF �
Z

dV
d~E � ~D
4p

�
Z

dV
~E � d~D
4p

¼ �SdT �
Z

dV
d~E � ~D
4p

;

i.e.

d~F ¼ �SdT �
Z

dV
d~E � ~D
4p

: ð2:141Þ

Indeed we have ~F ¼ ~FðT ;~E; hÞ. We now continue our example.

… The explicit ~E-dependent contribution to ~F jT is obtained by integration of
the differential relation @~F=@EjT ¼ �erEV=ð4pÞ with respect to E from zero
to the actual field strength. Notice that we assume a constant field strength
between the capacitor plates as well as ~D ¼ er~E (This equation is used in
several places throughout this book, which means that the attendant calcu-
lations do depend on its validity!). Notice also that the field strength is the
same with and without the dielectric. Analogous to Eq. (2.132) we collect all
relevant work terms expressing d~F jT via

d~F jT¼ ��r

Z E

0

d~E0 �~E0

4p
dV þ

Z E

0

d~E0 �~E0

4p
dV þ cghdV ð2:142Þ

The first term is due to a volume increase, dV , of liquid between the
capacitor plates. The second term is due to the corresponding reduction of
vacuum (or air). Following the same reasoning as in the previous example,
here the system includes the capacitor, the liquid, and the earth, we find the
equilibrium height by setting the right side of the above equation equal to
zero:

0 ¼ � 1
8p

ðer � 1ÞE2 þ cgh: ð2:143Þ
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Solving for h yields

h ¼ ðer � 1Þ~E2

8pcg
: ð2:144Þ

Remark Somebody may comment that the introduction if ~F is not necessary,
because ~D and ~E here are related via a constant er. This is not true. Using F instead
of ~F changes the sign of the first term in brackets in Eq. (2.143) and there would be
no sensible solution.

Before leaving this subject we study the same problem from another angle. We
detach the capacitor from its voltage supply. This means that we switch from
/ ¼ const to a situation where Q ¼ const. Here �Q is the charge on the capacitor
plates. What happens to Eq. (2.144)?

Figure 2.18 illustrates the situation. At (a) we have the boundary conditions

ð~EI �~EIIÞ 
~n ¼ 0 and ð~DI � ~DIIÞ �~n ¼ 0; ð2:145Þ

where ~n is a unit vector perpendicular to the interface between liquid and vacuum
(or air) at (a). At (b) we have instead

~EI 
~n ¼ 0 and ~DI �~n ¼ 4prI : ð2:146Þ

Now~n is perpendicular to the capacitor plates. If we move (b) up into region II
the boundary conditions become

~EII 
~n ¼ 0 and ~DII �~n ¼ 4prII : ð2:147Þ

rI and rII are the surface charge densities in these respective regions. From (2.145)
we can see that Ex;I ¼ Ex;II . Because ~DI ¼ er~EI and ~DII ¼ ~EII we can conclude
from (2.146) and (2.147) that

h

Q -Q

H

a

bI

II

x

zFig. 2.18 Different
boundaries in the case of the
liquid inside the plate
capacitor
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rI ¼ errII ; ð2:148Þ

i.e. the surface charge densities in the two regions are not equal. We can use this
result to obtain

Q ¼ rILyhþ rI
er
LyðH � hÞ or rI ¼ erQ=Ly

ðer � 1ÞhþH
; ð2:149Þ

where Ly is the width of the capacitor in y-direction.
We now work out

Z
Vcapacitor

dV
~E � ~D
8p

���
filled

�
Z
Vcapacitor

dV
~E � ~D
8p

���
empty

¼ A
8p

herE
2
x;I þðH � hÞE2

x;II

� 	
� A
8p

HE2
x;II

¼ A
8p

ðer � 1ÞhE2:

ð2:150Þ

In the last step we have use Ex;I ¼ Ex;II ¼ E. This shows that we can treat this
case analogous to the fixed potential case above. The result of course is the same as
before. However, this time we must express E2 via the total charge Q.

Example—Euler Instability The third example in this series is illustrated in
Fig. 2.19. The figure shows a thin plate in a vice subject to a compressive
force, fc. This systems encompasses the plate only. The pressure exerted by
the vice is controlled from the outside. In this case there is an elastic FeljT , i.e.

Fel jT¼ eh3

24

Z
plate

dxdy
@2f
@x2

� �2

:

The quantity h is the plate’s thickness, e is the elastic modulus of the
plate’s material. The function f ¼ fðxÞ describes the shape of the plate when
looked at along the y-direction. The expression on the right side of the
equation is the work done by the plate’s internal forces, when it is bent into
the shape described by fðxÞ. This result of continuum theory of elasticity may
be found in Landau et al. (1986).

What is the equilibrium shape of the plate depending on the applied
compressive force? To find the answer we now employ relation (2.129), i.e.

dFel jT þ dw� 0: ð2:151Þ
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Here w is the negative of the work done by the vice, i.e. wc ¼ �w. We
compute wc by adding up the total displacement parallel to the direction of the
force from infinitesimal increments (cf. the inset in Fig. 2.19):

ds� dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ df xð Þð Þ2

q
� dx � dx 1þ 1

2
@f xð Þ
@x

� �2

�1

 !
:

Thus

wc ¼ 1
2
fc

Z
dx

@f
@x

� �2

¼ 1
2
r
Z
V
dV

@f
@x

� �2

:

V is the volume of the plate, and r is the stress equal to fc=ðhLyÞ, where Ly is
the extend of the plate in y-direction.

We search for the minimum of the left side in (2.151) by “offering”
suitable shape alternatives to the plate, i.e. we carry out a variation (or
minimization) in terms of f:

0 ¼ df Fel � wcð Þ ¼ df

Z
dV

e
2
z2

@2f
@x2

� �2

� r
2

@f
@x

� �2
" #

:

We write 1
h

R h=2
�h=2 dzz

2 ¼ 1
12 h

2 � I and thus

z

y

x L

dx

x

ds

d

f
c

Fig. 2.19 Buckling of a thin
plate
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df
1
2

Z
dxdy eI @2f

@x2

� �2

�r
@f
@x

� �2
" #

¼ 0: ð2:152Þ

Carrying out the variation we obtain

Z
dxdy

h
eI @2f

@x2

� �
@2

@x2
df

� �
� r

@f
@x

� �
@

@x
df

� �i
¼ 0:

Partial integration using df xð Þ ¼ 0 at �L=2 finally yields the differential
equation for the “shape function”:

eI @4f
@x4

þ r
@2f
@x2

¼ 0:

Making the Ansatz f xð Þ ¼ f0 sin qxð Þ we find

eIq4 � rq2 ¼ 0 or rcrit ¼ eIq2min:

The planar solution is q ¼ 0, whereas the bent plate corresponds to q[ 0.
The smallest possible non-vanishing q-value, qmin, defines the critical stress
limit, rcrit, at which the transition from planar to bent occurs spontaneously.
This value of qmin depends on the boundary conditions. Here we have
qn ¼ ðp=LÞn, where n ¼ 1; 2; . . . and therefore

rcrit ¼ p2eI
L2

: ð2:153Þ

In the literature this phenomenon is called Euler buckling. The problem
may be modified by embedding the plate into an elastic medium. This results
in larger values for qmin depending on the medium’s stiffness (Young’s
modulus).

Remark Notice that the above system has the freedom to decide to which side it
buckles. This phenomenon is a spontaneous symmetry breaking.

2.3.2 Maxwell Relations

Equating the right sides of (2.16) and (2.17) as well as the right sides of (2.113) and
(2.114) we have used that both F and G are state functions. The resulting formulas,
(2.18) and (2.115), are examples of so called Maxwell relations.
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It is easy to construct more Maxwell relations via the following recipe. Take any
state function g and any pair of variables, x and y, it depends upon. If g ¼ pdxþ qdy
then

@p
@y

���
x
¼ @q

@x

���
y

ð2:154Þ

yields a Maxwell relation. In general we may use the differential relations in
Appendix A.2 to generate even more differential relations between thermodynamic
quantities, i.e. more Maxwell relations.

Example—Relating CV and CP A nice exercise useful for practicing the
“juggling” of partial derivatives, which is so typical for thermodynamics, is
the derivation of the general relation between CV and CP. We start from

CP � CV ¼ @H
@T

���
P
� @E
@T

���
V
: ð2:155Þ

Using G ¼ H � TS and

�S ¼ @G
@T

���
P
¼ @H

@T

���
P
� S� T

@S
@T

���
P

ð2:156Þ

as well as F ¼ E � TS and

�S ¼ @F
@T

���
V
¼ @E

@T

���
V
� S� T

@S
@T

���
V

ð2:157Þ

yields

CV ¼ T
@S
@T

���
V

ð2:158Þ

and

CP ¼ T
@S
@T

���
P
: ð2:159Þ

With

@S
@T

���
P

¼ðA:1Þ @S
@T

���
V
þ @S

@V

���
T

@V
@T

���
P

ð2:160Þ
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we have

CP � CV ¼ T
@S
@V

���
T

@V
@T

���
P

¼ð2:18Þ T @P
@T

���
V

@V
@T

���
P

¼ðA:3Þ �T
@P
@V

���
T

@V
@T

���
P

� �2

¼ð2:5Þ;ð2:6Þ
TV

a2P
jT

:

ð2:161Þ

Using (2.9) we find for an ideal gas

CP � CV ¼ nR; ð2:162Þ

which we had used in the calculation of the air temperature profile on p. 56.

Example—Adiabatic Compressibility Another exercise similar to the pre-
vious one is the derivation of jS, the adiabatic compressibility. This quantity
is defined in Eq. (2.101), i.e.

jS ¼ � 1
V
@V
@P

���
S
:

We transform the right side via

@V
@P

���
S
¼ðA:1Þ @V

@T

���
P|fflffl{zfflffl}

¼ð2:5ÞVaP

@T
@P

���
S
þ @V

@P

���
T|fflffl{zfflffl}

¼ð2:6Þ �VjT

:
ð2:163Þ

The remaining unknown derivative is

@T
@P

���
S
¼ðA:3Þ � @T

@S

���
P

@S
@P

���
T
¼ @T

@S

���
P|ffl{zffl}

¼ð2:159Þ T
CP

@

@P
@G
@T

���
P

���
T|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼@V
@T

��
P
¼VaP

:
ð2:164Þ

Putting everything together yields
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jS ¼ jT � TV
a2P
CP

ð2:165Þ

or if we combine this equation with (2.161)

jS
jT

¼ CV

CP
: ð2:166Þ

Again we can calculate jS for an ideal gas. The result is

jS ¼ z� 1
z

1
P
: ð2:167Þ

The quantity z ¼ CV=ðnRÞþ 1 was introduced in the context of Eq. (2.89) (cf. its
discussion in the footnote on p. 56).

Example—Electric Field Effect on CV What is the effect of an electric field
on CV? We find the answer by working from

@

@~E

@2~F
@T2

���
q;~E|fflfflfflffl{zfflfflfflffl}

¼ð2:146Þ �T�1CV ;~E

���
T ;q

¼ @2

@T2

@~F

@~E

���
T ;q|fflfflffl{zfflfflffl}

¼ð2:129Þ �V~D=ð4pÞ

���
q;~E

;
ð2:168Þ

i.e.

@CV ;~E

@~E

���
T ;q

¼ TV
4p

@2~D
@T2

���
q;~E

; ð2:169Þ

where q ¼ N=V and assuming constant fields throughout V . With ~D ¼ er~E
we may easily integrate this equation from zero to the final field strength,
which yields

CV ðEÞ ¼ CVð0Þþ TVE2

8p
@2er
@T2

���
q
: ð2:170Þ

Remark A similar strategy helps to find corresponding expressions for jT or aP.
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Example—Electrostriction Here we want to show the validity of

1
q
@q
@E

���
l;T

¼ E
4p

@er
@P

���
E;T

ð2:171Þ

(cf. Frank 1955). Imagine a plate capacitor completely submerged in a
dielectric liquid. The dielectric constant of the liquid is er. The size of the
capacitor is small compared to the extend of the liquid reservoir. This means
that far from the capacitor the latter has no effect on the chemical potential, l,
of the liquid, i.e. l is constant. In addition the temperature, T , is held constant
as well. The mean electric field, ~E, between the capacitor plates will affect the
density, q ¼ N=V , inside the capacitor. This is the expression on the left. The
change does depend on electric field strength, E, and the derivative of er with
respect to pressure, P. Our starting point is relation (A.3), i.e.

1
q
@q
@E

���
l;T

¼ � 1
q
@q
@l

���
E;T|fflfflfflfflffl{zfflfflfflfflffl}

¼ð�Þ qjT

@l
@E

���
q;T

:
ð2:172Þ

Note that (*) follows via q@=@q ¼ �V@=@V and using @G=@V jT ;N;E ¼
�1=jT derived below (cf. (2.195)). We continue with

@l
@E

���
q;T

¼ @

@E
@~F
@N

���
T ;V ;E

���
q;T

¼ @

@N
@~F
@E

���
q;T

���
T ;V ;E

¼ð2:141Þ � E
4p

@er
@q

���
E;T

:

ð2:173Þ

The final ingredient is

q
@er
@q

���
E;T

¼ðA:2Þq @P
@q

���
E;T

@er
@P

���
E;T

¼ 1
jT

@er
@P

���
E;T

: ð2:174Þ

Combination of the last three equations yields the desired result.

In order to estimate the magnitude of this effect we integrate Eq. (2.171)
assuming that the derivative on the right side can be replaced by its value at zero
field strength, i.e.

Dq
q

� E2

8p
@er
@P

���
o;T

: ð2:175Þ
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The transition to SI-units is accomplished by replacing E with
ffiffiffiffiffiffiffiffiffi
4peo

p
E, i.e. in

SI-units Eq. (2.175) becomes Dq=q � ðeo=2ÞE2@er=@Pjo;T . Because eo is a small

constant (	 10�11 in these units), an appreciable effect requires rather high fields
and/or conditions for which the derivative becomes large.15

2.4 Extensive and Intensive Quantities

An important concept is the characterization of thermodynamic quantities as either
intensive or extensive.

Imagine two identical containers filled with the same kind and amount of of gas
at the same temperature. What happens if we bring the two containers in contact
and allow the gas to fill the combined containers as if it was one. Obviously
temperature and pressure do not change. The quantities T and P therefore are called
intensive. Volume on the other hand is doubled. Mathematically this means V / n.
Such quantities are said to be extensive. n itself is therefore extensive. Thus far:

• intensive: T , P, . . .
• extensive: V , n, . . .

The ratio of two extensive quantities, e.g. n=V , again is intensive of course.
Another intensive quantity is the chemical potential, l. Whether one mole of
material is added to a large system or to twice as large a system should not matter.16

This however has implications for the free enthalpy, G. According to Eq. (2.119)
we have for a one-component system

dG
��
T ;P;... ¼ ldn; ð2:176Þ

where . . . stands for other intensive variables in addition to T and P. Because l is
intensive and dn is extensive, we conclude that dG is extensive also. By adding (or
integrating over) sufficiently many differential amounts of material, n ¼ R dn, we
find the important relation

GðT;P; n; . . .Þ ¼ ln: ð2:177Þ

For a K-component system this becomes

GðT ;P; n1; . . .; nK ; . . .Þ ¼
P
i¼1

K
lini: ð2:178Þ

15 In liquid water @ ln er=@Pjo;T � 5 � 10�5=bar.
16 Momentarily we talk about one-component systems and not about mixtures.
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Equating dG on the left with dðP
i¼1

K
liniÞ on the right, i.e.

�SdT þVdPþ . . .þ
XK
i¼1

lidni ¼
XK
i¼1

ðlidni þ nidliÞ; ð2:179Þ

yields

�SdT þVdPþ . . .�P
i¼1

K
nidli ¼ 0, ð2:180Þ

the Gibbs-Duhem equation. The significance of this equation will become clear in
many examples to come.

Remark 1 Suppose we consider the potential energy U of a system consisting of N
pairwise interacting molecules. Disregarding their spatial arrangement we may
write U 	 ðN2=2ÞV�1

R1
a drr2�n. The factor N2 � NðN � 1Þ=2 is the number of

distinct pairs, V is the volume, a is a certain minimum molecular separation, and
r�n is the leading distance dependence of the molecular interaction. If n[ 3 the
integral is finite and consequently U=V / q2, where q is the number density
molecules. This means that U (and also E) is extensive by our above definition.
However, if n� 3 the situation is more complex. Now it is necessary to include the
spatial and orientational correlations between the molecules. In general these
conspire to yield an extensive U. An exception is gravitation, where U=V 	 q2V2=3

including an additional shape dependence.

Remark 2 Looking at the two Eqs. (2.176) and (2.177) we may wonder whether
one can apply the same argument to

dF
��
T ;V ;... ¼ ldn;

valid according to Eq. (2.118). This immediately leads to F ¼ G, which clearly is
incorrect! The point is that we cannot keep the volume constant and simultaneously
add up increments dn to the full n. Therefore this procedure does not work for
dF
��
T ;V ;....

Example—Partial Molar Volume Consider a binary liquid mixture (A and
B) at constant temperature and pressure. The volume change due to a dif-
ferential change of the composition is

dV¼ @V
@nA

����
T ;P;nB

dnA þ @V
@nB

����
T ;P;nA

dnB ¼ vAdnA þ vBdnB: ð2:181Þ

The quantities vA and vB are called partial molar volumes. In this sense li
is the partial molar free enthalpy of component i.

78 2 Thermodynamic Functions



Now we argue as in the case of Eq. (2.176). V is extensive and so is n.
Therefore we may ad up dV ’s to the full V at constant T and P and thus

V ¼ vAnA þ vBnB: ð2:182Þ

However, the quantity of interest here is not V but the volume difference
upon mixing, DV . The volumes of the pure substances are v�i ni, where v�i ¼
@V=@nijT ;P;nj¼0ði 6¼jÞ (i; j ¼ 1; 2) and thus

DV ¼ ðvA � v�AÞnA þðvB � v�BÞnB: ð2:183Þ

Notice that vA and vB are not independent. To see this we simply must
realize that we can carry out the steps from Eq. (2.178) to the Gibbs-Duhem
Eq. (2.180) with G replaced by V and li replaced by vi. At constant T and P
this means

dvAnA þ dvBnB ¼ 0: ð2:184Þ

In addition we notice that this may immediately be extended to more than two
components. And this is not the end, because the same reasoning applies to every
extensive quantity U ¼ UðT ;P; n1; n2; . . .Þ, i.e.

DU ¼
XK
i

ð/i � /�
i Þni; ð2:185Þ

and

XK
i¼1

nid/i ¼ 0 ðT ;P ¼ constantÞ; ð2:186Þ

where /i ¼ @U=@nijT ;P;njði6¼jÞ are the respective partial molar quantities. Here U

stands for extensive thermodynamic quantities like V , H, CP, . . ..

2.4.1 Homogeneity

Before leaving this subject we look at it briefly from another angle. In mathematics
a function f ðx1; x2; . . .; xnÞ is said to be homogeneous of order m if the following
condition is fulfilled:
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f ðkx1; kx2; . . .; kxnÞ ¼ kmf ðx1; x2; . . .; xnÞ: ð2:187Þ

Thus we may consider the extensive quantities free energy and free enthalpy as
first-order homogeneous functions in V , ni and ni respectively, i.e.

FðT; kV ; kn1; kn2; . . .Þ ¼ kFðT ;V ; n1; n2; . . .Þ ð2:188Þ

GðT ;P; kn1; kn2; . . .Þ ¼ kGðT ;P; n1; n2; . . .Þ: ð2:189Þ

Differentiating (2.188) on both sides with respect to k yields

dF
dk

¼ @F
@ðkVÞ

���
T ;n1;n2;...

V þ
XK
i¼1

@F
@ðkniÞ

���
T ;V ;nkð6¼iÞ

ni ¼ F: ð2:190Þ

For k ¼ 1 this becomes

F ¼ @F
@V

���
T ;n1;n2;...

V þ
XK
i¼1

@F
@ni

���
T ;V ;nkð6¼iÞ

ni ¼ð2:121Þ;ð2:178Þ �PV þG ð2:191Þ

in agreement with Eq. (2.126). This also implies

li ¼
@F
@ni

���
T ;V ;nkð6¼iÞ

; ð2:192Þ

i.e. the generalization of Eq. (2.122) to more than one component. Differentiating
(2.189) on both sides with respect to k and setting k ¼ 1 reproduces Eq. (2.178).
Clearly, we may apply the same idea to other extensive thermodynamic functions
like SðE;V ; n1; n2; . . .Þ, i.e. kSðE;V ; n1; n2; . . .Þ ¼ SðkE; kV ; kn1; kn2; . . .Þ,
EðT ;V ; n1; n2; . . .Þ, i.e. kEðT ;V ; n1; n2; . . .Þ ¼ EðT; kV ; kn1; kn2; . . .Þ, or others.

Likewise we may consider the intensive quantities as zero-order homogeneous
functions in their extensive variables, e.g.

PðT ;V ; n1; n2; . . .Þ ¼ PðT ; kV ; kn1; kn2; . . .Þ: ð2:193Þ

Differentiating with respect to k on both sides and subsequently setting k ¼ 1
yields

0 ¼ @P
@V

���
T ;n1;n2;...

V þ
XK
i¼1

@P
@ni

���
T ;V ;nkð6¼iÞ

ni: ð2:194Þ
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Using P ¼ �@F=@V jT ;n1;n2;... and changing the order of differentiation we find

@G
@V

���
T ;n1;n2;...

¼ � 1
jT

: ð2:195Þ

This easily is verified by insertion of (2.126) and subsequent differentiation.
The concept of homogeneity does not produce otherwise unattainable relations,

but it is an elegant means to compute them. We revisit homogeneity in a gener-
alized form in the context of continuous phase transitions in Sect. 4.2, where again
it proves useful.
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Chapter 3
Equilibrium and Stability

3.1 Equilibrium and Stability via Maximum Entropy

3.1.1 Equilibrium

The first row of boxes shown in Fig. 3.1 depicts a number of identical systems
differing only in their internal energies, Em, volumes, Vm, and mass contents, nm. The
boundaries of the systems allow the exchange of these quantities between the
systems upon contact. The second row of boxes in Fig. 3.1 illustrates this situation.
All (sub-)systems combined form an isolated system. We ask the following ques-
tion: What can be said about the quantities xm, where x represents E, V or n, after we
bring the boxes into contact and allow the exchanges to occur?

According to our experience the exchange is an irreversible spontaneous process
and therefore relation (1.50) applies to the entropy of the overall system. We can
expand the entropy of the combined systems, S, in a Taylor series in the variables
Em, Vm, and nm with respect to its maximum, i.e.

S ¼ So þ
X
m

DEm
@Sm
@Em

���o
Vm;nm

þDVm
@Sm
@Vm

���o
Em;nm

þDnm
@Sm
@nm

���o
Em;Vm

� �

þ 1
2

X
m0;m

DEm0
@

@Em0

���o
Vm0 ;nm0

þDVm0
@

@Vm0

���o
Em0 ;nm0

þDnm0
@

@nm0

���o
Em0 ;Vm0

� �

� DEm
@Sm
@Em

���o
Vm;nm

þDVm
@Sm
@Vm

���o
Em;nm

þDnm
@Sm
@nm

���o
Em;Vm

� �
;

ð3:1Þ

where S ¼Pl SlðEl;Vl; nlÞ. The quantity So is the maximum value of the
entropy. Notice that this quantity is somewhat hypothetical. The usefulness of this
approach relies on the differences between time scales on which certain processes
take place.
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Leaving a cup of hot coffee on the table, we expect to find coffee at room
temperature upon our return several hours later. If we come back after some weeks
of vacation the coffee has vanished, i.e. the water has evaporated. Only the dried
remnants of the coffee remain inside the cup. After waiting for a much longer time,
how long depends on numerous things including the material of the coffee cup, the
cup itself has crumbled into dust. However, if we are interested merely in the initial
cooling of the coffee to room temperature, we may neglect evaporation and we may
certainly neglect the deterioration of the cup itself.

In this sense we shall use the expression of equilibrium. For all practical pur-
poses equilibrium is understood in a “local” sense, i.e. the time scale underlying the
process of interest is much shorter than the time scale underlying other processes
influencing the former. In the case at hand equilibrium means that all variables, Em,
Vm, and nm, have assumed the values Eo

m , V
o
m , and nom corresponding to maximum

entropy. However, we may impose deviations from these values in each subsystem,
Dxm, as illustrated in the bottom part of Fig. 3.1. The long dashed line indicates the
equilibrium value(s), which is the same in all (identical) systems. The short dashed
lines indicate the imposed deviations from equilibrium in each system, Dxm.
Because the whole system is isolated, we have the condition(s)X

m

Dxm ¼ 0: ð3:2Þ

Equation (3.1) is nothing but a Taylor expansion of S to second order in the Dxm,
which we can freely and independently adjust except for the condition(s) (3.2).

Here the value of So is of no interest to us. But already the linear terms, i.e the
first sum, leads to important conclusions. If for the moment we consider two
subsystems only, i.e. m ¼ 1; 2, then the condition of maximum entropy yields

E
1
, V1, n1 E

2
, V2, n2 E

3
, V3, n3 E , V , n

x
1

x
2

x
3

x

x

Fig. 3.1 Identical systems initially differing only in their internal energies, volumes, and mass
content
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0 ¼ DE1
@S1
@E1

���o
V1;n1

� @S2
@E2

���o
V2;n2

� �

þDV1
@S1
@V1

���o
E1;n1

� @S2
@V2

���o
E2;n2

� �

þDn1
@S1
@n1

���o
E1;V1

� @S2
@n2

���o
E2;V2

� �
;

ð3:3Þ

where we have used S ¼Pm SmðEm;Vm; nmÞ and Eq. (2). Via the Eqs. (1.52) and
(1.53), and (1.55) this becomes

DE1
1
T1

� 1
T2

� �
þDV1

P1

T1
� P2

T2

� �
� Dn1

l1
T1

� l2
T2

� �
¼ 0:

Because DE1, DV1, and Dn1 are arbitrary, we conclude that

T ¼ T1 ¼ T2 ð3:4Þ

P ¼ P1 ¼ P2 ð3:5Þ

l ¼ l1 ¼ l2 ð3:6Þ

at equilibrium.
These conditions of course may be generalized to an arbitrary number of sub-

systems. The latter in general are different regions in space within a large system. In
some cases different regions in space may contain distinct phases. An example is ice
in one region of space and liquid water in an adjacent region. One and the same
material may occur in different phases depending on thermodynamic conditions.
A phase is a homogeneous state of matter. Each phase usually differs from another
phase by certain clearly distinguishable bulk properties. Ice, for instance, has a
lower symmetry than liquid water. At coexistence, defined by the above conditions,
ice has a lower density than liquid water etc. Changing from one phase to another
often, but not always, is accompanied by a discontinuous change of certain ther-
modynamic quantities. We shall discuss phase transformations in detail below.

Equation (3.6) is derived for a one-component system. Of course we can extend
our reasoning to a K-component system, which yields

lð1Þi ¼ lð2Þi ð3:7Þ
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(i ¼ 1; . . .;K). Here ð1Þ and ð2Þ are the subsystem indices. Again ð1Þ and ð2Þ may refer
to different phases, i.e. at equilibrium the chemical potential of each component is
continuous across the phase boundary. In particular if there are P phases, each
considered to be a subsystem, we find

lðmÞi ¼ lðlÞi ; ð3:8Þ

where m; l ¼ 1; 2; . . .;P.

3.1.2 Gibbs Phase Rule

In general there are K components in P different phases (solid, liquid, gas, . . .) at
constant T and P. We may ask: What is the maximum number of coexisting phases
at equilibrium? Or to be pictorial, is the situation in Fig. 3.2 possible, where a
one-component system contains four coexisting phases—“Gas”, “Liquid”, “Solid”,
and “Flubber”?

We assume a system containing K components and P coexisting phases. Each
phase may be considered a subsystem in the above sense. The state of each phase m
is then determined by its temperature TðmÞ, its pressure PðmÞ, and its composition

{nðmÞ1 ; nðmÞ2 ; . . .; nðmÞK }. All in all we must specify

PðK þ 2Þ ð3:9Þ

quantities.
On the other hand, equilibrium, as we have just discussed, imposes certain con-

straints. In the case of two subsystems (now phases) and just one component we had
to fulfill the Eqs. (3.4) to (3.6). In the case of P phases and K components we have

Gas

Liquid

Solid

Flubber

Gas

Liquid

Solid

Flubber

Fig. 3.2 Hypothetically
coexisting phases
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T 1ð Þ ¼ T 2ð Þ ¼ . . . ¼ T Pð Þ

P 1ð Þ ¼ P 2ð Þ ¼ . . . ¼ P Pð Þ

l 1ð Þ
1 ¼ l 2ð Þ

1 ¼ . . . ¼ l Pð Þ
1

l 1ð Þ
2 ¼ l 2ð Þ

2 ¼ . . . ¼ l Pð Þ
2

..

.

l 1ð Þ
K ¼ l 2ð Þ

K ¼ . . . ¼ l Pð Þ
K

and therefore

ðP� 1ÞðKþ 2Þ ð3:10Þ

constraints. In addition there are constraints having to do with the total amount of
material in each phase. In the one-component system illustrated in Fig. 3.2 we may
for instance insert a diagonal partition without physical effect—it is a key
assumption that the shape of our container has no influence on the type of phases
present. This means that the total amount of material in a phase m,

nðmÞ ¼
XK
i¼1

nðmÞi ;

does not affect the phase coexistence. This yields

P ð3:11Þ

constraints. The net number of adjustable quantities, i.e. the number of overall
adjustable quantities, (3.9), minus the number of constraints, (3.10) and (3.11), is
called the number of degrees of freedom, Z. Thus

Z ¼ K �Pþ 2� 0: ð3:12Þ

Applied to our above system we find 1� 4þ 2\0. This means that four phases
cannot coexist simultaneously in a one-component system. The maximum number
of coexisting phases in a one-component system is three—but thermodynamics
does not specify which three phases. Relation (3.12) is Gibbs phase rule.
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Remark 1 Our reasoning is based on subsystems whose state is determined by
temperature, pressure, and composition. However, we may also include external
electromagnetic fields requiring recalculation of the degrees of freedom.

Remark 2 Below we shall discuss in more detail what we mean by component.
This in turn will affect the statement of the phase rule (cf. p. 110).

3.1.3 Stability

We now return to Eq. (3.1) and focus on the second order term. According to our
discussion the linear term vanishes at equilibrium. In addition, in the second order
term, the cross contributions (m 6¼ m0) also vanish and therefore DS ¼ S� So is
given by

DS ¼ 1
2

X
m

DEm
@

@Em

����o
Vm;nm

þDVm
@

@Vm

����o
Em;nm

þDnm
@

@nm

����o
Em;Vm

" #

�
(
DEm

@Sm
@Em

����o
Vm;nm|fflfflfflffl{zfflfflfflffl}

¼1=T

þDVm
@Sm
@Vm

����o
Em;nm|fflfflfflffl{zfflfflfflffl}

¼P=T

þDnm
@Sm
@nm

����o
Em;Vm|fflfflfflffl{zfflfflfflffl}

¼�l=T

)

¼ 1
2

X
m

½. . .�DSm

¼ 1
2

X
m

� 1
T
DSm½. . .�T þ 1

T
½. . .�ðTDSmÞ

� �

¼ 1
2T

X
m

�DSmDTm þDPmDVm � DlmDnmð Þ;

ð3:13Þ

where we have used

TDS ¼ DEþPDV � lDn ð3:14Þ

(cf. Eq. (1.51)). Equation (3.13) quite generally expresses the entropy fluctuations
via the corresponding fluctuations in the subsystems.

Now we choose the variables T , V , and n, which yields
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ð. . .Þ ¼ � @Sm
@Tm

����o
Vm;nm

DTm þ @Sm
@Vm

����o
Tm;nm

DVm þ @Sm
@nm

����o
Tm;Vm

Dnm

" #
DTm

þ @Pm

@Tm

����o
Vm;nm

DTm þ @Pm

@Vm

����o
Tm;nm

DVm þ @Pm

@nm

����o
Tm;Vm

Dnm

" #
DVm

� @lm
@Tm

����o
Vm;nm

DTm þ @lm
@Vm

����o
Tm;nm

DVm þ @lm
@nm

����o
Tm;Vm

Dnm

" #
Dnm

¼þ �CV

T
DTm � @Pm

@Tm

����o
Vm;nm

DVm þ @lm
@Tm

����o
Vm;nm

Dnm

" #
DTm

þ @Pm

@Tm

����o
Vm;nm

DTm � 1
VojoT

DVm � @lm
@Vm

����o
Tm;nm

Dnm

" #
DVm

þ �@lm
@Tm

����o
Vm;nm

DTm � @lm
@Vm

����o
Tm;nm

DVm � @lm
@nm

����o
Tm;Vm

Dnm

" #
Dnm

¼� CV

T
DT2

m �
1

VjT
DV2

m � @lm
@nm

����o
Tm;Vm

Dn2m � 2
@lm
@Vm

����o
Tm;nm

DnmDVm:

We need to transform this equation one last time using

DVm ¼ @Vm

@Tm

����o
Pm;nm

DTm þ @Vm

@Pm

����o
Tm;nm

DPm þ @Vm

@nm

����o
Tm;Pm

Dnm

� DVn;m þ @Vm

@nm

����o
Tm;Pm

Dnm:

The quantity DVn;m is the volume fluctuation at constant mass content. We obtain

ð. . .Þ ¼ �CV

T
DT2

m �
1

VjT
DV2

n;m �
@lm
@nm

����o
Tm;Pm

Dn2m : ð3:15Þ

According to the second law DS must be negative, because otherwise the fluc-
tuations would grow spontaneously in order to increase the entropy. Therefore we
find

CV � 0 jT � 0 @l
@n

��o
T ;P � 0 ð3:16Þ
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for the isochoric heat capacity, CV , the isothermal compressibility, jT , and the
quantity @l

@n

��o
T ;P. These relations are sometimes denoted as thermal stability,

mechanical stability, and chemical stability.1 Consequently we also have

@2G
@T2

����
P;n

¼ � 1
T
CP � 0

@2G
@P2

����
T ;n

¼ �VjT � 0 ð3:17Þ

@2F
@T2

����
V ;n

¼ � 1
T
CV � 0

@2F
@V2

����
T ;n

¼ 1
VjT

� 0 ð3:18Þ

(0�CV �CP!).

Remark The above condition for chemical stability can be generalized to K
components by replacing the one-component terms, Dnm. . ., in the derivation with
their multicomponent versions,

P
k Dnm;k. . .. The result is

XK
j;k¼1

@lj
@nk

���o
T ;P

DnjDnk � 0: ð3:19Þ

The simplest way to get rid of the subsystem indices m is to consider two
subsystems only, i.e. Dn1;k ¼ �Dn2;k ¼ Dnk.

3.2 Chemical Potential and Chemical Equilibrium

3.2.1 Chemical Potential of Ideal Gases and Ideal Gas
Mixtures

Pure gas: Based on the Gibbs-Duhem equation (2.180) we may write for the
chemical potential of a one-component gas A at fixed temperature T

lðgÞA T ;P�
A

� �� lðgÞA T;P	
A

� � ¼ 1
n

Z P�
A

P	
A

VdP: ð3:20Þ

The various indices do have the following meaning. The index ðgÞ reminds us
that we talk about gases. The index � indicates that the gas is a pure or
one-component gas and not one component in a mixture of gases. The other index 	

1 The conditions (3.16) are are mathematical statements of Le Châtelier’s principle, i.e. driving a
system away from its stable equilibrium causes internal processes tending to restore the equilib-
rium state.
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indicates a reference pressure. In thermodynamics the chemical potential is not an
absolute quantity. We rather compute differences between chemical potentials—
often there is some standard state, defined by specifying temperature and pressure
values, with respect to which the difference is calculated. If our gas is ideal the
above equation becomes

lðgÞA T ;P�
A

� �� lðgÞA T;P	
A

� � ¼ RT
Z P�

A

P	
A

dP
P

;

i.e.

lðgÞA T;P�
A

� � ¼ lðgÞA T;P	
A

� �þRT ln
P�
A

P	
A
: ð3:21Þ

Mixture: For a mixture of K components at fixed T the Gibbs-Duhem equation
yields

XK
i¼1

nidli ¼ VdP: ð3:22Þ

Here we can make use of Dalton’s law stating that for a mixture of ideal gases

P ¼
XK
i¼1

Pi and Pi ¼ RT
nðgÞi

V
: ð3:23Þ

The quantities P and V are the total pressure and the total volume. The quantities Pi

are called partial pressures. Pi is the contribution to the total pressure due to the

presence of nðgÞi moles of gas i. Thus Eq. (3.22) becomes

XK
i¼1

nðgÞi dlðgÞi � RTd ln nðgÞi

� 	
¼ 0: ð3:24Þ

In general this will be true only if dlðgÞi � RTd ln nðgÞi ¼ 0 for all i, which after
integration yields

lðgÞA T ;PAð Þ � lðgÞA T ;P�
A

� � ¼ RT ln
nðgÞA

nðgÞ
: ð3:25Þ
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The chemical potential difference on the left is between a mixture of a certain

composition fnðgÞi gKi¼1, where nðgÞA ¼ PAV=ðRTÞ, and a pure A-gas at given

P�
A ¼ P ¼ RTnðgÞ=V . Because nðgÞ ¼PK

i¼1 n
ðgÞ
i , we may write

lðgÞA T ;PAð Þ ¼ lðgÞA T ;P�
A

� �þRT ln
PA

P�
A

ð3:26Þ

or

lðgÞA T ;PAð Þ ¼ lðgÞA T;P�
A

� �þRT ln xðgÞA ; ð3:27Þ

where we have used the definition

xðgÞA ¼ nðgÞA

nðgÞ
: ð3:28Þ

The quantity xðgÞA is the mole fraction of component A and

XK
i¼1

xðgÞi ¼ 1: ð3:29Þ

Even though we use PA as the pressure argument in the chemical potentials on the
left sides of Eqs. (3.26) and (3.27), the total pressure still is P, i.e. the total pressure
is the same on both sides of these equations. Eqs. (3.26) and (3.27) describe the
difference between the molar chemical potential of the A-component in an ideal
mixture and the molar chemical potential of A in the pure and ideal A-gas at
temperature T and identical overall pressure P.

Combining Eq. (3.26) with (2.178) we may write down the free enthalpy of
mixing for a K-component ideal gas, i.e.

DmGðT;P; nðgÞ1 ; . . .; nðgÞK ; . . .Þ ¼ nðgÞRT
XK
i¼1

xðgÞi ln xðgÞi : ð3:30Þ

3.2.2 Chemical Potential in Liquids and Solutions

Pure liquid: Thus far we have dealt with gases. The new situation is illustrated in
Fig. 3.3. A pure gas A coexisting with its liquid. This may be achieved by partly
filling a container with the liquid of interest. After closing the container tightly an
equilibrium between liquid and gaseous A develops according to the conditions
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(3.5) and (3.6).2 In particular according to Eq. (3.6) the chemical potentials of A
must be the same in the gas and in the liquid, i.e.

lðlÞA ðT ;P�
AÞ ¼ lðgÞA ðT ;P�

AÞ: ð3:31Þ

Here the index ðlÞ indicates the liquid state and P�
A now denotes the equilibrium gas

pressure at coexistence. Assuming that the gas above the liquid is ideal we may
obtain the right side of Eq. (3.31) by integrating from a reference pressure P	

A just as
in the case of Eq. (3.26), i.e.

lðlÞA ðT;P�
AÞ ¼ lðgÞA ðT ;P�

AÞ ¼ lðgÞA T ;P	
A

� �þRT ln
P�
A

P	
A
: ð3:32Þ

This result applies along the coexistence curve separating gas and liquid in the T-P-
plane. There should be such a curve according to the phase rule (3.12) applied to a
one-component system. In this case Z ¼ 1� 2þ 2 ¼ 1. We may vary one degree
of freedom, T or P, which then fixes P or T , respectively. Figure 3.4 shows a partial
sketch of the coexistence curve for a one-component system.3 Equation (3.32)
applies to point (a) but not to point (b) inside the liquid region. However, we can
calculate the chemical potential at point (b) in the liquid via

lðlÞA ðT ;PðbÞ
A Þ ¼ lðlÞA ðT; PðaÞ

A|{z}
�P�

A

Þþ 1
nðlÞ

Z PðbÞ
A

PðaÞ
A

VðPÞdP: ð3:33Þ

P*
A

A(g)

A(l)

equal

μ A(g)=μ (g)+RT ln (P*
A/Po

A)

μ (l)

Fig. 3.3 A pure gas A coexisting with its liquid

2 Thermodynamics does not predict the states of matter or describe their structure. Their existence,
here gas and liquid, is an experimental fact, which we use at this point.
3 We shall show how to calculate this curve on the basis of a microscopic interaction model—the
van der Waals theory.
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We do not know VðPÞ in the liquid. But we do know from experience that the
volume of a liquid changes little, compared to a gas, when the pressure is increased.

Thus we simply Taylor-expand VðPÞ around VðPðaÞ
A Þ, i.e.

VðPÞ 
 VðPðaÞ
A Þ 1� jTðPðaÞ

A ÞðP� PðaÞ
A Þ

� 	
; ð3:34Þ

where jT is the isothermal compressibility defined via Eq. (2.6). Typical liquid
compressibilities are in the ðGPaÞ�1-range. This means that the second term usually
can be neglected, i.e.

lðlÞA ðT ;PðbÞ
A Þ 
 lðlÞA ðT ; PðaÞ

A|{z}
�P�

A

Þþ 1
nðlÞ

VðPðaÞ
A ÞðPðbÞ

A � PðaÞ
A Þ: ð3:35Þ

Example—Relative Humidity An experiment is carried out at temperature
T pressure P and 50 % relative humidity—what does this mean? The relative
humidity, u, is defined via

PDðTÞ ¼ uPsatðTÞ: ð3:36Þ

PsatðTÞ is the saturation pressure of water at T , which is the pressure PðaÞ
A in

Fig. 3.4. PDðTÞ, on the other hand, is the partial water vapor pressure in air at
T and relative humidity u � 100%.

Before we come to the actual problem, we want to get a feeling for relative
humidity, i.e. we ask: what is the mass of water contained in cubic meter of
air if the relative humidity is 40%? We look up the vapor pressure from a
suitable table, e.g. HCP. At T ¼ 0 	C and T ¼ 20 	C we find Psat ¼ 0:006 bar
and Psat ¼ 0:023 bar, respectively. Using the ideal gas law, PsatV ¼ nRT , we
obtain the corresponding masses of water vapor, i.e. 4.8 and 17:3 g=m3, on
the coexistence line. The water content at u ¼ 0:4 is therefore 1.9 and
6:9 g=m3. This is quite small compared to an approximate mass density of air

T

gas

liquid
PA

PA

b

a

Fig. 3.4 Partial gas-liquid
coexistence curve in a
one-component system
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of 1000 g=m3. Figure 3.5 shows the gas-liquid coexistence or saturation line
for water (solid line). The data are from HCP. On this line the relative
humidity is 100%. The dashed lines correspond to lines of constant humidity
as indicated. The horizontal arrow indicates the cooling of air originally at
25% relative humidity at constant pressure until the saturation line is reached.
The temperature at which this happens and the water vapor starts to condense
is called dew point. The vertical arrow indicates a portion of a drying process.
Dry air increases its moisture contents. Subsequently it may be cooled and
upon reaching the saturation line the vapor in the air condenses. By moving
along the saturation line towards lower partial water pressure more water is
removed form the air. Eventually heating of the air restores it to its starting
point at low relative humidity.

However, our real problem is the following. We are interested in the
difference between the chemical potential of water in the gas phase,

lðgÞH2OðT ;PÞ, at a relative humidity u and the chemical potential in the liquid

phase of pure water, lðlÞH2OðT ;PÞ, under the same conditions (for example
T ¼ 40 	C and P ¼ 1 bar). Such a question may arise when the water uptake in
a material is measured by one experiment at fixed T , P, and u in the gas phase
or by another experiment via submerging the same material in liquid water at
otherwise identical conditions. According to Eqs. (3.26) and (3.35) we have

lðgÞH2OðT;PDÞ 
 lðgÞH2OðT ;PsatÞþRT ln
PD

Psat

and

lðlÞH2OðT ;PÞ 
 lðlÞH2OðT;PsatÞþ 1
nðlÞ

VðPÞðP� PsatÞ:

With lðgÞH2OðT ;PsatÞ ¼ lðlÞH2OðT ;PsatÞ and using Eq. (3.36) we obtain for the

difference DlH2OðTÞ � lðlÞH2OðT ;PÞ � lðgÞH2OðT;PDÞ

DlH2OðTÞ 
 �RT lnu: ð3:37Þ

Notice that the neglected term, i.e. 1
nðlÞ VðPsatÞðP� PsatÞ, is small. With a

liquid water molar volume of 18 cm3 and Psatð40 	CÞ ¼ 0:0737 bar we obtain

 1:7� 10�3 kJ mol�1. Because u ¼ 0:5, i.e. 50 % relative humidity, we
find finally

DlH2O 
 1:8 kJ mol�1:
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Remark 1 In the preceding discussion we have implicitly assumed a
one-component system, i.e. neat water. However, relative humidity belongs to our
everyday life. This means that we deal with air, a mixture which includes gaseous
water as one particular component. In addition ordinary liquid water also contains a
certain amount of each of the gaseous components which can be found in the air.
Therefore we must ask, how much is the saturation line of neat water shown in
Fig. 3.5 affected by the presence of other components. We shall answer this
question on page 100 after we have discussed solutions.

Remark 2 cloud base: We want to estimate the lowest altitude of the visible
portion of a cloud, i.e. the cloud base. The idea is as follows. Our study of the
temperature profile of the troposphere (see p. 54) has resulted in the Eqs. (2.94) and
(2.97) allowing to relate pressure, temperature, and corresponding height above see
level for air. If we apply these two formulas to the partial pressure of water vapor in
air at a given humidity, we can estimate at what temperature (if at all) the partial
pressure in air will become equal to the saturation pressure of water. The resulting
temperature may then be used to compute the height at which this happens. This is
the height when the water vapor condenses an thus defines the cloud base.
Neglecting the effect of the different molar weights of water and (dry air), we
compute the partial water pressure via P ¼ PoðT=ToÞ3:5, where Po ¼ uPH2O

sat ðToÞ.
To ¼ 20 	C is the ground temperature. The two dashed curves in Fig. 3.6 are for
u ¼ 0:5 and u ¼ 0:7, i.e. 50 and 70% relative humidity, respectively. The solid
line in Fig. 3.6 is the saturation line for water. The two temperatures at which the
curves intersect are converted into heights, i.e. 
2100 and 
1100 m. We notice that
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Fig. 3.5 Water saturation
line including lines of
constant humidity
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the cloud base is lower when the humidity is greater. Taking into account the molar
weight difference mentioned above decreases these values by roughly 10 %.
A sensitive quantity is To, i.e. decreasing To also decreases the cloud base.

Solution: A more complex system is shown in Fig. 3.7. A binary solution of the
components A and B is in equilibrium with its gas. The coexistence conditions are

lðlÞA ðT;PA;PBÞ ¼ lðgÞA ðT ;PA;PBÞ ð3:38Þ

and

lðlÞB ðT;PA;PBÞ ¼ lðgÞB ðT ;PA;PBÞ: ð3:39Þ

Assuming that the gas phase is an ideal mixture we make use of Eq. (3.26) to
express this as

lðlÞA ðT ;PAÞ ¼ lðgÞA T ;P�
A

� �þRT ln
PA

P�
A

ð3:40Þ
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Fig. 3.6 Cloud base for
different humidities

PA+PB

A(g)
+

B(g)

equal

μA(g)=μ +RT ln (PA/Po)

μ (l)
A(l)

+
B(l)

Fig. 3.7 A binary solution of
the components A and B in
equilibrium with its gas
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and

lðlÞB ðT;PBÞ ¼ lðgÞB T ;P�
B

� �þRT ln
PB

P�
B
: ð3:41Þ

Note that � refers to the same system with all B-moles in (3.38) replaced by A-
moles and vice versa in (3.9). This means that Pi

� is the vapor pressure in the pure i
system at coexistence. Therefore we may write

lðlÞA ðT ;PAÞ ¼ lðlÞA T;P�
A

� �þRT ln
PA

P�
A

ð3:42Þ

and

lðlÞB ðT;PBÞ ¼ lðlÞB T ;P�
B

� �þRT ln
PB

P�
B
: ð3:43Þ

Using partial pressures is somewhat inconvenient. There are two limiting laws,
which are very useful here. The first is Raoult’s law,

PA ¼ P�
Ax

lð Þ
A ; ð3:44Þ

valid if xðlÞÞA � xðlÞB , i.e. the liquid is a (very) dilute solution of solute B in solvent A.4

Notice that xðlÞÞA þ xðlÞB ¼ 1. Inserting Raoult’s law in Eq. (3.42) yields

lðlÞA T ;PAð Þ ¼ lðlÞA T;P�
A

� �þRT ln xðlÞA : ð3:45Þ

Raoult’s law is an example for a colligative property of the solution. Colligative
properties of solutions depend on the number of molecules in a given amount of
solvent and not on the particular identity of the solute.

The second useful law is Henry’s law,

PB ¼ KBx
lð Þ
B ; ð3:46Þ

where KB is called Henry’s constant. Henry’s constant is not a universal constant. It
depends on the system of interest and on temperature. Henry’s law is valid in the
same limit as Raoult’s law, i.e. xB 
 1. Inserting Eq. (3.46) into (3.43) yields

lðlÞB ðT;PBÞ ¼ lðlÞB T ;P�
B

� �þRT ln
KB

P�
B
þRT ln x lð Þ

B : ð3:47Þ

4 The meaning of A and B can of course be interchanged.
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The first two terms may be absorbed into the definition of a new hypothetical
reference state with the chemical potential �lB

lðlÞB ðT ;PBÞ ¼ �lBðTÞþRT ln x lð Þ
B : ð3:48Þ

We call this reference state hypothetical, because lðlÞB ðT;PBÞ ¼ �lBðTÞ requires
xB ¼ 1, a concentration at which Henry’s law does not apply.

Table 3.1 compiles Henry’s constant for oxygen, nitrogen, and carbon dioxide in
water (based on solubility data in HCP). In the third column cH2O is the mass
density of the respective component in water in equilibrium with air at a pressure of
1 atm. The last column shows the corresponding mass density in air.

Figure 3.8 shows the partial pressures in the two-component vapor-liquid system
acetone-chloroform at T ¼ 308:15 K (Ozog and Morrison 1983). Solid lines are
polynomial fits to the data points. The long dashed lines illustrate Raoult’s law
applied to the two components while the short dashed lines illustrate Henry’s law.

Table 3.1 Henry’s law
applied to three gases in water

Component T ½K� KH ½109Pa� cH2O

½g/m3�
cair
½g/m3�

O2 288:15 3:7 10 284

298:15 4:4 8.6 275

308:15 5:1 7.4 266

N2 288:15 7:3 17 924

298:15 8:6 14 893

308:15 9:7 13 864

CO2 288:15 0:12 78 71

298:15 0:16 59 68

308:15 0:21 45 66
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Fig. 3.8 Partial pressures in
the two-component
vapor-liquid system
acetone-chloroform at T ¼
308:15 K
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Remark We now return to the question on p. 96—how much is the saturation line
of neat water shown in Fig. 3.5 affected by the presence of other components?

When water vapor coexists with liquid water we have

lðlÞH2OðT;Psat;PÞ ¼ lðgÞH2OðT ;Psat;PÞ
¼ð3:40Þ lðgÞ�H2OðT;PÞþRT ln

Psat

P
:

ð3:49Þ

Here P is the overall gas pressure and Psat is the partial water pressure at
coexistence. The star indicates pure water. Let us assume we change P by an
amount dP. This will alter the two sides of the above equation but the changes still
will be the same on both sides: still

@lðlÞH2OðT ;Psat;PÞ
@P

���
T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼vðlÞH2O
ðT ;Psat ;PÞ

dP ¼ @lðgÞH2OðT ;P ¼ P�
satÞ

@P

���
T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼vðgÞ�H2O
ðT ;PÞ¼RT=P

dPþRTd ln
Psat

P
: ð3:50Þ

Here vðlÞH2OðT ;Psat;PÞ is the partial molar volume of water in contact with air at

pressure P, and vðgÞ�H2OðT ;PÞ is the same quantity for pure water vapor at pressure P.
Under standard conditions (1 bar) we do not make a big mistake if we replace

vðlÞH2OðT;Psat;PÞ by the same quantity for pure water, vðlÞ�H2OðT;PÞ. Thus we obtain

vðlÞ�H2OðT ;PÞdP 
 RTd lnPsat: ð3:51Þ

Now we integrate the left side from P�
sat, the saturation pressure of pure water at

T to the ambient pressure of air (including water vapor), P. The corresponding
integration limits on the right side are also P�

sat and Psat. This yields

vðlÞ�H2OðT ;PÞðP� P�
satÞ 
 RTd ln

Psat

P�
sat

ð3:52Þ

or

Psat

P�
sat


 exp
vðlÞ�H2OðT ;PÞ

RT
ðP� P�

satÞ
" #

: ð3:53Þ

Let us assume P ¼ 1 bar ¼ 105 Pa and T ¼ 293 K. The saturation pressure of
pure water at this temperature is P�

sat ¼ 2338:8 Pa. In addition

vðlÞ�H2O 
 18� 10�6m3. And thus we find
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Psat

P�
sat


 exp 7� 10�4
 �
: ð3:54Þ

This means that the saturation pressure of water under ambient conditions is
scarcely different from the saturation pressure of pure water at the same temperature.

3.3 Applications Involving Chemical and Mechanical
Equilibrium

3.3.1 Osmotic Pressure

Figure 3.9 shows a beaker containing the pure liquid A. Immersed in the liquid is a
tube with its lower end closed to the liquid by a membrane. The membrane allows A
to permeate into the tube and vice versa. Inside the tube there is a binary mixture of
two components A and B. The latter however is held back inside the tube by the
membrane. What happens? As far as A is concerned the two subsystems, the pure
solvent outside the tube and the binary mixture inside the tube, do exchange A-
moles and therefore chemical equilibrium requires

l�AðT ;PÞ ¼ lAðT ;PþP; xAÞ: ð3:55Þ

The left side is the chemical potential of pure A outside the tube. The right side is
the chemical potential of A inside the tube. Because we do not consider the gas
phase we may omit the index ðlÞ. The temperature is the same in both subsystems.
The outside pressure is P, whereas the inside pressure is different i.e. PþP. Why?

Initially the tube may contain B only. Chemical equilibrium therefore requires
flow of A across the membrane into the tube. For simplicity we assume that the
initial surface level inside and outside the tube is the same and the density of A and
B is the same as well. The pressure difference across the membrane, P, can then be
determined by measuring h (at equilibrium) and computing the force of gravitation
exerted by the mass of material above the surface level of the surrounding A
solvent. The reason for the sustained pressure difference is the membrane, which
does not allow the chemical equilibration of B on both sides.

h

μ*
A

(P)membrane

μ
A

(P+ )

Fig. 3.9 Sketch of a simple
osmotic pressure experiment
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Making use of the Gibbs-Duhem Eq. (2.180) we have

l�AðT;PþPÞ 
 l�AðT ;PÞþ
1
n�A

V�ðPÞðPþP� PÞ: ð3:56Þ

Again it is assumed that incompressibility of the liquid is a good approximation
(cf. Eq. (3.34)). Combination of (3.55) and (3.56) then yields

l�AðT;PþPÞ � 1
n�A

V�ðPÞP 
 lAðT;PþP; xAÞ; ð3:57Þ

and according to Eq. (3.45), if xA � xB, we obtain

l�AðT;PþPÞ � 1
n�A

V�ðPÞP 
 l�AðT ;PþPÞþRT ln xA: ð3:58Þ

At first glance this may seem strange, because in Eq. (3.45) the pressure argu-
ments of the chemical potentials are PA and P�

A, which are presumably different. In
general the chemical potential of a particular species does depend on temperature,
total pressure, and composition. In Eq. (3.45) the total pressure is the same on both
sides of the equation and does not show up explicitly in the lists of arguments. The
composition dependence is expressed in terms of different partial pressures via
(originally)Dalton’s law. Here the total pressure is included in the argument of the
chemical potential and the composition is expressed in mole fractions. Having
explained this we can write down the final result for P given by

P 
 RT
VA;mol

xB; ð3:59Þ

where we have used the molar volume of A in the liquid state at pressure P and
temperature T , i.e. VA;mol ¼ V�ðPÞ=n�A, and ln xA ¼ lnð1� xBÞ 
 �xB.

One final transformation of this equation is useful. Inside the tube we have

xB ¼ nB
nA þ nB


 nB
nA

: ð3:60Þ

In addition Vsolution 
 VA;molnA and thus

P 
 nBRT
Vsolution

: ð3:61Þ

This is the so called van’t Hoff equation (Jacobus van’t Hoff, first Nobel prize in
chemistry for his work on chemical dynamics and osmotic pressure, 1901). Note
that the osmotic pressure only depends on the molar concentration of component B
and temperature (under the approximations we have made in the course of the
derivation). Here osmotic pressure is another example for a colligative property.
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Remark—Reverse Osmosis According to our derivation leading to Eq. (3.61), it
should be possible to apply extra pressure to the tube in Fig. 3.9 and by doing so
reduce its solute content. A technical example is desalination of sea water, which is
forced through a membrane using a pressure exceeding the osmotic pressure. This
process is called reverse osmosis.

Example—Osmotic Pressure in Hemoglobin Solutions As an application
we consider the following problem. Use the osmotic pressure data (pobs:) from
table X in Adair (1928) to estimate the molar mass of (sheep) hemoglobin.
Gilbert S. Adair was a pioneer of macromolecular biochemistry and suc-
ceeded in determining the correct molecular weight of hemoglobin from
osmotic pressure measurements. He also supplied the horse hemoglobin
crystals which allowed Max Perutz (Nobel prize in chemistry for his work on
the structure of globular proteins, 1962) to obtain the first hemoglobin X-ray
structures.

We may rewrite van’t Hoff’s equation as

P
c

 RT

mHb
:

Here c ¼ ðnHb=VÞmHb and mHb is the molar mass of component B (Hb:
hemoglobin). Figure 3.10 shows the data from the above reference plotted in
the original units. The solid line is a fit on the basis of a theory explained later
in this book. Notice first that van’t Hoff’s equation describes the data only at
very low hemoglobin concentration. This is expected, because we have used
the approximation xA � xB. The deviation from van’t Hoff’s equation arise
due to non-ideality, which basically means that there are complex
solute-solute interactions—something we have no information about at this
point. However, we can still determine mHb, i.e.
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Fig. 3.10 Concentration
dependent osmotic pressure in
hemoglobin solutions
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mHb 
 RT
P=c

;

in the limit c ! 0. From the figure we extract the value P=c 
 0:3 cm
Hg=ðg=dlÞ. In addition T ¼ 0 	C ¼ 273:15K. After converting the units,

1cm Hg ¼ 1333:224 Pa

1g=dl ¼ 10 kg=m3;

we obtain mHb 
 57 kg=mol. This is roughly 10% below the exact value—
but not bad at all.

The example also shows that van’t Hoff’s equation is valid at small concen-
trations only. We continue our discussion of osmotic pressure on page 125 and a
second time in Sect. 4.4.1 dealing with extensions of different origin. In particular
we shall discuss the so called scaled particle theory behind the solid line through the
data in Fig. 3.10 beginning on p. 213. This theory allows to estimate the size of Hb
(
5:5 nm in diameter) based on its osmotic pressure data.

3.3.2 Equilibrium Adsorption

Consider a gas in contact with a solid surface. Molecules from the gas may adsorb
onto and subsequently desorb from the surface. Eventually an equilibrium develops
characterized by a constant coverage depending on temperature and the pressure in
the bulk gas. Coverage here refers to the net amount of gas adsorbed. We obtain the
net amount adsorbed by counting the gas molecules in a column-shaped volume
perpendicular to the surface. This column continues out into the bulk gas, where the
surface is no longer felt by the gas molecules. Subsequently we subtract the (average)
number of gas molecules present in an identical column when the surface is removed
(The number is equal to the volume of the columnmultiplied by the bulk density of the
gas). Just how long the column has to be, in order for it to extend into the bulk gas,
depends on the interaction forces between the gasmolecules and the surface as well as
on thermodynamic conditions. In some cases the “interfacial thickness” to good
approximation is just one molecular layer. One speaks of monolayer or even
sub-monolayer coverage. In other cases the interface is “thicker” and more “diffuse”.

The examples in Fig. 3.11 show computer simulation generated gas density
profiles above an adsorbing surface at z ¼ 0.5 The units used here are so-called

5 The system is methane gas adsorbing on the graphite basal plane located at z ¼ 0. A computer
program generating profiles like these is included in the appendix. The theoretical background
needed to understand the program is discussed in Chap. 6.
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Lennard-Jones units6—but this is of no particular interest to us at this point. What is
shown is the gas number density, qðzÞ, as function of distance, z, from the surface.
In the top panel we recognize a first peak at z 
 1 (cut off at 1) and a second smaller
one at z 
 2. Beyond the second peak the density levels off (with fluctuations)
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Fig. 3.11 Computer
simulation generated gas
density profiles above an
adsorbing surface at different
temperatures

6 In these units the gas pressure in Fig. 3.11 is P ¼ 0:04. The temperatures from top to bottom are
T ¼ 2:0; 1:2; 1:05.
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indicating the bulk phase. The eventual drop at z ¼ 12 is merely due to the finite
extend of the simulation box to which the gas is confined. The “gap” between the
surface and the first peak is due to the finite extend of the atoms in the surface and
the molecules in the gas—q is a center of mass number density. This figure shows
that at the given conditions there exists a dense layer of adsorbed molecules
adjacent to the solid surface. A much less dense second layer is followed by a rather
rapid transition to bulk behavior. Altered conditions do change the picture. In this
case the temperature is reduced. In fact we approach the saturation line of methane
at constant pressure (the transition temperature at this pressure in LJ-units is just
about 1). We notice that the adsorbed layer thickness increases as more peaks
emerge. However, at this point these graphs merely serve as illustration to bear in
mind when we talk about adsorption on solid surfaces.7

An important quantity characterizing the interaction of the molecules with the
surface is the isosteric heat of adsorption qst, defined via

qst ¼ T
@ls
@T

���
Vs;Ns

� T
@lb
@T

���
Pb

: ð3:62Þ

The indices s and b refer to the surface and the bulk, respectively. Note that
. . .jVs;Ns

means “at constant coverage”, whereas . . .jPb
means “at constant (bulk)

pressure”. The temperature is the same in both cases.
Using the equilibrium condition ls ¼ lb we may write

dls
��
Vs;Ns

¼ @ls
@T

���
Vs;Ns

dT ¼ @lb
@T

���
Pb

dT þ @lb
@Pb

���
T
dPb; ð3:63Þ

which yields

@ls
@T

���
Vs;Ns

¼ @lb
@T

���
Pb

þ @lb
@Pb

���
T|fflffl{zfflffl}

Vb=Nb¼q�1
b

@Pb

@T

���
Vs;Ns

: ð3:64Þ

Combination of this equation with Eq. (3.62) yields another, and perhaps the
most common, expression for qst:

qst ¼ T
qb

@Pb

@T

���
Vs;Ns

¼ � Pb

qbT
@ lnPb

@ð1=TÞ
���
Vs;Ns

: ð3:65Þ

At very low gas pressure one may assume that Ns is proportional to Pb, i.e.

Ns ¼ kHPb þOðP2
bÞ: ð3:66Þ

7 We return to Fig. 3.11 in an example in Sect. 5.3.
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The leading term is a “surface version” of Henry’s law (3.46). In this approxi-
mation Eq. (3.65) becomes

qðoÞst ¼ R
@ ln kH
@ð1=TÞ

���
Vs;Ns

: ð3:67Þ

Here qðoÞst is the molar isosteric heat of adsorption in the limit of vanishing
coverage. Experimentally this quantity may be determined by measuring the amount
of adsorbed gas (e.g., by weighing the sample) at a given (low) pressure. The general
relation NsðT;PÞ versus P is called adsorption isotherm, the low pressure slope of
which again is kH . In an example in Sect. 5.3 we return to the isosteric heat of
adsorption and discuss one explicit method how to calculate it theoretically.

3.3.3 Law of Mass Action

In the following we discuss an important application of (2.131), i.e.

dG
��
T ;P � 0: ð3:68Þ

At equilibrium we can use the equal sign and based on Eq. (2.119) (with ldn
replaced by

PK
i¼1 lidni) we have

XK
i¼1

liðT ;PÞdni ¼ 0: ð3:69Þ

This equation requires some thought. If K ¼ 1 then Eq. (3.69) implies dn ¼ 0. The
inequality (3.68) applies to cases where, aside from keeping T and P at fixed values,
we leave the system alone. In particular we do not change its mass content.8 If
K[ 1 there exists however the possibility of a suitable relation between the dni,
developed by the system itself, allowing Eq. (3.69) to hold without requiring
dni ¼ 08i. For instance we may replace dni in Eq. (3.69) via

8 Potentially this may be disturbing. According to the steps leading from Eq. (2.176) to Eq. (2.177)
one may be led to conclude that G ¼ 0 all the time and everything falls apart. However this
reasoning confuses two very different situations. Inequality (3.68) means that we prepare a
system subject to certain thermodynamic conditions T and P and leave this system alone until no
further change is observed. This fixes the equilibrium value of the free enthalpy, G, for a
particular pair T ;P. Repeating this procedure for many T ;P-pairs we map out the equilibrium
values of G above the T-P-plane (cf. Fig. 2.15). With this function G ¼ GðT ;PÞ or G ¼
GðT ;P; nÞ we now can do calculations, differentiating or integrating, involving T , P, n and
possibly other variables. This is how we have obtained the Eqs. (2.176) and (2.177). Therefore
there is no problem here!
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dni ¼ midn; ð3:70Þ
where of course not all mi do have the same sign. It turns out that chemical reaction
equilibria may be described in this fashion. For a chemical reaction the dni obey
according to experimental evidence

dni
dnj

¼ mi
mj
; ð3:71Þ

where mi and mj are integers.
We proceed writing the chemical potentials of the components as

liðT ;PÞ ¼ �liðT;PÞþRT ln ai: ð3:72Þ

This particular form is analogous to the special limiting forms (3.27) and (3.45).
The quantity ai, which is called activity of component i, contains interaction and
mixing contributions to the chemical potential of component i, i.e. all effects due to
the interactions of this component with all other components. Often the activity is
expressed via

ai ¼ cixi; ð3:73Þ
where ci is the activity coefficient. This is the usual terminology in condensed
phases. In the gas phase the fugacity,

fi ¼ c0iP; ð3:74Þ

where c0i is the fugacity coefficient and P is the pressure, replaces ai. We see that the
special limiting forms (3.27) and (3.45) correspond to ci ¼ 1. The reference
chemical potential, �liðT;PÞ, may be identified if we let ci and xi approach unity.

Combining Eqs. (3.69), (3.70), and (3.72) we obtain

XK
i¼1

ð�liðT;PÞþRT ln aiÞmi ¼ 0 ð3:75Þ

or

YK
i¼1

amii ¼ KðT ;PÞ; ð3:76Þ

where

KðT ;PÞ ¼ exp �
PK

i¼1 mi�liðT;PÞ
RT

" #
: ð3:77Þ

108 3 Equilibrium and Stability



Equation (3.76) is called law of mass action and KðT;PÞ, not to be confused
with the index K, the number of components, is the equilibrium constant. The
equilibrium constant is not really a constant. It depends on T and P. By convention
mi\0 for reactants and mi [ 0 for products.

The law of mass action in its present form provides little insight. Therefore we
study the special case of a gas phase reaction assuming that the gas is ideal.
Combining (3.26) and (3.21) we obtain

lðgÞi ðT ;PiÞ ¼ lðgÞi ðT;Po
i ÞþRT ln

Pi

Po
i
: ð3:78Þ

Here Pi is the partial pressure of component i, and Po
i is a standard pressure,

which remains constant during the reaction. In addition we have

xðgÞi ¼ Pi

PðgÞ ð3:79Þ

(cf. Eq. (3.28)), where PðgÞ is the total pressure. Combination of (3.78 ) and (3.79)
yields

lðgÞi ðT ;PiÞ ¼ lðgÞi ðT ;Po
i ÞþRT ln

PðgÞxðgÞi

Po
i

: ð3:80Þ

Inserting this into Eq. (3.69) we find the law of mass action

KðT;PoÞ ¼ PRimi
Y
i

xmii ; ð3:81Þ

where �RT lnPo
i is absorbed into KðT ;PoÞ. Notice that we have omitted the index

ðgÞ, and we assume that Po ¼ Po
i 8i. This equilibrium constant is independent of the

gas pressure P and the mole fractions xi.

Example—A Chemical Reaction In the following simple example of a
chemical reaction,

2H2 þO2 � 2H2O; ð3:82Þ

we have mH2 ¼ �2, mO2 ¼ �1, and mH2O ¼ 2. Thus Eq. (3.81) becomes

KðT ;PoÞ ¼ 1
P

x2H2O

x2H2
xO2

: ð3:83Þ
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Increasing the total pressure (at constant temperature) shifts the reaction
equilibrium to the right. Analogously we can see what happens if the con-
centrations are changed.

Remark What is different if in addition to H2, O2, and H2O another inert gas is
present or there is an excess of one or more of the aforementioned components? The
corresponding mole fractions do not appear explicitly on the right side of
Eq. (3.83), but they do enter into the pressure, P.

At this point we may ask: What is a component? Thermodynamic knows nothing
about atoms, molecules, and details of the interactions/reactions between them. But
we know that there are even smaller building blocks than atoms—electrons, pro-
tons, and neutrons. And this is not the end. So what is a component? In principle we
may apply thermodynamics on all levels. For the above it is important, however,
that there exists a meaningful chemical potential for everything we want to call
component. That is a component must exist long enough (on average) under well
defined thermodynamic conditions like equilibrium T and P.

This requires us to rethink our derivation of the phase rule. Consider the fol-
lowing example for a chemical reaction:

3A � A3: ð3:84Þ

If we consider A and A3 as components, then the phase rule (3.12) allows up to
four coexisting phases. However, we have an additional equilibrium constraint
imposed by Eq. (3.69), reducing the degrees of freedom by one and the maximum
number of coexisting phases to three. The modified phase rule therefore is

Z ¼ K � Q�Pþ 2 ð� 0Þ; ð3:85Þ

where Q is the number of additional constraints imposed via Eq. (3.69). Notice that
Q is not necessarily one all the time. There may be independent chemical reactions
occurring simultaneously in which case the summation in Eq. (3.69) breaks up into
independent parts, e.g.

3A � AþA2 � A3:

Here we have a system containing three components according to our definition.
But for each reaction we have to fulfill Eq. (3.69). Therefore K ¼ 3 and Q ¼ 2.

Example—Critical Micelle Concentration Figure 3.12 shows a sketch of a
system containing typo-amphiphilic molecules. Amphiphilic molecules con-
sist of two covalently bonded moieties—one, depicted as zigzag-line, does
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not like to be in contact with water, not shown explicitly, whereas the other,
depicted as solid circle, does like to be in contact with water. An example of
such a molecule is Hexaethylene-glycol-dodecylether
(C12H25ðOCH2CH2Þ6OH). In this case it is the C12H25-moiety that does
not like to be in contact with water. The natural thing to happen therefore is a
clustering of the zigzag “tails” into droplets shielded on the outside by their
water loving “head” groups. In a sense this is a phase separation, which we
study in the next chapter, on a molecular scale. Because of this the molecular
“shape” strongly couples to the “shape” of the drop or aggregate and in fact
determines it (The aggregates we have in mind can be spherical, cylindrical or
transform into layered structures with complicated topology. It also is pos-
sible to extend this approach to vesicles. But this is not our topic here.). The
type of droplet aggregate we just described is called a micelle. However, our
current approach covers other types of aggregates as well.

As our starting point we choose the “chemical reaction equation”

sA1 � As: ð3:86Þ

Here As denotes a s-aggregate containing s molecules or monomers A1.
We put “chemical reaction” in quotes, because the bonding forces between
monomers considered here are different from chemical bonds within mole-
cules. In principle s can be any integer number and therefore Eq. (3.86)
represents many “reaction equations”. Expressing this in terms of the
chemical potential yields

sl1 ¼ ls: ð3:87Þ

Assuming low monomer concentration we may use Eq. (3.48), i.e.

s�l1 þ sRT ln x1 ¼ �ls þRT lnðxs=sÞ: ð3:88Þ

s-aggregate
x

s
μ

s

monomer
s = 1

x
1

μ1

Fig. 3.12 Sketch illustrating
the reversible assembly of
amphiphilic molecules into
micelles
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Note that the quantity xs=s is the mole fraction s-aggregates. Therefore xs
is the mole fraction of monomers in s-aggregates. We may solve for xs, i.e.

xs ¼ s x1e
að Þs ð3:89Þ

with

a ¼ 1
RT

�l1 �
1
s
�ls

� �
: ð3:90Þ

We assume that �ls is an extensive quantity in terms of s and that therefore
a is independent of s (see also the next example). Equation (3.89) has an
interesting consequence. To see this we note that the total monomer mole
fraction is given by

x ¼ x1 þ
X1
s¼m

xs ¼ x1 þ
X1
s¼m

s x1e
að Þs: ð3:91Þ

Here x1 is the mole fraction of free monomers, whereas the sum is the mole
fraction due to all other monomers bonded inside aggregates. We note that m
is a minimum aggregate size. In the case of spherical micelles for instance, it
accounts for the fact that a certain number of head groups are required to form
a closed surface avoiding contact of the tail groups with water. This number
may be large—say m 
 50—depending of course on the type of monomer.
But m ¼ 2 also is possible. This is the case of linear aggregates (chains of
monomers—These monomers may be disk-shaped with flexible tails on their
perimeter. In water the disk-like cores tend to form stacks. It also is possible
to apply this idea to dipolar molecules forming chains due to dipole-dipole
interaction.). The right side of Eq. (3.91) is bounded, because x� 1. In par-
ticular this requires x1ea\1, because the sum

P1
s¼m sqs diverges at q ¼ 1

(geometric series!). Putting in some numbers we find
P1

s¼50 sq
s 
 4� 10�3

if q ¼ 0:8 and
P1

s¼50 sq
s 
 3 if q ¼ 0:9, i.e. for x1\0:8e�a virtually all of x

is due to free monomers. Addition of monomers at this point leads to their
assembly into aggregates. Figure 3.13 illustrates this for different combina-
tions of assumed values for m and a (Notice the change of scale in the third
panel.). Because of the sharpness of the “transition” in the typical case of
large m the threshold concentration

xCMC 
 e�a ð3:92Þ

is called critical aggregate concentration or, in the case of micelles, critical
micelle concentration (CMC). While the sharpness is governed by m, the
amphiphile concentration at which the change of behavior occurs is deter-
mined by a.

112 3 Equilibrium and Stability



0.0 0.2 0.4 0.6 0.8 1.0
x0.0

0.2

0.4

0.6

0.8

1.0

s m

xs

x1

m 5, 1

0.0 0.2 0.4 0.6 0.8 1.0
x0.0

0.2

0.4

0.6

0.8

1.0

x1

x1

m 50, 1

0.00 0.02 0.04 0.06 0.08 0.10
x

0.02

0.04

0.06

0.08

0.10

=

=

=α

=α

m 50, 4= =α

=

s m

xs

=

s m

xs

=

Fig. 3.13 Mole fractions free
monomers and aggregates
versus total monomer mole
fraction for different
parameter combinations

We note that the existence of a CMC is not tied to the specific form of
Eq. (3.89). For instance, assuming that monomers may form minimum
aggregates only, i.e. only the s ¼ m-term in the sum in Eq. (3.91) is present,
still yields a CMC. The true size distribution, xs, in fact is a complicated
function of molecular interactions as well as thermodynamic conditions. One
interesting and quite general ingredient ignored here is the aggregate
dimensionality, which is discussed in the following.
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More information on molecular assemblies (micelles, membranes, etc.) can be
found in J. Israelachvili (1992) Intermolecular & Surface Forces. Academic Press
or in D. F. Evans and H. Wennerström (1994) The Colloidal Domain. VCH.

3.3.4 Surface Effects in Condensation

The assumption underlying Eq. (3.90) is that all monomers inside an aggregate are
equivalent. For a spherical micelle this is in accord with intuition. But what if we
study droplets containing monomers completely embedded in their interior and
monomers on their surface? These two are certainly different and Eq. (3.90) no
longer holds.

A simple model for a allowing to distinguish between bulk and surface mono-
mers in aggregates is

a ¼ abulk � ds�1=d; ð3:93Þ

where d is the dimensionality of the aggregates (d ¼ 1: linear aggregates; d ¼ 2:
disk- or layer-like aggregates; d ¼ 3: spherical aggregates). abulk is the same for all
monomers inside aggregates and independent of s. The second term, �ds�1=d , is a
surface contribution. We note that a three-dimensional spherical droplet containing
s monomers has a volume proportional to s. Thus its radius is proportional to s1=3

and its surface is proportional to s2=3. Expressed more generally the surface is
proportional to sðd�1Þ=d ¼ ss�1=d . This means that in this simple case �ls can be
expressed as

�ls ¼ s�lbulk þRTdsðd�1=dÞ; ð3:94Þ

where �lbulk, the chemical potential of a monomer in the interior of an aggregate, is
s-independent. What are the consequences?

First we study the question whether monomers and/or finite size aggregates can
coexist with infinite size aggregates, i.e. the bulk phase. If the answer is yes, then
the following must be true:

�lbulk ¼ �lbulk þRTds�1=d þ 1
s
RT ln

xs
s
: ð3:95Þ

This means

xs ¼ s exp½�dsðd�1Þ=d�: ð3:96Þ

Consequently
P

s xs\1 is possible only if d[ 1. If d ¼ 1 we have xs / s and
the sum diverges. This means that the total monomer mole fraction x diverges. The
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inconsistency that this imposes (note: x� 1) is interpreted as the impossibility of
coexistence between monomers and/or finite aggregates with a bulk phase in one
dimension!

But there is more to discover here. We concentrate on d[ 1 and simplify our
calculation by requiring the aggregates to be monodisperse, i.e. s is the same for all
aggregates. The total free enthalpy therefore is

Gtotal ¼ n1l1 þ
ns
s
ls: ð3:97Þ

Here ns denotes moles monomer on average bound in aggregates. This equation
describes coexistence between a gas of monomers and aggregate droplets. Using
Eq. (3.94) yields

Gtotal ¼ n1l1 þ
ns
s
ls;bulk þ nsRTds

�1=d; ð3:98Þ

where ls;bulk ¼ s�lbulk þRT ln½xs=s�. If we vary the mass distribution between
monomers and aggregate droplets near equilibrium we find

dGtotal ¼ dns �l1 þ
1
s
ls;bulk þRTds�1=d

� �
¼ 0: ð3:99Þ

Note that dn1 ¼ �dns.Wemay usefully apply this equation using @l=@PjT ¼ 1=q
or dl ¼ q�1dP at constant T . Because the monomers form a gas with density qgas,
while qliq � qgas is the (liquid) monomer density inside the droplets, we may write

� 1
qgas

þ 1
qliq


 � 1
qgas


 �RTd
@s�1=d

@P

���
T
: ð3:100Þ

Replacing qgas by P=ðRTÞ, the ideal gas law, and s1=d by cr, where r is the
droplet radius and c is a constant, we find

d lnP ¼ dd
1
cr

� �
ð3:101Þ

or

P ¼ P1 exp
d
cr

� 

: ð3:102Þ

This equation describes the radius, r, of a droplet at equilibrium when the
external pressure is P. P1 is the saturation pressure, when the monomer gas
coexists with the infinite bulk phase. Figure 3.14 shows a sketch of P versus r
according to Eq. (3.102).
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But what happens to droplets which do not have the proper equilibrium radius?
At point A in Fig. 3.14 a droplet will find the external pressure too low for its size,
which is less than the proper equilibrium size ro, and therefore evaporates mono-
mers. This decreases the radius and the evaporation continues until the droplet
disappears. At point B the droplet is under too high a pressure and additional
monomers from the gas phase condense on its surface. The droplet continues to
grow and finally the limit of a continuous bulk phase is approached. Thus
Eq. (3.102) defines the critical size of a droplet at a given pressure. Below the
critical size droplets disappear, above the critical size they grow without bound. In
turn this means that finite droplets in general are not stable for d[ 1. In the
following example we reexamine Eq. (3.102) in a specific context for d ¼ 3 and
from a slightly different angle.

Example—Critical Droplet Size This example from the microphysics of
clouds combines the above with our previous discussion of relative humidity
in Sect. 3. We consider what is called homogeneous nucleation, i.e. the
condensation of pure vapor, water vapor in this case, into droplets.

Let us assume that a small droplet is created through chance collision of
molecules in the vapor. The subsequent fate of the droplet is decided by the
balance between condensation and evaporation of molecules. This balance we
study in terms of the free enthalpy change dG in a system containing the
droplet inside surrounding bulk gas, i.e.

dGT ;P ¼ lðgÞH2O � lðlÞH2O

� 	
dnðgÞH2O þ cdA: ð3:103Þ

The thermodynamic variables temperature T and total (air) pressure P are

constant. The factor multiplying dnðgÞH2O is equal to RT lnu (cf. Eq. (3.37)),
where u, defined in Eq. (3.36), is the ratio of the partial water vapor pressure
to the saturation pressure at the same T and P. Finally, the quantity c is the
surface tension of the droplet and dA is the change of its surface resulting

from condensation or evaporation. Note that dnðgÞH2O / �d r3 and that

r
o

P

P
BA

Fig. 3.14 Sketch of P versus
r according to Eq. (3.102)
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dA / d r2, where r is the droplet radius. Thus we can express dGT ;P in terms
of u, c, r and dr, i.e.

d
GT ;P

RT
¼ d � 4p lnu

3 vH2O
r3 þ 4p c

RT
r2

� �
: ð3:104Þ

The quantity vH2O is the (partial) molar volume of pure water under the
given thermodynamic conditions.

Figure 3.15 shows the expression inside the brackets plotted versus the
droplet radius at different u-values. Here c ¼ 0:0728 N/m is the surface
tension of water, T ¼ 293 K, and vH2O ¼ 18 cm3. Below and at saturation,
i.e. u� 1, the curves rise monotonously and the equilibrium droplet radius is
zero. In the case of supersaturation (u[ 1), however, the free enthalpy GR;T

features a maximum at

rc ¼ 2c vH2O

RT lnu
: ð3:105Þ

A droplet possessing this radius evaporates following a fluctuation causing
an arbitrarily small reduction of rc. An opposite fluctuation increasing the
droplet’s size ever so slightly will result in its unlimited growth. Note that this
corresponds, for the case of water droplet condensation, to our previous
discussion of Eq. (3.102). Solving this equation for rð� rcÞ yields
rc ¼ d=ðc lnuÞ, where u ¼ PH2O=PH2O;1. The special case of Eq. (3.105) is
also known as Kelvin’s formula.

Equation (3.102) also tells us that the saturation vapor pressure over a
curved (water) surface is greater than over a flat surface. Expanding the
exponential to first order Eq. (3.102) becomes

PH2O 
 PH2O;1 1þ d
cr

� �
: ð3:106Þ
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Fig. 3.15 Reduced free
enthalpy GT;P=ðRTÞ of a
water droplet versus the
droplet’s radius r at different
humidities
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In the present case of course d=c ¼ 2c vH2O=ðRTÞ. This is a curvature
correction that enters into most equations in cloud physics.

It is important to note that the above assumption, i.e. “Let us assume that a
small droplet is created through chance collision of molecules in the vapor”,
is nearly impossible to satisfy. A droplet possessing the radius rc 
 0:54 lm,
as shown in Fig. 3.1 requires the collision of around 2 � 1010 molecules. And
even if we increase u from 1.002 to, for instance, 1.1 this number is still
around 2 � 105 molecules. In principle we can keep increasing the supersat-
uration, but an experimental supersaturation exceeding 1% is rarely observed
(see Chap. 9 in Salby 2012).

Equation (3.102) or, equivalently, Eq. (3.105) must be modified when a
second component is present in addition to water (solute correction). This
means we are talking about the situation depicted in Fig. 3.7. Let’s use the
same notation as in the figure, i.e. water is indicated by the index A and the
second component, the solute, is B. We shall assume that the mole fraction A

greatly exceeds the mole fraction B in the liquid phase, i.e. xðlÞA � xðlÞB . In this
case we can apply Raoult’s law (3.44) to calculate the saturation pressure of A
in the gas phase, PA, from its value when A is the only component present,

P�
A, i.e. PA ¼ P�

Ax
lð Þ
A . Thus far both pressures in (3.106) refer to pure A, even

though we have not given them an asterisk. Hence, if there is B present in the
droplet as well as in the gas phase, then we must change Eq. (3.102) or,
equivalently, Eq. (3.105) to

PH2O

PH2O;1

 exp

2c vH2O

RT
1
r

� 

xH2OðrÞ
xH2Oð1Þ : ð3:107Þ

Next we must calculate xðlÞA ðrÞ � xH2OðrÞ, i.e.

xðlÞA ¼ nðlÞA
nðlÞA þ nðlÞB

¼ 1

1þ nðlÞB =nðlÞA
� 	 
 1� nðlÞB

nðlÞA
: ð3:108Þ

Now we use NAna ¼ ðMa=maÞ, where a ¼ A or B. NA is Avogadro’s
constant,Ma is the total mass of a in the droplet, and ma is the molecular mass
of a. We express the total solvent mass via MA 
 cA4pr3=3, where cA is the
bulk mass density of liquid A. Putting everything together we find

xðlÞA ðrÞ ¼ 1� z
MB

mB

mA

4pcA=3
1
r3
: ð3:109Þ

The extra factor z accounts for the important cases of salts like NaCl,
dissociating into two ions which means z ¼ 2. Inserting this into (3.107) we
obtain our final result
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PH2O

PH2O;1

 exp

2c vH2O

RT
1
r

� 

1� b

r3

� �
; ð3:110Þ

where b is the factor multiplying 1=r3 in Eq. (3.109). This function, i.e.
u� 1 ¼ PH2O=PH2O;1 � 1, is depicted in Fig. 3.16. The dashed line is the
line of the maxima in the Fig. 3.15, i.e. uðrcÞ � 1, for u[ 1. The two solid
lines are obtained with Eq. (3.110), which includes the concentration effect.
The left curve, possessing the higher maximum, is for MB ¼ 10�16 g solute
(NaCl in this case and z ¼ 2). The right curve is for MB ¼ 10�15 g. Note that
a spherical volume containing 10�16 g of crystalline NaCl has a radius of
about 0.02 lm. This is between 4 to 5 times smaller than the smallest r in
Fig. 3.16 for which MB ¼ 10�16 g and u� 1[ 0. In particular this confirms

that xðlÞA � xðlÞB is cloud satisfied.
The one on the right of the two circles in Fig. 3.16 including its two

arrows, has the same meaning as the point at ro in Fig. 3.14. Let us assume
the droplet spontaneously increases (decreases) its size at constant u� 1. For
this increased (decreased) droplet the pressure is too high (low) and it will
grow (shrink). The left circle on the solid line, on the other hand, corresponds
to a droplet reacting to size fluctuations in exactly the opposite way. When the
radius increases (decreases) at constant u� 1 the droplet shrinks (grows)
back to its original size. Thus, the concentration effect tends to stabilize
droplets on the left side of the maximum. This of course is true for both solid
lines or for any other so called Köhler curve. Note in particular that the
concentration effect reduces the supersaturation necessary for continuous
droplet growth. This reduction is enhanced when, at constant MB, mB is
increased.

We have omitted the range u� 1\0 in Fig. 3.16. Cloud formation usu-
ally takes place by heterogeneous nucleation instead of homogeneous
nucleation. Heterogeneous nucleation means that water vapor condenses onto
already existing aerosol particles—so called cloud condensation nuclei.
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1Fig. 3.16 Köhler curves
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Hygroscopic condensation nuclei may build up significant layers of water
(note the relation to our previous discussion of adsorption and Fig. 3.11),
thereby increasing the “original droplet”, which then requires less supersat-
uration to grow—especially when the droplet at this point contains dissolved
salts, like sodium chloride or ammonium sulfate, as we have seen.

In Chap. 4 we shall resume this discussion venturing into the topic of the
growth dynamics of droplets—looking at diffusion as well as collision.

3.3.5 Debye-Hückel Theory

An overall neutral system contains mobile charges. Of special interest in this
context are electrolytes, i.e. substances containing free ions. Typically these are
ionic solutions, e.g. aqueous solutions of dissociated acids, bases or salts (e.g.
NaClðsÞ ! Na1þðaqÞ þCl1�ðaqÞ). What we want is an approximate description for the

electrostatic interaction as part of the chemical potential of the (ionic) charges. In
Sect. 2.3.1 we had discussed the relations of the free energy and the free enthalpy to
the second law. In the present case electrical work must be included and therefore
we have

dGjT ;P � � dwq ð3:111Þ

or at equilibrium and expressed as free enthalpy per mole.

dlqjT ;P ¼ �NAdwq ¼ð1:15ÞNAdq/
ðsÞ
ba : ð3:112Þ

The meaning of last equation on the right in the current context is illustrated in
Fig. 3.17. One of the charges, charge q, is shown as thick vertical bar. The charge q
is part of a charge density qðrÞ, assumed to be radially symmetric and centered on

r

q

ρ(r)Fig. 3.17 Spatial distribution
of charge
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q. An observer on q should notice that the surrounding charge (distribution) pref-
erentially is negative if q is positive and vice versa. However, this q-induced
distribution extends over a finite range only. Beyond a sufficiently large distance r
the central charge q is electrically invisible or screened. The quantity dwq is the
work done on the system when a infinitesimally small (molar) amount of charge dq
is brought in from infinity (index a) and added to the central charge at zero (index
b). In principle the result is infinite, no matter how small dq is, and therefore useless
to us. But what we really want, is the work due to the screening part of the potential
/ba—indicated by the index ðsÞ—excluding the “bare” potential, q=r, causing the
divergence. It is this screening part of the potential which is the manifestation of the
interaction between the charges in the system.

But how do we calculate /ðsÞ
ba ? One equation which comes to mind is Poisson’s

equation, i.e.

� ~r2
/ð~rÞ ¼ 4pqð~rÞ; ð3:113Þ

where /ð~rÞ is the electrostatic potential of a charge density qð~rÞ. In the present case

qð~rÞ ¼ qdð~rÞþ e
X
i

cizihið~rÞ: ð3:114Þ

The first term on the right is the central charge q at the origin. The second term is
the charge density in a volume element dV located at ~r. The factor e is just the
magnitude of the elementary charge. The index i indicates different types of charges
possibly present. ci is the overall number concentration of these charges, and zi is
the charging of type i. For instance in the case of NaCl in an aqueous solution there
are Naþ and Cl� ions for which zNa ¼ þ 1 and zCl ¼ �1. But there also may be
ions for which zi 6¼ �1, e.g. CO2�

3 with zCO3 ¼ �2 or Zn2þ with zZn ¼ þ 2. The
function hið~rÞ ¼ hiðrÞ describes the variation of the i-type screening charge. Notice
that hið~rÞ should vanish as r approaches infinity—but this is all we can say about
hið~rÞ at the moment. We therefore anticipate the following form of hiðrÞ:

hið~rÞ 
 exp � eziNA/ð~rÞ
RT

� 

� 1: ð3:115Þ

The argument of the exponential is the ratio of the electrostatic energy of one
mole of i-charges (at~r) divided by the “thermal energy” RT . This form of hið~rÞ is
by no means exact. It neglects completely structural correlations between charges in
the vicinity of the central charge. It merely considers the effect of the surrounding
charges in the form of a smooth “screening field” as part of the potential /ð~rÞ, i.e.
no two charges interact directly—each charge interacts with the others through their
collective “screening field”. Equation (3.115) relates hið~rÞ as a measure of the
probability for finding a certain charge concentration at distance r from the central
charge to the electrostatic energy of this assembly. The specific form, however, we
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can understand only on the basis of microscopic theory as explained in Chap. 5
(notice in particular Eq. (5.150)). Nevertheless, the combination of Eqs. (3.113) to
(3.115) yields

� ~r2
/ð~rÞ 
 4p qdð~rÞþ e

X
i

cizi exp � eziNA/ð~rÞ
RT

� 

� 1

 !
: ð3:116Þ

This is the desired equation for /ð~rÞ. However its nonlinearity is inconvenient
and thus we go one step further by expanding the exponential, i.e.

exp � eziNA/ð~rÞ
RT

� 


 1� eziNA/ð~rÞ

RT
: ð3:117Þ

This additional approximation is quite in line with our above assumption for the
form of hð~rÞ. It requires that the electrostatic energy is much less than the thermal
energy and thus that the temperature is “high” (the theory still should be applicable
at room temperature though). High temperature also tends to diminish structural
correlations. The final equation for /ð~rÞ is

� ~r2
/ð~rÞ 
 4pqdð~rÞ � 8pe2NA

RT
I/ð~rÞ: ð3:118Þ

The quantity

I ¼ 1
2

X
i

ciz
2
i ¼

1
2

X
i

miz
2
i|fflfflfflfflffl{zfflfflfflfflffl}

¼p

c
ð3:119Þ

is called ionic strength. Here ci ¼ mic, where c is the electrolyte concentration and mi
is the number of j-ions per electrolyte molecule.

We solve Eq. (3.118) via Fourier transformation. That is we insert

/ð~rÞ ¼
Z 1

�1
d3k/̂ð~kÞei~k�~r ð3:120Þ

and

dð~rÞ ¼ 1

ð2pÞ3
Z 1

�1
d3kei

~k�~r ð3:121Þ
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to obtain

/̂ð~kÞ 
 1

ð2pÞ3
4pq

k2 þ k�2
D

ð3:122Þ

with

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RT
8pe2NAI

r
: ð3:123Þ

Insertion of (3.122) into (3.120) and solving the integration yields

/ð~rÞ 
 � q
r

er=kD � e�r=kD
� 	

: ð3:124Þ

Because the first term in brackets grows without bound for r ! 1, we discard
this unphysical part of the mathematical solution and thus use

/ð~rÞ 
 qe�r=kD

r
: ð3:125Þ

When the central charge is approached from a distance, its bare potential, q=r,
becomes “visible” when r 
 kD. On the other hand, if r � kD then the potential
essentially vanishes, i.e. the central charge is screened. kD is the Debye screening
length.

How big is kD? We first note that the system of our current units requires the
replacement of e2 by e2=ð4peoerÞ if we want to use SI-units. Notice that er is the
dielectric constant of the background medium containing the charges, e.g. ions in
water (water: er ¼ 78:3 at T ¼ 298 K and P ¼ 1 bar). Thus we have

kD ¼ 1:988� 10�3

ffiffiffiffiffiffiffi
Ter
I

r
nm with½T� ¼ K and ½c� ¼ mol=l: ð3:126Þ

For example, in the case of a 0:1 molar aqueous NaCl solution kD ¼ 0:96 nm.
The /ðsÞ we want is obtained by subtracting the bare potential q=r from the

above /ð~rÞ, i.e.

/ð~rÞðsÞ 
 qe�r=kD

r
� q

r
: ð3:127Þ

The potential difference /ðsÞ
ba is

/ðsÞ
ba ¼ /ð0ÞðsÞ � /ð1ÞðsÞ 
 lim

r!0

qð1� r=kD �Oðr2ÞÞ � q
r

¼ � q
kD

: ð3:128Þ
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Returning now to Eq. (3.112) we can write

dlqjT ;P 
 �NAq
kD

dq: ð3:129Þ

The complete lq we obtain by increasing dq to the full q, i.e.

lq 
 �
Z q

0
dq0

NAq0

kD
¼ � 1

2
NAq2

kD
: ð3:130Þ

This is half the electrostatic energy of two charges �q (SI-units:
q2 ! q2=ð4peoerÞ) at a distance kD (multiplied by NA). Notice also that lq is what
we must add to the ideal chemical potential of charge q in order to approximately
account for its electrostatic interaction with all other charges in the system. In other
words, we may write for the (electrostatic) activity coefficient

RT ln cq 
 � 1
2
NAq2

kD
: ð3:131Þ

Before we proceed with an example, we want to discuss the inclusion of
excluded volume. Thus far the ions are point-like. We may include the effect of
finite ion size as follows. Due to overall neutrality we require

�4pq 
 � 1

k2D

Z1
b

d3r/ðrÞ ð3:132Þ

(cf. the second term on the right side of Eq. (3.118)). Here b is the radius of the ion
carrying the charge q. Inserting /ðrÞ ¼ Ar�1 exp½�r=kD�, where A is a constant, we
obtain

/ð~rÞ 
 qe�ðr�bÞ=kD

rð1þ b=kDÞ ;
ð3:133Þ

instead of Eq. (3.125). The potential difference now becomes

/ðsÞ
ba ¼ /ðbÞðsÞ � /ð1ÞðsÞ 
 lim

dr!0

qe�ðr�bÞ=kD

rð1þ b=kDÞ
���
r¼bþ dr

� q
r

� �
¼ � q

kD

1
1þ b=kD

;

ð3:134Þ
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and the charging process yields

lq 
 � 1
2
NAq2

kD

1
1þ b=kD

: ð3:135Þ

However, for the moment we continue to use Eq. (3.130), i.e. the limit b ! 0,
and return to Eq. (3.135) when we discuss the phase behavior of simple systems in
Chap. 4. Setting b ¼ 0 results in the so-called Debye-Hückel limiting law.9

Example—Osmotic Pressure in Electrolyte Solutions In this example we
begin by studying osmotic pressure from a somewhat different angle than
before. The spherical cell in Fig. 3.18 is submerged inside a water (or solvent)
reservoir kept at constant temperature, T , and pressure, P. The water passes
freely between the cell, which has a constant volume V , and the reservoir.
A suitable mechanism allows to add electrolyte (or solute) to the cell.
Contrary to the water the electrolyte, which we assume fully dissociated into
its ions, cannot pass the cell’s wall. We know from our previous discussion of
osmotic pressure that the total pressure inside the cell will rise to PþP. The
dependence of osmotic pressure, P, on solute concentration follows via the
Gibbs-Duhem Eq. (2.180) applied to the interior of the cell, i.e.

VdP jT¼
X
j

njdlj jT : ð3:136Þ

Here j stands for the different types of ions (or different solute compo-
nents). The water chemical potential does not appear, because it may adjust to
the same value inside and outside the cell. And the outside water chemical
potential is constant of course. According to Eqs. (3.72) and (3.73) we may
express the change of the j-ion’s chemical potential via

H2O

T,P

electrolyte

H2O

T,P

+

+

Fig. 3.18 Spherical cell with
a semipermeable wall
containing an electrolyte
solution

9 Peter Debye, Nobel prize in chemistry for his many contributions to the theory of molecular
structure and interactions, 1936.
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dlj ¼ RTd ln½xjcj�: ð3:137Þ

The desired relation between the osmotic pressure and the electrolyte
concentration expressed in moles, n, inside V follows via integration of
Eq. (3.136):

P ¼ Pid þPex ¼ RT
V

Z n

0

X
j

njd ln xj þ RT
V

Z n

0

X
j

njd ln cj: ð3:138Þ

Using nj ¼ mjn the ideal part becomes

Pid ¼ RT
V

X
j

mj

Z n

0
n0d ln

n0

nH2Oðn0Þ þ
P

j mjn
0

" #
: ð3:139Þ

Note that d ln
P

j mj ¼ 0. We recover the van’t Hoff equation if we replace
nH2OðnÞþ

P
j mjn by n�H2O, where n�H2O is the water content of the cell at

vanishing electrolyte concentration. This approximation requires a negligible
solute content, i.e. small electrolyte concentration, and also neglects com-
pressibility effects. Now we can use d ln½nH2OðnÞþ

P
j mjn� 
 d ln n�H2O ¼ 0

and thus we find

Pid 
 PvH ¼ RT
V

X
j

mjn: ð3:140Þ

Remembering Eq. (3.131), the Debye-Hückel result for the activity coef-
ficient, we can approximate the excess osmotic pressure, Pex, via

Pex 
 PDH ¼ RT
V

X
j

mj

Z n

0
n0d � 1

2
NAqj
kD

� �
: ð3:141Þ

With k�1
D / ffiffiffi

n
p

andZ n

0
n0d

ffiffiffiffi
n0

p
¼ 1

2

Z n

o
n01=2dn0 ¼ 1

3
n3=2 ð3:142Þ

we finally obtain

PDH ¼ � RT

24pNAk
3
D

: ð3:143Þ

Of special interest is the ratio /� 1 � Pex=Pid 
 PDH=PvH . Here / is
the osmotic coefficient, i.e.
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/ 
 1þ PDH

PvH
¼ 1� NAe2

6RTkD
: ð3:144Þ

Figure 3.19 shows / versus electrolyte concentration for AgNO3 and NaCl
in aqueous solution (the data are from Hamer and Wu 1972)—squares:
AgNO3; circles:

NaCl; solid line: Eq. (3.144). The limiting law is a good approximation at
very small electrolyte concentrations only. However, various approximations
like the neglect of finite ion size, ion-ion correlations, and the explicit
interaction with the solvent quickly cause deviations with increasing elec-
trolyte concentration.

3.3.6 Gibbs-Helmholtz Equation

In the following we need the Gibbs-Helmholtz equation:

@G=T
@T

����
P
¼ � H

T2 : ð3:145Þ

It may be derived via Eq. (2.117) combined with Eq. (2.123), i.e.

G ¼ H � T
@G
@T

����
P
:

Dividing both sides by T2 immediately yields Eq. (2.117). It is useful to rewrite
(3.145) in terms of the chemical potential lj in a multicomponent system.
Differentiation of the left side of Eq. (3.145) with respect to nj yields

0.001 0.002 0.005 0.010 0.020 0.050 0.100 0.200

c [mol/l]

0.90

0.95

1.00Fig. 3.19 Osmotic coefficient
versus electrolyte
concentration
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@

@nj

@G=T
@T

����
P;ni

�����
T ;P;nið6¼jÞ

¼ @

@T
1
T

@

@nj
G

����
T ;P;nið6¼jÞ

�����
P;ni

¼ @lj=T

@T

����
P;ni

and thus

@ljðT ;P; niÞ=T
@T

����
P;ni

¼ � hj
T2 ; ð3:146Þ

where hj is the partial molar enthalpy of component j.
We note that equations analogous to (3.145) and (3.146) hold for the free energy,

i.e.

@F=T
@T

����
V
¼ � E

T2 ð3:147Þ

and

@ljðT ;V ; niÞ=T
@T

����
V ;ni

¼ � ej
T2 ; ð3:148Þ

where ej is the partial molar energy of component j.

Example—Saha Equation During the cosmic evolution a phase called
recombination occurred. Neutral hydrogen and helium was formed, when the
temperature had dropped to about 3000 K (In his book Cosmology (Oxford
University Press, 2008) Steven Weinberg (Nobel Prize in physics for his
contributions to the unification of fundamental interactions, 1979) points out
that recombination may be misleading because no neutral atoms had ever
existed until this point. But this is the usual term and in addition recombi-
nation is still occurring today in the atmospheres of stars.). Even though we
cannot provide a complete discussion of this process, which can be found in
the aforementioned reference, we still want to get a feel for why it is asso-
ciated with such a distinct temperature.

Here we study the reaction

pþ e � 1s:

p and e stand for one proton and one electron, respectively, while 1s denotes
the atomic hydrogen ground state. In analogy to the example on p. 109 we
write
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x1s
xpxe

¼ PKðT;PoÞ

assuming ideal gas behavior. However, what we want to calculate is the
fraction of ionized hydrogen

X ¼ xp
xp þ x1s

:

We may combine the last two equations into one, i.e.

Xð1þ SXÞ ¼ 1; ð3:149Þ

where S ¼ ðqp þ q1sÞPKðT ;PoÞ=q. Note that xp ¼ xe and qi ¼ qxi, where q
is the total number density of massive particles in the universe at this time.
Equation (3.149) is the Saha equation (Meghnad Saha, 1893–1956, Indian
astrophysicist).

What we really want is X ¼ XðTÞ and thus we need the explicit temper-
ature dependence of KðT ;PoÞ. The latter quantity is given by

KðT ;PoÞ ¼ 1
Po

exp
1
RT

�
lpðT ;PoÞþ leðT ;PoÞ � l1sðT ;PoÞ

	� 

:

Using Eq. (3.146) we have

liðT ;PoÞ
T

¼ liðTo;PoÞ
To

�
Z T

To
dT 0 hiðT 0Þ

T 02 :

The partial molar enthalpy is hi ¼ ei þRT , where the internal energy is

ei ¼ eðoÞi þ 3RT=2. We also use eðoÞ1s � eðoÞp � eðoÞe ¼ �13:6 eVNA, where the
right side is the ionization energy for one mole of 1s hydrogen. Overall we
obtain

liðT ;PoÞ
RT

¼ liðTo;PoÞ
RTo

þ eðoÞi

R
1
T
� 1
To

� �
þ 5

2
ln
To

T
;

and thus

S ¼ Soðqp þ q1sÞðT=1KÞ�3=2 exp½158; 000K=T�;

where we have used the ideal gas law to replace P and
13:6 eV ¼ 1:58 � 105K. Here So is a number depending on the reference state
(To;Po), which thermodynamics does not reveal.
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This factor we shall obtain later from Statistical Mechanics, where we
learn that the chemical potential of an ideal system of point-like particles is

li ¼ RT ln½qiK3
T ;i� þ eðoÞi . Here

KT ;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�h2

mikBT

s

is the so called thermal wavelength and eðoÞi is an internal contribution to the
particle’s chemical potential in the above sense. Setting the masses of the
proton and the 1s hydrogen equal, i.e. mp ¼ m1s, we find

So ¼ 4:14 � 10�22 m3:

Finally we need to know qp þ q1s. This quantity is given by

qp þ q1s 
 ð1� YÞXm;bqc;0
mpc2

ðT=T0Þ3:

The quantity Xm;bqv;0ðT=T0Þ3 is the baryonic mass density at the time
when the radiation temperature is T (cf. the example “The expanding universe
and its temperature” in Sect. 2.2) and mpc2, the proton mass multiplied by the
speed of light squared, is the rest energy of a proton. In the aforementioned
example it is stated that Xm;b 
 0:05 and qc;0 
 8 � 10�10J m�3: The current
temperature of the background radiation is To 
 2:7K. The factor 1� Y ,
where Y is the primordial helium fraction, is roughly 1� 0:25 ¼ 0:75 . It
follows from the theory of primordial nucleosynthesis (a topic which we
cannot cover here). With this we have

S 
 4 � 10�24ðT=1KÞ3=2 exp½158,000K=T �: ð3:150Þ

The result is shown in Fig. 3.20. It is worth noting that neither the position
nor the shape of the step do significantly depend on the exact values of
qp þ q1s or So (the reader is encouraged to check this).

Weinberg points out that the calculation thus far gives the correct order of
magnitude of the temperature of the steep decline in fractional ionization, but
it is not correct in detail. However, the in depth discussion is complicated and
the interested reader is referred to the above reference.
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3.3.7 Boiling-Point Elevation

Figure 3.21 sketches a hypothetical crossing at constant pressure from a liquid
phase into the gas in a one-component system consisting of the substance A. The
temperature at which this happens is Tb. From what we know already we may guess
the general form of the attendant chemical potential—in a narrow temperature range
around Tb. This guess is shown in the upper portion of Fig. 3.22. The solid line
depicts the chemical potential along our path. The dotted lines are extensions of the
liquid and gas chemical potentials, respectively, to where they are not stable any-
more. Essentially this picture is based on the inequality (3.68).

Now suppose we do add a small amount xB of a second component B to the
liquid. According to Eq. (3.45) we find

dlðlÞA ¼ lðlÞA� � lðlÞA ¼ �RT ln xðlÞA 
 RTxðlÞB : ð3:151Þ

As always * indicates the pure A and xA þ xB ¼ 1. In addition xA � xB. Equation
(3.151) predicts a downward shift of the liquid chemical potential of A, which is
shown as long-dashed line in Fig. 3.22. We note that we are interested only in the
immediate vicinity of the boiling temperature Tb. Therefore this line and the cor-
responding solid line are parallel to good approximation. Furthermore we assume
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XFig. 3.20 Fraction of ionized

hydrogen versus temperature

T
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liquid

P

Tb

Fig. 3.21 Hypothetical
crossing of the saturation line
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that the amount of B in the gas phase is negligible or causes only a negligible shift
of the gas phase chemical potential. Therefore we find that the intersection of the
chemical potentials of A in the liquid phase and the gas phase has shifted to a higher
temperature Tb þ dT .

Using the Gibbs-Helmholtz equation we may relate dlðlÞA at Tb to the

boiling-point elevation dT . Geometrically dlðlÞA is given by

dlðlÞA ¼ ðiiÞ � ðiÞ; ð3:152Þ

where (ii) and (i) are defined in the bottom portion of Fig. 3.22. By simple
trigonometry

ðiiÞ ¼ �@lðgÞA�

@T

�����
Tb

dT and ðiÞ ¼ �@lðlÞA�

@T

�����
Tb

dT : ð3:153Þ

Thus we have

dlðlÞA ¼ �@ðlðgÞA� � lðlÞA� Þ
@T

�����
Tb

dT � �@DlA�

@T

����
Tb

dT : ð3:154Þ

T

gas

liquid

μ

Tb

T

(i)

(ii)
μ(l)

A

T

Fig. 3.22 Sketch illustrating
boiling-point elevation
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The Gibbs-Helmholtz equation enters via

dlðlÞA ¼ �@DlA�

@T

����
Tb

dT ¼ � @

@T
T
DlA�

T

� �
Tb

dT

¼ � DlA� ðTbÞ
Tb

þ T
@DlA�=T

@T

����
Tb

 !
dT

dlðlÞA ¼ð3:137ÞDvaph
Tb

dT :

ð3:155Þ

Notice that DlA� ðTbÞ ¼ 0 (chemical equilibrium!) and Dvaph is the molar
enthalpy change upon crossing from pure liquid A to pure gaseous A, i.e. the
enthalpy of vaporization of pure A. The enthalpy change during a phase transition
also is called latent heat—here latent heat of vaporization. Table 3.2 compiles latent
heats of vaporization and melting for a number of substances. We remark in this
context that the heat content of a substance build up without changing phase,

DH ¼ m
R T2
T1

dTCpðTÞ, where m is the mass of the substance, is called sensible heat.
Combining (3.155) with Eq. (3.151) we finally arrive at

dT 
 RT2
b

Dvaph
xðlÞB : ð3:156Þ

If we look up Dvaph for the transition of water to steam at 1bar, e.g. from

Table 3.2, we obtain dðT=KÞ 
 28:5xðlÞB , i.e. for amounts B in accord with our
above approximations the shift is quite small.

3.3.8 Freezing-Point Depression

Here the above solution containing mostly A and little B is in equilibrium with the
solid A, where again the B-content is negligible. Analogously to Fig. 3.21 we may
draw the sketch shown in Fig. 3.23. Apparently this time the transition temperature,

Table 3.2 Latent heats of
vaporization and melting for
various compounds

Compound DvapH [J/g] DmeltH [J/g]

Ice 2838 ðT ¼ 273:15KÞ 333:6 ðT ¼ 273:15KÞ
Water 2258 ðT ¼ 373:12KÞ
N2 199 ðT ¼ 77:35KÞ 25:3 ðT ¼ 63:15KÞ
O2 213 ðT ¼ 90:2KÞ 13:7 ðT ¼ 54:36KÞ
Octane 364 ðT ¼ 298KÞ 182 ðT ¼ 273:5KÞ
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which is the melting temperature Tm, is reduced by the addition of B. A completely
analogous calculation yields

dT 
 � RT2
m

Dmelth
xðlÞB ; ð3:157Þ

where Dmelt h is the molar melting enthalpy at given pressure. For water at 1bar we

obtain the freezing-point depression dðT=KÞ 
 �103xðlÞB . Figure 3.24 shows this
relation (solid line) in comparison to data points for D-Fructose (crosses) and
Silvernitrate (AgNO3) (open squares) taken from HCP. Notice that in the case of
AgNO3 the mole fraction refers to mole ions, i.e. Agþ and NO�

3 taken individually.
The dashed line, apparently an improved description of the AgNO3-data, is dis-
cussed in the next section.

Remark—cooling This is a good place to address the following question.
Figure 3.25 depicts a glass of water with a floating ice cube. Their respective
weights are 200 and 20 g and their momentary temperatures are 20 and 0 	C. What
will the temperature of the contents of the glass be after the ice has melted?

T
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Fig. 3.23 Sketch illustrating
freezing-point depression
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Fig. 3.24 Theoretical
predictions of freezing point
depression compared to
experimental data
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We assume, as so often, no transfer of heat between the contents of the glass and
its surroundings including the glass itself. Then according to the first law we have

DEþDw ¼ E220g � E200g � E20g þPðV220g � V200g � V20gÞ ¼ 0; ð3:158Þ

i.e. the overall enthalpy change is zero:

H220g � H200g � H20g ¼ 0: ð3:159Þ

Here the indices refer to the initial water and ice by their respective weights as
well as to the final liquid by its weight.

Neglecting for the moment the melting enthalpy of the ice, i.e. the enthalpy
change when the ice is converted into liquid at T ¼ 0 	C, we obtain the final
temperature T via

220gCPT � 200gCPT20 	C � 20gCPT0 	C ¼ 0: ð3:160Þ

CP is the isobaric heat capacity (we use its value at T ¼ 0 	C which is 4:22 J=ðgKÞ),
also assumed to be constant in the relevant temperature range. The resulting final
temperature after the ice has melted is T ¼ 18 	C. But this is incorrect, because we
have not yet included the enthalpy change during melting. There is a cost associated
with the breaking down of the ice structure—most notably the reduction in
hydrogen bonding. The price is paid in the form of heat extracted from the content
of the glass. This melting enthalpy is tabulated for numerous substances in HCP,
where we find DmeltH ¼ 6:01 kJ=mol for water at ambient pressure and 0 	C.
Including this contribution yields

ð20 g=18gÞDmeltHþ 220 gCPT � 200 gCPT20 	C � 20 gCPT0 	C ¼ 0: ð3:161Þ

200g
liquid water

T=20°C

20 g
ice

T=0°C

Fig. 3.25 A glass of liquid
water with a floating ice cube
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Here 18g is the molar weight of water. The new result is T ¼ 11 	C. This is
considerably colder than the previous temperature. Apparently the transition
enthalpy is the major contribution10!

If we redo our calculation with more ice, let’s say 100 g, we obtain even lower
temperatures—T ¼ �13 	C in this case. We immediately object that this is
unreasonable, because the whole content of the glass freezes before reaching this
temperature. Correct11! Nevertheless it brings up an idea connecting our present
discussion to freezing point depression. We need to depress the freezing point
sufficiently in order to reach such low temperatures.

From Fig. 3.23 we can see that melting above Tm results because the chemical
potential of the liquid is lower. Therefore melting continues until the temperature is
Tm.

12 If for instance we add salt to our liquid water in the above example, we may,
depending on the amount we add, lower the temperature far below the freezing
temperature of pure water.

In addition we may take advantage of a second and third enthalpy change
associated with a possible phase change of the substance we add or the mixing
process itself. If we select the proper substances then we can get quite low tem-
peratures in this fashion—around �100 	C! Of course, the disadvantage is that this
method allows to maintain low temperatures over short periods of time only.

Remark The above reasoning is very much simplified. It is incorrect to conclude
that increasing the amount of solute (e.g., salt) allows to continuously depress the
freezing point. For instance in the case of NaCl we can only get down to about
�21:1 	C. At lower temperatures ice and solid salt coexist. What this means we
discuss in the next chapter, where we study simple phase diagrams (in particular
liquid-solid coexistence in binary systems (cf. Sect. 4.3.3)).

3.3.9 The Osmotic Coefficient Revisited

Boiling point elevation and freezing point depression can be tied to the osmotic
coefficient, /, and are practical means for its measurement. We start with the
Gibbs-Duhem equation at constant pressure and temperature:

10 This also is something to keep in mind when buying a new washing machine. A higher spin
speed is usually better, because of the decreased residual water content in the laundry. This water
must be evaporated in the dryer, and the enthalpy of evaporation again is considerable. On the
other hand, a modern condenser dryer often is capable of reclaiming some of the invested energy
upon condensation.
11 More precisely, the process comes to a halt at coexistence of ice and liquid water.
12 Under “pool conditions” the sun transfers heat to the contents of our glass and the melting
continues until the ice is gone.
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�nAdlA
���
T ;P

¼
X
j

njdlj
���
T ;P

: ð3:162Þ

Here j stand for different solute components. This equation expresses an
infinitesimal change of the A-chemical potential via corresponding changes of the j-
chemical potentials. The right side of this equation is comparable to the right side of
Eq. (3.136). The difference is that in Eq. (3.162) the pressure is constant while in
(3.136) it is not.

However, in the liquid phase, where the compressibility is small, we may to very
good approximation equate the two right sides and consequently we arrive at

dlA

���
T ;P


 �VPid

nA
/: ð3:163Þ

Here dlA is the chemical potential change due to increasing the solute con-
centration from zero to some final concentration. The sign is just the opposite of the
definition in Eq. (3.151) and thus

/ 
 nðlÞAP
j nj

Dvaph

RTb2
dT : ð3:164Þ

This is the desired equation for the osmotic coefficient in terms of the
boiling-point elevation, where we have inserted the van’t Hoff equation for Pid . An
analogous relation follows for the osmotic coefficient in terms of the freezing point
depression:

/ 
 � nðlÞAP
j nj

Dmelth

RTm2 dT: ð3:165Þ

The dashed line in Fig. 3.24 is obtained if the osmotic coefficient is calculated
via Debye-Hückel theory according to Eq. (3.144). However, the reader should be
aware that AgNO3 is an example for which the limiting law works particularly well.

3.3.10 Measuring Surface Tension

Consider the interfacial area A ¼ xy in Fig. 3.26 (left surface). Increasing A to
Aþ dA ¼ ðxþ dxÞðyþ dyÞ (right surface) requires the reversible work dw ¼ cdA.
Here c is the interface tension. We may also express dw in terms of the pressure
difference on the two sides of the surface DP multiplied by the volume change
dV ¼ Adz, i.e. dw ¼ DPAdz. Hence
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DPAdz ¼ cdA: ð3:166Þ

This transforms into a very useful equation if we can rewrite dA as a function of
dz. Expressing dA first in terms of dx and dy yields

dA ¼ xy
xþ dx

x

� �
yþ dy

y

� �
� xy: ð3:167Þ

Now note that the dotted cross on the inner surface in Fig. 3.26 is a local xy-
coordinate system. Its x-axis points towards the reader and the positive direction of
y-axis is up. The dotted section of the x-axis is swept out by an infinitesimal angular
rotation of R1 relative to its origin, whereas the dotted piece of the y-axis is obtained
by an analogous sweep of R2. The origin of R2 (generally) is different from the
origin of R1. R1 and R2 are the principal radii of curvature of the interface at this
location. Using the theorem of rays we can rewrite dA as

dA ¼ xy
R1 þ dz
R1

� �
R2 þ dz

R2

� �
� xy ¼ xydz

1
R1

þ 1
R2

� �
: ð3:168Þ

Combination of the Eqs. (3.166) and (3.168) yields the Young-Laplace equation

DP ¼ c 1
R1

þ 1
R2

� 	
: ð3:169Þ

Example—Capillary Adhesion We practice using the Young-Laplace
equation by calculating the force between two smooth plates squashing a
drop of liquid between them as shown in Fig. 3.27. Eq. (3.169) is applied at
the position marked by the black dot. One of the two radii of curvature is R,
which also is the radius of the liquid drop if we look down on it through one
of the plate’s surfaces. The magnitude of the other radius of curvature, let’s

Fig. 3.26 A Mechanical
equilibrium for a curved
surface

138 3 Equilibrium and Stability



call this one r, is the radius of the circle whose partial circumference is
indicated by the dashed line. The angle between the dashed line and the upper
plate at the black dot is h, the contact angle of the liquid on the plate. Simple
geometry yields

tan h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðH=2Þ2

q
H=2

; ð3:170Þ

which can be solved for r, i.e.

r ¼ H
2 cos h

: ð3:171Þ

If, in addition, we assume R � r then Eq. (3.169) becomes

DP ¼ � 2c cos h
H

: ð3:172Þ

The extra minus sign is due to the fact that the center of the second circle lies
outside the liquid. In the opposite case it would have been positive. Note the
similarity of this equation to Eq. (2.136) derived in the context of the capillary rise
problem in Chap. 2. We can convert DP into a force between the plates, i.e.

F ¼ �pR2 2c cos h
H

; ð3:173Þ

Here the minus sign indicates attraction between the plates (as long as h\p=2).
For example, if the liquid is water (c ¼ 0:0728 N/m), (assuming) h ¼ 0, R ¼ 1 cm
and H ¼ 5 lm then F� � 10 N.

The Young-Laplace equation can be used also to calculate the shape of a drop
suspended from a dosing capillary as depicted in Fig. 3.28 (the capillary is omitted).
Here the pressure difference is a function of z, i.e.

DP ¼ DPð0Þ � Dcgz: ð3:174Þ
Note that the origin of the z axis is at the bottom of the drop. Dc is the mass

density difference between the liquid inside the drop and the medium surrounding
the drop, which may be air or another liquid. g is the acceleration of gravity. The

H

R
rθ

Fig. 3.27 Capillary adhesion
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two (principal) radii of curvature at z ¼ 0 are identical due to the axial symmetry of
the problem, i.e. R1 ¼ R2 � R (In the figure the two radii are shown for a different
point on the drops surface where they are different.). Inserting this into Eq. (3.169)
yields

DPð0Þ ¼ 2c
R
: ð3:175Þ

Substituting (3.175) back into Eq. (3.169), this time for an arbitrary z, yields

1
R1

þ sinU
x

¼ 2
R
� Dcgz

c
: ð3:176Þ

Note that x ¼ R2 sinU. Note also that the pendant drop is a figure of revolution
and that R2 therefore must originate on the z-axis. The same is not true for R1 (cf.
Fig. 3.28). It is useful to introduce a parameter variable s, which is the contour
length along the drop’s surface starting at the bottom (z ¼ 0) and going up (see
again Fig. 3.28). This leads to the following set of three coupled first order dif-
ferential equations:

dU
ds

¼ � sinU
x

þ 2
R
� Dcgz

c
dx
ds

¼ cosU
dz
ds

¼ sinU; ð3:177Þ

where we have used R1 dU ¼ ds, dx ¼ R2 cosU dU ¼ cosU ds, and
dðR2 � zÞ ¼ dðR2 cosUÞ, i.e. dz ¼ sinU ds.

Fig. 3.28 Pendant drop
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In practice the drop shape is recorded by a camera and the Eqs. (3.177) are
solved to fit the theoretical contour to the recorded contour using R and c as
adjustable parameters. The initial conditions are 0 ¼ xðs ¼ 0Þ ¼ z
ðs ¼ 0Þ ¼ Uðs ¼ 0Þ. Figure 3.29 shows two numerical solutions, i.e. the first
solution (solid line) is for R ¼ 1:5 mm and c is the surface tension of water,
whereas the second solution (dashed line) is for the same value of R but a 10%
smaller surface tension. The first solution can be calculated via the following
Mathematica code:

R ¼ 0:0015; c ¼ 0:0728;

t ¼ ND Solve½f/0½s� ¼¼ �Sin½/½s��=x½s� þ 2=R� ð9810=cÞz½s�; x0½s� ¼¼
Cos½/½s��;

z0½s� ¼¼ Sin½/½s��; x½0� ¼¼ z½0� ¼¼ /½0� ¼¼ 0:000001g; f/; x; zg; fs; 0:006g�

ParametricPlot½Evaluate½fx½s� � 1000; z½s� � 1000g/.t�; fs; 0; 0:006g;

PlotRange ! ff0; 2g; f0; 4:2gg;AxesLabel ! f``x [mm]''; ``z [mm]''g�

The second solution is obtained by changing the c-value (In addition, in the
figure this contour is shifted horizontally so that the two contours match up at the
top.). This method is the so called pendant drop method. It can be used to obtain

0.0 0.5 1.0 1.5 2.0
x mm0

1

2

3

4

z mmFig. 3.29 Pendant drop
contours
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either the surface tension, if the surrounding medium is air, or the interface tension,
if the surrounding medium is another liquid. Another common technique for
measuring surface tensions is the sessile drop method depicted in Fig. 3.30a.
A small drop (
 1� 2 ll) of a liquid is deposited on a clean smooth solid surface.
After the droplet has settled into its equilibrium shape a camera snaps a picture (cf.
Fig. 3.30b). This picture is then used to measure the contact angle, i.e. the per-
pendicular angle between the solid surface and the tangent to the droplet’s contour
at its base. There are two such angles on either side of the drop. Usually they differ
slightly due to surface irregularities, a possible tilt of the substrate surface, etc.

The theoretical analysis of this measurement is based on the following three
equations, the first of which is Young’s equation:

cs ¼ csl þ cl cos h : ð3:178Þ

The sketch in Fig. 3.31 depicts the droplet and the contact angle, h, in relation to
the tensions in Young’s equation. Here the index s indicates the solid surface and l
is the liquid. cs is the surface tension of the solid-gas interface and cl is the
analogous quantity for the liquid instead of the solid. csl is the interface tension of
the solid-liquid interface. Notice that the unit of c is energy/length2 or force/length.

Fig. 3.30 a Schematic of the sessile drop measurement. b Picture of a liquid drop on a solid
surface

liquid

solid
s

l

sl

Fig. 3.31 Standard setup for
Young’s equation
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The interpretation of Eq. (3.178) in terms of a force equilibrium is quite obvious.
The change in surface free energy at constant temperature when we put the drop
down on the surface is

DGðsÞ ¼ csl � cl � csð ÞDA: ð3:179Þ

A second, albeit empirical, approximation of the same quantity is

DGðsÞ ¼ �2
ffiffiffiffiffiffiffiffiffi
cdl c

d
s

q
þ

ffiffiffiffiffiffiffiffiffi
cpl c

p
s

q� �
DA: ð3:180Þ

Here cdi is the dispersive part of the surface tension ci and cpi is its polar part, i.e.

ci ¼ cdi þ cpi : ð3:181Þ

Combination of the Eqs. (3.178), (3.179) and (3.180) yields

ffiffiffiffiffiffiffiffiffi
cdl c

d
s

q
þ

ffiffiffiffiffiffiffiffiffi
cpl c

p
s

q
¼ ðcdl þ cpl Þ

cos hþ 1
2

: ð3:182Þ

The distinction of “dispersive” versus “polar” is not always easy and never
clear-cut. Two examples may suffice at this point. Let’s consider the liquid phase of
an n-alkane. Its methylene groups do not exhibit a particular separation of charges
(partial charges) and its polarizibility is small. In this case cpi 
 0. The (attractive)
dispersive inter and intra-molecular interactions, which are at work here and
essentially govern cds , are due to interacting quantum fluctuations of the electron
distribution around the nuclei. These fluctuations of course are universally present.
Water, our second example, is very different from any n-alkane. In the gas phase it
possess a, compared to its size, large dipole moment of about 1.85 D. In the
condensed phase, due to polarization, it has an even larger (average) dipole
moment. Thus, liquid water is the liquid of choice when a large cpi is needed.

While an accurate distinction between cdi and cpi can be difficult on the level of
microscopic interactions, it is quite straightforward in the following analysis.

Dividing Eq. (3.182) by
ffiffiffiffiffi
cdl

q
yields the equation of a straight line, y ¼ mxþ b, with

y ¼ clffiffiffiffiffi
cdl

q cos hþ 1
2

and x ¼
ffiffiffiffiffi
cpl
cdl

s
: ð3:183Þ

If the experiment is repeated with at least two test liquids, i.e. liquids whose
surface tension components are known, then the y-intercept b and the slope m will
yield the dispersive part and the polar part of the solid’s surface tension:
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cds ¼ b2 and cps ¼ m2: ð3:184Þ

Figure 3.32 shows a fairly typical example taken from a customer application
report (KRÜSS GmbH, 2020). Only two liquids are used, but some care is taken
that these liquids cover a significant x-range. The temperature is 60 °C. The values
of the substrate’s surface free energy per area, the substrate is a polymer in this case,
and its components are shown in the box in the lower right corner. The measured
contact angles (CA) are shown in the box above. The quality of the result obviously
benefits from a wide range of x-values and a “large” number of test liquids.
Table 3.3 lists cs, c

d
s and cps for a number of test liquids. Among these liquids water

Fig. 3.32 Standard application of Eq. (3.182)

Table 3.3 Surface tension of some test liquids (taken from a KRÜSS GmbH customer application
report)

Test liquid c [mN/m] cd [mN/m] cp [mN/m]

Water (25	C) 72.8 21.8 51.0

Ethylene glycol (20	C) 47.7 30.9 16.8

1-bromonaphthalene (20	C) 44.6 44.6 0.0

1-bromonaphthalene (60	C) 43.0 42.4 0.6

1-bromonaphthalene (80	C) 42.1 41.4 0.7

1-bromonaphthalene (120	C) 40.6 39.6 1.0

ethylene carbonate (60	C) 51.9 20.2 31.7

ethylene carbonate (80	C) 50.3 20.6 29.7

ethylene carbonate (120	C) 47.5 21.1 26.4
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at room temperature has the largest x-value (
 1:5), whereas 1-bromonaphthalene
has the smallest x-value (¼ 0). Note the temperature dependence of the surface
tension.

The development of Eq. (3.180) into (3.182) is called the OWRK-method in the
literature. Here OWRK stands for D. Owens and R. Wendt (1969), W. Rabel (1971)
and D. H. Kaeble (1970). However, much of the OWRK-method is described in
earlier work by F. M. Fowkes (1964). Motivated by the form of certain key for-
mulas in the theory of intermolecular and surface forces, Fowkes introduces the
geometric mean approximation (3.180) for the dispersive parts of the surface ten-
sions, i.e. he also arrives at Eq. (3.182) albeit with cps ¼ 0. In his paper he considers
the entire range of interfaces occurring between gases, liquids and solids. He also
obtains the value for cdH2O in Table 3.3 based on the combination of Eqs. (179) and
(3.180). In his case the index l stands for water and the index s stands for a series of
hydrocarbons with negligible polar parts of their surface tensions. Since cH2O is
known (it can be measured by a number of methods), Fowkes’ procedure also fixes
cpH2O. Similarly one can obtain cdl and cdp for other (test) liquids.

In principle we can divide Eq. (3.182) by
ffiffiffiffiffi
cds

p
cl instead of

ffiffiffiffiffi
cdl

q
. The result is

another straight line equation in which b ¼
ffiffiffiffiffi
cdl

q
=cl and m ¼ ffiffiffiffiffi

cpl
p

=cl. Thus we can

obtain the unknown components of a liquid’s surface tension by measuring its h on
at least two “test surfaces”.

Eq. (3.182) may be cast into another useful form by defining

cdl ¼ R cos/ and cpl ¼ R sin/: ð3:185Þ

Inserting this into Eq. (3.182) and solving for R yields:

R � Rð/; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cds cos/

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cps sin/

p
cos/þ sin/

 !2
4

ðcos hþ 1Þ2 :
ð3:186Þ

For every fixed value of h we now can obtain cdl and cpl by letting / vary from 0
to p=2. Figure 3.33 shows two examples of so called wetting envelopes. In the case
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Fig. 3.33 Examples of wetting envelopes
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(a) cds and cps are assigned fixed values and Eqs. (3.185) and (3.186) are used to plot
cl vs. c

p
l for two values of h. If h ¼ 0 wetting is complete. Panel (b) shows the

analogous result if Eq. (3.185) is replaced by

cds ¼ R0 cos/0 and cps ¼ R0 sin/0: ð3:187Þ

We obtain R0 if we insert (3.187) once again into (3.182):

R0ð/0; hÞ ¼ cdl þ cplffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdl cos/

0
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdl sin/

0
q

0
B@

1
CA

2

ðcos hþ 1Þ2
4

: ð3:188Þ

In panel (b) of Fig. 3.33 cdl and c
p
l are assigned fixed values and the Eqs. (3.187)

and (3.188) are used to plot cs versus cps for two values of h. The information
content is the same in both cases, because it is always Eq. (3.182) which is solved.

There are quite a few techniques and methods available for measuring contact
angles or surface and interface tensions. Surface tensions may be extracted from the
shape of drops in various configurations (hanging (pendant drop), rotating, deposited
(sessile drop), ...). As we have mentioned, interface tensions are obtained for
instance when the drops are embedded in another liquid. Here we cannot discuss all
of these measuring techniques in the detail they deserve. Instead we want to con-
clude this section by briefly describing two selected methods in addition to the above
pendant and sessile drop methods. The reason for including the first method is its
frequent use, which is comparable to the pendant and sessile drop methods, and the
main reason for including the second method is the illustration of a problem. The first
method is the Wilhelmy plate method which can be employed to determine the
surface tension of a liquid, the interface tension between two liquids (if air in the
discussion below is replaced by a second liquid), and the contact angle between a
liquid and a solid. What is measured here is the force F acting on a thin smooth plate
touching or partially submerged in a liquid as shown in Fig. 3.34. This force is

Fig. 3.34 Illustration of the
Wilhelmy plate method
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F ¼ clL cos h� VDc g: ð3:189Þ

Here L is the perimeter of the plate, i.e. the length of the entire plate-liquid
contact line, V is the volume of the displaced liquid, Dc is the density difference
between liquid and air, and g is the acceleration of gravity. Note that the second
term is the buoyancy of the submerged portion of the plate.

Commonly a platinum plate is used if the surface tension of an unknown liquid
is the quantity of interest. Platinum possesses a high surface free energy which
results in complete or total wetting, i.e. h ¼ 0. Another common procedural step of
the Wilhelmy method is a slow submersion followed by the likewise slow retraction
of the plate. The corresponding dynamic contact angles, ha (advancing h) and hr
(receding h) are different and their difference is called contact angle hysteresis.

But the non-uniqueness of the contact angle h in Young’s equation is not limited
to dynamic measurements. It is observed in static situations due to the non-ideality
of the surfaces involved. Consider for example a liquid drop trapped inside a
narrow glass capillary. Now turn the capillary, which is open on both ends, so that
the force of gravity acting on the liquid is parallel to the capillary. (Usually) the
drop remains stuck inside the capillary forming an upper and a lower meniscus
possessing different contact angles htop and hbottom. Generalizing our previous for-
mula for the height h of a liquid column inside a capillary, i.e Eq. (2.136), to this
case, we find

2c
R
ðcos htop � cos hbottomÞ ¼ c g h: ð3:190Þ

Here h is the length of the liquid column trapped inside the capillary, from
which it would escape if cos htop � cos hbottom ¼ 0 However, usually this is not the
case and it takes some extra work, e.g. blowing into the capillary, to remove the
trapped liquid. More specifically, for the liquid column to remain motionless
(equilibrium), htop [ hr and hbottom\ha. Here hr and haare the limiting contact
angles below or beyond which a solid-liquid contact line, or in this case the liquid
column, begins to recede or advance spontaneously. Roughly, on a “good” surface
the hysteresis ha � hr is small (\5	). On rough or dirty surfaces it can be much
larger. The experimentally observed advancing contact angle is usually considered
to be closest to the contact angle h in the Young equation.

A substrate may not possess a “smooth” surface but may be a powder or
granulate instead. An important example are fillers consisting of nanoparticles
(<100 nm in diameter), usually carbon black or silica, which are used for rubber
reinforcement in the tire industry. The dispersion of the particles within the polymer
matrix is governed by the attendant interfacial free energies, which means that it is
of significant importance to reliably measure surface tensions of powders or
granulates. One can try to prepare thin layers of these particles on otherwise smooth
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substrates (e.g. adhesive tape) and measure contact angles with for instance
Wilhelmy’s method. But this will produce a pronounced contact angle hysteresis
and results are hardly reproducible. A method especially designed for porous
substrates was developed by E. W. Washburn (1921). Here the rate of penetration
of a test liquid into a compressed powder cake is monitored, i.e. the depth of the
liquid front l as a function of time t is recorded. The contact angle h then follows via

l2 ¼ r t cl cos h
2 g

: ð3:191Þ

The quantity g is the liquid’s viscosity and r represents the pore radius. In the
static limit of this experiment the wetting liquid penetrates upward vertically
through the powder cake until the capillary pressure balances the liquid’s weight.
Essentially the theoretical description is again Eq. (2.136) (capillary rise example),
where in this case r once again represents the pore radius. Off course, the latter is
not very well defined and therefore usually replaced by an effective capillary radius
reff defined in terms of the volume fraction of solid /, the density of the solid
material c and the specific surface area per gram of solid A:

reff ¼ 2ð1� /Þ
/ c A

: ð3:192Þ

For more details of this, the Wilhelmy and others methods the reader is referred
to Yuan and Lee (2013). The theory of surface and interface tension is covered in de
Gennes et al. (2004).

Remark 1 The temperature dependence of the surface tension, which we do not
discuss here, nevertheless is of great technical importance. Since in most applica-
tions a linear approximation is sufficiently accurate, many reports of measured data
do include the gradient dc=dT in the range of relevant temperatures T . At the
gas-liquid critical point of a substance its surface tension c vanishes. For temper-
atures T not too different from the critical temperature Tc one can show that the
scaling relationc / ð1� T=TcÞl is satisfied, where l is a critical exponent. The
original value l = 1 (Eötvös' law) was modified empirically to l = 11/9 by E.
A. Guggenheim (1945) and finally calculated on the basis of the hyperscaling
relation l ¼ ðd � 1Þm, where d is the space dimension and m is the critical exponent
of the temperature scaling of the order parameter fluctuation correlation length
(J. S Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University
Press, Oxford, 1989)). In three dimensions m 
 0:63 and therefore l 
 1:26.

Remark 2 nA simple form describing the dependence of the surface tension of
polymer liquids on molecular weight M is c ¼ c1 þ cM�x. Here c1 and c are
constants. The exponent x usually is close to 2/3 for low molecular weights but
crosses over to 1 at high molecular weights (Thompson et al. 2008).
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Chapter 4
Simple Phase Diagrams

4.1 Van Der Waals Theory

4.1.1 The Van Der Waals Equation of State

The van der Waals1 theory assumes a molecular structure of matter, where matter
means gases or liquids. The interaction between molecules requires modification of
the ideal gas law:

P|{z}
Pþ aðn=VÞ2

V|{z}
V�nb

¼ nRT ;

i.e.

P ¼ nRT
V�nb � a n

V

� �2
: ð4:1Þ

Molecules, or atoms in the case of noble gases, at close proximity tend to repel.
The attending volume reduction is �nb, where b is a parameter accounting for the
exclusion of (molar) volume that a particle imposes on the other particles in V . At
large distances particles attract, which in turn reduces the pressure. The particular
form of this pressure correction, i.e. aðn=VÞ2, may be motivated as follows. The
number of particle pairs in a system consisting of N particles is NðN � 1Þ=2
� N2=2. Expressed in moles this leads to the factor n2. The attraction is limited to
“not too large” particle-to-particle separation. We assume that two particles feel
attracted if they are in the same volume element DV . The probability that two
particular particles are found within DV simultaneously is proportional to
ðDV=VÞ2. Assuming this to be true for all possible pairs leads to an overall number

1 Johannes Diderik van der Waals, Nobel prize in physics for his work on the phase behavior of
gases and liquids, 1910.
© Springer Nature Switzerland AG 2022
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of attracted molecules proportional to ðn=VÞ2. The resulting Eq. (4.1) is the van der
Waals equation of state for gases and liquids. The (positive) parameters a and b are
characteristic for the specific material. The van der Waals equation of state is by no
means accurate, but its combination of simplicity and utility is outstanding.

The parameters a and b may be estimated by measuring the pressure as function
of temperature at low densities. The result may then be approximated using the
following low density expansion of Eq. (4.1):

P ¼ RT
X1
i¼1

BiðT; a; bÞ n
V

� �i
; ð4:2Þ

where

B1ðT ; a; bÞ ¼ 1 ð4:3Þ

B2ðT ; a; bÞ ¼ b� a
RT

ð4:4Þ

B3ðT; a; bÞ ¼ b2

..

. ð4:5Þ

are so called virial coefficients. In practice one determines BðexpÞ
2 ðTÞ by fitting low

order polynomials to experimental pressure isotherms at low densities. The

resulting BðexpÞ
2 ðTÞ is then plotted versus temperature. Now a and b may be obtained

by fitting Eq. (4.4) to these data points.
If we introduce the following reduced quantities, p, t, and v, via

P ¼ Pcp ð4:6Þ

T ¼ Tct ð4:7Þ

V ¼ Vcv; ð4:8Þ

where

Pc ¼ 1
27

a
b2

ð4:9Þ

RTc ¼ 8
27

a
b

ð4:10Þ
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Vc ¼ 3nb; ð4:11Þ

we may rewrite the van der Waals Eq. (4.1) into

p ¼ 8t
3v� 1

� 3
v2

: ð4:12Þ

This is the so called universal van der Waals equation. It is universal in the sense
that it does no longer depend on the material parameters a and b. Notice that the
ideal gas law in these units is

pid:gas ¼ 8t
3v

: ð4:13Þ

4.1.2 Gas-Liquid Phase Transition

The upper portion of Fig. 4.1 shows plots of the universal van der Waals equation
for three different values of t (solid lines). Of course Eq. (4.12) always deviates
from the ideal gas law at low v. In fact we did not plot the pressure for v-values
below the singularity at v ¼ 1=3, because there the molecules overlap. But we also
notice that the universal van der Waals equation exhibits strange behavior if t\1:0.
There is a v-range in which the pressure rises even though the volume increases.
Here we find an isothermal compressibility jT\0—in clear violation of the
mechanical stability condition in (3.16)! Had we plotted Eq. (4.12) for even smaller
t-values, we would have obtained negative pressures in addition. All in all, for
certain v and t, the van der Waals equation does describe states which cannot be
equilibrium states. It turns out however that we can fix this problem, and at the
same time we may describe a new phenomenon—the phase transformation between
gas and liquid.

To understand how the model may be fixed we look at the free energy obtained
via integration of the pressure

FðVÞ ¼ Fo �
Z V

Vo

dVP ð4:14Þ

(cf. Eq. (2.109). The bottom part of Fig. 4.1 shows the result obtained using the
universal van der Waals equation (with Fo ¼ 3) for the same three temperatures as
above. The t ¼ 0:9-curve, which violates mechanical stability according to the
attendant pressure isotherm, is sketched in somewhat exaggerated fashion in Fig. 4.2.

We notice that the system represented by the filled black circle may lower its free
energy by decomposing into regions in which the free energy is fl or fg. In between
the free energy is
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f 0 ¼ flxþ fgð1� xÞ with x ¼ v� vg
vl � vg

: ð4:15Þ

Notice that this is the lowest free energy the system can achieve via decom-
position into regions with high density, denoted vl, and regions with low density,
denoted vg. The respective volume fractions of the two different regions are
assigned by the parameter x (note: v ¼ xvl þð1� xÞvg) according to the value of v.
In other words, for volumes vl\v\vg the homogeneous system is unstable relative
to the decomposed or inhomogeneous system.

Imagine we move along an isotherm t\1 starting from a large volume v[ vg.
We are in a homogeneous so called gas phase. Upon decreasing v we are entering
the range vg [ v[ vl. Here, depending on the value of v, we observe a “mixture” of
regions having a homogeneous density n=vg or n=vl. As we approach vl the volume
fraction of the latter regions increases to unity. If vl � v we are again inside a
homogeneous system—the liquid phase. This augmented van der Waals theory
therefore predicts a phase change from gas to liquid and vice versa.

Notice also that for vg � v� vl

p0 ¼ �@f 0

@v

����
T

¼ � fg � fl
vg � vl

¼ constant

(the straight line in Fig. 4.2 is the common tangent to f at vl and vg) and

fg � fl ¼ p0vl � p0vg or fg þ p0vg|fflfflfflfflffl{zfflfflfflfflffl}
¼nlg

¼ fl þ p0vl|fflfflfflffl{zfflfflfflffl}
¼nll

;

which means that mechanical and chemical stability are satisfied.
In turn we may calculate vl and vg via the conditions pðt; vlÞ ¼ pðt; vgÞ and

lðt; vlÞ ¼ lðt; vgÞ based on the universal van der Waals equation itself, i.e.

pðt; vlÞ ¼ pðt; vgÞ ð4:16Þ

and

�
Z vl

vo

dvpðt; vÞþ pðt; vlÞvl ¼ �
Z vg

vo

dvpðt; vÞþ pðt; vgÞvg
ð4:17Þ

using nl ¼ f þ pv. The numerically obtained values vlðtÞ and vgðtÞ are shown as a
dashed line, the binodal line, in the upper part of Fig. 4.1. The area beneath the
binodal line is the gas-liquid coexistence region. Notice that no solutions exist if
t[ 1, i.e. no gas-liquid phase transition is encountered above t ¼ 1. In addition to
the binodal line there is a dotted line, the spinodal line, which indicates the (me-
chanical) stability limit. This means that the isothermal compressibility, jT , is
negative below this line.
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We remark that, among other methods, the simultaneous numerical solution of
Eqs. (4.16) and (4.17) may be programmed as “graphical” search for the inter-
section of pressure and chemical potential in a plot of lðvÞ versus pðvÞ. An example
is shown in Fig. 4.3 for t ¼ 0:9.

The largest t-value for which a solution is obtained is t ¼ 1. Here one finds
vl ¼ vg. The corresponding values of the unreduced pressure, temperature, and
volume are Pc, Tc, and Vc given by the Eqs. (4.6)–(4.8). We can find this so called
critical point directly by simultaneous solution of Pc ¼ PðTc;VcÞ, dP=dV jTc;Vc

¼ 0,

and d2P=dV2jTc;Vc
¼ 0 (the second and third equations are due to the constant

pressure in the coexistence region).
We may rewrite Eq. (4.17) using p0ðtÞ ¼ pðt; vlÞ ¼ pðt; vgÞ asZ vg

vl

dvpðt; vÞ � p0ðtÞðvg � vlÞ ¼ 0: ð4:18Þ

The left side of this equation is the sum of the two shaded areas, one positive and
one negative, in the upper graph in Fig. 4.1. The equation states that the two areas
between the van der Waals pressure pðt; vÞ, and the constant pressure, p0ðtÞ, which
replaces it between vg and vl, are equal. Therefore vg and vl may also be found
graphically via this equal area or Maxwell construction . We remark that between vg
and vl the van der Waals pressure isotherms are said to exhibit a van der Waals loop.

Figure 4.4 shows the possibly simplest of all phase diagrams in the t-v- and in
the t-p-plane. The solid line in the upper diagram is the same as the dashed line, i.e.
the phase coexistence curve, in Fig. 4.1. The dotted line is the spinodal. The lower
graph shows the phase boundary between gas and liquid in the pressure-temperature
plane. Notice that here no coexistence region appears because the pressure is
constant throughout this region (at constant t). The crosses are vapor pressure data
for water taken from HCP.

The next figure, Fig. 4.5, shows three isobars above, at, and below the critical
pressure.
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Fig. 4.3 Pressure versus
chemical potential below t = 1
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Figure 4.6 shows the van der Waals chemical potential along three isobars close
to the critical point (top) and over an expanded temperature range (bottom), i.e. we
compute l along three horizontal lines in the lower panel of Fig. 4.4 just below, at,
and just above the critical pressure. For p ¼ 0:96 we cut across the gas-liquid phase
transition. Notice that the dashed lines indicate the continuation of the liquid (low t)
and gas (high t) chemical potentials into their respective metastable region, i.e. the
region between spinodal and binodal line. This justifies our sketches of the
chemical potential in Fig. 3.22 and in principle also in Fig. 3.23. At p ¼ 1 the
chemical potential still exhibits a kink, whereas above its slope changes smoothly.

The general quality of the van der Waals equation is nicely demonstrated in
Fig. 4.7.2 The figure shows coexistence data for seven different substances plotted
in units of their critical parameters. The data, in almost all cases, indeed fall onto a
universal curve. This behavior is called law of corresponding states. The universal
van der Waals equation certainly is not an exact description, but considering its
simplicity the agreement with the experimental data is quite remarkable!
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Fig. 4.6 Van der Waals
chemical potential along three
isobars

2 The data shown here are taken from the book by Stanley (1971); the original source is
Guggenheim (1945).

156 4 Simple Phase Diagrams



We briefly return to the second virial coefficient, B2ðT; a; bÞ, in Eq. (4.4).
Figure 4.8 illustrates the comparison between the van der Waals prediction (solid
line), i.e.

nB2

Vc
¼ 1

3
1� 27

8t

� 	
; ð4:19Þ

and experimental data from HTTD (Appendix C). The agreement with the exper-
imental data is qualitatively correct. We note however, that the form of B3 in
Eq. (4.5) is an oversimplification. The third virial coefficient, B3, is not independent
of temperature as this equation suggests. Notice that B2ðTÞ ¼ 0 defines the so called
Boyle temperature, TBolyle. According to the van der Waals theory

TBoyle ¼ 27
8
Tc: ð4:20Þ
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Another quantity of interest is the compressibility factor at criticality, for which
the van der Waals theory predicts that it is a simple universal number:

PcVc

nRTc
¼ 3

8
¼ 0:375: ð4:21Þ

In the cases of argon, methane, and oxygen the experimental values are close to
0:29.

4.1.3 Other Results of the Van Der Waals Theory

The gas-liquid phase behavior described by the van der Waals theory is considered
“simple”. In this sense it is a reference distinguishing “simple” from “complex”. We
emphasize that this refers to the qualitative description rather than to the quanti-
tative prediction of fluid properties. Other phenomenological equations of state may
be better in this respect, but it is the physical insight which here is important to us.
Because of this we compute a number of other thermophysical quantities in terms of
t, p, and/or v.

Isobaric Thermal Expansion Coefficient

Figure 4.9 shows the temperature dependence of the isobaric thermal expansion
coefficient, ap, below, at, and above the critical pressure. The dashed line is the
ideal gas result. Below the critical pressure a jump occurs when the gas-liquid
saturation line (cf. Fig. 4.4; right panel) is crossed. At the critical point we observe a
divergence. Above the critical point a maximum marks the smooth “continuation”
of the gas-liquid saturation line, which sometimes is called Widom line.
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Isothermal Compressibility

Figure 4.10 shows the volume dependence of the isothermal compressibility, jT ,
below, at, and above the critical temperature. The dashed lines are the continuation
of jT into the metastable region. Notice that jT diverges when @p=@vjT ¼ 0. This
condition defines the stability limit, jT � 0, i.e. inside the gap between the dashed
lines the van der Waals equation gives negative jT . Notice that jT also diverges at
the critical temperature. Above the critical temperature jT exhibits a maximum near
the critical volume, which diminishes as the temperature increases. In general the
compressibility increases as v increases—the gas is less dense and easier to
compress.

Isochoric Heat Capacity

Having discussed aP and jT the next obvious function to look at is the isochoric
heat capacity, CV . It turns out that within the van der Waals theory all we obtain is

CvdW
V ¼ CvdW

V ðTÞ; ð4:22Þ

i.e. CvdW
V is a function of temperature only.

We show this via

@

@T
@F
@V

���
T

���
V|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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Fig. 4.10 Volume
dependence of the isothermal
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Therefore

@2P
@T2

���
V
¼ @

@T
@S
@V

���
T

���
V
¼ @

@V
@S
@T

���
V

���
T

¼ð2:158Þ @

@V
CV

T

���
T
¼ 1

T
@CV

@V

���
T
:

This proves Eq. (4.22), because according to the van der Waals equation
@2P=@T2jV ¼ 0.

Remark The above equation, i.e.

@CV

@V

���
T
¼ T

@2P
@T2

���
V
; ð4:23Þ

may be integrated to yield

CV � CV ;ideal � �nR 2T
@B2ðTÞ
@T

þ T2 @
2B2ðTÞ
@T2


 �
n
V
; ð4:24Þ

which is a low density approximation to CV . Of course this correction vanishes if
the second virial coefficient, B2ðTÞ, of the van der Waals theory (cf. Eq. (4.4)) is
used.

Inversion Temperature

In Sect. 2.2 we had discussed the Joule-Thomson coefficient. Based on the uni-
versal van der Waals Eq. (4.12) we want to calculate the inversion line in the t-p-
plane. Eq. (2.106) is inconvenient, because we have to express v in terms of t and p.
However, using Eq. (A.2) we may write

@v
@t

���
p
¼ � @v

@p

���
t

@p
@t

���
v
¼ �

@p
@t

���
v

@p
@v

���
t

:

The inversion line now is the solution of

0 ¼ t
@p
@t

���
v

. @p
@v

���
t
þ v;

which we may find analytically:

p ¼ 12ð ffiffi
t

p �
ffiffiffiffiffiffiffiffi
3=4

p
Þð

ffiffiffiffiffiffiffiffiffiffi
27=4

p
� ffiffi

t
p Þ: ð4:25Þ

The inversion temperatures at p ¼ 0 therefore are tmin ¼ 3=4 and tmax ¼ 27=4.
Equation (4.25) is shown in Fig. 4.11. The curve encloses the area in the t-p-plane,
where the Joule-Thomson coefficient, lJT , is positive (cooling). Outside this area
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lJT is negative corresponding to heating. Experimental data for methane, oxygen,
and argon from Fig. 4.12 in Hendricks et al. (1972) Joule-Thomson inversion
curves and related coefficients for several simple fluids NASA Technical Note
D-6807 are included for comparison. Qualitatively the van der Waals predictions
are correct. But the quantitative quality is quite poor for t-p-conditions far from the
critical point (the gas-liquid saturation line (cf. Fig. 4.4; right panel) terminating in
the critical point (circle) is included), which we use to tie our theory to reality.

It is interesting to work out @v=@tjp based on the virial expansion (4.2), because
this allows a better understanding of the Joule-Thomson effect on the basis of
molecular interaction. To leading order we find

@v
@t

���
p
¼ v

t
þ t

@ðb2=tÞ
@t

; ð4:26Þ

where b2 ¼ nB2ðTÞ=Vc. Consequently the Joule-Thomson coefficient in this
approximation is
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lJT ¼ Vc

CP
t2
@ðb2=tÞ

@t

� 	
: ð4:27Þ

This equation is general, i.e. we have not yet used the van der Waals equation of
state. If we do this, i.e. we insert Eqs. (4.4), the result is

V�1
c CPlJT ¼ 1

3
27
4t

� 1
� 	

: ð4:28Þ

We recognize that the equation describes the Joule-Thomson coefficient at P ¼ 0
(or small P) near the upper inversion temperature. In particular we verify that
lJT [ 0 for t\tmax and lJT\0 for t[ tmax.

Van Der Waals Critical Exponents
Close to the gas-liquid critical point one can show that the quantities �dp, �dv, and
�dt, which are small deviations from the critical point in terms of the variables p, v,
and t, are simply related to each other as well as to thermodynamic functions like
the isobaric thermal expansion coefficient, ap, and the isothermal compressibility, jt
(as well as all others!).3

Again we focus on the universal van der Waals equation, i.e. Eq. (4.12). Along
the critical isotherm, path (a) in Fig. 4.12, we set p ¼ 1þ dp and v ¼ 1� dv.
Inserting this into (4.12) we obtain

dp ¼ � 3
2
dv3 þOðdv4Þ:

Ignoring constant factors and additional terms, like the corrections to the leading
behavior, we write instead

dp� � dv3 where � : v ¼ 1� dv: ð4:29Þ
Approaching the critical point from above, t ¼ 1þ dt, along the critical isochor,

v ¼ 1, i.e. path (b) in Fig. 4.12, we find

dp� dt: ð4:30Þ

Another special line is the coexistence curve, shown as the dashed line in
Fig. 4.1. On the sketches in Fig. 4.12 the path along the coexistence curve is labeled
(c). We insert t ¼ 1� dt and v ¼ 1� dv into the universal van der Waals equation

3 The small quantities dp, dv, and dt are all positive.
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and expand the result in powers of dv. Finally we assume dv � dv� ¼ c�dtb.4 Note
that dt and dv are positive. The result is

p� ¼ 1� 4dt � 3
2
c3 � dt3b � 6c�dt1þ b þ . . .:

Here . . . stands for higher order terms Oðdt4bÞ and Oðdt2þbÞ, and þ and � stand
for the gas and the liquid side of the coexistence curve respectively. The stability
condition (4.16) requires p� ¼ pþ . Setting cþ ¼ �c� fulfills this equality but does
not yield the desired result because v� ¼ vþ . The only other solution requires
3b ¼ 1þ b and � 3

2 c
3
� � 6c� ¼ 0. Consequently we obtain

b ¼ 1
2

and c� ¼ 2; ð4:31Þ

i.e. the leading relation between dv and dt along the coexistence curve is

dv� dt1=2: ð4:32Þ
We may use this to work out the dependence of the isothermal compressibility,

jt ¼ �ð1=vÞ@v=@pjt, near the critical point and along the coexistence curve. Again
we insert t ¼ 1� dt and v ¼ 1� dv into the universal van der Waals equation and
expand the result in powers of dv. We then work out the derivative @p=@vjt and
insert the above result (4.32). This yields

j�1
t � dt: ð4:33Þ

Using the general thermodynamic relation @v
@t

���
p
¼ � @p

@t

���
v
= @p
@v

���
t
(cf. Eq. (A.3)) we

obtain the dt-dependence of the isobaric expansion coefficient, ap ¼ ð1=vÞ@v=@tjp,
near the critical temperature and also along the coexistence curve. Because @p=@t

��
v

to leading order contributes a constant only, we obtain, as above for jt,

ap � dt�1: ð4:34Þ

We return briefly to the critical isochore, v ¼ 1, and compute the dt-dependence
of j�1

t , when we approach the critical point via this path. Working out @p=@vjt and
setting v ¼ 1 as well as t ¼ 1þ dt yields

j�1
t � dt ð4:35Þ

4 This is the leading term in a power series expansion of dv in dt. Notice that the coexistence
curve is not symmetric with respect to reflection across the critical isochore—except very close
to the critical point (cf. below).
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as before. Only the prefactors (called scaling amplitudes) are different, i.e. j�1
t �

12dt on the path along the coexistence curve and j�1
t � 6dt along the isochore.

Again we find the relation (4.34) for the same reason as before, i.e. @p=@t
��
v to

leading order contributes a constant only.
The reader may want to work out the divergences of ap in Fig. 4.9 and jt in

Fig. 4.10 to leading order in dt and dv, respectively. The result is ap � dt�2=3 along
the critical isobar and jt � dv�2 along the critical isotherm.

The exponents in the above power laws are called critical exponents. Table 4.1
compiles a selected number of them together with their definition, thermodynamic
conditions, and van der Waals values. Here ql � qg is the density difference across
the coexistence curve.5 This quantity is called order parameter. Notice that by
construction the order parameter vanishes above Tc. In addition, dT ¼ jT � Tcj and
dP ¼ jP� Pcj. Notice also that we have not yet talked about the heat capacity
exponent a.6 The prime indicates the same critical exponent below Tc. The van der
Waals theory yields the same values for the two exponents listed here, i.e. a ¼ a0

and c ¼ c0. But the van der Waals values are not correct! Even though the correct
exponent values turn out to be nevertheless the same below and above Tc, we again
adhere to the (safe) standard notation, which distinguishes the two conditions. aP
does not appear in this list, because, as we have seen, its exponents are also c and c0

at the indicated conditions.

Table 4.1 Selected critical exponents and their vdW-values

Exponent Definition Conditions vdW-value

a0 CV � dTa0 V ¼ Vc (T\Tc) 0

a CV � dTa V ¼ Vc (T [Tc) 0

b ql � qg � dTb coex curve 1
2

c jT�1 � dTc coex curve (T\Tc) 1

c0 jT�1 � dTc0 V ¼ Vc (T [Tc) 1

d dP� � ðql � qgÞd T ¼ Tc
� þ : q[qc

� : q\qc

� 3

5 What is the relation between ql � qg and �dv? Setting ql ¼ qc þ dql and qg ¼ qc þ dqg and
using jdq=qj ¼ jdv=vj yields ql � qg / dv� þ dvþ .
6 The present critical exponent notation is standard. We want to adhere to it, even though certain
letters are used for other quantities also.
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4.2 Beyond Van Der Waals Theory

Thermodynamic Scaling

The preceding discussion of van der Waals critical exponents has highlighted the
power law-relations connecting thermodynamic functions close to the gas-liquid
critical point. This led to the idea to express the latter as generalized homogeneous
functions.7 That is if f ¼ f ðx; yÞ is a generalized homogeneous function then

f ðx; yÞ ¼ k�1f ðkpx; kqyÞ; ð4:36Þ

where p and q are parameters. This is best explained via a simple example. We
choose

f ðx; yÞ ¼ A
x2

þBy3;

where A and B are constants. Applying the right side of Eq. (4.36) yields

k�1f ðkpx; kqyÞ ¼ A

k2pþ 1x2
þBk3q�1y3p¼�1=2;q¼1=3

=
A
x2

þBy3 ¼ f ðx; yÞ:

This also works for f ðx; yÞ ¼ Ax�2y3. However it does not work for

f ðx; yÞ ¼ A
1þ x2

þBy3;

because

k�1f ðkpx; kqyÞ ¼ A

kþ k2pþ 1x2
þBk3q�1y3p¼�1=2;q¼1=3

=
A

kþ x2
þBy3:

Therefore we do not expect that this idea applies to thermodynamic functions in
general, except close to the critical point, where they may be expressed in terms of
powers of dT and dP.

But what can we learn from Eq. (4.36)? We apply this equation to the free
energy, i.e.

f1ðdt; dvÞ ¼ k�1f1ðkpdt; kqdvÞ: ð4:37Þ

7 See Widom (1965).
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The index 1 is a reminder that we stay close to the critical point and we
consider the leading part of the free energy in the sense discussed above. The
exponent p should not be confused with the reduced pressure used in the universal
van der Waals equation. With the particular choices (a) k ¼ dv�1=q and
(b) k ¼ dt�1=p we transform Eq. (4.37) into

ðaÞ : f1ðdt; dvÞ ¼ dv1=qf1ðdv�p=qdt; 1Þ
ðbÞ : f1ðdt; dvÞ ¼ dt1=pf1ð1; dt�q=pdvÞ:

ð4:38Þ

We want to use this to work out CV ¼ �T@2F=@T2jV and j�1
T ¼ �V@2

F=@V2jT , i.e.

using (a): CV ¼ dv1=q�2p=q~CV ðdv�p=qdt; 1Þ
using (b): j�1

T ¼ dt1=p�2q=p~jTð1; dt�q=pdvÞ:
ð4:39Þ

Along the coexistence curve we had defined the exponent b via dv� dtb. We use
this to eliminate dv from the Eqs. (4.39). Together with CV � dt�a and jT � dt�c we
obtain the following equations relating the exponents:

�a ¼ b
1
q
� 2

p
q

� 	
; �c ¼ � 1

p
þ 2

q
p
; b ¼ q

p
: ð4:40Þ

The third equation ensures that the scaling functions ~CV and ~jT are “well
behaved” at the critical point, i.e. dv�p=qdt approaches a constant at the critical
point. We may eliminate p and q from these equations, which yields the critical
exponent relation

aþ 2bþ c ¼ 2: ð4:41Þ

The van der Waals values from Table 4.1 obviously satisfies this relation.
Conversely we can use this relation to justify a ¼ 0!

Figure 4.13 shows CV measured for sulfurhexafluoride (SF6) along the critical
isochore copied with permission from Haupt and Straub (1999) (SF6: Tc ¼ 318:7 K,
Pc ¼ 37:6 bar, Vc ¼ 200 cm3=mol).8 The value of the critical exponent a deter-
mined from these data is a ¼ 0:1105þ 0:025

�0:027 . The currently accepted theoretical value
is a ¼ 0:110� 0:003 (Sengers and Shanks 2009). For b and c the accepted theo-
retical values are b ¼ 0:326� 0:002 and c ¼ 1:239� 0:002 in agreement with
experiments and with the exponent relation (4.41). Note that these exponents do not
depend on the molecular details of the fluid systems. Theoretical arguments show
that the critical exponent values depend on space dimension, (order parameter)

8 On the critical isochore we have f1ðdt; dv ¼ 0Þ ¼ dt1=pf1ð1; 0Þ and therefore CV � dt1=p�2 �
dt�a. That is the exponent is the same as on the coexistence curve.
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symmetry, and range of interaction (“short” versus “long”) but not on the details of
molecular interaction. This allows to define so called universality classes offluids (or
near critical physical systems in general) with identical exponent values.9

It is easy to derive a critical exponent relation involving the exponent d.
Applying P ¼ �@F=@V jT to (b) in (4.38) yields

P ¼ dt1=p�q=p~Pð1; dt�q=pdvÞ: ð4:42Þ

Again with dv� dtb along the coexistence curve we find bd ¼ 1=p� q=p or

c ¼ bðd� 1Þ: ð4:43Þ

And again this relation is fulfilled by the van der Waals exponent values in
Table 4.1. It is worth emphasizing that exponent relations like (4.41) and (4.43) and
others mainly serve to unify the picture, i.e. the number of independent critical
exponents is greatly reduced.

Already we have mentioned that the van der Waals exponents are incorrect. This
incorrectness is not “just” due to the modest quantitative predictive power of the
van der Waals approach. Here the latter misses the underlying physical picture
completely.

Every thermodynamic quantity fluctuates around an average value. Usually the
fluctuations can be ignored entirely. This is what the van der Waals model does too.
However, close to the critical point fluctuations become increasingly important and
dominate over the average values.10 There are many models which in this respect are

Fig. 4.13 Temperature
dependence of the isochoric
heat capacity of
sulfurhexafluoride near the
critical point

9 It is a hypothesis that all fluids belong to one and the same universality class. A discussion of this
hypothesis may be found in the above article by Sengers and Shanks.
10 More precisely what happens is that the local fluctuations influence each other over large
distances. These distances are measured in terms of the fluctuation correlation length which
diverges at the critical point.
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like the van der Waals model (Kadanoff 2009). When these models describe critical
points, they all yield the same critical exponents—the so called mean fieldcritical
exponents.11 This is striking, because the models look quite different indeed.
Nevertheless, near their respective critical points they all posses the same “sym-
metry”. Only after a method, the so called renormalization group, was invented how
to properly deal with the dominating fluctuations in the critical region, was it pos-
sible to actually calculate the correct values for the critical exponents—and they still
obey the above relations together with others derived via thermodynamic scaling.12

This is because of the great generality of the thermodynamic laws and, in addition,
the fact that the power law behavior of thermodynamic functions near criticality
turns out to be an integral part of the new theory as well.

4.2.1 The Clapeyron Equation

Along the gas-liquid transition line in Fig. 4.14 we always have at “1” and “2”

llð1Þ ¼ lgð1Þ and llð2Þ ¼ lgð2Þ or llð2Þ � llð1Þ ¼ lgð2Þ � lgð1Þ:

If “1” and “2” are infinitesimally close we may write

dll ¼ �sldT þ vldP ¼ �sgdT þ vgdP ¼ dlg: ð4:44Þ

Here lower case letters indicate molar quantities. Consequently we find

dP
dT

���
coex

¼ sg � sl
vg � vl

; ð4:45Þ

where dP=dT is the slope of the gas-liquid transition line in Fig. 4.14. This equation
is more general of course, because it applies not only to the transition from gas to
liquid and vice versa but to the transition between any two phases we choose to call
I and II. We remark that a transition with a non-zero latent heat, i.e. TDs 6¼ 0, we
call a first order phase transition.13 Thus we have

dP
dT

���
coex

¼ sII � sI
vII � vI

ð2:119Þ;ð2:177Þ
=

1
T
hII � hI
vII � vI

: ð4:46Þ

11 In models for magnetic systems dP is replaced by the corresponding magnetic field variable
and dv is replaced by the magnetization. The compressibility is therefore replaced by the
magnetic susceptibility.
12 A nice reference including historical developments is Fisher (1998).
13 Transitions without such discontinuity, e.g. at the gas-liquid critical point, are called continuous
or (generally) second order.
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This is the Clapeyron equation.

Example—Enthalpy of Vaporization for Water Here we calculate the
enthalpy of vaporization, Dvaph, for water from the saturation pressure data
shown in Fig. 4.4. Using Eq. (4.46) we may write

dP
dT

���
coex

� 1
T
Dvaph
vgas

: ð4:47Þ

Compared to the molar volume of the gas we may neglect the liquid
volume. If in addition vgas is expressed via the ideal gas law Eq. (4.47)
becomes

d lnP � Dvaph
R

dT
T2

ð4:48Þ

or, after integration,

ln
P
Po

� �Dvaph
R

1
T
� 1
To

� 	
: ð4:49Þ

Using the values P ¼ 4:246 kPa at T ¼ 303:15 K and P ¼ 0:6113 kPa at
T ¼ 273:15 K from the aforementioned figure, we obtain Dvaph ¼
44:5 kJ/mol in very good accord with Dvaph ¼ 45:05 kJ/mol at T ¼ 273:15 K
or Dvaph ¼ 44:0 kJ/mol at T ¼ 298:15 K taken from HCP.

One important application of the Clapeyron equation is the following. Whereas
the van der Waals theory only describes the transition between gas and liquid, we
know that already a one component system may exhibit other phases—like the solid
state. A sketch of the situation is shown in Fig. 4.15. There are transition lines (solid

T

gas

liquid

P

1
2

Fig. 4.14 Thermodynamic
paths on either side of the
saturation line
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lines) separating phases I and II as well as II and III. The two lines may come
together at (?) to form what is called a triple point.14 How would this look like, i.e.
how would we draw the line separating phases I and III? Can the dashed lines be
correct?

According to Eq. (4.46) we have at the triple point

Tt
dP
dT

¼ DhI!II

DvI!II
¼ DhII!III þDhIII!I

DvII!III þDvIII!I
¼ DhI!III

DvI!III

1� DhII!III
DhI!III

1� DvII!III
DvI!III

 !
:

The second equality follows via

DhI!II þDhII!III þDhIII!I ¼ 0

DvI!II þDvII!III þDvIII!I ¼ 0;

corresponding to a path enclosing the triple point in infinitesimal proximity (Both
functions are state functions!). Because, according to our assumption, the slopes of
the coexistence lines I–II and I–III are identical, we must require ð1� :::Þ=ð1�
:::Þ ¼ 1 and thus

DhI!III

DvI!III
¼ DhII!III

DvII!III
:

This means, according to Eq. (4.46), that the slopes of the two solid lines in
Fig. 4.15 should coincide close to the triple point. This is not a satisfactory result.
We conclude that the slopes of all three lines must be different near the triple
point.15 This leaves us with the two alternatives depicted in Fig. 4.16. In alternative
(a) the broken lines correspond to the continuation of the coexistence lines between
phases I and II and phases I and III. In particular the shaded area is a region in
which phase I is unstable with respect to II. On the other hand in the same area
phase II is less stable than III. According to the solid lines, however, phase I is the
most stable, which clearly is inconsistent. Thus we discard alternative (a).
Alternative (b) does not suffer from this problem and is the correct one. We con-
clude that the continuation of the coexistence line between any two of the phases
must lie inside the third phase.

With this information we may now sketch out the phase diagram of a simple one
component system shown in Fig. 4.17. There are three projections of course. The T-
P-projection is what we just have talked about. Here G means gas, F means liquid
and K means solid. According to the van der Waals theory the gas-liquid coexis-
tence line should terminate in a critical point (C). We do not posses any knowledge

14 According to the phase rule this is the most complicated case in a one-component system.
15 Note that this conclusion based on the Clapeyron equation does not hold in cases when there are
transitions involved without discontinuities Dh or Dv.
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of whether or not the liquid-solid line terminates similarly.16 All three lines meet in
the triple point. The remaining projections contain areas of phase coexistence due to
the volume discontinuity at the transitions.

It is worth noting that even a one-component system exhibits a much more
complicated phase diagram, i.e. here we always concentrate on partial phase dia-
grams. Fig. 4.18 shows an extended but still partial phase diagram for water (data
sources: lower graph—HCP; upper graph—Martin Chaplin (http://www.lsbu.ac.uk/
water/phase.html). Even though things already get complicated, the rules we have
established thus far for phase diagrams are always satisfied. The special

T

P

II

I

III

?

Fig. 4.15 Phase coexistence lines in the T-P-plane

T

P

II

III

T

P

II

I

III

I

(a) (b)

Fig. 4.16 Alternative phase diagrams near a triple point

16 However, gas and liquid differ in no essential aspect of order or symmetry. This clearly sets
them apart from the crystal. We can choose a path in the T-P-plane leading us from the gas to the
liquid phase without crossing a phase boundary, i.e. very smoothly. Based on this concept we
would not expect to find a liquid-solid critical point.

4.2 Beyond Van Der Waals Theory 171

http://www.lsbu.ac.uk/water/phase.html
http://www.lsbu.ac.uk/water/phase.html


temperatures are the freezing temperature at 1 bar, Tf , the boiling temperature at 1
bar, Tb, the critical temperature, Tc (together with the critical pressure, Pc), as well
as the triple point temperature, Tt (together with the triple point pressure, Pt).
Roman numerals in the upper graph distinguish different high pressure ice phases.

Example—Moist Air Parcel Lapse Rate Here we use the Clapeyron
equation to generalize our calculation of the temperature profile of the tro-
posphere in Sect. 2.2 to the case when the air parcel contains water vapor.
Let's briefly recap the adiabatic expansion of a dry air parcel. According to
energy conservation, i.e. the first law of thermodynamics, we have

dE ¼ dqþ dw ¼ �PdV : ð4:50Þ

Notice thatdq ¼ 0, i.e. there is no net exchange of heat between the air parcel
and its environment, and the (reversible) volumework is given by dw ¼ �PdV .

Fig. 4.17 Phase diagram of a simple one-component system
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The internal energy E ¼ EðT ;VÞ is a function of temperature, T , and volume,
V . In this context, however, V is inconvenient and we decide to use the
enthalpy,H ¼ HðT;PÞ, whereP, the pressure, is amore natural variable. Hence

dH ¼ dðEþPVÞ ¼ dEþPdV þVdP ¼ VdP: ð4:51Þ

In addition, since H ¼ HðT ;PÞ,

dH ¼ CPdT þ @H
@P

���
T
dP: ð4:52Þ

Because in the following we shall exclusively work with ideal gases, i.e.
the ideal gas law PV ¼ nRT applies, we have @H=@PjT ¼ 0. Equating the
right hand sides of Eqs. (4.51) and (4.52) yields

dP
dT

¼ CP

V
: ð4:53Þ

If the air parcel is a cube of height dh we measure a pressure difference,
dP, from bottom to top, which is due to the weight of the air parcel itself, i.e.

dP ¼ �c g dh: ð4:54Þ

Here c ¼ M=V ¼ MP=ðnRTÞ is the mass density of the air parcel, where
M is the mass, V the volume, and n the number of moles of gas in the parcel.
The quantity g is the acceleration of gravity. The combination of Eqs. (4.53)
and (4.54) yields the so called dry lapse rate

dT
dh

¼ �mmolg
cP

; ð4:55Þ

where mmol and cP are the molar mass and the molar isobaric heat capacity of
the air parcel, respectively.

Let’s make a quick estimate. Air mostly contains nitrogen and oxygen.
Both are diatomic molecules possessing 3 translational degrees of freedom
plus 2 rotational degrees of freedom. At the temperatures of interest here,
these five degrees of freedom contribute 2:5 nR, where R is the gas constant,
to the heat capacity. Thus cP ¼ ð2:5þ 1ÞR � 29 J/K. Notice that vibrations
are frozen out. The molar mass of (dry air) is mmol ¼ 0:21 	 32þ 0:78 	 28 �
0:029 kg. This means that the dry lapse rate is roughly

dT
dh

� �10 K/km; ð4:56Þ
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Thus far we have not paid much attention to the moisture content of the air
parcel. The mass of 1 m3 of air at sea level is roughly 1 kg. At T ¼ 20 
C and
40% humidity this much air contains about 7 g of water. Even though the
specific heat capacity of water is about twice that of the above mixture of
nitrogen and oxygen, the overall effect on the lapse rate is negligible.

Surprisingly, this becomes different the moment when the rising air parcel
crosses the saturation line of water, i.e. the water partial pressure in the air,
PH2OðTÞ, becomes equal to the saturation pressure at this temperature.
Fig. 3.6 hows two dashed lines corresponding to adiabatic curves of air at two
different humidities. We now want to know what happens to moist air
expanding adiabatically, when the water vapor in the air crosses its saturation
line—where of course it must condense. The equation that changes is
Eq. (4.51), which now contains a second contribution, i.e.

dH ¼ VdP� Dvaph dnH2O: ð4:57Þ

The additional contribution is the enthalpy of condensation, which is the
negative of the enthalpy of vaporization, Dvaph, per mol multiplied by the
differential molar amount of condensed water, dnH2O. Our task is to work out
the differential

dnH2O ¼ @nH2O

@T

���
P
dT þ @nH2O

@P

���
T
dP: ð4:58Þ

We note that we can express the amount of water vapor in the parcel via

nH2OðT;PÞ ¼ n
PH2OðTÞ

P
; ð4:59Þ

where n is the total number of moles of gas (in the parcel). Note again, PH2O

is the water vapor partial pressure. Thus

dnH2O ¼ n
P
@PH2O

@T

���
P
dT þ nPH2OðTÞ

@1=P
@P

���
T
dP

¼ n
P
@PH2O

@T

���
P
dT � nH2O

P
dP:

ð4:60Þ

The derivative @PH2OðTÞ=@T jP is tricky. What is happening here? Well,
the water vapor cannot exist across from the saturation line. On that side only
liquid water is stable. If the water vapor wants to rise, it must do it following
the saturation line. So instead of @PH2OðTÞ=@T jP we work out
@PH2OðTÞ=@Tjcoex. Since the total pressure does hardly change anyway, we
do not expect trouble. Using the Clapeyron equation means
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@PH2O

@T

���
coex

¼ 1
T
Dvaph
DvH2O

; ð4:61Þ

where DvH2O � RT=PH2O. We therefore obtain

dnH2O ¼ nH2ODvaph
RT2 dT � nH2O

P
dP: ð4:62Þ

Inserting this result into Eq. (4.57) yields

dH ¼ VdP� nH2ODvaph2

RT2 dT þ nH2ODvaph
P

dP ¼ CPdT ð4:63Þ

and thus

dP
dT

¼ CP þ nH2OðT ;PÞDvaph2

RT2

V þ nH2OðT ;PÞDvaph
P

: ð4:64Þ

Before we take the last step, which is to express dP in terms of dh, we
want to pause and discuss this expression. Note that if there is no water at all,
i.e. nH2O ¼ 0 then the result coincides with Eq. (4.53). In this case the slope is
that of the dry adiabatic curve. If on the other hand the water moisture
completely dominates, which corresponds to neglecting CP as well as V , then
the slope is the slope in the Clapeyron equation, i.e. the slope of the saturation
line. The slope of the moist adiabatic curve, beyond the saturation line, as
given by Eq. (4.64), is in between the two. How can we understand this based
on a physical picture?

In the ideal gas a water molecule has the average energy, eg, which is the
kinetic energy, kg, determined by its temperature. When the water molecules
are in the liquid state then they have the average energy el ¼ kl � �. Here
��\0 is their potential energy. As long as the water molecules have not
traded energy with other parts of the system eg ¼ el and the kinetic energy in
the liquid state therefore is kl ¼ kg þ �. This means that at this moment, the
water is effectively hotter than the surrounding gas. How big is �? In ice each
water molecule participates in four hydrogen bonds. In the liquid state this
number is reduced - which we ignore here. Thus, the potential energy per
water molecule is 4 �(1/2) hydrogen bonds � 2�25 kJ/mol (incidentally this
is quite close to the enthalpy of vaporization of water). The liquid water drops
formed at the saturation line now must equilibrate with the remaining gas—
mostly N2 and O2. If we assume that 5 g of water transfer their extra energy to
1000 g of dry air, then this leads to a temperature increase DT in the air given
by
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5g
18g

50kJ/mol ¼ 1000g
29g

3:5R|ffl{zffl}
¼cP

DT : ð4:65Þ

The result is DT � 14 K. This is crude. Nevertheless, it illustrates the point
that the droplets formed at the saturation line contain sufficient excess energy,
which originates from the (negative) cohesion energy between the molecules
—even though the total mass of the droplets is a lot less than the total mass of
the other gas components.

In addition there is the effect that upon reaching the saturation line the
water vapor must be compressed in the first place. The attendant work, i.e.
PH2ODV , must be done by the other gas components. This in turn means that
they must do double-duty. The gas continues to invest work into its adiabatic
expansion but to a lesser extend, because at the same time it also invests work
into the compression of the water vapor. The overall effect, however, is small
compared to the aforementioned one. If 5 g water vapor is compressed at a
partial pressure PH2O ¼ 0:01 bar (cf. Fig. 3.6) across the saturation line the
attendant work is ð5=18ÞRT � 0:6 kJ/mol. The above cohesion energy on the
other hand is ð5=18Þ 50 kJ/mol � 14 kJ/mol. It is worth noting that the
condensation of water vapor does not occur at one particular height. As the air
becomes dryer due to condensation, the condensation shifts down the satu-
ration line (cf. Fig. 3.6).

We obtain the lapse rate of moist air beyond the saturation line combining
Eqs. (4.64) and (4.54), i.e.

dT
dh

¼ �mmolg
cP

1þ xH2O
Dvaph
RT

1þ xH2O
Dvaph
RT

� �2
R
cP

: ð4:66Þ

Here xH2O ¼ nH2O=n is the mole fraction water in the air parcel.
Let's estimate the difference between the dry lapse rate as described by

Eq. (4.55) and the lapse rate described by Eq. (4.66). The difference is the
additional factor in Eq. (4.66). Because this factor does depend on thermo-
dynamic conditions, we decide to do our calculation for T � 5 to 10 °C (cf.
Fig. 3.6). The attendant enthalpy of vaporization is roughly 45 kJ/mol and
thus Dvaph=ðRTÞ � 19. In addition cP=R � 3:5. For 10 g of water per 1 kg of
air we have xH2O � 0:016. This yields

dT
dh

� 0:5
dT
dh

���
dry
; ð4:67Þ

the lapse rate upon crossing of the saturation line, which means just above
the cloud base, reduced by roughly a factor of two. If the water content is
reduced to 1 g per 1 kg of air the factor 0.5 is replaced by 0.9.
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Example—Droplet Growth In this example, in which the Clapeyron
equation again plays a central role, we resume our discussion of droplet
formation and stability which started in Chap. 3. In the following we discuss
the growth dynamics of droplets via condensation and collision.

Let’s begin with condensation. We assume that our droplet of radius aðtÞ
grows at the center of a coordinate system embedded in a uniform,
time-independent vapor phase. The rate at which the mass mðrÞ inside an
sphere of radius r� a changes is given by the continuity equation

dmðrÞ
dt

¼ �
Z
AðrÞ

d~A 	~jðrÞ: ð4:68Þ

The right hand side is an integral over the flux of molecules~jðrÞ through a
spherical surface AðrÞ ¼ 4pr2. Note that d~A ¼~erdA, where~er is a radial unit
vector. Note also that the left hand side is not really a function of r, because
the droplet is embedded inside a uniform, time-independent vapor phase,
which means that the mass change occurs on the surface (r ¼ a) of the droplet
only. Hence

dmðaÞ
dt

¼ �4pr2~er~jðrÞ: ð4:69Þ

Now we express the flux~jðrÞ, using Fick's law,~jðrÞ ¼ �D ~rcðrÞ, in terms of
a hypothetical vapor mass density gradient ~rcðrÞ ¼~er@rcðrÞ, i.e.

dmðaÞ
dt

¼ 4pDr2
dcðrÞ
dr

: ð4:70Þ

Here D is the (constant) diffusion constant in the vapor phase surrounding
the droplet. The differential equation (4.70) can be solved via separation of
variables, i.e.

dmðaÞ
dt

Z 1

a

dr
r2

¼ 4pD
Z cð1Þ

cðaÞ
dc ð4:71Þ

or

dmðaÞ
dt

¼ 4pDa cð1Þ � cðaÞð Þ: ð4:72Þ

We finalize this expression by substituting mðaÞ ¼ cðlÞ4pa3=3 and
cð1Þ � cðgÞ, the bulk vapor phase density, which yields
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d
dt
a2 ¼ 2D

cðgÞ � cðaÞ
cðlÞ

: ð4:73Þ

Assuming that the mass density at r ¼ a does not change with time we see
that a2ðtÞ ¼ a2ð0Þþ b t, where b is a constant. But note that at this point we
do not know cðaÞ.

There is another quantity whose transport must be considered. Net
adsorption of molecules from the gas phase onto the droplet's surface
increases the local temperature due to a negative heat of vaporization �Dvaph.
This causes a heat flux into the surrounding gas phase. In analogy to
Eq. (4.68) we now have

�Dvaph
dmðaÞ
dt

¼ �
Z
AðrÞ

d~A 	~jQðrÞ: ð4:74Þ

The index Q indicates that~jQ is a heat current. We follow the same path as
before. Replacing Fick's law by Fourier's law,~jQðrÞ ¼ �k ~rTðrÞ, where k is
the thermal conductivity of the bulk vapor, we obtain

�Dvaph
dmðaÞ
dt

¼ 4pka Tð1Þ � TðaÞð Þ: ð4:75Þ

Here we do not know TðaÞ. However, despite this lack of information, it is
possible to obtain an approximate analytic equation for aðtÞ. We can use the
Clapeyron equation in the form of Eq. (4.48), i.e.

d lnP � d lnðc TÞ � Dvaph
RT

dT
T

; ð4:76Þ

where c is the gas mass density (note that here we can replace the number
density by the mass density), or

dc
c
� Dvaph

RT
� 1

� 	
dT
T

ð4:77Þ

or

c2 � c1
c1

� Dvaph
RT1

� 1
� 	

T2 � T1
T1

: ð4:78Þ

It is important to keep in mind that dc � c2 � c1 and dT � T2 � T1 are
small differences along the saturation line. By replacing T1 with Tð1Þ and T2
with TðaÞ, and using (4.75), Eq. (4.78) becomes
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csðaÞ � csð1Þ
csð1Þ � ðl� 1ÞDvaph dm=dt

4pkaTð1Þ ; ð4:79Þ

where l � Dvaph=ðRTð1. csð1Þ is the saturation vapor density at Tð1Þ.
Likewise, csðaÞ is the saturation vapor density at TðaÞ. In order to make use
of Eq. (4.72) we expand cð1Þ � cðaÞ, i.e.

cð1Þ � cðaÞ ¼ cð1Þ � csð1Þþ csð1Þ � cðaÞ

¼ csð1Þ ðS� 1Þ � cðaÞ � csð1Þ
csð1Þ

� 	
;

ð4:80Þ

where S ¼ cð1Þ=csð1Þ. The only difference between the left hand side of
Eq. (4.79) and the second term in the brackets on the right hand side of
Eq. (4.80) is csðaÞ in the former versus cðaÞ in the latter. Both densities are at
the same temperature, however, and we shall assume that their difference is
much smaller than the difference of either one to csð1Þ. Hence we may
combine Eqs. (4.72), (4.79) and (4.80) into

d
dt
a2 � 2ðS� 1Þ

cðlÞ

DcðgÞs
þðl� 1Þ Dvaph cðlÞ

k TðgÞ

: ð4:81Þ

Note that cð1Þ and csð1Þ � cðgÞs are also densities at the same temperature
Tð1Þ � TðgÞ and thus S ¼ Pð1Þ=Psð1Þ ¼ u. Integration of (4.81) yields

a2ðtÞ � a2ð0Þþ 2ðS� 1Þ
cðlÞ

DcðgÞs
þðl� 1Þ Dvaph cðlÞ

k T ðgÞ

t: ð4:82Þ

An example is shown in Fig. 4.19, the numerical values of the various
quantities are að0Þ ¼ 0:1 lm, S ¼ 1:01, Dvaph ¼ 45 kJ/mol, T ðgÞ ¼ 273 K,

cðlÞ ¼ 5:55 	 104 mol/m3, cðgÞs ¼ 0:27 mol/m3, D ¼ 0:24 cm2/s for H2O in air,
and k ¼ kair ¼ 0:024 W/(mK). The dashed curve illustrates the difference
when the latent heat term in the denominator vanishes (l ¼ 1).

In this derivation we have omitted the curvature and concentration cor-
rections discussed in the previous part of this example, i.e. the dependence of
the saturation pressure above of the droplet on its size and on the concen-
tration of a possible solute.

Another point worth noting is the narrowing of the droplet size distribution
as time increases. To see this we subtract a1ðtÞ2 from a2ðtÞ2, where the
subscripts 1 and 2 here refer to two separate droplets. We obtain
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a22ðtÞ � a21ðtÞ ¼ a22ð0Þ � a21ð0Þ or a2ðtÞ � a1ðtÞÞð Þ�aðtÞ ¼ a22ð0Þ � a21ð0Þ
� �

=2;

ð4:83Þ

where �aðtÞ ¼ a2ðtÞþ a1ðtÞð Þ=2. The right hand side does not depend on t and
therefore the left hand side should not depend on t either. Since �aðtÞ is
growing, we conclude that the difference a2ðtÞ � a1ðtÞ becomes smaller and
eventually tends to zero, i.e. the above growth mechanism leads to a
monodisperse droplet size distribution for long times.

Growth by condensation is too slow to eventually lead to raindrops in the
range of several millimeters. But like all masses droplets fall in the gravita-
tional field. Under ideal conditions and when the droplets are not too large the
only force which they experience is Stoke's frictional force fS ¼ 6pgav, where
g is the surrounding air’s viscosity and v is the droplets velocity. The droplet's
acceleration is given by

€xðtÞ ¼ g�Mb

M
g� 6pga

M
	 xðtÞ: ð4:84Þ

Here xðtÞ is the distance a droplet has fallen during the time t, M is the mass
of the droplet, g is the gravitational acceleration, and Mbg is the droplet's
buoyancy. Since Mb, the mass of the air displaced by the droplet, is small
compared to M, we neglect this force and the velocity of the droplet becomes

vðtÞ ¼ v1 1� e�t=s
� �

; ð4:85Þ

where v1 ¼ gs is the terminal velocity and s ¼ M=ð6pgaÞ. For example: let
a ¼ 5 lm and g ¼ gair ¼ 18:6 lPa at 300 K. Using cH2O ¼ 1 g/cm3 we
obtain s � 0:03 s and v1 � 0:3 cm/s. If a ¼ 50 lm instead, we find s � 3 s
and v1 � 29 cm/s). For still larger a our formula for v1 overestimate the
actual terminal velocity (fS should be replaced by a drag force proportional to
ða vÞ2), e.g. droplets with a ¼ 500 (2500) lm possess an actual terminal
velocity of about 400 (910) cm/s.

A falling droplet may “collect” other droplets in its path and thereby
accumulate mass according to

dm
dt

� pa2Ecmoistv1; ð4:86Þ

increasing its radius by

da
dt

� Ecmoist
4cH2O

v1: ð4:87Þ
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The idea is that during a short time dt the falling droplet collects a fraction
E of the moisture, in the form of smaller droplets, in a cylindrical column of
radius a and length v1dt. This length of course is rough, because we have
replaced the velocity of the collector droplet relative to the velocities of the
collected droplets simply by v1. The quantity E is the collection efficiency.
Some of the droplets in the path of the collector just get pushed aside and
around the falling collector and some just fall apart in the collision, etc.
However, we want to conclude our discussion of clouds and droplets at this
point and refer the interested reader to Salby (2012) for an in-depth
discussion.

Example—Superconductor Thermodynamics Figure 4.20 shows a phase
diagram in the T � H-plane, i.e. in this system the magnetic H-field assumes
the role of P. The two phases are named s and n. We easily can work out a
version of the Clapeyron equation in this case. Our starting point is
Eq. (4.44), i.e.

�ssdT � v
4p

Bs 	 dH ¼ �sndT � v
4p

Bn 	 dH: ð4:88Þ

Here we have used the mapping from ðP;�VÞ to ðH; vB=ð4p described on
p. 26 in the context of the discussion of Eq. (1.51). Notice that now v is a
constant molar volume of the material to which the phase diagram in
Fig. 4.19 applies. Analogous to (4.45) we find in the present case

v
4p

ðBn � BsÞ 	 dHdT
���
coex

¼ ss � sn: ð4:89Þ

Our phase diagram is meant to apply to a type I superconductor. The
letters s and n label the superconducting and the normal conducting phases,
respectively. In the s-region we have therefore Bs ¼ 0. If in addition we use
the linear relation Bn ¼ lrH, where lr is the magnetic permeability, then
Eq. (4.89) becomes

v
8p

lr
dH2

dT

���
coex

¼ ss � sn: ð4:90Þ

Based on this equation and some additional information we may work out
the coexistence line. The additional information consists of the empirical
approximations to the molar heat capacities in superconducting and normal
conducting phases at low temperatures, i.e. cs ¼ aT3 and cn ¼ bT3 þ cT (an
example may be found in Chap. 33 of Ashcroft and Mermin (1976). The
quantities a, b, and c are constants, which may by obtained via suitable
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experimental data. By simply integrating the thermodynamic relation c ¼
T@s=@TjH from zero temperature to T we obtain ssðTÞ ¼ ssð0Þþ ða=3ÞT3

and snðTÞ ¼ snð0Þþ ðb=3ÞT3 þ cT (It may be puzzling that cn is used below
Tc. Here the normal phase can be produced by a weak magnetic field
destroying the superconducting state with little effect on the heat capacity.). If
we invoke what is called the third law of thermodynamics, i.e. sð0Þ ¼ 0,
which we discuss in Chap. 5, we can integrate Eq. (4.90). The result, after
some algebra, is

HcðTÞ ¼ Hcð0Þ 1� T2

T2
c

� 	
; ð4:91Þ

where

Hcð0Þ ¼
ffiffiffiffiffiffiffiffi
2pc
vlr

s
Tc and Tc ¼

ffiffiffiffiffiffiffiffiffiffiffi
3c

a� b

r
: ð4:92Þ

Notice that the latent heat, TDs, vanishes in the two end-points of the
transition line. Even though thermodynamics by itself does not explain
superconductivity, it does allow additional predictions provided that certain
input is available. However, if this input does consist of approximations then
the additional predictions will be approximate as well.

Phase Separation in the RPM

Arguably the most important insight provided by van der Waals theory is the role of
intermolecular interaction on gas-liquid phase separation. The latter requires
short-ranged repulsion as well as attraction. Here we discuss an overall neutral
system consisting of charges þ q and �q possessing hard core excluded volume.

Fig. 4.20 A phase diagram in
the T-H-plane
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This model system is termed the restricted primitive model (RPM). Corresponding
experimental systems are molten salts (Weiss 2010; Pitzer 1990). Does such a
system posses a critical point analogous to the gas-liquid critical point in the van der
Waals theory? A priori there is no easy answer, because there is no obvious net
attractive interaction as in the latter theory.17

The free enthalpy of our model system is

G ¼ nþ lþ þ n�l� : ð4:93Þ

The indices refer to the two charge types. We approximate the chemical
potentials via

l� � lo;� þRT ln
n�NA

V
� 1
2
NAq2

kD

1
1þ b=kD

: ð4:94Þ

The first term describes contributions to the chemical potentials not dependent
on ion concentration. The concentration dependence here enters through an ideal
gas term, the second term in Eq. (4.94), and via the interaction between the ions in
the framework of the Debye-Hückel theory when the ions posses the radius b (cf.
Eq. (3.135)), the third term in Eq. (4.94). Does this yield a critical point? We insert
Eq. (4.94) into (4.93) and the result into Eq. (2.195). The dotted line in the left panel
in Fig. 4.4 is the spinodal line obtained in the van der Waals theory. On the spinodal
line the compressibility diverges and thus @G=@V jT ;n1;n2;...¼ 0 (cf. Eq. (2.195)).
Straightforward differentiation of our present G, using kD / V1=2, leads to

1
4T�

x

ð1þ xÞ2 ¼ 1 ð4:95Þ

employing this condition. Here T� ¼ bRT=ðNAq2Þ and x ¼ b=kD. If we insert x ¼
1þ dx into (4.95), we obtain to leading order in the small quantity dx

1� dx2 ¼ 16T�: ð4:96Þ

We recognize that there are always two solutions x ¼ 1� dx with the same T�.
The two solutions coincide if x ¼ xc ¼ 1 corresponding to T� ¼ T�

c ¼ 1=16. The
conclusion is that the RPM possesses a gas-liquid spinodal curve, here worked out
in the vicinity of the critical point at

Tc ¼ 1
16

NAq2

Rb
and qc ¼ 2cc ¼ 1

64pb3
: ð4:97Þ

17 One may argue that the immediate neighborhood of þ q on average contains an excess of �q
and that this leads to the net attraction. But this is a truly complicated system and such argu-
ments should always be backed up by calculation.
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Note that presently q2 ¼ e2, and q is the total ion number concentration. Notice
also that the replacement q2 ! q2=ð4peoerÞ yields Tc in SI-units.

The pressure follows via integration of

@P
@V

���
T ;�n

¼ 1
V
@G
@V

���
T ;�n

; ð4:98Þ

i.e.

PV
ðnþ þ n�ÞRT ¼ 1þ NAq2

RTb
ln½1þ x


x2
� 1
2x

2þ x
1þ x

� 	
: ð4:99Þ

The resulting critical compressibility factor is

Pc

qcRTc
¼ 16 ln 2� 11 � 0:09035: ð4:100Þ

The above references list experimental critical parameters. In particular we may
compare the compressibility factor (4.100), because it is a pure number. It turns out
that the above model does not make quantitative predictions—except in selected
cases. But for us it provides a valuable exercise. In fact the model is not wrong—it
is incomplete. It turns out that association of ions into aggregates is the most
important ingredient for a more accurate description of phase separation in molten
salts and related ionic systems. A detailed account of this can be found in Levin and
Fisher (1996).

Electric Field Induced Critical Point Shift

The following discussion of the electric field induced shift of the critical temperature,
density, and pressure is not somuchmotivated by its practical importance but rather by
the rich content of conceptual and technical aspects making this a valuable exercise.

In the preceding section we have used Eq. (2.195), i.e. the divergence of the
compressibility, to locate the critical point. Here we consider an ordinary dielectric
liquid (dielectric constant er) in an electric field E, where E is the (macroscopic)
average electrical field in the liquid. We also may want to apply Eq. (2.195) to
deduce the electric field effect on the location of the critical point. We must know,
however, whether to work out the partial derivative at constant constant D or at
constant E. We can find the answer via the following inequality

@2f
@D2

@2f
@q2

� @2f
@D@q

� 	2

[ 0: ð4:101Þ

Here f ¼ f ðT ; q;DÞ is the free energy density, depending on (constant) tem-
perature, T , particle density, q, and the magnitude of the displacement field, D
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(appropriate in an isotropic medium).18 Inequality (4.101) expresses the require-
ment that f is convex in terms of q and D. A sign change signals a “dent” in f
causing phase separation (cf. the 1D situation depicted in Fig. 4.2). Thus, the
replacement of [ 0 by ¼ 0 in (4.101) yields the critical point, i.e

1
4p

� @E
@D

���
T ;q

@l
@q

���
T ;D

� @l
@D

���
T ;q

@E
@q

���
T ;D|fflfflffl{zfflfflffl}

ðA:3Þ
= �@E

@D

���
T ;q

@D
@q

���
T ;E

�
¼ 0:

ð4:102Þ

Making use of Eq. (A.1) we obtain the desired result valid at the critical point,
i.e.19

@l
@q

���
Tc;E

¼ 0 ð4:103Þ

We apply this formula to the free energy density

f ¼ fo þ 1
4p

E 	 D: ð4:104Þ

Here fo is the part of the free energy density which does not depend on the field
explicitly. The attendant chemical potential is

l ¼ lo þ
1
4p

@

@q
ED
���
T ;D

: ð4:105Þ

Differentiation at constant E and using D ¼ erðqÞE yields

@l
@q

���
T ;E

¼ @lo
@q

���
T
þ 1

4p
@

@q
@

@q
ED
���
T ;D

���
T ;E

¼ @lo
@q

���
T
� 1
8p

E2 @
2erðqÞ
@q2

���
T ;E

:

ð4:106Þ

We can express dlo in terms of dT and dP as usual

dlo ¼ � S
q
dT þ 1

q
dP ð4:107Þ

18 On p. 67 we had found F ¼ FðT ;DÞ. The density (volume) dependence was ignored, because
it did not play a significant role in the example. In addition we use D ¼ �rE, and thus D and E
are along the same direction. Moreover we can use the magnitudes instead of D and E.
19 On p. 25 we had discussed situations in which one can obtain new thermodynamic relations via
replacement of P through, for instance, the electric field strength, E. In the present case we could
have applied this to the chemical stability condition in (3.16) to immediately obtain Eq. (4.103).
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and thus

@lo
@q

���
T
¼ 1

q
@P
@q

���
T ;E¼0

: ð4:108Þ

We put everything together by combining Eqs. (4.103), (4.106), and (4.108), i.e.

0 ¼ 1
qc

@PðqcÞ
@q

���
Tc;E¼0

� 1
8p

E2 @
2erðqcÞ
@q2

���
Tc;E

: ð4:109Þ

Note that we first take the derivatives with respect to q under the indicated
constraints and subsequently evaluate the result at qc. Notice also that the first term
does not vanish even though we have learned that 0 ¼ @P=@V jTc ¼
�ðq=VÞ@P=@qjTc in the context of van der Waals theory. This is because the
critical point we study now is for a certain field strength E 6¼ 0. However, we may
expand the first term as follows

1
qc

@PðqcÞ
@q

���
Tc;E¼0

¼ 1
qc;o þ dq

@PðTc;o þ dT ; qc;o þ dqÞ
@q

���
E¼0

� 1
qc;o

�
1� dq

qc;o

�h @PðTc;o; qc;oÞ
@q

���
E¼0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ @2PðTc;o; qc;oÞ
@q2

���
E¼0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

dqþ @2PðTc;o; qc;oÞ
@T@q

���
E¼0

dT
i

� 1
qc;o

@2PðTc;o; qc;oÞ
@T@q

���
E¼0

dT :

ð4:110Þ

The index c; o indicates that this quantity is taken at the critical point of the same
system in absence of the electric field (Tc ¼ Tc;o þ dT ; qc ¼ qc;o þ dq). The first
two terms in the square brackets are zero, because they are evaluated for vanishing
field strength at the attendant critical point. Analogously we have

� 1
8p

E2 @
2erðqcÞ
@q2

���
Tc;E

� 1
8p

E2 @
2erðTc;o; qc;oÞ

@q2

���
E¼0

: ð4:111Þ

Notice that E also is a small quantity, so that the right side is the leading term of
the expansion. Combination the last two equations yields

dT � 1
8p

qc;oE
2 @

2erðTc;o; qc;oÞ
@q2

���
E¼0

. @2PðTc;o; qc;oÞ
@T@q

���
E¼0

: ð4:112Þ
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This is the leading contribution to the field induced temperature shift for small
field strength. In order to obtain dq to the same order we must work from
@2l=@q2jTc;E¼ 0. The result is

dq �
KðerÞþ 1

qc;o

h i
@2PðTc;o;qc;oÞ

@T@q

���
E¼0

� @3PðTc;o;qc;oÞ
@T@q2

���
E¼0

@3PðTc;o;qc;oÞ
@q3

���
E¼0

dT ; ð4:113Þ

where KðerÞ ¼ @3erðTc;o;qc;oÞ
@q3

���
E¼0

.
@2erðTc;o;qc;oÞ

@q2

���
E¼0

. The shift of the critical pressure is

simply

dP � @PðTc;o; qc;oÞ
@T

���
E¼0

dT: ð4:114Þ

Notice that the shifts all are quadratic in the field strength.20

4.3 Low Molecular Weight Mixtures

4.3.1 A Simple Phenomenological Model for Liquid-Liquid
Coexistence

The van der Waals approach is applicable to gas-liquid phase separation in a
one-component system. Another type of phase separation is observed in binary
mixtures. Depending on thermodynamic conditions the components may be mis-
cible or not. A simple model describing this is based on the following molar free
enthalpy approximation

g ¼ xðlÞA gA þ xðlÞB gB þ xðlÞA ln xðlÞA þ xðlÞB ln xðlÞB þ vxðlÞA xðlÞB : ð4:115Þ

Here gA ¼ l�AðlÞ=RT and gB ¼ l�BðlÞ=RT are the reduced molar free enthalpies
of two pure liquid components A and B. Mixing A and B gives rise to the mixing

free enthalpy described by the ln-terms. Note that the mole fractions are xðlÞA and

20 We remark that the pressure derivatives can be estimated using the van der Waals equation of
state (@2P=@T@qjc ¼ 6Zc, @3P=@T@q2jc ¼ 6Zc=qc; @

3P=@q3jc ¼ 9Zc=qc, where Zc ¼ 3=8 is
the critical compressibility factor. A sufficiently accurate estimate of the dielectric constant
derivatives is more difficult. Considering a permanent point dipole, l, in a spherical cavity inside
a continuous dielectric medium characterized by a dielectric constant, er , Onsager (L. Onsager
Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486 (1936); Nobel prize in
chemistry for his work on irreversible thermodynamics, 1968) has derived the following simple
approximation ðer � 1Þð2er þ 1Þ=er ¼ 4pl2NAq=ðRTÞ, which may in principle be used for this
purpose. We leave this to the interested reader.
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xðlÞB ¼ 1� xðlÞA . We had obtained this contribution earlier, cf. Eq. (3.30), for mixtures
of ideal gases. Here we consider liquids. Nevertheless we still assume ideal
behavior. The last term is new. It introduces an additional interaction free enthalpy
proportional to the two mole fractions. The quantity v is a parameter in this theory.

Figure 4.21 shows g for different values of the v-parameter. If v is less than a

critical value then g is a convex function of xðlÞA (or xðlÞB ). This situation is analogous
to the free energy in the van der Waals theory for temperatures above the critical

temperature. If v ¼ vc then the curvature of g at xðlÞA ¼ 1=2 becomes zero. For still
larger values of v a “bump” develops - again analogous to the free energy in the van
der Waals theory for temperatures less than the critical temperature. Driven by the
second law the system now lowers its free enthalpy by separating into two types of
regions, which over time will coagulate into two large domains, one depleted of A
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Fig. 4.21 Schematic of the xA-dependence of g for different v-values. The curves shown here are
for v ¼ 1 (upper left), v ¼ 2 (upper right), and v ¼ 3 (lower left) using gA ¼ 1:5 and gB ¼ 1:0.
Lower right: T-xA-phase diagram of our model of a binary mixture, where we assume that T ¼ 1=v
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and one enriched with A. The resulting phase diagram is shown in the lower right
panel in Fig. 4.21. The binodal line is obtained via a common tangent construction
applied to the free enthalpy (cf. the lower left panel) akin to the common tangent
construction used in the van der Waals case. The common tangent is the lowest
possible free enthalpy in between xA;poor and xA;rich. For a given xA in this range the
quantity ðxA � xA;poorÞ=ðxA;rich � xA;poorÞ is the fraction of A in the A; rich-phase
relative to the total amount of A in the system. The second special line is the
spinodal line. It marks the stability limit

@2g
@x2A

����
T ;P

¼ 0 ð4:116Þ

(cf. the third stability condition in (3.16)). Both lines meet at the critical point where

@3g
@x3A

����
T ;P

¼ 0; ð4:117Þ

because at the critical point the curvature obviously changes sign.
Note that temperature here enters via the assumed proportionality v / 1=T . This

assumption accounts for the observation that phase separation usually occurs upon
lowering temperature. Nevertheless this is purely empirical and more complex
descriptions of v can be found.

Figure 4.22 shows experimental liquid-liquid equilibria data for the binary
mixtures water/phenol (solid squares) and methanol/hexane (solid circles).21 Here
x1 is the mole fraction of water and methanol, respectively. Notice that while both
systems show the basic behavior predicted by our theory, only the second system
also exhibits the symmetry around x ¼ 0:5. Nevertheless, the solid lines are “the-
oretical” results, which where obtained using

v ¼ c0 þ c1x
T

þ c2: ð4:118Þ

Here c0, c1, and c2 are constants, which are adjusted so that the theory matches
the data points. In particular the c1-term breaks the symmetry around x ¼ 0:5.
While it is quite common to introduce such expressions for v, it is not easy to
provide reasonable physical explanations of the individual terms. In addition, the
“best fit” usually does not correspond to a unique set of values for c0, c1, and c2. We
return to this in the context of polymer mixtures.

21 Data from HTTD.
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4.3.2 Gas-Liquid Coexistence in a Binary System

Can this type of phase separation be used to physically separate components A and
B? In principle yes—but not entirely and usually not as a practical means. Let us
look at the binary mixture from another angle. The above model did not include
possible distribution of components A and B in phases corresponding to different
states of matter, e.g. gas, liquid or solid. Here we want to study a situation when gas
and liquid coexist containing both A and B. This is depicted in Fig. 4.23—which we
encountered before (cf. Fig. 3.7).

In equilibrium we have lðgÞA ¼ lðlÞA and lðgÞB ¼ lðlÞB (cf. Eq. (3.38)). Thus we may

also write dlðgÞA ¼ dlðlÞA and dlðgÞB ¼ dlðlÞB . Concentrating on component A and
using Eqs. (3.27) and (3.45) we have
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dðlðgÞA T ;P�
A

� �þRT ln xðgÞA Þ ¼ dðlðlÞA T;P�
A

� �þRT ln xðlÞA Þ; ð4:119Þ

i.e. from the start we assume that both the gas as well as the liquid are ideal. This
may be reshuffled to yield

dlðgÞA T ;P�
A

� �� dlðlÞA T;P�
A

� � ¼ RTd ln
xðlÞA
xðgÞA

: ð4:120Þ

Note that we work at constant temperature.
Combination of the Gibbs-Duhem Eq. (2.180) at constant temperature with

Eq. (2.182) yields

@li
@P

���
T
¼ vi ¼ @V

@ni

���
T ;P;njð6¼iÞ

: ð4:121Þ

Here dlðgÞA T ;P�
A

� �
and dlðlÞA T;P�

A

� �
refer to the pure component A, i.e. v�A is the

molar volume of A in the gaseous and liquid states, respectively. In particular we

may neglect v�ðlÞA in comparison to v�ðgÞA . Therefore Eq. (4.120) becomes

v�ðgÞA dP � RTd ln
xðlÞA
xðgÞA

: ð4:122Þ

Integration, after insertion of the ideal gas law, i.e. v�ðgÞA ¼ RT=P, yields

P
P�
A
� xðlÞA

xðgÞA

; ð4:123Þ

where the reference state is pure A and xðlÞA =xðgÞA ¼ 1. Of course A and B may be
interchanged and thus

P
P�
B
� xðlÞB

xðgÞB

: ð4:124Þ

Because for ideal gases PxðgÞA ¼ PA and PxðgÞB ¼ PB, where PA and PB are partial
pressures, Eqs. (4.123) and (4.124) become

PA

P�
A
� xðlÞA and

PB
P�B

� xðlÞB : ð4:125Þ
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In addition we may use Dalton’s law, P ¼ PA þPB, which allows to express P

entirely through xðlÞA=B or xðgÞA=B (Salby 2012). The first relation is

P � xðlÞA ðP�
A � P�

BÞþP�
B; ð4:126Þ

where we use xðlÞA þ xðlÞB ¼ 1. Next we replace xðlÞA with xðgÞA via Eq. (4.123) obtaining

P � P�
B

1� ð1� P�
B=P

�
AÞxðgÞA

: ð4:127Þ

Equations (4.126) and (4.127) both are shown in the right panel of Fig. 4.23. The
straight line is Eq. (4.126), whereas the curved line is Eq. (4.127). Their meaning is
as follows. The dashed vertical line corresponds to a fixed xA. Above its intersection
with Eq. (4.126) we are in the liquid state of the mixture. Below its intersection with
Eq. (4.127) the mixture is a homogeneous gas. In between however liquid and gas

do coexist, and the mole fractions xðlÞA and xðgÞA are given by the intersections of the
horizontal dashed lines (depending on P) with Eqs. (4.126) and (4.127).

There is a simple law connecting the total amount of liquid, nðlÞ, and the total

amount of gas, nðgÞ, with xA, xðlÞA , and xðgÞA —the lever rule. Note that

(i) nxA ¼ nðlÞxðlÞA þ nðgÞxðgÞA , where xðlÞA ¼ nAðlÞ=nðlÞ and xðgÞA ¼ nAðgÞ=nðgÞ, and
(ii) nxA ¼ nðlÞxA þ nðgÞxA. Combining (i) and (ii) yields the lever rule:

xðgÞA � xA

xA � xðlÞA
¼ nðlÞ

nðgÞ : ð4:128Þ

Notice that xA is indeed bracketed by xðgÞA and xðgÞA as we had assumed.
Experimental isothermal gas-liquid equilibria are shown in Fig. 4.24. The left panel

shows the system 1-chlorbutane/toluene at T ¼ 298:16K. This system is well descri-
bed by the above Eqs. (4.126) and (4.127) shown as solid lines. But there are other
systems, likewater/ethanol atT ¼ 323:15K shownon the right, which are not as ideal.

One may wonder about the difference between our two treatments of binary
mixtures. The first one basically is a model composed of the ideal free enthalpy of
mixing supplemented by a temperature dependent phenomenological “interaction”
free enthalpy. Here the mixture may phase separate into regions of different com-
ponent concentration depending on T . The second approach assumes a (first order)
transition between different states of matter and describes the distribution of
components A and B between phases corresponding to those different states (gas/
liquid etc.) in terms of pressure. Aside from the assumed coexistence of phases
ideality is used throughout. In reality a combination of both approaches may be
necessary. However, it is worth noting in this context that a complete theory for the
full phase diagram of a real system (or material) does not exist.
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4.3.3 Solid-Liquid Coexistence in a Binary System

Solubility

Based on the simple model expressed in Eq. (4.115) we want to study the situation
depicted in Fig. 4.25. The figure shows a solution of B in A and a pile of solid B on
the bottom. This can happen for instance if we try to dissolve too much sugar or salt
in water. The following is a rough calculation of the maximum mole fraction,
xBðTÞ, which we can dissolve at a given temperature, T .

Neglecting the v-parameter in Eq. (4.115) we may write for the chemical
potential of B in A:

lBðlÞ ¼ l�BðlÞþRT ln xB: ð4:129Þ

If l�BðsÞ is the chemical potential of the pure solid B, then we have at coexistence
l�BðsÞ ¼ lBðlÞ, i.e.

l�BðsÞ ¼ l�BðlÞþRT ln xB: ð4:130Þ

This can be rewritten into

solution
A + B

solid
B

Fig. 4.25 A solution of B in
A including solid B at the
bottom

Fig. 4.24 Left 1-chlorbutane/toluane; right water/ethanol
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ln xB ¼ �Dl�ðTÞ
RT

þ Dl�ðTmÞ
RTm

; ð4:131Þ

where Dl�ðTÞ ¼ l�BðlÞ � l�BðsÞ. Notice that Tm is the equilibrium melting tem-
perature of pure B and thus Dl�ðTmÞ ¼ 0. Why have we added this term? To see
this we write Dl ¼ Dh� TDs, where Dh and Ds are molar enthalpy and entropy
changes. Assuming (!) that Dh�ðTÞ � Dh�ðTmÞ � Dmelt;Bh and Ds�ðTÞ � Ds�ðTmÞ,
i.e. these quantities depend only weakly on T , we immediately find

ln xB � �Dmelt;Bh
R

1
T
� 1
Tm

� 	
: ð4:132Þ

The added term has essentially eliminated the entropy and all we need to know is
the transition enthalpy (here the melting enthalpy) of pure B as well as its melting
temperature.

Notice that the index B in Eq. (4.132) can be replaced by an index i, where
i ¼ A;B. This means that the roles of A and B may be interchanged. Fig. 4.26 shows
what we get for a mixture of tin (Sn) and lead (Pb). For tin we have Dmelt;Snh ¼ 7:17
kJ/mol and Tm ¼ 231:9 
C (HCP). In the case of lead Dmelt;Pbh ¼ 4:79 kJ/mol and
Tm ¼ 327:5 
C. Using xPb ¼ 1� xSn we can combine both graphs of T versus xSn
and T versus xPb according to Eq. (4.132) into one plot. They intersect at xSn ¼
0:485 and Te ¼ 81:6 
C. Below the intersection both lines are continued as dashed
lines. Above Te and between the solid lines the mixture is a homogeneous liquid.
The solid lines are the solubility limit of Sn in Pb or, above xSn ¼ 0:485, Pb in Sn.
Te, the eutectic temperature , is the lowest temperature at which a mixture of Sn and
Pb can exist as a homogeneous liquid. The intersection of the lines marks the so
called eutectic point.

Predictions of this simple approach, even though they are helpful for our
understanding, are neither quantitative nor complete. The true eutectic point of the
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Fig. 4.26 Approximate solubility limits of tin and lead in a binary system
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Sn=Pb-system is at xSn ¼ 0:73 and Te ¼ 183 
C. The real phase diagram of this
system (at P ¼ 1bar) is shown in Fig. 4.27 (based on data in HCP). As in Fig. 4.26
there is a homogeneous liquid mixture with an eutectic point shown as black dot.
The regions marked a and b correspond to homogeneous solid phases rich in Pb
and Sn, respectively. The remaining regions are phase coexistence regions.

4.3.4 Ternary Systems

Figure 4.28 explains how to read triangular composition phase diagrams of ternary
systems. A ternary system contains the there components A, B, and C. By definition
the side lengths of the equilateral triangle ABC are equal to one. At the point labeled
Q the system has the composition xA, xB, and xC. The position of Q within the
triangle is described via the dashed lines possessing the respective lengths xA, xB,
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Fig. 4.27 The real phase diagram of the tin/lead-system
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Fig. 4.28 Triangular
composition phase diagram of
ternary systems
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and xC. The dashed line xA is parallel to AB, xB is parallel to BC, and xC is parallel
to AC. This definition satisfies the necessary condition xA þ xB þ xC ¼ 1. The
validity of xA þ xB þ xC ¼ 1 is verified easily using the division of the original
triangle into a lattice of smaller equilateral triangles. There is no loss of generality
due to this meshing, because the coarse mesh in our example can be replaced by
one which is arbitrarily fine.

An experimental example is depicted in Fig. 4.29 showing the iron-chromium-
nickel ternary phase diagram at 900 
C (adapted from HCP (Fig. 23 of
Sect. 12 p. 199, 89th edition)).

Exercise: Determine from Fig. 4.29 the composition of 18-8 stainless steel (open
circle).

4.4 Phase Equilibria in Macromolecular Systems

4.4.1 A Lattice Model for Binary Polymer Mixtures

We return to the study of binary mixtures assuming that the two components are
linear polymers. A simple but instructive approximation of a linear polymer is a
path on a lattice as depicted in Fig. 4.30. Here the lattice is a square lattice and
every lattice cell contains one polymer segment. Segments belonging to the same
polymer are connected by a solid line. The solid and hollow circles indicate two
chemically different types of segments. In the following we consider mi polymers of
type i with length (or mass) mi (i ¼ 1; 2). This means that all polymers of type i
posses the same length, i.e. they are monodisperse. In reality (technical) polymers
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Fig. 4.29 Experimental
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are polydisperse, i.e. they do have a distribution of lengths. Here we avoid this
complication. In addition we assume that each of the mi segments is one monomer
of the real polymer for conceptual simplicity. There are N ¼ N1 þN2 monomers
total (Ni ¼ mimi) and N is equal to the number of lattice cells. This means that the
lattice is fully occupied.

Having specified our model we want to estimate the number of distinct polymer
configurations on the lattice:

(i) We proceed by severing all bonds connecting the monomers in each polymer
chain. The individual monomers, which we consider distinguishable at this
point, are then placed on a new empty but otherwise identical lattice. There
are N! ways to accomplish this.

(ii) Now we ask: What is the probability that in one such configuration all
monomers do have the same neighbors they had before in the polymer? We
first approximate the probability that a particular monomer is placed in a cell
next to its polymer-neighbor monomer via

q� 1
N

� 	m1�1

or
q� 1
N

� 	m2�1

:

Here q is the coordination number of the lattice. This is the number of
neighbors each cell has. On a square lattice q ¼ 4; on a simple cubic lattice
q ¼ 6. This means that if we have a polymer partially laid out on the lattice
and we put the next monomer, of which we know that it is the neighbor in the
polymer, down on the lattice blindfolded, then there are q� 1 “good” cells

Fig. 4.30 Binary mixture of
linear polymers represented
by paths on a lattice
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compared to N cells total. Of course we neglect occupancy of the cells by
previous monomers—a truly crude approximation. Nevertheless we
approximate the above probability as

q� 1
N

� 	ðm1�1Þm1 q� 1
N

� 	ðm2�1Þm2
:

(iii) This number we multiply with N!, the total number of configurations. But we
also must divide by the product m1!m2!, because two polymers of the same
type are indistinguishable. All in all we find that the number of distin-
guishable ways to accommodate the polymers on the lattice, X, may be
approximated via

X � N!
m1!m2!

q� 1
N

� 	ðm1�1Þm1 q� 1
N

� 	ðm2�1Þm2
; ð4:133Þ

We can now work out the entropy, which is the configuration entropy, via

S ¼ N�1
A R lnX: ð4:134Þ

The justification for this clearly important formula will be given in the next
chapter. Here we merely consider its consequences. Using the Stirling formula, i.e.

lnN! � N lnN � Nþ ln
ffiffiffiffiffiffiffiffiffi
2pN

p
� N lnN � N (if) Nis large; ð4:135Þ

we obtain

S
nR

¼ �/1

m1
ln
/1

m1
� /2

m2
ln
/2

m2
þ ð1� 1

m1
Þ/1 þð1� 1

m2
Þ/2


 �
ln
q� 1
e

; ð4:136Þ

where n ¼ N=NA and /i ¼ Ni=N.
Before we discuss this, we compute the entropy of mixing given by

DS
N�1
A R

¼ �m1 ln/1 � m2 ln/2: ð4:137Þ

This is the entropy change if we combine two lattices of size N1 and N2, each
filled with the respective polymers of type 1 and 2, into one lattice of size
N ¼ N1 þN2, i.e.

DS ¼ S� S1 � S2; ð4:138Þ
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where Si ¼ N�1
A R lnXi and

Xi � Ni!

mi!
q� 1
Ni

� 	ðmi�1Þmi
: ð4:139Þ

Using again mi ¼ Ni=mi and /i ¼ Ni=N Eq. (4.137) becomes

DS
nR

¼ �/1

m1
ln/1 �

/2

m2
ln/2: ð4:140Þ

Notice that this equation is quite similar to the free enthalpy of mixing for a
K ¼ 2-component ideal gas (3.30) (in the case of a fully occupied lattice we have
/i ¼ xi). Only the factors 1=mi are new.

Equations (4.136) and (4.140) are the backbone of a method describing ther-
modynamic properties of macromolecular systems akin to the van der Waals
approach to low molecular weight systems . The lattice approach outlined here was
pioneered independently by Staverman and van Santen (A. J. Stavermann, J. H. van
Santen, Rec. Trav. Chim. 60, 76 (1941)), Huggins (M. L. Huggins, J. Chem. Phys.
9, 440 (1941); Ann. NY Acad. Sci. 43, 1 (1942)) and Flory (Paul John Flory, Nobel
prize in chemistry for his work on the physical chemistry of macromolecules, 1974)
(P. J. Flory, J. Chem. Phys. 9, 660 (1941); 10, 51 (1942)) (cf. R. Koningsveld,
L. A. Kleintjens Fluid phase equilibria. Acta Polymerica 39, 341 (1988)).

A Digression—One-Component Gas-Liquid Phase Behavior

Equations (4.136) and (4.140) can be applied to a number of interesting situations.
We introduce the replacements /1 ¼ /, m1 ¼ m, and /2 ¼ 1� /. In addition we
assume m2 ¼ 1. This corresponds to polymers in a solvent, where the index 2
indicates the solvent. The resulting configuration entropy is

Sconf
nR

¼ �/
m
ln
/
m
� ð1� /Þ lnð1� /Þþ/ 1� 1

m

� 	
ln
q� 1
e

: ð4:141Þ

If we replace the solvent cells by empty cells, we describe the same type of physical
situation described by the van der Waals equation. Here the total volume is
V ¼ bN, where b, the cell size, also is the monomer size. We may obtain the
attendant configurational pressure via

Pconf ¼ � @

@V
ð�TSconf Þ

���
T
¼ RT

NAb
�/ð1� 1

m
Þ � lnð1� /Þ


 �
: ð4:142Þ
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Analogous to the van der Waals approach we must add a term accounting for
attractive interaction between the monomers. Our choice, in analogy to the van der
Waals equation of state, is

NAbP
RT

¼ NAbPconf

RT
� 1
2
NA�o
RT

/2: ð4:143Þ

Here �o [ 0 is a parameter.
The closeness of this and the van der Waals equation of state becomes even more

clear if we compute the gas-liquid critical parameters via @P
@V jT ¼ @2P

@V2 jT ¼ 0. We
find

Tc ¼ NA�o
R

m

ð ffiffiffiffi
m

p þ 1Þ2 ð4:144Þ

/c ¼
1ffiffiffiffi

m
p þ 1

ð4:145Þ

bPc

�o
¼

1
2 �

ffiffiffiffi
m

p
1þ ffiffiffiffi

m
p

ln
ffiffiffi
m

pffiffiffi
m

p þ 1

� �� �
ffiffiffiffi
m

p þ 1ð Þ2
: ð4:146Þ

In the limit m ¼ 1 we therefore have

RTc
NA�o

¼ 1
4

/c ¼
1
2

bPc

�o
¼ 2 ln 2� 1

8
: ð4:147Þ

Comparison with Eqs. (4.9) to (4.11) yields NA�o ¼ ð32=27ÞðavdW=bvdW Þ and
NAb ¼ ð3=2ÞbvdW .22 We may work out the relation between critical and Boyle
temperature,

TBoyle ¼ 4Tc; ð4:148Þ

or the critical compressibility factor

NAPc

RTcqc
¼ 2 ln 2� 1 � 0:39: ð4:149Þ

Both values are very close to the same quantities in the van der Waals theory (cf.
Eqs. (4.20) and (4.21)).

But we are not interested in a competition with the van der Waals equation. We
therefore look at the opposite limit, i.e. very long polymer chains, which is not

22 These relations are not unique. Here we have used Tc and /c. Instead we can use Tc and Pc or
/c and Pc. The resulting differences are small.
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described by the van der Waals equation. In the limit m ! 1 we have to leading
order

RTc
NA�o

� 1 /c �
1

m1=2

bPc

�o
� 1

3m3=2
: ð4:150Þ

The corresponding leading behavior of the critical compressibility factor is

NAPc

RTcqc
� 1

3m
: ð4:151Þ

Here qc is the number density of the monomer units—not the polymers! Notice
that the critical compressibility factor is not a constant independent of the type of
molecule as before. Figure 4.31 shows the critical compressibility factor for
n-alkanes (1� n� 18). The symbols are data from E. D. Nikitin The critical
properties of thermally unstable substances: measurement methods, some results
and correlations. High Temperature 36, 305 (1998). The mass density was con-
verted to the monomer number density using CH2 as the monomer unit. This also
implies m ¼ n. The lines are fits to the data using the full expressions, i.e. Eqs.
(4.144)–(4.146), (solid line) and the limiting law, Eq. (4.151), (dashed line). The
only fit parameter is a multiplicative constant, i.e. instead of 1=ð3mÞ we use 0:24=m
to match the data for large m.

Notice also that expressing pressure, temperature, and volume or density in terms
of their critical values eliminates the material parameters b and �o, but it does not
eliminate m. This means that the resulting equation of state is not universal in the
sense that it is different for molecules with different length, i.e. different m. Therefore
the law of corresponding states is not obeyed by molecules with different m.

Polymer Mixtures

In Sect. 4.3.1 we had discussed liquid-liquid binodal curves for low molecular
weight binary fluid mixtures. Figure 4.32 shows analogous binodal data points for a
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macromolecular fluid mixture determined by observation of the cloud points. The
term “cloud point” refers to the turbidity observed upon passing from the homo-
geneous mixture into the coexistence region, where droplet formation increases the
scattering of light. In our theoretical description we assume a fully occupied lattice.

Figure 4.32 shows polystyrene-polybutadiene mixture cloud point data taken
from Fig. 4.3 in Roe (1980); PS2-PBD2 (solid circles); PS3-PBD2 (open squares),
and PS5-PBD26 (open triangles); mPS2 ¼ 2220, mPS3 ¼ 3500, mPS5 ¼ 5200,
mPBD2 ¼ 2350, mPBD26 ¼ 25000. Note that /1 refers to PS. The solid lines are the
results of a calculation analogous to the one which produced the solid lines in
Fig. 4.22, i.e. we determine the binodal line by the common tangent construction
applied to the mixing free enthalpy23

DG
nRT

¼ /1

m1
ln/1 þ

1� /1

m2
lnð1� /1Þþ v/1ð1� /1Þ: ð4:152Þ

Again we use Eq. (4.118) to describe v. Notice that the v-term in the literature
sometime is denoted as an enthalpic contribution. This is not necessarily true, because
for instance @G=@TjP ¼ �S, and if v depends on temperature, as it usually does, then
the v-term contributes to the entropy as well. We had already pointed out that the
physical interpretation of the v-term is not straightforward. Here significant insight is
needed into the microscopic interaction of polymer systems. A good starting point for
the interested reader is the following paper by R. Koningsveld (R. Koningsveld, L.
A. Kleintjens Fluid phase equilibria. Acta Polymerica 39, 341 (1988)).

Polymers in Solution

We briefly want to discuss Eq. (4.152) when m2 ¼ 1, i.e.

DG
nRT

¼ /
m
ln/þð1� /Þ lnð1� /Þþ v/ð1� /Þ; ð4:153Þ
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binary polymer mixtures

23 It does not matter whether we apply the common tangent construction to the mixing free
enthalpy or to the full free enthalpy.
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where /1 ¼ /. This situation describes a polymer-solvent-system. The phase
behavior of this system is in principle described by Fig. 4.21 (bottom-right panel),
except of course without the symmetry around xA ¼ 0:5, i.e. /1 ¼ 0:5, unless
m1 ¼ 1. Setting the coefficient c1 ¼ 0 in Eq. (4.118) we easily work out the critical
temperature and the critical packing fraction, i.e.

c0
Tc

¼ 1
2
� c2 þ 1ffiffiffiffi

m
p þ 1

2m
and /c ¼

1ffiffiffiffi
m

p þ 1
; ð4:154Þ

according to Shultz and Flory (Shultz abd Flory 1952).24 These critical parameters
follow via simultaneous solution of

@2

@/2 DG ¼ 0 and
@3

@/3 DG ¼ 0 ð4:155Þ

(cf. Eqs. (4.116) and (4.117)). The critical solution temperature, Tc, measured for
different m may be fitted via (4.154), i.e. T�1

c versus m�1=2 þð2mÞ�1, to determine
c0 and c2 experimentally (for this particular mixture).

Osmotic Pressure in Polymer Solutions

Equation (4.153) may be used to calculate the osmotic pressure of polymers in
solution. Again we employ the Gibbs-Duhem equation at constant temperature
(3.136):

VP1 ¼
Z m1

0
dl1ðm01Þ

m01
NA

¼
Z m1

0
dm1

m01
NA

@2DG
@m21

: ð4:156Þ

Notice that dl1ðm1Þ is due to altering the relative polymer content of the solution,
which solely affects the mixing contribution of the free enthalpy. After some work,
using n ¼ N=NA, N ¼ m1m1 þm2m2, and /i=mi ¼ mi=ðnNAÞ, we find

P1 ¼ RT
V

n2 �/1 1� 1
m

� 	
� lnð1� /1Þ � v/2

1


 �
; ð4:157Þ

where n2 is the mole fraction solvent. It is instructive to expand the right side for
small polymer concentration, i.e.

24 Notice that Tc and qc do agree with the same critical parameters in the case of the previously
discussed gas-liquid critical point, cf. Eqs. (4.144) and (4.145), if co ¼ NA�o=ð2RÞ and c2 ¼ 0.
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P1 ¼ RT
V

n1 þ RT
V

1
n2

1
2
� v

� 	
m2n21 þOðn31Þ; ð4:158Þ

where we also have used m � 1. We do not want to discuss Eqs. (4.157) and
(4.158) in much detail. It turns out that the lattice approach has a number of
shortcomings. An insightful discussion of osmotic pressure in polymer solutions,
including the present result, can be found in P.-G. de Gennes (1988) Scaling
Concepts in Polymer Physics. Cornell University Press.

However, it is worth to compare Eq. (4.157) to the equation of state (4.143),
obtained via the same combinatorial lattice approach applied to a fluid of small
molecules. We recognize that both equations posses the same functional depen-
dence on / and /1. In Sect. 4.1.1 we had discussed the virial expansion of the van
der Waals equation of state. The same expansion may be carried out in the case of
the lattice equation of state (4.143). Analogously we may expand the osmotic
pressure in powers of the solute concentration. Such an expansion, Eq. (4.158)
shows the first two terms in the case of the lattice model discussed here, can be used
to describe the deviations between van’t Hoff’s law and experimental data as in
Fig. 3.10.

Somebody may object to this pointing out that the leading correction to van’t
Hoff’s law in the case of electrolyte solutions is proportional to c3=2 (cf. Eq. (3.143)),
where c is the electrolyte concentration, rather than to c2. However, expansions like
(4.2) or (4.158) are based on assuming short-ranged microscopic interactions. In
Statistical Mechanics it is shown how the configuration integral in the partition
function (partition functions are introduced in Chap. 5) can be expanded in particle
clusters consisting of one, two, three, . . . particles at a time—corresponding to integer
powers of the density. A particle may be a nobel gas atom or a molecule. The
one-particle term results in the ideal gas law. The two-particle term results in its
leading correction as described by the second virial coefficient—etc. This cluster or
virial expansion is sensible only if the inter-particle interactions are short-ranged.
Coulomb interactions, on the other hand, are long-ranged.25 Even at low concen-
trations a particle (ion) interacts with numerous other particles—despite the screening
which beyond some distance shrouds the presence of the particle at the origin.

25 What is the meaning of short versus long? If two particles at a separation r interact with a
potential r�n, then the average potential energy per particle due to this interaction is e /
ðq=2Þ R1a drrd�1�n (cf. p. 78). Here q is the particle number density, a is the distance of closest
approach (particle diameter), and d is the space dimension. The integral is finite only for n[ d.
Here long-ranged means that this condition is not satisfied. Of course this does not mean that e is
infinite if n� d—it is not. It just means that the microscopic interaction must be dealt with more
carefully. In particular it means that cluster expansions of the above type are not possible.
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Chapter 5
Microscopic Interactions

5.1 The Canonical Ensemble

It is of course desirable to combine thermodynamics with our knowledge of the
structure of matter. In particular we want to calculate Thermodynamic quantities on
the basis of microscopic interactions between atoms and molecules or even sub-
atomic particles.

We assume a large completely isolated system containing a by comparison
extremely small subsystem. This subsystem is allowed to exchange heat with its
surroundings and we have

E ¼ Eenv þEm: ð5:1Þ

Here E is the total internal energy of the isolated system, whereas Em is one
particular value which the internal energy of the subsystem may assume. The
difference between these internal energies is Eenv, i.e. the internal energy of the
subsystem’s environment.

For the moment let us assume that the isolated system, with the subsystem
currently removed, contains a gas of particles. If we take a photograph of this gas
every once in a while, we observe that the particles move even though E remains
constant. If we own a special camera, allowing to record the instantaneous velocity
of every gas particle in addition to its position, then each snapshot fully characterizes
the gas in the instant the picture is taken. We call this a microstate of the gas. This is a
very mechanical point of view, and we know that classical mechanics has its limi-
tations. For instance it is not really possible to determine both the position and the
velocity, or rather the momentum, of a gas particle with arbitrary precision according
the uncertainty principle of quantum mechanics. We nevertheless assume that the
concept of microstates remains valid in the sense that there are many somehow
different realizations of our system belonging to the same energy E. This is the key
premisses of what follows, i.e. every energy value a system assumes can be realized
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by a vast number of microstates. We call this number XðEÞ. We can apply this
microstate-idea also to the above subsystem. In this sense different m-values mean
different microstates, i.e. Em is the internal energy of the subsystem in microstate m.

Having said this we may now continue by studying XðEenvÞ ¼ XðE � EmÞ, the
number of microstates of the environment all possessing the same energy E � Em.
Progress requires two additional and important assumptions: (i) all microstates are
equally probable; (ii) the probability that our subsystem has the energy Em, pm, is
proportional to the number of microstates available to the environment under this
constraint, i.e.

pm / XðE � EmÞ: ð5:2Þ
The first assumption, known as the postulate of equal a priori probabilities,

sounds quite reasonable, because there is nothing we can think of which favors one
particular microstate over another if both have the same energy. The second
assumptions corresponds to a principle of least constraint, i.e. a subsystem
microstate m is more likely than another if the by comparison huge environment
suffers a smaller reduction of its available microstates.

A useful expression for pm can be derived by expanding XðE � EmÞ or rather
lnXðE � EmÞ in a Taylor series around E, i.e.

lnXðE � EmÞ ¼ lnXðEÞ � d lnXðEÞ
dE

���
E
Em þ . . .: ð5:3Þ

Using the definition

b � d lnXðEÞ
dE

���
E

ð5:4Þ

and neglecting higher order terms, which we shall justify below, we may write

pm / XðEÞ exp½�bEm�: ð5:5Þ
By introducing another quantity, the so called canonical partition function

QnVT ¼Pm exp½�bEm� ; ð5:6Þ

we may use 1 ¼Pm pm to finally express pm as

pm ¼ exp½�bEm�
QnVT

: ð5:7Þ

In order to understand how this relates to thermodynamics we calculate the
average energy of the subsystem
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hEi ¼
X
m

Empm ¼
P

m EmpmP
m pm

¼ @

@ð�bÞ lnQNVT : ð5:8Þ

For this to be consistent with thermodynamics we must require (cf. Eq. 2.116)

@

@ð�bÞ lnQnVT ¼ Fþ TS ¼ F � T
@F
@T

���
V
¼ @

@ð�1=TÞ ð�
F
T
Þ
���
V
: ð5:9Þ

Comparing the left side with the last expression on the right we conclude b /
T�1 and

F ¼ �b�1 lnQnVT : ð5:10Þ

The proportionality constant between b and T�1 is the gas constant R, i.e.

b ¼ 1
RT

; ð5:11Þ

if we continue to use moles (n), or Boltzmann’s constant kB, i.e.

b ¼ 1
kBT

; ð5:12Þ

if we use the number of particles (N), i.e. atoms, molecules, etc. instead. Eq. (5.10)
is an important result. It allows to obtain the free energy, F, from the partition
function QnVT . QnVT may be computed if the possible energy values, Em, of our
closed subsystem are known.

Example—A Model Magnet Imagine a system consisting of just one
magnetic moment variable s. The possible values of s are sm ¼ �1ðup=downÞ.
We also assume that Em ¼ �Jhsism, where J[ 0 is a coupling constant and
hsi is the thermal average value of s. Somebody may object that thus far we
have assumed macroscopic subsystems, but here the subsystem contains one
magnetic moment only. However, what we really do is to assume that there
are many s, which do not interact with other s individually but rather with the
normalized average magnetization hsi. This is called a mean field
approximation.

The effective one-magnetic moment-partition function simply is

Qð6:6Þ
=

ebJhsi þ e�bJhsi ¼ 2 coshðbJhsiÞ ð5:13Þ

and the average magnetization per moment can be computed via
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hsi ¼
X
m

smpm ¼ @ lnQ
@ðbJhsiÞ ¼ tanhðbJhsiÞ: ð5:14Þ

This implicit equation for hsi has one solution, i.e. hsi ¼ 0, when bJ\1.
But for bJ[ 1 it has two additional solutions, hsi ¼ �hsio 6¼ 0 (cf. Fig. 5.1).
In this case we must find the stable solution for which the free energy is
lowest. The free energy is given by

Fð6:10Þ
=

� 1
b
ln coshðbJhsiÞ: ð5:15Þ

We see that the solution hsi ¼ 0 is unstable in comparison to the other two
solutions hsi ¼ �hsio. Because Fð�hsioÞ ¼ FðhsioÞ, both solutions are
equally stable. If the system is cooled from T [ Tc ¼ J=kB to T ¼ Tc and
below, it must “decide” whether to follow the positive (up magnetization) or
negative (down magnetization) (cf. the right panel in Fig. 5.1). This decision
is made by thermal fluctuations and is called spontaneous symmetry breaking.

It is important to note that Eq. (5.4) together with Eqs. (5.12) and (1.51) yields

SðEÞ ¼ kB lnXðEÞ : ð5:16Þ

This relates the entropy, S, of an isolated system with energy E to its number of
microstates, XðEÞ. In Sect. 5.4 we had used (5.16) to construct the entropy in
macromolecular systems treating the macromolecules as linear paths on a lattice.

Example—Order-to-Disorder Transition in 1D and 2D An example illus-
trating nicely the significance of Eq. (5.16) is depicted in Figs. 5.2 and 5.3. The
upper portion of Fig. 5.2 shows a one-dimensional chain of arrows (or magnetic
moments—we recognize the relation to the previous example) all pointing
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Fig. 5.1 Magnetization and its temperature dependence

210 5 Microscopic Interactions



up. This system is fully ordered. The lower portion shows the same row after
introduction of a domain wall, which means that all arrows to the left of the
domain wall are upside down. We define an internal energy of this system via

E ¼ �J
XN�1

i¼1

sisiþ 1 ð5:17Þ

(no mean field approximation in this case). Here J is a positive (coupling)
constant and si ¼ �1 (si ¼ 1 for up-arrows and si ¼ �1 for down arrows).
Notice that this internal energy is invariant under simultaneous inversion of
all N arrows. Thus there are two equivalent types of complete orientational
ordering—all arrows up and all arrows down. The internal energy difference
between the bottom and the top row is

DE ¼ Ebottom � Etop ¼ 2J: ð5:18Þ

What, however, is the corresponding change in entropy, DS? The only
distinguishing feature between chains with one domain wall is the position of
the domain wall along the chain. In the present case there are N � 1 different
positions (disregarding left-right symmetry). If we identify the number of
different positions with the number of microstates of this system (note that
shifting the domain wall position does not alter the chain’s energy) we find

DS ¼ kB lnN ð5:19Þ

(we use N � 1 ! N in the limit of N ! 1). Therefore the change of the free
energy at constant temperature due to insertion of one domain wall is

Fig. 5.2 Introducing a
domain wall into a perfectly
ordered chain of arrows

Fig. 5.3 A domain wall in
the two-dimensional case
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DF ¼ DE � TDS ¼ 2J � kBT lnN: ð5:20Þ

In the thermodynamics limit, i.e. N ! 1, we always find DF jT \0 for
T [ 0. However according to (2.130) such change occurs spontaneously.
And since this remains true for the insertion of a second, third, and every
following domain wall the orientational ordering is completely destroyed, i.e.
the disordered state with

PN
i¼1 si ¼ 0 is the thermodynamically stable one!

But what happens if we repeat this “experiment” in two-dimensions?
Fig. 5.3 shows a two-dimensional lattice of arrows containing two domain
walls meandering through the system. We proceed as in the one-dimensional
case and compute first the change of the internal energy due to a domain wall
consisting of n pairs of arrows, i.e.

DE ¼ Ewithdw � Ewithoutdw ¼ 2Jn: ð5:21Þ

The attendant entropy change is

DS ¼ kB ln pn: ð5:22Þ

Here p is the number of possible orientations of each of the n domain wall
segments relative to its predecessor. In our figure this means left turn, right
turn, and no turn, i.e. p ¼ 3. But this is an overestimate as illustrated in
Fig. 5.4. It shows that two domain walls cannot meet. This means that
occasionally p is reduced to two orientations or, in rare cases, to just one.
Thus the free energy change is

DF ¼ ð2J � kBT ln pÞn: ð5:23Þ

Clearly, the sign of DF does depend not on n but on the term in brackets. It
will change at a distinct or critical temperatureTc, i.e.

kBTc
J

¼ 2
ln p

� 1:82 if p ¼ 3

2:89 if p ¼ 2

�
ð5:24Þ

For temperatures above Tc the sign of DF is negative. Domain walls are
created spontaneously by the system destroying any orientational order of the
arrows. Below Tc the opposite is true, i.e. domain walls are not stable and

?

Fig. 5.4 Two domain walls
cannot meet
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orientational order is the consequence. An exact calculation of this model
system, it is called the Ising model, can be done, and the result is that in 2D a
finite Tc does exist (Kramers and Wannier 1941; Onsager 1944)—However,
it was Rudolf Peierls who first showed that the two-dimensional Ising model
has an order-to-disorder transition (Peierls 1936). The exact value, i.e.
kBTc=J ¼ 2:269. . ., is in fact bracketed by our above estimates for p ¼ 3 and
p ¼ 2!

We conclude that whereas in one dimension no transition is possible the
situation is completely different in two (and higher) dimensions. But notice
that we could have extended the range of interaction in one dimension to
include all arrows. Doing this it is possible to have DE ¼ OðNÞ and thus we
see that our conclusion does rest on the assumption of a finite interaction
range! In fact, the previous example shows this. The mean field approxi-
mation implies an infinite interaction range, and because the dimensionality
of the system does not enter, it would lead us to conclude that the 1D chain
always undergoes a transition at Tc ¼ J=kB:

Remark In the case J� r�1�r, where r is the distance separating interacting
arrows, there exists a critical point in the 1D Ising model for r\1 but it is absent
for r[ 1 (Dyson 1969).

Example—Scaled Particle Theory This is another example in which
Eq. (5.16) plays a significant role. Figure 5.5 depicts particles in a gas. Here
we assume that the particles are hard spheres. But other compact hard particle
shapes are possible too. The figure shows two types of particles—large (grey)
ones and one small (black) one. The large particles are spheres with radius R.
The small particle is a sphere with radius kR. In the figure the scaling
parameter k � 1. The idea of scaled particle theory (developed in the late
1950s by H. Reiss, H. L. Frisch, and J. L. Lebowitz) is simple: (i) work out
the chemical potential of the scaled particle in the two limits k � 1 and

R

Fig. 5.5 Hard sphere
particles including a scaled
particle
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k 	 1; (ii) by interpolation between the two limits derive an approximate
chemical potential for k ¼ 1; (iii) use this chemical potential to find an
approximate equation of state for the gas. As it turns out, this approach yields
a pretty good equation of state—even for a dense gas of hard particles.

We start with step (i). The chemical potential of the scaled particle is

lsp ¼ lsp;id þ lsp;ex: ð5:25Þ

The two indices, id and ex, denote the ideal and excess part of the
chemical potential, respectively. Here the ideal part corresponds to the a
situation when all ordinary particles are absent. If Xsp is the number of
(micro)states available to the scaled particle, we may, if k � 1, write

Xsp ¼ Xsp;id
Xsp

Xsp;id
� Xsp;id

V � veðkÞN
V

¼ Xsp;idð1� veðkÞqÞ: ð5:26Þ

Notice that Xsp=Xsp;id is identified with the ratio of the volume available to
the center of the scaled particle divided by the total volume of the system, V .
The quantity veðkÞ is the volume excluded to the scaled particle’s center by
the presence of one ordinary particle—indicated by the dashed circle in
Fig. 5.5. Thus, in the case of spheres, veðkÞ ¼ 4pR3ð1þ kÞ3=3. If we disre-
gard the overlap between excluded volumes defined in this fashion, then the
excluded volume veðkÞ multiplied with the number of ordinary particles, N, is
the total available volume (q ¼ N=V). Notice also that the approximation
becomes exact in the limit k ! 0. Using Eq. (5.16) we may write

lsp ¼ lsp;id � RT ln½1� veðkÞq� ðk � 1Þ ð5:27Þ

for very small k. Due to the hard particle assumption there is no enthalpic
contribution to the free enthalpy of the scaled particle. Now we consider the
opposite limit, i.e. k 	 1. This means that the scaled particle is inflated like a
ballon against the constant pressure, P, exerted by the ordinary particles.
Insertion of the scaled particle into the system therefore requires the (re-
versible) work PvspðkÞ, where vspðkÞ ¼ 4pR3k3=3. Thus in this limit

lsp ¼ lsp;id þPvspðkÞ ðk 	 1Þ: ð5:28Þ

Step (ii) is the interpolation between the two limits via

lsp;exðkÞ ¼ co þ c1kþ c2k
2 þPvspðkÞ: ð5:29Þ

The coefficients ci are obtained by expanding veðkÞ at k ¼ 0 to second
order in k. We find
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co ¼ � ln½1� v� c1 ¼ 3v
1� v

c2 ¼ 1
2

6v
1� v

þ 9v2

ð1� vÞ2
 !

; ð5:30Þ

where v is the so called volume fractionv ¼ bq, and b is the ordinary particle
volume.

The final step, step (iii), consists in setting k ¼ 1. The scaled particle now
is an ordinary particle too and its chemical potential, l, also is that of an
ordinary particle. The ideal part of the chemical potential is given by
Eq. (5.66), an equation yet to be derived, plus the excess part given by
Eq. (5.29), where k ¼ 1. We obtain the pressure in our hard sphere gas via
integration of the Gibbs-Duhem equation, i.e.

@ðP=RTÞ
@q

���
T
¼ q

@ðl=RTÞ
@q

���
T
: ð5:31Þ

Straightforward integration yields the desired equation of state:

P
RTq

¼ 1þ vþ v2

ð1� vÞ3 : ð5:32Þ

How can we test this result? Surely, small molecules are not hard spheres.
However, in Fig. 3.10 we had discussed osmotic pressure data obtained from
hemoglobin in aqueous solution. Hemoglobin is rather large and roughly
spherical. In addition, we had argued on page 205 that the osmotic pressure
can be approximated by equations like Eq. (5.32), i.e. the right side of this
equation multiplies the van’t Hoff equation, and the result should yield an
improved osmotic pressure. This is indeed the case. The solid line in Fig. 3.10
is obtained in this fashion by adjusting the hemoglobin volume b ¼ bHb.
A good fit to the experimental data requires a hemoglobin diameter of � 5:5
nm—in good accord with its linear dimension obtained via more detailed
considerations.

Remark Scaled particle theory is a clever way to obtain an approximate equation
of state for a non-ideal gas of hard bodies, for which we can work out the excluded
volume, i.e. the equivalent of the dashed line in Fig. 5.5. But because it is an
excluded volume theory, i.e. there is no attractive interaction as in the van der
Waals theory, it cannot describe a gas-liquid phase transition. It is limited to sit-
uations when the phenomenon of interest is governed by excluded volume inter-
action. This is not the case for gases of small molecules. Perhaps the best example
are lyotropic liquid crystalline systems (e.g., Odijk 1986). These are solutions
containing large molecules or molecular aggregates. The excluded volume
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interaction here can lead to the spontaneous formation of anisotropic phases. In the
simplest case the orientation of rod-like large molecules or large molecular
aggregates, which at low solute concentration is isotropic, spontaneously becomes
nematic, i.e. the “rods” on average align along a certain direction in space (called
the director), when the concentration is increased (e.g., Herzfeld 1996).

Example—Rubber Elasticity and Thermal Contraction According to
experience most materials expand when their temperature increases, i.e. their
thermal expansion coefficient, aP, (cf. Eq. (2.5)), is positive. However, take a
rubber band fixed at one end and stretched by a weight attached to its other
end. Upon heating of the rubber band, using a heat gun or a hair dryer capable
of producing sufficient heat, a significant contraction is observed. Why does
this happen? Once again Eq. (5.16) helps to find the answer. First however we
must tie the entropy to the thermal contraction just described.

Equation (1.4) describes the work done by the elastic forces inside an
elastic body. The attendant free energy is F ¼ RV dVf , where the integration
is over the volume of the rubber band, and the differential free energy density
is

df ¼ �s dT þ rab duab: ð5:33Þ

Here �s ¼ @f =@T juab and rab ¼ @f =@uabjT . rab and uab are the compo-

nents of the stress and the strain tensors, respectively. Note that we use the
summation convention. It is useful to introduce the free enthalpy density

g ¼ f � rabuab; ð5:34Þ

i.e.

dg ¼ df � dðrabuabÞ ¼ �s dT þ rab duab � dðrabuabÞ ¼ �s dT � uab drab:

Taking the derivative of s ¼ �@g=@T jrab with respect to rzz, z being the

direction parallel to the rubber band, we obtain

@s
@rzz

���
T
¼ � @

@rzz

@g
@T

���
rab

���
T
¼ @uzz

@T

���
rab

¼ ar;1D: ð5:35Þ

Note that uzz ¼ dL=Lo, where dL is the elongation of the rubber band and
Lo is its unstrained length, i.e. @uzz=@T jrab ¼ L�1@L=@T jrab ¼ ar;1D is the

one-dimensional analog of Eq. (2.5).
At this point we need an expression for the entropy, S, of the rubber band.

Figure 5.6 shows a cartoon of a linear polymer molecule of which rubber is
made of. As before in the context of phase equilibria in macromolecular
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systems we model the polymer as a random path on a cubic lattice. We ask
the question: What is the probability pðRÞ that the two ends, labeled a and x,
do have the separation R? The answer is pðRÞ ¼ XðRÞ=PR XðRÞ. Here XðRÞ
is the number of different paths of length n originating from the same lattice
point and ending a distance R from the origin. The denominator consequently
is the sum over all possible paths of length n originating from the same lattice
point. Using Eq. (5.16) we have

SðRÞ � S ¼ kB ln pðRÞ; ð5:36Þ

where SðRÞ ¼ kB lnXðRÞ and S ¼ kB ln
P

R XðRÞ. The end-to-end vector ~R is
given by

~R ¼
Xn
i¼1

ðxi; yi; ziÞ ¼
Xn
i¼1

xi;
Xn
i¼1

yi;
Xn
i¼1

zi

 !
; ð5:37Þ

where xi, yi, and zi are random variables. Each of these may assume the
values f�a; 0; 0; 0; 0; ag with equal likelihood. Here a is the lattice spacing
and the six values correspond to the six possible orientations of the
step-arrows (in Fig. 5.6) along the main axes of the cubic lattice. We obtain
pðRÞ via an important mathematical theorem—the central limit theorem. This
theorem states that if si are random variables with the average ls and the
mean square fluctuation r2s then the new random variable,

Sn ¼
Pn

i¼1 si � nls
rs

ffiffiffi
n

p ; ð5:38Þ

possesses the probability density,

Fig. 5.6 A polymer chain on
a lattice
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f ðSnÞ ¼ 1ffiffiffiffiffiffi
2p

p exp½�S2n=2� ; ð5:39Þ

in the limit of infinite n. However, this remains a very good approximation
even if n is not very large (The reader may confirm this by generating S5 from
random numbers si 2 ð0; 1Þ (i.e. ls ¼ 1=2 and rs ¼ 1=

ffiffiffiffiffi
12

p
). Construction of

a distribution histogram based on 104S5-values generated in this fashion
closely approximates a Gaussian distribution with zero mean and standard
deviation equal to unity.). Based on the central limit theorem we immediately
conclude

pðRÞ � f ðXnÞf ðYnÞf ðZnÞ
ðna2=3Þ3=2

¼ 3
2pna2

� �3=2

exp � 3
2
R2

na2

� �
; ð5:40Þ

where lx ¼ ly ¼ lz ¼ 0, r2x ¼ r2y ¼ r2z ¼ a2=3, and 4p
R1
0 dRR2pðRÞ ¼ 1.

Using this expression in Eq. (5.36) we obtain

SðRÞ � Sð0Þ ¼ � 3kBR2

2na2
: ð5:41Þ

At this point we know how the conformation entropy of a polymer chain,
containing n links, changes when its end-to-end distance R is changed. Even
though our model is a rough coarse-grained model of a real polymer, it is still
a model of a single polymer chain and not yet a continuum model of the
rubber band.

Real rubber is a complex material. It consists largely of linear polymer
chains, but the chains are cross-linked. These cross-links can be chemical
bonds (e.g. sulfur bridges formed during a process called vulcanization)
between different polymer chains (or even within the same chain). They may
also be physical entanglements. We may view the points labeled a and x in
Fig. 5.6 as the positions of two such cross-links. Thus, when we stretch
rubber, we really stretch a complex flexible network called elastomer. We
have also ignored that the polymer chains are real molecules interacting via
specific microscopic interactions. Even though rubber deforms easily, its
compressibility is that of a liquid, i.e. its volume hardly changes under
deformation.

A cartoon of a rubber volume element is depicted in Fig. 5.7a. Overall the
rubber band is a network of m cross-linked chain segments. Every segment
contains n links, whose individual S(Ri) (i ¼ 1; . . .; m) are given by Eq. (5.41).
If a macroscopic volume element inside the rubber band, possessing the edge
lengths Lx, Ly, and Lz, is deformed, its new edge lengths are L0x ¼ kxLx,
L0y ¼ kyLy, and L0z ¼ kzLz. We assume that the segment end-to-end vectors
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contained in this volume element will change their components analogously.
Hence

La
Ri;a

¼ L0a
R0
i;a
; ð5:42Þ

which is an affine deformation (cf. Fig. 5.7b). Rubber has a very small
compressibility and consequently we also assume that V 0 ¼ L0xL

0
yL

0
z ¼

LxLyLz ¼ V . If we stretch the rubber band by a factor kz � k in z-direction,
i.e. L0z ¼ k Lz, volume conservation, i.e. kx ky kz ¼ 1, implies kx ¼ ky
¼ k�1=2:

With this we are able to calculate the total elastic entropy change DSel
during stretching of the rubber band in terms of the entropy changes expe-
rienced by the individual network segments. According to Eq. (5.41) we have

DSel ¼
Xm
i¼1

SðR0
iÞ � SðRiÞ

	 
 ¼ � 3kB
2na2

Xm
i¼1

R0
i
2 � R2

i

� �
: ð5:43Þ

Replacing R0
i
2 by R0

i
2 ¼ k�1R2

x;i þ k�1R2
y;i þ k2R2

z;i yields

DSel ¼ � 3kB
2na2

Xm
i¼1

ð1
k
� 1ÞR2

i;x þð1
k
� 1ÞR2

i;y þðk2 � 1ÞR2
i;z

� �
: ð5:44Þ

Fig. 5.7 A rubber volume element containing cross-linked chain segments in the relaxed (a) and
in the deformed (b) state. Cross-links are indicated by the dots.
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Because the number of segments, m, is a very large number, we can write
1
m

Pm
i¼1 R

2
i;a ¼ hR2

ai. Here hR2
ai is the ensemble average of the square of the a-

component of the end-to-end separation of the segments. Since hR2
ai refers to

the relaxed state, all components behave equally and thus
hR2

ai ¼ hR2i=3 ¼ na2=3. The last equality follows directly from pðRÞ. Hence

DSel ¼ � kBm
2

2
k
þ k2 � 3

� �
: ð5:45Þ

It is important to note that DSel does not comprise the entire entropy of the
polymer chains forming the network. However, in the following we assume
that it is the most important part of this entropy and neglect the rest. In
particular we compute rzz via

rzz ¼ @f
@uzz

���
T
� � 1

TV
@DSel

@ðk� 1Þ ¼
kBTm
V

k� 1

k2

� �
: ð5:46Þ

We can now compute ar;1D with the help of Eq. (5.35), i.e.

ar;1D ¼ @s
@rzz

���
T
¼ @s

@k

���
T

@rzz
@k

���
T

� ��1

: ð5:47Þ

Again s � DSel=V and we find for ar;1D

ar;1D ¼ � 1
T
kðk3 � 1Þ
k3 þ 2

: ð5:48Þ

Let us discuss this. Note first the 1/T-dependence of ar;1D. This is the same
temperature dependence we had obtained for the thermal expansion coeffi-
cient of the ideal gas, which is not too surprising because here we also neglect
all direct interactions. The first important step along the way to Eq. (5.48) is
Eq. (5.41). It tells us that the entropy of a polymer chain is reduced when it is
stretched. This is because increasing the end-to-end distance reduces the
number of possible paths the chain can assume. In principle this the reason
why ar;1D is negative, i.e. increasing the temperature causes contraction of the
rubber band. However, if one tries to carry out the experiment mentioned in
the beginning, one may be surprised to find that the rubber band behaves
conventionally and expands with increasing temperature. Just like any simple
liquid, the thermal expansion coefficient of relaxed rubber is positive (due to
anharmonicity of the microscopic interactions between the monomers in the
polymer chain). But notice that ar;1D according to Eq. (5.48) increases if k is
increased (e.g. for T ¼ 350 K and 1% strain, i.e. k ¼ 1:01, we find ar;1D �
�3 
 10�5 K−1; at the same T but for 30% strain, i.e. k ¼ 1:3, ar;1D � �10�3
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K−1; typical for most liquids is aP;3D ¼ 3 aP;1D � 10�3 K−1). With increasing
strain one observes what is called thermoelastic inversion (cf. Strobl 1997).
This means that the ordinary thermal expansion is overtaken by a contraction
in response to the reduction of the chains conformation entropy as we have
just discussed.

Remark 1 Expanding the right hand side of Eq. (5.46) to first order in the
strain, i.e. in k� 1, yields

rzz � 3kBTm
V

k� 1ð Þ: ð5:49Þ

Essentially this is Hook’s law and the factor multiplying k� 1 is the
elastic modulus of the rubber. Note that the latter is proportional to temper-
ature and to the density of segments or, equivalently, to the cross-link density.
The more cross-links there are the stiffer the rubber becomes. It is worth
noting that the right hand side of Eq. (5.46) is a good description of reality at
small k but fails when k becomes large, mainly because of the finite exten-
sibility of a polymer chain. The meaning of “small“ versus “large“ and an in
depth discussion of other points beyond the scope of this (idealized) example
can be found in Rubinstein and Colby (2003).

Remark 2 The formulas (5.43) to (5.45) for DSel are not correct under
conditions when the volume is not constant. An example is the swelling of a
polymer network by a solvent. The swelling caused by the establishment of
chemical equilibrium of solvent inside and outside the polymer network
stretches the chain segments uniformly and reduces their conformational
entropy—which physically is the same effect as before. In this case however
V 0 6¼ V and kx ¼ ky ¼ kz � k. In general (5.45) is replaced by

DSel ¼ � kBm
2

k2x þ k2y þ k2z � 3
� �

þ kBm
2

lnðkxkykzÞ: ð5:50Þ

For kx ¼ ky ¼ k�1=2, and kz ¼ k the ln-term vanishes and we obtain
(5.45). But if V 0 6¼ V the ln-term does not vanish and must be included. This
term has two sources. The first one is the normalization of (5.40). If we want
to compare entropies in the relaxed and the deformed state, we must do this in
the same coordinate system. This means that there is a Jacobian, connecting
the unprimed with the primed system, giving rise to a term kBm lnðkxkykzÞ.
Source number two yields an extra term �kBm lnðkxkykzÞ=2, which is an extra

entropy change kB ln½ðdV=V 0Þm=2=ðdV=VÞm=2� (and again an application of
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Eq. (5.16)). Here dV is the volume occupied by a cross-link, i.e. dV=V and
dV=V 0 are the respective probabilities to find the cross-link in a particular dV
in the undeformed and in the deformed system. Since the system contains m
chain segments, this implies that it contains m=2 cross-links (look again at
Fig. 5.7 and think about this!). Assuming independent cross-links, the total

probability for finding the cross-links in their dV-cells is ðdV=VÞm=2 and

ðdV=V 0Þm=2, respectively. This term, originally due to P. Flory, of course is an
approximation ignoring all correlations.

Remark 3 We can use Eq. (5.46) to measure the density of chain segments
or cross-links in a piece of rubber. First we adjusting k to a value which is
sufficiently large so that the ordinary thermal expansion is small compared to
the expected contraction. For this k-value (and perhaps additional ones) we
measure rzz in a range of temperatures. The slope of a line through these data
points, divided by kBTðk� k�2Þ, yields m=V . However, there is another
method for measuring m=V , which is used frequently in industry laboratories.
Since we have all the necessary ingredients available, it is worth to briefly
talk about this method as well.

Equation (4.153) describes the mixing free enthalpy of a polymer-solvent
system on a lattice, where / is the volume fraction polymer. If we express the
solvent volume fraction 1� / via 1� / ¼ Ns=N, where Ns is the number of
solvent cells and N is the total number of cells, the result is

DG
kBT

¼ m ln/þNs lnð1� /Þþ v/Ns: ð5:51Þ

The quantity m is the number of polymer chains.
In a simple approximate theory of polymer network swelling due to Flory

and Rehner (1943) the translational entropy term m ln/ is replaced by the
elastic entropy contribution 3m

2 ðk2 � 1Â� ln kÞ when the network undergoes
uniform swelling, i.e. kx ¼ ky ¼ kz � k. Minimizing this new DG with
respect to Ns, i.e. 0 ¼ @ðDG=ðkBTÞÞ=@Ns, which means equating the solvent
chemical potentials inside and outside the network, yields the Flory-Rehner
equation in its standard form:
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qP
vs
mP

¼ � lnð1� /Þþ/þ v/2

/1=3 � /=2
: ð5:52Þ

The quantity qP is the mass density of the (dry) polymer, vs is the molecular
volume of the solvent, and mP is the (average) mass of a network segment.
Note that k3 ¼ Vswollen=VP ¼ 1=/ ¼ ðVP þNsvsÞ=VP, where Vswollen is the
equilibrium volume of the swollen network (or gel) and VP is the dry polymer
volume. Note also that @/=@Ns ¼ �/2vs=Vp (caveat: It is incorrect to use the
above formula / ¼ 1� Ns=N, assuming N ¼ const, for the derivative of /
with respect to Ns. This means that the volume is kept constant—which is not
the case.), @k=@Ns ¼ vs=ð3VPk

2Þ, as well as qP
vs
mP

¼ vs
VP
m. In the original

paper, cf. Eq. (11) in Flory and Rehner (1943), the �/=2-term in the
denominator of Eq. (5.52), which results from the � ln k-term in the elastic
entropy, is not included. This persisted for some time (e.g. Eq. (5.9) in
Treloar (1973), but finally “converged” to the above form. However, the
significance of the �/=2-term is somewhat questionable. The factor 1/2
resulted from a rather approximate entropy contribution of the network nodes
and, in addition, is based on the assumption of a regular 4-fold coordinated
network. In addition, in many cases of practical importance /1=3 dominates
over /=2 and the latter can be neglected. Nevertheless, Eq. (5.52) ties the
quantity m to the swollen volume of a polymer network. Therefore it provides
another means for the determination of the cross-link density.

5.1.1 Entropy and Information

This is a good place to briefly talk about entropy and information. Figure 5.8 shows
a chessboard with a single pawn on c2. Imagine somebody who wants to find the
pawn’s position without looking at the board—just by asking another person, who
can look at the board, questions requiring “yes” or “no” as answer. The questioner
might proceed as follows: Q1—is the pawn somewhere on files A through D? A1—
yes; Q2—is the pawn somewhere on rows 1 through 4? A2—yes; Q3—is the pawn
on files A or B? A3—no; ...The numbered dashed lines on the right board illustrate
how via bisection the location of the pawn is found after six questions. This is
because there are 64 squares on the board and 64 ¼ 26. If we identify the number of
possible squares with the quantity X in Eq. (5.16), then we may define an entropy
for the pawn/chessboard system via
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S ¼ log2 64 ¼ 6: ð5:53Þ

This entropy is the number of yes/no-questions we need to ask in order to acquire
total knowledge about the system. Or we may say: S is a measure for our lack of
information—the more questions we must ask the bigger is our information deficit.

The entropy in Eq. (5.19) of our first example had the same quality. The number
N denotes the possible positions of the domain wall—quite analogous to the 64
squares on the above board. In the second example the quantity Xsp is a measure for
the number of possible positions of the scaled particle in the system. Again the
analogy is obvious. Finally in the third example XðRÞ is the number of different
possible paths of total length R. Thus, in all examples X is the number of quali-
tatively identical alternatives. The more of these alternatives there are, the greater
the associated entropy becomes, i.e. the greater is the lack of information regarding
one particular alternative. Often it is said that the increase of entropy signals
increasing “disorder”. What is meant by disorder is the lack of information.

5.1.2 E and the Hamilton OperatorH

At this point we return to our main subject and talk about the calculation of the Em

in quantum mechanics. It appears reasonable to identify the Em with the eigenvalues
of the subsystem Hamilton operator H fulfilling the stationary Schrödinger’s
equation

Hjm[ ¼ Emjm[: ð5:54Þ

Here jm[ is the appropriate eigenket. Therefore Eq. (5.6) may be expressed via
the jm>:

QNVT ¼
X
m

exp �bEm½ �

¼
X
m

\mj exp �bH½ �jm[ ¼ Tr exp �bH½ �ð Þ:
ð5:55Þ

Tr is the trace of the quantum mechanical operator exp �bH½ �. In particular

hEi ¼
� @

@b

P
m \mj exp �bH½ �jm[P

m\mj exp �bH½ �jm[ ¼ TrðHe�bHÞ
Trðe�bHÞ � \H[ ; ð5:56Þ

where \H[ is the quantum mechanical expectation value of H: Even though the
subsystem is in thermal contact with its environment, the calculation of the partition
function requires knowledge of the quantum states of the subsystem only.
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5.1.3 The Ideal Gas Revisited

The quantum mechanical result for Em in the case of a particle confined to a
one-dimensional box with volume (or length) L is1

Em ¼ �h2k2m
2m

ð5:57Þ

Here �h ¼ h=ð2pÞ is Planck’s constant divided by 2p and m is the mass of the
particle. We also have m ¼ ðL=pÞkm (m ¼ 1; 2; . . .). Because L=p is a large number,
we replace the sum over m in the partition function by an integration over k as
follows

X1
m¼1

¼ L
p

Z 1

0
dk: ð5:58Þ

The partition function becomes

X1
m¼1

exp½�bEm� ¼ L
p

Z 1

0
dk exp �b

�h2k2

2m

� �
¼ L

KT
; ð5:59Þ

where

KT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�h2b
m

s
ð5:60Þ

is called the thermal wavelength. Inserting the result (5.59) into the free energy
Eq. (5.10) we obtain for the pressure, P ¼ �@F=@L

��
T ,

PL ¼ b�1: ð5:61Þ

This is exactly what we expect for a single particle in a one-dimensional box.
But what about many particles in a three-dimensional volume? We may extend

Eq. (5.59) to the three dimensions via

1 Thus far Em corresponded to the energy of a system. And systems do contain large number of
particles. Now there is only one! We assume that there is so little interaction that each particle in
a large system may be studied individually. But we also require that there is just sufficient
interaction between this particle an its surroundings for it to reach thermal equilibrium. The idea
is that one can collect instantaneous but uncorrelated (!) copies of this one particle, which, after
one has obtained very many copies, are combined into one system and that this system is a
system at equilibrium in the thermodynamic sense.
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QNVT ¼
X1

mx;my;mz¼1

exp½�bEmx;my;mz �

¼ 1
N!

L
p

Z 1

0
dkx exp �b

�h2kx2

2m

� �� �3N

¼ 1
N!

V

ð2pÞ3
Z

d3k exp �b
�h2k2

2m

� � !N

¼ 1
N!

V
2p2

Z 1

0
dkk2 exp �b

�h2k2

2m

� �� �N

¼ 1
N!

V

K3
T

 !N

:

ð5:62Þ

3N is justified easily, because for a particle in a three-dimensional box we have
from quantum mechanics k2 ¼ k2x þ k2x þ k2x and for each k-component i we have
mi ¼ ðL=pÞkmi (note: V ¼ L3) with mi ¼ 1; 2; . . .. The factor N!�1 results from the
proper normalization of the N-particle state jm[ to be used in Eq. (5.55) instead of
the single particle state. However, there is alternative classical motivation for this
factor in the context of the so called Gibbs paradox. But let us first proceed with the
three dimensional ideal gas. Inserting the partition function (5.62) into the free
energy Eq. (5.10) immediately yields for the pressure, P ¼ �@F=@V jT ,

PV ¼ NkBT ; ð5:63Þ

i.e. the ideal gas law. Using Eq. (5.8) we obtain for the internal energy of the ideal
gas

hEi ¼ 3
2
NkBT ð5:64Þ

and for the heat capacity at constant volume

CV ¼ 3
2
NkB ð5:65Þ

(cf. the footnote on page 56). Another quantity of interest is the chemical potential,
which here follows most conveniently via Nl ¼ FþPV , i.e.

l ¼ kBT ln qK3
T ; ð5:66Þ
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where q ¼ N=V is the number density and we have used the Stirling approximation
(4.135) (here: lnN! � N lnN � N). Via F ¼ Nl� PV ¼ E � TS and again using
the Stirling approximation we quickly obtain the entropy

S ¼ NkB ln
e5=2

qK3
T

" #
: ð5:67Þ

This equation is the Sackur-Tetrode equation (2.32).

5.1.4 Gibbs Paradox

Let us discuss the following experiment. We consider two identical boxes. Their
respective volumes are V ¼ L3 and they share one common wall which is a
movable partition. Assuming we can move the partition in and out without doing
work, i.e. the partition slides easily back and forth, we find that the entropy of the
combined system is equal to the sum of the entropies of the individual systems.
Thus we have

DS ¼ Sð2N; 2VÞ � 2SðN;VÞ ¼ 0: ð5:68Þ

Computing the entropy via S ¼ �@F=@TjV we find

DS=kB ¼ � lnð2NÞ!þ 2N ln 2þ 2 lnN!: ð5:69Þ

For small N we easily find that DS 6¼ 0. So what is wrong? First we note that in a
macroscopic system N is large, i.e. N� 1023.2 Computing DS for large N requires
that we use the Stirling approximation (4.135). The result is

DS=kB ¼ 1
2
lnðpNÞ: ð5:70Þ

Again we obtain DS 6¼ 03 but the point to notice is that the ratio DS=S tends to
zero as N grows, i.e.

DS
S

� lnN
N

N!1! 0: ð5:71Þ

2 The assumption of large N already entered our formalism via the truncated expansion (5.3).
3 We use the Stirling approximation including

ffiffiffiffiffiffiffiffiffi
2pN

p
. Otherwise the result is DS ¼ 0.

5.1 The Canonical Ensemble 227



In this limit we therefore obtain the desired result. Without the extra factor N!�1,
which we introduced into the partition function, the result would have been different
even for large N, i.e. DS=S� 1= ln V=K3

T


 �	 

. The convergence is so slow (V �N)

that the missing factor is noticeable on the macroscopic scale. This is called the
Gibbs paradox. Therefore we could have guessed this factor on purely classical
grounds. Notice that N! is the number of indistinguishable permutations in the case
of N identical objects. The factor N!�1 thus accounts for the fact that our particles
can exchange places with each other without loss of information.

5.1.5 Ideal Gas Mixture

From the preceeding discussion we conclude that the partition function of an ideal
gas mixture is

QNVT ¼
Y
j

QNVT ;j ¼
Y
j

1
Nj!

V
KT ;j

� �Nj

ð5:72Þ

where N ¼Pj Nj is the total particle number. Notice that the thermal wavelength
depends on a particle’s mass and thus on j. The partial pressure of component i is

Pi ¼ � @Fi

@V

���
T ;Nj

with Fi ¼ �kBT lnQi ð5:73Þ

i.e. we recover Dalton’s law because obviously P ¼Pi Pi. Another short calcu-
lation yields the chemical potential of an individual component

li ¼
@Fi

@Ni

���
T ;Nj6¼i

¼ kBT ln qiK
3
T ;i ð5:74Þ

where qi ¼ Ni=V . This chemical potential we had assumed in the context of the
Saha equation on page 130.

5.1.6 Energy Fluctuations

We want to compute the mean square energy fluctuation based on Eq. (5.7). Thus
we write
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hðdEÞ2i ¼ h E � hEið Þ2i ¼ hE2i � hEi2

¼
X
m

pmE
2
m �

X
m

pmEm

 !2

¼ 1
QNVT

@2QNVT

@b2

����
N;V

� 1
Q2

NVT

@QNVT

@b

����
N;V

 !2

¼ @2 lnQNVT

@b2

����
N;V

;

i.e.

hðdEÞ2i ¼ �@hEi
@b

����
N;V

; ð5:75Þ

and therefore

hdE2i ¼ kBT
2CV : ð5:76Þ

Note that in large systems such fluctuations are relatively small. We see this if

we study the ratio ðhdE2iÞ1=2=hEi. Using Eq. (5.76) together with hEi / NkBT we
find ffiffiffiffiffiffiffiffiffiffiffiffi

hdE2i
p
hEi / 1ffiffiffiffi

N
p : ð5:77Þ

For macroscopic systems with N � NA the relative energy fluctuations are
vanishingly small.

5.1.7 The Likelihood of Energy Fluctuations

At the beginning of this chapter we considered an isolated system. When this
system has the energy E then there are XðEÞ different microstates with this energy.
If the system is not isolated but coupled to an external heat bath with temperature T
then it becomes a subsystem within this heat bath. The probability for the system to
have the energy E is then determined by two factors, XðEÞ and, as we have just
seen, exp½�bE�. Thus we have

pðEÞ / XðEÞ exp½�bE�: ð5:78Þ
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Note that pðEÞ is different from pðEmÞ even if E ¼ Em. This is because pðEmÞ is
the probability of the subsystem being in microstate m, whereas pðEÞ is the prob-
ability of measuring the internal E in the subsystem.

Without much knowledge about XðEÞ we still may infer an important piece of
information regarding the general shape of pðEÞ. Again we start by expanding
ln½XðEÞ exp½�bE�� around hEi. The result is

ln½XðEÞe�bE� ¼ lnXðhEiÞþ d
dE

lnXðEÞ
� �

E¼hEi
dE

þ 1
2
d
dE

d ln½XðEÞ�
dE

� �
E¼hEi

dE2 � bhEi � bdEþ . . .

Using Eq. (5.16) together with Eq. (1.52) yields

ln½XðEÞe�bE� ¼ lnXðhEiÞ � bhEi � 1
2

dE2

kBT2CV
þ . . . ð5:79Þ

and thus

pðEÞ ¼ pðhEiÞ exp � 1
2

dE2

kBT2CV

� �
: ð5:80Þ

Again we find hdE2i ¼ kBT2CV—as we should. Just how unlikely deviations
from the average energy are, meaning that pðEÞ is sharply peaked around hEi,
becomes clear if we put in some numbers. We consider 10�3 moles of a gas. With
dE ¼ 10�6hEi and hEi � NkBT as well as CV � kBN we find

pðEÞ
pðhEiÞ � exp �10�12N


 � ¼ exp �10�120:001NA

 � � exp½�108�:

5.1.8 Harmonic Oscillators and Simple Rotors

There are two simple models, we may envision them as two different types of
“particles”, which we should discuss, because they frequently enter into the
description of more complex systems. Our discussion will be analogous to the
treatment of the ideal gas in Sect. 5.1.3.

The first model is the one-dimensional harmonic quantum oscillator, which, as
we already know from introductory quantum theory, has the energy eigenvalues
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Em ¼ �hx mþ 1
2

� �
; ð5:81Þ

where x is the oscillator’s frequency and m ¼ 0; 1; 2; . . .. It is not difficult to obtain
the partition function

Q1D�osc ¼
X1
m¼0

exp½�bEm� ¼ e�b�hx=2

1� e�b�hx
¼ 1

2 sinh b�hx
2

; ð5:82Þ

where we use the geometric series
P1

m¼0 q
m ¼ ð1� qÞ�1 (q\1). Straightforward

differentiation first yields the average internal energy,

hEi ¼ @

@ð�bÞ lnQ
1D�osc ¼ �hx

2
coth

b�hx
2

; ð5:83Þ

and subsequently the heat capacity of the oscillator

1
kB

CV ¼ 1
kB

@

@T
hEi ¼ Tvib

2T
csch

Tvib
2T

� �2

; ð5:84Þ

where

Tvib ¼ �hx
kB

ð5:85Þ

is a characteristic temperature. To better understand the meaning of Tvib we should
try to work out the classical partition function for the oscillator.

Looking back at Eq. (5.62) we notice that the argument of the exponential
function is the kinetic energy. Taking this one step further we replace the kinetic
energy with the Hamilton function H. If in addition we express momentum via
p ¼ �hk and the box size via

R
dx we may write for the 1D harmonic oscillator

Q1D�osc
cl ¼

Z 1

�1

dp
2p�h

Z 1

�1
dx exp �b Hðp; xÞð Þ½ �; ð5:86Þ

where

Hðp; xÞ ¼ p2

2m
þ 1

2
mx2x2: ð5:87Þ

Here m is the oscillator’s mass, p its momentum, and x its displacement from
equilibrium. An easy integration yields
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Q1D�Osc
cl ¼ 1

b�hx
: ð5:88Þ

Example—van der Waals Equation Before we proceed with the discussion
of Eq. (5.88) we want to briefly consider a different potential. The classical
particle is confined to a one-dimensional box of length L1, inside of which the
potential energy is U ¼ �aq. Here aq[ is a constant. Notice that the total
extend of the box is L1 but we subtract a length b, because the particle itself
posses this size and therefore its center can only access a smaller “volume”
L1 � b. The partition function therefore is

Qð1Þ ¼ 1
2p�h

Z 1

�1
dp
Z ðL1�bÞ=2

�ðL1�bÞ=2
dxe�bH ¼ L1 � b

KT
ebaq: ð5:89Þ

Let us also assume that we have N such particles in independent boxes.
Their partition function is

QðNÞ ¼ Qð1ÞN ¼ 1
N
L� Nb
KT

� �N

eNbaq; ð5:90Þ

where L ¼ NL1. At this point we set the quantity q equal to 1=L1 ¼ N=L. If
we calculate the pressure analogous to Eq. (5.61) the result is

P ¼ NkBT
L� Nb

� a
N
L

� �2

: ð5:91Þ

This generalization of Eq. (5.61) is a one-dimensional version of the van
der Waals Eq. (4.1). The necessary ingredients are (i) each particle reduces
the available “volume” by b; (ii) each particle has a negative potential energy
contributed by all other particles according to their mean density q (cf.
footnote 25 in Chap. 4). There is no factor N!�1 in QðNÞ. This is because
every particle is in its own cell. In principle the cells are distinguishable (even
though this is not an essential ingredient). This type of approach is known as
cell theory (Hirschfelder 1954).

Now we continue with Eq. (5.88). The classical thermal energy of the oscillator
therefore is hEi ¼ kBT and the attendant heat capacity CV ¼ kB. Figure 5.9 shows
the comparison of this value to the quantum result plotted versus the reduced
temperature T=Tvib. Above Tvib the oscillator is well described by the classical
result, whereas below Tvib the quantum behavior dominates. Had we included only
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the ground state in the quantum partition function the result would have been
CV ¼ 0. This means that (not too far) below Tvib the oscillator is “frozen”.

The oscillator model is useful in the context of molecules. Classically the atoms
in molecules vibrate according to collective or normal modes. Normal mode
analysis shows that the Hamilton function of a molecule containing N atoms may
be transformed into

H ¼ Ho þ
XNf

i¼1

AiP
2
i þBiX

2
i

	 

; ð5:92Þ

where Xi are normal mode coordinates and Pi are the conjugate momenta. Ai and Bi

are coefficients. The term Ho describes the molecule at (vibrational) rest. Equation
(5.92) is a simplification which holds only for sufficiently small amplitudes, i. e. for
small deformations relative to the equilibrium molecular “shape”. The number of
vibrational modes, Nf , generally is equal to 3N � 6. The �6 is due to the three
translational and three rotational degrees of freedom which must be subtracted. In
the case of linear molecules there is one less rotation and Nf ¼ 3N � 5. In this sense
molecules may be considered as collection of Nf independent one-dimensional
oscillators with normal mode frequencies xi. The vibrational partition function of a
molecule therefore is (approximately) given by

Qvib ¼
YNf

i¼1

Q1D�OscðxiÞ: ð5:93Þ

We may let the number of atoms become arbitrarily large and conclude that
Eq. (5.93) remains valid for solids as well. The difference is that the normal mode
frequencies of small molecules usually are quite high so that Tvib � 103 K. At room
temperature this means that small molecules are frozen in their vibrational ground
states. In solids this is not the case. The example at the end of this section illustrates
this distinction.
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Fig. 5.8 A single pawn on a chessboard
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We just mentioned molecular rotation. Is there a rotational partition function? If
yes—how does it look like? From classical mechanics we know that the Hamilton
function of a rigid body freely rotating in space is given by

H ¼
X3
i¼1

L2i
2I i

: ð5:94Þ

Here i denote the axes of a coordinate system attached to the body in which the
moment of inertia tensor is diagonal. These diagonal elements are I i and L2i are the
attendant angular momentum components squared. Quantum mechanically we have

H ¼
X3
i¼1

L2i
2I i

; ð5:95Þ

where the underlined quantities are operators. Table 5.1 summarizes the simple
cases:

The rotational partition function therefore is

Qrot ¼
X1
l¼0

gl exp½�bEl;m�: ð5:96Þ

Analogous to the above characteristic temperature of vibration it is now sensible
to define a characteristic temperature of rotation via

Trot ¼ �h2

2kBI : ð5:97Þ

A rough estimate using the atomic mass unit (Appendix A) times 1 Å2 for the
moment of inertia reveals that Trot � 10 K. This is small compared to room tem-
perature—and in most cases it means that we can use the classical rotation partition
function. Momentarily however we proceed working out Eq. (5.96). The simplest
approach is the straightforward summation over a limited number of l-values. The
resulting heat capacity, CV=kB ¼ T@2=@T2T lnQrot, is shown in Figs. 5.10 and 5.11.
Figure 5.10 shows both the heat capacities for the linear and the spherical rotor. The

Table 5.1 Energy eigenvalues and attendant degeneracies for different rotors

Rotor type Description Energy eigenvalues El;m=ð�h22IÞ Degeneracy gl

Linear I � I 1 ¼ I2; I3 ¼ 0 lðlþ 1Þ 2lþ 1

Spherical I � I 1 ¼ I2 ¼ I3 lðlþ 1Þ ð2lþ 1Þ2
Symmetric I � I 1 ¼ I2; I3 6¼ 0 lðlþ 1Þþ ð II3

� 1Þm2 jð2lþ 1Þ
l ¼ 0; 1; 2; . . . j ¼ 1ðm ¼ 0Þ
m ¼ �l;�lþ 1; . . .; l� 1; l j ¼ 2ðm 6¼ 0Þ
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former approaches 1 and later 3=2 at high temperatures. Note that the dashed lines
shows corresponding results if only the terms l ¼ 0; 1 are taken into account,
whereas the solid lines are the numerically exact results. Figure 5.11 compares the
heat capacity of a prolate symmetric rotor (I=I3 � 1 ¼ 2; broad maximum) to the
one of an oblate symmetric rotor (I=I 3 � 1 ¼ �1=2; narrow maximum).

We often encounter experimental situations when Trot is low compared to the
relevant T . It therefore is useful to also work out the classical partition function,
Qrot

cl . We find Qrot
cl via generalization of Eq. (5.86), i.e.

Qcl ¼ 1
r

Z
Vq

Z 1

�1

dnqdnpq
ð2p�hÞn exp �bHðfpg; fqgÞ½ �: ð5:98Þ

Here fqg is a set of coordinates and fpq ¼ @Lðf _qg; fqgÞ=@ _qg are their conju-
gate momenta. L is the Langrangian of the system. In the case of a system of N
point particles the factor 1=r is equal to 1=N! as we have seen. If we consider one
molecule only, then r is a symmetry number, i.e. the number of rotations mapping
the molecule onto itself. In the case of the water molecules in the next example
r ¼ 2. This accounts for the 2-fold rotational symmetry with respect to the sym-
metry axis of the molecule. If we describe the rotation of a small molecule like
water the proper set of coordinates, fqg, are the Euler angles, i.e. 0�u� 2p,
0� h� p, and 0�w� 2p. The difficult part is to work out the equations between
the conjugate momenta and the angular velocities xi, where the index refers to the
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Fig. 5.9 Heat capacity of the
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same axes as the index i in Eq. (5.94), because the Langrangian is
L ¼P3

i¼1
1
2 I ix2

i . These equations usually are discussed in lectures on classical
mechanics of rigid bodies. They are: pu ¼ I 1x1 sin h sinwþI2x2 sin h
coswþI3x3 cos h, ph ¼ I 1x1 cosw�I 2x2 sinw, and pw ¼ I 3x3. Rather than
calculating the Hamiltonian and integrating over the momenta it is easier to change
to the angular velocities via dpudphdpw ¼j J j dx1dx1dx1 (e.g. Pauli 1972). The
determinant J is given by J ¼ I1I 2I 3 sin h. Because we now can use the
Lagrangian instead of the Hamiltonian in the exponential in (5.98), the integrations
become independent and we obtain

Qrot
cl ¼

ffiffiffi
p

p
r

Y3
i¼1

ffiffiffiffiffiffiffi
2I i

b�h2

s
ð5:99Þ

as final result for the classical rotation partition function. Via hEi ¼ @=@ð�bÞ lnQ
we find hEi ¼ 3

2 kBT and thus CV ¼ 3
2 kB. Note that this agrees with the high tem-

perature limit of the spherical and symmetric rotors in Figs. 5.10 and 5.11. The
classical partition function for the linear rotor is4

Qrot
cl ¼ 1

r

Y2
i¼1

ffiffiffiffiffiffiffi
2I i

b�h2

s
ð5:100Þ

Of course we have I1 ¼ I2. Now we obtain hEi ¼ kBT and thus CV ¼ kB -
again in agreement with the quantum result at high temperatures.5 The following is
a nice example combining all of the above in one problem.

Example—Vapor Pressure of Ice Van der Waals’ theory allows to
approximate the vapor-liquid phase coexistence of a pure substance in the
T-P-plane. Here we want to approximately determine the coexistence line
between vapor and solid (sublimation line)—for water. We model water as a
rigid molecule, because its three vibrational modes correspond to character-
istic temperatures, Tvib;i ¼ �hxi=kB, of roughly 5400, 5300, and 2300 K. The
temperatures of interest in this example are between 160–270 K. Thus
molecular vibrations may be neglected (in the sense discussed above). We
proceed as follows: In part (a) the water chemical potential in the (ideal) gas
phase is estimated. In part (b) the same is done for frozen water. Finally in
part (c) we use the equality of the chemical potentials to relate the gas
pressure to the temperature at coexistence.

4 In this case the angle w does not enter and the above equations relating the momenta to the
angular velocities reduce to pu ¼ I2x2 sin h and ph ¼ I1x1.
5 Of course, all this is expected because of the equipartition theorem of statistical mechanics stating
that every term in the sum in Eq. (5.92) contributes kB=2 to the heat capacity.
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(a) The gas phase chemical potential is lvaporH2O ¼ ltransH2O þ lrotH2O. l
trans
H2O is

given by Eq. (5.66), which may be rewritten as

bltransH2O ¼ 5
2
ln
Ttrans
o

T
þ ln

P
Po

: ð5:101Þ

Here Po ¼ 1bar is an arbitrary reference pressure, ðTtrans
o Þ5=2 ¼

2p�h2
mH2OkB

� �3=2
Po
kB
, i.e. Ttrans

o � 0:76 K, and mH2O is the molecular weight of water.

lrotH2O is calculated via the classical molecular partition function Qrot
cl given by

Eq. (5.99). It is convenient to express Qrot
cl in terms of the characteristic

temperatures, i.e. Qrot
cl;H2O ¼ Q3

i¼1 T=Trot
i

	 
1=2
, where Trot

i ¼ ð4=pÞ1=3�h2=
ð2kBI iÞ. Here I i are the moments of inertia with respect to the principal axes
of rotation obtained via diagonalization of the moment of inertia tensor. The
components of the latter are I ab ¼P3

k¼1 mkðr2kdab � xa;kxb;kÞ. Using an OH
bond length of 1 Å and a HOH angle of 109:5o one obtains T1 � 44 K,
T2 � 20 K, and T3 � 14 K. These temperatures are low compared to the
above temperature range of interest justifying the use of the classical partition
function. Our final result is

blrotH2O ¼ 1
2

X3
i¼1

ln
Trot
i

T
: ð5:102Þ

(b) The chemical potential of water molecules in ice is estimated via
liceH2O ¼ lo þ lvibice . Here bl

vib
ice ¼ �@ lnQvib=@N jT ;V and Qvib ¼Q3N

j¼1 Q
1D�osc
j .

The summation is over the 3N � 6 � 3N normal modes of the crystal, where
in the present case N is the number of rigid water molecules. Q1D�osc

j is the
quantum mechanical partition function of a one-dimensional harmonic
oscillator with frequency xj given in Eq. (5.82). In contrast to the normal
modes of the individual water molecule these frequencies are low. Because N
is large, i.e. there are many normal modes with wave vectors ~k, we write

3N ¼
X3N
j¼1

¼ 3
V

ð2pÞ3 4p
Z kD

0
dkk2: ð5:103Þ

This is quite analogous to the above conversion of the summation into an
integration for a particle in a 3D box. Two things a different nevertheless. The
integration is cut off at kD, because of the finite number of modes. And there
is an extra factor 3 accounting for the three possible types of vibrational
polarization—2� transversal and 1 � longitudinal. A simple relation tying
the k-values to oscillator frequencies xj ! xðkÞ is x ¼ vsk, where vs is the
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average velocity of sound in the crystal, i.e. 3=v3s ¼ 1=v3s;t1 þ 1=v3s;t2 þ 1=v3s;l
(here: vs � 3300 m/s). The details of this approximation may be found in
textbooks on solid state physics in the context of the Debye model of the low
temperature heat capacity in insulators. Putting everything together we find

� lnQvib ¼ 3V
2p2

2
b�hvs

� �3Z xD

0
dxx2 ln½2 sinh x�; ð5:104Þ

where xD ¼ ðb�hvs=2Þð6p2N=VÞ1=3. Taking the derivative with respect to N at
constant T;V yields

blvibice ¼ 3 ln 2 sinh
Tvib
ice

T

� �
ð5:105Þ

with Tvib
ice ¼ ð�hvs=ð2kBÞÞð6p2N=VÞ1=3 � 158K. Note that N=V�NA=18cm3 is

the number density of water in ice.
(c) Chemical equilibrium, i.e. lvaporH2O ¼ liceH2O, yields the following relation

between vapor pressure, PðTÞ, and temperature, T ,

P
Po

¼ 8
T

Ttrans
1bar

� �5=2Y3
i¼1

T
Trot
i

� �1=2

sinh3
Tvib
ice

T

� �
e��=T ; ð5:106Þ

where blo ¼ ��=T . Figure 5.12 shows a comparison of this formula to
experimental vapor pressure data (crosses) fromHCP. Here � ¼ 6500 K, which
corresponds to about 54 kJ/mol. This is a meaningful number, because each
water molecule participates in 4 hydrogen bonds stabilizing the tetrahedral
crystal (ice I). The cohesive energy per water molecule therefore corresponds
to two hydrogen bonds. Our value of 27 kJ/mol is in quite reasonable agree-
ment with energies for HO..H hydrogen bonds obtained by other methods.
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Fig. 5.11 Heat capacities of
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Remark 1—low temperature heat capacity of insulators The integral in
Eq. (5.104) may be rewritten as

Z xD

0
dxx2 ln½2 sinh x� � xþ xð Þ ¼ x4D

4
þ
Z xD

0
dxx2 ln½2 sinh x� � xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
��0:270581ðxD!1Þ

allowing to work out the limit of large xD or low temperatures. Thus the vibrational
free energy in this limit is given by, Fvib � co þ c1T4, where co and c1 are inde-
pendent of temperature. Consequently the contribution of Fvib to the heat capacity,
CV ¼ �T@2F=@T2 jV ;N , of the crystal is / T3 as T ! 0. This is a famous result
describing correctly the temperature dependence of the heat capacity of insulators at
low temperatures due to quantized vibrational crystal excitations (Debye’s T3-law).

Remark 2—black body radiation Equation (5.104) may be applied to yet another
important problem—the one that initiated quantum theory—black body radiation.
In classical electrodynamics one can show that the energy of an electromagnetic
field may be written as

E ¼
X
~k;a

1
2

p2~k;a þx2q2~k;a

� �
: ð5:107Þ

Here the “momenta”, p~k;a, and “coordinates”, q~k;a, are suitable combinations of
Fourier coefficients in a Fourier decomposition of the vector potential (e.g.,
Hentschke 2009). In this fashion the electromagnetic field energy of a certain
volume is a collection of

P
~k;a independent one-dimensional harmonic oscillators.

Here ~k denotes the possible modes and a denotes their polarizations. This sum is
infinite and since every term contributes on average 1

2 kBT to the energy (equipar-
tition theorem) the result is infinite! A solution to the divergency problem was
suggested by Max Planck in 1900. His solution amounts to treating the oscillators
as quantum oscillators—just as in the case of Eq. (5.104). Nevertheless some
modifications are necessary: (i) 3 V must be replaced by 2 V, because there are two
polarization directions only; (ii) vs is replaced by the speed of light c; (iii) xD is
replaced by 1; (iv) the zero point energy must be subtracted, because it is not part
of the radiation field, i.e. ð2 sinh xÞ�1 is replaced by ð2 sinh xÞ�1 exp½x�. The
resulting black body radiation version of Eq. (5.104) becomes

� lnQvib ¼ 2V
2p2

2
b�hc

� �3Z 1

0
dxx2 ln½1� e�2x�: ð5:108Þ
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Via partial integration we rewrite the integral into its more common form

Z 1

0
dxx2 ln½1� e�2x� ¼ � 2

3

Z 1

0
dx

x3

e2x � 1
¼ � 2

45
p
2

� �4
:

The thermal energy density of the black body radiation is now finite, i.e.

hEi
V

¼ 1
V

@

@ð�bÞ lnQ
vib ¼ p2

15
ðkBTÞ4
�h3c3

: ð5:109Þ

Notice that we have derived the temperature dependence before based on purely
thermodynamic considerations (cf. Eq. 2.39). But this time we also obtain the
coefficient.

A spectacular experiment was performed in 1989 measuring the cosmic back-
ground radiation spectrum to high precision (Mather et al. 1990). The expected
frequency dependence, intensity per frequency interval dx, should follow
½x3=ðexp½b�hx� � 1Þ� or, if converted to wavelength, i.e. intensity per wavelength
interval dk, ½k�5=ðexp½bhc=k� � 1Þ�. The cosmic background radiation spectrum is
found to be in complete agreement with Planck’s prediction. This is shown in
Fig. 5.13 comparing the measured data to the theory at a background radiation
temperature of 2.725 K.

5.2 Generalized Ensembles

Once again we return to the isolated system divided into subsystems which we had
introduced at the beginning of previous section. In addition to energy, E, we now
allow the exchange of another extensive quantity, X, between the subsystems, i.e. E
and X both fluctuate around their equilibrium values. X may be any of the variable
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quantities (d. . .) on the right side in Eq. (1.51). As in the case of the canonical
ensemble we write

pm / X E � Em;X � Xmð Þ: ð5:110Þ

The probability pm again is proportional to the number of environmental
microstates compatible with the values of Em and Xm. We expand (cf. Eq. 5.2)
around E and X, i.e.

pm / exp lnX E � Em;X � Xmð Þ½ �

¼ exp
h
lnX

	
E;X


� Em
@ lnX

	
E;X



@E

����
X|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼b

�Xm
@ lnX

	
E;X



@X

����
E|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼n

þ 
 
 

i

Remark Higher oder terms may be neglected6) and thus

pm ¼ exp �bEm � nXm½ �
N

ð5:111Þ

with

N ¼
X
m

exp½�bEm � nXm�: ð5:112Þ

The thermodynamic quantities E and X are the averages

hEi ¼
X
m

pmEm ¼ @ lnN
@ð�bÞ

����
n;Y

ð5:113Þ

and

6 Consider for instance:

1
2
E2
m

d2

dE2
lnXðEÞ

� �
E
¼ 1

2
E2
m

dE
db

� ��1

E
¼ � 1

2
E2
m kBT2CSyst

V

� ��1
:

We have however

E2
m kBT2CSyst

V

� ��1
/ bEmN=NSyst:

Therefore this term is negligible compared to the leading one .
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hXi ¼
X
m

pmXm ¼ @ lnN
@ð�nÞ

����
b;Y

: ð5:114Þ

Here Y represents all non-fluctuating (extensive) variables. Thus we also have

d lnN ¼ �hEidb� hXidn: ð5:115Þ

In order to tie all this to thermodynamics we momentarily consider the quantity

u
kB

¼ �
X
m

pm ln pm

ð5:104Þ
=

�
X
m

pm � lnN� bEm � nXm½ �

¼ lnNþ bhEiþ nhXi:

ð5:116Þ

The differential dðu=kBÞ is

dðu=kBÞ ¼ �hEidb� hXidnþ bdhEiþ hEidbþ ndhXiþ hXidn; ð5:117Þ

and therefore

du ¼ kBbdhEiþ kBndhXi: ð5:118Þ

The comparison with Eq. (1.51) now suggests that u is the entropy, i.e.

S ¼ �kB
X
m

pm ln pm: ð5:119Þ

Equation (5.119) is called the Gibbs entropy equation.

Question: Is this equation consistent with our previous expression of the entropy
in terms of the number of microstates (cf. Eq. 5.16)? The answer is yes. In the
previous case of an isolated system the index m runs over the individual microstates
and pm ¼ 1=XðEÞ. Inserting this into Eq. (5.119) yields S ¼ kB

P
m pm lnXðEÞ

¼ kB lnXðEÞ
P

m pm ¼ kB lnXðEÞ:

5.2.1 Fluctuation of X

As in the case of E in Sect. 5.1.6 we are interested in the mean square fluctuation of
X. However this time we derive a general and quite useful formula relating hðdXÞ2i
to the mean of X. We write
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hðdXÞ2i ¼ hðX � hXiÞ2i ¼ hX2i � hXi2

¼
X
m

X2
m pm �

X
m;m0

XmXm0pmpm0

¼ @2

@ð�nÞ2 lnN
�����
b;Y

¼ @

@ð�nÞ hXi
����
b;Y

:

And thus

@

@ð�nÞ hXi
����
b;Y

¼ h dXð Þ2i: ð5:120Þ

Example—Dielectric Constant and Polarization Fluctuation We apply
this formula to polarization fluctuations in an isotropic dielectric medium.
Based on Eq. (1.21) we write

dS ¼ . . .� 1
T

Z
V
dV~E 
 d~P ¼ . . .� 1

T
~E 
 d~p: ð5:121Þ

Here~p ¼ RV dV~P is the dipole moment of the material inside the volume V

and ~P is the attendant polarization. We also assume that the average
(macroscopic) electric field, ~E, in the dielectric is constant throughout V .
Setting X ¼ pa we find n ¼ k�1

B @S=@pa ¼ �bEa. Here the index a denotes
vector components. Now we use Eq. (5.120), i.e.

@

@ð�nÞ hXi ¼
@pa

@ð�bEaÞ ¼ hdpa2i: ð5:122Þ

At this point we make use of the equation, ~P ¼ 1
4p ðer � 1Þ~E, where er is

the dielectric constant of the medium to obtain

er ¼ 1þ 4p
3

b
V
hdp2i: ð5:123Þ

Note that hdp2i ¼ 3hdpa2i in an isotropic system. Equation (5.123) relates
the dielectric constant to the equilibrium fluctuations of the dipole moment
taken over the volume V :

Notice the following useful extension of the above. Consider
hEi ¼Pm Eme�bEm�nXm=

P
m e

�bEm�nXm . Partial differentiation yields
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@

@ð�nÞ hEi
����
b;Y

¼ hEXi � hEihXi: ð5:124Þ

Using Eqs. (5.120) and (A.2) we obtain

@

@hXi hEi
����
b;Y

¼ hEXi � hEihXi
hðdXÞ2i : ð5:125Þ

An example application of this equation is discussed in the next section.

5.3 Grand-Canonical Ensemble

We consider the special choice X ¼ N. In this case we speak of the grand-canonical

ensemble. With nð1:51Þ= � bl follows

pm ¼ exp �b Em � lNmð Þ½ �
QlVT

ð5:126Þ

and

QlVT ¼
X
m

exp �b Em � lNmð Þ½ �: ð5:127Þ

This is the grand-canonical partition function.

5.3.1 Pressure

Insertion of Eq. (5.126) into the Gibbs entropy equation yields

TS ¼ �b�1
X
m

pm
	� lnQlVT � bEm þ blNm



¼ b�1 lnQlVT þhEi � lhNi|ffl{zffl}

¼G

:

With G ¼ H � TS or TS ¼ EþPV � G follows

PV ¼ b�1 lnQlVT : ð5:128Þ
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5.3.2 Fluctuating Particle Number and Energy

In the case of the particle number Eq. (5.120) yields

h dNð Þ2i ¼ @hNi
@ blð Þ

����
b;V

: ð5:129Þ

This equation may be transformed using various thermodynamic equations. First
we apply the Gibbs-Duhem Eq. (2.168), i.e. dl ¼ ðV=hNiÞdPjT , to obtain

@ blð Þ
@hNi

����
b;V

¼ b
V
hNi

@P
@hNi

����
b;V

: ð5:130Þ

Here hNi is identical to the thermodynamic particle number N. Using Eqs. (A.2)
and (2.6) we find

b
V
hNi

@P
@hNi

����
b;V

ðA:2Þ
=

� b
V
hNi

@P
@V

����
b;hNi

@V
@hNi

����
b;P

¼ �b
V
hNi

@P
@V

����
b;hNi

V
hNi

ð2:6Þ
=

1
hNi

jidealT

jT
;

where jidealT ¼ bV=hNi (cf. Eq. 2.9). Combination of this result with Eqs. (5.129)
and (5.130) yields ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h dNð Þ2i
q

hNi ¼
ffiffiffiffiffiffiffiffiffiffi
jT
jidealT

r
1ffiffiffiffiffiffiffiffihNip : ð5:131Þ

In a normal situation, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT=jidealT

p
is finite, we see immediately that the right

side vanishes as hNi approaches infinity. In the case of ðhdE2iÞ1=2=hEi Eq. (5.75)
remains valid. As before in the canonical ensemble we find again that in the
thermodynamic limit the micro-canonical ensemble, i.e. E and N are constants, is
approached.

Example—Isosteric Heat of Adsorption for Methane on Graphite One
typical application of the (classical) grand-canonical ensemble is equilibrium
adsorption. Reconsider our discussion of the isosteric heat of adsorption, qst,
on page 106. Using Eq. (5.125) together with X ¼ N we may derive a for-
mula for qst useful for concrete calculations.
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In order to combine the definition of qst in Eq. (3.62) with Eq. (5.125) we
use Eq. (A1) to rewrite the second term in (3.62), i.e.

@l
@T

���
P
¼ @l

@T

���
V
þ @l

@V

���
T|fflffl{zfflffl}

¼�@P
@N

���
T ;V

@V
@T

���
P|fflffl{zfflffl}

¼VaP

:

ð5:132Þ

Using F ¼ E � TS and l ¼ @F=@N jT ;V we have

l ¼ @E
@N

���
T ;V

þ T
@l
@T

���
V ;N

; ð5:133Þ

and qst becomes

qst ¼ � @Es

@Ns

���
T ;Vs

þ @Eb

@Nb

���
T ;Vb

þ TVb
@Pb

@Nb

���
T ;Vb

aP: ð5:134Þ

At this point we may employ Eq. (5.125) with X ¼ N to obtain

qst ¼ �hUsNsi � hUsihNsi
hðdNsÞ2i

þ hUbNbi � hUbihNbi
hðdNbÞ2i

þ TVb
@Pb

@Nb

���
T ;Vb

aP:

ð5:135Þ

Here we have used Ekinetic / N so that only the potential energies of the
respective systems, Us and Ub, remain, whereas the kinetic energies, Ekinetic,
drop out.

If the bulk gas is ideal, i.e. Ub ¼ 0, this equation simplifies to

qst ¼ �hUsNsi � hUsihNsi
hðdNsÞ2i

þRT : ð5:136Þ

Notice that an ideal bulk gas does not imply ideality in the interface.
Equation (5.136) as well as the previous one are useful for calculating qst
from computer simulations. This is because the necessary averages are fairly
easy to calculate.

Figure 5.14 shows an example (A computer program which may be
modified to generate the necessary data is included in the appendix. The
theoretical background needed to understand the program is discussed in
Chap. 6). The box contains molecules (black dots) interacting with a solid
surface (the bottom face of the box). We may imagine that this picture shows
a snapshot taken of a gas interacting with an adsorbing surface—notice that
the number density is highest near the bottom! If we define the long axis of
the box as being the z-direction, we may sort the particles into a histogram
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according to their height above the surface. Subsequently we average over
histograms for many such snapshots and obtain Fig. 3.11.

The box does not show a real gas but rather the simulation of a gas. The
molecules interact pairwise via a so-called Lennard–Jones (LJ) potential, i.e.,

uLJ;ij ¼ 4�
r
rij

� �12

� r
rij

� �6
" #

: ð5:137Þ

Here rij is the distance between molecules i and j. For rij\21=6r the inter-
action is repulsive; for rij [ 21=6r it is attractive. Whereas the r�6-term may
be justified based on quantum perturbation theory, the r�12 term is just an ad
hoc approximation of repulsive interactions preventing the molecules from
simultaneously occupying the same space (cf. the b-parameter in the van der
Waals equation). Because a computer can handle only a finite system, we use
periodic boundary conditions parallel to the bottom face of the box (the
surface), i.e. a molecule leaving the box through one of the side walls
re-enters the box through the adjacent side. The top here is merely a reflective
wall (We do not use reflective side walls, because reflective walls induce
pronounced effects on the structure. Periodic boundaries are better in this
respect, but since top and bottom of the box are not equivalent we cannot use
them in this case.). The interaction between gas molecules and the surface are
constructed similarly. In some simple cases we may use the above LJ
potential to also describe the interaction between a gas molecule and an atom
in the surface! Because the parameters � and r are characteristic for the two
interacting species, we do have two sets of them: (�g,rg) and (�s,rs)—the
indices distinguish gas and surface interactions. If our box contains N gas
molecules their total potential energy can be written as

1.0 10.05.02.0 3.01.5 7.0
mm

2

4

6

8
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12
rel.intensity

T 2.725=

[ ]

Fig. 5.13 Cosmic
background radiation
intensity and Planck’s
prediction versus wavelength
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U ¼ 1
2

XN
i¼1;j¼1

uLJ;ij þ 2pns�0sðr0sÞ2
XN
i¼1

2
5

r0s
zi

� �10

� r0s
zi

� �4
" #

: ð5:138Þ

Here the first term is a sum over all distinct pairs of gas molecules. The
second term is a sum over the individual interactions of the gas molecules
with the surface depending on their distance, zi, from the latter. This
expression includes the interaction with the topmost atom layer in the surface
only. In addition there is just one type of atom in this surface. Another
simplification is that the surface atoms are “smeared out” continuously inside
the layer. The quantity ns is the number density of surface atoms per area in
the layer. The neglect of atoms below this first layer may be partially com-
pensated by scaling the interaction parameters, which is indicated by the
primes. All in all this is a simple and yet quite accurate surface potential for
the system we have in mind—the adsorption equilibrium of methane on the
graphite basal plane. The parameter values we use here are �g=R ¼ 148:7 K /
mol, rg ¼ 3:79 Å, ns ¼ 0:382 Å�2, �0s=R ¼ 72:2 K/mol, r0s ¼ 3:92 Å (taken
from Aydt and Hentschke 1997). We will discuss computer simulation
algorithms, especially the algorithm used in this example, in the next chapter.
At this point we merely state that the following result is computed via
grand-canonical Metropolis Monte Carlo using Eq. (5.135) as well as
Eq. (5.136) for comparison.

Figure 5.15 shows isosteric heats of adsorption vs. pressure. Open symbols
are based on Eq. (5.135); closed symbols are based on the approximation

Fig. 5.14 Computer
simulation snapshot of gas
particles near an adsorbing
surface
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(5.136). The lines are quadratic fits. In the limit of vanishing coverage, which

here means P ! 0, we obtain qðoÞst � 11:5 kJ=mol at a temperature close to
40 
C in both cases. This is somewhat below the experimental values in the

literature (e.g., qðoÞst � 14:6 kJ/mol in Specovious and Findenegg 1978). There
are a number of possible reasons. While we consider a perfectly smooth
surface, the experimental systems are much less perfect and surface defects

(like steps or corners), other adsorbates etc. may lead to an increase of qðoÞst .
On the theoretical side we must be critical with respect to the parameters as
well as finite size effects due to the smallness of the system. Nevertheless, we
learn that the isosteric heat of adsorption yields useful information on the
microscopic gas-surface interaction.

5.3.3 Bosons and Fermions

The indistinguishability of elementary particles (such as photons or electrons) is an
important concept suggesting the division of all known elementary particles into
two classes: Bosons and Fermions. Indistinguishable means that the Hamiltonian
operator commutes with another operator that interchanges two particles in a sys-
tem. This leads to the conclusion that elementary particles in nature may simulta-
neously occupy the same quantum state in arbitrary number or just once. The
former are Bosons and the latter are Fermions. Here we may introduce this dis-
tinction via the so called occupation number, ni, of the one-particle quantum state i.
Thus we may write

ni ¼
0; 1; 2; . . . Bosons

0; 1 Fermions

�
: ð5:139Þ

Consequently if we consider a system in state m, we may express the attendant
total particle number, Nm, via

Nm ¼
X
i

ni ð5:140Þ

and the attendant total energy, Em, via

Em ¼
X
i

�ini; ð5:141Þ

5.3 Grand-Canonical Ensemble 249



where �i is the energy of the one-particle quantum state i. In particular different m
correspond to different sets of occupation numbers (for example: fn1; n2; n3; . . .g ¼
f0; 1; 1; 0; . . .g or f1; 1; 1; 0; . . .g). This means that Eq. (5.127) becomes

QlVT ¼
X

n1;n2;...;ni;...

exp �b
X
i

�i � lð Þni
" #

: ð5:142Þ

We want to combine this equation with the Eqs. (5.140) and (5.141) to work out
its specific form for Bosons and Fermions. Notice that we may reshuffle the sums as
follows7 X

n1;n2;...;ni;...

exp½�b
X
i

. . .� ¼
X

n1;n2;...;ni;...

Y
i

exp½�b. . .�

¼
X
n1

e�bð::1::ÞX
n2

e�bð::2::Þ. . . ¼
Y
i

X
ni

exp½�bð::i::Þ�:

In the case of Bosons we find

Q Bð Þ
lVT ¼

Y
i

X1
ni¼0

exp �b �i � lð Þni½ �

¼
Y
i

1� exp �b �i � lð Þ½ �ð Þ�1;

ð5:143Þ

whereas in the case of Fermions

Q Fð Þ
lVT ¼

Y
i

X1
ni¼0

exp �b �i � lð Þni½ �

¼
Y
i

1þ exp �b �i � lð Þ½ �ð Þ:
ð5:144Þ

In both cases we may compute the average occupation number via

hnji ¼ Q�1
lVT

X
m

nj exp �b Em � lNmð Þ½ � ¼ @ lnQlVT

@ �b�j
	 
 : ð5:145Þ

This means for Bosons

hnji Bð Þ ¼ exp b �j � l
	 

 �� 1

	 
�1 ð5:146Þ

7 via
P1

n¼0 q
n ¼ 1� qð Þ�1 for q\1.
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and for Fermions

hnji Fð Þ ¼ exp b �j � l
	 

 �þ 1

	 
�1
: ð5:147Þ

Equation (5.146) imposes the condition l\�0, where �0 is the one-particle
ground state energy, because otherwise unphysical negative occupation is possible.
No such restriction applies in the case of Fermions.

Particles in nature posses a property called spin. According to Pauli’s famous
Spin-Statistics-Theorem all particles possessing integer spin values (e.g. photons
whose spin is one) are Bosons, whereas particles possessing half-integer spin values
(e.g. the electron has spin one half) are Fermions.8

5.3.4 High Temperature Limit

With increasing temperature the particles may access higher and higher energies. At
not too high densities this implies that there are more one particle energy states
partially occupied than there are particles. Consequently the average occupation
number, hnji, is small, i.e.

exp b �j � l
	 

 �	 1 :

For both Bosons and Fermions we therefore have

hnji � exp �b �j � l
	 

 �

: ð5:148Þ

Insertion of this approximation into

hNi ¼
X
j

hnji ð5:149Þ

yields the useful relation

hnji
hNi / exp �b�j


 �
: ð5:150Þ

This is the probability for a particle to be in the state j – independent of the
particle’s type.

8 Wolfgang Pauli, Nobel prize in physics for his discovery of the exclusion principle, 1945.
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5.3.5 Two Special Cases—�/k2 and �/k

The energy values of a free particle are � ¼ �h2k2=ð2mÞ. This is the 3D version of
Eq. (5.57) (omitting the index m). In addition the 3D version of Eq. (5.58) is

X
j

/
Z

d3k /
Z 1

0
d�Dð�Þ: ð5:151Þ

The quantity Dð�Þ is the density of energy states, and because of d3k / dkk2 we
find Dð�Þ / �1=2. The second case we study here is � / k. For instance in the case of
photons � ¼ �hx and x ¼ ck, where c is the velocity of light and k is the magnitude
of the wave vector. Eq. (5.151) still remains valid except now of course Dð�Þ / �2.
Thus all in all we consider the following cases

� / k2 with Dð�Þ / �1=2

� / k with Dð�Þ / �2:

First we compute the average energy of a systems of bosons in these two cases

hEi ¼
C
Z 1

0

d��3=2

z�1eb� � 1
¼ � 3C

2b

Z 1

0
d��1=2 ln½1� ze�b�� ð� / k2Þ

C0
Z 1

0

d��3

z�1eb� � 1
¼ � 3C0

b

Z 1

0
d��2 ln½1� ze�b�� ð� / kÞ;

8>>><
>>>: ð5:152Þ

where z ¼ exp½bl� and C,C0 are constants. Note that we have used partial inte-
gration, i.e.Z 1

0

d��x

z�1eb� � 1
¼ 1

b

���1
0
�x ln½1� ze�b��|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

� x
b

Z 1

0
d��x�1 ln½1� ze�b��:

Comparing the right sides in Eq. (5.152) to the pressure, i.e.
bVPðBÞ ¼ �Pi ln½1� z exp½�b�i��, we find

1
V
hEi ¼ 3

2
P ð� / k2Þ

1
V
hEi ¼ 3P ð� / kÞ :

ð5:153Þ

Even though we have obtained this result in the case of Bosons an analogous
calculation for Fermions yields identical formulas. Notice that these results confirm
our previous findings for the energy density expressed in Eqs. (2.27) and (2.35).
Notice also that in order for Eq. (5.152) (� / k-case) to yield agreement with the
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black body radiation energy density (cf. Remark 2 on page 239) we must require
z ¼ 1 or l ¼ 0 for photons.

It is interesting to similarly relate the density, N=V , and the pressure, P.
Unfortunately the result is not obtained simply via partial integration. We need to
solve the integrals explicitly, i.e.

N
V
¼

C
V

Z 1

0

d��1=2

z�1eb� � 1
¼ �C

V
C½3=2�
b3=2

X1
n¼0

ð�zÞnþ 1

ðnþ 1Þ3=2
ð� / k2Þ

C0

V

Z 1

0

d��2

z�1eb� � 1
¼ �C0

V
C½3�
b3
X1
n¼0

ð�zÞnþ 1

ðnþ 1Þ3 ð� / kÞ

8>>>><
>>>>:

; ð5:154Þ

and

bP ¼

2Cb
3V

Z 1

0

d��3=2

z�1eb� � 1
¼ �C

V
C½3=2�
b3=2

X1
n¼0

ð�zÞnþ 1

ðnþ 1Þ5=2
ð� / k2Þ

C0b
3V

Z 1

0

d��3

z�1eb� � 1
¼ �C0

V
C½3�
b3
X1
n¼0

ð�zÞnþ 1

ðnþ 1Þ4 ð� / kÞ

8>>>><
>>>>:

: ð5:155Þ

Here we have used ð1� z exp½�b��Þ�1 ¼P1
n¼0ðz exp½�b��Þn andZ 1

0
d��x exp½�b�ðnþ 1Þ� ¼ C½xþ 1�

ðbðnþ 1ÞÞxþ 1 ð5:156Þ

(Note: C½xþ 1� ¼ xC½x�, where C½x� is the Gamma-function (Abramowitz and
Stegun 1972). Attention must be paid to the radius of convergence of the above
sums, i.e. in cases when z[ 1 (Fermions) the integrals must be evaluated by other
means.

Both N=V and P are power series in z. However, we may conversely assume that
z can be written as a power series of for instance q ¼ N=V , i.e.
z ¼ zðqÞ ¼ a0 þ a1qþ a2q2 þ . . .. By inserting this into our above expansion of
qðzÞ we eliminate z from this equation and we may work out the coefficients ai by
equating coefficients multiplying the same power of q. If we now insert the power
series of zðqÞ with the known coefficients ai into the expansion of P ¼ PðzÞ we
obtain a power series P ¼ PðqÞ.

Figure 5.16 shows the results (for the case � / k2). The stars indicate reduced
quantities defined via

q ¼ CC½3=2�
Vb3=2

q� P ¼ CC½3=2�
Vb5=2

P�

q ¼ C0C½3�
Vb3

q� P ¼ C0C½3�
Vb4

P� :
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Of the two solid lines the lower one is for Bosons and the upper one for
Fermions. The dashed line is the ideal gas law, i.e. P ¼ bq. We note that in the case
of Bosons we find a quantum statistical attraction leading to a lower pressure than in
the ideal gas, whereas in the case of Fermions there is a quantum statistical
repulsion leading to a higher pressure than in the ideal gas. The open circle indi-
cates the Boson pressure for z ¼ 1. At higher densities the pressure remains con-
stant as shown by the dotted line.

To understand what is happening here we look at Fig. 5.17 showing z as function
of reduced density, q�. The upper line is for Fermions and the lower one for
Bosons. In case of the former nothing special happens as z approaches or exceeds
unity. In the Boson case the reduced density, q�, approaches a finite value,
q� ¼ f½3=2� ¼ 2:61238,9 again indicated by a circle. This circle corresponds to the
circle in the previous figure. Because we may increase q� beyond the value marked
by the circle we may ask what the corresponding z-values are. Clearly, z� 1 as
pointed out above. But decreasing z means @z=@q� ¼ bz@l=@q�\0 or @l=@q�\0,
which is thermodynamically unstable. Thus z must remain equal to unity as indi-
cated by the dotted line.
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Fig. 5.16 Reduced pressure
versus reduced density for
particles obeying Fermi-Dirac
statistics, Bose-Einstein
statistics, or the ideal gas law
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Fig. 5.15 Isosteric heat of
adsorption of methane on
graphite

9

f½s� ¼P1
k¼1 k

�s is the Riemann Zeta-function (Abramowitz and Stegun 1972).
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But why does our current approach not show the divergence of q�ðzÞ in the limit
z ¼ 1 – or in other words: where do the particles go? There is a mathematical
problem here, which we have overlooked thus far. Notice that in the Boson case

N
V
/
Z 1

0

d��1=2

z�1eb� � 1
z¼1
=

ffiffiffi
p

p
f½3=2�

2b3=2
ðnote: C;C0 / VÞ: ð5:157Þ

The integral obviously is finite. On the other hand, the average Boson occupa-
tion number of the energy level �0 ¼ 0 in the case z ¼ 1 is infinity according to the
original Eq. (5.146)10! Thus our conversion of the summation into an integration
fails utterly—at least when z ¼ 1.

A simple example may illustrate this point. Consider the following sums

S0ðm; kÞ ¼
Xm
n¼0

1ffiffiffiffiffiffiffiffiffiffi
nþ k

p and S1ðm; kÞ ¼
Xm
n¼1

1ffiffiffiffiffiffiffiffiffiffiffi
nþ k

p

compared to the integral

Iðm; kÞ ¼
Z m

0

dnffiffiffiffiffiffiffiffiffiffi
nþ k

p ¼ 2ð ffiffiffiffiffiffiffiffiffiffiffi
mþ k

p �
ffiffiffi
k

p
Þ:

Putting in some numbers we obtain

Iðm; kÞ S1ðm; kÞ S0ðm; kÞ
m ¼ 1 k ¼ 10�3 1:94 1:0 32:6

m ¼ 100 k ¼ 10�3 19:9 18:6 50:2

m ¼ 100 k ¼ 10�5 20:0 18:6 335

:

We observe that summation and integration are in rather good agreement for
large m independent of k. Including the n ¼ 0-Term in the sum, especially in the
limit of small k, spoils the agreement however. Therefore we may write
S0ðm; kÞ ¼ S1ðm; kÞþ k�1=2 � Iðm; kÞþ k�1=2.

Note that in the above example k ! 0 corresponds to z ! 1 and the n ¼ 0-term
corresponds to the ground state contribution (�0 ¼ 0) in Eq. (5.146). Here we may
write

10 Somebody may object that �0 ¼ 0 is not really possible due to the zero-point energy. But note
that for a particle trapped in a cubic box one finds b�0 �ðKT=LÞ2. Here V ¼ L3 is the box
volume. The thermal wavelength, KT , is on the order of Å, so that for every macroscopic L we
find that b�0 is vanishingly small. This also is the reason why we consider the limit z ¼ 1 rather
than exp½b�0�.
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q ¼ C
V

ffiffiffi
p

p
f½3=2�

2b3=2
þ 1

V
z

1� z
: ð5:158Þ

We use the =�sign rather than �, because in this case the number of terms in the
sum are so large. Now we see that in the limit z ¼ 1 there is a condensation of
particles into single particle states �0 ¼ 0. This phenomenon is called Bose
condensation11!

Equation (5.158) also explains the pressure plateau (dotted line in Fig. 5.16).
Assuming that q� is large and fixed we conclude that V �ð1� zÞ�1. If we now
consider the ground state contribution to the pressure given by bPjo ¼ �V�1 ln½1�
z� we immediately obtain bPjo �V�1 lnV ! 0 for V ! 1 at constant density.
This means that Pjo does not contribute to the pressure, which therefore remains
constant. The same is true for the energy density, as one can easily find out by
considering the limit �j ! 0 of �jhnji.

Before leaving this subject, we want to also calculate the transition enthalpy
predicted by our model. We estimate the pressure corresponding to the circle in
Fig. 5.16 via Eq. (5.155) setting z ¼ 1, i.e.

P ¼
ffiffiffi
p

p
C

2V
f½5=2�
b5=2

: ð5:159Þ

Taking the derivative with respect to T we obtain

dP
dT

¼ kB
5
ffiffiffi
p

p
C

4V
f½5=2�
b3=2

: ð5:160Þ

Notice that this derivative is along the coexistence line in the T-P-plane.
Therefore we can apply the Clapeyron equation, i.e.

dP
dT

���
coex

¼ 1
T

Dh
Dq�1 : ð5:161Þ

Here Dh is the transition enthalpy per Boson, and Dq�1 � q�1 is the corre-
sponding inverse density difference between the inverse density given by the first
term in Eq. (5.158) and the corresponding inverse ground state density. The latter

11 The superfluid behavior exhibited by the helium isotope 4He below 2.1768 K, the so-called
lambda point, is a manifestation of Bose condensation. The mass density at this temperature is
about 145 kg/m3. If we insert this number into Eq. (5.158) using C ¼ ðgV=ð4p2ÞÞð2mHe=�h2Þ3=2,
where g ¼ 2sþ 1 and s is the boson’s spin (in this case s ¼ 0), we obtain a transition tem-
perature of about 3.1 K, which, despite the ideality assumption, is rather close to the above value
(an in depth discussion is given in Feynman (1972) ; Nobel prize in physics for his contributions
to quantum electrodynamics, 1965). Notice that we have neglected the second term in
Eq. (5.158), because for fixed z just slightly less than 1 the factor 1=V dominates and this term is
vanishingly small.
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density is much larger and its inverse is therefore neglected. Thus Dh is the (va-
porization) enthalpy difference going from the condensed phase to the ideal gas.
After some algebra we find12

Dh ¼ 5
2
f½5=2�
f½3=2� kBT � 1:28kBT : ð5:162Þ

5.4 The Third Law of Thermodynamics

This law, which does not introduce new functions of state, is about entropy in the
limit of vanishing temperature. Its most common form is the Nernst heat theorem13:

lim
T!0

DS ¼ 0: ð5:163Þ

This means that all entropy changes are zero at absolute zero. In a generalization
due to Planck the D is omitted and thus

lim
T!0

S ¼ 0: ð5:164Þ

This follows from (5.163) if the constant entropy at T ¼ 0 implied by the Nernst
heat theorem is universal and finite and thus may be set to zero.

Equation (5.163) implies that partial derivatives of S like @S=@V jT vanish in the
limit of vanishing temperature, i.e.

lim
T!0

@S
@V

���
T
¼ 0: ð5:165Þ

Because of @2F=@V@TjT jV ¼ @2F=@T@V jV jT , the above equation implies

lim
T!0

@P
@T

���
V
¼ 0: ð5:166Þ

If we apply this to the classical ideal gas, i.e. PV ¼ NkBT , we find that this gas
does not obey the Nernst heat theorem. Photons on the other hand fulfill S / T3 (cf.
Eq. 2.41) or P / T4 (cf. Eq. (2.38)) and satisfy Eq. (5.164) as well as Eq. (5.166).

Figure 5.16 shows that the classical ideal gas law at finite densities is not
followed by either Fermions or Bosons in the limit of low temperatures. Only in the

12 In the case of 4He, i.e. using T ¼ 3:2 K, we obtain DH � 34J=mol. This is about three times
less than the experimental value.
13 Walther Hermann Nernst, Nobel prize in chemistry for his contributions to thermodynamics,
1920.
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high temperature limit, i.e. the origin of the graph, both quantum laws merge with
the ideal gas law. We therefore want to study the above derivative for the quantum
laws in Fig. 5.16. In the case of Fermions, the leading dependence of the pressure
on temperature is

P � 2
dþ 2

�Fqþ p2q
�F

ðkBTÞ2: ð5:167Þ

Here d is the space dimension, q is the number density, and �F , the Fermi
energy, is the energy of the highest occupied level at zero temperature. We omit the
calculation of this formula, which may be found in the context of the Fermi gas
model of electrons in solids in most solid state textbooks. Obviously the pressure
this time satisfies Eq. (5.166). But what about the Bosons? The answer is contained
in Fig. 5.16. At finite density P / T5=2 and thus @P=@TjV ! 0 for T ! 0. Again
Nernst’s theorem is satisfied. Let us therefore look at the relation between the
Nernst theorem and quantum theory.

We start from the partition function

Q ¼
X
s

gs exp½�bEs�: ð5:168Þ

Here all Es are distinct and discrete (Eo\E1\E2 
 
 
). The degeneracy of each
level s is gs. Factorizing the ground state we obtain

Q ¼ go exp½�bEo� 1þ g1
g0

exp½�bðE1 � Eo� þ 
 
 

� �

: ð5:169Þ

As the temperature approaches zero we can satisfy bðE1 � EoÞ � 1 and it
becomes sufficient to retain the first two terms in the above sum. Using S ¼
@ðkBT lnQÞ=@TjV we obtain

S=kB � ln go þ 1þ bðE1 � EoÞð Þ g1
go

exp½�bðE1 � EoÞ� : ð5:170Þ

Letting T ! 0, we get

S=kB ¼ ln go: ð5:171Þ

Therefore S ¼ 0 requires that the ground state is not degenerate and sufficiently
separated from the next state. However, notice that the degeneracy of this state may
already be large. To see this we imagine N independent harmonic oscillators. The
state o corresponds to all oscillators in their ground state. The next state corresponds
to one oscillator in its first excited state whereas all others are still in the ground
state. There are N distinct ways to accomplish this. Again the next state corresponds
to one oscillator in its second excited state and a second one in its first excited state.
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This “pair of excited oscillators” may be realized in NðN � 1Þ=2 different ways.
And so on.

Figure 5.18 shows an illustrative example of a model system—the 1D Ising
chain (cf. the example on page 210). Without an external field the ground state is
degenerate and S=n[ 0 (here n ¼ 10 and S=n ! ðln 2Þ=10—dashed line) for
T ! 0. But an external field, B, coupling to the spins (here via an additional term
�B
Pn

i¼1 si in the energy (Eq. 5.17)) no matter how small, breaks the symmetry and
“eventually” S=n ! 0 for T ! 0. In reality such symmetry-breaking fields should
always be present.
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Fig. 5.17 Fugacity versus
reduced density for particles
obeying Fermi-Dirac statistics
and particles obeying
Bose-Einstein statistics
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Chapter 6
Thermodynamics and Molecular
Simulation

In the previous chapter we have learned that analytic calculations on the basis of
microscopic interactions can become very difficult or even impossible. In such
cases computer simulations are helpful. And even though thermodynamics is not
the theory of many particle systems based on microscopic interactions, Statistical
Mechanics is this theory, it possesses noteworthy ties to computer simulation. In the
following we want to discuss some of them.

There are two main methods in this field. One is Molecular Dynamics and the
other is Monte Carlo. Additional simulation methods are either closely related to
one or the other aforementioned methods or they apply on spatial scales far beyond
the molecular scale. Molecular Dynamics techniques model a small amount of
material (system sizes usually are on the nm-scale) based on the actual equations of
motion of the atoms or molecules in this system. Usually this is done on the basis of
mechanical inter- and intra-particle potential functions. In certain cases however
quantum mechanics in needed. Monte Carlo differs from Molecular Dynamics in
that its systems do not follow their physical dynamics. Monte Carlo estimates
thermodynamic quantities via intelligent statistical sampling of (micro)states.
Capabilities and applications of both methods overlap widely. But they both also
have distinct advantages depending on the problem at hand. Here we concentrate on
Monte Carlo—which is the “more thermodynamic” method of the two.

6.1 Metropolis Sampling

Consider a gas at constant density and constant temperature. Suppose we are
interested in the internal energy, E, of the gas. In principle we can try to evaluate
Eq. (5.8). Instead of doing this by an analytic method, we use a “device” which
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supplies us with a sample of Em-values distributed according to pm as defined in
Eq. (5.7). Our estimate for E would then be �E, where the bar indicates the average
over our sample. In the limit of an infinite sample we have E ¼ hEi ¼ �E. But how
would such a “device” look like?

We consider a simple example. Rather than using an infinite set of Em-values from
which we generate our sample, we just work with four values. They are not called
energy—we just call them 1, 2, 3, and 4. A possible sample might look like this:

234334412223. . . ð6:1Þ

But what is the underlying probability distribution, pm, in this example? For the
moment we decide to invent a distribution, i.e. we require that the even digits, 2 and
4, are twice as probable as the odd ones, 1 and 3.1

A computer algorithm generating a series of digits possessing this distribution is
the following:

(i) choose a new digit, dnew, from the set f1; 2; 3; 4g at random
(ii) IF

min½1; pðdnewÞ
pðdoldÞ � � n ð6:2Þ

THEN dnew becomes the next digit in the series
ELSE dold becomes the next digit in the series

(iii) if the series contains less than M digits continue with (i)

Here old refers to the last already existing digit in the series. The next digit is
new. Step (i) should be clear. But step (ii) requires explanation. The function
min½a; b� returns the smaller of the two arguments a and b. The quantity pðdÞ
denotes the probability of occurrence of digit d in the series, i.e. pð1Þ=pð2Þ ¼ 1=2,
pð1Þ=pð3Þ ¼ 1, pð1Þ=pð4Þ ¼ 1=2, . . .. The quantity n is a random number between
0 and 1. The condition (6.2) is the Metropolis criterion.

We can check this algorithm in two ways—we can implement it and count the
occurrence of the individual digits in the series—we can study the attendant transfer
matrix, p, whose elements pij � pi!j are the probabilities that digit i is followed by
digit j. At this point it is most instructive to do the latter.

1 Every other conceivable distribution can replace this choice if desired.
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The transfer matrix is

j !

p ¼ 1
4

1 1 1 1

1=2 2 1=2 1

1 1 1 1

1=2 1 1=2 2

0
BBB@

1
CCCA # i:

The factor 1=4 is the statistical weight of any new digit according to step (i). The
matrix elements on the other hand are the statistical weights of attempted transitions
generated by the Metropolis criterion in step (ii). In particular the first row elements
are the step (ii)-statistical weights for transitions from the old digit i ¼ 1 to any new
digit j. In this case the Metropolis criterion (6.2) is always fulfilled independent of
the new digit that follows. The second row corresponds to the case when the old
digit i ¼ 2. The first element, i.e. 1=2, is the statistical weight due (6.2) for the
transition from 2 to 1, which is rejected half of the time. The same applies to the
third entry, i.e. the transition from 2 to 3. The fourth element describes the transition
from 2 to 4, which is always accepted. The entry 2 in this row is more difficult to
understand. This is because the transition from 2 to 2 has three contributions, i.e.
2 ¼ 1þ 1=2þ 1=2. The criterion is always fulfilled when 2 is followed by 2, which
contributes the one. In addition there is a 1=2 from the rejection of transitions from
2 to 1. In this case the old digit 2 also will be the accepted new digit. The same
applies when the criterion rejects transitions from 2 to 3. In this case the old digit 2
again will be the new digit. All in all the result from step (ii) is two. This discussion
of the first and the second row may be carried over to explain rows three and four.

At this point we are able to answer to the following question: What is the
probability that if the first digit in the series is i the 3rd digit will be j? The answer is
obtained via simple matrix multiplication:

X4
k¼1

pikpkj ¼ pi1p1j þ pi2p2j þ pi3p3j þ pi;4p4j; ð6:3Þ
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i.e. the total transition probability is the sum over all independent possibilities (or
paths) to get from i to j. This easily is generalized to longer paths extending over n
digits X

i;k;l;...j

pikpklpl::. . .p::j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n�1factors

: ð6:4Þ

Provided n is sufficiently large the result should be 2=6 if j is even and 1=6 if j is
odd. Notice that the denominator 6 is due to the overall normalization, i.e.
2 � 2=6þ 2 � 1=6 ¼ 1. For n ¼ 3 the explicit numerical result is

0:1875 0:3125 0:1875 0:3125

0:15625 0:375 0:15625 0:3125

0:1875 0:3125 0:1875 0:3125

0:15625 0:3125 0:15625 0:375

0
BBB@

1
CCCA: ð6:5Þ

But already for n ¼ 5 we obtain

0:167969 0:332031 0:167969 0:332031

0:166016 0:335938 0:166016 0:332031

0:167969 0:332031 0:167969 0:332031

0:166016 0:332031 0:166016 0:335938

0
BBB@

1
CCCA: ð6:6Þ

This shows that our algorithm indeed produces the target distribution of digits in
the series. The closeness of the numbers in the same column, which means the same
final digit j, in the last matrix also shows that the probability of j is almost inde-
pendent of the first digit i after only five steps.

264 6 Thermodynamics and Molecular Simulation



6.1 Metropolis Sampling 265



A few remarks: Step (i) of the MC algorithm is xnew=xold + dx
Random½Real; f�1; 1g�. We define a maximum step size, dx, and generate the new
x near the old x. It is important that this step does not introduce a bias, i.e. all
possible x-values do have equal probability in step (i). It does not matter that it may
take many steps to reach a certain x-value. Notice that in contrast to our initial
example, with merely 4 digits to choose from, x can be any real number. In this case
it is important to build the new x from the old one in order to play out the particular
advantage of the Metropolis criterion. It preferentially samples the important x-
values, i.e. the x-values with high probability. Random “jumping around” between
�1 and 1 would not be efficient. The above graph shows the cumulative average,
i.e. at every MC-step the current average of x2 computed from the thus far accu-
mulated x-values. The final result obviously is close to the exact solution (dashed
line). The shown example yields �x2 ¼ 0:498. However, the question is—what is the
error? This is a computer experiment and as for real experimental data we may
compute the standard error of the mean via rx2=

ffiffiffiffiffiffi
M0p

. Here rx2 is the standard
deviation of the x2i -values and M0 is the number of independent values (M0 � M!).
We can estimate M0 via the autocorrelation function of the data. But this is
described in every good text on computer simulation methods (e.g., Frenkel and
Smit 1996). Here we want to concentrate on our main goal—the ties between
molecular simulation and thermodynamics.

6.2 Sampling Different Ensembles

In Chap. 5 we discuss the probabilities of state m given by

pm / exp½�Sm=kB�; ð6:7Þ

where

Sm ¼ 1
T
Em þ P

T
Vm � l

T
Nm. . .: ð6:8Þ

In the following we are interested in the classical approximation of pm, which means

p / g exp½�bH� bPV þ blN. . .�: ð6:9Þ

Here H is the Hamilton function of the system and b ¼ ðkBTÞ�1. The factor g
arises from the “translation” of

P
m to a corresponding integration over classical

phase space, i.e.
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X
m

� 1
N!h3N

Z
d3Npd3Nr ! 1

N!
V

K3
T

 !NZ
d3Ns: ð6:10Þ

This formula applies to particles completely characterizable through their posi-
tion in space~r ¼ V1=3~s, where~s is a relative coordinate independent of the size of
the (cubic) volume, and their translational momentum ~p. We can separate a factor
exp½�bK� from exp½�bH�, where K is the kinetic energy of the system of particles,
and the arrow indicates what we get after integrating out the momenta. Thus in the
present case we may write

pðf~sg;V ;NÞ / 1
N!

V

K3
T

 !N

exp½�bU � bPV þ blN. . .�: ð6:11Þ

Here U is the potential energy of the system. All in all this probability describes
classical systems with variable volume, and particle number.

How do we apply this? First we must decide which ensemble to use. Is it
sufficient to just translate the particles at constant temperature, volume and particle
number? This would be the canonical ensemble. Or do we model an open system
with variable particle number at constant chemical potential, volume, and tem-
perature? This would be the grand-canonical ensemble. Remember our discussion
of the isosteric heat of adsorption for methane on graphite in Sect. 5.3.2. In this
example methane is well represented as a point particle. Here step (i) of a MC
procedure consists in a random change of ðf~sg;V ;NÞ. We can select a methane
molecule at random and move it a random distance in a random direction. Volume
and particle number would be constant. But we can also decide to just change the
particle number. We must decide whether to insert or remove a particle from the
system. The following algorithm, used to generate the simulation results in the
aforementioned example, alternates between these two MC “moves”. The volume is
kept constant all the time. Insertion and removal of particles makes additional
translation of existent particles obsolete in this case.2

1. randomly select a position at which to insert a new particle into the gas
2. evaluate the condition

min 1; exp �T�1 UðnewÞ
Nþ 1 � UðoldÞ

N

� �
þ ln

aV
Nþ 1

� �� 	
� ni:

2 This works and is simple, but not necessarily efficient. It bypasses the importance sampling
capability of the Metropolis MC mentioned above.
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3. TRUE: Insert the particle and append the new configuration to the configuration
list;
FALSE: Do not insert the particle and append the old configuration to the
configuration list.

4. select an already existing gas particle at random
5. evaluate the condition

min 1; exp �T�1 UðnewÞ
N�1 � UðoldÞ

N

� �
þ ln

N
aV

� �� 	
� nr:

6. TRUE: Remove the selected particle and append the new configuration to the
configuration list;
FALSE: Do not remove the selected particle and append the old configuration to
the configuration list.

Here ni and nr are random numbers on ½0; 1�. The quantity a is a ¼ K�3
T exp T�1l½ �.

Notice that the second argument in minð1; . . .Þ is just the ratio pnew=pold (with
kB ¼ 1). We emphasize that we do not have to know the proportionality constant in
(6.11)! This would mean that we have to compute the full partition function, which
in general is impossible. After having compiled a large number of configurations
generated according to this algorithm the desired averages may be calculated.
However, because MC does not yield information on the molecular dynamics, it is
limited to configurational averages, i.e. the quantities of interest depend exclusively
on coordinates and not on momenta.

For the sake of completeness we want to write down the equivalent to relation
(6.11) for the case of small rigid molecules (e.g. water):

pðf~sg; f/; h;wg;V ;NÞ /
1
N!

VQrot
cl

K3
T

 !N

PN
i¼1 sin hi exp½�bU � bPV þ blN. . .�:

ð6:12Þ

In this case the molecular orientation in space must be included. We have
discussed molecular rotation in the context of Eq. (5.98). Here f/; h;wg are the
Euler angles of the molecules. The factors sin hi arise from the Jacobian J (dis-
cussed in Sect. 5.1.8) when we integrate over the momenta conjugate to the Euler
angles. In the case of a MC reorientation of a single randomly chosen molecule the
attendant probability ratio becomes

pnew
pold

¼ sin hnew
sin hold

exp½�bðUnew � UoldÞ�: ð6:13Þ

In the case of molecule insertion or removal we can omit the factor
sin hnew= sin hold assuming hnew ¼ hold :
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6.3 Selected Applications

The applicability of molecular simulation to microscopic phenomena is subject to
numerous constrains. This is not the place to describe these constraints and the
strategies used to extend the limits of simulation methods. The following examples
are for gases and liquids with simple, which mostly means short-ranged, radially
symmetric interactions between particles.

6.3.1 Simple Thermodynamic Bulk Functions

It is useful to express the quantities V , KT , T , U, . . . in (6.11), as well as in every
possible Metropolis probability ratio, in a new set of units, i.e. energies are in units
of � and lengths are in units of r. Table 6.1 compiles the explicit conversion
between the new dimensionless quantities X	 and the original physical quantities.
The quantities X	 are said to be in Lennard-Jones (LJ) units, because � and r
usually are identical to the same quantities in the LJ potential in Eq. (5.137). For
small, non-polar molecules and not too high densities this potential usually is a
good approximation. This means that we can carry out simulations of gases and (to
some extend) liquids of noble gas atoms and small, non-polar molecules using the
LJ potential with � ¼ r ¼ 1. Subsequently we convert the results from LJ units to
SI units. If we do this using atom or molecule specific values for � and r, we obtain
results specific for the system of interest (e.g. methane or argon). But how do we get
�methane and rmethane or �argon and rargon? One possibility is to look up the values of
these system’s critical parameters Tc, qc, and Pc. Assuming that we also have
simulation results for the critical point of our LJ system (the one with � ¼ r ¼ 1),
i.e. T	

c , q
	
c , and P	

c , we can use the conversion formulas in the table, e.g. �methane ¼
kBTc;methane=T	

c and rmethane ¼ ðq	c=qc;methaneÞ1=3. We notice immediately that this is
not unique. We have three critical parameters and only two model parameters.
Alternatively we could have used qc and Pc or Tc and Pc to obtain � and r.
However, provided that LJ interactions do describe the interactions in the physical
system reasonably well, we shall find that the differences are small.3 As soon as we
have decided which values to use for � and r, we can begin to convert other
quantities of interest from their LJ values provided by the simulation to the
SI-values comparable to experimental data. Or we can convert experimental data to
LJ units.

3 Probably you have noticed the similarity to our discussion of the universal van der Waals
equation (4.12), where we also use the gas-liquid critical point expressed via the parameters a and
b to map the results of the universal theory onto specific systems. There as well as here we can
also use experimental data for the second virial coefficient to fit a and b or � and r. These values
again will differ to some extend from the ones obtained via the critical parameters.
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The top panel in Fig. 6.1 shows simulations results4 (dotted circles) for the
number density, q	, versus temperature, T	, for methane. Here �methane=kB ¼ 141:2
K and rmethane ¼ 3:688 Å. The experimental results (plusses), converted to LJ units,
are from the HCP. The experimental pressure is 10 MPa or 0:257 in LJ units. This
pressure is roughly a factor of two above the critical pressure. The solid line is a fit

Table 6.1 Lennard-Jones
units

Quantity LJ-quantity Conversion

T T	 T ¼ �T	=kB
V V	 V ¼ r3V	

q q	 q ¼ q	=r3

P P	 P ¼ �P	=r3

l l	 l ¼ �l	
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Fig. 6.1 Simulation results,
showing the temperature
dependence of selected
thermodynamic quantities,
compared to experimental
data

4 These particular quantities were calculated for system of 108 particles using the Molecular
Dynamics technique (R. Hentschke, E. M. Aydt, B. Fodi, E. Stöckelmann Molekulares
Modellieren mit Kraftfeldern., http://constanze.materials.uni-wuppertal.de), but Metropolis Monte
Carlo could have used instead.
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to the experimental data for the sake of easier comparability but without particular
physical significance. Analogous curves obtain from the van der Waals equation are
shown in Fig. 4.5. The above graph corresponds to the high temperature portion of
the highest pressure isobar in Fig. 4.5. Notice that the critical temperature, which in
case of the universal van der Waals equation is 1, is slightly above 1:3 in the case of
the LJ system. The bottom panel in Fig. 6.1 shows the temperature dependence of
the enthalpy per atom (dotted circles) and the isobaric heat capacity per particle
(solid circles) for argon. Plusses and crosses are experimental results taken from
HTTD. Again the pressure is 10 MPa, but this time � and r are different, i.e.
�argon=kB ¼ 111:8 K and rargon ¼ 3:369 Å, and thus this pressure is 0:248 in LJ
units. The dotted lines are the respective quantities calculated assuming an ideal
gas. We note that the ideal gas behavior is approached on the high temperature side.
The simulation yields the enthalpy and the heat capacity, CP ¼ @H=@TjP, is
obtained via simple numerical differentiation of the enthalpy data without prior
smoothing. This relatively crude procedure is responsible for the larger deviations
from the experimental results (plusses) in the vicinity of the peak. The peak in the
heat capacity marks the Widom line, i.e. the smooth continuation of the gas-liquid
saturation line (cf. the right panel in Fig. 4.4) above the critical point.

6.3.2 Phase Equilibria

We consider phase coexistence in a one-component system—for instance between
gas (g) and liquid (l). We envision two coupled subsystems—one on either side of
the saturation line. Each of the subsystems is represented by a simulation box
containing Ng and Nl particles, respectively. By exchanging particles between the
boxes and by varying their volumes, Vg and Vl, we attempt to generate the proper
thermodynamic states for both gas and liquid at coexistence. Our result will be two
densities, qgðTÞ and qlðTÞ, at coexistence as functions of temperature.

The thermodynamic variables in the respective subsystem (simulation boxes) are
Tg, Tl, Pg, Pl, Ng, and Nl. Phase equilibrium requires Tg ¼ Tlð¼ TÞ, Pg ¼ Plð¼ PÞ,
and lg ¼ llð¼ lÞ. In addition we require Ng þNl ¼ constant and
Vg þVl ¼ constant. This ensures that only one free variable remains in accordance
with the phase rule, which will be temperature. The subsystem entropy changes
compatible with the above conditions are TDSg ¼ DEg þPDVg � lDNg and
TDSl ¼ DEl þPDVl � lDNl. The resulting total entropy change is DS ¼
ð1=TÞðDEg þDElÞþ ðP=TÞ ðDV1 þDV2Þ � lðDNg þDNlÞ ¼ ð1=TÞðDEg þDElÞ.
From this we can read off the attendant phase space probability ratios, i.e.

pnew
pold

¼ gnew
gold

exp½�bðDUg þDU lÞ�; ð6:14Þ
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where

g ¼ 1
Ng!

Vg

K3
T

 !Ng
1
Nl!

Vl

K3
T

 !Nl

; ð6:15Þ

and DU ¼ Unew � Uold . Notice that the phase space integration factorizes into a
product of integrations over the respective volumes. Notice also that the combi-
natorial factor N!�1 becomes the product of two such factors (cf. Eq. 5.75 for the
ideal gas mixture).

A suitable MC algorithm may be one that cycles through the steps—translation
of a particle in the gas box, translation of a particle in the liquid box, volume
change, transfer of a particle from gas to liquid, transfer from liquid to gas. The
following are examples from which the missing cases can be worked out easily.

• Translation of particle i in the gas box~sg;i !~sg;i þ d~s:

pnew
pold

¼ exp½�bDUgðd~sÞ�; ð6:16Þ

where DUg ¼ Ug;new � Ug;old .
• Volume change, i.e. Vg ! Vg � dV and Vl ! Vl þ dV :

pnew
pold

¼ 1� dV
Vg

� 	Ng

1þ dV
Vl

� 	Nl

exp½�bðDUgð�dVÞþDU lðþ dVÞÞ�; ð6:17Þ

again DUg ¼ Ug;new � Ug;old and DU l ¼ U l;new � U l;old .
• Particle transfer from gas to liquid, i.e. Ng ! Ng � 1 and Nl ! Nl þ 1:

pnew
pold

¼ Ng

Nl þ 1
Vl

Vg
exp½�bðDUgðNg � 1ÞþDU lðNl þ 1ÞÞ�: ð6:18Þ

Notice again that the selection of particle i for translation, or the selection of a
particle for transfer, or the volume change dV must be completely random! The
only restriction is that the translation step size ds as well as the volume change dV
usually are small compared to the system size in order to take advantage of the
importance sampling.5

There is one question though. How does the system decide which box contains
the gas and which the liquid? First we must prepare initial conditions within the
coexistence region, requiring some knowledge about its location and extend.
Clearly, we can “bias” one box to be the gas box and the other one to be the liquid
box by the initial distribution of particles from which we start. We shall find

5What we just have described is known as Gibbs-Ensemble Monte Carlo originally invented by
Panagiotopoulos (1987).
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however that the particle number in the boxes fluctuates, particularly when we
approach the critical temperature, Tc, and the identity of the boxes may switch. In
fact, on approaching Tc the growing critical fluctuations render the distinction of
gas and liquid meaningless in accordance with true physical systems. Figure 6.2
shows an example. The temperature in the top panel is below Tc and the densities in
the boxes, initially kept at 0:3 by not allowing particles to transfer, subsequently
develop into gas and liquid. The bottom panel shows the densities above the critical
temperature (notice the change of scale of the q	-axis). There is no distinction
between the simulation boxes.

We note that the density fluctuations are quite large. This is due to the small size
of these systems containing on the order of 100 particles. Close to the critical point
there are critical density fluctuations on all length scales giving rise to critical
opalescence (e.g. Stanley 1971). Even though this is a different matter, which we do
not discuss here, it still is worth presenting a real experimental example of critical
opalescence conducted by the author. The bottom inset in Fig. 6.3 shows a cylin-
drical pressure chamber with windows on opposite sides containing sul-
furhexafluoride (SF6) (cf. p. 166). We can see the meniscus of the liquid. Heating of
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Fig. 6.2 Gas-liquid phase
separation via
Gibbs-Ensemble Monte Carlo
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the chamber causes the SF6 to pass through its critical point along the critical
isochore. The critical temperature of SF6 is Tc ¼ 318:7 K or 45:5 
C. In the
experimental setup the chamber is mounted so that the meniscus of the liquid is
perpendicular to the gravitational field.6 The flashlight mounted at the bottom
illuminates the interior of the chamber and a corresponding bright spot of light can
be seen on the white cardboard in the background. The instrument beneath the
cardboard shows the chamber’s temperature. The series of photographs on the left
illustrates what happens when the temperature passes through Tc. At temperatures
above and below Tc the light can pass through the chamber and the spot on the

Fig. 6.3 Critical opalescence experiment

6 The effect is concentrated near the interface or, because above Tc the interface vanishes, where
the interface develops upon cooling. The rotation of the pressure chamber used here ensures
greater homogeneity.
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cardboard is rather bright. But very close and right at Tc a pronounced decrease in
the brightness is observed due to critical scattering.

Figure 6.4 shows a plot of the gas and liquid densities from the simulation
(circles). The solid line is a power law fit7 yielding T	

c � 1:32 and q	c � 0:3.8

We conclude our example with a remark. The simulation boxes posses no
physical connection, i.e. there is no continuous migration of molecules from one
region in space to another as in a real experiment. All that matters is that thermal,
mechanical, and chemical equilibrium is attained. Since the chemical potential is a
state function, it is not important which path we choose for this purpose. This
implies that unphysical but highly efficient Monte Carlo moves become possible! In
the present case this is the instantaneous transfer of particles between boxes.

6.3.3 Osmotic Equilibria

Another example allowing us to practice the above approach is the following.
A semi-permeable membrane divides a system into two compartments or subsys-
tems—again represented by respective simulation boxes situated on opposite sides
of the membrane. Subsystem i (¼ 1; 2) contains Nl;i solvent molecules and Ns;i

solute molecules, respectively. In particular we require Ns;1 ¼ 0, due to the mem-
brane. The thermodynamic states of the two subsystems are defined through the
eight quantities T1, T2, P, PþP, Nl;i, and Ns;i. At equilibrium we have the five
conditions ðT ¼ÞT1 ¼ T2, equality of the solvent chemical potentials, i.e.
ðll ¼Þll;1 ¼ ll;2, as well as Nl;1 þNl;2 ¼ Nl ¼ constant, Ns;1 ¼ 0, and
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1.20

1.25

1.30

gas liquid

coexistence

-

Fig. 6.4 Gas-liquid
coexistence data obtained via
Gibbs-Ensemble Monte Carlo

7 We use q	liq � q	gas ¼ Aotb � A1tbþD and q	liq þq	gas ¼ 2q	c þDot1�a with t ¼ T	
c � T	

(Ley-Koo and Green 1981). The (3D Ising) critical exponent values are b ¼ 0:326, a ¼ 0:11,
and D ¼ 0:52 (cf. our discussion of critical exponents and scaling beginning on p. 162).
8 These results were obtained during a student laboratory on computer simulation techniques—my
thanks to S. Reinecke and S. Mathys for Fig. 6.2 and to A. Obertacke and M. Götze for the data in
Fig. 6.4. The MC program was written by R. Kumar.
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Ns;2 ¼ constant. The resulting 8� 5 ¼ 3 degrees of freedom (phase rule!) are T , P,
and P. Furthermore we have TDS1 ¼ DE1 þPDV1 � llDNl;1 and TDS2 ¼ DE2 þ
ðPþPÞDV2 � llDNl;2, where the Ei are the internal energies. The total entropy
change in the system therefore is DS ¼ ð1=TÞðDE1 þDE2Þþ ðP=TÞ
ðDV1 þDV2Þþ ðP=TÞDV2. The complete phase space density entering into our
Metropolis criteria thus becomes

p / VNl;1

1 VNl;2 þNs;2

2

K3Nl
T ;l K

3Ns;2
T ;s Nl;1!Nl;2!Ns;2!

exp �bðU1 þU2 þPV1 þðPþPÞV2 þ llNl þ ls;2Ns;2Þ

 �

:

ð6:19Þ

Our Monte Carlo algorithm consists of the following moves: molecule translation,
volume change, and solvent transfer. The probability ratios entering into the
Metropolis criterion are:

• for translation of a molecule in compartment i

pnew
pold

¼ exp½�bDU i�; ð6:20Þ

where DU i ¼ U i;new � U i;old ,
• for a volume change of compartment i,

pnew
pold

¼ Vi;new

Vi;old

� 	Nl;i þNs;i

exp �bðDU i þðPþ di2PÞDViÞ½ �; ð6:21Þ

where DVi ¼ Vi;new � Vi;old and di2 ¼ 1 if i ¼ 2 or zero otherwise, and
• for a molecule transfer from compartment 1 to compartment 2.

pnew
pold

¼ V2Nl;1

V1ðNl;2 þ 1Þ exp �bðDU1 þDU2Þ½ �; ð6:22Þ

where DU1 ¼ U1ðNl;1 � 1Þ � U1ðNl;1Þ and DU2 ¼ U2ðNl;2 þ 1Þ � U2ðNl;2Þ:
Exchanging the compartment index yields the probability ratio governing the

opposite transfer.
The following numerical data9 were obtained with the LJ particle-particle

interaction potentialuðrÞ ¼ 4ðr�12 � r�6Þ (cf. Eq. (5.137)). In this somewhat arti-
ficial model calculation all interactions are taken as identical. Figure 6.5 shows the
osmotic pressure, P, vs. solute mole fraction, xs;2. The units are LJ units.
Comparison of the above algorithm (up-triangles: T	 ¼ 1:15, P	 ¼ 0:2;
down-triangles: T	 ¼ 1:5, p as for the open circles) to data from the literature

9 From Schreiber and Hentschke (2011).
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(Panagiotopoulos et al. 1988): (open squares: T	 ¼ 1:15, P	 ¼ 0:077); Murad et al.
(1995): (open circles: T	 ¼ 1:5, 0:41[P	 [ 0:26 from low to high xs;2). The
simulation data sets do agree closely even though the corresponding pressure, P,
varies considerably. This is expected when the temperatures are low and the sys-
tems are rather dense. Notice that this example obeys van’t Hoff’s law (solid
circles) over a wide concentration range. There is some scatter here because the
solute concentration is determined from the simulation.

6.3.4 Chemical Potential

The chemical potential played an important role in the two preceding examples. But
it did not enter explicitly into the calculations. How then can we obtain the chemical
potential via computer simulation? Let us assume that we already have a value for
the chemical potential, lðTo;PoÞ, in a one-component system. This particular phase
point is indicated by the circle in Fig. 6.6. We may reach every other state point via
a succession of steps along the directions indicated by the arrows. A path along
which the temperature is constant may be followed by integrating Eq. (2.124), i.e.

lðTo;PÞ ¼ lðTo;PoÞþ 1
N

Z P

Po

dP0VðTo;P0Þ; ð6:23Þ
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ΠFig. 6.5 Osmotic pressure
versus solute mole fraction
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T=const

Fig. 6.6 Simulation of the
chemical potential on the
basis of one known value
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where V=N is the volume per molecule. Based on either Eq. (6.11) or (6.12),
depending on the complexity of the molecule of interest, we may construct a
suitable Metropolis criterion (MC moves would include translation, rotation (in the
case of (6.12) only), and volume change). We obtain a series of values for vðPÞ
along the chosen path, which then can be used to numerically solve the integral
(e.g. via a suitable interpolating function which is easy to integrate). An analogous
procedure works for the P ¼ const-direction in Fig. 6.6—this time however we use
the Gibbs-Helmholtz equation (3.145), i.e.

lðT ;PoÞ
T

¼ lðTo;PoÞ
To

� 1
N

Z T

To

dT 0 HðT 0;PoÞ
T 02 : ð6:24Þ

Here HðTÞ=V is the enthalpy per molecule.
Figure 6.7 shows the chemical potential obtained for the so called TIP4P/2005

(Transferable Intermolecular Potential 4 Point) water model via thermodynamic
integration at P ¼ 1 bar (solid line) (Guse 2011). The crosses are corresponding
experimental chemical potentials calculated as follows.

In Fig. 4.4, we had included the experimental saturation pressure, PsatðTÞ, along
the gas-liquid saturation line for water. In the temperature range of interest here we
may consider water vapor as being ideal. The ideal water chemical potential was
calculated before in the second example in Sect. 5.1.8 (vapor pressure of ice), i.e.
lH2O;gasðT ;PsatÞ � ltransH2O ðT ;PsatÞþ lrotH2OðT ;PsatÞ. Along the saturation line we have
lH2O;gas ¼ lH2O;liq, the gas phase chemical potential is the same as the liquid phase
chemical potential. The example on page 94 (relative humidity) has taught us that
the chemical potential difference between a state point on the saturation line and the
state point at the same temperature in the liquid at 1 bar is almost negligible. Thus
we have lH2O;liqðT; 1 barÞ � lH2O;gasðT ;PsatÞ to very good approximation. The
crosses in Fig. 6.7 show lH2O;liqðT ; 1 barÞ computed in this fashion using the ideal
gas expressions for ltransH2O and lrotH2O provided in our above calculation of the vapor
pressure of ice (cf. Eqs. (5.101) and (5.102); note that the molecular vibrations may
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still be neglected despite the somewhat higher temperatures in the current case. The
computer model for water also assumes rigid molecules.).

At this point we may ask whether there are direct methods for computing lðT ;PÞ
avoiding lengthy paths? Yes, there are such methods. Because this is not a textbook
on computer simulation methods, the reader is referred to the appropriate texts (e.g.
Frenkel and Smit 1996 or Allen and Tildesley 1990). However, even without
discussing these methods, we may suspect a certain difficulty. Measuring the
chemical potential involves insertion of a molecule into a system. In dense systems
it frequently happens that the new molecule is placed directly “on top of” an
existing molecule. The attendant Metropolis MC ratio then is exceedingly small and
the computer time needed to obtain sufficient successful insertions may be pro-
hibitively large. Liquid water in the above example is such a system.
Thermodynamic integration does not suffer from this problem and therefore may be
preferable.10 Two more questions remain. How must we proceed if more than one
component is present? And what do we do when our path crosses a phase
boundary?

Equations (6.23) and (6.23) for more than one component are

liðTo;PÞ ¼ liðTo;PoÞþ 1
NA

Z P

Po

dP0viðTo;P0Þ ð6:25Þ

and

liðT;PoÞ
T

¼ liðTo;PoÞ
To

� 1
NA

Z T

To

dT 0 hiðT 0;PoÞ
T 02 : ð6:26Þ

Here i denotes the component. The quantities vi and hi are the partial molar
volume and enthalpy of component i, respectively. Equation (6.25) follows via
differentiation of the free enthalpy in Eq. (2.124) with respect to ni. Equation (6.26)
follows directly via integration of (3.146). In principle the partial quantities may be
determined for a set of given conditions, i.e. T , P, njð6¼iÞ, by simulating systems with
different content of i, above and below the target mole fraction ni. The derivatives
may then be estimated via vi ¼ @V=@ni � DV=Dni and hi ¼ @H=@ni � DH=Dni.
Whether this additional effort is necessary again is a matter of experience.

The chemical potential is continuous at a phase boundary. But quantities like V
and H are discontinuous (except at the critical point). The main practical problem
upon crossing a phase boundary is equilibration of the respective phases. Usually it
is a good idea to cycle through a path in both direction to check for hysteresis
effects, e.g. supercooling (the liquid/gas is metastable inside the solid/liquid phase)
or superheating (the liquid/gas is metastable inside the solid/liquid phase).

10 In praxis choosing the method largely depends on the experience of the person doing the
calculation.
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Notice in this context that integration of the Clapeyron equation (4.46) can be
used to trace out phase boundaries. For example, having obtained the location of the
gas-liquid transition via the above method at a certain Tk and Pk , we may use the
differences between enthalpy and density in the two boxes to obtain the slope of the
saturation line, dP=dT , at this state point. With this information we can obtain an
new state point, Tkþ 1 and Pkþ 1, in the direction of the slope. This state point in turn
may be used to find new values for the enthalpy and density in the two simulation
volumes, which now do not trade molecules any more. This procedure is called
Kofke integration in the literature on molecular simulation.
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Chapter 7
Non-equilibrium Thermodynamics

In the preceding chapters with few exceptions we have studied systems at equi-
librium. This means that the systems do not change or evolve over time. In
Sect. 5.1.7 we have studied the likelihood of energy fluctuations. We found them to
be exceedingly small in macroscopic systems. And yet our world is full of com-
plexity and attendant order. Particularly “systems which do not change over time”
are not what we observe. Here is a quote from Feynman (2003): “How then does
thermodynamics work, if its postulates are misleading? The trick is that we always
arrange things so that we do not experiments on things as we find them, but only
after we have thrown out precisely all those situations which lead to undesirable
orderings.” Non-equilibrium thermodynamics is the part of thermodynamics where
the undesirable orderings are not thrown out.

The usefulness of the fundamental laws and their consequences, as we have
applied them, do require sufficiently distinct rates. Figure 7.1 shows the so-called
H-function obtained from a Molecular Dynamics computer simulation of 108 LJ
particles in an insulated, periodic box. The number density is q� ¼ 0:05. At time
t� ¼ 0 the1 simulation is started with the particles located on an fcc lattice.
A random initial velocity is assigned to each particle based on a uniform distri-
bution. Subsequently the function

HðtÞ ¼
Z

d3vf ð~v; tÞ ln f ð~v; tÞ ð7:1Þ

is obtained from the velocity distribution function f ð~v; tÞ. If we describe HðtÞ by a
simple smooth function, it monotonously decreases—aside from short-lived fluc-
tuations. In this particular example the characteristic time for the overall decrease is

1 Here * means that time is in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mr2=�

p
, where m is the particle mass and � and r are the

parameters in the LJ-potential

.
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about 2 time units. The “lifetime” of the fluctuations is comparable. In a real gas the
above times are a few ps, i.e. a few 10�12 s. This may vary depending on density,
initial velocities or microscopic interactions. But for ordinary gases or liquids these
so-called relaxation times are very short compared to measurements of thermody-
namic quantities. Temperature changes in the laboratory, deterioration of rubber
gaskets, corrosion of the apparatus, etc., which eventually do affect our “experi-
mental equilibrium”, happen much more slowly.

Remark Ludwig Boltzmann2 showed, based in particular on the assumption of
molecular chaos (no correlations), that in the above sense

dHðtÞ
dt

� 0: ð7:2Þ

It turns out that �HðtÞ is essentially the entropy. This inequality, his famous H-
theorem, opened the door to an understanding of the macroscopic world on the
basis of molecular dynamics (Huang 1963).

We begin our discussion of non-equilibrium phenomena by exploiting the
apparent similarity between the decay of spontaneous fluctuations and transport.

7.1 Linear Irreversible Transport

There are a number of well known equations describing irreversible transport
processes. For instance Ohm’s law

Jq;a ¼
X
b

rq;abEb: ð7:3Þ

Here Jq;i is the charge current component a and Eb is the b-component of the
electric field. The quantities rq;ab are the components of the conductivity tensor.
Then there is Fourier’s law of thermal conductivity

JQ;a ¼ �
X
b

kab
@T
@xb

: ð7:4Þ

Here JQ;a is the local heat flux density component a due to the b-component of a
temperature gradient. kab are the components of the thermal conductivity tensor.
Another example is Fick’s law

2 Ludwig Boltzmann, austrian physicist, *Wien 20.2.1844, †Duino 5.9.1906; fundamental con-
tributions to Statistical Mechanics. His tombstone bears the inscription S ¼ k logW (cf. Eq. 6.16).
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Jc;i ¼ �Di
@ci
@x

; ð7:5Þ

where Di is the diffusion coefficient of the diffusing component i and ci is the
concentration of i. The above transport flows are coupled. Two examples in the
linear regime are

~Jq ¼ Aqq

~E
T
� AqQ

~r 1
T

ð7:6Þ

and

~JT ¼ �AQQ ~r 1
T
þAQq

~E
T
: ð7:7Þ

More generally we may write

DJi ¼
X
j

LijDXj: ð7:8Þ

Here the quantities DXj are called generalized forces.3 The prefix D reminds us
that we stay close to the equilibrium state. At thermodynamic equilibrium, we have
simultaneously for all irreversible processes DJi ¼ 0 and DXi ¼ 0. In the following
we shall study the above linear relations and their coefficients in more detail.

Example—Insulation An important number for the quality of insulation
material is its k-value, i.e. the thermal conductivity. The unit of k is W=ðmKÞ.
Table 7.1 lists some typical numbers (see also HCP). Notice that the thermal
conductivity does depend on temperature and possibly pressure. The numbers
given here correspond to “usual” ambient conditions.

Suppose the k-value of an insulation material is 0:04 (This is rather typical
for glass or mineral wools as well as for foams, because of their high air
content.). How thick must the insulation layer be in order to maintain a
temperature of 20�C in a garden shed, using a 500 W electric heater, when the
outside temperature is 0 �C? We assume that the garden shed is a rectangular
3:5 by 4:0 by 2:2 m box and we neglect doors as well as windows. Thus the
total area to be insulated is A ¼ 61m2. The heat transport per unit time
through the insulation, whose thickness is d, is

dQ
dt

¼ k
A
d
DT : ð7:9Þ

3 For the sake of simplicity we treat the Lij as scalar quantities.
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With dQ=dt ¼ 500 W the result is d � 10 cm. The neglect of the timber
siding and plaster is not serious. Their contribution to the walls thickness is
comparatively minor and their k-values are significantly higher than 0:04.
This is not true for windows and doors. The main weakness of these con-
struction elements is that they locally reduce the wall’s thickness and strongly
affect the thermal insulation of a building. For windows and doors, and for
multilayered walls as well, k usually is replaced by the more suitable U-value
given by k=d or by its inverse called thermal resistance.

7.1.1 Fluctuations Revisited

One approach to a deeper understanding of transport phenomena and in particular
of the relations (7.8) exploits the analogy to fluctuations. The decay of a fluctuation
involves irreversible transport. Notice that there is not much difference between the
initial decrease of the H-function in Fig. 7.1 and the decay of a subsequent fluc-
tuation. Thus we briefly recapitulate our previous discussion of small fluctuations in
Sect. 5.1.

An isolated system possessing the internal energy E is divided into open sub-
systems. Its thermodynamic state is characterized by the thermodynamic quantities
xjðj ¼ 1; 2; . . .; nÞ. Examples for the xi are the temperature or the mass density in
one of the subsystems. The fluctuations of the xj relative to their average values are
Dxj. The probability for a particular distribution of fluctuations throughout the
collection of subsystems is4

Table 7.1 Thermal
conductivity coefficients for
selected materials

Material k [W/(mK)]

Vacuum 0

Dry air 0:03

Wood 0:1. . .0:2

Snow 0:2

Water 0:6

Solid brick 0:5

Glass 1

Copper 400

4 An explicit example in the case of energy fluctuations was worked out in Sect. 5.1.7.
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p fDxgð Þ ¼ exp DSðfDxgÞ=kBgð Þ½ �; ð7:10Þ

where

DSðfDxgÞ ¼ � 1
2

X
j;j0

gjj0DxjDxj0 ð7:11Þ

and

gjj0 � � @2

@xj@xj0
S E; x1; . . .; xnð Þ

���
xðoÞj ;xðoÞ

j0
: ð7:12Þ

The xðoÞj are the equilibrium values.
In the following

DXj ¼ @DS
@Dxj

¼ �
X
j0

gjj0Dxj0 ð7:13Þ

are generalized forces and we shall need correlation functions hDxjDXj0 i, i.e.

hDxjDXj0 i ¼
R
dfDxgDxjDXj0 exp DSðfDxgÞ=kBgð Þ½ �R

dfDxg exp DSðfDxgÞ=kBgð Þ½ � : ð7:14Þ
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Fig. 7.1 H-function obtained
from a Molecular Dynamics
computer simulation
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Using partial integration the numerator may be expressed asZ
dfDxgDxjDXj0e

DS=kB ¼ kB

Z
dfDxg @

@Dxj0
Dxje

DS=kB
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

� kB

Z
dfDxg @Dxj

@Dxj0|ffl{zffl}
¼djj0

eDS=kB :

The first integral vanishes, because the probability of infinite fluctuations van-
ishes, and we obtain

hDxjDXj0 i ¼ �kBdjj0 ð7:15Þ

Remark We may use this result to derive other useful correlation functions.
Inserting (7.13) into (7.15) yieldsX

k

gj0khDxkDxji ¼ kBdj0j:

This shows that

hDxjDxj0 i ¼ kBðg�1Þjj0 : ð7:16Þ

ðg�1Þjj0 are the elements of the inverse of the (symmetric) matrix g.

Also of interest is the combination of this equation with (7.11) which yields

hDSi ¼ �kB
2

Xm
j;j0

gjj0 ðg�1Þj0j ¼ �kB
m
2
: ð7:17Þ

This result is analogous to the equipartition formula for the average thermal
energy of a system with m degrees of freedom, whose Hamilton function is
quadratic in the attendant momenta and coordinates (cf. Eq. 5.92). Equation (7.17)
shows that the average entropy fluctuation in a system containing m fluctuating
quantities is contributed in increments of �kB=2 by each of these quantities.
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7.1.2 Onsager’s Reciprocity Relations

Let us assume that there are currents defined via

DJj ¼ dDxj
dt

ð7:18Þ

and that these currents are linearly coupled through Eq. (7.8) to the generalized
forces defined above. One can then show that the coefficients obey Onsager’s
reciprocity relations (Onsager 1931):

Ljj0 ¼ Lj0j : ð7:19Þ

If an external magnetic field ~B is applied and the system of interest rotates with a
constant angular velocity ~x, then the coefficients Lij do depend on these quantities
and one finds

Ljj0 ð~B; ~xÞ ¼ Lj0jð�~B;�~xÞ: ð7:20Þ

We show the validity of the reciprocity relations by going backwards starting
from Eq. (7.19). Using (7.15) we haveX

k

LjkhDxj0DXki ¼
X
k

Lj0khDxjDXki ð7:21Þ

or, using (7.8),

hDxj0DJji ¼ hDxjDJj0 i: ð7:22Þ

Substituting (7.18) yields

hDxj0 dDxjdt
i ¼ hDxj dDxj

0

dt
i: ð7:23Þ

The time derivative is now expressed in terms of an explicit (infinitesimal) time
difference, i.e.

hDxj0 ðtÞDxjðtþ sÞ � DxjðtÞ
s

i ¼ hDxjðtÞDxj
0 ðtþ sÞ � Dxj0 ðtÞ

s
i; ð7:24Þ

which easily is reduced to

hDxj0 ðtÞDxjðtþ sÞi ¼ hDxjðtÞDxj0 ðtþ sÞi: ð7:25Þ
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For this equation to be valid we must first shift the time origin on the right side
(t ! t � s):

hDxj0 ðtÞDxjðtþ sÞi ¼ hDxjðt � sÞDxj0 ðtÞi: ð7:26Þ

In order for the resulting equation and therefore (7.19) to hold we must require
microreversibility, i.e. the inversion s ! �s does not affect the result of the
ensemble averaging. But here we rely on the time reversibility of the microscopic
equations of motion (at least for short times). This also is the reason for the
requirements expressed in (7.20). In order for the time reversibility to hold, the
Lorentz force, which is proportional to d~r=dt 	~B, must be invariant as well as the
Coriolis force, proportional to d~r=dt 	 ~x, in the case of a rotating system.
Therefore the magnetic field, ~B, and the angular velocity, ~x, appear with reversed
signs on the right side of Eq. (7.20).

Remark Based on Eq. (7.11) the entropy production5 is given by

dDS
dt

¼ � 1
2
d
dt

X
j;j0

gjj0DxjDxj0 ¼ �
X
j;j0

gjj0Dxj0
dDxj
dt

: ð7:27Þ

Thus according to Eqs. (7.13) and (7.18)

dDS
dt

¼
X
j

DXjDJj: ð7:28Þ

The entropy production is a bilinear function of the generalized forces and the
currents. This is useful if we want to identify the correct form of the transport
coefficients Ljj0 as we shall see in the following. Another point worth mentioning is
illustrated in Fig. 7.2. A fluctuation will drive the entropy away from its equilibrium
value. This means that

DS� 0: ð7:29Þ

Stability then requires that the entropy production is positive:

dDS
dt


 0: ð7:30Þ

5 We discuss entropy production in more detail in the next section.
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Example—Currents and Generalized Forces Here we want to learn how to
obtain specific relations according to Eq. (7.8) using Eq. (7.28). Our starting
point is the first line in the expression (3.13) for DS. In this example we
assume that all DVm are zero. Instead we include charge fluctuations Dqm.
Thus we have

DS ¼ 1
2

X
m

�
DEm

2 @
2Sm

@Em
2

���o
qm;nm

þDqm
2 @

2Sm
@qm2

���o
Em;nm

þDnm
2 @

2Sm
@nm2

���o
Em;qm

þ 2DEmDqm
@2Sm

@Em@qm

���
qm;nm

���o
Em;nm

þ 2DEmDnm
@2Sm

@Em@nm

���
qm;nm

���o
Em;qm

þ 2DqmDnm
@2
m

@qm@nm

���
Em;nm

���o
Em;qm

�
:

ð7:31Þ

Differentiating with respect to time this becomes

dDS
dt

¼
X
m

� @DSm
@Em|ffl{zffl}

¼D 1=Tð Þ

dDEm

dt
þ @DSm

@qm|ffl{zffl}
¼D �/=Tð Þ

dDqm
dt

þ @DSm
@nm|ffl{zffl}

¼D �l=Tð Þ

dDnm
dt

�
:

The following definitions of the currents

DJE ¼ dDE
dt

DJq ¼ dDq
dt

DJn ¼ dDn
dt

ð7:32Þ

x

S

t

S

S

Fig. 7.2 Entropy change in
response to a fluctuation
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determine, according to Eq. (7.28), the generalized forces:

DXE ¼ D
1
T

� �
¼ � 1

T2 DT ð7:33Þ

DXq ¼ D �/
T

� �
ð7:34Þ

DXn ¼ D � l
T

� �
: ð7:35Þ

Now we can write down the linear relations between the currents and the
generalized forces in which the coefficients satisfy the reciprocity relations
(7.19):

DJE ¼ LEED
1
T

� �
þ LEqD �/

T

� �
þ LEnD � l

T

� �
ð7:36Þ

DJq ¼ LqED
1
T

� �
þ LqqD �/

T

� �
þ LqnD � l

T

� �
ð7:37Þ

DJn ¼ LnED
1
T

� �
þ LnqD �/

T

� �
þ LnnD � l

T

� �
: ð7:38Þ

Remark The generalized force DXn, for example, depends on a temperature dif-
ference and/or a chemical potential difference. If it is more convenient we can at this
point express DXn in terms of a temperature and a pressure difference. Once again
we make use of dl ¼ �sdT þ q�1dP, where s is the molar entropy and q is the
density, i.e.

�DXn ¼ D
l
T

� �
¼ 1

T
Dl� l

T2 DT ¼ 1
T

�sDT þ 1
q
DP

� �
� l
T2 DT: ð7:39Þ

Using h ¼ Tsþ l this becomes

DXn ¼ h
T2 DT � 1

qT
DP: ð7:40Þ
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Example—Thermomolecular Pressure Effect A closed system consists of
two compartments joined by an aperture allowing the exchange of energy and
matter (cf. Fig. 7.3). The two compartments are kept at slightly different
temperatures. This situation can be described by the Eqs. (7.36) and (7.38)
with D/ ¼ / ¼ 0. With the help of Eqs. (7.33) and (7.40) we obtain

DJE ¼ �LEE
1
T2 DT þ LEn

h
T2 DT � 1

qT
DP

� �
ð7:41Þ

DJn ¼ �LnE
1
T2 DT þ Lnn

h
T2 DT � 1

qT
DP

� �
: ð7:42Þ

Assuming for the moment that the temperatures in the compartments are
equal, i.e. DT ¼ 0, we deduce

DJE
DJn

¼ LEn
Lnn

ð7:19Þ
=

LnE
Lnn

: ð7:43Þ

The second equality is based on the validity of Onsager relations for the
transport coefficients LEn and LnE .

Now we return to the situation when DT 6¼ 0. Because the system is
closed, we expect DJn ¼ 0 after some time. Inserting this into (7.42) the
equation yields

DP
DT

¼ q
T

h� DJE
DJn

� �
: ð7:44Þ

If the compartments contain dilute gas, we may obtain DJE=DJn from
kinetic gas theory as applied in “kinetic pressure” on p. 32:

DJE
DJn

¼
R 0 dN~p

DzA
V

~v~p�~n
Dz

1
2mv

2
~pR 0 dN~p

DzA
V

~v~p�~n
Dz m

NA ¼ 2RT : ð7:45Þ

In addition h ¼ ð5=2ÞRT and thus

DP
DT

¼ 1
2
P
T

ð7:46Þ

JE
Jn

Fig. 7.3 Thermomolecular
pressure effect
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or, via dP=P ¼ d lnP and dT=T ¼ d ln T ,

P1

P2
¼ T1

T2

� �1=2

: ð7:47Þ

Example—Seebeck and Peltier Effect The Seebeck effect utilizes a tem-
perature difference to generate a potential gradient as illustrated in Fig. 7.4.
Two pieces of distinct metals, A and B (i.e. Cu=Al or Fe=Ni), are joined at 1
and 2. The junctions are exposed to different temperatures and this in turn
gives rise to a (small) voltage drop, D/, at 3. The Seebeck coefficient

SAB ¼ D/
DT

ð7:48Þ

is a material parameter.
Another experiment goes like this. Initially DT ¼ 0 and a current, I, flows

through the same metal loop. The result is a heat current DJE such that T2 and
T1 begin to differ. This is the Peltier effect. The quantity

PAB ¼ DJE
I

���
DT!0

ð7:49Þ

is called Peltier coefficient.
We can connect the two coefficients using the first two terms in Eqs. (7.36)

and (7.37):

DJE ¼ �LEE
DT
T2 � LEq

D/
T

ð7:50Þ

DJq ¼ �LqE
DT
T2 � Lqq

D/
T

: ð7:51Þ

T

metal 
A

metal 
B

T+ T

1 2

3Fig. 7.4 Seebeck effect
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In the case of the Seebeck effect we have DJq ¼ 0 and therefore

SAB ¼ � 1
T
LqE
Lqq

: ð7:52Þ

In the case of the Peltier effect DT ¼ 0 and thus

DJE
DJq

¼ LEq
Lqq

: ð7:53Þ

With DJq ¼ I and using the Onsager relation, i.e. LEq ¼ LqE , we obtain the
non-trivial result

�TSAB ¼ PAB: ð7:54Þ

7.2 Entropy Production

7.2.1 Entropy Production—Fluctuation Approach

Due to the local nature of the fluctuation approach, we did not pay much attention
to the origin of the currents. We want to be more precise in this respect. Therefore
we separate the total entropy change, dS, into two distinctly different contributions,
i.e.

dS ¼ diSþ deS ð7:55Þ

(cf. Fig. 7.5). The quantity diS is the entropy change inside our system of interest
due to processes inside the system. The quantity deS describes flow of entropy due
to the interaction of the system with the outside. Notice that the entropy change diS
is never negative:

diS ¼ 0 for reversible processes

diS[ 0 for irreversible processes:

d
e
S

d
i
S

Fig. 7.5 Contributions to the
total entropy change
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While diS can never be negative, deS does not have a definite sign and can be
positive or negative.

As an example consider a closed system at constant temperature. For a reversible
process we have learned that

dS ¼ dq
T
: ð7:56Þ

Now we have

deS ¼ dq
T
; ð7:57Þ

the entropy change is the heat flow across the system boundary divided by tem-
perature. Without irreversible processes inside the system we can also write

dS ¼ deS ¼ dq
T
: ð7:58Þ

Including irreversible processes inside the system this becomes

TdiS ¼ TdS� dqð1:1Þ
=
TdS� dE � PdV 
 0: ð7:59Þ

We can combine (7.28) with (7.30) obtaining

diDS
dt

¼
X
j

DXjDJj 
 0: ð7:60Þ

Below we shall show that this relation remains valid outside the linear regime.
Here we briefly mention a consequence of this for the Onsager coefficients.
Inserting (7.8) into (7.60) yields

diDS
dt

¼
X
j;j0

Ljj0DXjDXj0 
 0: ð7:61Þ

This means that the matrix of the coefficients Ljj0 is positive (semi-) definite, i.e.
the eigenvalues of this matrix are all larger or equal to zero. If we apply this to the
case when two currents are coupled linearly to two generalized forces, this con-
ditions implies (as one can easily work out):

L11 
 0 L22 
 0 L212 
 L11L22 ð7:62Þ

(note that L12 ¼ L21).
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7.2.2 Theorem of Minimal Entropy Production

At this point it is useful to introduce the concept of steady states. Consider the
example on p. 291—a system divided into two subsystems. The subsystems can
exchange matter via for instance a membrane, capillary, or aperture (see Fig. 7.3).
Additionally the two subsystems are kept at different temperatures. Thus there are
two forces, DXE and DXn, due to the different temperatures and chemical potentials.
Over time the system will reach a state in which the flow of matter vanishes, i.e.
DJn ¼ 0, whereas the transport of energy between the two subsystems continues.
Likewise a non-zero production of entropy continues also. The state variables
eventually become time independent. This non-equilibrium state is called steady
state. This type of state is different from the equilibrium state of entropy continues
also. The state variables eventually become time independent. This non-equilibrium
state is called steady state. This type of state is different from the equilibrium state
in which all forces, currents, and the entropy production vanish. Another example is
a series of coupled chemical reactions. The start compounds are continuously
supplied at a constant rate and the final products are removed likewise at a constant
rate. A steady state is reached if the concentrations of all other intermediate com-
pounds are constant. We can see that steady states require systems open to some
type of transport.

For a steady state close to equilibrium the entropy production is at a minimum
compatible with the imposed constraints. What does this mean? A steady state is
characterized by constant generalized forces DXjðj ¼ 1; . . .; nÞ and by
non-vanishing currents DJj for some j ¼ 1; . . .;m and vanishing currents for the
remaining j ¼ mþ 1; . . .; n. If we take the derivative of diDS=dt with respect to the
generalized force DXk we obtain

@

@DXk

diDS
dt

ð7:28Þ;ð7:8Þ
=

@

@DXk

X
j;j0

Ljj0DXjDXj0
ð7:19Þ
=

2
X
j

LkjDXj ¼ 2DJk:

For those k for which DJk ¼ 0 we therefore find

@
@DXk

diDS
dt ¼ 0 : ð7:63Þ

This is the theorem of minimal entropy production (Prigogine 1947, Desoer6).
With respect to the variation of DXk the entropy production is at a minimum. We
can see that this is indeed a minimum by reducing the forces DXkðk ¼ 1; . . .;mÞ to
zero, i.e. we approach the equilibrium state where diDS=dt ¼ 0. We can now
reverse direction and conclude by reason of continuity that the entropy production
in the steady state indeed is at a minimum compatible with the imposed constraints.

6 Ilya Prigogine, Nobel Prize in chemistry for his contributions to non-equilibrium thermody-
namics, 1977.
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Example—Steady State and Minimal Entropy Production We consider
the monomolecular reaction

A � X � B ð7:64Þ

in a system with constant volume V . There is a constant flow of A into the
system and a constant flow of B exiting the system. The entire process is in a
steady state. What does the theorem of minimal entropy production tell us,
when the process is perturbed by small fluctuations in the mass variables? We
begin by writing down the rate equations for the individual reactions (We
assume a certain familiarity with reaction kinetics on the level of Atkins
(1986):

A � X � dnA
dt

ð3:70Þ
=

dnð1Þ

dt
¼ k1nA � k�1nX

dnX
dt

¼ k1nA � k�1nX � k2nX þ k�2nB

X � B
dnB
dt

ð3:70Þ
=

dnð2Þ

dt
¼ k2nX � k�2nB:

The k... are rate constants, where the number refers to the reaction and the
sign indicates the forward and reverse reactions, respectively. We assume that
there is a small deviation from the steady state, i.e.

nA ¼ nðoÞA þDnA nX ¼ nðoÞX þDnX nB ¼ nðoÞB þDnB: ð7:65Þ

The index (o) indicates steady state values. Insertion into the above rate
equations yields

nðoÞX ¼ k1
k�1

nðoÞA ¼ k�2

k2
nðoÞB : ð7:66Þ

The time dependence of the deviations from the steady state is

A � X � dDnA
dt

¼ dDnð1Þ

dt
¼ k1DnA � k�1DnX

dDnX
dt

¼ k1DnA � ðk�1 þ k2ÞDnX þ k�2DnB

X � B
dDnB
dt

¼ dDnð2Þ

dt
¼ k2DnX � k�2DnB:

ð7:67Þ
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The temperature is assumed to be constant everywhere, and the entropy
production due to the decay of the fluctuation is contributed by products
DJnDXn exclusively:

diDS
dt

¼ � dDnA
dt

DlA
T

� dDnX
dt

DlX
T

� dDnB
dt

DlB
T

: ð7:68Þ

We emphasize that this is the entropy production due to the decay of a
small fluctuation. The entropy production associated with the steady state
reaction as such is discussed below in a separate example. The chemical
potential fluctuations Dli (i ¼ A;X;B) are

Dli ¼ RTD ln
ni
n
¼ RT

Dni

nðoÞi

� DnA þDnX þDnB
nðoÞ

 !
; ð7:69Þ

where n ¼ nA þ nX þ nB and nðoÞ ¼ nðoÞA þ nðoÞX þ nðoÞB . We insert this into
Eq. (7.68) and subsequently set the derivative with respect to DnX equal to
zero, i.e. dDnX ðdiDS=dtÞ ¼ 0. Even though �DlX=T is the generalized force,
we may differentiate with respect to DnX instead, because of the linear
relationship between the two. After some algebra we obtain

DnX ¼ k1DnA þ k�2DnB
k�1 þ k2

: ð7:70Þ

Notice that this result of the theorem of minimal entropy production is the
same as what we obtain if we work from Eq. (7.67) requiring dDnX=dt ¼ 0:

7.2.3 A Differential Relation in the Linear Regime

We consider the differential

d
diDS
dt

¼
X
j

�
DXjdDJj|fflfflfflffl{zfflfflfflffl}
�dJ

diDS
dt

þ DJjdDXj|fflfflfflffl{zfflfflfflffl}
�dX

diDS
dt

�
: ð7:71Þ

Using Eq. (7.8) together with the reciprocity relation (7.19) it follows that

dX
diDS
dt

¼ dJ
diDS
dt

ð7:72Þ
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and

dX
diDS
dt

¼ 1
2
d
diDS
dt

: ð7:73Þ

Remark There exists a general relation, the so called evolution criterion,7 valid
also beyond the linear regime, dX diS

dt � 0. If we apply this to (7.73) we conclude that

d2i DS
dt2

� 0: ð7:74Þ

In accord with the theorem of minimal entropy production we see that the
entropy production (following a perturbation) continuously decreases reaching a
minimum in the steady state.

7.2.4 Entropy Production—Balance Equation Approach

Here we follow Glansdorff and Prigogine (1971). Our goal is the calculation of
entropy production beyond the linear regime.

7.2.5 General Form of a Balance Equation

We wish to follow the time evolution of the scalar quantity

IðtÞ ¼
Z
V
q½I�dV : ð7:75Þ

V is a certain volume at rest, and q½I� is the local density of I inside this volume.
The change of I per unit of time is given by

@

@t
IðtÞ ¼

Z
V
r½I�dV þ

Z
@V

~j½I�d~A: ð7:76Þ

The first term is a source term corresponding to the production or elimination of
I inside V . The second term describes the change of I due to flow across the surface
of V , i.e.~j½I� is a current density and d~A, pointing towards the inside of V , is a

7 Which we discuss in more detail below.
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surface element. Using Green’s theorem we may also write the balance equation in
differential form

@

@t
q½I� ¼ r½I� � @aja½I�: ð7:77Þ

The minus sign results from the orientation of the area element. Because it is
useful, we have introduced the shorthand notation ~r �~j½I� ¼P3

a¼1 dja
=dxa � @aja½I�. If I is a conserved quantity, then r½I� ¼ 0 and (7.77) is the usual
continuity equation.

In particular we may write

diS
dt

¼
Z
V
r½S�dV ; ð7:78Þ

where r½S� is the entropy production per unit time and volume, and

deS
dt

¼
Z
@V

ja½S�dAa: ð7:79Þ

Because the macroscopic integration volume (system volume) in Eq. (7.78) is
arbitrary, we conclude that

r½S� 
 0: ð7:80Þ

Our goal is it to derive r½S� expressed in terms of generalized forces and
attendant currents, without necessarily being close to equilibrium. Before we can do
this, however, we must go through a list of ingredients.

7.2.6 A Useful Formula

First we derive a useful formula. The total derivative of the function /ð~r; tÞ with
respect to time is

d
dt
/ð~r; tÞ ¼ @

@t
þ va@a

� �
/ð~r; tÞ; ð7:81Þ

where~v ¼ d~rðtÞ=dt. Multiplication with the density of I, q½I�ð~r; tÞ, yields

q½I� d
dt
/ ¼ q½I� @

@t
þ va@a

� �
/þ/

@

@t
þ @ava

� �
q½I�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

; ð7:82Þ
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where a “zero” in the form of the continuity equation has been added—provided
that r½I� ¼ 0 for this I. Using @aðapaÞ ¼ ðpa@aÞaþ að@apaÞ the equation assumes
its final form

q½I� d
dt
/ ¼ @

@t
ðq½I�/Þþ @a q½I�va/ð Þ: ð7:83Þ

7.2.7 Mass Balance

In the case of mass we can write down the source term quite easily (cf. Eq. 3.70):

r½mi� ¼ mimi
dn0

dt
: ð7:84Þ

Here mi is the molar mass of component i in a reaction and dn0=dt is the reaction
rate in moles per unit time and unit volume (indicated by the prime). By convention
mi\0 for reactants and mi [ 0 for products. If there are several coupled reactions
taking place, then the attendant generalization is

r½mi� ¼
X
r

mðrÞi mi
dn0ðrÞ

dt
; ð7:85Þ

where dn0ðrÞ=dt is the reaction rate in the r-th reaction. The mass current associated
with component i is

~j½mi� ¼ q½mi�~vi ¼ q½mi�ð~Di þ~vÞ: ð7:86Þ

Here ~Di ¼~vi �~v is the velocity of component i relative to the center of mass
velocity ~v ¼Pi q½mi�~vi=

P
i q½mi� taken over all components. The resulting mass

balance equation is

@

@t
q½mi� ¼

X
r

mðrÞi mi
dn0ðrÞ

dt
� @aq½mi�ðDi;a þ vaÞ: ð7:87Þ

300 7 Non-equilibrium Thermodynamics



7.2.8 Internal Energy Balance

Due to conservation of the overall energy we have

r½E� þ r½K� þ r½U� ¼ 0; ð7:88Þ

where r½E� is the internal energy source per unit volume in V , r½K� is the
macroscopic kinetic energy source of the same unit volume, and r½U� is the
potential energy source due to external forces. We obtain r½K� via the equation of
motion for the mass density q½m� in a continuous medium:

q½m� dva
dt

¼ q½m�ga � @bpab: ð7:89Þ

Here ga is the respective component of an external force (per unit mass) acting
on the volume element. The second term on the right is the same force density
component due to internal forces, where the stress tensor introduced in Eq. (1.3) is
replaced by its negative—the pressure tensor. Multiplication with va (including
summation over a) and application of Eq. (7.83) yields

@

@t
1
2
q½m�v2 ¼ q½m�vaga þ pab@bva|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼r½K�

�@a
1
2
q½m�v2va þ vbpba

� �
: ð7:90Þ

An analogous equation for the potential energy follows via dU ¼ �draga, i.e.
the force~g is the negative gradient of U, and dU=dt ¼ �vaga. Multiplication of this
equation by q½m� and subsequent application of (7.83) yields

@

@t
q½m�U ¼ �q½m�vaga|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼r½U�

�@a q½m�vaUð Þ: ð7:91Þ

If there is more than one component we can write for the source of component i:

r½Ui� ¼ �
X
i

q½mi�vi;agi;a: ð7:92Þ

The flow of internal energy is

ja½E� ¼ q½E�va þ JQ;a: ð7:93Þ
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The first term on the right is convection, whereas the second is heat flow.
Combination of these results yields the following balance equation for the internal
energy

@

@t
q½E� ¼

X
i

q½mi�Di;agi;a � pab@bva � @a q½E�va þ JQ;a
	 


: ð7:94Þ

7.2.9 Affinity

One more ingredient is the affinity. We consider a process consisting of r coupled
chemical reactions. It is then useful to rewrite

PK
i¼1 lidni as followsX

i

lidnið3:70Þ=

X
i

limidn ¼
X
j

lj
X
r

mðrÞj dnðrÞ ¼ �
X
r

AðrÞdnðrÞ ð7:95Þ

(the index j indicates the components in a particular reaction), where

AðrÞ ¼ �
X
j

mðrÞj lj ð7:96Þ

defines the affinity. Notice that a non-vanishing affinity means that the system is not
at equilibrium.

7.2.10 Entropy Balance Equation

The last ingredient is the assumption of local equilibrium even if the system as a
whole is not at equilibrium. We can always express the extensive quantities in the
form of local densities. Examples are

m ¼
Z
V
q½m�dV ð7:97Þ

E ¼
Z
V
q½m�edV ðq½E� ¼ q½m�eÞ ð7:98Þ

G ¼
Z
V
q½m�

X
i

Ni

mi
lidV ð7:99Þ

302 7 Non-equilibrium Thermodynamics



S ¼
Z
V
q½m�sdV : ð7:100Þ

Notice that

Ni ¼ dmi

dm
ð7:101Þ

is a mass fraction (
P

i Ni ¼ 1) and

q½mi� ¼ q½m�Ni: ð7:102Þ

Local equilibrium means that the entropy per unit mass inside a small volume
element, s, is the same function of the local macroscopic variables as in a situation
of global equilibrium. Consequently, the equations from equilibrium thermody-
namics remain applicable on the local scale.

Using the above local quantities we write (cf. Eq. 1.51)

ds
dt

¼ 1
T
de
dt

þ P
T
d
dt

1
q½m� �

X
i

li
T
dðNi=miÞ

dt
: ð7:103Þ

We multiply this equation with q½m�. Term by term application of Eq. (7.83),
together with the indicated previous results, yields

q½m� ds
dt

¼ @

@t
ðq½m�sÞþ @aðq½m�vasÞ

q½m�
T

de
dt

ð7:94Þ
=

X
i

q½mi�Di;a
gi;a
T

� pab
T

@bva � 1
T
@aJQ;a

P
T
q½m� d

dt
1

q½m� ¼
Pdab
T

@bva

�
X
i

li=mi

T
q½m� dNi

dt
ð7:87Þ;ð7:95Þ;ð7:99Þ

=

X
r

AðrÞ

T
dn0ðrÞ

dt
þ
X
i

li=mi

T
@aðq½mi�Di;aÞ:

In collecting the right sides together according to (7.103) we also make use of

1
T
@aJQ;a ¼ @a

JQ;a
T

� �
� JQ;a@a

1
T

� �

and

X
i

li=mi

T
@aðq½mi�Di;aÞ ¼ @a

�X
i

li=mi

T
q½mi�Di;a

�
�
X
i

q½mi�Di;a@a
li=mi

T

� �
:
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Because

r½S� � @aja½S�ð7:77Þ;ð7:100Þ=
@

@t
q½m�sð7:83Þ

=
q½m� ds

dt
� @aðq½m�vasÞ; ð7:104Þ

we can collect the appropriate terms from the above non-numbered equations, i.e.

r½S� ¼
X
i

q½mi�Di;a
gi;a
T

� @a
li=mi

T

� �

� pab � Pdab
T

@bva þ JQ;a@a
1
T

� �
þ
X
r

dn0ðrÞ

dt
AðrÞ

T

ð7:105Þ

and

ja½S� ¼ JQ;a
T

�
X
i

li=mi

T
q½mi�Di;a þ q½m�vas: ð7:106Þ

We notice that the entropy production has the bilinear form,

r½S� ¼Pj JjXj 
 0 ; ð7:107Þ

encountered before using the fluctuation approach (cf. Eq. 7.28). Table 7.2 lists
currents, forces, and the type of transport (cf. Eqs. 7.32–7.35).

Notice that Eq. (7.107) also holds beyond the linear regime, provided that the
local entropy assumptions is valid. Notice also that it is possible to use different sets
of generalized currents, J 0j , and generalized forces, X 0

j . However, this should not
change the entropy production (for details see again §3 in Glansdorff and Prigogine
(1971)).

Example—Steady State Entropy Production in a Mono Molecular
Reaction We return to our previous example of entropy production in a
chemical system undergoing the monomolecular reaction

A � X � B: ð7:108Þ

Table 7.2 Currents, forces,
and the attendant type of
transport

Current J Force X Transport

q½mi�Di;a gi;a=T � @aðli=miTÞ Matter

pab � Pdab �@bva=T Momentum

JQ;a @aT�1 Heat

dn0ðrÞ=dt AðrÞ=T Chemical reaction
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Figure 7.6 shows a cartoon of the system. A is supplied to the system,
whereas B is leaving the system. In this example we calculate the steady state
entropy production itself—not just the entropy production due to the decay of
a fluctuation deviation from the steady state.

First we want to compute the internal entropy production diS=dt using Eqs.
(7.78) and (7.105). There are no external forces, the interior of the system is
homogeneous in the concentrations as well as temperature, and viscosity
effects (off diagonal elements of the pressure tensor) are negligible. This
means that only the last two terms in Eq. (7.105) must be included in the
calculation. We begin with the activities for the two reactions:

A � X Að1Þ ¼ �mAlA � mð1ÞX lX
dn0ð1Þ

dt
¼ m�1

A
dnA=V
dt

X � B Að2Þ ¼ �mð2ÞX lX � mBlB
dn0ð2Þ

dt
¼ m�1

B
dnB=V
dt

:

Thus

diS
dt

¼
Z
V
r½S�dV ¼

Z
V

�
JQ;a@a

1
T

� �
� 1
T
ðlA þ mð1ÞX m�1

A lXÞ
dnA=V
dt

� 1
T
ðmð2ÞX m�1

B lX þ lBÞ
dnB=V
dt

�
dV :

With mA ¼ �1, mð1ÞX ¼ �mð2ÞX ¼ 1, mB ¼ 1, dðnB=VÞ=dt ¼
�dðnA=VÞ=dt[ 0 this becomes

diS
dt

¼ � lA
T

dnA
dt

� lB
T
dnB
dt

: ð7:109Þ

The heat flow term has vanished because (by definition) there is no tem-
perature gradient in V .

Now we compute the flow of entropy due to the interaction of the system
with the outside using Eqs. (7.79) and (7.106), i.e.

J
A

J
B

v
B

v
A

A = X = B

Fig. 7.6 A monomolecular
steady state reaction
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deS
dt

¼
Z
@V

ja½S�dAa ¼
Z
@V

� JQ;a
T

� lA
T
q½mA�vA;a � lB

T
q½mB�vB;a

�
dAa:

Here we have assumed that there is no center of mass motion and no
motion of X across the surface of V . Now we use ðq½mA�=mAÞvA;adAa ¼
dnA=ðAdsÞðds=dtÞdA ¼ ð�dnA=dtÞdA=A and ðq½mB�=mBÞvB;adAa ¼ �dnB=
ðAdsÞðds=dtÞdA ¼ �ðdnB=dtÞdA=A. The quantities dnB=ðAdsÞ and
dnB=ðAdsÞ are the molar amounts of A and B in a thin surface shell divided by
the volume of this shell. Our final result is

deS
dt

¼ lA
T
dnA
dt

þ lB
T

dnB
dt

: ð7:110Þ

Once again does the assumed uniformity conditions permit no net heat
flow across the boundary of the volume and we find

deS
dt

¼ � diS
dt

; ð7:111Þ

which means dS=dt ¼ diS=dtþ deS=dt ¼ 0. This is correct, because under
steady state conditions there is no overall entropy change inside the system.
But notice that still diS=dt[ 0 and therefore deS=dt\0. The positive entropy
production of the non equilibrium state inside the system is maintained by a
flow of negative entropy into the system.

7.2.11 Evolution Criterion

Using the balance equation approach in conjunction with the local equilibrium
assumption its is possible to show

dX
dt

diS
dt

¼
Z
V

X
j

Jj
dXj

dt
dV � 0 ; ð7:112Þ

where ¼ applies in the steady state (Chapter 9 in Glansdorff and Prigogine (1971))
This is the evolution criterion mentioned earlier (cf. 7.74). The evolution criterion is
the most general relation of non-equilibrium thermodynamics. Therefore it is
tempting to define the kinetic potential
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dU ¼ TdX
diS
dt

: ð7:113Þ

However, while it is possible to find a suitable integrating factor in some cases,
dU in general is not an exact differential.

7.3 Complexity in Chemical Reactions

This section discusses entropy production in a specific context. Owing to the
complexity of the matter we shall focus on processes describable entirely in terms
of the last line in Table 7.2. This certainly is crude, because chemical reactions
always involve other types of currents and forces as well.

Consider the reaction

X þ Y � CþD: ð7:114Þ

Momentarily we are interested in the process far from equilibrium and we
neglect the reverse reaction. Suppose that the reaction rate is given by

dn
dt

¼ k1nXnY ; ð7:115Þ

where k1 is a rate constant. For the affinity we have

A ¼ RT ln
nXnY
nCnD

þ const: ð7:116Þ

A fluctuation of the amount of X thus gives rise to the entropy production

diS
dt

/ nY
nX

ðDnXÞ2 [ 0 ð7:117Þ

—in accord with thermodynamic stability. However, if instead we repeat this cal-
culation for the autocatalytic reaction

X þ Y ! 2X; ð7:118Þ

using again (7.115), the entropy production becomes

diS
dt

/ � nY
nX

ðDnXÞ2\0: ð7:119Þ

It looks as if in this case there is the danger of an unstable process. We shall see
that things return to normal, i.e. stability, when we analyze this more carefully.
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However, what is important to remember is that autocatalytic reactions are special
and, as it turns out, are a key ingredient to the explanation of the creation of order
not possible in systems remaining close to equilibrium.8

7.3.1 Bray Reaction

The following system of coupled reactions,9 which has a realistic origin (Ebeling
and Feistel 1986), here serves to illustrate a number of important aspects of
non-linearity and autocatalysis. Most important, perhaps, is the possibility of
bifurcation providing systems with the choice between different steady states. This
in principle offers the possibility for competing alternative pathways along which
chemical systems can evolve and (sometimes) compete along the way.

Our reaction schema is this:

X þ Y � 2X

2X þ Y � 3X

X � F

B ! Y

F ! B:

ð7:120Þ

The time dependence of the respective mole fractions10 shall be the following

d
dt
nX ¼ k1nXnY � k�1nX

2 þ k2nX
2nY � k�2nX

3 � k3nX þ k�3nF

d
dt
nY ¼ �k1nXnY þ k�1nX

2 � k2nX
2nY þ k�2nX

3 þ k4nB

d
dt
nF ¼ k3nX � k�3nF � k5nF

d
dt
nB ¼ �k4nB þ k5nF :

ð7:121Þ

Just as a reminder: (i) the k’s are rate constants; (ii) negative indices indicate
reverse reactions; (iii) a term like nXnY assumes that nX reacts with nY in a
two-molecule collision; (iv) in general, the powers indicate the number of

8 A particular importance of autocatalytic reactions is their key role in models of prebiotic evo-
lution—an idea that was developed quite a long time ago (Allen 1957). We return to this aspect in
the next section.
9 This is an early representative of the coupled reactions schemes discussed in the context of
chemical oscillations. Perhaps the most famous experimental representative is the
Belousov-Zhabotinsky reaction.
10 We assume constant volume.
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molecules of this type involved in the respective reaction; (vi) minus signs mean
that this reaction reduces the mole fraction on the left side of the equation.

Example—Simple Reaction Kinetics We solve the following special case of
(7.121): nY � nY ð0Þ ¼ const, B ¼ const, k2 ¼ k�2 ¼ k�3 ¼ 0. Insertion into
(7.121) yields

d
dt
nX ¼ ðk1nY ð0Þ � k3ÞnX � k�1nX

2

d
dt
nF ¼ � d

dt
nX :

ð7:122Þ

Integration of the first equation yields the solution

nXðtÞ ¼ ðk1nYð0Þ � k3ÞnXð0Þ
k�1nXð0Þ � ½k�1nXð0Þ � k1nYð0Þþ k3� exp½ð�k1nYð0Þþ k3Þt�

ð7:123Þ

Depending on whether nYð0Þ\nY ;crit ¼ k3=k1 or nYð0Þ[ nY ;crit there are
two steady state solutions nXð1Þ ¼ 0 or nXð1Þ ¼ ðk1nYð0Þ � k3Þ=k�1 if
nXð0Þ[ 0 If nXð0Þ ¼ 0 the only solution is nXðtÞ ¼ 0 (cf. Fig. 7.7). The
existence of the two steady state solutions actually follows immediately by
setting the right side of Eq. (7.122) equal to zero. However, the system’s
choice which of the two solutions it prefers, i.e. the stable solution, depends
on the parameter nYð0Þ=nY ;crit.

0 100 200 300 400 500
t

0.02

0.04

0.06

0.08

0.10
nX tFig. 7.7 Two solutions of

Eq. (7.122)
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Example—Entropy Production We briefly reconsider the potential stability
problem expressed in (7.119), i.e. we study the first line in the reaction
scheme (7.120) by itself (cf. 7.118) with nY � nY ð0Þ ¼ const. The reaction
rate is given by

dnðtÞ
dt

¼ k1nXðtÞnYð0Þ � k�1n
2
XðtÞ: ð7:124Þ

In comparison to (7.115) we now include the reverse reaction. The activity
is

AðtÞ ¼ RT ln
nXðtÞnYð0Þ

n2XðtÞ
þ const: ð7:125Þ

The entropy production due to a small fluctuation DnX ¼ DnXðtÞ is given
by

diDS
dt

¼ dDn
dt

DA
T

¼ �R
DnX
nXðtÞ k1nYð0ÞDnX � 2k�1nXðtÞDnxð Þ

¼ R 2k�1 � k1
nYð0Þ
nXðtÞ

� �
Dn2X :

ð7:126Þ

Using nXðtÞ � nXð1Þ and subsequent insertion of the (non-zero) steady
state solution dn=dt ¼ 0, i.e. nXð1Þ ¼ ðk1=k�1ÞnYð0Þ yields

diDS
dt

� Rk1Dn
2
X 
 0: ð7:127Þ

We may include a check of the evolution criterion (7.112) for the present
reaction, i.e.

dA
dt

diS
dt

¼ 1
T
dnðtÞ
dt

dA
dt

: ð7:128Þ

We assume uniformity throughout the volume and thus omit the integra-
tion. The result is

dA
dt

diS
dt

¼ �R
1

nXðtÞ
dnXðtÞ
dt

� �2

� 0: ð7:129Þ
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7.3.2 Logistic Map

Here we return to the above example simple reaction kinetics, because we want to
discuss the “stability issue” from another angle introducing the logistic-map:

xkþ 1 ¼ 4rxkð1� xkÞ: ð7:130Þ

If we identify the index k ¼ 0; 1; 2; . . . with time t, i.e. xðkþ 1Þ �
xðkÞ� dnXðtÞ=dt (reasonable as long as xðkþ 1Þ � xðkÞ), we can express (7.122) by
(7.130) if in addition 4r ¼ k1nYð0Þ � k3 þ 1 ¼ k�1.

The mapping (7.130) may be iterated graphically as shown in Fig. 7.8 (left:
r ¼ 0:1; right: r ¼ 0:6). Starting from xo ¼ 0:1 (open circles) the value of x1 is
calculated (first arrow); the subsequent horizontal arrow is to ðx1; x1Þ; the following
vertical arrow yields x2; and so on. For r ¼ 0:1 the mapping converges towards
x1 ¼ 0, while for r ¼ 0:6 it converges on x1 ¼ 0:583333. The two so called fixed
points are indicated by the solid circles. Apparently x ¼ 0 ceases to be a stable fixed
point when the slope of 4rxð1� xÞ at the origin is greater than one, which happens
when r[ rcrit ¼ 1=4. Notice that rcrit corresponds to nY ;crit! Figure 7.9 is a sketch
illustrating the similarity between (7.122) and (7.130).

But there is more to discover here. Increasing the parameter r to 0:8 leads to the
graph shown in Fig. 7.10. The final result is not one stable fixed point. The iteration
yields a stable 2-cycle, i.e. asymptotically the mapping alternates between the two
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Fig. 7.8 Iterations of the logistic map

Fig. 7.9 A sketch illustrating
the similarity between (7.122)
and (7.130)
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solid circles. The reason why this happens is illustrated in the Fig. 7.11. The solid
line is the square11 of (7.130), i.e.

xkþ 2 ¼ 4rð4rxk½1� xk�Þð1� 4rxk½1� xk�Þ: ð7:131Þ

The right side again is symmetric around 1=2, but now there is a local minimum
also at 1=2. The left panel is obtained for this new mapping if r ¼ 0:7, whereas the
right panel is obtained when r ¼ 0:8. Again it is the change of slope relative to the
dotted line which makes the difference. This time however it is the slope at 1=2 and
not at the origin.

A particular interesting aspect of the right panel is that a “perturbation” of a
“system” at the right attractive point (old steady state), i.e. a perturbative shift of xn
to a value below the central intercept with the dashed line, will cause the “system”
to approach the lower fixed point (new steady state) rather than returning to its
original fixed point. Analogously an opposite perturbation across the central
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Fig. 7.10 Iteration of the logistic map with r ¼ 0:8
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Fig. 7.11 A closer analysis of Fig. 7.10

11 We use the square because each particular fixed point is visited every second iteration.
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intercept will cause a transition to the upper fixed point. This of course is the reason
why the stable 2-cycle emerges. Every iteration throws us to the opposite side of the
intersection of the dotted with the solid line. On its respective side the governing
fixed point attracts and continues to do so until the iteration produces the two fixed
point values only.

Note in this context that the “transition” in Fig. 7.9 is similar to what happens
upon cooling of a ferro-magnetic material below the Curie temperature Tc, i.e.
increasing r means cooling. Above Tc there is only one stable state with zero
magnetization. Below Tc the magnet is offered two stable states, whereas the
zero-magnetization state becomes unstable. Fluctuations near Tc decide which
magnetization direction is chosen. This is called spontaneous symmetry breaking
(cf. the first example in Sect. 5.1 (model magnet)).

Finally, Fig. 7.12 is a demonstration of how complex the seemingly simple
mapping (7.130) really is. The right graph shows the asymptotic x-values (and
cycles) over a wide r-range. Notice that rcrit is outside the displayed range. Close to
0:75 occurs the bifurcation we have discussed. The bifurcation continues to repeat
itself along the new branches until this becomes difficult to resolve. We do not want
to discuss this graph further12 and refer the interested reader to the original work by
Feigenbaum (1983) or to Kadanoff (1993),13 and particularly to the basic text by
Gould and Tobochnik (1996). We also postpone the discussion of the right panel in
Fig. 7.12 to p. 316 after the discussion of linear stability analysis.

What one should bear in mind, however, is that higher order non-linearity in
chemical reactions, just as in the simplified example of the logistic map, may lead to
bifurcations distinguishing chemical pathways involving different steady states.

Fig. 7.12 Asymptotic x-values and stability analysis of the logistic map versus r

12 Not visible at this resolution are the self-similar copies of the original graph inside the “white
gaps”.
13 Notice that this is the intercept of two lines of research. One objective is the understanding of the
transition from order to chaos, whereas another group of researchers, Prigogine et al., peruse the
opposite direction.
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7.3.3 Chemical Clocks

Let us select another special variant of the above Bray reaction. We choose
B ¼ const:, k�1 ¼ k�2 ¼ k�3 ¼ 0. The system of rate equations (7.121) with this
choice becomes

d
dt
nX ¼ k1nXnY þ k2nX

2nY � k3nX

d
dt
nY ¼ �k1nXnY � k2nX

2nY þ k4nB

d
dt
nF ¼ k3nX � k4nB:

ð7:132Þ

Figure 7.13 shows a portion of the time evolution of nXðtÞ and nyðtÞ. We do not
include nFðtÞ, because it is not affecting the coupling between nXðtÞ and nyðtÞ. The
initial values are close to the steady state solutions nXð1Þ ¼ k4nB=k3 and
nYð1Þ ¼ k23=ðk1k3 þ k2k4nBÞ. Here k1 ¼ 0:5, k2 ¼ 1, k3 ¼ 0:9, k4 ¼ 1, and
nB ¼ 0:3. Thus nXð0Þ � 0:333 and nY ð0Þ � 1:0125. This variant of the Bray
reaction yields chemical oscillations.

The science of chemical oscillation is a wide field. The oscillations may be
oscillations in time, as in our example, or spatial oscillations.14 The description of
real oscillation phenomena also requires to include diffusive or convective flows.
A rather detailed discussion of oscillation phenomena in the context of
non-equilibrium thermodynamics is given in Nicolis and Progogine (1977).
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1.0Fig. 7.13 Oscillating
chemical reaction

14 Molecular pattern formation due to gradient induced gene transcription is part of the early
(Drosophila) embryo development (Nüsslein-Volhard 2006).
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7.3.4 Linear Stability Analysis

We can solve the coupled system of the Bray reaction or similar coupled first-order
differential equations on a computer quite easily. However, the answer is likely to
be confusing, because we obtain a variation of distinct looking results depending on
the rate constants or other conditions we impose on the system—why for instance
do we choose k1 ¼ 0:5, k2 ¼ 1, k3 ¼ 0:9, k4 ¼ 1, and nB ¼ 0:3 in the above
example?

A simple tool allowing a classification of our numerical solutions is the fol-
lowing. We consider a system of n coupled reactions described via

d
dt
ni ¼ Tiðn1; . . .; nnÞ: ð7:133Þ

Notice that Tiðn1; . . .; nnÞ is an in general non-linear function of the nj.

A particular steady state solution of (7.133) is denoted ðnðoÞ1 ; . . .; nðoÞn Þ,15 i.e.

0 ¼ TiðnðoÞ1 ; . . .; nðoÞn Þ: ð7:134Þ

We now insert ni ¼ nðoÞi þ dni into (7.133) and expand the right side around the

steady state solution ðnðoÞ1 ; . . .; nðoÞn Þ to linear order in the perturbations dni:

d
dt
dni ¼

Xn
j¼1

@Ti
@nj

���odnj: ð7:135Þ

Or in matrix form:

d
dt
d~n ¼ Ad~n ð7:136Þ

with Aij ¼ @Ti=@njjo. Suppose the transformation SAS�1 diagonalizes A and
therefore (7.136) becomes

d
dt
dn0i ¼

Xn
j¼1

kidijdn
0
j: ð7:137Þ

Here dij ¼ 1 if i ¼ j and zero otherwise and d~n0 ¼ Sd~n. The now decoupled
linear system (7.137) has the solution

dn0iðtÞ� exp½kit�: ð7:138Þ

15 There may be more than one steady state.
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We see that the steady state solution ðnðoÞ1 ; . . .; nðoÞn Þ is completely stable (un-
stable) with respect to the small perturbations if all eigenvalues ki of A are real and
negative (positive).

In the case of Fig. 7.13 the two eigenvalues are k1 ¼ 0:0411� i 0:49831 and
k2 ¼ 0:0308333� i 0:37373. Both eigenvalues posses positive real parts, i.e. the
steady state close to which the trajectory is started is not stable. The imaginary parts
give rise to the oscillatory behavior. Figure 7.14 illustrates how the solution spirals
away from its starting point. We can use this type of analysis to find other types of
trajectories depending on our choice of parameter values.

A similar type of analysis also explains the right panel in Fig. 7.12. Let us start
the iteration of the logistic map from two x-values separated by the small distance
jdx0j. What happens to this distance after i iterations? Using
dxnþ 1=dxn ¼ 4rð1� 2xnÞ, we can work out the answer as follows:

jdxij ¼ j4rð1� 2xi�1Þjjdxi�1j
¼ j4rð1� 2xi�1Þjj4rð1� 2xi�2Þjjdxi�2j
¼ . . .

¼
Yi�1

n¼0

j4rð1� 2xnÞjjdx0j

Assuming jdxij ¼ jdx0j exp½ði� 1Þk� for large i, we may compute k via
k ¼ limi!1 i�1 ln

Pi�1
n¼0 j4rð1� 2xnÞj. Figure 7.12 shows k ¼ kðrÞ. Negative val-

ues mean that the iteration approaches a stable fix point or limit cycle. Positive
values mean that a small perturbation grows exponentially. We notice that the
bifurcations are associated with k ¼ 0. k is called Lyapunov-exponent.
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Fig. 7.14 Stability analysis
pertaining to the system in
Fig. 7.13
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7.4 Remarks on Evolution

If we think about evolution, what we usually have in mind are animal and plant
populations adapting to changing environmental condition. The principle is
seemingly easy to understand. Reproduction produces a new generation of indi-
viduals, who either by combination of their parents genetic information or by
mutation develop an advantage over other individuals of their generation. This
advantage acts as advantage due to changing environmental conditions and leads to
an enhanced reproduction, perhaps because of a better chance for survival.16

Because evolution is the cause for the complexity thermodynamics is seemingly
opposing (cf. the Feynman quote in the introduction to this chapter), it is interesting
to trace evolution back to the beginnings of live itself and beyond. But the further
one proceeds into the past, the more difficult it becomes to find the traces.
Nevertheless, the question arises at what stage in our planet’s development did
evolution start? Even before “life” came into existence, there must have been a
chemical evolution and chemical reactions can be described by thermodynamics.

Researchers have attempted to recreate the early chemical steps towards the
development of life on the young earth in their laboratories, starting with the
experiments of Stanley Miller and Harold Urey in 1953 extending ideas of A.
I. Oparin and J. B. S. Haldane (Oparin 1964; Haldane 1990). The earth is an open
system, and we have seen that there is an enormous flow of energy into this system
primarily from the sun (Ebeling and Feistel 1986). Life and its development is
possible in a thin shell on the surface of the earth. There also is heat and matter
flowing into this shell from below. In addition the earth is hit by cosmic radiation
and matter. Thus there is sufficient negative entropy production to allow ordering
without causing a conflict with the second law. But the question still remains: at
what point did “evolution” begin to drive things towards the development of
“unlikely order?” Or is there the need for additional laws of nature—like an evo-
lution law? This does not appear to be the case, even though it is probably fair to
say that the very early evolution is still a matter of intense research at this time (e.g.,
Nowak and Ohtsuki 2008).

One may speculate that prebiotic evolution corresponds essentially to a sequence
of instabilities bringing about increasing complexity (Nicolis and Progogine 1977).
Significant insight along this line is due to M. Eigen17 and coworkers (Eigen and
Winkler 1993; Eigen 1996; Eigen et al. 1981; Eigen 1993). Eigen and coworkers
have studied the autocatalytic synthesis or replication of RNA strands in a test tube.
Their experiments were guided by the idea that the primeval broth constituted a
suitable medium for Darwin’s evolution acting on self-replicating molecular

16 The principle may even be applied to the optimization of technical systems or material prop-
erties. So called genetic algorithms consist of a set of operators simulating reproduction, combi-
nation, and mutation applied to linear parameter sets defining the technical system (e.g. Goldberg
1989).
17 Eigen 1967; he is perhaps better known for his work on prebiotic evolution.
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species, i.e. RNA strands representing different nucleotide sequences. Strands with
different sequences compete for the supply of monomers. Two key ingredients of
the concept they develop for the RNA evolution are the quasispecies and the
hypercycle. The former is the long-time result of the coupled reactions

dni
dt

¼ ðkii � �kÞni þ
X
jð6¼iÞ

kijnj: ð7:139Þ

Here ni is the amount of sequences of type i. kii is the rate corresponding to a
perfect replication of i. kij (i 6¼ j) is the rate corresponding to a replication of j
leading to the sequence i via sequence errors during replications. The quantity �k is a
mean excess productivity. The excess productivity of i is the difference between the
rate of formation and the rate of decomposition of sequence i. This is adding the
element of selective competition, because an increase of the mean excess produc-
tivity exerts a selective pressure on the individual sequence types.18 The steady
state solution consists of a core sequence m in constant competition with its own
mutations. This distribution of sequences is called quasispecies.

However, the amount of information which can be stored by a quasispecies is
limited. The longer the sequences becomes, the larger becomes the number of
sequence errors during replication. Mathematically this summarized in the fol-
lowing criterion:

�qNi
i Yi 
 1: ð7:140Þ

In this relation �qi is the (average) probability that a particular monomer in the
replicated sequence is the correct one. The probability of a perfect replication of a
sequence of length Ni therefore is �qNi

i . This number by itself is less than unity and
therefore there must be another factor, Yi, outweighing replication errors. Yi is a
measure for the competitive advantage of sequence i. According to (7.140) the
maximum possible length of a sequence satisfying this criterion is

Ni;max � lnY i

1� �qi
ð7:141Þ

(using ln �qi � 1� qi or �qi � 1). This leads to the above conclusion that a quasis-
pecies by itself can maintain only a very limited amount of information.19 This
information problem is improved via the hypercycle concept.

18 The principle is analogous to a high jump competition. If a jumper clears the bar, the others must
also clear this height in order to remain in the competition.
19 The logarithm in the numerator does ensure that the latter will not be large. In addition,
replication without additional mechanisms enhancing its precision limits the approach of 1� �qi
towards zero.
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A hypercycle describes the autocatalytic coupling of a number of quasispecies.
The requirements for the formation of a hypercycle are: (i) every quasispecies by
itself must be stable; (ii) the quasispecies must tolerate each other; (iii) there must
be however some kind of feed-back coupling between the sequences. Figure 7.15 is
an illustration of a hypothetical dynamic flow due to condition (iii) in a
three-quasispecies-hypercycle towards a fixed point (this triangular diagram is
analogous to the ternary phase diagram in Fig. 4.28). The types of flows possible
are similar to the dynamical flows discussed in the context of linear stability
analysis. The type of coupling between the quasispecies populations is circular. One
type of macromolecule catalyses the next and so forth leading to a closed loop—a
hypercycle. Notice that autocatalysis enters as one necessary ingredient! In prin-
ciple there are different types of circular couplings giving rise to competing
hypercycles. Eigen and coworkers as well as others have analyzed the dynamics of
hypercycles extensively on the basis of computer experiments combined with
experimental observations on model systems. But the hypercycle is a qualitative
concept and does not make concrete predictions. The hypercycle model also has
been criticized because of stability problems (e.g., Dyson 1985). In his book Dyson
constructs his own model of prebiotic evolution. His is a theoretical model based on
polypeptides—an alternative to the polynucleotide based chemical evolution. It is
not possible to discuss details here. However, it is interesting to mention that the
main feature of the model is the possibility for switching between steady states
(spontaneous symmetry breaking) akin to the mechanism depicted in Fig. 7.11.

Example—Hypercycle Game This example illustrates the idea of the
hypercycle in the form a game or algorithm (taken from Eigen and Winkler
(1993)). In this algorithm the reacting four quasispecies are represented by
tiles of identical color. The quasi species are linked via the following circular
sequential ordering of tile colors: blue ! green ! orange ! red ! blue.

quasi-
species 1

quasi-
species 2

quasi-
species 3

Fig. 7.15 Hypothetical
dynamic flow in a
three-quasispecies-hypercycle
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Algorithm: (i) randomly distribute tiles of the four different colors on a periodic
lattice; (ii) pick one tile at random (its color is “c”); (iii) if this tile has a common
edge with at least one other tile of the preceding color in the sequence, then turn the
color of another randomly chosen tile into “c”; (iii) goto (ii).

Figure 7.16 shows two 40	 40 lattices (left: initial random distribution; right:
particular distribution after 2 � 105 iteration steps of 2 � 106 total). The label
“changes” stands for the number of actual tile replacements. Notice that the above
algorithm produces pronounced oscillations. Notice also the pairing of next-nearest
neighbors in the color sequence, e.g. when there is much blue there also is little
orange. Clearly, this is just a game, but it provides a feeling for the type of auto-
catalytic coupling we have been talking about and its consequences. It is worth
noting that other sets of local rules can be invented giving rise to spatial structuring
(cf. cellular automata).
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Fig. 7.16 Results of the hypercycle game
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Experimental information on the early evolution and the beginning of live is
extremely difficult to obtain; only the arrival of microbial genomics has allowed to
reliably retrace subsequent developments. The earth was formed about 4:5 � 109
years ago. The earliest traces of primitive cells occurred possibly as early as 3:5 � 109
years ago (Schopf 2006). Nevertheless, this leaves several hundred million years for
the actual chemical evolution. The evolution of cells (Woese 2002), however, has
taken the major portion of the remaining time. The step from microorganisms
(bacteria) to higher live forms occurred much later—less than 1 � 109 years ago.
Even tough the very early steps towards cellular live are still in the dark, it is very
likely that autocatalytic reactions in conjunction with steady state bifurcations, of
which we have described the principles, did play a key role in the formation and
maintenance of dissipative structures of increasing complexity.20

“Evolution is comparable to a soap box race. Entropy is the hill. Without the hill
there is no race and thus no distinction between good or badly designed cars.
Thermodynamics on the other hand describes the rules of the race.”

A Final Remark—Mortality Due to Accumulation of Irreversible Defects In this
final remark we briefly introduce the concept of percolation. There exists an
interesting connection between homogeneity, criticality, scaling exponents, and
non-linear mappings (logistic-map), all items we have talked about, and percola-
tion. The connection is self-similarity or scale-invarianceAn Introduction to
Computer Simulation Methods. Addison-Wesley. Here we use percolation as a
model for a particular interaction between irreversible defects leading to the death
of an organism.

We assume a population of organisms. Each organism is represented by a lattice
of L	 L tiles. Initially all tiles are white. Every organism may acquire irreversible
defects, indicated by changing the color of a tile from white to black. An organism
dies if the irreversible defects connect in a certain way, i.e. if they form a perco-
lating cluster. Two adjacent tiles belong to the same cluster only if they have one
common edge. Figure 7.17 shows an organism with 25 irreversible defects and 4
clusters. A cluster is a percolating cluster if it has at least one tile on the bottom and
one tile on the top row of the lattice.

The attendant algorithm consists of the following steps: (i) generate a large
number of blank lattices of size L	 L; (ii) with probability p every tile in every
organism is changed from white to black; (iii) determine the number of surviving
organisms, i.e. the number of lattices without percolating cluster(s); (iv) increase p
and goto (i).

This is related to real live expectancy data as follows. We assume a constant
average defect rate of n irreversible defects per year. Then z ¼ ny is the average

20 Equilibrium structures—are formed and maintained through reversible transformations implying
no appreciable deviations from equilibrium; dissipative structures—are formed and maintained
through the effect of exchange of energy and matter in non-equilibrium conditions.
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number of defects per organism after y years. We convert this into the above
probability p via

y ¼ pL2

n
: ð7:142Þ

The quantities n and L are parameters. Figure 7.18 shows a fit to experimental
data showing the current survival probability in Germany (solid line; source: http://

organism

Fig. 7.17 Lattice representation of an organism
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Fig. 7.18 Survival probability of the lattice organism and experimental data
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www.uni-giessen.de/gi38/nublica/pharma/homepage.html) using n ¼ 4:5, i.e. 1 de-
fect every three months, and L ¼ 25. Notice that the two initial “dips” of the solid
line are due to early infant mortality as well as juvenile deaths due to traffic
accidents—causes of death unrelated to irreversible defects. Notice also that
increasing the size of the lattice increases the steepness of the drop of the survival
probability.21 The inflection point on the other hand is determined by L2=n. The
scatter of the model’s results (open circles) is due to the relatively small population
size of 200 organisms generated per p-value.

21 On an infinite lattice the result will be a step function dropping to zero at pc ¼ 0:5927.
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Appendix A
The Mathematics of Thermodynamics

A.1 Exact Differential and Integrating Factor

Consider a function of two independent variables

f ¼ f x; yð Þ:

The expression

df x; yð Þ ¼ @f
@x

���
y
dxþ @f

@y

���
x
dy

is called the differential of f ðx; yÞ. Notice that the generalization to more than two
variables is obvious. However, for most of our manipulations and transformations
of thermodynamic relations this is the relevant case.

Now consider the expression

dg x; yð Þ ¼ pdxþ qdy:

Provided that

@p
@y

���
x
¼ @q

@x

���
y

holds, then dgðx; yÞ is an exact differential. An example of an exact differential is

dg x; yð Þ ¼ 3x2 þ y cos x
� �

dxþ sin x� 4y3
� �

dy;
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because

@

@y
3x2 þ y cos x
� ����

x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼cos x

¼ @

@x
sin x� 4y3
� ����

y|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼cos x

:

An example of a differential which is not exact is

dg x; yð Þ ¼ 3xy2 þ 2y
� �

dxþ 2x2yþ x
� �

dy;

because

@

@y
3xy2 þ 2y
� ����

x|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼6xyþ 2

6¼ @

@x
þ 2x2yþ x
� ����

y|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼4xyþ 1

:

However, in this case we can multiply dg x; yð Þ by x, i.e.

dh x; yð Þ � xdg x; yð Þ
¼ 3x2y2 þ 2yx

� �
dxþ 2x3yþ x2

� �
dy:

Obviously dh x; yð Þ again is an exact differential:

@

@y
3x2y2 þ 2xy
� ����

x|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼6x2yþ 2x

¼ @

@x
2x3yþ x2
� ����

y|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼6x2yþ 2x

:

Because of this the factor x is called integrating factor.
Notice that the above df ðx; yÞ is an exact differential, because the partial

derivatives may be exchanged, i.e.

@

@x
@f
@y

���
x

���
y
¼ @

@y
@f
@x

���
y

���
x

assuming continuity of the derivatives.
The special importance of exact differentials in thermodynamics is rooted in the

following mathematical theorem: Let

dA x; yð Þ ¼ PdxþQdy;

where P, Q, @P=@y, and @Q=@x are single-valued and continuous in a simply- (or
multiply-)connected region R bounded by a simple (or more) closed curve(s) C.
Then
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I
C
dA ¼

Z
R
dxdy

@Q
@x

���
y
� @P

@y

���
x

� �
:

This statement is called Green’s theorem in the plane. A proof may be found in
Spiegel (1971). We conclude immediately that if dA x; yð Þ is an exact differential,
and therefore

@Q
@x

���
y
¼ @P

@y

���
x
;

we have

I
C
dA ¼ 0:

This means that if we divide a closed path C in the x-y-plane into two sections,
i.e.

C ¼ ðx1; y1Þpath I! ðx2; y2Þpath II! ðx1; y1Þ;

we find

Z 2

1;pathI
dAþ

Z 1

2;pathII
dA ¼ 0

or

Z 2

1;pathI
dA ¼

Z 2

1;pathII
dA:

Therefore the value of A x2; y2ð Þ does not depend on the path along which x2; y2ð Þ
is reached. Every function A x; yð Þ possessing this property is called a state function.
Thus, if dA x; yð Þ is an exact differential then A x; yð Þ is a state function and vice
versa.

Example—Perpetual Motion Machine The physical significance of this is
best explained using the internal energy E. Consider for simplicity a closed
system containing a gas. We know from experience that the state of the gas is
described completely if we know its temperature, T , and its volume, V . We
want to study the change of E along a closed path C in the T-V-plane. Let us
assume we find that
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I
C
dE ¼ DE 6¼ 0:

If DE[ 0 we may generate an arbitrary amount of energy simply by
repeating the cyclic path in the T-V-plane (this situation is depicted in
Fig. A.1). If DE\0 we reverse direction and again generate energy.
A machine constructed on this principle is called a perpetual motion machine.
However, no such device has been build thus far.

Example—dq Is Not an Exact Differential Let us study another instructive
example. We consider a process involving volume change like the one we
have discussed before (see p. 1). We want to show that

dq ¼ dEþPdV

is not an exact differential. Using E ¼ EðT;VÞ we obtain

dq ¼ @E
@T

���
V
dT þ @E

@V

���
T
þP

� �
dV :

Exact differential would mean that

@

@V
@E
@T

���
V

���
T|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ð�Þ
= @

@T
@E
@V

��
T

��
V

¼ @

@T
@E
@V

���
T
þP

� ����
V
:

E

V

T

EE

E
A'

path 2

path 1E
A

E

Fig. A.1 Hypothetical internal energy gain along a closed path in the T-V-plane

328 Appendix A: The Mathematics of Thermodynamics



Here (*) holds, because dE is an exact differential (cf. above). Therefore
we must have

@P
@T

���
V
¼ 0:

This equation obviously cannot be correct, and therefore q is no state
function.

Remark Because we have seen that S is a state function, we conclude that
according to Eq. (1.47) 1=T is an integrating factor.

A.2 Three Useful Differential Relations

In the following we derive three useful differential relations. Consider A ¼ A x; yð Þ
and z ¼ z x; yð Þ. The differential of A is

dA ¼ @A
@x

���
y
dxþ @A

@y

���
x
dy;

and therefore

@A
@x

���
z
¼ @A

@x

���
y

@x
@x

���
z|ffl{zffl}

¼1

þ @A
@y

���
x

@y
@x

���
z

or

@A
@z

���
y
¼ @A

@x

���
y

@x
@z

���
y
þ @A

@y

���
x

@y
@z

���
y|ffl{zffl}

¼0

:

Thus we find

@A
@x

���
z
¼ @A

@x

���
y
þ @A

@y

���
x

@y
@x

���
z

ðA:1Þ

and

@A
@z

���
y
¼ @A

@x

���
y

@x
@z

���
y
: ðA:2Þ
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The third relation follows if we use z ¼ A in Eq. (A.1), i.e.

@z
@x

���
z|ffl{zffl}

¼0

¼ @z
@x

���
y
þ @z

@y

���
x

@y
@x

���
z
;

and therefore

@x
@y

���
z
¼ � @x

@z

���
y

@z
@y

���
x
; ðA:3Þ

where we have used

@z
@x

���
y
¼ 1

@x
@z

���
y

and

@y
@x

���
z
¼ 1

@x
@y

���
z

:

A.3 Legendre Transformation

Consider

df ¼ udxþ vdy

where

v ¼ @f
@y

���
x
: ðA:4Þ

We define a new function g via

g ¼ f � vy: ðA:5Þ

Notice that g, computed for a certain y-value, is the intercept of the tangent of f
at this y-value with the f -axis (f ð. . .; yÞ ¼ f 0ð. . .; yÞyþ b, where b is the intercept).
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Next we compute dg, i.e.

dg ¼ df � d vyð Þ ¼ udxþ vdy� vdy� ydv:

Therefore

dg ¼ udx� ydv:

This tells us that g is a function of x and v, i.e. g ¼ g x; vð Þ. The function g x; vð Þ is
called the Legendre transform of f x; yð Þ. It replaces the dependence on y by a
dependence on v. The key to this replacement is the validity of v ¼ @f =@y jx.

Example—f ¼ pðx2 þ y2Þ We consider the example

f ðx; yÞ ¼ pðx2 þ y2Þ; ðA:6Þ

where p is a parameter. We find

v ¼ @f
@y

���
x
¼ 2py and thus y ¼ v

2p
: ðA:7Þ

Inserting this into Eq. (A.5) yields

gðx; vÞ ¼ px2 � 1
4p

v2: ðA:8Þ

We can use this to illustrate an important point. Assume that the parameter
p is changed, i.e. pnew ¼ pold � dp. If dp[ 0 this means that

df ðx; yÞ��x;y\0; ðA:9Þ

where df ¼ f ðx; y; pnewÞ � f ðx; y; poldÞ. What happens to gðx; vÞ? The answer
is

dg
��
x;v ¼ ðp� dpÞx2 � 1

4ðp� dpÞ v
2 � px2 þ 1

4p
v2

� �dpx2 � 1
4p

1þ dp
p

� �
v2 þ 1

4p
v2

¼ � x2 þ 1
4p2

v2
� �

dp\0:

ðA:10Þ
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This means that the decrease of f ðx; y; pÞ at constant x and y is carried over
to the Legendre transform gðx; vÞ at constant x and v. Even though this is not a
general proof, we can see easily from Eq. (A.5) in conjunction with (A.4) that
a (local) shift of f at certain fixed variables x and y produces a corresponding
shift of g at the attendant fixed values of x and v. This is very useful—as we
shall see.
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Appendix B
Grand-Canonical Monte Carlo: Methane
on Graphite

''GCMC: adsorption of methane on graphite'';
''units = Lennard-Jones units'';
''temperature''; T ¼ 1:53; Print [''T ¼'', T];
''target bulk density''; q bulk ¼ 0:05; Print [''q bulk ¼'', q bulk];
''2nd virial coefficient'';
B2 ¼ NIntegrate ½�2 Pi ðExp ½�ð4ð1=s^12� 1=s^6ÞÞ=T � � 1Þs^2,
fs; 0; Infinityg�;
''bulk pressure''; P ¼ Tq bulk ð1þ q bulk B2Þ; Print [''P ¼'', P];
''excess chemical potential''; l ex ¼ 2Tq bulk B2; Print ['''l ex ¼'', l ex];
''simulation box size (LxLxLz)''; L ¼ 6;Lz ¼ 2L;V ¼ L^2 Lz;
a ¼ N½Vq bulk Exp ½l ex=T ��;
''cutoff radius''; rcut = 3.0;
''particle coordinates'';
TLIST ¼ Table ½fRandom ½Real; f1; Lg�;Random ½Real; f1; Lg�,
Random ½Real; f1;Lzg�g, fi; 1; 2g�;
n = Length [TLIST];
''MC step counter''; mcsteps = 0;
''steps per MC-cycle''; maxmcsteps = 1000;
''cycle counter''; cycles = 0;
''total number of cycles''; maxcycles = 4000;
''initial values in density histogram''; nint = 100; q ¼ Table ½0; fi; 0; nintg�;
counter = 0;
While [cycles < maxcycles, cycles ++;
While [mcsteps < maxmcsteps cycles,
''particle insertion'';
''1. random position'';
x ¼ fRandom ½Real; L�;Random ½Real; L�;Random ½Real;Lz�g;
''2. energy change'';
Du ¼ 0;
Do ½y ¼ Extract ½TLIST; i� � x;
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r ¼ Sqrt ½ðy½½1�� � LRound ½y½½1��=L�Þ^2þðy½½2�� � LRound ½y½½2��=L�Þ^2þ
y½½3��^2�;
If ½r\rcut;Du += 4ðr^ð�12Þ � r^ð�6ÞÞ; fg�; fi; 1; ng�;
D usurf ¼ 17:908ð0:4ð1:034=x½½3��Þ^10� ð1:034=x½½3��Þ^4Þ;
''3. Metropolis'';

If Min 1;Check a
nþ 1 Exp ½�ðDuþD usurfÞ=T�; 0
h ih i

�Random ½ �;
h

{TLIST = Append [TLIST, x]; n++}, {}];
mcsteps ++;
''particle removal'';
''1. random selection'';
p ¼ Random ½Integer; f1; ng�;
''2. energy change'';
Du ¼ 0;
Do ½y ¼ Extract ½TLIST; i� � Extract ½TLIST; p�;
r ¼ Sqrt ½ðy½½1�� � LRound ½y½½1��=L�Þ^2þðy½½2�� � LRound ½y½½2��=L�Þ^2þ
y½½3��^2�;
If ½r[ 0&& r\rcut;Du += 4ðr^ð�12Þ � r^ð�6ÞÞ; fg�; fi; 1; ng�;
D usurf ¼
17:908ð0:4ð1:034=Extract ½TLIST; p�½½3��Þ^10�
ð1:034=Extract ½TLIST; p�½½3��Þ^4Þ;
''3. Metropolis''; If Min 1;Check n

a Exp ½ðDuþD usurfÞ=T �; 0� 	� 	�Random ½ �;�
{TLIST = Delete [TLIST, p]; n��}, {}];
mcsteps ++];
''generate density profile normal to surface'';
If [cycles > 5,
{Do ½q ½½Round ½Extract ½TLIST; i�½½3��=ðLz=nintÞ���++, fi; 1;Length ½TLIST�g�;
counter ++; ''optional output: histogram'';
If ½False; fListPlot ½q=ðcounter V=Length ½q�Þ�g; fg�;
Print [''cycle'', cycles, ''of'', maxcycles�g; fg�; ''optional output: box'';
If ½False; fpts ¼ Table ½Point ½Extract ½TLIST; i��; fi; 1;Length ½TLIST�g�;
Show ½Graphics3D ½fPointSize ½0:05�; ptsg��g; fg��;
''complete density profile'';
hist ¼ fg; Do ½hist ¼ Append ½hist; fiLz=Length ½q�; q½½i��
=ðcounter V=ðnintþ 1ÞÞg�;
fi; 1;Length ½q�g�; ListPlot ½hist; Joined ! True; AxesLabel ! {''z [LJ]'',
''q [LJ]''},
PlotRange ! f0; 1g; PlotStyle ! Black�
''box'';
If ½True; fpts ¼ Table ½Point ½Extract ½TLIST; i��; fi; 1;Length ½TLIST�g�;
Show ½Graphics3D ½fPointSize ½0:05�; ptsg��g�
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Remark 1 bulk refers to the region far from the surface, where the system is
homogeneous.

Remark 2 The program assumes that the bulk gas density is low. In particular it
uses lex � 2B2ðTÞP, where B2ðTÞ is the second virial coefficient and P is the (bulk)
gas pressure. This is obtain by integrating @l=@P jT ¼ 1=qðPÞ. qðPÞ is obtained by
inserting the expansion q ¼ c1Pþ c2P2 þ . . . into the virial expansion of the
pressure, P ¼ Tqð1þB2qþ . . .Þ and comparing coefficients (c1 ¼ T�1;
c2 ¼ �T�2B2, . . .). Integration and subsequent subtraction of the ideal gas chemical
potential yields lex ¼ l� lid ¼ 2B2Pþ . . .. The integral formula for the second
virial coefficient can be found in every textbook on Statistical Mechanics.

Remark 3 The quantity r ¼ Sqrt½ðy½½1�� � LRound½y½½1��=L�Þ^2 þðy½½2���L
Round½y½½2��=L�Þ^2þ y½½3��^2� is the minimum image distance between the particle
x to be inserted or removed and another particle i in the system. The minimum
image distance is the smallest distance within the set of all distances between x and i
as well as i’s periodic images (parallel to the surface). Subsequently the interactions
are calculated only if r\rcut—a suitable cutoff. In the present program all inter-
actions of x with other particles or image particles are neglected if r� rcut. rcut must
be large enough to justify the neglect of interactions. Simultaneously it must be
small enough to avoid inclusion of interactions from one and the same particle more
than once via its periodic images. Notice that the minimum image construction
allows the actual particles to be anywhere in space—even outside the simulation
box (cf. Frenkel and Smit 1996; Allen and Tildesley 1990).
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Appendix C
Constants, Units, Tables

NA 6:02214. . . � 1023 mol�1 Avogadro’s number

R 8:31447. . . JK�1mol�1 Gas constant

hNA 3:99031. . . � 10�10 Jsmol�1 h: Planck’s constant ð�h ¼ h=ð2pÞÞ
mamuNA 10�3 kg mamu ¼ 1

12mð12CÞ: Atomic mass constant

F ¼ eNA 9:64853. . . � 104 Cmol�1 Faraday constant = eNA; e: elementary charge

eo 8:85418. . . � 10�12 Fm�1 Electric constant

lo 1:25663. . . � 10�6 NA�2 Magnetic constant

c 2:99792. . . � 108 ms�1 Vacuum speed of light (c ¼ ðeoloÞ�1=2)

g 9:80665 ms�2 Standard gravitational acceleration

G 6:673. . . � 10�11 m3kg�1s�2 Gravitational constant

1 bar 105 Pa 1 Pa ¼ 1Nm�2

1 atm 101,325 Pa

1 psi 703:0696 kgm�2

1 cmHg 1333:224 Pa

1 Torr 133:322 Pa

1 cal 4:1858 J

1 eV 1:60217. . . � 10�19 J
1:16045. . . � 104 K

1 kWh 3:6 � 106 J

0 	C 273:15 K
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Useful Tables:

HCP: Lide (2005)
HTTD: Lide and Kehiaian (1994)

Conversion Between Gaussian and SI-Units:

Quantity Gaussian SI

Speed of light c ðloeoÞ�1=2

Electric field ~E
ffiffiffiffiffiffiffiffiffi
4peo

p
~E

Displacement ~D
ffiffiffiffiffiffiffiffiffiffiffiffi
4p=eo

p
~D

Charge q q=
ffiffiffiffiffiffiffiffiffi
4peo

p

Magnetic induction ~B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4p=lo

p
~B

Magnetic field ~H
ffiffiffiffiffiffiffiffiffiffi
4plo

p
~H

Magnetization ~M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lo=ð4pÞ

p
~M
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Water
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